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e of Anar
hyin Splittable Congestion Games∗Tim Roughgarden† Florian S
hoppmann‡April 29, 2013Abstra
tCongestion games are multi-player games in whi
h players' 
osts are additive over a set ofresour
es that have anonymous 
ost fun
tions, with pure strategies 
orresponding to 
ertainsubsets of resour
es. In a splittable 
ongestion game, ea
h player 
an 
hoose a 
onvex 
ombina-tion of subsets of resour
es. We 
hara
terize the worst-
ase pri
e of anar
hy � a quantitativemeasure of the ine�
ien
y of equilibria � in splittable 
ongestion games. Our approximationguarantee is parameterized by the set of allowable resour
e 
ost fun
tions, and degrades withthe �degree of nonlinearity� of these 
ost fun
tions. We prove that our guarantee is the bestpossible for every set of 
ost fun
tions that satis�es mild te
hni
al 
onditions. We prove ourguarantee using a novel �lo
al smoothness� proof framework, and as a 
onsequen
e the guaranteeapplies not only to the Nash equilibria of splittable 
ongestion games, but also to all 
orrelatedequilibria.1 Introdu
tionCongestion games play a 
entral role in the theory of worst-
ase approximation guarantees forgame-theoreti
 equilibria. They are expressive enough to 
apture a number of otherwise unrelatedappli
ations � in
luding routing, network design, oligopoly models, and the migration of spe
ies [2,18, 19, 24, 28℄ � yet stru
tured enough to permit interesting theoreti
al guarantees. In the standardmodel introdu
ed by Rosenthal [24℄, there is a ground set of resour
es, and ea
h player sele
ts asubset of them (e.g., a path in a network). Ea
h resour
e has a univariate 
ost fun
tion that dependson the load indu
ed by the players that use it, and ea
h player strives to minimize the sum of theresour
es' 
osts in its 
hosen strategy (given the strategies 
hosen by the other players). Be
ause of
ongestion externalities � that is, be
ause ea
h player ignores the extra 
ost its a
tion imposes onthe other players � Nash equilibria of 
ongestion games typi
ally do not minimize the joint 
ost ofthe players.We study the splittable variant of 
ongestion games, where ea
h player has a weight wi anda list of available strategies (ea
h a subset of resour
es), and ea
h player 
hooses how to split
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p(b) A Nonlinear VariantFigure 1: The pri
e of anar
hy grows with the �degree of nonlinearity� of the resour
e 
ost fun
tions.fra
tionally its weight over its strategies.1 The splittable model is more appropriate than thetraditional �unsplittable� model in some appli
ations, su
h as multipath routing in networks. Indeed,in the 
omputer networking literature, the splittable model was studied a de
ade prior to theunsplittable model, beginning with [22℄. The splittable model also arises naturally when studying
oalitions of players in nonatomi
 
ongestion games, where there is a 
ontinuum of players [7, 8, 14,16℄.The goal of this paper is to quantify the ine�
ien
y of Nash equilibria in splittable 
ongestiongames. To measure ine�
ien
y, we use the pri
e of anar
hy (POA) [17℄: the worst-
ase ratiobetween the sum of players' 
osts in a Nash equilibrium and in a minimum-
ost out
ome. To developintuition for the POA in 
ongestion games, we informally review a simple example, essentially due toPigou [23℄. Consider the two-vertex, two-edge network shown in Figure 1(a). Resour
es 
orrespondto edges, and strategies 
orrespond to s-t paths. Assume that there is a very large number ofplayers, ea
h with negligible weight, with the total weight of all players summing to 1. Ea
h edgeis labeled with a 
ost fun
tion, des
ribing the 
ost in
urred by tra�
 on that edge, as a fun
tion ofthe sum of the weights of the players on that edge. With negligible-size players, the lower edge is adominant strategy for every player. Thus, there is a Nash equilibrium in whi
h the average player
ost is 1. On the other hand, in an out
ome where the players are split equally between the twoedges, the average player 
ost is only 1
2 · 1

2 + 1
2 · 1 = 3

4 . For these reasons, the POA of this game isat least 4
3 .Now suppose we repla
e the previously linear 
ost fun
tion c(x) = x on the lower edge with thehighly nonlinear one c(x) = xp for p large (Figure 1(b)). There is still a Nash equilibrium withaverage 
ost 1. In the out
ome with minimum average player 
ost, there is a small ǫ fra
tion of theplayers on the upper edge, and the average 
ost is ǫ+ (1− ǫ)p+1. Sin
e this approa
hes 0 as ǫ tendsto 0 and p tends to in�nity, the POA grows without bound as p grows large.The �rst point of the previous example is that Nash equilibria are suboptimal even in extremelysimple splittable 
ongestion games. Of 
ourse, there might be examples (with linear 
ost fun
tions,say) with POA even larger than that in Figure 1(a) due to more 
ompli
ated strategy sets or to non-negligible player weights. The se
ond point of the example above is that the worst-
ase ine�
ien
yof Nash equilibria seems to grow with the �degree of nonlinearity� of the resour
e 
ost fun
tions.1Deterministi
ally spreading weight over multiple strategies is not equivalent to probabilisti
ally sele
ting a singlestrategy, ex
ept in the trivial 
ase of load-independent resour
e 
ost fun
tions.2



Thus, we expe
t an optimal upper bound on the worst-
ase POA of splittable 
ongestion games tobe parameterized by the set of allowable resour
e 
ost fun
tions.1.1 Our ResultsIn this paper, we resolve the worst-
ase pri
e of anar
hy in splittable 
ongestion games. Prior tothis work, no tight bounds on the POA in splittable 
ongestion games were known, even for thesimplest non-trivial spe
ial 
ase of a�ne 
ost fun
tions. By 
ontrast, tight bounds for essentially all
lasses of 
ost fun
tions were proved some years ago for both nonatomi
 
ongestion games (with a
ontinuum of players, as in Figure 1) and standard (unsplittable) 
ongestion games [1, 4, 9, 27, 29℄.Our bounds imply that the worst-
ase POA in splittable 
ongestion games is reasonably 
lose to 1provided the 
ost fun
tions are �not too nonlinear�. The degree of nonlinearity that 
an be toleratedto obey a target upper bound on the POA is qualitatively smaller than in nonatomi
 
ongestiongames, but is qualitatively larger than in standard (unsplittable) 
ongestion games. Thus, withrespe
t to the worst-
ase POA measure, allowing non-negligible-sized players to 
hoose fra
tionalstrategies substantially redu
es ine�
ien
y.Te
hni
ally, we make two distin
t 
ontributions. On the upper-bound side, we de�ne the frame-work of �lo
al smoothness�, whi
h provides a su�
ient 
ondition for a game to have a boundedPOA. This framework re�nes the smoothness paradigm introdu
ed in [27℄ for games with 
onvexstrategy sets, intuitively by requiring 
ertain inequalities only for nearby pairs of out
omes, ratherthan for all pairs of out
omes as in [27℄. While the smoothness paradigm in [27℄ provably 
annotestablish tight bounds on the POA in splittable 
ongestion games, we show that lo
al smoothnessarguments 
an. Further, we prove the following �extension theorem�: every POA bound derived vialo
al smoothness applies automati
ally, without any quantitative degradation, to every 
orrelatedequilibrium, and hen
e also to every mixed Nash equilibrium, of the game.Extending POA bounds to more general equilibrium 
on
epts is important be
ause it weakensthe rationality assumptions under whi
h the bounds are valid. An upper bound that applies onlyto pure Nash equilibria presumes that players rea
h one. A bound that applies more generally to
orrelated equilibria does not require players to 
onverge to anything: if a game is played repeatedlyand ea
h player has vanishing time-averaged �swap regret� [11, 15℄, then the bound applies to theirtime-averaged 
ost.2Our se
ond 
ontribution is a general lower bound. For a set L of allowable resour
e 
ost fun
tions,we denote by γ(L) the smallest upper bound on the POA that is provable via a lo
al smoothnessargument. We prove that for every set L that satis�es mild te
hni
al 
onditions, the worst-
ase POAin splittable 
ongestion games with 
ost fun
tions in L is exa
tly γ(L). Thus, the worst-
ase POAof pure Nash equilibria, mixed Nash equilibria, and 
orrelated equilibria 
oin
ide in su
h games.The te
hni
al 
hallenge in proving our lower bound stems from its generality: we need to exhibita worst-
ase splittable 
ongestion game for a set L of 
ost fun
tions without knowing anything about
L! Our high-level approa
h is to exhibit an example for whi
h all of the inequalities used in the upperbound proof are tight, in the spirit of �
omplementary sla
kness� arguments in linear programming.This goal translates to a labyrinth of restri
tions on a 
andidate worst-
ase splittable 
ongestiongame � on the allowable 
ost fun
tions, on the resour
e loads in equilibrium and optimal out
omes,and on the relative use of a resour
e by di�erent players in an equilibrium. Nevertheless, we show2The blunter �smoothness framework� in [27℄ yields upper bounds that apply even more generally to the 
oarse
orrelated equilibria [12, 20℄ of the game; this is not always the 
ase for lo
al smoothness proofs (Example 3.3).3



Table 1: The pri
e of anar
hy in the spe
ial 
ase of polynomial 
ost fun
tions with nonnegative
oe�
ients. For splittable 
ongestion games, the lower bounds are 
ontributed by the presentwork. The upper bound of 3
2 for a�ne 
ost fun
tions was �rst proved by Cominetti et al. [8℄. Forhigher-degree polynomials, we give the �rst 
losed-form POA upper bounds, essentially mat
hingthe numeri
al upper bounds 
omputed by Harks [14℄.Atomi
Atomi
 unsplittableDegree splittable (weighted) [1℄ Nonatomi
 [29℄1 1.500 2.618 1.3332 2.549 9.909 1.6263 5.063 47.82 1.8964 11.09 277.0 2.1515 26.32 1,858 2.3946 66.88 14,099 2.6307 180.3 118,926 2.8588 512.0 1,101,126 3.081

d (1+
√

d+1
2 )d+1 Θ( d

log d
)d+1 Θ( d

log d
)that all of these 
onditions 
an be met simultaneously and thus there are splittable 
ongestion gameswith POA arbitrarily 
lose to our upper bound of γ(L).Table 1 illustrates our exa
t bounds for the spe
ial 
ase of bounded-degree polynomials withnon-negative 
oe�
ients. The ne
essary 
al
ulations are not immediately obvious and are given inSe
tion 6. The worst-
ase pri
e of anar
hy in splittable 
ongestion games is generally stri
tly largerthan that in nonatomi
 
ongestion games (with a 
ontinuum of players) and stri
tly less than thatin standard (unsplittable) 
ongestion games.1.2 Related WorkWe next des
ribe the prior resear
h that is most relevant to the present work. See [25, �4.8℄ for thehistory of and many more referen
es on splittable 
ongestion games.Splittable 
ongestion games seem more di�
ult to reason about than other 
ongestion gamemodels. For example, while the existen
e of pure Nash equilibria in su
h games was established earlyon via �xed-point arguments [13, 22℄, Bhaskar et al. [3℄ showed only re
ently that su
h equilibrianeed not be unique. Splittable 
ongestion games also exhibit 
ounterintuitive behavior, like the fa
tthat fusing two players into one � seemingly, in
reasing the amount of 
ooperation in the game �
an in
rease the 
ost of a game's Nash equilibrium [7℄. Finally, two independent proofs 
laimed thatthe worst-
ase pri
e of anar
hy in splittable 
ongestion games is never worse than that in nonatomi

ongestion games [10, 26℄. Cominetti et al. [8℄ showed, however, that these proofs are valid only insymmetri
 games � where all players have the same weight and the same set of strategies � andadapted an example in [7℄ to refute the general 
laims.The �rst upper bounds on the POA in general splittable 
ongestion games were given byCominetti et al. [8℄. These bounds are derived using a spe
ial 
ase of our lo
al smoothness frame-4



work in whi
h one of our two parameters (λ in De�nition 3.1) is �xed at 1. This restri
ted approa
hyields �nite upper bounds on the worst-
ase POA only for 
ost fun
tions that are polynomials withdegree at most 3 and nonnegative 
oe�
ients � bounds of 3
2 , 2.564, and 7.826 for a�ne, quadrati
,and 
ubi
 
ost fun
tions, respe
tively. Harks [14℄ showed that allowing the parameter λ to varyyields signi�
antly better POA bounds. The generi
 upper bound framework in [14℄ is equivalent toours, though it produ
es bounds with a more 
ompli
ated form. The simpli�ed form derived herepermits the �rst 
losed-form expressions for the POA for polynomial 
ost fun
tions with nonnega-tive 
oe�
ients and, more importantly, enables the 
onstru
tion of mat
hing lower bounds for all
lasses of allowable 
ost fun
tions that satisfy mild te
hni
al 
onditions.Prior to our work, there were no upper bounds on the POA of splittable 
ongestion games forany equilibrium 
on
ept more general than pure Nash equilibria.The best lower bounds on the POA that were known previously follow from 
ounterexamplesin Cominetti et al. [8℄. For polynomials with nonnegative 
oe�
ients, these lower bounds growlinearly with the maximum degree d; for example, they are 1.343, 1.67, 1.981, 2.287 for d = 1, 2, 3, 4,respe
tively. Our tight lower bounds are exponentially larger in the degree d.1.3 Paper OrganizationSe
tion 2 formally de�nes splittable 
ongestion games, the equilibrium 
on
epts that we study, andthe pri
e of anar
hy. Se
tion 3 de�nes �lo
al smoothness proofs� for games with 
onvex strategy sets,shows that su
h proofs yield upper bounds on the pri
e of anar
hy of 
orrelated equilibria, and thatthese upper bounds do not generally apply to all 
oarse 
orrelated equilibria. Se
tion 4 instantiatesthis general framework for the spe
ial 
ase of splittable 
ongestion games, thereby deriving a generi
POA upper bound that is parameterized by the set of allowable resour
e 
ost fun
tions. Se
tion 5
onstru
ts families of splittable 
ongestion games and pure Nash equilibria in them to show that thePOA upper bound in Se
tion 4 is tight for every set of 
ost fun
tions that satis�es mild te
hni
al
onditions. Se
tion 6 supplies the 
al
ulations ne
essary to derive 
losed-form expressions for theworst-
ase POA in splittable 
ongestion games with resour
e 
ost fun
tions that are polynomialswith nonnegative 
oe�
ients (
f., Table 1). Se
tion 7 
on
ludes. The Appendix simpli�es andstrengthens the lower bound 
onstru
tion of Se
tion 5 for spe
i�
 
lasses of allowable resour
e 
ostfun
tions, su
h as monomials.2 The ModelSplittable Congestion Games In an (atomi
) splittable 
ongestion game, a set E of resour
eshas to be shared between n ∈ N players. Ea
h resour
e e ∈ E has a load-dependent 
ost, de�nedby its 
ost fun
tion ℓe : R≥0 → R≥0. Ea
h player i ∈ [n] := {1, . . . , n} has a set Pi ⊆ 2E \ ∅ of basi
strategies available. A fra
tional strategy of player i is a distribution of its weight wi ∈ R>0 amongthe basi
 strategies available to it, i.e., player i's set of (fra
tional) strategies is Si := {~xi ∈ R

Pi

≥0 |∑
p∈Pi

xi
p = wi}. A strategy pro�le is a ve
tor ~x = (~xi)i∈[n] of all players' strategies. We sometimes
all a fra
tional strategy that uses only one basi
 strategy a pure strategy.Resour
e Cost Fun
tions Following standard terminology, we say a 
ost fun
tion ℓ is semi-
onvex if x·ℓ(x) is 
onvex. For a non-de
reasing fun
tion ℓ, this assumption is weaker than 
onvexity,and is almost always satis�ed in 
on
rete appli
ations of 
ongestion games. In this work, we always5



assume that 
ost fun
tions are non-de
reasing, 
ontinuously di�erentiable, and semi-
onvex. Thelatter two 
onditions enable a useful 
hara
terization of Nash equilibria; see (2), below. We say thata set of 
ost fun
tions L is non-trivial if it 
ontains at least one fun
tion that is not everywherezero, and s
ale-invariant if ℓ ∈ L implies that σ · ℓ(τ · x) ∈ L for every σ, τ > 0. S
ale-invarian
emeans that the set of allowable fun
tions is invariant under 
hanges in the units of measurement.Load Given a strategy pro�le ~x and a resour
e e ∈ E, we de�ne xi
e :=

∑
p∈Pi : e∈p xi

p as the loadplayer i puts on resour
e e and xe :=
∑

i∈[n] x
i
e as the total load on e. We also use the abbreviatingnotation ~xe := (xi

e)i∈[n].Cost and Equilibria Given a strategy pro�le ~x, the 
ost of player i is de�ned as ci(~x) :=∑
e∈E xi

e · ℓe(xe). The overall measure for the quality of a strategy pro�le ~x is its so
ial 
ost
SC(~x) :=

∑

i∈[n]

ci(~x).By a reversal of sums, we 
an also write SC(~x) =
∑

e∈E xe · ℓe(xe).We are interested in equilibria of the game, i.e., states where no player 
an redu
e its (expe
ted)
ost by unilaterally deviating. To make this notion pre
ise, we 
onsider the following hierar
hy ofequilibrium 
on
epts (see, e.g., [31℄ for more details and 
ontext). A (pure) Nash equilibrium � themost restri
tive 
on
ept � is a strategy pro�le ~x su
h that for every player i and every fra
tionalstrategy ~yi it holds that ci(~x) ≤ ci(~y
i, ~x−i), where ~x−i denotes the strategies 
hosen by the playersother than i in ~x. Pure Nash equilibria always exist in splittable 
ongestion games [13, 22℄.A mixed Nash equilibrium is a pro�le of mixed strategies � sto
hasti
ally independent proba-bility distributions P1, . . . , Pn over S1, . . . , Sn � su
h that

E~x∼P [ci(~x)] ≤ E~x∼P [ci(~y
i, ~x−i)] (1)for all players i and all fra
tional strategies ~yi ∈ Si, where P denotes the produ
t distribution overstrategy pro�les indu
ed by P1, . . . , Pn. Pure Nash equilibria are the mixed Nash equilibria in whi
hno player randomizes.A (not ne
essarily produ
t) distribution P over the set of strategy pro�les is a 
orrelated equi-librium if for all players i and all fun
tions δ : Si → Si it holds that

E~x∼P [ci(~x)] ≤ E~x∼P [ci(δ(~x
i), ~x−i)].Mixed Nash equilibria 
orrespond to the 
orrelated equilibria that are produ
t distributions.Finally, su
h a distribution P is a 
oarse 
orrelated equilibrium if (1) holds for all players iand all strategies ~yi ∈ Si. Every 
orrelated equilibrium is a 
oarse 
orrelated equilibrium, and the
onverse is false in general (e.g., Example 3.3).Chara
terization of Nash Equilibria Sin
e 
ost fun
tions are di�erentiable and semi-
onvex,a ne
essary and su�
ient 
ondition for a strategy pro�le to be a (pure) Nash equilibrium is that forevery player i, the marginal 
ost of every used basi
 strategy is the same and at most that of everyunused basi
 strategy. That is, ∑

e∈p

ℓi
e(~xe) ≤

∑

e∈p′

ℓi
e(~xe)6



for all players i ∈ [n] and all p, p′ ∈ Pi with xi
p > 0, where ℓi

e(~xe) denotes ℓe(xe) + xi
e · ℓ′e(xe). This
ondition 
an alternatively be stated as a variational inequality:

∑

e∈E

ℓi
e(~xe) · (yi

e − xi
e) ≥ 0 (2)for every player i ∈ [n] and every strategy ~yi. See Harks [14, Lemma 1℄, for example, for formalproofs of these 
hara
terizations.Pri
e of Anar
hy The pri
e of anar
hy of an equilibrium 
on
ept in a game is the largest ratiobetween the (expe
ted) so
ial 
ost of an equilibrium and that of a minimum-
ost strategy pro�le.3 Lo
al SmoothnessThis se
tion presents a �lo
al� re�nement of the smoothness framework in [27℄. This re�nement 
anlead to better upper bounds on the pri
e of anar
hy for games with 
onvex strategy sets, and inparti
ular permits optimal upper bounds for splittable 
ongestion games. Bounds proved using lo
alsmoothness extend automati
ally to the 
orrelated equilibria of a game; but in 
ontrast to standardsmoothness bounds, they do not always extend to the 
oarse 
orrelated equilibria of a game.For 
ontext and 
omparison, we next review the standard de�nition of smooth games [27℄.3 Bya 
ost-minimization game, we mean a �nite set of players, a strategy set Si for ea
h player i, and a
ost fun
tion ci for ea
h player that maps out
omes (i.e., strategy pro�les) to the nonnegative reals.A 
ost-minimization game is (λ, µ)-smooth if

n∑

i=1

ci(~y
i, ~x−i) ≤ λ · SC(~y) + µ · SC(~x) (3)for every pair ~x, ~y of out
omes. The main extension theorem in [27℄ states that every 
oarse 
orre-lated equilibrium of a (λ, µ)-smooth game has expe
ted 
ost at most λ/(1−µ) times the 
ost of anoptimal out
ome.For the rest of this se
tion, we 
onsider 
ost-minimization games for whi
h every strategy set Siis a 
onvex 
ompa
t subset of some Eu
lidean spa
e R

mi and every 
ost fun
tion ci is 
ontinuouslydi�erentiable. The splittable 
ongestion games that we 
onsider satisfy these assumptions. Therough intuition behind lo
al smoothness is to require the 
onstraint (3) only for out
omes ~y that are�arbitrarily 
lose to� ~x. Sin
e dropping 
onstraints in
reases the set of feasible values for λ and µ,this idea has the potential to yield improved upper bounds on the POA.4 Formally, we implementthis idea as follows.3There are several pre
ursors to and re
ent variations on this de�nition; see [27℄ for a detailed dis
ussion.4To see why standard smoothness arguments 
annot prove optimal upper bounds on the POA of splittable 
on-gestion games, note that the strategy sets in a splittable game 
ontain those of its unsplittable 
ounterpart. Thus, fora �xed set of 
ost fun
tions, the requirement (3) is only more 
onstraining in splittable games, and the best-provableupper bound 
an only be larger. But, as Table 1 shows, the worst-
ase POA in splittable games is generally smallerthan that in the 
orresponding 
lass of unsplittable games.
7



De�nition 3.1 (Lo
ally Smooth Games) A 
ost-minimization game is lo
ally (λ, µ)-smooth withrespe
t to the out
ome ~y if for every out
ome ~x,
n∑

i=1

[
ci(~x) + ∇ici(~x)T (~yi − ~xi)

]
≤ λ · SC(~y) + µ · SC(~x) . (4)In De�nition 3.1, ∇ici := (∂ci/∂xi

1, . . . , ∂ci/∂xi
mi

) denotes the gradient of ci with respe
t to ~xi.We next prove that if a game is lo
ally (λ, µ)-smooth with respe
t to an optimal out
ome with
µ < 1, then the expe
ted 
ost of every 
orrelated equilibrium � and hen
e every pure and mixedNash equilibrium � is at most λ/(1 − µ) times that of an optimal out
ome.Theorem 3.2 (Lo
al Smoothness Bounds All Correlated Equilibria) Let P be a 
orrelatedequilibrium of a 
ost-minimization game. If the game is lo
ally (λ, µ)-smooth with respe
t to theout
ome ~y with µ < 1, then E~x∼P [SC(~x)] ≤ λ

1−µ
· SC(~y).Proof: The key 
laim is that

E~x∼P

[
∇ici(~x)T (~yi − ~xi)

]
≥ 0for every player i. Assuming the 
laim is true, we 
an 
omplete the proof by using (4) and thelinearity of expe
tation (twi
e) to derive

E~x∼P [SC(~x)] ≤
n∑

i=1

E~x∼P

[
ci(~x) + ∇ici(~x)T (~yi − ~xi)

]
≤ E~x∼P [λ · SC(~y) + µ · SC(~x)] (5)and then rearrange the terms.To prove the key 
laim, suppose for 
ontradi
tion that E~x∼P

[
∇ici(~x)T (~yi − ~xi)

]
< 0 for someplayer i. For brevity, de�ne the deviation fun
tion δǫ : Si → Si by δǫ(~x

i) := (1 − ǫ) · ~xi + ǫ ·
~yi. Intuitively, we are 
onsidering the hypotheti
al deviation by player i that always repla
es itsstrategy ~xi by one that is �a little 
loser� to ~yi. Sin
e strategy sets are 
onvex, δǫ(~x

i) is a well-de�ned strategy for every ǫ between 0 and 1. In the limit as ǫ goes to zero, E~x∼P [1
ǫ
(ci(δǫ(~x

i), ~x−i)−
ci(~x))] tends to E~x∼P [∇ici(~x)T (~yi − ~xi)], whi
h is stri
tly negative by assumption.5 Thus, thereis a su�
iently small ǫ > 0 su
h that E~x∼P [ci(δǫ(~x

i), ~x−i)] < E~x∼P [ci(~x)], whi
h 
ontradi
ts theassumption that P is a 
orrelated equilibrium.6 �Example 3.3 (Lo
al Smoothness Does Not Bound All Coarse Correlated Equilibria)Consider the 
ost-minimization game de�ned by N = {1, 2}, S1 = S2 = [0, 1], and c1(~x) = c2(~x) =
(x1−x2)

2+ε, where ε > 0 is an arbitrarily small 
onstant. This identi
al-interest game has positive,
ontinuously di�erentiable, 
onvex 
ost fun
tions and 
onvex 
ompa
t strategy sets. Let P be theuniform distribution over the strategy pro�les (0, α) and (1, 1 − α), where α ∈ (0, 1
4 ]. Elementary
al
ulations verify that this is a 
oarse 
orrelated equilibrium with expe
ted so
ial 
ost 2α2 + 2ε.Further 
al
ulations show that for every strategy pro�le ~x and every optimal strategy pro�le ~y (i.e.,5This 
an be formally justi�ed using the dominated 
onvergen
e theorem: Sin
e the strategy sets are 
ompa
t andthe 
ost fun
tions are 
ontinuously di�erentiable, there is a 
onstant M < ∞ su
h that | 1

ǫ
(ci(δǫ(~x

i), ~x−i)−ci(~x))| < Mfor every strategy pro�le ~x. Hen
e, limǫց0

R

1

ǫ
(ci(δǫ(~x

i), ~x−i) − ci(~x)) dP (~x) =
R

∇ici(~x)T (~yi − ~xi) dP (~x).6A similar tri
k was used by Neyman [21℄ to prove a rather di�erent result, that every game with 
onvex 
ompa
tstrategy sets and a stri
tly 
on
ave potential fun
tion has a unique 
orrelated equilibrium.8



y1 = y2) it holds that ∑2
i=1 ∇ici(~x)(yi − xi) = −2(x1 − x2)

2 = − SC(~x) + SC(~y). Consequently,the game is lo
ally (1, 0)-smooth with respe
t to every optimal strategy pro�le. The 
orrespondingapproximation fa
tor of λ/(1−µ) = 1 obviously does not apply to the 
oarse 
orrelated equilibria P .Remark 3.4 (Smoothness Versus Lo
al Smoothness) Here is one reason why standard smooth-ness arguments extend to 
oarse 
orrelated equilibria but lo
al smoothness arguments do not.In the de�nition (3) of (λ, µ)-smoothness, the out
ome ~y is used to propose hypotheti
al devia-tions ~y1, . . . , ~yn for the players. These proposed deviations are independent of the strategy pro�le ~x,and for this reason the resulting approximation bound of λ
1−µ

extends to all 
oarse 
orrelated equilib-ria. In De�nition 3.1 and the proof of Theorem 3.2, however, the out
ome ~y indu
es the hypotheti
aldeviations (1 − ǫ)~x1 + ǫ~y1, . . . , (1 − ǫ)~xn + ǫ~yn, whi
h do depend on ~x. Fortunately, the proposeddeviation (1−ǫ)~xi+ǫ~yi for player i depends only ~xi and not on ~x−i, and for this reason the resultingapproximation bound of λ
1−µ

extends to all 
orrelated equilibria.4 A Lo
ally Smooth Upper BoundWe now instantiate the lo
al smoothness framework of Se
tion 3 for splittable 
ongestion games.We �rst need a simple observation. De�ne κ(x, y) as y2/4 if x ≥ y/2 and x(y − x) otherwise.Lemma 4.1 Let n ∈ N and x, y ≥ 0. For every ~x, ~y ∈ R
n
≥0 with ∑n

i=1 xi = x and ∑n
i=1 yi = y,∑n

i=1

(
yi · xi − x2

i

)
≤ κ(x, y).Proof: Denote xmax = maxn

i=1 xi. We have
n∑

i=1

(
yi · xi − x2

i

)
≤

n∑

i=1

(yi · xi) − x2
max ≤ y · xmax − x2

max =
y2

4
−

(y

2
− xmax

)2
≤ y2

4
.For the 
ase where x < y/2, observe that z 7→ (y · z − z2) is in
reasing on [0, y/2]. Consequently,

y · xmax − x2
max ≤ y · x − x2 = x(y − x), as required. �Next is a simple univariate 
ondition on 
ost fun
tions that implies lo
al smoothness of the
orresponding 
lass of splittable 
ongestion games.Proposition 4.2 Let L be a 
lass of allowable 
ost fun
tions. If

y · ℓ(x) + κ(x, y) · ℓ′(x) ≤ λ · y · ℓ(y) + µ · x · ℓ(x) (6)for every ℓ ∈ L and x, y ≥ 0, then every splittable 
ongestion game with 
ost fun
tions in L islo
ally (λ, µ)-smooth with respe
t to every out
ome.
9



Proof: Consider a splittable 
ongestion game with 
ost fun
tions in L and two strategy pro�les ~xand ~y. Re
all that ℓi
e(~xe) denotes the marginal 
ost ℓe(xe) + xi

e · ℓ′e(xe). We have
n∑

i=1

[
ci(~x) + ∇ici(~x)T (~yi − ~xi)

]
=

∑

i∈[n]

∑

e∈E

[
xi

e · ℓe(xe) + yi
e · ℓi

e(~xe) − xi
e · ℓi

e(~xe)
]

=
∑

e∈E

[
ye · ℓe(xe) + ℓ′e(xe) ·

∑

i∈[n]

(
yi

e · xi
e − (xi

e)
2
)]

≤
∑

e∈E

[
ye · ℓe(xe) + κ(xe, ye) · ℓ′e(xe)

] (7)
≤

∑

e∈E

[λ · ye · ℓe(ye) + µ · xe · ℓe(xe)] (8)
=λ · SC(~y) + µ · SC(~x) ,where inequalities (7) and (8) follow from Lemma 4.1 and assumption (6), respe
tively. �We now de�ne the quantity γ(L) as, intuitively, the best upper bound on the POA that isprovable using Theorem 3.2 and Proposition 4.2. Formally, we �rst de�ne gℓ,x,y : R<1 → R ∪ {∞}by

gℓ,x,y(µ) :=
y · ℓ(x) + κ(x, y) · ℓ′(x) − µ · x · ℓ(x)

y · ℓ(y) · (1 − µ)for every admissible triple ℓ, x, y, meaning a 
ost fun
tion ℓ ∈ L and values x ≥ 0, y > 0 with
ℓ(y) > 0. If µ < 1, then for every admissible triple ℓ, x, y, the 
onstraint (6) is equivalent to

gℓ,x,y(µ) ≤ λ

1 − µ
; (9)that is, gℓ,x,y(µ) is a lower bound on the best POA bound that 
an be proved using Proposition 4.2and a given value of µ < 1.Non-admissible triples ℓ, x, y 
an be ignored in Proposition 4.2. First, if ℓ is the zero fun
tion,inequality (6) redu
es to 0 ≤ 0 irrespe
tive of λ and µ. Se
ond, if ℓ is not the zero fun
tion, thende�ne ξ := max{y ≥ 0 | y · ℓ(y) = 0}. This maximum is guaranteed to exist be
ause y 7→ y · ℓ(y) is
ontinuous. Now if (6) holds for all y > ξ, then it also holds for y = ξ (sin
e both sides of (6) are
ontinuous in y), and hen
e for all y ∈ [0, ξ] (sin
e the left-hand side of (6) is nonde
reasing in y).The upshot is that, for µ < 1, the requirement of Proposition 4.2 � that is, the 
onjun
tion ofall 
onstraints (6) over all triples ℓ ∈ L, x, y ≥ 0 � is equivalent to

sup
ℓ∈L

x≥0,y>0,ℓ(y)>0

gℓ,x,y(µ) ≤ λ

1 − µ
. (10)Put di�erently, for a �xed value of µ < 1, the value of λ that minimizes λ

1−µ
subje
t to 
ondition (6)for all admissible triples is (1 − µ) times the left-hand side of (10).Given a non-trivial set of 
ost fun
tions L, the best POA bound provable using Theorem 3.2 andProposition 4.2 is the in�mum of λ

1−µ
over all 
hoi
es of (λ, µ) with µ < 1 that meet 
ondition (6)10



for all admissible triples. Sin
e 
ondition (6) redu
es to 0 ≤ µ · x · ℓ(x) if y = 0, any �nite POAbound also requires µ ≥ 0. The left-hand side of (10) is the best POA bound for a given 
hoi
eof µ, and the de�nition of γ(L) simply minimizes this POA bound over the 
hoi
es for µ:
γ(L) := inf

µ∈[0,1)
sup
ℓ∈L

x≥0,y>0,ℓ(y)>0

gℓ,x,y(µ) . (11)The de�nition of γ(L), Proposition 4.2, and Theorem 3.2 immediately imply the following.Corollary 4.3 For every non-trivial set L of 
ost fun
tions and every splittable 
ongestion gamewith 
ost fun
tions in L, the pri
e of anar
hy of 
orrelated equilibria is at most γ(L).5 A Mat
hing Lower Bound for All S
ale-Invariant Classes of CostFun
tionsIn this se
tion, we show that for every non-trivial s
ale-invariant set of 
ost fun
tions L, the worst-
ase pri
e of anar
hy of pure Nash equilibria in splittable 
ongestion games with 
ost fun
tions in
L is exa
tly γ(L). Before giving the main 
onstru
tion in Se
tion 5.2, we prove in Se
tion 5.1 that
γ(L) 
an �usually� be approximated arbitrarily well by the interse
tion of a non-de
reasing 
urve
gℓ1,x1,y1

(µ) and a non-in
reasing 
urve gℓ2,x2,y2
(µ). These two 
urves en
ode the 
ost fun
tions andresour
e loads that we use in the 
onstru
tion of a worst-
ase 
ongestion game. The �unusual� 
ases,in whi
h γ(L) must be +∞, are handled dire
tly in Se
tion 5.2.5.1 Approximating γ(L) by Two CurvesDe�ne ΓL : [0, 1) → R ∪ {∞} as the inner part of the in�mum in the de�nition (11) of γ(L):

ΓL(µ) := sup
ℓ∈L

x≥0,y>0,ℓ(y)>0

gℓ,x,y(µ) .This is the optimal POA bound that 
an be proved using lo
al smoothness (Theorem 3.2 andProposition 4.2) with the given value of µ. Figure 4 in Se
tion 6 provides plots of the fun
tions gℓ,x,yand ΓL when L 
ontains only linear and 
onstant fun
tions. In general, the fun
tion ΓL is non-in
reasing on (0, µ] and non-de
reasing on [µ, 1) for some µ, and unbounded as µ approa
hes 0or 1.Given an admissible triple ℓ, x, y, de�ne the s
alar hℓ,x,y by
hℓ,x,y := (y − x) · ℓ(x) + κ(x, y) · ℓ′(x) . (12)A simple 
al
ulation shows that, for every admissible triple ℓ, x, y and µ < 1, hℓ,x,y and gℓ,x,y(µ)have the same sign. Spe
i�
ally, gℓ,x,y(µ) has the form a−µ·b

c·(1−µ) , with a, b ≥ 0, c > 0, the derivativeof whi
h is a−b
c·(1−µ)2

. Hen
e,
∂gℓ,x,y(µ)

∂µ
=

hℓ,x,y

y · ℓ(y) · (1 − µ)2
. (13)Thus, the sign of hℓ,x,y indi
ates whether the fun
tion gℓ,x,y is stri
tly in
reasing, stri
tly de
reasing,or 
onstant in µ. The values hℓ,x,y arise as �error terms� in the 
onstru
tion in Se
tion 5.2, andmust be 
arefully managed to produ
e a worst-
ase example.11



Lemma 5.1 (Two Curves Lemma) Let L be a set of non-trivial 
ost fun
tions. Suppose there isan admissible triple ℓ, x, y with hℓ,x,y < 0. Then, for every γ̂ < γ(L), there are µ < 1 and admissibletriples ℓ1, x1, y1 and ℓ2, x2, y2 so that
gℓ1,x1,y1

(µ) = gℓ2,x2,y2
(µ) ≥ γ̂ and

sgn(hℓ1,x1,y1
) = − sgn(hℓ2,x2,y2

) .Proof: The easy 
ase is when there is an admissible triple ℓ, x, y su
h that gℓ,x,y is a 
onstant fun
tionlarger than γ̂. In this 
ase, hℓ,x,y = 0, and we 
an use this triple for both ℓ1, x1, y1 and ℓ2, x2, y2to satisfy the requirements of the lemma. Relatively simple tight lower-bound 
onstru
tions arepossible in this spe
ial 
ase, as we show later. In the rest of this proof, we assume that no su
htriple exists.De�ne
µ∗ := inf{µ ∈ [0, 1) | ∃ admissible triple ℓ, x, y with gℓ,x,y(µ) ≥ γ̂ and gℓ,x,y is stri
tly in
reasing } .This in�mum is taken over a non-empty set and hen
e µ∗ < 1. To see this, 
hoose ℓ ∈ L and
y > x > 0 su
h that ℓ(x) > 0. Note that hℓ,x,y > 0. Then gℓ,x,y(µ) has the form a+b−µ·c

1−µ
where

0 < a ≤ 1, b ≥ 0, and 0 < c < a. Therefore, limµր1 gℓ,x,y(µ) = ∞. This shows that the 
onditionin the de�nition of µ∗ is met for values of µ that are su�
iently 
lose to 1.The key 
laim is that there is a value µ̂ < 1 and admissible triples ℓ1, x1, y1 and ℓ2, x2, y2 sothat gℓ1,x1,y1
is stri
tly in
reasing, gℓ2,x2,y2

is stri
tly de
reasing, and gℓ2,x2,y2
(µ̂) ≥ gℓ1,x1,y1

(µ̂) ≥ γ̂.Then, sin
e both fun
tions are unbounded at µ = 1, they must interse
t at a point (µ, γ) with
µ̂ ≤ µ < 1 and γ ≥ γ̂, whi
h 
ompletes the proof.To prove the key 
laim, we distinguish two 
ases.(1) There is a stri
tly in
reasing fun
tion gℓ1,x1,y1

with gℓ1,x1,y1
(µ∗) > γ̂.Sin
e gℓ1,x1,y1

is a 
ontinuous fun
tion, there is a value µ̂ < µ∗ so that also gℓ1,x1,y1
(µ̂) > γ̂.We must have µ∗ = 0 in this 
ase, as otherwise we 
ould have found a smaller value for µ∗.Next, by the assumption of the lemma, there is an admissible triple ℓ, x, y with hℓ,x,y < 0,whi
h implies 0 < y < x. De�ne ξ := max{y ≥ 0 | y · ℓ(y) = 0}. Note that gℓ,x,y(µ̂) ≥

−bµ·x·ℓ(x)
(1−bµ)·y·ℓ(y)

yցξ−−−→ ∞, sin
e µ̂ < 0. Denote ℓ2 = ℓ, x2 = x2, and let y2 be su
h that gℓ2,x2,y2
(µ̂) ≥

gℓ1,x1,y1
(µ̂).(2) For every stri
tly in
reasing fun
tion gℓ,x,y, gℓ,x,y(µ

∗) ≤ γ̂.Sin
e ΓL(µ∗) ≥ γ(L) > γ̂, in this 
ase there must be a stri
tly de
reasing fun
tion gℓ2,x2,y2with gℓ2,x2,y2
(µ∗) > γ̂. Sin
e gℓ2,x2,y2

is 
ontinuous, we 
an 
hoose δ so that µ∗ + δ < 1 and
gℓ2,x2,y2

(µ∗ + δ) > γ̂. Moreover, by the de�nition of µ∗, there is a stri
tly in
reasing fun
tion
gℓ1,x1,y1

with gℓ1,x1,y1
(µ∗ + δ) ≥ γ̂. Sin
e gℓ1,x1,y1

(µ∗) ≤ γ̂ by assumption, 
ontinuity andmonotoni
ity imply that there is a value µ̂ ∈ [µ∗, µ∗ + δ] with gℓ2,x2,y2
(µ̂) ≥ gℓ1,x1,y1

(µ̂) ≥ γ̂.
�Remark 5.2 The requirement in Lemma 5.1 that there is an admissible triple ℓ, x, y with hℓ,x,y < 0is not without loss of generality. For instan
e, suppose that L 
ontains only a fun
tion ℓ thatsatis�es ℓ(x) = 0 for x ∈ [0, 2] and ℓ′(x) ≥ x · ℓ(x) > 0 for all x > 2. Every admissible triplesatis�es y > 2. De�nition (12) implies that hℓ,x,y ≤ 0 only if y ≤ x. For all su
h admissible triples,
hℓ,x,y = (y − x) · ℓ(x) + y2

4 · ℓ′(x) > y · ℓ(x) > 0. 12



5.2 The Constru
tion5.2.1 Guiding Ne
essary ConditionsTo 
onstru
t a family of examples with POA approa
hing the upper bound proved in Theorem 3.2and Proposition 4.2, it is ne
essary that all of the inequalities in the upper bound � inequali-ties (5), (7), and (8) � hold with equality in the limit.The plan for our 
onstru
tion is as follows. We �rst apply Lemma 5.1 to obtain two admissibletriples ℓ1, x1, y1 and ℓ2, x2, y2. We then 
onstru
t a family of instan
es that ea
h 
ontain two groupsof resour
es, one with 
ost fun
tions ℓ1 and one with 
ost fun
tions ℓ2. Ea
h instan
e will possessa Nash equilibrium ~u in whi
h players are indi�erent between all of their basi
 strategies and theload on all resour
es of group i ∈ {1, 2} is xi, and yet there is another strategy pro�le ~v in whi
hthe load approa
hes yi on ea
h resour
e of group i. Suppose now that gℓi,xi,yi
(µ) = λ

1−µ
for i = 1, 2.By the de�nition of hℓi,xi,yi

, we have
xi · ℓi(xi) = λ · yi · ℓi(yi) + µ · xi · ℓi(xi) − hℓi,xi,yi

. (14)This indi
ates that we need sgn(hℓ1,x1,y1
) = − sgn(hℓ2,x2,y2

) and to 
hoose the number of resour
esin groups 1 and 2 so that in the sum of the above equations, over all resour
es, the hℓi,xi,yi
-termsvanish. Then SC(~u)

SC(~v) = λ
1−µ

as needed.So far, our 
onstru
tion idea provides tightness for the variational inequality (5) and for the
(λ, µ)-smoothness inequality (8). To see how to make inequality (7) tight as well, we extend anobservation of Cominetti et al. [8, Theorem 3.1℄. Consider Lemma 4.1, whi
h distills inequality(7). As n → ∞, Lemma 4.1 is asymptoti
ally tight when x1 = min{y

2 , x}, x2 = · · · = xn, and
y1 = y, y2 = · · · = yn = 0. To see this, note that if x ≥ y

2 , then x1 = y
2 , x2 = · · · = xn = 2x−y

2n−2 ,and thus ∑
i(yi · xi − x2

i ) = y2

4 − (2x−y)2

4n−4 . If x < y
2 , then x1 = x, x2 = · · · = xn = 0, and thus∑

i(yi · xi − x2
i ) = x(y − x).To take advantage of this observation in our 
onstru
tion, we ensure that for ea
h resour
e ofgroup i, one player 
ontributes load min{yi

2 , xi} to the resour
e in the Nash equilibrium, while allother players 
ontribute only in�nitesimal amounts.5.2.2 The Main Constru
tionThe following theorem is the main 
onstru
tion of worst-
ase examples. The edge 
ase in whi
hLemma 5.1 does not apply is treated separately in the following se
tion.Theorem 5.3 (Main Constru
tion) Let λ, µ ∈ R with µ < 1. Let ℓ1, ℓ2 be 
ost fun
tions and
x1, x2 ≥ 0 and y1, y2 > 0. De�ne ω by ℓ2(x2) + y2

2 · ℓ′2(x2) if x2 ≥ y2/2 and ℓ′2(x2) > 0, and by
ℓ2(x2) + x2 · ℓ′2(x2) otherwise. Suppose that all of the following 
onditions hold:

ℓ1(x1) = ℓ2(x2) = 1 ,

gℓ1,x1,y1
(µ) = gℓ2,x2,y2

(µ) = λ
1−µ

, and
hℓ2,x2,y2

= −ω · hℓ1,x1,y1
≥ 0 .Then, there is an in�nite family of splittable 
ongestion games with 
ost fun
tions in {σ1ℓ1, ℓ2 :

σ1 ≥ 1} and with limiting pri
e of anar
hy at least λ
1−µ

.13



Proof: We 
onstru
t a family of instan
es determined by two s
aling parameters n, p2 ∈ N. All ofthe other variables, des
ribed in Table 2, are fun
tions of n and p2. For 
onvenien
e, we also denote
hi := hℓi,xi,yi

for i ∈ {1, 2}, and we use the notation 1 := 2 and 2 := 1.Table 2: Symbols used in the des
ription of the lower-bound 
onstru
tionSymbol Meaning (load refers to load in Nash equilibrium) De�nition (referen
es toparagraph �The Equilibrium�)
n number of players per group free s
aling parameter
pi size of �optimal� strategies in group i p1 := ⌈p2 · ω⌉

p2: free s
aling parameter
qi size of �non-optimal� strategies in group i qi :=

⌊
pi · 2xi−yi+2hi

yi

⌋

ti number of �non-optimal� strategies for ea
h player in group i ti := pi·(n−1)
qi

αi load ea
h player from group i puts on its �optimal� strategy see (18) in 
ondition (3.)
βi load ea
h player from group i puts on its �non-optimal� strategies βi := xi−αi−n·γi

n−1

γi load ea
h player from group i puts on ea
h �optimal� strategy ofgroup i
γ1 := −h1

n

γ2 := 0

wi weight of players in group i wi := αi + ti · βi + n · γi

σi s
aling fa
tor for 
ost fun
tions in group i σ1: see (16) in 
ondition (2.)
σ2 := 1Resour
es There are two groups of resour
es, with group i ∈ {1, 2} 
onsisting of n · pi resour
esthat we denote by (i, 0), . . . , (i, n·pi−1). A good intuition is to think of two 
y
les; see also Figure 2,whi
h illustrates our 
onstru
tion. Resour
es in group i have the 
ost fun
tion σi · ℓi, where σ1 willbe determined later and σ2 := 1.Players and Strategies There will be two groups of players, with group i ∈ {1, 2} 
onsistingof n players denoted by (i, 0), . . . , (i, n − 1). Ea
h player (i, j) has one �optimal� strategy Pi,j,0,whi
h 
omprises pi resour
es. Di�erent players' optimal strategies are disjoint, so they partition theresour
es of a group. If xi ≥ yi

2 and ℓ′i(xi) > 0, then player (i, j) has also ti := pi·(n−1)
qi

�non-optimal�strategies Pi,j,1, . . . ,Pi,j,ti , ea
h 
omprising qi resour
es. These non-optimal strategies are mutuallydisjoint, and also disjoint from the player's optimal strategy. Finally, players from group 2 
an alsouse the �optimal� strategies for group 1, i.e., P1,0,0, . . . ,P1,n−1,0. Formally:
Pi,j,0 := {(i, j · pi), . . . , (i, (j + 1) · pi − 1)} , and
Pi,j,k := {(i, (j + 1) · pi + (k − 1) · qi), . . . ,

(i, (j + 1) · pi + k · qi − 1)} for k ≥ 1 .The weight of ea
h player in group i is wi := αi + ti · βi + n · γi, where γ1 := −h1

n
and γ2 := 0(sin
e players from group 1 
annot use any resour
es in group 2), and the parameters αi, βi will bedetermined below.The Equilibrium De�ne the strategy pro�le ~u as follows. Ea
h player (i, j) uses strategy Pi,j,0with load αi and ea
h of the strategies Pi,j,1, . . . ,Pi,j,ti−1 with load βi. If xi < yi

2 or ℓ′i(xi) = 0,14



S1,j,0

S1,j,1

S1,j,s1

n · p2 resources
with cost ℓ2(·)

n · p1 resources
with cost σ1 · ℓ1(·)

S2,j,1

S2,j,0

S2,j,s2 S2,j,s2 – 1

S1,j + 1,0
S1,j + 1,1

S1,j + 1,s1Figure 2: Illustration of 
onstru
tion with p1 = 3, q1 = 4 and p2 = 2, q2 = 3then βi is ne
essarily 0. In addition, ea
h player in group 2 uses ea
h of the n �optimal� strategiesin group 1 with load γ1.De�ne the strategy pro�le ~v as that in whi
h every player uses only its �optimal� strategy.We next state six 
onditions that formalize the high-level plan outlined in the previous se
tion.After their statements, we explain how to 
hoose values for the parameters in Table 2 so that all ofthe 
onditions are satis�ed simultaneously.1. In the pro�le ~u, the load on ea
h resour
e of group i is exa
tly xi. That is,
αi + (n − 1) · βi + n · γi = xi ; equivalently,

βi =
xi − αi − n · γi

n − 1
. (15)2. In the pro�le ~u, ea
h player is fa
ed with equal marginal 
osts for all its strategies, and hen
ethe pro�le is a Nash equilibrium. The �rst 
ondition for players in group 2 is

p1 · σ1 ·
(
ℓ1(x1) + γ1 · ℓ′1(x1)

)
= p2 · σ2 ·

(
ℓ2(x2) + α2 · ℓ′2(x2)

)
. (16)Se
ond, for i = 1, 2, if xi ≥ yi

2 and ℓ′i(xi) > 0, then
pi ·

(
ℓi(xi) + αi · ℓ′i(xi)

)
= qi ·

(
ℓi(xi) + βi · ℓ′i(xi)

)
. (17)3. If ℓ′i(xi) > 0, then for ea
h resour
e in group i there is one player who 
ontributes load

min{yi

2 , xi} ± o(1) while all other players 
ontribute load o(1).If i = 2 and x2 ≤ y2

2 , there is nothing to show be
ause α2 = x2. (For i = 1, the assumptionthat h1 ≤ 0 implies that x1 > y1 > y1

2 .) Otherwise, yi

2 ≤ xi and, re
alling the assumptionthat ℓi(xi) = 1, we 
an plug in ℓ′i(xi) = 4(xi−yi+hi)
y2

i

and (15) into (17) to obtain
αi =




y2

i ·
(

qi

pi
− 1

)

4 · (xi − yi + hi)
+

qi · (xi − n · γi)

(n − 1) · pi



 ·
[
1 +

qi

(n − 1) · pi

]−1

. (18)15



The desired limits αi
n,p2→∞−−−−−→ yi

2 and βi
n,p2→∞−−−−−→ 0 hold provided

qi

pi

p2→∞−−−−→ 2xi − yi + 2hi

yi
, whi
h holds if we set

qi :=

⌊
pi ·

2xi − yi + 2hi

yi

⌋
. (19)4. In the strategy pro�le ~v, the load on every resour
e in group i is yi+o(1). That is, wi

n,p2→∞−−−−−→
yi.We �rst make some preliminary 
al
ulations. If x2 ≥ y2

2 and ℓ′2(x2) > 0, then
n · γ1 = −h1 =

h2

ω
=

h2 · y2

y2 +
y2

2

2 · ℓ′2(x2)

=
y2

2
· 2h2

2x2 − y2 + 2h2
.

(20)If, on the other hand, x2 ≤ y2

2 or ℓ′2(x2) = 0, then
n · γ1 = −h1 =

h2

ω

=
(y2 − x2) · (ℓ2(x2) + x2 · ℓ′2(x2))

ℓ2(x2) + x2 · ℓ′2(x2)

= y2 − x2 .Now, 
onsider i ∈ {1, 2}. Re
all that our assumption that h1 ≤ 0 implies that x1 ≥ y1.
• If ℓ′1(x1) = 0, then w1 = α1 = x1 − n · γ1 = x1 + h1 = x1 + (y1 − x1) = y1.
• If x2 ≤ y2

2 or ℓ′2(x2) = 0, then w2 = α2 + n · γ1 = x2 + (y2 − x2) = y2.
• Otherwise, xi ≥ yi

2 and ℓ′i(xi) > 0. Using equations (15) and (19), and also equation (20)for the i = 2 
ase, we have
wi = αi + ti · βi + n · γi

= αi +
pi

qi
· (xi − αi − n · γi) + n · γi

n,p2→∞−−−−−→ yi

2
·
(

1 +
2xi − yi − 2n · γi

2xi − yi + 2hi

)
+ n · γi

= yi .5. The so
ial 
ost of the Nash equilibrium ~u is ( λ
1−µ

− o(1)) times that of the pro�le ~v.Using 
ondition 1, write SC(~u) =
∑

i=1,2 n ·pi ·σi ·xi ·ℓi(xi). The assumption that gℓi,xi,yi
(µ) =

λ
1−µ

for i = 1, 2 means, as in (14), that
SC(~u) = λ · Φ + µ · SC(~u) + ∆ ,16



where Φ =
∑

i=1,2 n · pi · σi · yi · ℓi(yi) and ∆ = −∑
i=1,2 n · pi · σi · hi. That is,

SC(~u)

Φ
=

λ

1 − µ
+

∆

Φ · (1 − µ)
.Assuming 
ondition 4, we have Φ

n,p2→∞−−−−−→ SC(~v). Thus, the present 
ondition follows pro-vided ∆
Φ

n,p2→∞−−−−−→ 0. Re
alling that h2 = −ω · h1, if we set p1 ≈ p2 · ω, then
|∆| ≤ n · p2 · h2 · |σ2 − σ1| .Consequently, ∆

Φ

n,p2→∞−−−−−→ 0 provided σ1
n,p2→∞−−−−−→ 1. (Re
all that always σ2 = 1.) We 
he
kthat this is indeed the 
ase below.6. All parameters are feasible, i.e.,

n, pi, qi, ti ∈ N, αi, βi, γi ≥ 0, σi > 0 .We now argue that all six 
onditions 
an indeed be satis�ed simultaneously. Choose values for thes
aling parameters n, p2 ∈ N. Set γ1 = −h1

n
and γ2 = 0. Next set p1 a

ording to 
ondition 5(as ≈ p2 · ω), qi a

ording to (19) in 
ondition 3, ti as ≈ pi(n − 1)/qi, and αi, βi to satisfy thesimultaneous equations (15) and (17). (If xi < yi

2 or ℓ′i(xi) = 0, then equation (17) is repla
ed by theequation βi = 0.) Set σ2 = 1 and σ1 a

ording to (16) of 
ondition 2. Now, 
onditions 1�3 imply also
ondition 4, as shown above. Condition 5 redu
es to showing that σ1
n,p2→∞−−−−−→ 1. After solving for σ1in (16), this follows sin
e γ1

n,p2→∞−−−−−→ 0 and p2

p1

n,p2→∞−−−−−→ 1
ω
by de�nition, α2

n,p2→∞−−−−−→ min{y2

2 , x2}by 
ondition 3, and using the de�nition of ω. Finally, 
onsider the non-negativity 
onstraints in
ondition 6. These hold for γ1, γ2 by de�nition and for α1, α2 by 
ondition 3. For βi, we 
an assumethat xi ≥ yi

2 and ℓ′i(xi) > 0, as otherwise βi = 0. Sin
e γ2 = 0, equation (15) and 
ondition 3 implythat β2 ≥ 0. For i = 1, we have x1−α1
n,p2→∞−−−−−→ x1− y1

2 and n·γ1 = −h1 = x1−y1− y2

1
·ℓ′

1
(x1)

4 < x1− y1

2 ;inspe
ting (15) shows that β1 ≥ 0. This veri�es the 
onstru
tion and 
ompletes the proof. �Remark 5.4 (Network Congestion Games) Sin
e ea
h player's basi
 strategies in this 
on-stru
tion are disjoint, these 
ongestion games 
an be represented as (dire
ted) network 
ongestiongames: orient both 
y
les, give ea
h player its own sour
e and sink verti
es (outside the 
y
les),and paths 
orresponding to its basi
 strategies.5.2.3 An Edge CaseBefore 
ombining our results into a generally appli
able lower bound, we need to give a related
onstru
tion for the sets of 
ost fun
tions L with no triples ℓ, x, y su
h that hℓ,x,y < 0. The nextlemma shows that, in this 
ase, there is a family of games that admit strategy pro�les with a per-resour
e 
ost approa
hing zero and Nash equilibria with positive per-resour
e 
ost (bounded awayzero). Thus, the worst-
ase POA is +∞ with respe
t to su
h sets of 
ost fun
tions. This spe
ial
ase does not require s
ale-invarian
e.Lemma 5.5 Let ℓ be a 
ost fun
tion so that hℓ,x,y > 0 for every admissible triple ℓ, x, y. Thereis a sequen
e of 
ongestion games using only the 
ost fun
tion ℓ and with in�nite limiting pri
e ofanar
hy. 17



Proof: Clearly, ℓ is not the zero fun
tion. Moreover, ξ := max{x | ℓ(x) = 0} > 0 (and this is wellde�ned). To see this, suppose for 
ontradi
tion that ℓ(y) > 0 for all y > 0. Then, for �xed x > 0and arbitrary y > 0, we have hℓ,x,y = (y−x) ·ℓ(x)+κ(x, y) ·ℓ′(x)
yց0−−−→ −x ·ℓ(x) < 0, a 
ontradi
tion.We give a sequen
e of instan
es similar to but simpler than the lower-bound 
onstru
tion inTheorem 5.3. There is only one group of resour
es and players. As in the previous 
onstru
tion, weleave open several parameters to enable limiting arguments:

• The number of players and resour
es is an odd number n.
• The load on ea
h resour
e in the Nash equilibrium is denoted by x̂ and will approa
h 3ξ

2 .
• The load ea
h player puts on its �optimal� strategy in the Nash equilibrium is α and willapproa
h ξ

2 .All other parameters are de�ned as follows.
• The size of the �optimal� strategy of ea
h player is p = 1.
• The size of the �non-optimal� strategy of ea
h player is q = 2.
• Ea
h player has t = p·(n−1)

q
non-optimal strategies.

• The load ea
h player puts on ea
h of its �non-optimal� strategies is β = bx−α
n−1 .

• The load on ea
h resour
e in the optimum is equal to the weight of ea
h player, whi
h is
w = α + t · β.For a given 
hoi
e of x̂ and α, the 
orresponding strategy pro�le is a Nash equilibrium if thevariational inequality (2) � 
orresponding to 
ondition (17) in Theorem 5.3 � holds with equality:

ℓ(x̂) + α · ℓ′(x̂) = 2 ·
(

ℓ(x̂) +
x̂ − α

n − 1
· ℓ′(x̂)

)
, i.e., ℓ′(x̂) =

ℓ(x̂)

α
+

2 · (x̂ − α)

α · (n − 1)
· ℓ′(x̂) . (21)Every triple ℓ, x, y with x ≥ y > ξ is admissible and, by assumption, satis�es hℓ,x,y = (y−x) · ℓ(x)+

y2

4 · ℓ′(x) > 0. Due to 
ontinuity of hℓ,x,y in y, the previous inequality also holds (not ne
essarilystri
tly) for y = ξ; that is, ℓ′(x) ≥ 4
ξ2 · (x− ξ) · ℓ(x). Hen
e, for every x > 3ξ

2 we have ℓ′(x) > 2
ξ
· ℓ(x).By the previous observation, for every δ > 0 we 
an 
hoose x̂ ∈ [3ξ

2 , 3ξ
2 +δ) so that ℓ′(x̂) > 2

ξ
·ℓ(x̂).Thus, we 
an 
hoose n ∈ N large enough so that

ℓ′(x̂) >
2 · ℓ(x̂)

ξ
+

4 · (x̂ − ξ
2 )

ξ · (n − 1)
· ℓ′(x̂) .Sin
e the right-hand side of (21) is 
ontinuous and monotoni
ally de
reasing in α, and unboundedfor α ց 0, we 
an �nd α ∈ (0, ξ

2) so that (21) holds with equality.Re
all that the weight of ea
h player is
w = α + t · β = α +

p · (n − 1)

q
· x̂ − α

n − 1
=

x̂ + α

2
<

2x̂ + ξ

4
< ξ +

δ

2
.Consequently, we 
an �nd a sequen
e of games so that the load on ea
h resour
e in some Nash equi-librium approa
hes 3ξ

2 , while the load on ea
h resour
e in a di�erent strategy pro�le approa
hes ξ.Sin
e ℓ(3ξ
2 ) > 0, ℓ(ξ) = 0, and 
ost fun
tions are 
ontinuous, the POA grows without bound as δ → 0and n → ∞. � 18



5.2.4 Putting It All TogetherWe 
an now prove the main result of this se
tion.Corollary 5.6 (Tight Lower Bound) Let L be a s
ale-invariant set of 
ost fun
tions. Then,the worst-
ase pri
e of anar
hy in atomi
 splittable 
ongestion games with 
ost fun
tions in L isexa
tly γ(L).Proof: The upper bound is due to Corollary 4.3. For the lower bound, the spe
ial 
ase in whi
h
L does not admit any triples ℓ, x, y with hℓ,x,y < 0 is addressed by Lemma 5.5. In the rest of theproof, we assume that there is an admissible triple ℓ, x, y with hℓ,x,y < 0.We show that, for any two triples ℓ1, x1, y1 and ℓ2, x2, y2 produ
ed by Lemma 5.1, there aretriples ℓ̂1, x̂1, ŷ1 and ℓ̂2, x̂2, ŷ2 that 
an be used in the lower-bound 
onstru
tion of Theorem 5.3 andthat indu
e the same fun
tions gℓ,x,y.We start with a simple observation. Let ℓ be a 
ost fun
tion and σ, τ > 0. De�ne ℓ̂(x) := σ·ℓ(τ ·x),whi
h belongs to L by s
ale-invarian
e. Then, ℓ̂′(x) = σ · (ℓ(τ · x))′ = σ · τ · ℓ′(τ · x). Consequently,
gbℓ,x,y

= gℓ,τ ·x,τ ·y and τ · hbℓ,x,y
= σ · hℓ,τ ·x,τ ·y.We 
an assume that ℓi(xi) > 0 be
ause otherwise gℓi,xi,yi

= 0. This 
annot happen providedwe use γ̂ > 1 in Lemma 5.1. Now set ℓ̂2(x) := 1
ℓ2(x2) · ℓ2(x), x̂2 = x2, ŷ2 = y2. De�ne ω as inTheorem 5.3 in terms of ℓ̂2, x̂2, ŷ2. Let

τ :=
−hℓ1,x1,y1

· ω
ℓ1(x1) · hbℓ2,bx2,by2

.Let ℓ̂1(x) := 1
ℓ1(x1) · ℓ1(τ · x), x̂1 = x1

τ
, ŷ1 = y1

τ
. Then

hbℓ2,bx2,by2

=
−hℓ1,x1,y1

· ω
ℓ1(x1) · τ

= −hbℓ1,bx1,by1

· ω ,as needed. �5.2.5 Example: Cubi
 Cost Fun
tionsWe give an example of our lower-bound 
onstru
tion when L 
onsists of the 
ubi
 monomials {ax3 :
a ≥ 0}. Monomial 
ost fun
tions are a �lu
ky 
ase� where, in Theorem 5.3, we 
an take hℓi,xi,yi

= 0.In su
h 
ases, similarly to the 
onstru
tion in Lemma 5.5, only one 
y
le of resour
es is needed andthe s
ale-invarian
e hypothesis 
an be dropped.Consider the admissible triple ℓ, x, y with ℓ(z) = z3, x = 3
2 , y = 1. It is easy to verify that

hℓ,x,y = (y − x) · ℓ(x) +
y2

4
· ℓ′(x)

= x2 ·
(

(y − x) · x +
3

4

)
= 0 ;the fun
tion gℓ,x,y is identi
ally equal to (3

2 )4 = 5.0625. Choose λ, µ ∈ (0, 1) su
h that gℓ,x,y(µ) =
λ

1−µ
.The family of instan
es is as follows. There are n players and n resour
es, ea
h with 
ostfun
tion ℓ. The players' �optimal� strategies have size p = 1, whereas their �non-optimal� strategies19



have size q = 2. Ea
h player thus has t = n−1
2 �non-optimal� strategies. We 
onsider the strategypro�le where every player puts load α = [12 + 3

n−1 ] · [1 + 2
n−1 ]−1 = n+5

2·(n+1) on its �optimal� and
β = x−α

n−1 = 1
n+1 on ea
h of its �non-optimal� strategies. Then:1. The load on ea
h resour
e is exa
tly

α + (n − 1) · β = x .2. Ea
h player is fa
ed with equal marginal 
osts for all its strategies, be
ause
p ·

(
ℓ(x) + α · ℓ′(x)

)
= x2 · (x + 3 · α)

= x2 · 6n + 18

2 · (n + 1)

= x2 · 2 · (x + 3 · β)

= q ·
(
ℓ(x) + β · ℓ′(x)

)
.3. For ea
h resour
e, there is one player who puts load α = 1

2 ± o(1) on it whereas all otherplayers put load β = o(1) on it.4. In the �optimal� strategy pro�le, where ea
h player only uses its �optimal� strategy, the loadon any resour
e is 1 + o(1), be
ause ea
h player has weight
α + t · β = α +

n − 1

2 · (n + 1)

n→∞−−−→ 1 .5. The so
ial 
ost is ( λ
1−µ

−o(1)) times that in the �optimal� strategy pro�le. This holds be
auseea
h resour
e 
ontributes 
ost
x · ℓ(x) = λ · y · ℓ(y) + µ · x · ℓ(x) ,where the equality is due to gℓ,x,y(µ) = λ

1−µ
and the de�nition of hℓ,x,y.Together with the upper bound in Se
tion 6, this 
onstru
tion shows that the pri
e of anar
hyfor splittable 
ongestion games with polynomial 
ost fun
tions of degree at most 3 is exa
tly (3

2)4 =
5.0625.5.2.6 Constru
tion with Singleton StrategiesContinuing with the �lu
ky 
ase� of the previous se
tion (in
luding monomial 
ost fun
tions), wereimpose the s
ale-invarian
e assumption and give a tight lower-bound 
onstru
tion that uses onlysingleton strategies.Theorem 5.7 Let λ ∈ R, µ < 1. Moreover, let L be a s
ale-invariant set of 
ost fun
tions, ℓ ∈ L,and x ≥ y > 0. Suppose that

gℓ,x,y(µ) = λ
1−µ

and hℓ,x,y = 0 .Then, there is an in�nite family of splittable 
ongestion games with singleton strategies, with 
ostfun
tions in L, and with limiting pri
e of anar
hy at least λ
1−µ

.20



Resource Level: 1

Player Weights: y · τ
2 (x−

y

2
) · τ l

l – 1

y · τ
l

0

y · τ
1y

2

2 lFigure 3: Illustration of 
onstru
tion with singleton strategiesProof: We de�ne a family of singleton 
ongestion games, represented by full k-ary trees of height l.To simplify our presentation, assume that the root node and ea
h leaf node have self-loops. Then,ea
h edge 
orresponds to a player, and ea
h node in the tree 
orresponds to a resour
e. Thestrategies of a player are its (at most two) in
ident nodes. Figure 3 illustrates the 
onstru
tion.Let σ, τ > 0 be values to be determined later (dependent on k and l). The 
ost fun
tion forresour
es at level j is ℓj(z) := 1
σj · ℓ( z

τ j ). Note that the root resour
e has 
ost fun
tion ℓ0 = ℓ. Wesay a player is in level j ∈ [n] if its edge is between resour
e levels j − 1 and j. The weight of ea
hplayer in level j is y · τ j . The player who only has the root resour
e as a strategy has weight y
2 , andthe players who only have a leaf resour
e as a strategy have weight (x − y

2 ) · τ l.We �rst show that we 
an 
hoose σ and τ su
h that the pro�le in whi
h ea
h player splits itsweight equally (i.e., ea
h player on level j puts load y
2 · τ j on both of its strategies) is a Nashequilibrium. Let τ := 2x−y

y·k , so that the equilibrium load on ea
h resour
e of level j ∈ [l]0 is
y
2 · τ j + k · y

2 · τ j+1 = x · τ j. We need that ea
h player fa
es equal marginal 
osts on ea
h of itsstrategies, i.e., for players on all levels j ∈ [l] that
ℓj−1(x · τ j−1) +

(y

2
· τ j

)
· ℓ′j−1(x · τ j−1) = ℓj(x · τ j) +

(y

2
· τ j

)
· ℓ′j(x · τ j) .By plugging in that ℓj(z) = 1

σj · ℓ( z
τj ) and ℓ′j(z) = 1

σj ·τ j · ℓ′( z
τ j ), this is equivalent to

ℓ(x) +
y

2
· τ · ℓ′(x) =

1

σ
·
[
ℓ(x) +

y

2
· ℓ′(x)

]
,i.e.,

σ =
ℓ(x) + y

2 · ℓ′(x)

ℓ(x) + y
2 · τ · ℓ′(x)

k→∞−−−→ 1 +
y

2
· ℓ′(x)

ℓ(x)
=

2x − y

y
,where the last equality follows from hℓ,x,y = 0. Consequently, k · τ · 1

σ

k→∞−−−→ 1, and the so
ial 
ost
ontributed by the kj resour
es at level j ∈ [l]0 is kj · x · τ j · ℓ(x)
σj

k→∞−−−→ x · ℓ(x).Now 
onsider the pro�le where ea
h player uses only the strategy further away from the root.Reasoning as above, the so
ial 
ost 
ontributed by the kj resour
es at level j ∈ [l − 1] approa
hes
y · ℓ(y). The root resour
e on level 0 
ontributes y

2 · ℓ(y
2 ), and level l 
ontributes kl · (x + y

2 ) · τ l ·
ℓ(x+ y

2
)

σl

k→∞−−−→ (x + y
2 ) · ℓ(x + y

2 ), whi
h is a 
onstant independent of l.Consequently, as l → ∞ and k → ∞ suitably qui
kly in l,the ratio of the so
ial 
ost in the Nashequilibrium and that of the other pro�le approa
hes x·ℓ(x)
y·ℓ(y) = gℓ,x,y(µ) = λ

1−µ
. �21



6 Polynomial Cost Fun
tionsThis se
tion gives a 
losed-form expression for the exa
t pri
e of anar
hy � that is, analyti
allyevaluates the parameter γ(L) � when the 
ost fun
tions are polynomials with degree at most d ∈ Nand non-negative 
oe�
ients. For d ∈ N, let Pd denote this set of 
ost fun
tions. Also, we write Xdto denote the monomial fun
tion x 7→ xd, and we let Md := {Xd,Xd−1, . . . ,X0} be the set of allmonomials of degree at most d. We de�ne Ψd as the unique positive real x with xd + d·xd−1

4 = xd+1,that is, as Ψd := 1
2(1 +

√
d + 1). To save work, we let g∗ℓ,x,y denote gℓ,x,y, as de�ned in Se
tion 4,ex
ept with κ(x, y) repla
ed by y2

4 . We similarly de�ne γ∗(L) (
f., (11)). h∗
ℓ,x,y (
f., (12)), and Γ∗

L.We start with three lemmas to simplify γ∗(Pd). In the end, it will turn out that γ(Pd) = γ∗(Pd).The point of the next lemma is to give a 
losed-form formula for the fun
tion µ 7→ supx≥0 g∗
Xd,x,1

(µ).Lemma 6.1 Let µ ∈ (0, 1) and d ≥ 1. De�ne g : R≥0 → R by g(x) := xd + d·xd−1

4 −µ ·xd+1. Then,
g has exa
tly one global maximum, at

ξ =
d +

√
d2 + d · µ · (d2 − 1)

2µ · (d + 1)
.Moreover, ξ is the only lo
al extremum on R>0.Proof: We �rst show that x = 0 is not a global maximum. If d = 1, then g( 1

2µ
) = 1

2 + 1
4µ

> 1
4 = g(0).If d > 1, then g(Ψd) = (1 − µ) · Ψd > 0 = g(0). Sin
e limx→∞ g(x) = −∞, g is 
ontinuous, andwe know that g attains values stri
tly larger than g(0) somewhere on R>0, it su�
es to show thatthere is a unique lo
al extremum on R>0. For x > 0, the ne
essary �rst-order 
ondition for a lo
alextremum is

g′(x) = dxd−2

(
x +

d − 1

4

)
− µ(d + 1)xd = 0 . (22)Indeed, ξ is the unique positive value for x that satis�es (22). �The next lemma shows that we 
an restri
t attention to monomial 
ost fun
tions and admissibletriples ℓ, x, y in whi
h y = 1.Lemma 6.2 Let d ∈ N. Then,

γ∗(Pd) = γ∗(Md) = inf
µ∈(0,1)

sup
ℓ∈Md
x≥0

g∗ℓ,x,1(µ) .Proof: We 
an rewrite
γ∗(Pd) = inf

(λ,µ)∈R×(0,1)

{
λ

1 − µ

∣∣∣∣ ∀ℓ ∈ Pd, x ≥ 0, y > 0 : λ ≥ y · ℓ(x) + y2·ℓ′(x)
4 − µ · x · ℓ(x)

y · ℓ(y)

}
. (23)The de�ning 
ondition in (23) holds for a given (λ, µ) if and only if it holds with ℓ restri
ted to Md.This implies the �rst equality in the lemma statement. Moreover, when ℓ is 
onstant (and non-zero),22
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gX0,0,1
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= 1.5
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≈ 1.46

0.50 1

2

1

Figure 4: The fun
tions gℓ,x,y when ℓ is the identity or a 
onstant fun
tion, and the 
orrespondingupper-envelope fun
tion (the thi
k line). Pre
isely, the envelope fun
tion here turns out to be
µ 7→ 1+µ

4·µ·(1−µ) .the inequality boils down to λ ≥ 1 − µ · x
y
for all x ≥ 0 and y > 0. Consequently, this de�ning
ondition is equivalent to

∀r ∈ [d], x ≥ 0, y > 0 : λ ≥ y · xr + y2·r·xr−1

4 − µ · xr+1

yr+1
and λ ≥ 1 . (24)In (24), the values x

y
and 1 yield the same inequality as the values x and y. We 
an therefore�x y = 1 without loss of generality. Consequently,

γ∗(Pd) = inf
(λ,µ)∈R×(0,1)

{
λ

1 − µ

∣∣∣∣ ∀r ∈ [d], x ≥ 0 :
λ

1 − µ
≥ gXr ,x,1(µ) and λ

1 − µ
≥ gX0,0,1(µ)

}

= inf
µ∈(0,1)

sup
ℓ∈Md
x∈R≥0

g∗ℓ,x,1(µ) .

�Lemma 6.3 Let d ∈ N. Then:1. γ∗({Xd}) = Ψd+1
d .2. γ∗({X1,X0}) = 3

2 . If d ≥ 2, then γ∗({Xd,X0}) = γ∗({Xd}) = Ψd+1
d .3. If L is one of {Xd} or {Xd,X0}, then γ(L) = γ∗(L).4. γ(Pd) = γ({Xd,X0}).Proof: For x > 0 de�ne

µx :=
d · (4x + d − 1)

(d + 1) · 4x2
.23



By 
onstru
tion, every ξ ful�lls the ne
essary �rst-order 
ondition (22) for lo
al extrema of thefun
tion x 7→ g∗
Xd,x,1

(µξ). By Lemma 6.1, we get that ξ is even a global maximum on R≥0. Hen
e,
g∗
Xd,ξ,1

(µξ) = maxx∈R≥0
{g∗

Xd,x,1
(µξ)}.1. Fix ξ := Ψd. Note that Ψ2
d = Ψd + d

4 and hen
e
µξ =

d · (4Ψd + d − 1)

(d + 1) · (4Ψd + d)
∈ (0, 1) .So far, we have shown that γ∗({Xd}) ≤ g∗

Xd,ξ,1
(µξ) = Ψd+1

d , with the equality holding by thede�nition of Ψd. Sin
e h∗
Xd,ξ,1

= 0, g∗
Xd,ξ,1

is a 
onstant fun
tion and Γ∗
{Xd}(µ) ≥ Ψd+1

d forevery µ ∈ (0, 1). Thus, γ∗({Xd}) = Ψd+1
d .2. Consider �rst the 
ase d = 1. Fix ξ := 3

2 and note that µξ = 1
3 ∈ (0, 1). We have that

g∗
X0,0,1(

1
3 ) = 3

2 = g∗
Xd,ξ,1

(1
3). Be
ause g∗

X0,0,1 and g∗
Xd,ξ,1

are in
reasing and de
reasing fun
-tions, respe
tively, γ∗({Xd,X0}) = 3
2 .Otherwise, if d ≥ 2, 
hoose ξ := Ψd as in the �rst step. It holds that

g∗Xd,ξ,1(µξ) = Ψd+1
d =

(
1 +

√
d + 1

2

)d+1

>
2 · (d + 1)

d + 1 +
√

d + 1
·
(

1 +
√

d + 1

2

)2

=
1

1 − µξ

= g∗X0,0,1(µξ) .As in step 1, we have γ∗({Xd,X0}) = Ψd+1
d .3. For x < y

2 , we have κ(x, y) ≤ y2

4 . Therefore, for every admissible triple ℓ, x, y we have
gℓ,x,y ≤ g∗ℓ,x,y pointwise, with equality holding whenever x

y
≥ 1

2 . Hen
e, when ξ ≥ 1
2 , wehave gXd,ξ,1(µξ) = maxx∈R≥0

{gXd ,x,1(µξ)}. Sin
e the arguments above use values of ξ largerthan 1
2 , they extend to the 
omputation of γ.4. The derivative of gXr ,ξ,1(µ) with respe
t to r is

∂

∂r

ξr + r·ξr−1

4 − µ · ξr+1

1 − µ

=
ξr−1

4(1 − µ)
+ ln(ξ) · gXr ,ξ,1(µ) ,whi
h is positive if ξ > 1 and gXr ,ξ,1(µ) ≥ 0. Consequently, if ξ > 1, as it is in all 
omputationsabove, then

gXd,ξ,1(µξ) = max
r∈[d]

x∈R≥0

{gXr ,x,1(µξ)} .

24



� Corollary 5.6, Lemma 6.2, and Lemma 6.3 immediately imply:Corollary 6.4 The following exa
t bounds on the worst-
ase pri
e of anar
hy in splittable 
onges-tion games with 
ost fun
tions in L hold.1. If L is the set of linear fun
tions, then γ(L) = Ψ2
1 ≈ 1.457.2. If L = P1, then γ(L) = 3

2 > Ψ2
1.3. If L = Pd and d ∈ N≥2, then γ(L) = Ψd+1

d = (1+
√

d+1
2 )d+1.7 Future Dire
tionsWe 
on
lude with three proposals for further work. First, it would be interesting to dis
overmore appli
ations of the lo
al smoothness framework de�ned in Se
tion 3. One su
h appli
ationwas given re
ently by Bhawalkar et al. [5℄, who used the framework to obtain tight bounds onthe POA in a family of opinion formation games. In these games, ea
h player i has an intrinsi
opinion si ∈ [0, 1] and expresses a (possibly di�erent) opinion zi ∈ [0, 1]. A player is interested bothin how similar its expressed opinion is to its intrinsi
 one, and how its expressed opinion 
omparesto those expressed by other players. Formally, the 
ost to player i in the strategy pro�le ~z has theform gi(zi − si) +

∑
j 6=i fij(zi − zj), where gi and fij are given 
ost fun
tions. Bindel et al. [6℄ werethe �rst to study the POA in su
h games, and they give exa
t worst-
ase bounds when gi(x) = x2and fij(x) = wijx

2, where wij is a player pair-spe
i�
 weight. Bhawalkar et al. [5℄ used the lo
alsmoothness framework to obtain tight POA bounds for all 
onvex 
ost fun
tions.Se
ond, while the present work obtains tight POA bounds for the 
orrelated equilibria of split-table 
ongestion games, the analogous question for 
oarse 
orrelated equilibria remains open. Weshowed that lo
al smoothness bounds do not extend to 
oarse 
orrelated equilibria in general (Ex-ample 3.3), but we have not found an analogous example in a splittable 
ongestion game. Veryre
ently, von Falkenhausen and Roughgarden [30℄ showed that, in splittable 
ongestion games witha�ne 
ost fun
tions, every 
oarse 
orrelated equilibrium is a mixture of Nash equilibria and hen
ethe POA bound of 3
2 applies. With nonlinear 
ost fun
tions, however, there are splittable 
ongestiongames that possess 
oarse 
orrelated equilibria that are 
ostlier than all of their 
orrelated equilib-ria [30℄. The examples in [30℄ do not prove that the worst-
ase POA for 
oarse 
orrelated equilibriais larger than that for 
orrelated equilibria, however.Finally, it would be interesting to resolve the worst-
ase POA in splittable 
ongestion games inwhi
h every player has the same set of basi
 strategies. In symmetri
 games, where every player alsohas the same weight, the worst-
ase POA is identi
al to that in nonatomi
 
ongestion games [8℄.With identi
al basi
 strategies but di�erent player weights, it remains open to improve over theupper bounds of [8, 14℄ and the present work for general splittable 
ongestion games, or over thelower bounds of [29℄ for nonatomi
 
ongestion games.A
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