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ABSTRACT
The price of anarchy, defined as the ratio of the worst-case
objective function value of a Nash equilibrium of a game
and that of an optimal outcome, quantifies the inefficiency of
selfish behavior. Remarkably good bounds on this measure
are known for a wide range of application domains. How-
ever, such bounds are meaningful only if a game’s partici-
pants successfully reach a Nash equilibrium. This drawback
motivates inefficiency bounds that apply more generally to
weaker notions of equilibria, such as mixed Nash equilibria,
correlated equilibria, or to sequences of outcomes generated
by natural experimentation strategies, such as simultaneous
regret-minimization.

We prove a general and fundamental connection between
the price of anarchy and its seemingly more general relatives.
First, we identify a“canonical sufficient condition” for an up-
per bound on the price of anarchy of pure Nash equilibria,
which we call a smoothness argument. Second, we prove an
“extension theorem”: every bound on the price of anarchy
that is derived via a smoothness argument extends automat-
ically, with no quantitative degradation in the bound, to
mixed Nash equilibria, correlated equilibria, and the aver-
age objective function value of every no-regret sequence of
joint repeated play. Third, we prove that in routing games,
smoothness arguments are “complete” in a proof-theoretic
sense: despite their automatic generality, they are guaran-
teed to produce an optimal worst-case upper bound on the
price of anarchy.

1. INTRODUCTION
Every student of game theory learns early and often that

equilibria are inefficient — self-interested behavior by au-
tonomous decision-makers generally leads to an outcome
inferior to the one that a hypothetical benevolent dictator
would choose. Such inefficiency is ubiquitous in real-world
situations and arises for many different reasons: congestion
externalities, network effects, mis-coordination, and so on.
It can also be costly or infeasible to eliminate in many situ-
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ations, with large networks being one obvious example. The
past ten years have provided an encouraging counterpoint
to this widespread equilibrium inefficiency: in a number of
interesting application domains, decentralized optimization
by competing individuals provably approximates the optimal
outcome.

A rigorous guarantee of this type requires a formal behav-
ioral model, in order to define“the outcome of self-interested
behavior”. The majority of previous research studies pure-
strategy Nash equilibria, defined as follows. Each player i
selects a strategy si from a set Si, like a path in a network.
The cost Ci(s) incurred by a player i in a game is a function
of the entire vector s of players’ chosen strategies, which
is called a strategy profile or an outcome. By definition, a
strategy profile s of a game is a pure Nash equilibrium if no
player can decrease its cost via a unilateral deviation:

Ci(s) ≤ Ci(s
′
i, s−i) (1)

for every i and s′i ∈ Si, where s−i denotes the strategies
chosen by the players other than i in s. These concepts can
be defined equally well via payoff-maximization rather than
cost-minimization; see also Example 2.5.

The price of anarchy (POA) measures the suboptimality
caused by self-interested behavior. Given a game, a notion
of an “equilibrium” (such as pure Nash equilibria), and an
objective function (such as the sum of players’ costs), the
POA of the game is defined as the ratio between the largest
cost of an equilibrium and the cost of an optimal outcome.
An upper bound on the POA has an attractive worst-case
flavor: it applies to every possible equilibrium and obvi-
ates the need to predict a single outcome of selfish behavior.
Many researchers have proved remarkably good bounds on
the POA in a wide range of models; see [17, Chapters 17–21]
and the references therein.

1.1 The Need For More Robust Bounds
A good bound on the price of anarchy of a game is not

enough to conclude that self-interested behavior is relatively
benign. Such a bound is meaningful only if a game’s par-
ticipants successfully reach an equilibrium. For pure Nash
equilibria, however, there are a number of reasons why this
might not occur: perhaps the players fail to coordinate on
one of multiple equilibria; or they are playing a game in
which computing a pure Nash equilibrium is a computation-
ally intractable problem [9]; or, even more fundamentally, a
game in which pure Nash equilibria do not exist. These cri-
tiques motivate worst-case performance bounds that apply
to as wide a range of outcomes as possible, and under min-
imal assumptions about how players play and coordinate in
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Figure 1: Generalizations of pure Nash equilibria.
“PNE” stands for pure Nash equilibria; “MNE” for
mixed Nash equilibria; “CorEq” for correlated equi-
libria; and “No Regret (CCE)” for coarse correlated
equilibria, which are the empirical distributions cor-
responding to repeated joint play in which every
player has no (external) regret.

a game.
This article presents a general theory of “robust” bounds

on the price of anarchy. We focus on the hierarchy of fun-
damental equilibrium concepts shown in Figure 1; the full
version [22] discusses additional generalizations of pure Nash
equilibria, including approximate equilibria and outcome se-
quences generated by best-response dynamics. We formally
define the equilibrium concepts of Figure 1 — mixed Nash
equilibria, correlated equilibria, and coarse correlated equi-
libria — in Section 3.1, but mention next some of their im-
portant properties.

Enlarging the set of equilibria weakens the behavioral and
technical assumptions necessary to justify equilibrium anal-
ysis. First, while there are games with no pure Nash equilib-
ria — “Matching Pennies” being a simple example — every
(finite) game has at least one mixed Nash equilibrium [16].
As a result, the “non-existence critique” for pure Nash equi-
libria does not apply to any of the more general concepts in
Figure 1. Second, while computing a mixed Nash equilib-
rium is in general a computationally intractable problem [5,
8], computing a correlated equilibrium is not (see, e.g., [17,
Chapter 2]). Thus, the “intractability critique” for pure and
mixed Nash equilibria does not apply to the two largest sets
of Figure 1. More importantly, these two sets are “easily
learnable”: when a game is played repeatedly over time,
there are natural classes of learning dynamics — processes
by which a player chooses its strategy for the next time step,
as a function only of its own payoffs and the history of play
— that are guaranteed to converge quickly to these sets of
equilibria (see [17, Chapter 4]).

1.2 Overview
Our contributions can be divided into three parts.

(A) We identify a sufficient condition for an upper bound
on the POA of pure Nash equilibria of a game, which
encodes a canonical proof template for deriving such
bounds. We call such proofs “smoothness arguments”.

Many of the POA upper bounds in the literature can
be recast as instantiations of this canonical method.

(B) We prove an “extension theorem”: every bound on the
price of anarchy that is derived via a smoothness ar-
gument extends automatically, with no quantitative
degradation in the bound, to all of the more general
equilibrium concepts pictured in Figure 1.

(C) We prove that routing games, with cost functions re-
stricted to some arbitrary set, are “tight” in the fol-
lowing sense: smoothness arguments, despite their au-
tomatic generality, are guaranteed to produce optimal
worst-case upper bounds on the POA, even for the
set of pure Nash equilibria. Thus, in these classes of
games, the worst-case POA is the same for each of the
equilibrium concepts of Figure 1.

2. SMOOTH GAMES

2.1 Definitions
By a cost-minimization game, we mean a game — play-

ers, strategies, and cost functions — together with the joint
cost objective function C(s) =

Pk
i=1 Ci(s). Essentially, a

“smooth game” is a cost-minimization game that admits a
POA bound of a canonical type (a “smoothness argument”).
We give the formal definition and then explain how to inter-
pret it.

Definition 2.1 (Smooth Games) A cost-minimization game
is (λ, µ)-smooth if for every two outcomes s and s∗,

kX
i=1

Ci(s
∗
i , s−i) ≤ λ · C(s∗) + µ · C(s). (2)

Roughly, smoothness controls the cost of a set of“one-dimensional
perturbations” of an outcome, as a function of both the ini-
tial outcome s and the perturbations s∗.

We claim that if a game is (λ, µ)-smooth, with λ > 0 and
µ < 1, then each of its pure Nash equilibria s has cost at
most λ/(1 − µ) times that of an optimal solution s∗. In
proof, we derive

C(s) =

kX
i=1

Ci(s) (3)

≤
kX

i=1

Ci(s
∗
i , s−i) (4)

≤ λ · C(s∗) + µ · C(s), (5)

where (3) follows from the definition of the objective func-
tion; inequality (4) follows from the Nash equilibrium condi-
tion (1), applied once to each player i with the hypothetical
deviation s∗i ; and inequality (5) follows from the defining
condition (2) of a smooth game. Rearranging terms yields
the claimed bound.

Definition 2.1 is sufficient for the last line of this three-line
proof (3)–(5), but it insists on more than what is needed: it
demands that the inequality (2) holds for every outcome s,
and not only for Nash equilibria. This is the basic reason
why smoothness arguments imply worst-case bounds beyond
the set of pure Nash equilibria.

We define the robust POA as the best upper bound on the
POA that is provable via a smoothness argument.



Definition 2.2 (Robust POA) The robust price of anar-
chy of a cost-minimization game is

inf


λ

1− µ
: (λ, µ) such that the game is (λ, µ)-smooth

ff
,

with µ always constrained to be less than 1.

Remark 2.3 (Variations on Smoothness) Examining the
three-line proof (3)–(5) reveals that the assumptions can be
weakened in two ways. First, the assumption that the objec-
tive function satisfies C(s) =

Pk
i=1 Ci(s) can be replaced by

the assumption C(s) ≤
Pk

i=1 Ci(s); we exploit this in Exam-
ple 2.5 below. Second, in Definition 2.1, the inequality (2)
only needs to hold for all outcomes s and some optimal so-
lution s∗, rather than for all pairs s, s∗ of outcomes. This
relaxation is useful in some applications [4, 23].

Finally, there is an analogous definition of smooth games
for maximization objectives; see Example 2.5.

2.2 Intuition
Smoothness arguments should be interpreted as a class

of upper bound proofs for the POA of pure Nash equilib-
ria that are confined to use the equilibrium hypothesis in
a minimal way. To explain, recall the canonical three-line
proof (3)–(5). The first inequality (4) uses the Nash equilib-
rium hypothesis, but only to justify why each player i selects
its equilibrium strategy si rather than its strategy s∗i in the
optimal outcome. If we care only about the POA of pure
Nash equilibria, then we are free to invoke the Nash equilib-
rium hypothesis again to prove the second inequality (5), or
more generally to establish an upper bound using any argu-
ment that we please. Using a smoothness argument—that
is, proving inequality (5) for all outcomes s—is tantamount
to discarding the Nash equilibrium hypothesis after it is used
to justify the first inequality (4).

2.3 Two Examples
Concern about the range of applicability of a definition

grows as its interesting consequences accumulate. Given
that smoothness arguments enable the extension theorem
discussed in Section 1.2, how many games can be (λ, µ)-
smooth with interesting values of λ, µ? To alleviate such
fears and add some concreteness to the discussion, we next
single out two well-known POA analyses that can be recast
as smoothness arguments. More generally, many but not all
of the known price of anarchy bounds follow from smooth-
ness proofs; see the full version [22] for a detailed discussion.

The first example is a special class of congestion games;
Section 4 studies the general case in detail. The second
example concerns Vetta’s well-studied utility games [25],
and also illustrates how smoothness arguments can be de-
fined and used in payoff-maximization games, and also with
a “one-sided” variant of sum objective functions (cf., Re-
mark 2.3).

The most common reason that a price of anarchy bound
fails to qualify as a smoothness proof is that the Nash
equilibrium hypothesis is invoked for a hypothetical devi-
ation s∗i that is a function of the other players’ equilibrium
actions s−i. In most of these cases, it is also known that the
worst-case POA of mixed Nash equilibria is strictly worse
than that of pure Nash equilibria, and hence no lossless ex-
tension theorem exists.

Example 2.4 (Atomic Congestion Games) A congestion
game is a cost-minimization game defined by a ground set E
or resources, a set of k players with strategy sets S1, . . . , Sk ⊆
2E , and a cost function ce : Z+ → R for each resource e ∈
E [20]. In this article, we always assume that cost func-
tions are non-negative and non-decreasing. A canonical ex-
ample is routing games, where E is the edge set of a net-
work, and the strategies of a player correspond to paths
between its source and sink vertices. Given a strategy pro-
file s = (s1, . . . , sk), with si ∈ Si for each i, we say that
xe = |{i : e ∈ si}| is the load induced on e by s, defined as
the number of players that use it in s. The cost to player i
is defined as Ci(s) =

P
e∈si

ce(xe), where x is the vector of
loads induced by s. For this example, we assume that every
cost function is affine, meaning that ce(x) = aex + be with
ae, be ≥ 0 for every resource e ∈ E.

We claim that every congestion game with affine cost func-
tions is (5/3, 1/3)-smooth. The basic reason for this was
identified by Christodoulou and Koutsoupias [7, Lemma 1],
who noted that

y(z + 1) ≤ 5
3
y2 + 1

3
z2

for all nonnegative integers y, z. Thus, for all a, b ≥ 0 and
nonnegative integers y, z,

ay(z + 1) + by ≤ 5
3

`
ay2 + by

´
+ 1

3

`
az2 + bz

´
. (6)

To establish smoothness, consider a pair s, s∗ of outcomes of
a congestion game with affine cost functions, with induced
loads x,x∗. Since the number of players using resource e in
the outcome (s∗i , s−i) is at most one more than that in s,
and this resource contributes to precisely x∗e terms of the
form Ci(s

∗
i , s−i), we have

kX
i=1

Ci(s
∗
i , s−i) ≤

X
e∈E

(ae(xe + 1) + be)x
∗
e

≤
X
e∈E

5

3
(aex

∗
e + be)x

∗
e +

X
e∈E

1

3
(aexe + be)xe(7)

=
5

3
C(s∗) +

1

3
C(s),

where (7) follows from (6), with x∗e and xe playing the roles
of y and z, respectively. The canonical three-line argu-
ment (3)–(5) then implies an upper bound of 5/2 on the
POA of pure Nash equilibria in every congestion game with
affine cost functions. This fact was first proved indepen-
dently in [2] and [7], where matching lower bounds were
also supplied. Our extension theorem (Theorem 3.1) im-
plies that the bound of 5/2 extends to the other three sets
of outcomes shown in Figure 1. These extensions were orig-
inally established in two different papers [3, 6] subsequent
to the original POA bound [2, 7].

Example 2.5 (Valid Utility Games) Our final example
concerns a class of games called valid utility games [25].
These games are naturally phrased as payoff-maximization
games, where each player has a payoff function Πi(s) that it
strives to maximize. We use Π to denote the objective func-
tion of a payoff-maximization game. We call such a game
(λ, µ)-smooth if

kX
i=1

Πi(s
∗
i , s−i) ≥ λ ·Π(s∗)− µ ·Π(s)



for every pair s, s∗ of outcomes. A derivation similar to (3)–
(5) shows that, in a (λ, µ)-smooth payoff-maximization game,
the objective function value of every pure Nash equilibrium
is at least a λ/(1+µ) fraction of the maximum possible. We
define the robust POA of a payoff-maximization game as the
supremum of λ/(1 + µ) over all legitimate smoothness pa-
rameters (λ, µ).

A valid utility game is defined by a ground set E, a non-
negative submodular function V defined on subsets of E,
and a strategy set Si ⊆ 2E and a payoff function Πi for
each player i = 1, 2, . . . , k. For example, the set E could
denote a set of locations where facilities can be built, and a
strategy si ⊆ E could denote the locations at which player i
chooses to build facilities. For an outcome s, let U(s) ⊆ E
denote the union ∪k

i=1si of players’ strategies in s. The ob-
jective function value of an outcome s is defined as Π(s) =
V (U(s)). Furthermore, the definition requires that two con-
ditions hold: (i) for each player i, Πi(s) ≥ V (U(s))−V (U(∅, s−i))

for every outcome s; and (ii)
Pk

i=1 Πi(s) ≤ Π(s) for every
outcome s. One concrete example of such a game is compet-
itive facility location with price-taking markets and profit-
maximizing firms [25].

We claim that every valid utility game with a nondecreas-
ing objective function V is (1, 1)-smooth. The proof is es-
sentially a few key inequalities from [25, Theorem 3.2], as
follows. Let s, s∗ denote arbitrary outcomes of a valid utility
game with a nondecreasing objective function. Let Ui ⊆ E
denote the union of all of the players’ strategies in s, together
with the strategies employed by players 1, 2, . . . , i in s∗. Ap-
plying condition (i), the submodularity of V , and the non-
decreasing property of V yields

kX
i=1

Πi(s
∗
i , s−i) ≥

kX
i=1

[V (U(s∗i , s−i))− V (U(∅, s−i))]

≥
kX

i=1

[V (Ui)− V (Ui−1)]

≥ Π(s∗)−Π(s),

as desired. This smoothness argument implies a lower bound
of 1/2 on the POA of pure Nash equilibria in every valid util-
ity game with a nondecreasing objective function — a result
first proved in [25], along with a matching upper bound.
Our extension theorem shows that this lower bound applies
more generally to all of the equilibria depicted in Figure 1,
a fact first established in [3].

3. AN EXTENSION THEOREM
This section states and proves the extension theorem dis-

cussed in Section 1.2: every POA bound on pure Nash equi-
libria derived from a smoothness argument extends automat-
ically to the more general equilibrium concepts in Figure 1,
and to the corresponding outcome sequences in games played
over time. Several less direct consequences of smoothness
arguments are discussed in the full version [22]. We work
with cost-minimization games, though similar results hold
for smooth payoff-maximization games (cf., Example 2.5).

A set function V : 2E → R is submodular if V (X ∩ Y ) +
V (X ∪ Y ) ≤ V (X) + V (Y ) for every X, Y ⊆ E.

3.1 Static Equilibrium Concepts
We begin with implications of Definition 2.1 for random-

ized equilibrium concepts in one-shot games; the next sec-
tion treats outcome sequences generated by repeated play.

A set (σ1, . . . , σk) of independent probability distributions
over strategy sets — one per player of a cost-minimization
game — is a mixed Nash equilibrium of the game if no player
can decrease its expected cost under the product distribution
σ = σ1 × · · · × σk via a unilateral deviation:

E s∼σ[Ci(s)] ≤ E s−i∼σ−i [Ci(s
′
i, s−i)]

for every i and s′i ∈ Si, where σ−i is the product distri-
bution of all σj ’s other than σi. (By linearity, it suffices
to consider only pure-strategy unilateral deviations.) Obvi-
ously, every pure Nash equilibrium is a mixed Nash equilib-
rium and not conversely; indeed, many games have no pure
Nash equilibrium, but every finite game has a mixed Nash
equilibrium [16].

A correlated equilibrium of a cost-minimization game G is
a (joint) probability distribution σ over the outcomes of G
with the property that

E s∼σ[Ci(s)|si] ≤ E s∼σ[Ci(s
′
i, s−i)|si] (8)

for every i and si, s
′
i ∈ Si. A classical interpretation of a cor-

related equilibrium is in terms of a mediator, who draws an
outcome s from the publicly known distribution σ and pri-
vately “recommends” strategy si to each player i. The equi-
librium condition requires that following a recommended
strategy always minimizes the expected cost of a player, con-
ditioned on the recommendation. Mixed Nash equilibria are
precisely the correlated equilibria that are also product dis-
tributions. Correlated equilibria have been widely studied
as strategies for a benevolent mediator, and also because
of their relative tractability. Because the set of correlated
equilibria is explicitly described by a small set of linear in-
equalities, computing (and even optimizing over) correlated
equilibria can be done in time polynomial in the size of the
game (see, e.g., [17, Chapter 2]). They are also relatively
“easy to learn,” as discussed in the next section.

Finally, a coarse correlated equilibrium of a cost-minimization
game is a probability distribution σ over outcomes that sat-
isfies

E s∼σ[Ci(s)] ≤ E s∼σ[Ci(s
′
i, s−i)] (9)

for every i and s′i ∈ Si. While a correlated equilibrium (8)
protects against deviations by players aware of their recom-
mended strategy, a coarse correlated equilibrium (9) is only
constrained by player deviations that are independent of the
sampled outcome. Since every correlated equilibrium is also
a coarse correlated equilibrium, coarse correlated equilibria
are “even easier” to compute and learn, and are thus a still
more plausible prediction for the realized play of a game.

We now give our extension theorem for equilibrium con-
cepts in one-shot games: every POA bound proved via a
smoothness argument extends automatically to the set of
coarse correlated equilibria. With the “correct” definitions
in hand, the proof writes itself.

Theorem 3.1 (Extension Theorem — Static Version)
For every cost-minimization game G with robust POA ρ(G),
every coarse correlated equilibrium σ of G, and every out-
come s∗ of G,

E s∼σ[C(s)] ≤ ρ(G) · C(s∗).



Proof. Let G be a (λ, µ)-smooth cost-minimization game,
σ a coarse correlated equilibrium, and s∗ an outcome of G.
We can write

E s∼σ[C(s)] = E s∼σ

"
kX

i=1

Ci(s)

#
(10)

=

kX
i=1

E s∼σ[Ci(s)] (11)

≤
kX

i=1

E s∼σ[Ci(s
∗
i , s−i)] (12)

= E s∼σ

"
kX

i=1

Ci(s
∗
i , s−i)

#
(13)

≤ E s∼σ[λ · C(s∗) + µ · C(s)] (14)

= λ · C(s∗) + µ ·E s∼σ[C(s)], (15)

where equality (10) follows from the definition of the ob-
jective function, equalities (11), (13), and (15) follow from
linearity of expectation, inequality (12) follows from the def-
inition (9) of a coarse correlated equilibrium (applied once
per player, with the hypothetical deviation s∗i ), and inequal-
ity (14) follows from the assumption that the game is (λ, µ)-
smooth. Rearranging terms completes the proof.

3.2 Repeated Play and No-Regret Sequences
The extension theorem (Theorem 3.1) applies equally well

to certain outcome sequences generated by repeated play,
because of a well-known correspondence between such se-
quences and static equilibrium concepts. To illustrate this
point, consider a sequence s1, s2, . . . , sT of outcomes of a
(λ, µ)-smooth game and a minimum-cost outcome s∗ of the
game. For each i and t, define

δi(s
t) = Ci(s

t)− Ci(s
∗
i , st

−i) (16)

as the hypothetical improvement in player i’s cost at time t
had it used the strategy s∗i in place of st

i. When st is a
Nash equilibrium, δi(s

t) cannot be positive; for an arbitrary
outcome st, δi(s

t) can be positive or negative. We can mimic
the derivation in (3)–(5) to obtain

C(st) ≤ λ

1− µ
· C(s∗) +

Pk
i=1 δi(s

t)

1− µ
(17)

for each t.
Suppose that every player i experiences vanishing average

(external) regret, meaning that its cost over time is compet-
itive with that of every time-invariant strategy:

TX
t=1

Ci(s
t) ≤

"
min

s′i

TX
t=1

Ci(s
′
i, s

t
−i)

#
+ o(T ). (18)

Repeating the same pure Nash equilibrium over and over
again yields a degenerate example, but in general such se-
quences can exhibit highly oscillatory behavior over arbi-
trarily large time horizons (see e.g. [3, 13]).

Averaging (17) over the T time steps and reversing the
order of the resulting double summation yields

1

T

TX
t=1

C(st) ≤ λ

1− µ
· C(s∗) +

1

1− µ

kX
i=1

 
1

T

TX
t=1

δi(s
t)

!
.

(19)

Recalling from (16) that δi(s
t) is the additional cost incurred

by player i at time t due to playing strategy st
i instead of the

(time-invariant) strategy s∗i , the no-regret guarantee (18)

implies that [
PT

t=1 δi(s
t)]/T is bounded above by a term

that goes to 0 with T . Since this holds for every player i,
inequality (19) implies that the average cost of outcomes
in the sequence is no more than the robust POA times the
minimum-possible cost, plus an error term that approaches
zero as T →∞.

Theorem 3.2 (Extension Theorem — Repeated Version)
For every cost-minimization game G with robust POA ρ(G),
every outcome sequence σ1, . . . , σT that satisfies (18) for ev-
ery player, and every outcome s∗ of G,

1

T

TX
t=1

C(st) ≤ [ρ(G) + o(1)] · C(s∗)

as T →∞.

Blum et al. [3] were the first to consider bounds of this
type, calling them “the price of total anarchy.”

We reiterate the type of bound in Theorem 3.2 is signif-
icantly more compelling, and assumes much less from both
the game and its participants, than one that applies only to
Nash equilibria. While Nash equilibria can be intractable
or impossible to find, there are several computationally effi-
cient “off-the-shelf” learning algorithms with good conver-
gence rates that are guaranteed, in any game, to gener-
ate outcome sequences with vanishing average regret (see
e.g. [17, Chapter 4]). Of course, the guarantee in Theo-
rem 3.2 makes no reference to which learning algorithms (if
any) the players’ use to play the game — the bound applies
whenever repeated joint play has low regret, whatever the
reason.

Remark 3.3 (Theorems 3.1 and 3.2) Theorems 3.1 and 3.2
are essentially equivalent, in that either one can be derived
from the other. The reason is that the set of coarse corre-
lated equilibria of a game is precisely the closure of the em-
pirical distributions of (arbitrarily long) sequences in which
every player has nonpositive average regret.

Remark 3.4 (Correlated Equilibria and Swap Regret)
There is a more stringent notion of regret — swap regret
— under which there is an analogous correspondence be-
tween the correlated equilibria of a game and the outcome
sequences in which every player has nonpositive (swap) re-
gret. There are also computationally efficient “off the shelf”
learning algorithms that guarantee each player vanishing av-
erage swap regret in an arbitrary game [10, 12].

4. CONGESTION GAMES ARE TIGHT
The worst-case POA for a set of allowable outcomes can

only increase as the set grows bigger. This section proves
that, in congestion games with restricted cost functions, the
worst-case POA is exactly the same for each of the equilib-
rium concepts of Figure 1. We prove this by showing that
smoothness arguments, despite their automatic generality,
provide a tight bound on the POA, even for pure Nash equi-
libria.

More precisely, let G denote a set of cost-minimization
games, and assume that a nonnegative objective function



has been defined on the outcomes of these games. Let A(G)
denote the parameter values (λ, µ) such that every game of G
is (λ, µ)-smooth. Let bG ⊆ G denote the games with at least
one pure Nash equilibrium, and ρpure(G) the POA of pure

Nash equilibria in a game G ∈ bG. The canonical three-line
proof (3)–(5) shows that for every (λ, µ) ∈ A(G) and every

G ∈ bG, ρpure(G) ≤ λ/(1 − µ). We call a set of games tight
if equality holds for suitable choices of (λ, µ) ∈ A(G) and

G ∈ bG.

Definition 4.1 (Tight Class of Games) A set G of games
is tight if

sup
G∈ bG ρpure(G) = inf

(λ,µ)∈A(G)

λ

1− µ
. (20)

The right-hand side of (20) is the best worst-case upper
bound provable via a smoothness argument, and it applies
to all of the sets shown in Figure 1. The left-hand side
of (20) is the actual worst-case POA of pure Nash equilibria
in G — corresponding to the smallest set in Figure 1 —
among games with at least one pure Nash equilibrium. That
the left-hand side is trivially upper bounded by the right-
hand side is reminiscent of “weak duality”. Tight classes
of games are characterized by the min-max condition (20),
which can be loosely interpreted as a “strong duality-type”
result. In a tight class of games, every valid upper bound on
the worst-case POA of pure Nash equilibria is superseded by
a suitable smoothness argument. Thus, every such bound —
whether or not it is proved using a smoothness argument —
is “intrinsically robust”, in that it applies to all of the sets
of outcomes in Figure 1.

Recall from Example 2.4 the definition of and notation for
congestion games. Here we consider arbitrary nonnegative
and nondecreasing cost functions ce. The worst-case POA
in congestion games depends on the “degree of nonlinearity”
of the allowable cost functions. For example, for polynomial
cost functions with nonnegative coefficients and degree at
most d, the worst-case POA in congestion games is finite
but exponential in d [1, 2, 7, 18].

Example 2.4 shows that, if G is the set of congestion games
with affine cost functions, then the right-hand side of (20)
is at most 5/2. Constructions in [2, 7] show that the left-
hand side of (20) is at least 5/2 for this class of games.
Thus, congestion games with affine cost functions form a
tight class. Our final result shows that this fact is no fluke.

Theorem 4.2 For every non-empty set C of nondecreasing,
positive cost functions, the set of congestion games with cost
functions in C is tight.

In addition to showing that smoothness arguments always
give optimal POA bounds in congestion games, this result
and its proof imply the first POA bounds of any sort for
congestion games with non-polynomial cost functions, and
the first structural characterization of universal worst-case
examples for the POA in congestion games.

The proof of Theorem 4.2 is technical and we provide only
a high-level outline; the complete proof can be found in the
full version [22]. For the following discussion, fix a set C
of cost functions. The first step is to use the fact that, in

See Nadav and Roughgarden [15] for a formal treatment of
the duality between equilibrium concepts and POA bounds.

a congestion game, the objective function and players’ cost
functions are additive over the resources E. This reduces
the search for parameters (λ, µ) that satisfy condition (2) of
Definition 2.1 — which imposes one constraint for every con-
gestion game with cost functions in C, and every pair s, s∗ of
outcomes in that game — to the search for parameters (λ, µ)
that satisfy

c(x + 1)x∗ ≤ λ · c(x∗)x∗ + µ · c(x)x (21)

for every cost function c ∈ C, non-negative integer x, and
positive integer x∗. This condition is the same as (6) in
Example 2.4 for the case where C is the set of affine cost
functions.

The second step of the proof is to understand the opti-
mization problem of minimizing the objective function λ/(1−
µ) over the “feasible region” A(C), where A(C) denotes the
set of values (λ, µ) that meet the condition (21) above. This
optimization problem is almost the same as the right-hand
side of (20), and it has several nice properties. First, there
are only two decision variables — λ and µ — so A(C) is con-
tained in the plane. Second, while there is an infinite number
of constraints (21), each is linear in λ and µ. Thus, A(C) is
the intersection of halfplanes. Third, the objective function
λ/(1− µ) is decreasing is both decision variables. Thus, ig-
noring some edge cases that can be handled separately, the
choice of (λ, µ) that minimizes the objective function lies on
the “southwestern boundary” of A(C), and can be character-
ized as the unique point of A(C) that satisfies with equality
a particular pair of constraints of the form (21).

The third and most technical part of the proof is to show
a matching lower bound on the left-hand side of (20). The
intuition behind the construction is to arrange a congestion
game in which each player has two strategies, one that uses a
small number of resources, and a disjoint strategy that uses
a large number of resources. In the optimal outcome, all
players use their small strategies and incur low cost. (This
outcome is also a pure Nash equilibrium.) In the suboptimal
pure Nash equilibrium, all players use their large strategies,
thereby “flooding” all resources and incurring a large cost.
How can this suboptimal outcome persist as a Nash equi-
librium? If one player deviates unilaterally, it enjoys the
benefit of fewer resources in its strategy, but each of these
new resources now has load one more than that of each of
the resources it was using previously. Implemented opti-
mally, this construction produces a congestion game and a
pure Nash equilibrium of it with cost a λ/(1 − µ) factor
larger than that of the optimal outcome, where (λ, µ) are
the optimal smoothness parameters identified in the second
step of the proof.

Remark 4.3 (POA Bounds for All Cost Functions)
Theorem 4.2 gives the first solution to the worst-case POA
in congestion games with cost functions in an arbitrary set C.
Of course, precisely computing the exact value of the worst-
case POA is not trivial, even for simple sets C. Arguments
in [1, 18] imply a (complex) closed-form expression for the
worst-case POA when C is a set of polynomials with non-
negative coefficients. Similar computations should be possi-
ble for some other simple sets C. More broadly, the second
and third steps of the proof of Theorem 4.2 indicate how to
numerically produce good upper and lower bounds, respec-
tively, on the worst-case POA when there is a particular
set C of interest.



Remark 4.4 (Worst-Case Congestion Games) The de-
tails of the construction in the third step of the proof of
Theorem 4.2 show that routing games on a bidirected cycle
are universal worst-case examples for the POA, no matter
what the allowable set of cost functions. This corollary is an
analog of a simpler such sufficient condition for nonatomic
congestion games —- where there is a continuum of play-
ers, each of negligible size — in which, under modest as-
sumptions on C, the worst-case POA is always achieved in
two-node two-link networks [21].

5. FURTHER RELATED WORK
The price of anarchy was first studied in [14] for makespan

minimization in scheduling games. This is not a sum objec-
tive function, and the worst-case POA in this model was
immediately recognized to be different for different equilib-
rium concepts [3, 14]. See [17, Chapter 20] for a survey of
the literature on this model.

The POA with a sum objective was first studied in [24]
for nonatomic selfish routing games. The first general results
on the POA of pure Nash equilibria for (atomic) congestion
games and their weighted variants are in [2, 7], who gave
tight bounds for games with affine cost functions and rea-
sonably close upper and lower bounds for games with poly-
nomial cost functions with nonnegative coefficients; match-
ing upper and lower bounds for the latter class were later
given independently in [1] and [18].

Many previous works recognized the possibility of and
motivation for more general POA bounds. The underly-
ing bound on the POA of pure Nash equilibria can be for-
mulated as a smoothness argument in almost all of these
cases, so our extension theorem immediately implies, and
often strengthens, these previously proved robust bounds.
Specifically, the authors in [1, 2, 7, 25] each observe that
their upper bounds on the worst-case POA of pure Nash
equilibria carry over easily to mixed Nash equilibria. In [6]
the worst-case POA of correlated equilibria is shown to be
the same as for pure Nash equilibria in unweighted and
weighted congestion games with affine cost functions. Blum
et al. [3] rework and generalize several bounds on the worst-
case POA of pure Nash equilibria to show that the same
bounds hold for the average objective function value of no-
regret sequences. Their applications include valid utility
games [25] and the (suboptimal) bounds of [2, 7] for un-
weighted congestion games with polynomial cost functions,
and also a constant-sum location game and a fairness objec-
tive, which falls outside of our framework.

Versions of our two-parameter smoothness definition are
implicit in a few previous papers, in each case for a spe-
cific model and without any general applications to robust
POA guarantees: Perakis [19] for a nonatomic routing model
with non-separable cost functions; Christodoulou and Kout-
soupias [6] for congestion games with affine cost functions;
and Harks [11] for splittable congestion games.

6. CONCLUSIONS
Pure-strategy Nash equilibria — where each player deter-

ministically picks a single strategy — are often easier to rea-
son about than their more general cousins like mixed Nash
equilibria, correlated equilibria, and coarse correlated equi-
libria. On the other hand, inefficiency guarantees for more
general classes of equilibria are crucial for several reasons:

pure Nash equilibria do not always exist; they can be in-
tractable to compute, even when they are guaranteed to
exist; and even when efficiently computable by a centralized
algorithm, they can elude natural learning dynamics.

This article presented an extension theorem, which auto-
matically extends, in “black-box” fashion, price of anarchy
bounds for pure Nash equilibria to the more general equi-
librium concepts listed above. Such an extension theorem
can only exist under some conditions, and the key idea is
to restrict the method of proof used to bound the price of
anarchy of pure Nash equilibria. We defined smooth games
to formalize a canonical method of proof, in which the Nash
equilibrium hypothesis is used in only a minimal way, and
proved an extension theorem for smooth games. Many of
the games in which the price of anarchy has been studied are
smooth games in our sense. For the fundamental model of
congestion games with arbitrarily restricted cost functions,
we proved that this canonical proof method is guaranteed
to produce an optimal upper bound on the worst-case POA.
In this sense, POA bounds for congestion games are “intrin-
sically robust”.
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On the efficiency of equilibria in generalized second
price auctions. Submitted, 2012. Earlier versions
appeared in FOCS ’10 and EC ’11.

[5] X. Chen, X. Deng, and S.-H. Teng. Settling the
complexity of two-player Nash equilibria. Journal of
the ACM, 56(3), 2009.

[6] G. Christodoulou and E. Koutsoupias. On the price of
anarchy and stability of correlated equilibria of linear
congestion games. In Proceedings of the 13th Annual
European Symposium on Algorithms (ESA), volume
3669 of Lecture Notes in Computer Science, pages
59–70, 2005.

[7] G. Christodoulou and E. Koutsoupias. The price of
anarchy of finite congestion games. In Proceedings of

Since the conference version of this article, the definition
of smooth games has been refined and extended in several
ways, and new smoothness arguments have been discovered
for a number of interesting models. See the full version [22]
for details and references.



the 37th Annual ACM Symposium on Theory of
Computing (STOC), pages 67–73, 2005.

[8] C. Daskalakis, P. W. Goldberg, and C. H.
Papadimitriou. The complexity of computing a Nash
equilibrium. SIAM Journal on Computing,
39(1):195–259, 2009.

[9] A. Fabrikant, C. H. Papadimitriou, and K. Talwar.
The complexity of pure Nash equilibria. In Proceedings
of the 36th Annual ACM Symposium on Theory of
Computing (STOC), pages 604–612, 2004.

[10] D. Foster and R. Vohra. Calibrated learning and
correlated equilibrium. Games and Economic
Behavior, 21(1-2):40–55, 1997.

[11] T. Harks. Stackelberg strategies and collusion in
network games with splittable flow. In E. Bampis and
M. Skutella, editors, Proceedings of the 6th
International Workshop on Approximation and Online
Algorithms (WAOA’08), volume 5426 of LNCS, pages
133–146, 2008.

[12] S. Hart and A. Mas-Colell. A simple adaptive
procedure leading to correlated equilibria.
Econometrica, 68(5):1127–1150, 2000.

[13] R. D. Kleinberg, G. Piliouras, and É. Tardos.
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