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1. INTRODUCTION

We present constant-factor approximation algorithms for several widely-studied
NP-hard optimization problems in network design. Our algorithms are extremely
simple and have the following flavor: randomly sample a simpler subproblem, solve
the subproblem with an existing algorithm, and greedily extend the subproblem
solution to a solution feasible for the original problem. The approximation ratios of
our algorithms improve over all of those previously known, in some cases by orders
of magnitude.

We develop a general analysis framework to bound the approximation ratios of
our algorithms. This framework is based on a novel connection between random
sampling and cost sharing, the task of allocating the cost of an object to many
users of the object in a “fair” manner. Specifically, we define the notion of strict
cost shares, and show that such cost shares provide a powerful tool for analyzing
the performance of a class of random sampling algorithms.

1.1 Three Network Design Problems

To describe our results more concretely, we define the three primary network design
problems that we consider in this paper. We discuss the motivation for and prior
work on these problems in Section 1.3 below.

Problem 1.1 Multicommodity Rent-or-Buy. An instance of the multicommodity
rent-or-buy (MRoB) problem is defined by an undirected graph G = (V, E) and a
set D = {(si, ti)}k

i=1 of vertex pairs called demand pairs, where each edge e ∈ E
has a nonnegative length ce and each demand pair (si, ti) has a nonnegative weight
wi. The goal is to compute a minimum-cost way of installing sufficient capacity on
the edges so that wi units of flow can be sent simultaneously from each source si to
the corresponding sink ti. The cost of installing capacity on an edge is given by a
simple concave function: capacity can be rented, with cost incurred on a per-unit of
capacity basis, or bought, which allows unlimited use after payment of a large fixed
cost. Precisely, there are positive parameters µ and M , with the cost of renting
capacity equal to µ times the capacity required (per unit length), and the cost of
buying infinite capacity equal to M (per unit length). By scaling, we can assume
that µ = 1 without loss of generality. The cost of a solution can thus be expressed
as ∑

e∈Eb

ceM +
∑

e∈Er

ceue,

where Eb denotes the edges on which capacity is bought and Er the rest of the
edges, and where ue denotes the amount of capacity rented on the edge e ∈ Er.
We denote an MRoB instance by a tuple (G,D, w, M) and leave the length vector
c implicit.

We will also study the special case of single-sink rent-or-buy (SSRoB), where all
demand pairs (si, ti) share a common sink vertex t, and the more general multicast
rent-or-buy problem (MuRoB), where there are arbitrary demand groups instead of
demand pairs.

Problem 1.2 Virtual Private Network Design. In an instance of virtual private
network design (VPND), we are again given an undirected graph G with nonnegative
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edge lengths c. There is also a set D of demands, each of which is located at a vertex
of G. Each demand j ∈ D possesses two nonnegative thresholds bin(j) and bout(j).
These thresholds specify the maximum amount of traffic that demand j will receive
from and send to other demands, respectively. A D × D matrix describing the
amount of directed traffic between each pair of demands is valid if it respects all
thresholds. A feasible solution to an instance of VPND is specified by a path Pij

for each ordered demand pair (i, j) and a capacity ue for each edge e, such that
there is sufficient capacity to route every valid traffic matrix via the paths {Pij}.
These paths are allowed to form cycles. The objective is to find a feasible solution
that minimizes the cost

∑
e∈E ceue. We denote an instance of VPND by the triple

(G, D, b).

Problem 1.3 Single-Sink Buy-at-Bulk. The single-sink buy-at-bulk network de-
sign (SSBaB) problem is a generalization of the SSRoB problem. The input is
the same as in the latter problem, except that instead of a single parameter M
describing the cost of buying capacity, there are K types of cables. A cable of type
i has a given capacity ui and a given cost (per unit length) σi. As in the SSRoB
problem, the goal is to compute a minimum-cost way of installing sufficient capac-
ity on the edges so that a prescribed amount of flow wi can be sent simultaneously
from each source si to the common sink t. There is no limit on the number of cables
or the number of types of cables that can be installed on each edge.

The SSBaB problem also has a well-known alternative formulation, in which the
cost of installing capacity (per-unit length) is governed by a fixed concave function.
From an approximation viewpoint, these two formulations are equivalent up to a
factor of 2. The SSRoB problem is clearly a special case of the second formulation.

The following simpler network design problem arises frequently as a subroutine
in our algorithms.

Problem 1.4 Steiner Forest. An instance of the Steiner Forest problem is given by
an undirected graph G with nonnegative edge lengths c and a set D = {(si, ti)}k

i=1

of demand pairs. The goal is to compute a minimum-cost subgraph of G that
contains an si-ti path for every i ∈ {1, 2, . . . , k}, where the cost of a subgraph is
the sum of the lengths of its edges. We denote such a Steiner Forest instance by
(G,D).

The Steiner Forest problem is equivalent to the special case of the MRoB problem
in which M = 1 and wi ≥ 1 for every i. If every demand pair of a Steiner Forest
instance has a common sink, then it is equivalent to an instance of the well-known
Steiner Tree problem. All of the problems studied in this paper contain Steiner Tree
as a special case.

Recall that an α-approximation algorithm for a minimization problem runs in
polynomial time and returns a solution of cost no more than α times that of an opti-
mal solution. The value α is the approximation ratio or performance guarantee of the
algorithm. Since even the Steiner Tree problem is MAX-SNP-hard [Bern and Plass-
man 1989], Problems 1.1–1.3 cannot be solved exactly or approximated to within
an arbitrarily small constant factor in polynomial time, assuming P 6= NP [Arora
et al. 1998]. We are therefore justified in seeking constant-factor approximation
algorithms for these problems, with the constant as small as possible.
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Problem Previously Best Approximation This Paper

MRoB over 1000 [Kumar et al. 2002] small constant
MuRoB O(log n) [Awerbuch and Azar 1997; Fakcharoenphol et al. 2004] small constant
SSRoB 4.55 [Swamy and Kumar 2004] 3.55
VPND O(log n) [Fakcharoenphol et al. 2004; Gupta et al. 2001] 5.55
SSBaB 216 [Talwar 2002] 76.8

Table I. Main results of this paper. “Previously best approximation” refers to the smallest ap-
proximation ratio known prior to the conference versions of our work [Gupta et al. 2003; Gupta
et al. 2003]. The parameter n denotes the number of network vertices. For the MRoB and MuRoB

problems, a number of different papers have used the algorithmic and analytic framework of this
paper to give successively better approximation ratios; the current records are 5 and 6, respec-
tively [Fleischer et al. 2006].

1.2 Overview of Results

Our main results are the following.

—We develop an analysis framework that shows that random sampling, a Steiner
Forest subroutine, and greedy augmentation leads to a constant-factor approxi-
mation algorithm for the MRoB problem, provided the subroutine admits what
we call strict cost shares (defined in Section 2). Beginning with the conference
version of this work [Gupta et al. 2003], a number of authors have provided strict
cost-sharing methods for several different Steiner Forest algorithms, culminating
in a recent 5-approximation algorithm for the MRoB problem due to Fleischer
et al. [2006]. We also extend our analysis framework to the MuRoB problem.

—For the SSRoB problem, we show that every Steiner Tree algorithm admits strict
cost shares and obtain a randomized 3.55-approximation algorithm.

—For the VPND problem, we build on our SSRoB algorithm and analysis to obtain
a randomized 5.55-approximation algorithm.

—We combine ideas from our SSRoB algorithm and analysis with an SSBaB algo-
rithm of Guha et al. [2001] to obtain a randomized 76.8-approximation algorithm
for the SSBaB problem.

Prior to our work, the best-known approximation ratios for the MRoB, MuRoB,
SSRoB, VPND, and SSBaB problems were over 1000 [Kumar et al. 2002]; O(log n),
where n is the number of network vertices [Awerbuch and Azar 1997; Fakcharoen-
phol et al. 2004]; 4.55 [Swamy and Kumar 2004]; O(log n) (which follows simply
from the structural results in [Gupta et al. 2001] combined with the tree approx-
imations from [Fakcharoenphol et al. 2004]); and 216 [Talwar 2002], respectively.
See also Table I. Our constant-factor approximation algorithm for the VPND prob-
lem answers the main open questions of Gupta et al. [2001]. We note that all the
previous best-known algorithms can be made deterministic, whereas the algorithms
presented in this paper are randomized.

Finally, our approximation algorithm for MRoB gives qualitatively new infor-
mation about the relative tractability of different network design problems with
economies of scale. Specifically, for many years even the simplest such problems
with multiple commodities (like MRoB) seemed more difficult than relatively com-
plex single-sink network design problems (such as SSBaB). While a constant-factor
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approximation algorithm for MRoB was devised in [Kumar et al. 2002], its com-
plexity and extremely large approximation ratio did little to change this perception.
The MRoB algorithm of this paper shows that this state of affairs arose only be-
cause of a lack of a good algorithm for MRoB, not because of the problem’s intrinsic
difficulty.

1.3 Related Work

The literature on approximation algorithms for NP-hard network design problems
is vast, and we will only discuss work that is directly related to the problems studied
in this paper. In this subsection, we mainly discuss research that occurred prior to
or independent of the present work. Since the publication of preliminary versions
of the results in this paper [Gupta et al. 2003; Gupta et al. 2003], there has been
much research on further applications, generalizations, and improvements of our
algorithms and analysis techniques. We survey this recent research in Section 6.

1.3.1 Rent-or-Buy Network Design. Rent-or-buy problems have long served as a
simple model of network design with economies of scale—where the per-unit cost of
installing capacity on an edge decreases as more capacity is installed. They also arise
naturally in other applications, including stochastic optimization problems [Karger
and Minkoff 2000] and facility location problems [Kumar et al. 2002; Swamy and
Kumar 2004].

For many years, the best algorithm known for the MRoB problem was an O(log n log log n)-
approximation algorithm, where n denotes the number of network vertices, due
to Awerbuch and Azar [1997] and Bartal [1998]. (Recent work by Fakcharoenphol
et al. [2004] can be used to improve the approximation ratio of this algorithm to
O(log n).) The first constant-factor approximation algorithm for the problem is due
to Kumar et al. [2002]. However, both the analysis and the primal-dual algorithm
of [Kumar et al. 2002] are quite complicated, and the performance guarantee shown
for the algorithm is, while constant, extremely large. This constant was neither op-
timized nor estimated in [Kumar et al. 2002], but it is at least 1000. Our MRoB
algorithm is the first constant-factor approximation algorithm for the problem that
is simple or that has a reasonably small constant performance guarantee.

The SSRoB special case of MRoB, and the closely related connected facility lo-
cation problem, have been extensively studied in the operations research litera-
ture [Kim et al. 1996; Labbé et al. 2001; Lee et al. 1996] and by the computer
science community [Gupta et al. 2001; Karger and Minkoff 2000; Khuller and Zhu
2002; Ravi and Salman 1999; Swamy and Kumar 2004]. The first constant-factor
approximation for the problem was given by Ravi and Salman [1999], who studied
it as the traveling purchaser problem and gave an LP-rounding algorithm. Inde-
pendently of their work, Karger and Minkoff [2000] gave another constant-factor
approximation algorithm for the problem, motivated by the so-called maybecast
problem. This algorithm is simple and combinatorial, but has a relatively large per-
formance guarantee. Gupta et al. [2001] essentially rediscovered the LP-rounding
approach of Ravi and Salman [1999]; their paper improved on the approximation
ratio. Prior to our work, the best algorithm for the problem was the primal-dual
4.55-approximation algorithm due to Swamy and Kumar [2004].

Finally, our random sampling approach to the MRoB problem is reminiscent of
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and partially inspired by previous work that gave online algorithms with polylog-
arithmic competitive ratios for many rent-or-buy-type problems [Awerbuch et al.
2004; Bartal 1994; Bartal et al. 2001; Bartal et al. 1995].

1.3.2 Virtual Private Network Design. The virtual private network design prob-
lem considered in this paper was defined by Fingerhut et al. [1997] and, subsequently
and independently, by Duffield et al. [1999]. The model is motivated by the many
difficulties in estimating or assuming knowledge of a fixed traffic matrix for a net-
work (see [Duffield et al. 1999; Fingerhut et al. 1997]). The VPND problem was
later studied by Gupta et al. [2001] with an eye toward approximation algorithms.

Prior to our work, the best known algorithm for the VPND problem was a direct
application of probabilistic tree embeddings [Fakcharoenphol et al. 2004], which
only guarantees a O(log n)-approximation, where n is the number of vertices. For
the special case of VPND where bin(j) = bout(j) for every demand j ∈ D, a 2-
approximation is known [Fingerhut et al. 1997; Gupta et al. 2001]. Also, Gupta
et al. [2001] gave a 10-approximation algorithm for the special case of the VPND
problem in which the the union of the routing paths {Pij}i,j∈D is required to form
a tree. They also showed that this case is a special case of the SSRoB problem, and
hence the results mentioned above for the SSRoB problem also apply to it.

1.3.3 Buy-at-Bulk Network Design. Rent-or-buy problems are a special case of
buy-at-bulk network design, where the goal is the same but the cost of installing
capacity is given by an arbitrary concave function (or, nearly equivalently, by a set
of cable types). Buy-at-bulk network design has been intensely studied over the
last several years. After the problem was introduced by Salman et al. [2000], a
long line of papers have presented successively superior algorithms for increasingly
general versions of the problem.

For the SSBaB problem considered here (Problem 1.3), the first non-trivial ap-
proximation was found by Awerbuch and Azar [1997], using the tree embeddings
of Bartal [1996], and the first constant-factor approximation algorithm was given
by Guha et al. [2001]. The performance guarantee of the combinatorial algorithm
in [Guha et al. 2001] was not stated explicitly, though Talwar [2002] estimated it to
be roughly 2000. Talwar [2002] subsequently gave an LP-rounding algorithm with
an improved performance guarantee of 216, the best known before our work.

Many researchers have studied other types of single-sink network design prob-
lems with economies of scale, including the more specialized Access Network De-
sign problem [Andrews and Zhang 2002; Guha et al. 2000; 2001; Meyerson et al.
2001], and the generalizations of SSBaB in which the capacity cost function can
be edge-dependent [Chekuri et al. 2001; Meyerson et al. 2000] or unknown to the
algorithm [Goel and Estrin 2005]. The best known approximation ratios for these
three problems are 68 [Meyerson et al. 2001], O(log n) [Chekuri et al. 2001; Meyer-
son et al. 2000], and O(log n) [Goel and Estrin 2005], respectively. Recent results
of Chuzhoy et al. [2005] rule out constant-factor approximation algorithms for the
second problem under reasonable complexity-theoretic assumptions.

For the multicommodity buy-at-bulk network design problem, the best known ap-
proximation ratio is O(log n), which follows from combining the algorithm of Awer-
buch and Azar [1997] with the probabilistic tree embeddings given by Fakcharoen-
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phol et al. [2004]. Andrews [2004] recently proved that, under reasonable complexity-
theoretic assumptions, there is no constant-factor approximation algorithm for this
problem. Very recently, Charikar and Karagiozova [2005], Chekuri et al. [2006], and
Gupta et al. [2006] developed the first non-trivial approximation algorithms for var-
ious generalizations of the multicommodity buy-at-bulk network design problem.

1.3.4 Steiner Forest. The first non-trivial approximation algorithm for the Steiner
Forest problem was the 2-approximation algorithm due to Agrawal et al. [1995].
Subsequently, Goemans and Williamson [1995; 1997] reinterpreted the algorithm
and analysis of [Agrawal et al. 1995], and generalized them to a wide class of net-
work design problems. Recently, Könemann et al. [2005] gave a somewhat different
2-approximation algorithm for the Steiner Forest problem.

1.3.5 Cost Sharing. Cost sharing has long been a fundamental subject in game
theory and economics; see e.g. [Young 1994] and the references therein. Our defi-
nition of strict cost-sharing methods in Section 2 is somewhat reminiscent of well-
known concepts in cooperative game theory, including the core and the nucleolus.
However, we are not aware of any work in the game theory literature that studies
our notion of strict cost sharing.

There has long been an informal connection between primal-dual approximation
algorithms for network design and cost sharing. Many cost-minimization network
design problems admit a natural integer programming formulation, and the dual
linear program of the linear relaxation of this integer program can usually be inter-
preted as approximately sharing the cost of an optimal solution (see e.g. [Goemans
and Williamson 1997]). In addition, techniques from approximation algorithms
have recently yielded new progress on several cost-sharing problems [Gupta et al.
2004; Jain and Vazirani 2001; 2002; Könemann et al. 2005; Pál and Tardos 2003].
Despite these previous connections, we believe the present work to be the first to
show that the explicit use of cost-sharing methods can lead to better approximation
algorithms, and the first to use cost sharing to analyze random sampling algorithms.

1.4 Paper Organization

Section 2 presents our analysis framework, defines strict cost shares, and proves
that random sampling, a Steiner Forest subroutine that admits strict cost shares,
and greedy augmentation leads to a constant-factor approximation algorithm for
MRoB. Section 3 applies this framework to the SSRoB, MRoB, and MuRoB prob-
lems. In Section 4, we build on our SSRoB algorithm and analysis and design a
constant-factor approximation algorithm for the VPND problem. Section 5 applies
our analysis tools to the SSBaB problem. Sections 3–5 all logically depend on
the concepts in Section 2. Sections 4 and 5 also depend on Section 3.1, though
Sections 3–5 are otherwise independent. Finally, Section 6 discusses recent work
motivated by this paper and possible directions for future research.

2. THE ANALYSIS FRAMEWORK

This section describes our high-level algorithm and analysis framework for the
MRoB problem. Section 2.1 presents our MRoB algorithm. Section 2.2 bounds
its expected cost when solving a randomly sampled subproblem. Section 2.3 de-
fines strict cost shares, and Section 2.4 uses them to bound the expected cost of
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Input: an MRoB instance (G,D, w, M).

(1) (Sampling step) Choose a random subset S ⊆ D of demand pairs, by including each pair
(si, ti) ∈ D in S independently with probability min{wi/M, 1}.

(2) (Subproblem step) Compute a feasible solution F to the Steiner Forest instance (G,S), and
buy (infinite) capacity on the edges of F .

(3) (Augmentation step) Greedily rent capacity to produce a feasible solution.

Fig. 1. The algorithm Sample-Augment.

the greedy augmentation step of our MRoB algorithm.

2.1 Random Sampling and Greedy Augmentation

Our algorithm for the MRoB problem is given in Figure 1. It first randomly samples
a subset of demand pairs, with probabilities proportional to weights and inversely
proportional to the ratio M of the buying and renting costs. It then buys capacity
on edges so that each demand pair in the random sample is connected by an infinite-
capacity path. Finally, our algorithm augments the capacity of the bought edges
by greedily renting capacity for all demand pairs that did not participate in the
random sample.

The sampling step in Figure 1 is self-explanatory. For the subproblem step,
we will employ an algorithm that is a good approximation algorithm for Steiner
Forest and also satisfies an additional property that we describe in Section 2.3.
We implement the augmentation step as follows. After the subproblem step, every
demand pair (si, ti) in the subset S is connected by a path of (infinite-capacity)
bought edges in F . Let G/F denote the graph obtained from G by contracting all
of the edges of F . Independently for each demand pair (si, ti) /∈ S, we compute

a shortest si-ti path P̂i of G/F , and rent wi units of capacity on each edge of P̂i

that are reserved for exclusive use by (si, ti). Each path P̂i corresponds to an si-ti
path Pi of G, where each edge of Pi either has infinite capacity or has wi units of
capacity reserved for the demand pair (si, ti). The augmentation step thus installs
sufficient capacity for all of the demand pairs to simultaneously route their traffic
on the paths {Pi}k

i=1.
The following lemma will be used in the next subsection and also motivates the

Sample-Augment algorithm.

Lemma 2.1. For every MRoB instance, there is an optimal solution such that
the flow of each demand pair can be routed on a single path.

Proof. Fix an arbitrary MRoB instance (G,D, w, M) and an optimal solution
for it. Let F denote the edges on which the optimal solution buys infinite capacity.
This optimal solution must also, independently for each demand pair (si, ti), reserve
wi units of capacity on si-ti paths of the contracted graph G/F . The minimum-cost
way to accomplish this is to rent wi units of capacity for each demand pair (si, ti) on
a shortest si-ti path of G/F , as in the augmentation step of the Sample-Augment
algorithm. Applying this augmentation step to the set F thus results in an optimal
solution in which the traffic of each demand pair can be routed on a single path.

The proof of Lemma 2.1 shows that the augmentation step of the algorithm Sample-
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Augment extends the subproblem solution to a feasible solution in an optimal way.
The crux of the MRoB problem is to identify a good set of edges on which to buy
infinite capacity. We will show that the random Steiner Forest instance defined by
the sampling step of the Sample-Augment algorithm leads to such a good set of
edges.

The rest of this section is devoted to proving that, provided the right type of
Steiner Forest algorithm is used in the subproblem step, the algorithm Sample-
Augment is a good approximation algorithm for MRoB. In Section 3 we discuss
Steiner Forest algorithms that possess the requisite properties.

2.2 Bounding the Subproblem Cost

Algorithm Sample-Augment incurs cost both in the subproblem step (for buying
capacity) and in the augmentation step (for renting capacity). We first prove a
key lemma that is useful for bounding both of these costs. The lemma states that,
in expectation, there is a low-cost solution to the random Steiner Forest instance
solved in the subproblem step of the algorithm Sample-Augment.

Lemma 2.2. For every instance I = (G,D, w, M) of MRoB,

E [OPTS ] ≤ OPTMRoB

M
, (1)

where OPTMRoB is the cost of an optimal solution for I, OPTS is the cost of
an optimal solution for the Steiner Forest instance (G,S), and the expectation is
over the random sample S chosen in the sampling step of the algorithm Sample-
Augment.

Proof. Fix an instance I of MRoB. We prove (1) by exhibiting one feasible
solution for each possible Steiner Forest instance (G,S), such that the expected
cost (over S) of this solution is at most OPTMRoB/M . Since this goal is only for
the analysis, and is independent of the algorithm Sample-Augment, we can freely
make use of an optimal solution for I. By Lemma 2.1, we can consider an optimal
solution that routes all of the traffic of each demand pair (si, ti) ∈ D on a single
path P ∗

i . For an edge e, let x∗
e =

∑
i : e∈P∗

i
wi denote the amount flow routed on

the edge e. Let Eb denote the edges e with x∗
e ≥ M and Er the rest of the edges.

The cost OPTMRoB of the optimal solution is

OPTMRoB =
∑

e∈Eb

ceM +
∑

e∈Er

cex
∗
e. (2)

To prove (1), fix a possible random sample S ⊆ D, and define a Steiner forest FS

by

FS = Eb ∪
⋃

(si,ti)∈S

P ∗
i .

Note that FS consists of one part (Eb) that does not depend on S, and one part
(∪(si,ti)∈SP ∗

i ) that does, and is certainly a feasible solution for the Steiner Forest
instance (G,S). The cost of the first part is deterministically c(Eb) =

∑
e∈Eb

ce,
a factor of M less than the cost incurred by the optimal solution for I for buying
capacity on these edges. The expected cost of the second part is a factor of M
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less than the cost incurred by the optimal solution for renting capacity, because
we include a demand pair (si, ti) in the sample S with probability only wi/M .
Formally, we bound the expected cost of FS as follows:

E [c(FS)] = E [c(Eb)] + E
[
c
(
Er ∩

(
∪(si,ti)∈SP ∗

i

))]

= c(Eb) +
∑

e∈Er

ce · Pr
[
e ∈ ∪(si,ti)∈SP ∗

i

]

≤ c(Eb) +
∑

e∈Er

ce

∑

i : e∈P∗

i

Pr[(si, ti) ∈ S]

= c(Eb) +
∑

e∈Er

ce
x∗

e

M
,

where the inequality follows from the Union Bound. Thus the expected cost of FS

is at most the cost of an optimal solution (2) divided by M . Since E [OPTS ] ≤
E [c(FS)], this proves the lemma.

Lemma 2.2 easily implies that the expected cost of the subproblem step of
Sample-Augment is small provided a good approximation algorithm for Steiner
Forest is used.

Lemma 2.3. If an α-approximation algorithm for Steiner Forest is used in the
subproblem step of Sample-Augment, then the expected cost incurred in this step
is at most α times the cost of an optimal MRoB solution.

Proof. Fix an arbitrary instance I of MRoB. Let A be the α-approximation
algorithm used in the subproblem step of Sample-Augment. The cost incurred
in this step is M times that of the Steiner forest F returned by A, since Sample-
Augment buys infinite capacity on the edges of F . This cost is at most M ·α·OPTS

for every possible random sample S of demand pairs. The expected cost is thus at
most M · α ·E [OPTS ], which by Lemma 2.2 is at most α · OPTMRoB.

The next two subsections undertake the more challenging task of bounding the
expected cost of the augmentation step of the Sample-Augment algorithm.

2.3 Strict Cost Shares

Our analysis of the expected cost of the augmentation step of the Sample-Augment
algorithm hinges on a type of cost sharing for the Steiner Forest problem. We next
define what we call strict cost shares. While our definition is motivated solely by our
analysis of Sample-Augment, it can also be interpreted as formalizing a natural
approximate fairness condition.

The next definition states that a cost-sharing method is a way of allocating cost
to the demand pairs of a Steiner Forest instance (G,D), with the total cost allocated
bounded above by that of an optimal Steiner forest for (G,D).

Definition 2.4. Let χ be a function that, for every instance I = (G,D) of Steiner
Forest, assigns a nonnegative real value χ(I, (si, ti)) to every demand pair (si, ti) ∈
D. The function χ is a (Steiner forest) cost-sharing method if, for every such
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instance I,
∑

(si,ti)∈D

χ(I, (si, ti)) ≤ OPT (I), (3)

where OPT (I) is the cost of an optimal solution to I.

Definition 2.4 permits some rather uninteresting cost-sharing methods, including
the function that always assigns all demand pairs zero cost. The key additional
property that we require is that, intuitively, a cost-sharing method allocates each
demand pair a cost share commensurate with its distance from the edges needed to
connect all of the other demand pairs. Put differently, no demand pair can be a “free
rider,” imposing a large burden in building a Steiner forest, but only receiving a
small cost share. We call cost-sharing methods with this property strict. Strict cost
shares will allow us to charge, in a demand pair-by-demand pair fashion, a constant
fraction of the expected cost of the augmentation step of Sample-Augment to
the expected cost of an optimal solution to the Steiner Forest subproblem. We have
already bounded the latter cost in Lemma 2.2.

To make this idea precise, we require further notation. Let ℓG(u, v) denote the
length of a shortest path between the vertices u and v in the graph G (with respect
to the edge lengths of G). As in Section 2.1, for a graph G and a set of edges F ,
G/F denotes the graph obtained from G by contracting all of the edges of F . As in
the augmentation step of the algorithm Sample-Augment, the minimum per-unit
cost of renting capacity between si and ti, given that infinite capacity has already
been bought on the edges in F , is precisely ℓG/F (si, ti). Our main definition is then
the following.

Definition 2.5. Let A be a deterministic algorithm for the Steiner Forest problem.
A Steiner forest cost-sharing method χ is β-strict for A if for all instances I =
(G,D) and for all demand pairs (si, ti) ∈ D,

ℓG/F (si, ti) ≤ β · χ(I, (si, ti)),

where F is the Steiner forest returned for the instance (G,D \ {(si, ti)}) by the
algorithm A.

Remark 2.6. Definition 2.4 makes no reference to an algorithm for Steiner Forest,
but Definition 2.5 does. Thus a Steiner forest cost-sharing method can be β-strict
for one algorithm and not for another. For example, every cost-sharing method is
strict with respect to the (highly suboptimal) algorithm that always returns the
entire graph G as the Steiner forest solution F . Our challenge will be to give a
strict cost-sharing method for a good approximation algorithm for Steiner Forest.

We say that an algorithm is strict if it admits a strict cost-sharing method.

Definition 2.7. An algorithm A for the Steiner Forest problem is β-strict if there
exists a cost-sharing method that is β-strict for A.

Strict cost shares will pay dividends in Lemma 2.9 below, where we use them to
bound the expected augmentation cost of the algorithm Sample-Augment.

Example 2.8 Prim Cost Shares. We now give a strict cost-sharing method for
the special case of the SSRoB problem, where all demand pairs share the same

Journal of the ACM, Vol. V, No. N, March 2007.



12 · Anupam Gupta et al.

sink vertex t. In this case, the subproblem step is an instance (G,S) of Steiner
Tree, where we must output a set F of edges spanning t and all of the source
vertices si in demand pairs of S. Suppose we use the well-known MST heuristic
as our Steiner Tree algorithm A, implemented with Prim’s MST algorithm (see
e.g. [Vazirani 2001]). In more detail, we iteratively build up a feasible solution to
(G,S) as follows. Initially, set D = {t} and F = ∅. At each iteration, among all
sources in a demand pair of S but not in D, find the source si closest to some
source or sink already in D; add si to D; and add to F a shortest path between si

and its nearest neighbor in D.
For an instance I = (G,S) of Steiner Tree, define the cost share χ(I, (si, t)) of

(si, t) as half of the length of the shortest path used in the iteration of the algorithm
that adds si to D. We call these Prim cost shares. We claim that the function χ
satisfies both Definition 2.4 and Definition 2.5 with β = 2. Definition 2.4 is met
because the sum of all of the cost shares is exactly half of the cost of the Steiner
tree output by the MST heuristic, which in turn is at most twice the cost of an
optimal Steiner tree (see e.g. [Vazirani 2001]).

To see why the cost shares χ are 2-strict for the algorithm A, consider an arbitrary
Steiner Tree instance I = (G,S) and demand pair (si, t) ∈ S. Consider running

the algorithm A in parallel on the instances I and Î = (G,S \ {(si, t)}). A key
observation is that these two executions of A are identical, until the demand pair
(si, t) of I is considered. In other words, if A chooses (si, t) in iteration j ≥ 1 of
its execution for the original instance I, then the partial solution Fj−1 that A has
constructed after j − 1 iterations is the same in both executions of the algorithm.
(We will see in Section 3.1 that this is a much stronger property than is needed for
the analysis.)

Suppose when algorithm A is run on the instance I, it connects si to Fj−1 via the
path P , where P is a shortest path between si and some previously added source or
sink. Since A’s final solution F̂ to the instance Î includes Fj−1, the shortest-path
distance ℓG/ bF (si, t) is at most the cost c(P ) of P . Since the cost share χ(I, (si, t))

is precisely c(P )/2, Definition 2.5 is satisfied with β = 2.

2.4 Bounding the Augmentation Cost

The definition of strict cost shares is engineered so that the following upper bound
on the expected augmentation cost of the algorithm Sample-Augment holds.

Lemma 2.9. If a β-strict algorithm for Steiner Forest is used in the subproblem
step of Sample-Augment, then the expected cost incurred in the augmentation step
of Sample-Augment is at most β times the cost of an optimal MRoB solution.

Proof. Suppose the β-strict Steiner Forest algorithmA is used in the subproblem
step of the algorithm Sample-Augment and fix an MRoB instance (G,D, w, M).
For each demand pair (si, ti) ∈ D, we define two random variables. First, the
random variable Ri (“renting cost”) has value 0 if (si, ti) is included in the random
sample S, and otherwise has value equal to the renting cost wi · ℓG/F (si, ti) caused
by (si, ti) in the augmentation step, where F is the Steiner Forest solution returned
by A for the instance (G,S). Second, the random variable Bi (“buying cost”) has
value M · χ((G,S), (si, ti)) if (si, ti) is included in the random sample S and 0
otherwise. Note that the cost incurred by Sample-Augment in the augmentation
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step is precisely the total renting cost
∑

i Ri. With probability 1, the total buying
cost satisfies

k∑

i=1

Bi =
∑

(si,ti)∈S

M · χ((G,S), (si, ti)) ≤ M · OPTS , (4)

where the inequality follows from Definition 2.4. Lemma 2.2 then implies that the
expected total buying cost is at most the cost OPTMRoB of an optimal solution to
(G,D, w, M):

E

[
k∑

i=1

Bi

]
≤ OPTMRoB. (5)

The rest of the proof shows how to use strict cost shares to charge, up to a factor
of β, the expected renting cost incurred by Sample-Augment to the expected
buying cost.

Fix a demand pair (si, ti). Condition on the set S ⊆ D \ {(si, ti)} of other

demand pairs that Sample-Augment includes in its random sample. Let Ŝ denote
S∪{(si, ti)}. Thus the subproblem step will involve either the Steiner Forest instance

Î = (G, Ŝ) (with probability min{wi/M, 1}) or the instance I = (G,S) (with the
remaining probability). The expected renting cost incurred by (si, ti), conditioned
on S, can therefore be crudely bounded by

E [Ri|S] =
(
1 − min

{wi

M
, 1

})
· wi · ℓG/F (si, ti) ≤ min{wi, M} · ℓG/F (si, ti), (6)

where F is the output of A for the Steiner Forest instance I. The expected buying
cost is

E [Bi|S] = min
{wi

M
, 1

}
· M · χ(Î, (si, ti)) = min{wi, M} · χ(Î, (si, ti)). (7)

Strict cost shares provide the key relation between renting and buying costs. Specif-
ically, since A is β-strict, inequality (6) and equation (7) imply that

E [Ri|S] ≤ β · E [Bi|S].

Since this inequality holds for every set S ⊆ D \ {(si, ti)}, it also holds uncondi-
tionally:

E [Ri] ≤ β · E [Bi].

Linearity of expectation and inequality (5) complete the proof:

E

[
k∑

i=1

Ri

]
≤ β · E

[
k∑

i=1

Bi

]
(8)

≤ β · OPTMRoB .

Lemmas 2.3 and 2.9 immediately imply the main result of this section: Sample-
Augment is a good approximation algorithm for MRoB, provided a good, strict
Steiner Forest algorithm is used in the subproblem step.
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Theorem 2.10. If a β-strict α-approximation algorithm for Steiner Forest is
used in the subproblem step of Sample-Augment, then Sample-Augment is a
randomized (α + β)-approximation algorithm for MRoB.

3. RENT-OR-BUY PROBLEMS

We next apply the analysis framework of Section 2, and Theorem 2.10 in partic-
ular, to several rent-or-buy problems. We begin in Section 3.1 with the special
case of the SSRoB problem, and show how the results of Section 2 easily give a
simple algorithm with a better performance guarantee than all previously known
approximation algorithms for the problem. Section 3.2 considers the MRoB prob-
lem, and motivates and surveys several constant-factor approximation algorithms
that have appeared since the conference version of the present work [Gupta et al.
2003]. Finally, Section 3.3 treats the MuRoB problem.

3.1 Single-Sink Rent-or-Buy

A good approximation algorithm for the SSRoB problem follows immediately from
the Prim cost shares of Example 2.8 and Theorem 2.10. Specifically, in Exam-
ple 2.8 we argued that the MST heuristic is a 2-approximation algorithm for the
Steiner Tree problem and admits 2-strict cost shares. Theorem 2.10 then implies
the following.

Theorem 3.1. Algorithm Sample-Augment, with the subproblem step imple-
mented with the MST heuristic, is a 4-approximation algorithm for the SSRoB
problem.

Theorem 3.1 already improves over the previously best algorithm for the SSRoB
problem, the primal-dual 4.55-approximation algorithm of Swamy and Kumar [2004].

We can achieve a slightly better approximation ratio by refining Definition 2.5
and Theorem 2.10 for the SSRoB problem. For the rest of this subsection, we call a
source or sink of a Steiner Tree instance a demand. Let D be the set of all demands;
hence D = ∪{si,t}∈D{si} ∪ {t}.

Definition 3.2. A Steiner tree cost-sharing method χ is universally β-strict if for
all Steiner Tree instances I = (G,D) and for all demand pairs (si, t) ∈ D,

ℓ(si, D \ {si}) ≤ β · χ(I, (si, t)),

where D denotes the set of demands of I and ℓ(si, D \{si}) the length of a shortest
path between si and some other demand.

Example 3.3. Recall that the Prim cost shares defined in Example 2.8 assign to
each demand pair (si, t) a cost share equal to half of the length of a shortest path
between si and some other demand. This is at least half of the length ℓ(si, D\{si})
of the shortest such path. Prim cost shares are therefore universally 2-strict.

The next lemma justifies the use of the word “universal” in Definition 3.2: uni-
versally strict cost shares are strict with respect to every Steiner Tree algorithm.

Lemma 3.4. If χ is a universally β-strict Steiner tree cost-sharing method and
A is a Steiner Tree algorithm, then χ is β-strict for A.

Journal of the ACM, Vol. V, No. N, March 2007.



Approximation via Cost Sharing · 15

Proof. To satisfy Definition 2.5, we must show that ℓG/F (si, t) ≤ β ·χ(I, (si, t))
for every Steiner Tree instance I = (G,D) and every demand pair (si, t) ∈ D, where
F is the output of A for the Steiner Tree instance (G,D \ {(si, t)}). Letting D
denote the set of demands of I, we have as

ℓG/F (si, t) ≤ ℓ(si, D \ {si}) ≤ β · χ(I, (si, t)),

where the first inequality follows from the fact that F includes a path between t and
every demand in D\{si}, and the second inequality follows from Definition 3.2.

Theorem 2.10 and Lemma 3.4 immediately give the following result.

Theorem 3.5. Suppose there is a universally β-strict Steiner tree cost sharing
method. If an α-approximation algorithm for Steiner Tree is used in the subprob-
lem step of Sample-Augment, then Sample-Augment is a randomized (α + β)-
approximation algorithm for SSRoB.

Theorem 3.5 decouples the tasks for finding a good Steiner Tree approximation
algorithm and finding (universally) strict cost shares. Combining the universally
2-strict Prim cost shares and the 1.55-approximation algorithm for Steiner Tree due
to Robins and Zelikovsky [2005] then yields a 3.55-approximation algorithm for
SSRoB.

Corollary 3.6. There is a randomized 3.55-approximation algorithm for the
SSRoB problem.

Remark 3.7. The same graphs that show that the MST heuristic is no better
than a 2-approximation algorithm for Steiner Tree prove that for every constant β <
2, there is no universally β-strict Steiner tree cost sharing method. (Consider a sink
and a large number of sources at distance 2 from each other, and an additional node
at distance 1+ǫ from each of the others [Vazirani 2001, Example 3.4].) On the other
hand, better upper bounds on the approximation ratio of Sample-Augment could
follow from stricter cost shares that are not universally strict, or from improvements
to the upper bound in Theorem 3.5. For example, the approximation factor in
Corollary 3.6 can be slightly improved by choosing the sampling rate in the Sample-
Augment algorithm more carefully.

Remark 3.8. In the proof of Lemma 3.4, we crucially used the fact that every
feasible solution to a Steiner Tree instance includes all of the demands in a single
connected component. Since different feasible solutions to a Steiner Forest instance
can connect the demands in fundamentally different ways, there do not seem to be
useful analogues of Definition 3.2 and Theorem 3.5 for the Steiner Forest and MRoB
problems, respectively.

3.2 Multicommodity Rent-or-Buy

We now consider the MRoB problem. Theorem 2.10 reduces the problem of de-
signing a constant-factor approximation algorithm to the problem to designing
an O(1)-strict cost-sharing method for an O(1)-approximation algorithm for the
Steiner Forest problem. Several papers, beginning with the conference version of
this work [Gupta et al. 2003], have designed such cost-sharing methods. Since the
analysis in [Gupta et al. 2003] is complicated and the approximation factor achieved
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Fig. 2. Example 3.9. A Steiner Forest instance showing that no local cost-sharing method for the

AKR-GW algorithm is O(1)-strict.

there has been subsumed by more recent work, we restrict ourselves to motivating
and surveying this line of research. For details on the analysis in [Gupta et al.
2003], see Pál [2004].

3.2.1 The AKR-GW Algorithm and a Motivating Example. Until recently [Könemann
et al. 2005], the only known O(1)-approximation algorithm for the Steiner Forest
problem was the 2-approximation algorithm developed by Agrawal et al. [1995] and
generalized by Goemans and Williamson [1995]. We refer to this algorithm as the
AKR-GW algorithm. We briefly review this algorithm in the Appendix.

A natural idea is to use the AKR-GW algorithm as the Steiner Forest subroutine
in the Sample-Augment algorithm and attempt to define O(1)-strict cost shares
for it. By Theorem 2.10, such cost shares would give a constant-factor approxima-
tion algorithm for MRoB. Moreover, since the AKR-GW algorithm is a primal-dual
algorithm (see the Appendix), the dual variables constructed by the AKR-GW al-
gorithm naturally suggest Steiner forest cost-sharing methods. In particular, when
a dual variable yS is increased by an additive factor of ∆, we could increase the cost
shares of the demand pairs that are separated by S by at most ∆, with this increase
split between these cost shares in an arbitrary way. The sum of cost shares defined
in this way is at most the value of the dual solution constructed by the AKR-GW
algorithm, which in turn is at most the value of an optimal Steiner forest. Such
cost shares thus satisfy Definition 2.4. But are they strict?

Our next example shows that no cost-sharing scheme of this type is O(1)-strict
for the AKR-GW algorithm. Precisely, call a Steiner forest cost-sharing method
χ local for AKR-GW if, for every Steiner Forest instance I = (G,D) and every
demand pair (si, ti) ∈ D, the cost share χ(I, (si, ti)) is at most the sum of the
dual variables yS of the AKR-GW algorithm that correspond to clusters S that
separate (si, ti). Note that all of the cost-sharing methods in the aforementioned
family are local for AKR-GW in this sense.

Example 3.9. Consider the Steiner Forest instance I shown in Figure 2, where n
is arbitrarily large and ǫ < 1/n. We will show that every cost-sharing method χ
that is local for AKR-GW is Ω(n)-strict for AKR-GW.

Consider the execution of the AKR-GW algorithm on the instance I just after
the time 1

2 . There are n + 1 clusters: s1 and t1 are each in an (active) singleton
cluster, and si and ti share an (inactive) cluster for i = 2, 3, . . . , n. By the time
τ∗ = (1+ ǫn)/2, all of the vertices lie in the same (inactive) cluster. The maximum
cost share that can be allocated to the demand pair (s1, t1) by the local cost-sharing
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method χ is 2τ∗ = O(1).

Now let Î denote the instance (G,D \ {(s1, t1)}) and consider the execution of

the AKR-GW algorithm on Î. All clusters are inactive by the time 1
2 , and the

final output of the algorithm is the set F of unit length edges. The s1-t1 distance
ℓG/F (s1, t1) is thus n(1 + ǫ) = Ω(n). The cost-sharing method χ is therefore Ω(n)-
strict.

Example 3.9 suggests the following more delicate strategies for using Theorem 2.10
to obtain a constant-factor approximation algorithm for the MRoB problem.

(1) Modify the AKR-GW algorithm, presumably by forcing it to build a limited
number of additional edges, so that there is a local cost-sharing method that is
O(1)-strict.

(2) Design a non-local O(1)-strict cost-sharing method for the AKR-GW algo-
rithm.

As we survey below, both of these approaches have been successfully applied to
design O(1)-approximation algorithms for the MRoB problem.

3.2.2 Strict Cost-Sharing Methods for Steiner Forest Algorithms. The first O(1)-
strict cost-sharing method for an O(1)-approximation algorithm for the Steiner
Forest problem was given in the conference version of the present work [Gupta
et al. 2003]. Motivated by Example 3.9, this paper shows how to make the AKR-
GW algorithm “more aggressive” in a controlled way [Gupta et al. 2003]. This
modification forces the algorithm to build additional edges, which in turn sim-
plifies the problem of designing strict cost-shares. More precisely, the main idea
in [Gupta et al. 2003] is to run the AKR-GW algorithm for a γ factor longer than
usual, where γ ≥ 1 is a parameter. Defining this idea formally requires some care;
see [Gupta et al. 2003; Pál 2004] for details. For sufficiently large γ, this algorithm
admits an O(1)-strict local cost-sharing method [Gupta et al. 2003]. Using Theo-
rem 2.10, these ideas initially gave a 12-approximation algorithm for MRoB [Gupta
et al. 2003]; slightly modifying the analysis improved the approximation factor to 8
(see [Pál 2004]).

Next, Becchetti et al. [2005] proposed a different way to force the AKR-GW
algorithm to build additional edges. They designed a strict cost-sharing method
for their algorithm and obtained an approximation factor of 4 + 2

√
2 ≈ 6.83. This

result inspired us to revisit the algorithm of [Gupta et al. 2003] and modify the
analysis, resulting in the same approximation ratio of 4 + 2

√
2 (see Pál [2004]).

Finally, Fleischer et al. [2006] very recently obtained a better approximation
ratio via a different approach. Rather than modifying the AKR-GW algorithm,
Fleischer et al. [2006] designed a non-local 3-strict cost-sharing method for it. By
Theorem 2.10, this gives a 5-approximation algorithm for MRoB. This is the smallest
approximation ratio currently known for the problem. Fleischer et al. [2006] also
showed that for every β < 8/3, there is no β-strict cost-sharing method for the
AKR-GW algorithm.

3.3 Multicast Rent-or-Buy

Our techniques also generalize to the MuRoB problem, where there are arbitrary
demand groups in place of demand pairs. Formally, an instance of MuRoB is given
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by the usual graph G = (V, E) with edge lengths c, a parameter M , and a set
D = {D1, . . . , Dk} of demand groups. Each demand group Di is an arbitrary set of
two or more demands and has a corresponding weight wi. A feasible solution to a
MuRoB instance buys and rents capacity on edges as usual, and also specifies a tree
Ai for each demand group Di that spans all of the demands of Di. The capacity on
each edge e must be at least the weight

∑
i : e∈Ai

wi of the trees that include it. In
other words, the capacity installed must be sufficient for simultaneous “multicast”
communication within each demand group.

The high-level approach of the Sample-Augment algorithm also applies to the
MuRoB problem: sample each demand group Di independently with probability
min{wi/M, 1}, buy infinite capacity on edges to connect demand groups in the
randomly sampled subproblem, and greedily rent capacity for the remaining de-
mand groups. The problem that arises in the subproblem step, which we will call
the Generalized Steiner Tree (GST) problem [Agrawal et al. 1995; Goemans and
Williamson 1995], seems more general than the Steiner Forest problem, since the
connectivity requirements now involve demand groups rather than demand pairs.
An instance of GST can be converted into an equivalent instance of Steiner Forest,
however, for example by replacing each demand group Di with a set of demand
pairs, one for each unordered pair of demands of Di. Thus every α-approximation
algorithm for Steiner Forest can be converted into an α-approximation algorithm
for GST. Alternatively, the AKR-GW algorithm can easily be modified to directly
approximate the GST problem.

Extending the definition of a strict cost-sharing method is also straightforward.
By a GST cost-sharing method we mean a function χ that assigns a non-negative
cost share χ(I, Di) to each demand group Di of an instance I of GST, such that
the sum of the cost shares is at most the cost of an optimal solution to I.

Definition 3.10. Let A be a deterministic algorithm for the GST problem. A
GST cost-sharing method χ is β-strict for A if for all instances I = (G,D) of GST
and for all demand groups Di ∈ D,

ℓG/F (Di) ≤ β · χ(I, Di),

where F is the solution returned for the instance (G,D\{Di}) by the algorithm A,
and ℓG/F (Di) denotes the value of a minimum-cost tree in G/F that spans all of
the demands of Di.

An algorithm for the GST problem is then β-strict if it admits some β-strict cost-
sharing method. As in Theorem 2.10, if the Sample-Augment algorithm is used
with a β-strict α-approximation algorithm for the GST problem, and if the augmen-
tation step is implemented optimally, then it is an (α+β)-approximation algorithm
for MuRoB. One new complication is that computing an optimal solution in the aug-
mentation step of the Sample-Augment algorithm is NP-hard (cf., the proof of
Lemma 2.1).

We noted above that an α-approximation algorithm for Steiner Forest naturally
induces an α-approximation algorithm for GST. Unfortunately, a strictness guaran-
tee (in the sense of Definition 2.5) for a Steiner Forest approximation algorithm does
not necessarily carry over to a strictness guarantee (in the sense of Definition 3.10)
for the corresponding GST approximation algorithm. Nonetheless, Gupta and Pál
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[2005] proved that the GST algorithm in [Gupta et al. 2003] is O(1)-strict, and Fleis-
cher et al. [2006] proved that the AKR-GW GST algorithm is 4-strict. Moreover,
the proofs in both of these papers are algorithmic, and can be used to compute a
solution in the augmentation step of Sample-Augment in polynomial time. While
these solutions are not generally optimal, the guarantee of Theorem 2.10 continues
to apply to them [Fleischer et al. 2006; Gupta and Pál 2005]. As a consequence,
the MuRoB algorithms in [Gupta and Pál 2005] and [Fleischer et al. 2006] achieve
approximation factors of 12.66 and 6, respectively. The latter approximation ratio
is the smallest currently known for the problem.

4. VIRTUAL PRIVATE NETWORK DESIGN

In this section and the next, we show that strict cost-sharing methods lead to im-
proved approximation algorithms for two problems to which our analysis framework
does not directly apply. In this section, we build on our algorithm and analysis for
the SSRoB problem and give a simple 5.55-approximation algorithm for the VPND
problem. We study the SSBaB problem in the next section.

4.1 The VPND Algorithm

Recall from Section 1.1 that in an instance of the VPND problem (Problem 1.2)
we are given thresholds bin(j) and bout(j) on the amount of traffic that enters and
leaves each demand j ∈ D ⊆ V of a network G = (V, E) with edge lengths ce. The
objective is to design a network with sufficient capacity for every traffic pattern that
respects these upper bounds. Formally, a traffic pattern is specified by a D × D
matrix of nonnegative real numbers, with entry fij denoting the amount of traffic
sent from demand i to demand j. A traffic matrix is valid if for every demand j,
the amount of traffic

∑
i fij incoming to j is at most bin(j) and the amount

∑
i fji

of outgoing traffic is at most bout(j). We assume that all of these thresholds are
rational numbers. By scaling both these thresholds and the edge lengths of G, we
can then assume, without loss of generality, that these thresholds are integral.

A feasible solution to a VPND instance reserves capacity ue on each edge e of
the graph G, and selects paths Pij between each ordered pair i, j ∈ D of demands
so that all valid traffic matrices can be routed using these paths without violating
the reserved capacities. The cost of a solution is

∑
e ceue and we seek a solution of

minimum cost.
To simplify our exposition, we assume for most of this section that each demand j

is a either a sender (with bin(j) = 0 and bout(j) = 1) or a receiver (with bin(j) = 1
and bout(j) = 0). In Remark 4.9, we indicate how to extend our algorithm and
analysis to general VPND instances. We also assume that the receivers of the
VPND instance outnumber the senders; the algorithm and analysis in the other
case are symmetric.

Figure 3 presents our algorithm for the VPND problem, which we call VPN-
Sample-Augment. Its high-level outline is the same as for the Sample-Augment
algorithm. Given an instance I of VPND, we first define a random subproblem,
which in this case is an instance ISSRoB of SSRoB. The only random parameter
of ISSRoB is the sink vertex, which is a sender ŝ of I that is picked uniformly
at random. The source vertices of ISSRoB are defined to be the receivers of I,
and each corresponding demand pair is given unit weight. Finally, the cost M of
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Input: an VPND instance (G, D, b).
Assumptions: each demand j ∈ D is either a sender or a receiver; there are more receivers than
senders.

(1) (Sampling step) Pick a sender ŝ uniformly at random.

(2) (Subproblem step) Use the algorithm Sample-Augment to compute a feasible solution to the
SSRoB instance (G,D,1, M), where D is the set of all pairs {(r, ŝ) | r is a receiver}, 1 the
vector of unit weights, and M is the number of senders in I. Let F denote the edges bought
by the algorithm. For every edge e ∈ F , set ue = M ; for every other edge e, set ue equal to
the amount of capacity rented for e by the Sample-Augment algorithm.

(3) (Augmentation step) Greedily and independently reserve one unit of capacity from each
sender other than ŝ to F .

Fig. 3. The algorithm VPN-Sample-Augment.

buying capacity on an edge is defined to be the number of senders. We then solve the
random subproblem ISSRoB with the Sample-Augment algorithm of Section 3.1.
We interpret the resulting feasible solution of ISSRoB as follows. Let F be the
set of edges on which the Sample-Augment subroutine bought capacity. In our
VPND solution, we reserve M units of capacity on each edge e ∈ F . If the Sample-
Augment algorithm rents capacity for an edge e, then in our VPND solution we
reserve the same amount of capacity on e. Finally, we greedily augment this partial
solution to a feasible solution for the VPND instance I as follows: independently
for each sender s 6= ŝ, reserve one unit of capacity for s’s exclusive use on a shortest
path between s and F . For each sender s and receiver r, the s-r path Psr is defined
as the concatenation of s’s shortest path to F , a path through F to ŝ, and the
ŝ-r path defined by the Sample-Augment subroutine’s solution to the instance
ISSRoB.

To gain some intuition behind the VPN-Sample-Augment algorithm, consider
the case when there is only one sender in the system: the optimal solution in
that case is a minimum-cost Steiner tree on this sender and all the receivers. And
indeed, the algorithm VPN-Sample-Augment will set M = 1 and hence sample
all receivers, and will build a low-cost Steiner tree on them. The other extreme is
when there is an equal number M of senders and receivers. In this case, consider the
“uniform” traffic pattern with 1/M amount of traffic between each sender-receiver
pair—any solution to the VPND problem must route this traffic pattern. Moreover,
one solution is to pick a random sender σ and receiver ρ: all senders send their traffic
to the random receiver ρ, who forwards these M units of traffic to the random sender
σ, who in turn forwards the traffic to the final destinations. A little thought shows
that the cost of each of these three forwarding steps, averaged over the random
choices of σ and ρ, is at most the cost of routing the uniform traffic pattern.
This gives a 3-approximation algorithm. Moreover, the VPN-Sample-Augment
algorithm performs similarly on this instance, picking one random sender and (in
expectation) one random receiver. Finally, on general instances, the algorithm
VPN-Sample-Augment tries to combine its actions on these two extreme cases,
which is also reflected in our analysis below.

To begin the analysis, we prove some basic facts about the algorithm VPN-
Sample-Augment. For the remainder of the analysis, fix an instance I = (G, D, b)
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of VPND that satisfies our two standing assumptions. Let R and S denote the sets of
receivers and senders of I, respectively. Let F denote the set of edges bought by the
Sample-Augment algorithm in the subproblem step of VPN-Sample-Augment.

Lemma 4.1. The algorithm VPN-Sample-Augment produces a feasible solu-
tion with probability 1.

Proof. Fix a valid demand matrix {fsr}s∈S,r∈R. We need to show that routing
fsr units of flow on the path Psr defined above for every s ∈ S and r ∈ R does not
violate any capacity constraint (with probability 1). We first claim that no edge
e ∈ F bought by the Sample-Augment subroutine in the subproblem step is used
beyond its capacity. This follows because M units of capacity are reserved on each
such edge and, since there are only M senders,

∑
s,r fsr ≤ ∑

s bout(s) = M .
On the other hand, the VPN-Sample-Augment algorithm explicitly reserves

capacity on each edge outside F for each path that uses it. In more detail, for every
sender s, all paths of the form Psr begin with a shortest path from s to F , and the
augmentation step of the VPN-Sample-Augment algorithm reserves one unit of
capacity on this subpath for exclusive use by s. Since

∑
r fsr ≤ bout(s) = 1, there

is sufficient capacity for the traffic on these subpaths. Similarly, for each receiver
r, all paths of the form Psr conclude with the ŝ-r path Pr defined by the Sample-
Augment algorithm’s solution to the instance ISSRoB. Moreover,

∑
s fsr ≤ 1. By

the definition of the augmentation step of the Sample-Augment algorithm, there
is one unit of capacity on the edges of Pr \F reserved for exclusive use by the sender
r. There is thus sufficient capacity on every edge for the traffic of every path Psr ,
and the proof is complete.

Also, the union of the routing paths produced by the VPN-Sample-Augment
algorithm form a tree with probability 1.

Lemma 4.2. If a consistent tie-breaking rule is used to compute shortest paths,
then with probability 1 the algorithm VPN-Sample-Augment produces a solution
in which the edges with non-zero capacity form a tree.

Proof. Since the set F is the output of a Steiner Tree instance algorithm, it is
(or can be assumed to be) a tree. By the definition of the augmentation steps of
the Sample-Augment and VPN-Sample-Augment algorithms, all other edges
with non-zero capacity lie on a shortest path between a demand j and the set
F—equivalently, are contained in the shortest-path tree in the contracted graph
G/F rooted at the vertex corresponding to F . This implies that if a consistent tie-
breaking rule is used to compute shortest paths, the set of all edges with non-zero
capacity forms a tree.

4.2 Analysis

We now bound the expected cost of the solution produced by the VPN-Sample-
Augment algorithm for the VPND instance I. We bound three parts of this
cost separately: the expected cost corresponding to the set F of edges bought
by the Sample-Augment subroutine in the subproblem step; the expected cost
corresponding to the rented edges in the subproblem step; and the expected cost
of the augmentation step. The first two steps hinge on the following lemma, which
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bounds the expected cost of an optimal solution to the (random) instance of Steiner
Tree that arises in the subproblem step of the Sample-Augment subroutine (cf.,
Lemma 2.2).

Lemma 4.3. Let OPTV PN denote the cost of an optimal solution for the VPND
instance I. Let OPTŝ,R̂ denote the cost of an optimal solution for the Steiner Tree
instance in the subproblem step of the Sample-Augment subroutine, given the
random choices of the sender ŝ ∈ S and receivers R̂ ⊆ R in the sampling steps
of the VPN-Sample-Augment and Sample-Augment algorithms, respectively.
Then

E [OPTŝ,R̂] ≤ OPTV PN

M
, (9)

where the expectation is over the random choices of ŝ and R̂.

Proof. We begin with the following equivalent description of the random choices
made in the sampling steps of the VPN-Sample-Augment and Sample-Augment
algorithms. Suppose each receiver picks a sender independently and uniformly at
random. Let Ds ⊆ R denote the random set of receivers that pick the sender
s. Then, independently choose a sender ŝ uniformly at random and consider the
Steiner Tree instance Iŝ defined by Dŝ ∪ {ŝ}. We claim that this random pro-
cess induces the same distribution over Steiner Tree instances that the algorithm
VPN-Sample-Augment does. In both processes, one sender ŝ, chosen uniformly
at random from the set of all senders, is included in the Steiner Tree instance. In
the VPN-Sample-Augment algorithm, each receiver has a 1/M probability of
being included in the Steiner Tree instance by the definition of the sampling step of
the Sample-Augment subroutine. In the new random process, since there are M
senders, the probability that a receiver picks the sender ŝ and is included in the re-
sulting Steiner Tree instance is also 1/M . Moreover, these events are independent of
each other and of the choice of the sender ŝ, just as in the VPN-Sample-Augment
algorithm. The two random processes therefore induce the same distribution over
Steiner Tree instances, and we can prove the lemma by establishing (9) for the new
random process above.

We now prove that the expected cost of an optimal solution to the random Steiner
Tree instance Iŝ is at most OPTV PN/M . We prove this inequality after conditioning
on the partition {Ds}s∈S of receivers, with the expectation only over the choice of
ŝ; the unconditional inequality (9) then follows. Fix an optimal solution to the
VPND instance I that reserves the paths {P ∗

sr}s∈S,r∈R and capacities {u∗
e}e∈E . We

next show how to pack feasible solutions for all M of the Steiner Tree instances
{Is}s∈S into this optimal solution.

For each sender s ∈ S, let G∗
s denote the subgraph of G with the edge set

∪r∈Ds
P ∗

sr . Since G∗
s spans Ds ∪ {s}, the cost c(G∗

s) of the subgraph G∗
s is at least

denote the cost OPTs of an optimal solution to Is. Moreover, if an edge e appears
in k subgraphs of the form G∗

s, then it is a member of k sender-receiver paths that
share no endpoints. Since simultaneous routing of traffic on these k paths must
be supported, OPTV PN must install at least k units of capacity on the edge e.
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Therefore,

OPTV PN ≥
∑

s∈S

c(G∗
s) ≥

∑

s∈S

OPTs.

Thus, if we pick a sender uniformly at random from the M senders, E s[OPTs] ≤
OPTV PN/M , which completes the proof.

A proof identical to that of Lemma 2.3 bounds the expected cost incurred by the
VPN-Sample-Augment algorithm for bought edges in its subproblem step.

Lemma 4.4. If an α-approximation algorithm for Steiner Tree is used in the sub-
problem step of the Sample-Augment subroutine, then the expected cost incurred
by the VPN-Sample-Augment algorithm for bought edges in its subproblem step
is at most α · OPTV PN .

We next use the universally strict cost shares for Steiner Tree (Section 3.1) to
bound the expected cost incurred by the VPN-Sample-Augment algorithm in the
subproblem step for edges that were rented by its Sample-Augment subroutine.

Lemma 4.5. The expected cost incurred by the VPN-Sample-Augment algo-
rithm for rented edges in its subproblem step is at most 2 · OPTV PN .

Proof. Let C denote the cost paid by the VPN-Sample-Augment algorithm
for rented edges in its subproblem step. Recall from Definition 3.2 and Example 3.3
that the Prim cost-sharing method of Example 2.8 is universally 2-strict. In partic-
ular, Lemma 3.4 implies that these cost shares are 2-strict no matter what Steiner
Tree algorithm is used in the subproblem step of the Sample-Augment algorithm.

We next condition on the choice of ŝ in the sampling step of the VPN-Sample-
Augment algorithm. For a subset R̂ ⊆ R of receivers, let OPTŝ,R̂ denote the value

of a minimum-cost Steiner tree spanning ŝ and all of the receivers in R̂. The proof
of Lemma 2.9, and the inequalities (4) and (8) in particular, imply that

E R̂[C|ŝ] ≤ 2M ·E R̂

[
OPTŝ,R̂|ŝ

]
,

where the expectations are over the random choice of the set R̂ of receivers in
the Sample-Augment subroutine’s sampling step. Taking expectations over the
choice of ŝ, we obtain

E ŝ,R̂[C] ≤ 2M · E ŝ,R̂

[
OPTŝ,R̂

]
≤ 2 · OPTV PN ,

where the second inequality follows from Lemma 4.3. The proof is complete.

Our final lemma bounds the expected cost of the augmentation step of the VPN-
Sample-Augment algorithm.

Lemma 4.6. The expected cost incurred in the augmentation step of the VPN-
Sample-Augment algorithm is at most 2 · OPTV PN .

Proof. Since the set F of bought edges contains the sender ŝ, we can prove the
lemma by showing that, if a sender ŝ is picked uniformly at random, then

E

[
∑

s∈S

ℓ(s, ŝ)

]
≤ 2 · OPTV PN ,
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where ℓ(·, ·) denotes shortest-path distance in G. To prove this inequality, we fix an
arbitrary set R̂ ⊆ R of M receivers. Every perfect matching M of S and R̂ provides
a lower bound

∑
(s,r)∈M ℓ(s, r) on OPTV PN , since a feasible solution must support

the simultaneous communication of all of the matched pairs of M. Averaging over
all of the M ! possible perfect matchings of S and R̂, we obtain

1

M

∑

s∈S,r∈R̂

ℓ(s, r) ≤ OPTV PN ,

as each sender-receiver pair (s, r) appears in (M − 1)! of the M ! perfect matchings.
This inequality implies that

E ŝ




∑

r∈R̂

ℓ(ŝ, r)


 ≤ OPTV PN . (10)

Also, by the Triangle inequality for shortest-path distances,
∑

s∈S

ℓ(s, ŝ) ≤
∑

r∈R̂

ℓ(ŝ, r) +
∑

(s,r)∈M

ℓ(s, r) ≤
∑

r∈R̂

ℓ(ŝ, r) + OPTV PN , (11)

where M is an arbitrary perfect matching of S and R̂. Taking expectations (over
the choice of ŝ) in (11) and combining with (10) proves the lemma.

Combining Lemmas 4.4–4.6 with the 1.55-approximation algorithm for the Steiner
Tree problem due to Robins and Zelikovsky [2005] yields the main theorem of this
section.

Theorem 4.7. There is a randomized 5.55-approximation algorithm for the VPND
problem.

Lemma 4.2 states that the VPN-Sample-Augment algorithm always outputs
a tree solution. Our analysis of the algorithm, however, does not assume that the
paths chosen by the optimal solution form a tree. Indeed, there are instances in
which no optimal solution forms a tree [Gupta et al. 2001]. Theorem 4.7 implies
that for every instance of VPND, there is a tree solution within a small constant
factor of the optimal (graph) solution. This resolves one of the main open questions
from [Gupta et al. 2001].

Corollary 4.8. Every instance of VPND admits a tree solution with cost no
more than 5.55 times that of an optimal (graph) solution. Moreover, this solution
can be computed in polynomial time.

If the constraint of polynomial-time computation is dropped, then the constant in
Corollary 4.8 can be improved to 5 by using an (exponential-time) optimal Steiner
Tree subroutine in the VPN-Sample-Augment algorithm.

Remark 4.9. The VPN-Sample-Augment algorithm and its analysis extend to
the case of arbitrary (integral) thresholds bin and bout as follows. Given an instance
of VPND, suppose we modify the instance by splitting each demand j into bin(j)
receivers and bout(j) senders, all of which are co-located. This increases the set of
feasible solutions, since it allows the traffic of an original demand pair to be routed
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on more than one path. The modification can therefore only decrease the cost of
an optimal solution. On the other hand, if the VPN-Sample-Augment algorithm
uses a consistent tie-breaking rule for computing shortest paths as in Lemma 4.2,
then it will output a solution for the modified instance that is also feasible for the
original instance. Running the VPN-Sample-Augment algorithm after splitting
demands into senders and receivers therefore produces a feasible solution to the
original instance that has cost at most 5.55 times an optimal solution (for the
original or the modified instance).

Splitting demands into senders and receivers is only a polynomial transformation
if all of the demand thresholds are polynomially bounded. However, by adjusting
the sampling probabilities in the sampling steps of the VPN-Sample-Augment al-
gorithm and its Sample-Augment subroutine, we can easily modify the algorithm
to mimic its behavior on the modified instance in polynomial time.

5. SINGLE-SINK BUY-AT-BULK NETWORK DESIGN

This section gives a simple constant-factor approximation algorithm for the widely
studied SSBaB problem. Our algorithm is closely related to that of Guha et al.
[2001], but the analysis tools developed in this paper permit a tighter and equally
simple analysis. Section 5.1 introduces notation for our analysis and reviews some
well-known transformations of SSBaB instances. Section 5.2 presents our algorithm
and analysis.

5.1 Preliminaries

Recall that an instance of the SSBaB problem (Problem 1.3) comprises an undi-
rected graph G and edge costs c; a set D of demand pairs {(si, t)}k

i=1; a weight
wi ≥ 0 for each demand pair (si, t), denoting the amount of flow that si wants to
send to t; and K cable types {1, 2, . . . , K}, where the jth cable has capacity uj and
cost σj per cable per unit length. The goal is to compute a minimum-cost way
of installing cables so that there is sufficient capacity for all sources to route flow
simultaneously.

Fix an instance I of SSBaB. We will assume that each parameter uj and σj is
a power of 2. Similarly to [Guha et al. 2001], this assumption can be enforced
while losing a factor of 4 in the approximation ratio, by rounding each capacity
uj down to the nearest power of 2 and each σj up to the nearest power of 2. By
scaling and reordering cable types, we can assume that 1 = u1 < · · · < uK and
1 = σ1 < · · · < σK ; if ui ≤ uj and σi ≥ σj , then cable type i is redundant and
can be eliminated (since one can replace each cable of type i with a cable of type
j maintaining feasibility without increasing the cost).

Define δj = σj/uj, which intuitively is the “incremental cost” of using cable type
j. For all j, δj is a power of 2. We can assume that δ1 > . . . > δK , since if δi ≤ δj

for some i < j, then cable type j is redundant and can be eliminated: again one
can replace each cable of type j with a cable of type i to get a feasible solution with
no higher cost.

Finally, we define gj =
σj+1

σj
uj and gK = ∞; in other words, gj is the amount of

flow for which the cost of routing using cable types j and j + 1 is the same (and
hence for values of flow higher than gj , it makes sense to use cable type j + 1).
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Fig. 4. The cable-installation cost function.

Since δj > δj+1, gj < uj+1 and hence

1 = u1 < g1 < u2 < g2 < . . . < uK < gK = ∞. (12)

See also Figure 4.
Next, we would like to assume that all weights wi are integral. This assumption

is not without loss of generality, as we have already scaled the cable capacities.
Instead, we enforce this assumption with the following “redistribution lemma,”
which allows us to take the non-integral weights at nodes and move them around in
order to collect an integral amount of weight at some subset of the nodes. Roughly
speaking, this lemma shows how to take a grouping parameter U (which would
be 1 to ensure integral demands) along with a tree with weights on its vertices,
and randomly define a flow that moves weights throughout the tree so that the
total weight at every node of the tree becomes either 0 or U . (One should think
of the weight as specifying the amount of “material” at each node, and the flow
as specifying how to move this material.) Moreover, this random process has two
important properties: the probability that a vertex in the tree receives weight U
is proportional to its initial weight, and no edge of the tree carries too much flow
during the reallocation.

Lemma 5.1 Redistribution Lemma. Let T be a tree and U > 0 a parameter.
Suppose each vertex j ∈ T has a nonnegative weight wj < U and that the sum∑

j wj of the weights is a multiple of U . Then there is an efficiently computable
(random) flow f in T with the following properties.

(a) With probability 1, f sends at most U units of flow across each edge of T .

(b) After rerouting weights according to the flow f , for every vertex j ∈ T , the new
weight of j is U with probability wj/U and 0 with probability 1 − wj/U .
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A deterministic version of this lemma appears in [Hassin et al. 2004, Lemma 1].
We include the simple proof for completeness.

Proof. Replace each edge of T by two oppositely directed arcs. We first show
that the lemma holds in this bidirected tree T̃ . We start by rooting T̃ at an arbitrary
vertex r and taking an Euler tour of T̃ starting at r. Order the vertices j1, . . . , jn of
T according to their first appearance in this Euler tour. For each i ∈ {1, 2, . . . , n},
let Wi denote the sum of the weights of the first i vertices in this ordering. Define
W0 to be 0.

Pick a value Y drawn uniformly at random from (0, U ]. Call vertex ji unlucky if
for some integer x, Wi−1 < xU+Y ≤ Wi—if the running sum of weights just crossed
the point Y modulo U—and lucky otherwise. After this procedure concludes, we
define the flow f̃ to reroute weights as follows. If a vertex ji is lucky, we add a flow
path to f̃ that routes all of ji’s weight to the unlucky vertex that is next according
to the ordering ji+1, . . . , jn, j1, . . . , ji−1. Otherwise, the vertex ji is only allowed to
route Wi − (xU + Y ) units of its weight to the next unlucky vertex, where x is the
integer defined above.

After this rerouting, a vertex has weight U if it is unlucky and weight 0 if it is
lucky. The probability that the vertex j is unlucky is precisely wj/U . Thus the

flow f̃ satisfies part (a) of the lemma. The flow need not satisfy part (b), however:

while f̃ routes at most U units of flow on each arc of T̃ , this corresponds to routing
at most 2U units of flow on each edge of the original undirected tree T . But since
f̃ routes at most U units of flow in each direction across each edge of T , we can
perform rudimentary flow-canceling independently on each edge of T . This yields
a flow f in T that satisfies part (b) of the lemma and, since it redistributes weights

identically to f̃ , also satisfies part (a).

We will use Lemma 5.1 as a preprocessing step to collect integral demands at some
subset of the sources of the instance I. First, we can assume that the sum of the
demand pair weights in I is greater than 1; otherwise even the cheapest cable type
effectively has infinite capacity, and I is equivalent to a Steiner Tree instance. We
also assume that the sum W of the demand pair weights in I is a power of 2 and is
at least uK ; this assumption can be removed by adding a dummy demand pair (t, t)
with an appropriate weight, and getting an approximation for this new instance.
(This follows from the fact that an optimal solution to the original instance is also
an optimum for the new instance with the dummy pair; moreover, any solution to
the new instance induces a solution to the original instance with no greater cost,
since the new instance has only more flow to route.)

As a preprocessing step of the algorithm in the next subsection, we use an α-
approximation algorithm for the Steiner Tree problem to compute a tree T0 that
spans all of the sources, and build one cable of type 1 on each edge of T0. We then
apply Lemma 5.1 to the tree T0, with U = 1 and the weight of the source si defined
as the fractional part wi − ⌊wi⌋ of its weight in I. After this procedure concludes,
there is an integral amount of weight at every source of I.

We now bound the cost of T0. Fix an optimal solution to I and let OPT denote
its cost. Let C∗(j) denote the cost of the cables of type j in this solution. Note that

OPT =
∑K

j=1 C∗(j). This solution must install nonzero capacity on a subgraph
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G∗ of G that spans all of the sources of I. Thus one candidate for a Steiner Tree
solution T0 is to build one type 1 cable on each edge of G∗. Since σ1 = 1, the cost
of this candidate solution is at most

K∑

j=1

C∗(j)

σj
. (13)

Since we use an α-approximation algorithm to compute the Steiner tree solution
T0, the cost of T0 is at most α times the quantity in (13).

5.2 The Algorithm SSBaB-Sample-Augment

We now present our constant-factor approximation algorithm for the SSBaB prob-
lem. The algorithm is similar to that of Guha et al. [2001], where the network
is designed incrementally in stages. At the beginning of each stage j there will
be a set of demands, each of which represents a group of uj units of traffic that
must be routed to the sink. During the jth stage, we use the value uj+1 as an
“aggregation threshold”, and reroute groups of uj+1/uj demands (each of weight
uj) into a single demand of weight uj+1. We buy cables on the paths required for
this agglomeration. At the end of all of the stages, every demand reaches the sink.
The final solution is the union of all of the cables bought in all of the stages. Since
this capacity is sufficient to move all of the prescribed traffic from the sources to
the sink (via the concatenation of the rerouting paths used in each stage of the
algorithm), this solution is feasible.

Let W denote the sum of the demand pair weights; recall from Section 5.1 that
we can assume that W is a power of 2. Our preprocessing step from Section 5.1
ensures that at the beginning of the first stage there is an integral weight at every
source vertex. If the source si has weight wi at the beginning of the first stage,
we interpret this as wi co-located demands, each of weight 1. Let D1 denote the
set of these unit-weight demands. While naively replicating demands could result
in a pseudopolynomial-time algorithm, non-uniform sampling can be added to the
SSBaB-Sample-Augment algorithm to simulate the effect of this replication in
polynomial time (see also Remark 4.9).

More generally, at the beginning of the jth stage, there is a set Dj of W/uj

demands, located at the source vertices of I, with weight uj each. We now describe
each stage j of the algorithm in more detail; see also Figure 5. In the sampling
step, we choose a random subset D̂j ⊆ Dj of demands, with each demand of
Dj picked independently with probability pj = uj/gj = σj/σj+1. Note that the
sampling probability pj is the ratio between the costs of the relatively low-capacity
type j cables and relatively high-capacity type (j + 1) cables, analogous to the
sampling step in the algorithm Sample-Augment for rent-or-buy problems. In
the subproblem step, we compute a Steiner tree Tj spanning the set Fj , which is

the union of the sink t and the source vertices that contain a demand of D̂j . We
build one cable of type (j+1) on each edge of Tj. In the augmentation step, we route

the demands outside D̂j to vertices of Fj along shortest paths, while building cables
of type j on these shortest paths. In the gathering step, for each co-located group
of uj+1/uj demands, we send all of these demands back to the originating location
(at the beginning of this stage) of one of them, chosen uniformly at random. This
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(1) (Sampling step) Construct a random subset bDj of the demands in Dj by choosing each such
demand independently with probability pj = uj/gj = σj/σj+1.

(2) (Subproblem step) Let Fj denote the union of the sink and the sources that contain a demand

from bDj . Construct an α-approximate Steiner tree Tj that spans Fj . Install a cable of type
(j + 1) on each edge of Tj .

(3) (Augmentation step) For each demand in Dj , route its uj weight to the closest vertex in Fj .

(Since bDj ⊆ Fj , none of the weight at vertices in bDj needs to be routed.) Install one cable
of type j on each edge of this shortest path.

(4) (Gathering step) For each vertex v ∈ Fj , split the demands at v into complete groups of
uj+1/uj demands plus one residual group of rv < uj+1/uj demands. Route each complete
group back to the initial location (at the beginning of this stage) of one of the uj+1/uj

contributing demands (using shortest paths), chosen uniformly at random. Install cables of
type j + 1 to provide sufficient capacity.

(5) (Rounding step) Use Lemma 5.1 with the tree Tj , the parameter U = uj+1, and the weights
of the residual groups, to aggregate the weight of all of the residual groups into complete
groups of uj+1/uj demands, each with total weight exactly uj+1. Reroute a complete group
at the vertex v ∈ Fj back to the initial location of one of the rv demands that were routed
to v in the augmentation step, chosen uniformly at random. Again, build new cables of type
j + 1 to provide sufficient capacity.

Fig. 5. The jth stage of the algorithm SSBaB-Sample-Augment.

group of uj+1/uj demands is then treated as a single demand of Dj+1 with weight
uj+1 in the next stage. Finally, the rounding step is like the preprocessing step
of Section 5.1 and uses Lemma 5.1 to gather the remaining demands into groups
of uj+1/uj demands. Each such group is then rerouted using a process similar to
that in the gathering step (see Figure 5 for a precise definition), and forms a single
demand of Dj+1 of weight uj+1 in the next stage. In the Kth stage, gK = ∞ and
pK = 0. Thus, the sampling step of the final stage is vacuous and all demands are
sent to the sink t in the augmentation step.

Each demand d of Dj+1 can be naturally associated with a demand of Dj—
the demand that participated in the complete group of uj+1/uj demands of Dj

that corresponds to d, and that was randomly chosen in the gathering or rounding
step. Put differently, we can view the jth stage of the algorithm as, for each
complete group of uj+1/uj demands identified in the gathering and rounding steps,
multiplying the weight of a random such demand by a uj+1/uj factor and discarding
the rest of them. We can thus sensibly write Dj+1 ⊆ Dj for every j ∈ {1, 2, . . . , K−
1}. Finally, recall that D1 is the result of the preprocessing step of Section 5.1 and
is not the original set of demands of I. Define D0 as the initial set of demands,
with each demand pair (si, t) with weight wi of I giving rise to ⌈wi⌉ demands of D0

(⌊wi⌋ unit-weight demands and one demand with weight wi −⌊wi⌋). Lemma 5.1(b)
implies that the probability that a demand of D0 is also in D1 is exactly its weight.

We now analyze the algorithm on the fixed SSBaB instance I with a sequence of
lemmas.

Lemma 5.2. For every unit-weight demand d ∈ D1 and every stage j ∈ {1, 2, . . . , K},

Pr[d ∈ Dj ] =
1

uj
.
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Proof. The proof is by induction. The lemma is clearly true when j = 1 since
u1 = 1. For j > 1, we have

Pr[d ∈ Dj] = Pr[d ∈ Dj | d ∈ Dj−1] ·Pr[d ∈ Dj−1].

Since Pr[d ∈ Dj−1] = 1/uj−1 by the inductive hypothesis, we only need to show
that Pr[d ∈ Dj | d ∈ Dj−1] = uj−1/uj. If d is gathered into a complete group of
uj/uj−1 demands in the gathering step of stage (j − 1) of the algorithm, then this
equality holds because every such demand is equally likely be chosen for membership
in Dj . Suppose d is gathered into a residual group of rv < uj/uj−1 demands at the
vertex v ∈ Fj−1 in the gathering step of stage (j − 1) of the algorithm. Then d is
included in Dj if and only if the Redistribution Lemma gathers a complete group of
demands at the vertex v in the rounding step and then d is chosen for membership
in Dj from the rv demands in the residual group at v. By Lemma 5.1(b), the
probability of both events occurring is

rvuj−1

uj
· 1

rv
=

uj−1

uj
,

which completes the proof of the lemma.

Lemma 5.2 implies that for every stage j ∈ {1, 2, . . . , K}, a demand d ∈ D1 lies

in the set D̂j with probability pj × 1/uj = 1/gj. The probability that a demand

d ∈ D0 with weight w ≤ 1 lies in the set D̂j is thus w/gj .
The next lemma bounds the expected cost of an optimal solution to the Steiner

Tree instance arising in the subproblem step of each stage of the SSBaB-Sample-
Augment algorithm (cf., Lemmas 2.2 and 4.3).

Lemma 5.3. For a stage j ∈ {1, 2, . . . , K−1}, let T ∗
j be a minimum-cost Steiner

tree spanning Fj with cost c(T ∗
j ). Then

E [c(T ∗
j )] ≤

K∑

i=j+1

C∗(i)

σi
+

1

gj

j∑

i=1

C∗(i)

δi
, (14)

where C∗(i) denotes the cost of the cables of type i in a fixed optimal solution to I,

and the expectation is over the choice of D̂j.

Proof. As in the proof of Lemma 2.2, we will exhibit a (random) subgraph Gj

of G that spans Fj and has low expected cost. Fix an optimal solution for I and a
feasible way of routing all of the traffic with respect to this solution. We first add
to Gj all of the edges in the optimal solution that possess a cable of type j + 1 or
higher. The cost of these edges is (deterministically) at most the first sum on the
right-hand side of (14).

We complete Gj by considering each demand d of D̂j in turn. In the fixed optimal
solution, the traffic of the corresponding demand d ∈ D0 may be routed on multiple
paths. (We unfortunately cannot assume without loss of generality that an optimal
solution is a tree.) We randomly add to Gj one of these paths, with a path chosen
with probability equal to the fraction of d’s traffic that it carries.

We now bound the expected cost of adding these edges to Gj . Consider an edge
e of G with no cable of type j + 1 or higher in the optimal solution. First suppose
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that only one cable is installed on e, say of type i ≤ j. Then e is included in the
random subgraph Gj if and only if the following events occur: for some demand
d ∈ D0 and some path P that routes some of d’s traffic across the edge e, the
demand d lies in D̂j, and the path P is selected among all paths that route d’s

traffic. A demand d ∈ D0 with weight w ≤ 1 lies in D̂j with probability w/gj , and
a path P is chosen with probability x/w, where x is the amount of d’s traffic that
is routed on P in the optimal solution. The Union Bound then implies that e lies
in Gj with probability at most fe/gj, where fe is the total amount of flow on e in
the optimal solution.

Since fe ≤ ui, edge e contributes at most ceui/gj to the expected cost of Gj . On
the other hand, the cable of type i on edge e contributes σice to C∗(i). Thus the
expected cost in Gj for edge e is at most 1/(gj δi) times what the optimal solution
pays for the cable. For edges on which the optimal solution installs multiple cables,
a similar analysis has to be performed on a cable-by-cable basis. Indeed, in this
case, we can emulate multiple cables on a single edge via several parallel copies of
the same edge with a single cable on each, and apply the same analysis as above.
(Recall that we do not assume that the optimal solution is a tree, and hence making
these parallel copies does not affect the argument.) Summing over all edges with
no cable of type j +1 or higher in the optimal solution gives the second sum on the
right-hand side of (14) and proves the lemma.

We now relate the expected cost incurred by the SSBaB-Sample-Augment
algorithm to the expected cost of an optimal Steiner tree spanning the vertices in
Fj .

Lemma 5.4. Let j ∈ {1, 2 . . . , K −1} be a stage and T ∗
j a minimum-cost Steiner

tree spanning Fj with cost c(T ∗
j ). The expected cost incurred in stage j of the

algorithm SSBaB-Sample-Augment is at most

(3 + α)σj+1 E [c(T ∗
j )],

where α is the approximation ratio of the Steiner Tree algorithm used in the sub-
problem step.

Proof. Since we install one cable of type (j + 1) on each edge of the tree Tj

that we compute in the subproblem step, the expected cost incurred in this step
is at most α σj+1 E [c(T ∗

j )]. As in Lemma 4.5, the universally 2-strict Prim cost
shares of Example 2.8 imply that the expected cost of the augmentation step is at
most 2 σj+1 E [c(T ∗

j )]. In more detail, we abuse notation and write χ(D̂j , di) for the
Prim cost share of a demand pair (di, t) in the Steiner Tree instance (G,D), where

D = {(di, t) : di ∈ D̂j}. As in the proof of Lemma 2.9, we define two random
variables Bi and Ri for each demand di ∈ Dj . The random variable Bi is equal to

σj+1 times the Prim cost share χ(D̂j , di) when di ∈ D̂j , and to 0 otherwise. Note
that by Definition 2.4,

∑
di∈Dj

Bi is at most σj+1 c(T ∗
j ) (with probability 1).

The variable Ri is defined to be zero when di ∈ D̂j , and is equal to σj times
the length ℓ(di, Fj) of a shortest path between di and a vertex of Fj . Since the

probability that di lies in D̂j is pj = σj/σj+1, we can follow the proof of Lemma 2.9
and infer an upper bound on the expected cost of the augmentation step thus:
E [

∑
i Ri] ≤ 2 · E [

∑
i Bi] ≤ 2σj+1 · E [c(T ∗

j )].
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We complete the proof by showing that the expected cost of the gathering and
rounding steps is at most σj+1 E [c(T ∗

j )]. Intuitively, we will charge the expected
cost of these steps to that of the earlier augmentation step. Lemma 5.1 ensures
that the rerouting of residual demands in the rounding step can be accomplished
using the cables of type j +1 purchased in the subproblem step, and no new cables
need to be built. For every edge e of G, one cable of type j was installed on e in
the augmentation step of the jth stage for each demand of Dj that used e to travel
to a vertex of Fj . In the gathering and rounding steps, one cable of type (j + 1) is
installed on e for each such demand that is chosen for membership in the set Dj+1.
Recall from the proof of Lemma 5.2 that for every demand d ∈ Dj , the probability
that d is included in Dj+1 is precisely uj/uj+1. The expected cost of rerouting
demands in the gathering and rounding steps is therefore at most

uj

uj+1
· σj+1

σj
=

δj+1

δj

times the expected cost of the augmentation step. Since δj+1 ≤ δj/2, the expected
cost of the gathering and routing steps is at most σj+1 E [c(T ∗

j )]. The lemma is
proved.

Putting together our bounds on the expected costs incurred in the preprocessing
steps and in all of the stages of the SSBaB-Sample-Augment algorithm implies
that it is a constant-factor approximation algorithm for the SSBaB problem.

Theorem 5.5. Algorithm SSBaB-Sample-Augment is a 76.8-approximation
algorithm for the SSBaB problem.

Proof. Fix an optimal solution with cost OPT =
∑

j C∗(j). By Lemmas 5.3
and 5.4, the expected cost incurred by the algorithm in stages 1 through K − 1 is
at most

K−1∑

j=1

(3 + α)σj+1 · E [c(T ∗
j )] = (3 + α)

K∑

i=1

C∗(i) ·




i−1∑

j=1

σj+1

σi
+

K∑

j=i

σj+1

δigj


 .

Recalling that σj+1/gj = δj for each j and adding in the cost (13) of the prepro-
cessing step that produces unit-weight demands for stage 1, we get that the total
expected cost incurred by the SSBaB-Sample-Augment algorithm after the ini-
tial rounding of cable costs and capacities and before stage K is at most

(3 + α)

K∑

i=1

C∗(i) ·




i−1∑

j=0

σj+1

σi
+

K∑

j=i

δj

δi


 .

Since σj+1 ≥ 2σj and δj+1 ≤ δj/2 for every j ∈ {1, 2, . . . , K − 1}, this cost is at
most 4(3 + α) · OPT .

In the final stage K of the algorithm, we route demands of size uK to the sink t
along shortest paths, building cables of type K to support this flow. This costs

∑

d∈DK

σK · ℓ(d, t),
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where ℓ(d, t) denotes the length of a shortest d-t path in G. Since every demand
d ∈ D0 with weight wd ≤ 1 corresponds to a demand of DK in the final stage with
probability wd/uK (Lemma 5.2), the expected cost of these cables of type K is

∑

d∈D0

wd

uK
· σK · ℓ(d, t) = δK

∑

d∈D0

wdℓ(d, t). (15)

Since δK is the smallest-possible incremental cost, the right-hand side of (15) is a
lower bound on the cost of the optimal solution to I. Thus the expected cost in
the Kth stage of the SSBaB-Sample-Augment algorithm is at most OPT .

Finally, our initial rounding of the cable costs and capacities increases our ap-
proximation ratio by a factor of 4. The final approximation ratio of the SSBaB-
Sample-Augment algorithm is thus 4 [4(3 + α) + 1]. Using the Steiner Tree al-
gorithm of Robins and Zelikovsky [2005], we can take α = 1.55 to achieve an
approximation ratio of 76.8.

6. RECENT AND FUTURE WORK

We conclude by discussing recent research motivated by the present paper and some
directions for future work.

6.1 Recent Work

As discussed in Section 3.2, the initial publication of our MRoB algorithm [Gupta
et al. 2003] led to two subsequent papers on the problem [Becchetti et al. 2005;
Fleischer et al. 2006]. The 5-approximation algorithm by Fleischer et al. [2006] is
the best that is currently known for the problem.

For the SSRoB problem, Gupta et al. [2004] derandomized the algorithm given
in this paper. Their approach is based on an alternative analysis of the algorithm
and results in a deterministic 4.2-approximation algorithm, slightly better than
the deterministic 4.55-approximation algorithm of Swamy and Kumar [2004]. Very
recently, Eisenbrand et al. [2007] gave a randomized 2.92-approximation algorithm
and Williamson and van Zuylen [2007] gave a deterministic 3.28-approximation
algorithm for the SSRoB problem.

For buy-at-bulk problems, our SSBaB algorithm and analysis were recently re-
fined by Grandoni and Italiano [2006] to yield a 24.92-approximation algorithm. In
another direction, Charikar and Karagiozova [2005] gave the first non-trivial ap-
proximation algorithm for the generalization of the multicommodity buy-at-bulk
network design problem in which the concave capacity cost function (or, equiv-
alently, the available cable types) can vary from edge to edge. The algorithm
in [Charikar and Karagiozova 2005], inspired by the Sample-Augment algorithm
of this paper, randomly inflates the weight of demand pairs and then runs a greedy
heuristic. Very recently, Chekuri et al. [2006] used different techniques to obtain
an approximation algorithm for this problem with a polylogarithmic performance
guarantee.

Two improvements of our VPND algorithm and analysis have been given recently.
The first is a 4.74-approximation algorithm due to Eisenbrand and Grandoni [2005],
the second a 3.55-approximation algorithm of Eisenbrand et al. [2005]. Both papers
are based on variations of our algorithm and refinements of our analysis.
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Most significantly, our definition of strict cost shares has been generalized and
applied to give the first constant-factor approximation algorithms for several prob-
lems in stochastic optimization. As an example, consider the following Stochastic
Steiner Tree problem. The input is a graph G with edges lengths c, a sink vertex
t, a set S = {s1, . . . , sk} of sources, a distribution π over sets of sources, and an
“inflation factor” σ > 1. The setup is as follows: an algorithm chooses a set F1 of
edges in the first stage; a set Ŝ ⊆ S of sources is chosen randomly according to π;
and then the algorithm chooses a set F2 of edges so that F1 ∪ F2 spans t and the
sources of Ŝ. The incentive for selecting edges in the first stage, without knowledge
of the realization Ŝ, is that each edge e costs ce in the first stage but σce in the
second stage. The goal is to design an algorithm that chooses F1 and F2 in a way
that approximately minimizes the expectation (over π and F2) of the total cost
c(F1) + σc(F2).

Gupta et al. [2004] showed that random sampling, a Steiner Forest subroutine
that admits a strengthened form of strict cost shares, and greedy augmentation can
be used to obtain a 3.55-approximation algorithm for the Stochastic Steiner Tree
problem. The only assumption on the distribution π in [Gupta et al. 2004] is that
independent samples of π can be drawn in polynomial time. Gupta et al. [2004] also
obtained similar results for stochastic versions of the Vertex Cover and Uncapacitated
Facility Location problems. Earlier approximation algorithms for these problems
both had weaker performance guarantees and imposed additional restrictions on
the distribution π [Immorlica et al. 2004; Ravi and Sinha 2006]. Strict cost shares
and generalizations have since been used to design constant-factor approximation
algorithms for various other stochastic optimization problems [Gupta and Pál 2005;
Gupta et al. 2005; Hayrapetyan et al. 2005].

6.2 Future Directions

We conclude the paper with several suggestions for future research.

(1) An obvious open question is to narrow the gap between the best approximation
and inapproximability results for all of the problems studied in this paper. In
particular, are any of these problems provably harder than the Steiner Tree
problem (assuming P 6= NP )?

(2) A more modest goal is to understand the limitations of our analysis framework
in Section 2. For example, is the guarantee in Theorem 2.10 the best possible?
Is it possible to refine the definition of strict cost shares and sharpen this
guarantee?

(3) Can the ideas in our MRoB and SSBaB algorithms be combined to yield an
approximation algorithm for the multicommodity buy-at-bulk network design
problem? While recent results of Andrews [2004] rule out constant-factor ap-
proximation algorithms under reasonable complexity assumptions, our tech-
niques might give an O(log n)-approximation algorithm for the problem that
does not resort to probabilistic tree embeddings [Bartal 1998; Fakcharoenphol
et al. 2004].

(4) Can the constant-factor approximation algorithm for Stochastic Steiner Tree
in [Gupta et al. 2004] be extended to the stochastic version of the Steiner Forest
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problem? Such an extension would follow from a strengthened version of the
strict cost shares surveyed in Section 3.2.

(5) Only our SSRoB algorithm has been derandomized [Gupta et al. 2004; Williamson
and van Zuylen 2007]. Can our other algorithms also be derandomized?

APPENDIX

We now describe the AKR-GW algorithm. Fix an instance I = (G,D) of Steiner
Forest. For a subset S ⊆ V of vertices and a demand pair (si, ti), we say that S
separates (si, ti) if S contains exactly one of si or ti. The set S is a Steiner cut of I
if it separates some demand pair. Let C denote the set of Steiner cuts of I. Finally,
let δ(S) denote the set of edges with exactly one endpoint in the vertex set S ⊆ V .
The AKR-GW algorithm iteratively constructs a feasible integral solution to the
linear relaxation

min
∑

e∈E

cexe

subject to:

(PLP )
∑

e∈δ(S)

xe ≥ 1 for every Steiner cut S ∈ C

xe ≥ 0 for every edge e ∈ E,

and a feasible solution to the corresponding dual linear program

max
∑

S∈C

yS

subject to:

(DLP )
∑

S∈C : e∈δ(S)

yS ≤ ce for every edge e ∈ E

yS ≥ 0 for every Steiner cut S ∈ C.

The 0-1 integer solutions to (PLP ) are precisely the incidence vectors of the feasi-
ble solutions of I. By weak linear programming duality, the objective function value
of every feasible (fractional) solution to the dual program (DLP ) is a lower bound
on the objective function value of every feasible (fractional) solution to (PLP ), and
in particular on the value of a minimum-cost Steiner forest for (G,D).

The AKR-GW algorithm maintains a set of edges, initially empty; a feasible
dual solution, initially the all-zero solution; and a partition of the vertices, initially
with all vertices in their own class of the partition. Edges in the current primal
solution are called tight. We will call classes of the vertex partition clusters. The
algorithm will maintain the invariant that clusters correspond to the connected
components of the set of tight edges. A cluster is active if it is a Steiner cut and
inactive otherwise.

In every iteration of the first part of the AKR-GW algorithm, the dual variables
of the currently active clusters are increased by the largest common amount that
does not violate any of the dual packing constraints of the form

∑
S∈C : e∈δ(S) yS ≤

ce. After this dual increase, there is at least one edge whose packing constraint is
satisfied with equality and with endpoints in different clusters, at least one of which
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is active. One such edge e is then deemed tight, and the two clusters containing the
endpoints of e are merged into a single cluster. Eventually, all clusters are inactive
and this portion of the algorithm halts.

For convenience, we associate a notion of time with this phase of the AKR-GW
algorithm. At the beginning of the algorithm the time τ is set to 0. Every time
dual variables are increased, the current time increases by the same amount as the
dual variables.

The final and most subtle step of the AKR-GW algorithm identifies a subset
of the tight edges that is a feasible solution and also has low cost. Precisely,
let F denote the set of tight edges. An edge of F is inessential if F \ {e} is a
feasible solution for (G,D), and essential otherwise. The final output of the AKR-
GW algorithm is the set of essential tight edges. The algorithm can clearly be
implemented in polynomial time. For fast implementations, see [Cole et al. 2001;
Gabow et al. 1998; Klein 1994].

Agrawal et al. [1995] and Goemans and Williamson [1995] proved the following
guarantee.

Theorem A.1 [Agrawal et al. 1995; Goemans and Williamson 1995].
For every Steiner Forest instance (G,D), the AKR-GW algorithm outputs a feasible
dual solution {yS}S∈C and a feasible Steiner forest F ⊆ E satisfying

∑

e∈F

ce ≤ 2
∑

S∈C

yS. (16)

Since the sum on the right-hand side of (16) is a lower bound on the value of a
minimum-cost Steiner forest of (G,D), Theorem A.1 implies that the AKR-GW
algorithm is a 2-approximation algorithm for the Steiner Forest problem.
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