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Deferred-acceptance (DA) auctions are mechanisms that are based on backward-greedy algorithms and possess a

number of remarkable incentive properties, including implementation as an obviously-strategyproof ascending

auction. All existing work on DA auctions considers only binary single-parameter problems, where each

bidder either “wins” or “loses.” This paper generalizes the DA auction framework to non-binary settings, and

applies this generalized framework to obtain approximately welfare-maximizing DA auctions for a number of

basic mechanism design problems: multi-unit auctions, problems with polymatroid constraints or multiple

knapsack constraints, and the problem of scheduling jobs to minimize their total weighted completion time.

Our results require the design of novel backward-greedy algorithms with good approximation guarantees.
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1 INTRODUCTION
The work of Milgrom and Segal [33] recently proposed the framework of Deferred-Acceptance

(DA) Auctions, a family of single-parameter mechanisms with a number of remarkable incentive

properties. In fact, the reverse auction part of the very recently concluded FCC Incentive Auction

for reallocating spectrum was a DA auction [14]. DA auctions can be thought of as running an

adaptive backward greedy algorithm for deciding the set of accepted bidders. The mechanism

maintains a score for each active bidder (which can change from round to round), and rejects in

each round the bidder with the lowest score, stopping when the still-active bidders constitute a

feasible solution. This contrasts with standard (forward) greedy algorithms, which begin with the

empty set and iteratively add the bidder with the highest score (subject to feasibility constraints).

DA auctions are appealing in practice for a number of reasons. First, DA auctions can be imple-

mented as ascending clock auctions (or descending auctions if applied to procurement auctions),

which has several desirable consequences. Truthful bidding is a dominant strategy, even in the

sense of obvious strategyproofness formalized by Li [28]; see the discussion in Section 3. In contrast,

a sealed-bid Vickrey auction, for example, is not obviously strategyproof in this sense. This is

important for the participation and behavior of non-expert users, who may not fully understand

the computations involved in setting the clock prices. Furthermore, every DA auction satisfies
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weak group-strategyproofness (WGSP). That is, no coalition of bidders can collectively submit false

bids in a way that makes every bidder of the coalition strictly better off. We refer the reader to [34]

for further advantages and motivation behind DA auctions.

Unfortunately, DA auctions do not always achieve a good approximation to the social welfare.

Backward greedy algorithms can be inferior to forward greedy algorithms, and the former need not

even produce an inclusion-maximal solution. Driven by this concern, Dütting et al. [11] subsequently

explored the power and limitations of DA auctions from an approximation algorithms viewpoint

(see also related work below). Their main results concern knapsack auctions and combinatorial

auctions with single-minded bidders. For example, in the latter setting, novel DA auctions can

nearly match the performance of arbitrary truthful and computationally efficient mechanisms.

All work thus far on DA auctions has concerned binary problems, i.e., settings where each bidder

either “wins” or “loses.” In many scenarios, however, a bidder receives some “level of service” rather

than a binary decision. Think, for example, of an air ticket purchase. Depending on the buyer’s

willingness to pay, the available choices may include basic economy class, economy class with a

more comfortable seat and more leg room, economy class with extra bag allowance, or business

class. In a multi-unit auction with non-unit demand bidders, the level of service corresponds to

the number of items awarded. In a cloud computing setting, levels of service could correspond to

possible completion times of a user’s task. The goal of this paper is to generalize the DA auction

framework to non-binary settings, and apply this generalized framework to a number of basic

mechanism design problems.

Our results: The first contribution of this paper is to extend the DA auction framework to non-

binary settings, where each bidder receives some level of service, subject to feasibility constraints

(Definitions 3.1 and 7.1). We consider bidders with downward-sloping valuations, meaning that a

bidder’s marginal value for upgrading to the next level of service is non-increasing in the level.

The key idea in the generalization is to complement the usual DA auction scoring function with a

clinching function that specifies the level of service that each bidder has clinched as the auction

progresses. Just like in a DA auction, at each stage, a generalized DA auction decides which bidder

to remove from the set of active bidders. The difference is that upon removal, the clinching function

also determines the level of service received by the bidder who leaves the auction. We show

that, provided the clinching functions are monotone, these generalized DA auctions possess the

key incentive guarantees of binary DA auctions, including an obviously strategyproof ascending

implementation and weak group-strategyproofness.

We demonstrate the usefulness of this framework by designing newDA auctions for four different

problems.

(i) Allocation problems where the service levels of the bidders must obey a polymatroid con-

straint and where bidders have linear valuations. Here, we show that the VCG mechanism

can be implemented in our generalized DA framework (Proposition 4.1).

(ii) Job scheduling for minimizing the total weighted completion time. Here, we give a novel

generalized DA scheduling auction that achieves a 2(1 +
√
2)-approximation of the optimal

social welfare (Section 5). A priori, it is not obvious that a constant factor approximation

can be achieved by any backward greedy algorithm.

(iii) Knapsack auctions with multiple knapsacks available, where the set of bidders assigned to

the same level need to satisfy a knapsack constraint, and bidders have linear valuations.

Even in the binary setting with one knapsack, no DA auction can achieve an approximation

ratio better than O(logm), wherem is the size of the knapsack. We show that even with

multiple knapsacks, there is a DA auction achieving a O(logm)-approximation of the

optimal social welfare (Theorem 6.1).
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(iv) Multi-unit auctions where bidders have general downward-sloping valuations. Even with

two bidders and two units, the VCG mechanism cannot be implemented as a generalized

DA auction, and neither can any weakly group-strategyproof mechanism (Proposition 7.3).

We give a novel DA multi-unit auction that achieves an O(logn)-approximation to the

social welfare, where n is the number of agents (Theorem 7.6).

For settings (ii)–(iv), we are not aware of any existing weakly group-strategyproof mechanisms

(DA or otherwise) with non-trivial approximation guarantees.

Related Work. Milgrom and Segal [33] initiated the study of procurement DA auctions, motivated

by FCC auctions for reallocating spectrum. In a procurement auction it is the bidders who own the

resources that the auctioneer wishes to buy. As discussed in their work, the properties that they

established, such as group-strategyproofness and implementability as a clock auction, can be easily

shown to hold also for the more common type of selling auctions, which is the focus of our work.

In a recent version of their paper, Milgrom and Segal [34] analyze the social welfare that can be

attained by DA auctions in a procurement setting with near matroid structure. They show that in

this setting a DA auction attains near optimal performance, generalizing well-known results in

combinatorial optimization which show that forward and backward greedy algorithms are optimal

on matroids [see, e.g., 26].

Following up on the work of [33], Dutting et al. [11] explored the power and limitations of DA

auctions from an approximation algorithms viewpoint. They provided both positive and negative

results for knapsack auctions and auctions with single-minded bidders. On the positive side, for

single-minded bidders, it was shown that we can have almost matching approximation results by

DA auctions as the existing ones in the literature, hence providing stronger incentive guarantees to

the known approximations. In particular, an O(d)-approximation was obtained via a DA auction,

when the size of each requested bundle is at most d , matching the known d-approximation of [27],

which is obtained by a forward greedy algorithm. A different DA auction was also shown to achieve

a

√
m logm-approximation, almost matching the known

√
m-approximation of [27], wherem is the

number of available items. On the negative side, for knapsack auctions, it was shown that no DA

auction can achieve an approximation that is sublogarithmic inm, establishing a separation with

the constant factor approximations that are known if we only want strategyproof mechanisms.

There have been several other works that have already appeared regarding the applicability

of the DA auctions framework. In the procurement setting, the performance of DA auctions has

been further studied by Kim [25], for spectrum and bandwidth reallocation problems. Nguyen and

Sandholm [37] provide an experimental evaluation of the performance of various DA heuristics

for the actual interference constraints of the upcoming FCC auction. The DA framework has also

been extended to double auctions by Dütting et al. [12] and to multi-lateral markets by Blumrosen

and Zohar [7]. The application to double auctions is explored further by Marx and Loertscher [29].

These works also point out the advantages of the DA framework in obtaining budget balance for

double auctions. In a similar spirit, Ensthaler and Giebe [13] and Jarman and Meisner [20] point

out the advantages of the DA auctions in the design of budget-constrained procurement auctions.

Group-strategyproof mechanisms have been studied extensively prior to the DA auctions frame-

work, among others, in the context of cost-sharing mechanisms [10, 18, 19, 21, 22, 30, 35]. This line

of work has also analyzed the economic efficiency that can be achieved with these mechanisms. As

has been observed, often the stronger incentive properties come at a significant cost in terms of

economic efficiency [see, e.g., 39]. Finally, the stronger notion of “obvious strategyproofness” has

been recently introduced by [28].
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There is an extensive literature on ascending auctions for both single-parameter and multi-

parameter settings pre-dating the DA framework. For single-parameter settings, an ascending

auction based on the backward greedy algorithm for matroids is described in Bikhchandani et al. [4].

Babaioff et al. [3] provide a procedure converting any algorithm to a dominant-strategy ascending

auction (with some loss in the approximation factor). For multi-parameter settings, Ausubel [1]

describes an ascending auction for identical items and bidders with decreasing marginal values.

Ascending auctions for non-identical items and bidders with gross substitute preferences appear

in [2, 17, 24, 31]. For a comprehensive study of the computational and informational aspects of

iterative auctions see [5, 6].

2 PRELIMINARIES
We focus on problems where some type of service needs to be assigned to each of n agents in a set

N . This service can be offered at different quality levels (including no service at all) but, due to

scarcity or cost of this service, there are restrictions in the levels that can be allocated. We represent

the levels of service as rational numbers, hence, the feasible service allocation outcomes are defined

by a set system I ⊆ QN .1 We assume that I is non-empty and downward closed, meaning that

if T ∈ I and T ′ ⊆ T , then T ′ ∈ I. Note that the binary setting, to which previous work on DA

auctions was restricted, corresponds to the special case where I ⊆ {0, 1}N .
We assume that each bidder has a private valuation function such that vi (ℓ) is the value of

bidder i for obtaining the level of service ℓ. Although all of our mechanisms can be implemented

as ascending auctions, our presentation focuses on direct-revelation mechanisms in the form

M = (f ,p), which consist of an outcome rule f and a payment rule p. In our setting, given a

vector of bids b = (bi )i ∈N , where bi denotes the bid reported by bidder i (coming either from a

single-parameter or multi-parameter domain, depending on the form of the function vi (·)), the
outcome rule f computes a feasible solution, i.e., a set of I, so that every bidder is assigned a level

of service. On the same input, the payment rule p computes payments p = (pi (b))i ∈N ∈ Rn where

pi (b) denotes the payment of bidder i .
Given a mechanism M = (f ,p), and a bid vector b, let ℓi = fi (b) be the level of service assigned

to bidder i by the mechanism. We assume that the bidders have quasi-linear utilities and hence

bidder i’s utility equals uM
i (b) = vi (ℓi ) − pi (b). Since bidders can be strategic in reporting their

bids to the mechanism, towards maximizing their own utility, we aim for mechanisms that provide

incentive guarantees. We say that a mechanismM is strategyproof or incentive compatible if for

any bidder i , for any bid vector b−i = (bj )j,i , and any bid bi of bidder i

uM
i (vi , b−i ) ≥ uM

i (bi , b−i ).

We are interested in an even stronger form of resistance to manipulation, namely resistance

against coalitions of bidders. Given a subset of bidders S ⊆ N , and a bidding vector b, we denote
by bS , the vector containing only the bids of S , and by b−S the bids of the remaining bidders. We

say that a mechanism M is weakly group-strategyproof (WGSP) if for any coalition S ⊆ N , for any

vector b−S = (bj )j<S , and for any vector bS = (b j )j ∈S of the bidders in S , it holds that

uM
i (vS , b−S ) ≥ uM

i (bS , b−S ) for some i ∈ S .

Hence, there is no coalition that can make all its members strictly better off by deviating from the

truth.
2

1
In our exposition, we do not need to impose a priori an upper bound on the maximum possible level of service.

2
There is an even stronger form of group-strategyproofness, requiring that there is no coalitional deviation where some

members are better off and the rest are not worse off, but DA auctions do not usually guarantee this property.
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Apart from the incentive issues, one of the main objectives we try to optimize in mechanism

design is the social welfare. IfT = (ℓ1, . . . , ℓn) ∈ I is a feasible solution, the generated social welfare

is SW (T ) =
∑

i vi (ℓi ). A mechanismM with an allocation rule f achieves an approximation ratio

of ρ if

max

v

SW (OPT (v))
SW (f (v))

≤ ρ,

where OPT (v) = argmaxT ∈I
{SW (T )} denotes a welfare-maximizing outcome.

3 GENERALIZED SINGLE-PARAMETER DEFERRED-ACCEPTANCE AUCTIONS
We begin by proposing a generalization of the DA auctions framework of [34] that captures non-

binary single-parameter settings. We assume that each bidder can receive one of multiple levels of

service, and for now, that her value for level ℓ ∈ Q equals to vi · ℓ. This linearity assumption is

common in many applications, including sponsored search advertising and job scheduling. Section

7 generalizes the framework to the multi-parameter setting of downward-sloping valuations.

We define a generalized DA auction by combining a scoring function with a provisional allocation

function, which we will refer to as the clinching function. Clinching functions are the key innovation

of our generalized framework. The auction begins with all bidders being active, it operates in a

sequence of stages, and after each stage it finalizes the level of service of some active bidder. This

process continues, until the level of service for every bidder has been finalized. Prices are then set

using Myerson’s Lemma, to enforce truthfulness (see below).

Definition 3.1. A DA auction operates in discrete stages t ≥ 1. We denote by At ⊆ N the set of

currently active bidders in the beginning of each stage t ; initially, A1 = N , and At+1 ⊂ At , for every

t ≥ 1. The DA auction is fully defined by two collections of functions:

• The scoring functions σAt
i (bi , bN \At

), that are non-decreasing in their first argument.

• The clinching functions дAti (bN \At
), which are non-increasing w.r.t. the set of active

bidders, i.e.: дAt+1i (bN \At+1
) ≥ дAti (bN \At

).

At each stage t , ifAt , ∅, then the level of service of some active bidder i ∈ argmini ∈At {σ
At
i (bi , bN \At

)}

is finalized, possibly with the use of some tie-breaking rule. That is, a bidder i with the lowest score

stops being active, we set At+1 = At \ {i}, and her level of service is finalized at level дAti (bN \At
).

When we reach At = ∅, then the auction terminates and the payment of each bidder is determined

by Myerson’s lemma (see Equation (1)).

The scoring and clinching functions generally change throughout the stages. These functions

can depend on the bids of non-active bidders, bN \At
, and on the set of active bidders, At , though

not the actual bids of active bidders, for incentive reasons.

For a given bid vector b = (bi )i ∈N ∈ Rn+, the DA auction implies an outcome rule f , which
defines the level of service fi (b) of each bidder i . If this outcome rule always outputs a feasible

solution (a set of I), then we say that the DA auction is feasible. The following lemma shows that

the allocation rule fi (b) implied by a DA auction is always monotone w.r.t. the bid bi of bidder i .
The proof of the lemma is deferred to the full version of the paper.

Lemma 3.2. Any generalized DA auction yields a monotone allocation rule, i.e., for any bid vector b,
and any b ′i < bi , we have fi (b

′
i , b−i ) ≤ fi (b).

Next we derive payments according to Myerson’s lemma [36], given the monotone allocation

function f (bi , b−i ), which are appropriate summations of threshold values for each level of service.

Formally, suppose that under (bi , b−i ), bidder i receives level of service iℓ . Let Li = {i1, i2, ..., iℓ}
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with i1 < i2 < · · · < iℓ , be the levels of service that are attainable, as we let the bid of i increase
from 0 to bi , keeping b−i fixed. The monotonicity of the levels we encounter is ensured by the

monotonicity of the allocation rule fi (·). For each i j ∈ Li , let zj be the following threshold value:

zj (b−i ) = inf

b′i ≥0
{b ′i : fi (b

′
i , b−i ) ≥ i j }.

Then, the payment of bidder i comes from the following formula:

pi (b) =
ℓ∑
j=1

zj (b−i ) · (i j − i j−1), (1)

where for j = 1, we set i0 = 0.

We next show that the mechanism induced by such an allocation rule and corresponding payment

rule is weakly group-strategyproof.

Theorem 3.3. Every generalized DA auction is weakly group strategy-proof.

Proof. Assume there exists a coalition of bidders K ⊆ N that can coordinate in misreporting

their values in a way that strictly improves the utility of every i ∈ K . We show that this assumption

leads to a contradiction.

Letvi denote the true value of each bidder i andv ′
i be the value reported by i ∈ K . Also, let α ∈ K

be the bidder of the coalition who would be finalized first (at stage tα ) according to the true values,

and let β ∈ K be the bidder of the coalition who is finalized first (at stage tβ ) after the deviation.
First, we show that tβ > tα . Aiming for a contradiction assume that, after the deviation, bidder

β is finalized at stage tβ ≤ tα , and this deviation strictly increases her utility. According to the

definition of the generalized DA auctions, the sequence of bidders finalized during the first tβ − 1

stages under the deviation is identical to the corresponding sequence of bidders finalized prior

to the deviation. To verify this fact, note that the scores of these bidders are not affected by the

deviation, since all the bidders in K remain active during the first tβ − 1 stages (recall that the scores

at a stage t maybe affected by the bids of N \ At and not by active bidders). Hence, both in the

original profile as well as in the deviation, the level of service that has been clinched by bidder β
by stage tβ , and the total payment for this level is the same. Since we have assumed tβ ≤ tα , bidder
β was receiving a weakly higher level of service prior to the deviation. Moreover, the cost for any

additional levels of service compared to the level she receives under the deviation, was at most vβ .
Hence, overall the utility of β cannot have increased with the deviation, leading to a contradiction.

Therefore, there exists some bidder i < K who is rejected at stage tα after the deviation, and was

finalized at some stage ti > tα prior to the deviation. Since bidder α was finalized before bidder i
prior to the deviation, and using the fact that both of these bidders’ scores are the same before and

after the deviation, we infer that v ′
α > vα . Also, if ℓα and ℓ′α is the level of service that α receives

before and after the deviation, this means that ℓ′α > ℓα (otherwise the utility of α would be the

same after the deviation) and the threshold price of any level higher than ℓα is at least vα (since α
would be rejected at stage tα if she did not strictly increase her bid). Then, according to Equation 1,

the additional payment of α , for the additional ℓ′α − ℓα levels of service is at least

ℓ′α∑
j=ℓα+1

vα · (i j − i j−1) ≥ (ℓ′α − ℓα )vα .

Note that the payment of α for the first ℓα levels is the same as before since tβ > tα . Hence, since
the value of α for these additional levels of service is (ℓ′α − ℓα )vα , this means that bidder α could

not have strictly increased her utility upon deviating. �
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Apart from group-strategy-proofness, the DA framework also guarantees several other important

properties that are desirable for practical purposes. In particular, [34] showed that a (binary) DA

auction can be implemented by an ascending clock auction. This means that we can think of the

auction as running in a sequence of periods, and offering an ascending sequence of prices to every

bidder. Our generalization can also be implemented as such an ascending auction. As a result, it

obvious for the bidders to verify that truth-telling is their optimal strategy, even if they are not

aware of how the clock prices are set. This is in contrast, e.g., to the VCG mechanism, where it is

not at all clear a priori why a bidder should behave truthfully. This distinction is formalized under

the notion of obvious strategy-proofness in [28].

The following two propositions summarize the fact that such properties carry over to the setting

of generalized DA auctions as well, which further justifies their appeal. The proof of the propositions

as well as a discussion regarding clock auctions can be found in the full version of the paper.

Proposition 3.4. Every generalized DA auction, can be implemented as an ascending clock auction.

We henceforth refer to the class of ascending clock auctions derived from generalized DA auctions

according to Proposition 3.4 as generalized DA ascending auctions.

Proposition 3.5. Every generalized DA ascending auction is obviously strategyproof.

4 WARM-UP: POLYMATROID CONSTRAINTS
We begin our study of generalized DA auctions by considering settings where the set of feasible

outcomes is defined by a polymatroid constraint (defined below).

For instance, consider a multi-unit auction with k identical copies of the same good, and additive

bidders, so that bidder i’s value for acquiring ℓi units of the good (a level of service ℓi ) is ℓi · vi .
The constraint in this case is that

∑
i ℓi ≤ k , i.e., the number of units to be allocated is at most

k . For another example, consider the keyword sponsored search auctions, where the sellers are

competing for a sequence of q < n advertising slots, and each slot j has a click-through rate r j . If
bidder i’s value for a click is vi , then its value for slot j is r j ·vi , and we say that i receives a level of
service of ℓi = r j . This time, the constraint is that the outcome (ℓ1, ℓ2, ..., ℓn) needs to correspond

to a matching of bidders to slots, with ℓi = 0 for any bidder who is not matched to a slot. For more

motivating examples see also [4].

More generally, in this section we consider problems, where the set of feasible outcomes is

defined via a given submodular function h : 2
n → R+, as follows:

Ph =

{
ℓ ∈ Nn |

∑
i ∈S

ℓi ≤ h(S) ∀S ⊆ N

}
.

In the first setting provided above, i.e., the multi-unit auction with k available units, the poly-

matroid constraint is defined by the constant (submodular) function h, with h(S) = k for every

S ⊆ N . In the second setting, if we assume that r1 ≥ r2 ≥ · · · ≥ rq , the polymatroid constraint is

defined by h(S) =
∑ |S |

j=1 r j . This implies that any single bidder i gets ℓi ≤ r1, any two bidders i, i ′

get ℓi + ℓi′ ≤ r1 + r2, and so on.

As a first application of our framework, we show that, in fact, there is a simple generalized DA

auction that achieves the optimal social welfare in any problem instance involving polymatroid

constraints. Given the submodular function h of the polymatroid constraint, the scoring and

clinching functions of this auction are as follows:

• The polymatroid auction scoring function is σAt
i (bi , bN \At

) = bi .

• The polymatroid auction clinching function is дAti (bN \At
) = h(At ) − h(At \ {i}).
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Note that this DA auction has a very simple scoring function, which is not adaptive. In particular,

at every stage, the bidder who is finalized by this DA auction is the one with the smallest bid, among

the ones that are still active. What is more interesting is the clinching function, according to which,

at each stage t each bidder i ∈ At has clinched a level of service equal to her marginal contribution

to the value of h(At ). Since h is submodular, this marginal contribution weakly increases as At
shrinks, so this is a valid clinching function.

For a concrete example of how this auction works, we consider the two settings described above.

In the multi-unit setting, this auction would keep finalizing the lower valued bidders without

letting them clinch any item, until only the highest bidder is active, at which point this bidder

clinches all k units. For each one of these units, the price is equal to the second highest bid. In

the keyword sponsored search setting, during the first n − q stages, the n − q lowest bidders are

finalized without clinching any slots. Then, at stage n − q + 1 every active bidder clinches a level

of service of rq , which is the click through rate of the worst slot, q, and the lowest value bidder

i ∈ An−q+1 is finalized at ℓi = rq , i.e., it is assigned to that slot. Note that, after stage n −q + 1, every
active bidder is guaranteed a level of service of at least rq , and the price that the top q bidders pay

for clinching this level of service is bq+1rq , i.e., rq times the (q + 1)-th highest bid. As the auction

moves on, more bidders get finalized, and the price that they pay for the additional levels of service

that they clinch weakly increases over time.

To verify that this auction always yields the maximum social welfare, note that its outcome

is exactly the same as the one that would arise if we instead used the following forward greedy

algorithm. First, give the highest bidder, i , the highest level of service possible, i.e., h({i}). Then,
give the second highest bidder the highest level possible, given the existing assignment to i , i.e., i ′

gets h({i, i ′}) − h({i}), and so on. This greedy algorithm is known to be optimal in polymatroid

settings [15].

In fact, the auction presented above is exactly what the ascending auction of [4] reduces to if

the valuations of the bidders are additive, and what the ascending auction of [16] reduces to if we

remove the budget constraints. Furthermore, the allocation and the payments of this auction is the

same as that of the VCG auction. Since these auctions lie within the generalized DA framework, all

of the incentive guarantees of the previous section (Theorem 3.3–Proposition 3.5) apply.

Proposition 4.1. When the set of feasible allocations is defined by a polymatroid constraint, the

VCG mechanism is a generalized DA auction.

In contrast Proposition 4.1, we show in Section 7 that the VCG mechanism is not generally a DA

auction when bidders have downward-sloping valuations.

5 SCHEDULING CONSTRAINTS
To exhibit the strength of our generalization and the diversity of settings that it applies to, we now

consider a well-studied non-binary problem of job scheduling.

Given a set ofm identical machines and a set N of n jobs, each of which needs processing time pi
on any one of the machines, a schedule is an assignment of each job to a machine. Furthermore, for

each machine j , the schedule defines which one of its assigned jobs the machine will process at any

given time. As a result, if a schedule x assigns the jobs of bidders 1, 2, and 3 on the same machine,

to be processed in that order with no idle time, the completion times of the jobs will be c1(x) = p1,
c2(x) = p1 +p2, and c3(x) = p1 +p2 +p3 respectively. Depending on its urgency, or importance, each

job i also has a weight vi , and the objective of this scheduling problem is to compute a schedule x
that minimizes the weighted completion time

∑
i ∈N vici (x).
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This problem has received considerable attention (see [9] for a survey of relevant results) and it is

known to be NP-hard [8]. But, the following simple greedy algorithm achieves a (1+
√
2)/2 ≈ 1.207-

approximation for this problem [23, 40]: order the jobs in non-increasing order of their vi/pi ratio
and schedule them, in that order, on the first available machine.

In this section, rather than assuming that the scheduler knows the weight vi of each job, we

consider the harder problem where this information is private to agent i , who owns this job. The

completion time ci of job i then corresponds to the delay that user i suffers, and the weight vi
corresponds to the value of agent i for improving the completion time of her job by a unit of time.

Every agent is guaranteed completion by some deadline d (defined later on) but, depending on its

value, vi , the agent may be willing to pay in order to improve its completion time, i.e., to get a

higher level of service. Our goal is to design a DA auction that elicits bids bi corresponding to the

private values vi and outputs a schedule x , aiming to minimize the social cost, i.e.,

∑
i bici (x). As

we have shown, every DA auction can be implemented as an ascending auction. But, what would

an ascending auction for job scheduling look like?

Ascending Job Scheduling Auctions. In an ascending auction for job scheduling, as the prices

increase, the bidders who remain active should be guaranteed outcomes of increasingly high quality,

i.e., a lower completion time. This means that rather than scheduling the jobs in a bottom-up fashion,

starting from lower completion times and moving toward higher ones, like all known list-processing

algorithms do, an ascending auction schedules jobs top-to-bottom. In particular, a DA ascending

auction uses a clinching function to “promise” increasingly better completion times to the active

bidders and to decide their actual completion time when they are finalized. But, a clinching decision

is irreversible, and it cannot depend on the bids of jobs in At , i.e., the ones still competing for

lower completion times. Therefore, a generalized DA auction needs to ensure that, no matter the

values of the active jobs to be finalized later on, there exists a feasible way of scheduling them

that respects the clinching promises and yields a good approximation factor. This introduces a novel

and non-trivial trade-off for the designer: on one hand, the designer wants to allow the jobs to

clinch low completion times, aiming for a good approximation factor but, on the other hand, if the

promised completion times are too low, this may lead to an infeasible schedule.

Aiming for a good approximation, we design a backward greedy algorithm whose social cost is

within a constant factor of the greedy algorithm described above. In fact, we ensure that our DA

auction assigns to every job a completion time within a constant factor of its completion time in

the forward greedy schedule. The most natural way to achieve that would be to let our DA auction

use the same scoring function, i.e., to finalize bids in increasing order of their bi/pi ratio. But, how
can we ensure that the completion time of the job i with the worst ratio, the one finalized first, is

within a constant of its completion time in the greedy schedule?

Note that the clinching function needs to be oblivious to the values of the active bids and,

depending on what these values are, the completion time of job i in the forward greedy outcome

may vary significantly. For a concrete example, consider the case when, apart from the job i with
the smallest value over size ratio, At also comprises two sets of jobs X and Y , where X containsm
jobs of size 1 and Y containsm − 1 jobs of sizem. If the jobs in Y have higher ratios than those in X ,

the completion time of job i in the forward greedy outcome would bem + 1. On the other hand, if

the jobs in X have higher ratios than those in Y , the completion time of job i in the forward greedy

outcome would be 2! But, we cannot finalize i with a constant completion time for anym, as this

would quickly lead to feasibility issues, since the average load per machine is not constant.
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5.1 Deferred-Acceptance Scheduling Auction
In this section, we provide a DA auction that determines a feasible schedule of the tasks and

achieves a 2(1 +
√
2) ≈ 4.83-approximation. At each stage t , our auction will be leveraging two

parameters that depend on At but not on the values of the bidders in it: a) Mt =
1

m
∑

i ∈At pi , i.e.,
the value of the fractional makespan for the jobs in At , and b) pt = maxi ∈At {pi }, i.e., the maximum

processing time among the jobs in At . Our auction guarantees to every bidder a completion time

by the deadline d = M1 + 2p1, and depending on their bids and processing times, some jobs get the

opportunity to pay for improved completion times. These improvements of the completion time,

beyond the initial deadline, are captured by the clinching function, which also decides what the

completion time of a job will be when it is finalized.

Scoring function. As long as pt ≤ Mt/2, our DA scheduling auction uses a scoring function based

on the greedy algorithm ratio, i.e., σi (bi ) = bi/pi . But, when there exist jobs whose processing time

is higher thanMt/2, the auction finalizes them first in a largest job first fashion. Formally,

σAt
i (bi ) =

{
bi/pi , if pt < Mt/2 or pi , pt
0, if pt ≥ Mt/2 and pi = pt .

Clinching function. For each machine j , we denote by Ej (t) the minimum starting time among all

the tasks scheduled on machine j prior to stage t , and let Emax(t) = maxj {Ej (t)}. For t = 1, we set

Ej (1) = d for every j ∈ [m]. The clinching function is defined as:

дAti (bN \At
) = M1 + 2p1 −min

{
Mt + 2pt , Emax(t)

}
.

In more detail, at each stage t , this clinching function defines how much earlier than the deadline

(M1 + 2p
1
) job i is guaranteed to terminate (recall that we want the clinching function to be

nonincreasing w.r.t.At , hence we take the difference between the deadline and the completion time).

In otherwords, at stage t , every job is guaranteed to complete no later thanmin

{
Mt + 2pt , Emax(t)

}
.

The job i finalized at stage t is the one with minimum score σAt
i (bi ), and it is scheduled on some

machine j ∈ argmaxj {Ej (t)}. If this machine is not busy at timeMt + 2pt , then job i is scheduled
so that its completion time is ci (x) = Mt + 2pt . If, on the other hand, every machine is busy at that

time, then the job is scheduled so that its completion time is exactly Emax(t) = Ej(t )(t), i.e., right
before the previously scheduled tasks on the machine.

Theorem 5.1. The DA scheduling auction yields a 2(1 +
√
2) ≈ 4.83 approximation.

What is more demanding, is that we also need to verify that the DA auction always yields a

feasible schedule. That is, we need to ensure that there exists a schedule where all the jobs can be

processed by the completion times they have clinched.

To do this, we will define first some appropriate quantities for every stage t , that will guide us in
the analysis. Let Goal(t) = Mt + 2pt , and for every processor j ∈ [m], let δ j (t) = max{0,GOAL(t) −
Ej (t)}. Hence, δ j is the difference between the goal function and the time at which j starts processing
the jobs currently assigned to her. For technical convenience, we set this to 0 when Ej (t) exceeds
GOAL(t). The rest of the analysis focuses on arguing about the behavior of the vector (δ j (·))j ∈[m]

over time, with respect to the features:

Max(t) = max

j ∈[m]
δ j (t), Min(t) = min

j ∈[m]
δ j (t), Avg(t) =

1

m

∑
j ∈[m]

δ j (t)

For an illustration of these quantities, see Figure 1. We can think of Goal(t) as the updated
deadline at stage t , which keeps decreasing between successive stages. I.e., recall that Goal(1) =
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d = M1 + 2p1, and it is easy to see that Goal(t + 1) ≤ Goal(t). Our proof examines the area below

the line at time Goal(t) to argue about the existence of a feasible schedule.

Fig. 1. An illustration of the relevant quantities at a stage t .

To proceed, we prove the following important lemma, which will be useful in verifying that our

DA auction always yields a feasible schedule. A rough intuition behind the proof is that, whenever,

after stage t , Goal(t) drops to Goal(t + 1) it causes either Max(t) −Min(t) or Avg(t) to drop (or it

causes an aggregate drop) by enough time so as to maintain that the inequality remains true.

Lemma 5.2. For every stage t of the auction we have

Max(t) −Min(t) + Avg(t) ≤ 2pt . (2)

Proof. The proof is by induction on t . For t = 1 this is straightforward to verify, since Ej (1) = d
for every j ∈ [m]. Hence, we now assume that Inequality (2) holds for every stage up to t , and
our goal is to show that it then remains true at stage t + 1. We distinguish three possible cases:

a) Min(t) > 0 and Min(t + 1) > 0, b) Min(t) > 0 and Min(t + 1) = 0, and c) Min(t) = 0. In the

analysis that follows, we will refer to a job as being tight, if it is scheduled without leaving any

idle time, till the next job. I.e., for a job scheduled on machine j at stage t , tightness means that its

completion time is Ei (t) (thus all machines are busy at timeMt + 2pt ).

a) If Min(t) > 0 and Min(t + 1) > 0, let t ′ be the last stage before t when Min(t ′) = 0 (the existence

of such a stage is clearly guaranteed, e.g., t ′ = 1). All the machines are always busy in the

time interval between Goal(t ′) and Goal(t + 1) (by definition of t ′ and since Min(t + 1) > 0).

Therefore

Avg(t + 1) = Avg(t ′) − 2(pt ′ − pt+1). (3)

– If Max(t ′) ≥ pt ′ , then Max(t + 1) − Min(t + 1) ≤ Max(t ′). This is true because all jobs
scheduled between t ′ and t +1 are tight, and their size is no more than pt ′ ≤ Max(t ′). Hence,
the gap between Max(t) and Min(t) will not increase when we go to stage t + 1. Using

Inequality (3), this implies that

Max(t + 1) −Min(t + 1) + Avg(t + 1) ≤ Max(t ′) + Avg(t ′) − 2(pt ′ − pt+1)

= Max(t ′) −Min(t ′) + Avg(t ′) − 2(pt ′ − pt+1)

≤ 2pt ′ − 2(pt ′ − pt+1)

= 2pt+1

The last inequality above is true by the induction hypothesis applied to t ′.
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– If Max(t ′) < pt ′ , then Max(t + 1) −Min(t + 1) ≤ pt ′ . This is true because all jobs scheduled
between t ′ and t + 1 are tight, and their size is no more than pt ′ ≤ Max(t ′). Hence, the
gap between Max(t + 1) and Min(t + 1) may increase, but not beyond pt ′ . Also, since
Max(t ′) < pt ′ we also have Avg(t ′) < pt ′ . Using Inequality (3), this implies that

Max(t + 1) −Min(t + 1) + Avg(t + 1) ≤ pt ′ + Avg(t
′) − 2(pt ′ − pt+1)

≤ 2pt ′ − 2(pt ′ − pt+1)

= 2pt+1

b) Min(t) > 0 and Min(t + 1) = 0. This case is more lengthy and complicated to analyze, yet it is

similar in spirit with Case (a) and and we omit it from this version.

c) If Min(t) = 0, then Max(t) + Avg(t) ≤ 2pt , and we consider two possible cases:

– If the job scheduled at stage t is not the one with the earliest starting time at stage t + 1 (i.e.,
if it does not affect Max(t + 1)), then Max(t + 1) ≤ Max(t) − 2(pt −pt+1) −pt/m. Combined

with the fact that Avg(t + 1) ≤ Avg(t) + pt/m, we get that

Max(t + 1) −Min(t + 1) + Avg(t + 1) ≤ Max(t + 1) + Avg(t + 1)

≤ Max(t) − 2(pt − pt+1) + Avg(t)

≤ 2pt − 2(pt − pt+1)

= 2pt+1

– If the job scheduled at stage t is the one with the earliest starting time at stage t + 1 (i.e., if it
defines Max(t+1)), then Max(t+1) ≤ pt −2(pt −pt+1)−pt/m. Since Avg(t+1) ≤ Max(t+1)
we get

Max(t + 1) −Min(t + 1) + Avg(t + 1) ≤ Max(t + 1) + Avg(t + 1)

≤ 2Max(t + 1)

≤ 2(pt − 2(pt − pt+1) − pt/m)

≤ 2pt+1

�

We note that the guarantee provided in the previous lemma is tight. This can be verified by

considering for example an instance with two machines in which the jobs have processing times

(listed by order of being scheduled): 1, 1/2, 1, 3/4, 1, 7/8, . . ., 1, (2k − 1)/2k .

Corollary 5.3. The DA scheduling auction is always feasible.

Proof. Assume that at some stage t there exists a job that cannot fit in any machine, i.e.,

max j {Ej (t)} < pt . Let t
′
be the last stage before t when Min(t ′) = 0. Given the result of Lemma 5.2,

at stage t ′ we have Max(t ′) + Avg(t ′) ≤ 2pt ′ , and hence Avg(t ′) ≤ (Max(t ′) + Avg(t ′))/2 ≤ pt ′ .
Since all subsequently scheduled jobs are tight, if P is the total processing time of the jobs scheduled

from t ′ to t , the average busy time below Goal(t ′) increased by P/m, and the drop from Goal(t ′)
to Goal(t) is exactly P/m + 2(pt ′ − pt ). As a result,

Avg(t) ≤ Avg(t ′) − 2(pt ′ − pt ) ≤ pt ′ − 2(pt ′ − pt ) ≤ 2pt − pt ′ ≤ pt .

But, this means that maxj {Ej (t)} ≥ Goal(t) − pt ≥ pt , which contradicts our assumption that

max j {Ej (t)} < pt . �
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6 MULTIPLE KNAPSACK CONSTRAINTS
As a third application of the generalized DA auctions framework, we also study settings where

the set of feasible solutions is defined via multiple knapsack constraints though, due to space

constraints, most of this section is deferred to the full version of the paper.

There are multiple motivating examples for knapsack constraints: in FCC auctions there are

different bands (VHF, UHF) each with its own capacity constraints, and with a different value.

Similarly, the economy, business, and first class seats in an airplane correspond to three different

knapsack constraints, each with a different value. As a final example, consider cross country moving

trucks that are scheduled to move property or products from a source to a destination. Each truck

has a capacity constraint and the earlier the arrival date the higher the value.

Formally, in this section we assume that each possible level of service ℓ has a capacity of m
“slots”, and we let si be the “size” of each bidder i , i.e., the number of slots that the bidder needs

to occupy, if assigned level ℓ. The presence of multiple knapsack constraints then imply that an

outcome is feasible if the total size of the set of bidders Nℓ ⊆ N finalized at a level of service ℓ is at
mostm, i.e.,

∑
i ∈Nℓ

si ≤ m for every possible level of service ℓ.
Dütting et al. [11] showed that, even in the binary setting, if the set of bidders that can be

simultaneously accepted is defined by a single knapsack constraint of sizem, then no DA auction

can achieve an approximation better than O(logm). The following theorem provides a matching

positive result: a generalized DA auction that achieves the optimal logarithmic approximation.

Theorem 6.1. There exists a multiple knapsack DA auction achieving a O(logm) approximation

for an arbitrary number of knapsacks.

Just like in the previous section, the DA auction that we propose manages to strike a balance

between allowing the bidders to clinch higher levels of service as quickly as possible, yet ensuring

that these “promises” will not eventually violate any knapsack constraints.

7 MULTI-PARAMETER DEFERRED-ACCEPTANCE AUCTIONS
This section further generalizes DA auctions to a multi-parameter setting: bidders with downward-

sloping (a.k.a. submodular) valuations in the level of service awarded. For notational simplicity, we

assume that the possible levels of service are represented by a set L = {1, 2, . . . ,k} and that each

bidder i reports her marginal value for each additional level, as bi (1) = vi (1), bi (2) = vi (2) −vi (1),
up to bi (k) = vi (k) −vi (k − 1) with bi (1) ≥ bi (2) · · · ≥ bi (k). Hence, bi (j) is the added value for the

bidder if she jumps from level of service j − 1 to j.
Just like the generalized DA auction framework that we defined in Section 3, the multi-parameter

framework that we propose here also uses a collection of scoring functions and clinching functions

for each bidder. The important difference is that the agents now report a sequence of bids that

correspond to their marginal valuations for the different levels of service. Given these marginal bids

for each bidder i , at each stage t , the multi-parameter DA auction computes the score of each active

bidder using her bid corresponding to the next level of service that i is considered for clinching.

That is, if дAti (bN \At
) is the level of service that i has clinched by stage t , which we henceforth

denote by just дit , her score is computed based on her marginal value for clinching one more level

of service, i.e, based on bi (дit + 1).

Definition 7.1. A multi-parameter DA auction operates in stages t ≥ 1. In each stage t a set

of bidders At ⊆ N is active; initially, A1 = N , and At+1 ⊂ At , for every t ≥ 1. Just as in the

single-parameter case, the DA auction is fully defined by two collections of functions:

• The scoring functions σAt
i ( · , bN \At

) that are non-decreasing in their first argument.
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• The clinching functionsдAti (bN \At
), that are non-decreasing w.r.t. the set of active bidders,

i.e., if for every t ≥ 1, дAt+1i (bN \At+1
) ≥ дAti (bN \At

).

At each stage t , if At , ∅, the score of bidder i ∈ At is computed as:

σAt
i (bi (дit + 1), bN \At

),

i.e., the score is a function of the bidder’s marginal value for receiving a level increase, given

the level that she has already clinched. The bidder with the smallest score is finalized at level

дit = д
At
i (bN \At

) and she is removed from the set of active bidders (At+1 = At \ {i}).

All the incentive guarantees for single-parameter DA auctions carry over to the present setting.

The proof of these properties follows essentially the same arguments as in Theorem 3.3 and

Propositions 3.4 and 3.5. These properties are summarized below.

Proposition 7.2. Every multi-parameter DA auction is weakly group-strategyproof, and has an

equivalent clock auction implementation that is obviously strategyproof.

7.1 Multiunit Auctions with Decreasing Marginal Values
To demonstrate an application of multi-parameter DA auctions, we consider the setting of multi-

unit auctions with submodular bidders. Multi-unit auctions are being deployed in practice in a

wide range of applications, and more recently they have also been used by various online brokers

(for more, see e.g., [32, 38]). Such auctions are defined by a collection ofm identical units of some

good that need to be allocated among n agents. The level of service in this setting corresponds to

the number of units that each agent receives, and the value of an agent for a bundle of items is a

submodular function of the bundle’s size. Hence the valuation function here is fully described by a

nonincreasing vector of marginal values, for bundles up to sizem.

Ascending Multiunit Auctions. There is a well-known ascending multi-unit auction, the “clinching

auction” of Ausubel [1]. Given an ascending price per unit, the bidders in this auction respond

by reporting the number of units that they would be interested in acquiring at the current price,

i.e., the number of their marginal valuations that are at least as high as the price. As the price

increases, the number of items that the bidders request drops, and a bidder clinches a unit at the

point where, even if he were to leave the auction, the total demand of the other bidders would leave

that unit unallocated. This auction is known to be strategy-proof and in fact implements the VCG

mechanism. However it is also known to be susceptible to demand reduction in group deviations,

and hence is not weakly group-strategyproof.

For a simple example, consider an instance involving two units and two bidders: bidder a has

marginal values (1, 1), while bidder b has marginal values (0.6, 0.6). If we were to run the clinching

auction of [1] in this instance, after the price would exceed 0.6, bidder b would leave the auction

and bidder a would clinch both units at that price for a utility of 2 − 1.2 = 0.8. If, on the other

hand, both agents reduced their demand by claiming that they have no value for a second item,

they would get one unit each for a price of 0! The equivalence of Ausubel’s auction with the VCG

mechanism implies the following contrast to Proposition 4.1.

Observation 1. In the setting of multi-unit auctions with downward-sloping valuations, the VCG

mechanism is not a DA auction.

We next define a DA auction for multi-unit auctions. But before that, we first establish that some

loss in social welfare will be unavoidable, even if we only insist on a weakly group-strategyproof

mechanism. In particular, we have the following impossibility result, the proof of which is deferred

to the full version.
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Proposition 7.3. Even for 2 players and 2 units, no weakly group-strategyproof mechanism can

guarantee an approximation factor to the social welfare, that is better than

√
2.

The DA auction that we propose in the next subsection provides an O(logn)-approximation. We

leave it as an open question whether or not there is a DA (or at least a weakly group-strategyproof)

mechanism with a better approximation factor.

7.2 Deferred-Acceptance Multiunit Auction with Decreasing Marginal Valuations
For notational simplicity, assume that n = 2

κ
for some κ ∈ N+, and let λ = ⌊m/(n logn)⌋. Also,

assume thatm ≥ n logn, and hence λ ≥ 1.
3
In order to achieve the logarithmic approximation, we

restrict the distribution of units to agents so that it obeys a very particular structure:

• The number of units that each agent may be allocated is exactly λ · 2r , for some r ∈

{0, 1, . . . ,κ}. We therefore distribute the units in blocks of exponentially increasing size.

• The distribution of these blocks of units across the agents is such that the number of agents

that receive at least λ · 2r units is at most n/2r .

In this restricted setting, instead of providingm possible levels of service to each bidder (the number

of units they can receive), the levels of service are κ + 1 (the number of unit blocks they can receive).

Hence, rather than requiring that the agents report all of theirm marginal valuations, our auction

requires that the agents report only their average marginal value for receiving exactly λ · 2r units

of the good, for r ∈ {0, 1, . . . ,κ}, i.e., their average marginal value for each one of the κ + 1 blocks.
Therefore, the agents report a bid vector of size κ + 1 containing weakly decreasing marginal values.

For instance, if n = 4 andm = 8, then κ = 2 and λ = 1. If the marginal valuations of an agent are

[8, 7, 6, 4, 4, 3, 2, 1], then her average marginal bid vector would be [8, 7, avg(6, 4)] = [8, 7, 5]. Our
auction does not assign more than a κ fraction of the units to one agent, so the remaining marginal

values are disregarded.

Definition 7.4. The DA multiunit auction receives κ + 1 marginal bids from each bidder, corre-

sponding to their average marginal values for each block. At every stage the scoring function of

every bidder is the identify function, i.e., σAt
i (bi (дit + 1)) = bi (дit + 1). The clinching function is

дAti (·) = ⌊ n
|At |

⌋, which means that initially (when n = |At |), every bidder has clinched the first block,

which contains λ · 20 = λ units. Then, after the n/2 agents with the smallest score are finalized,

bidders that remain active clinch an additional block of λ · 21 = 2λ units. Every time the set of

active bidders is halved, those that remain active clinch another block, until they are all finalized.

For the analysis of the auction, it is convenient to also describe it as an ascending auction.

Similarly to the Ausubel clinching auction, the blocks of units are clinched when the demand of

the competitors drops below a specific threshold but, unlike the clinching auction, ours is a DA

auction, so it is weakly group-strategyproof. The ascending auction implementation of our DA

auction uses a price per unit p, which happens to be the same for every bidder, and is initially set to

p = 0. The auction begins by assigning λ units to each bidder at a price of p = 0. Then, the agents

compete for an additional block of λ units. The auction offers an average price p per unit for this

block, and p is gradually increased until exactly n/2 agents are still willing to pay this amount per

unit of the block. The bidders who do not receive these extra λ units are finalized, and they hence

receive just the first block of λ units for a price of 0. The n/2 bidders that remain active clinch each

unit of the second block for a “threshold price” p and they then compete for the third block, which

3
If n is not a power of 2, we may remove the bidders with the lowest first marginal value until we reach a power of 2. This

does not affect the order of magnitude of the approximation guarantee that we establish. The same goes for the assumption

thatm ≥ n logn.
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contains 2λ more units. A third block can be allocated to at most n/4 bidders among them. Note

that the price for each unit in this block remains equal to p, i.e., the one used for the previous block,
so some of the active bidders might not be willing to pay this amount. If the number of bidders

willing to pay p for each unit of the third block is not more than n/4, then all these bidders clinch

this block for the existing price p per unit. Otherwise, p is increased further, until exactly n/4 of
these bidders remain interested. We repeat this process by gradually doubling the size of the block,

and halving the number of bidders that can receive one, until two agents compete for the single

remaining block of nλ/2 units.

Example 7.5. Consider a problem instance with n = 4 andm = 8, which implies that κ = 2 and

λ = 1. Assume that the bid vectors of the four agents {A,B,C,D} are [7, 6, 6], [6, 5, 5], [8, 4, 4], and
[5, 4, 3]. Every agent is assigned one unit at a price p = 0 (this means that we disregard the first

parameter of the bid vector, but we will use it whenm is smaller). Then, the agents compete for an

additional unit that only two of them can win. The price is increased to p = 4 + ϵ , at which point

agents C and D drop out (since their average marginal value for a second unit is 4) and agents A
and B clinch one unit each for this price. Finally, the remaining two active agents compete for a

single block of two units. The price is increased to p = 5 + ϵ and agent B drops out as well, so A
clinches the block of two units for this price.

Approximation Guarantee. We now prove that the DA auction that we propose above guarantees

a logarithmic approximation factor w.r.t. the social welfare. Note that, although our auction is

restricted to allocations that bundle units into groups and does not need the whole marginal

valuation vector, the approximation guarantee is comparing the outcomewith the optimal allocation

that uses all this information.

Theorem 7.6. The DA auction that we propose guarantees an approximation factor of O(logn).

Benchmark. In order to prove the approximation guarantee, we use a different allocation as a

benchmark. In particular, let x be the social welfare maximizing allocation with the same bidders if

the number of units werem/(2κ) instead ofm. This allocation finds, among themn marginal values,

them/(2κ) highest ones, and it allocates the corresponding number of units to each agent. Since

the values of the agents exhibit decreasing marginal valuations for additional units, this implies

that the social welfare in x is a 2κ-approximation of the social welfare maximizing allocation x∗

withm units: ∑
i ∈N

vi (x
∗) ≤ 2κ

∑
i ∈N

vi (x).

We now show that our auction provides each agent with at least half the value that she would

receive in x . This implies that the allocation x that our auction computes guarantees:∑
i ∈N

vi (x
∗) ≤ 2κ

∑
i ∈N

vi (x) ≤ 4κ
∑
i ∈N

vi (x) = 4 logn
∑
i ∈N

vi (x).

We begin with the following lemma, which shows that for any value that the unit price p takes

during our auction, there exist at leastm/(2κ) marginal values that are at least as high.

Lemma 7.7. Let pmax be the highest price that our ascending auction reaches. Then, among themn
marginal values of the agents, there exist at leastm/(2κ) ones whose value is at least pmax.

Proof. Let r > 1 be the round when the price is increased for the last time, thus reaching the

value of pmax. According to the definition of our mechanism, at that point, there are exactly n/2r

agents who are willing to pay this price per unit for an additional block of λ · 2r−1 units4; they have

4
The fact that the price was increased during round r means that the agents willing to pay the initial price were more, and

the price increase brings them down to exactly n/2r .
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already clinched a total of λ · 2r−1 units in previous rounds. Since the average marginal value of

these agents for the additional block is at least pmax, this means that the marginal value of every unit

within the blocks that these agents clinched during previous rounds is also at least pmax. Therefore,

the number of marginal values in the agents’ bid vectors which are at least pmax, is at least

n

2
r ·

(
λ · 2r−1

)
=

nλ

2

=
nm/(κn)

2

=
m

2κ
�

Using the lemma above we continue by showing that our auction provides every agent with a

value at least half as much as the value that the agent would receive in x .

Lemma 7.8. Let x be the allocation computed by our auction. For every agent i ∈ N ,vi (x) ≥ vi (x)/2.

Proof. To prove this lemma we show that our auction allocates to each agent at least half the

number of units that the agent receives in x . Since the valuations are concave this implies that the

agent receives half the value as well.

Assume that there exists some agent i who is rejected during round r > 1 by our auction and

hence receives exactly λ · 2r−1 units, while the same agent receives more than λ · 2r in x . Let p be

the price per unit at the time when this agent was rejected by our auction. The fact that the agent

is rejected means that the average marginal value of that user for an additional block of λ · 2r−1

units is less than p. This implies that the lowest marginal value over all these units, which is the

last, is less than p. Therefore, the agent’s marginal value for a (λ · 2r + 1)-th unit is less than p.
Given Lemma 7.7 though, there exist at leastm/(2κ) units with marginal values at least pmax ≥ p,
which means that the (λ · 2r + 1)-th unit of that agent cannot be one of them/(2κ) highest value
marginals and thus part of the assignment x , leading to a contradiction. �

Finally, we conclude by exhibiting that our auction is feasible, i.e., the number of units it allocates

does not exceed the number of available units. The proof of the following lemma is omitted.

Lemma 7.9. For n ≥ 4, the DA multi-unit auction is feasible, i.e., it always assigns at mostm units.
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