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Complements between goods— where one good takes on added value in the presence of another— have been

a thorn in the side of algorithmic mechanism designers. On the one hand, complements are common in the

standard motivating applications for combinatorial auctions, like spectrum license auctions. On the other,

welfare maximization in the presence of complements is notoriously difficult, and this intractability has

stymied theoretical progress in the area. For example, there are no known positive results for combinatorial

auctions in which bidder valuations are multi-parameter and non-complement-free, other than the relatively

weak results known for general valuations.

To make inroads on the problem of combinatorial auction design in the presence of complements, we

propose a model for valuations with complements that is parameterized by the “size” of the complements.

The model permits a succinct representation, a variety of computationally efficient queries, and non-trivial

welfare-maximization algorithms and mechanisms. Specifically, a hypergraph-r valuation v for a good setM

is represented by a hypergraph H = (M,E), where every (hyper-)edge e ∈ E contains at most r vertices

and has a nonnegative weight we. Each good j ∈ M also has a nonnegative weight wj . The value v(S) for a
subset S ⊆ M of goods is defined as the sum of the weights of the goods and edges entirely contained in S.

We design the following polynomial-time approximation algorithms and truthful mechanisms for welfare

maximization with bidders with hypergraph valuations.

(1) For bidders whose valuations correspond to subgraphs of a known graph that is planar (or more gener-

ally, excludes a fixed minor), we give a truthful and (1 + ǫ)-approximate mechanism.

(2) We give a polynomial-time, r-approximation algorithm for welfare maximization with hypergraph-r val-

uations. Our algorithm randomly rounds a compact linear programming relaxation of the problem.

(3) We design a different approximation algorithm and use it to give a polynomial-time, truthful-in-

expectation mechanism that has an approximation factor of O(logr m).

Categories and Subject Descriptors: F.0 [Theory of Computation]: General; J.4 [Social and Behavioral

Sciences]: Economics; K.4.4 [Computers and Society]: Electronic Commerce; F.2.2 [Analysis of Algo-

rithms and Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Mechanism Design, Combinatorial Auctions; Hypergraph Valuations

1. INTRODUCTION

In a combinatorial auction, a set M of m heterogeneous and indivisible goods are al-
located to n bidders with private preferences. We model the preferences of a bidder i
via a valuation vi, a function from 2M to R

+ with vi(∅) = 0 and vi(S) ≤ vi(T ) for any



S ⊆ T ⊆ M . The number vi(S) indicates bidder i’s “maximum willingness to pay” for
the set of goods S ⊆ M . Several real-world scenarios can be modeled as combinato-
rial auctions, most famously FCC auctions for spectrum; see the books [Cramton et al.
2006; Milgrom 2004] for many more details and examples. One fundamental optimiza-
tion problem in combinatorial auctions is welfare maximization, which is the problem
of allocating the goods to the bidders to maximize

∑n

i=1 vi(Si), where Si denotes the
goods allocated to i.
The difficulty of welfare maximization, and of combinatorial auction design more

generally, depends on the structure of bidders’ valuations. A key issue is whether val-
uations exhibit complements, where one good (e.g., a left shoe) has additional value in
conjunction with another good (a right shoe). Formally, a complement-free (or subaddi-
tive) valuation v satisfies v(S)+v(T ) ≥ v(S∪T ) for every pair S, T ⊆ M of bundles. Most
previous work in theoretical computer science on welfare maximization for combinato-
rial auctions has focused on complement-free valuations and several of its interesting
subclasses (see Section 1.2 for details). A simple valuation v with complements is a
single-minded one, where there is a bundle S ⊆ M of at least two goods and a num-
ber c > 0 such that v(T ) equals c if T ⊇ S and 0 otherwise.
Complements are prevalent in the motivating applications for combinatorial auc-

tions. For example, in the FCC spectrum action there are natural synergies between
nearby licenses. However, welfare maximization in the presence of complements is no-
toriously difficult, and this intractability has stymied theoretical progress in the area.
For example, there are no known positive results for combinatorial auctions in which
bidder valuations are multi-parameter and non-complement-free, other than the rela-
tively weak results known for general valuations. Even with mere single-minded valu-
ations, there is no polynomial-time approximation algorithm for the welfare maximiza-
tion problem with sub-polynomial approximation ratio (assuming P 6= NP ) [Lehmann
et al. 2002; Sandholm 2002].
The combined importance and intractability of valuations with general complements

motivates models for valuations with complements that are restricted in some way.
Ideally, such a model should be parameterized by the “size” of the complements, and
should permit a succinct representation, a variety of computationally efficient queries,
and non-trivial welfare-maximization algorithms. In this paper we study such a model.
We study welfare maximization algorithms and truthful combinatorial auctions for

a natural (hyper)graphical valuation model that concisely expresses limited comple-
ments. Precisely, a hypergraph-r valuation v for a good set M can, by definition, be
represented by a hypergraph H = (M,E), where every edge e ∈ E contains at most r
vertices and has a nonnegative weight we. Each good j ∈ M also has a nonnegative
weight wj .

1 The value v(S) for a subset S ⊆ M of goods is defined as the sum of the
weights of the goods and edges entirely contained in S:

v(S) =
∑

j∈S

wj +
∑

e : e⊆S

we. (1)

The parameter r is called the rank of the valuation v. The rank of a set of valuations
is the maximal rank of any valuation in the set.
For example, consider a graph (i.e., hypergraph-2) valuation. A bidder with such a

valuation has a base value for each good, and also enjoys bonuses if it acquires cer-
tain pairs of complementary goods. Even in this special case, each bidder possesses
a polynomial number of different private parameters. Single-minded bidder valua-
tions are essentially a single-parameter special case of hypergraph valuations — they

1No interesting approximation results are possible if weights are allowed to be negative (assuming P 6=
NP ).



correspond to the hypergraph valuations with a single edge with non-zero weight. A
hypergraph-r valuation can be described via O(mr) parameters, which is polynomial
in the number of goods when r is a fixed constant.
Summarizing, complements are an important, unavoidable aspect of combinatorial

auctions, and they have been underrepresented in algorithmic mechanism design. Hy-
pergraph valuations are a natural combinatorial representation of valuations that
expresses complements in a controllable way. Even the most basic questions about
welfare maximization with bidders with hypergraph valuations were completely open
before the present work.

(1) What is the best-possible polynomial-time approximation ratio for welfare maxi-
mization (assuming P 6= NP ), as a function of the valuations’ ranks?

(2) Can equally good approximation ratios be achieved by incentive-compatible auc-
tions?

(3) Does the combinatorial structure of the valuations permit novel combinatorial auc-
tion designs, for example by applying graph-theoretic tools?

1.1. Our Results

We contribute to all three of the questions above. Our main results are following.

(1) We use tools from graph theory to give a truthful and (1 + ǫ)-approximate mecha-
nism for bidders with valuations that correspond to subgraphs of a known graph
that is planar (or more generally, excludes a fixedminor). Such valuations plausibly
model some interesting combinatorial auctions, such as those where the predomi-
nant synergies involve “neighboring” goods (e.g., spectrum licenses).
Our technical approach here is to use Baker-type graph decompositions to design
mechanisms that reduce the given welfare maximization problem to one with val-
uations supported by a graph with bounded treewidth, which we solve optimally in
polynomial time using dynamic programming and the VCG mechanism.

(2) We give a polynomial-time r-approximation algorithm for welfare maximization
with general hypergraph-r valuations. This guarantee is nearly the best possible,
assuming P 6= NP . Our algorithm uses a correlated randomized rounding of a
compact linear programming relaxation of the problem.

(3) With rich multi-parameter valuations like hypergraph valuations, only highly re-
stricted types of approximation algorithms lead to truthful mechanisms; in partic-
ular, the r-approximation algorithm above does not. We instead design another
algorithm, which randomly rounds the exponentially-sized configuration linear
programming relaxation, and prove that it is “maximal-in-distributional-range
(MIDR)” and hence induces a truthful-in-expectation mechanism. Our mechanism
runs in polynomial time and has an approximation factor of O(logr m) to the social
welfare, for general hypergraph-r valuations. For small r, this guarantee is much
better than the O(

√
m) approximation factor achieved by combinatorial auctions

for general valuations, the only previous guarantee known for multi-parameter
non-complement-free valuations.

1.2. Related Work

Combinatorial auctions are a paradigmatic problem in Algorithmic Mechanism De-
sign [Nisan and Ronen 2001], as they are representative of problems in which incen-
tives and computational constraints clash. For background on truthful approximation
mechanisms for combinatorial auctions we refer the reader to [Cramton et al. 2006;
Blumrosen and Nisan 2007]. As the literature on the subject is very large we only
survey papers that are closely related to ours.



The most basic form of a valuation that exhibits complements is that of sin-
gle minded bidders, in which each bidder desires one specific bundle. Lehmann,
O’Callaghan and Shoham [2002] have presented a truthful mechanism that is an
O(

√
m)-approximation when bidders are single minded. It has also been shown [Sand-

holm 2002; Lehmann et al. 2002] that this is essentially the best possible (unless
P = NP ), even without incentive constraints. Lavi and Swamy [2005] have pre-
sented a randomized mechanism that is truthful-in-expectation, and achieves O(

√
m)-

approximation for general valuations. While this approximation is essentially the
best possible for general valuations, it is obviously not attractive when m is large.
Many previous works have sought improved approximations for restricted valuations;
see [Blumrosen and Nisan 2007] for a survey. These have focused on subadditive val-
uations, and subclasses of them like submodular and “XOS” valuations. As far as we
know, this paper is the first to improve the O(

√
m)-approximation results for valua-

tions that exhibit any form of complements.
Conitzer, Sandholm and Santi [2005] have considered ”k-wise Dependent Valua-

tions” which are similar to hypergraph-k valuations (except they also allow the edges’
weights to be negative) and have shown that the problem of finding the efficient al-
location is NP-hard even for graphs (k = 2), and have also studied the problem of
eliciting such valuations. Chevaleyre et al. [2008] consider the same class of valua-
tions (which they call “k-additive”) and prove similar computational hardness results,
and also study negotiation protocols between the agents. Unlike these papers our focus
is on approximating the welfare-maximizing allocation and designing truthful mecha-
nisms with good approximations.
Each of our technical results includes some ingredients that were developed in ear-

lier works. Our r-approximation algorithm for welfare maximization (Theorem 4.1)
is based on a sequence of randomized rounding algorithms devised for the multiway
cut problem [Calinescu et al. 2000], the metric labeling problem [Kleinberg and Tardos
2002], graph homomorphism problems [Langberg et al. 2006], and other decomposition
problems [Krauthgamer and Roughgarden 2011]. OurO(logr m)-approximate truthful-
in-expectation combinatorial auction uses a number of ideas. The configuration linear
programming relaxation, and the fact that its tractability reduces to that of demand
queries, is folklore (see e.g. [Blumrosen and Nisan 2007]). The modified version we use
with “proxy bidders” is based on an approach proposed by Feige [2009], and recently
used by Dobzinski, Fu, and Kleinberg [2010] to obtain truthful mechanisms. To round
this linear program we apply the decomposition technique of Lavi and Swamy [2005],
which builds on Carr and Vempala [2002]. To argue truthfulness (in expectation) we
use the concept of a “maximal-in-distributional-range (MIDR)” algorithm, which was
first articulated by Dobzinski and Dughmi [2009], generalizing the “maximal-in-range
(MIR)” definition in Nisan and Ronen [2007]. Finally, for our truthful approximation
scheme for valuations supported by an excluded-minor graph, uses the decomposition
theorem of Devos et al. [2004], which in turn uses the structure theorem of Robertson
and Seymour [2004].

2. MECHANISM DESIGN PRELIMINARIES

We study direct-revelation mechanisms for players with quasi-linear utilities. In this
setting, a mechanism is a pair (X,P) of algorithms. The allocation rule X takes as
input a reported hypergraph valuation bi from each player, and outputs a feasible as-
signment of goods to the players. The payment rule P takes the same input and com-
putes a payment to the mechanism from each player. If a player i with a valuation vi
is assigned the goods Xi(b1, . . . , bn) ⊆ M and payment Pi(b1, . . . , bn) ≥ 0, then i earns
utility vi(Xi(b1, . . . , bn)) − Pi(b1, . . . , bn). Let x = X(v1, . . . , v2) be the allocation when



all players report truthfully. The welfare v(x) of the allocation x = (x1, . . . , xn) with
respect to the valuations v = (v1, . . . , vn) is defined to be v(x) =

∑n
i=1 vi(xi).

A deterministic mechanism is truthful if, for every player i and fixed reports b−i by
the players other than i, player i maximizes its utility by reporting its true valua-
tion vi,.
The VCG mechanism is a truthful mechanism that achieves the maximum-possible

welfare (but generally not in polynomial time [Nisan and Ronen 2001]). This mecha-
nism computes the allocation that maximizes the welfare with respect to the reported
valuations, and then charges suitable “externality payments” to achieve truthfulness.
A maximal-in-range (MIR) allocation rule pre-commits to a subset of feasible alloca-
tions, before receiving players’ reports, and maximizes the welfare with respect to the
reported valuations over this subset. Every MIR allocation rule induces a determinis-
tic truthful mechanism via VCG-type payments [Nisan and Ronen 2007]. MIR alloca-
tion rules are useful when the subset of allowable allocations can be made structured
enough to permit polynomial-time optimization, yet large enough to always contain a
near-optimal allocation. A maximal-in–distributional-range (MIDR) allocation rule is
the following randomized analogue: pre-commit to a set of distributions over feasible
allocations, prior to receiving players’ reported valuations; choose the distribution that
maximizes expected welfare with respect to the reported valuations; and finally, sam-
ple a single feasible allocation from the chosen distribution. Every MIDR allocation
rule induces a truthful-in-expectation mechanism when supplemented with VCG-type
payments [Dobzinski and Dughmi 2009].

3. TRUTHFUL APPROXIMATION MECHANISMS FOR EXCLUDED-MINOR GRAPHS

In this section we impose restricted structure on bidders’ hypergraph valuations and
rewardedwith a near-optimal truthful mechanism. The key assumption is that bidders
valuations have rank 2, with the edges drawn from a known graph that excludes a fixed
minor, such as a planar graph. This assumption is not unreasonable in the motivating
applications for combinatorial auctions. For example, Kagel, Lien, and Milgrom [2010]
have modeled player valuations in the FCC spectrum action as subgraphs of a fixed
planar graph that captures the synergies of winning nearby licenses (similar models
were suggested in Brunner et al. [2010]). In Appendix A we also present a truthful
mechanism with approximation factor equal to the chromatic number of the square of
the line graph of the graph.

3.1. Standard Definitions

We begin by recalling some standard definitions. A graph X is a minor of a graph G if
there exists a sequence of edge deletions and edge contraction that start with G and
end with X . A graph G excludes X as a minor if X is not a minor of G.

Definition 3.1. A graph G = (M,E) has a tree decomposition with width k if there
exists a tree (X,T ), where X = {X1, ..., Xn} is a set of bags (where each Xi ⊆ M ), and
T is a tree whose nodes are the bags Xi. Such that

(1)
⋃

Xi = M (every node in M appears in at least one bag);
(2) max |Xi| ≤ k + 1 (each bag contains at most k + 1 nodes);
(3) for every (u, v) ∈ E there exists i such that u, v ∈ Xi (for every edge there exists a

bag that contains both nodes);
(4) ifXi,Xj andXℓ are nodes, andXℓ is on the path in T fromXi toXj , thenXi∩Xj ⊆

Xℓ (for every node in M , the set of bags that contain it induces a subtree of T ).

The treewidth of a graphG is the least integer k for whichG has a tree decomposition
with width k.



A graph valuation (M,Ev) of a player is a subgraph of a given graph G = (M,E) of
every edge e ∈ Ev belongs to E, that is, e ∈ Ev implies e ∈ E.

3.2. Mechanisms

We next show that if all players’ valuations are subgraphs of a given graph with con-
stant treewidth then welfare maximizing allocation, and thus the efficient and truthful
VCG mechanism, can be computed in polynomial time.

THEOREM 3.2. If the valuations of all players are subgraphs of a given graph G
with constant treewidth k, then the welfare maximizing allocation can be computed in
time nO(k).

To prove the theorem, let (T,X) be a tree decomposition of G, such that all bags are of
size ≤ k+1. By Bodlaender [1996] such a tree decomposition can be computed in linear
time. Let vℓ be the valuation of player ℓ ∈ N . For any bag Xi ⊆ M let A′ : Xi → N be a
allocation of items inXi (we call A′ a partial allocation). Given two (partial) allocations
A1, A2 and a set Y ⊆ M we say that A1 agrees with A2 on Y and write A1(Y ) = A2(Y )
if ∀y ∈ Y,A1(y) = A2(y). We prove a slightly stronger statement using a standard
dynamic programming induction argument.

LEMMA 3.3. For any bag Xi and any partial allocation A′ : Xi → N , one can find

argmax
A|A(Xi)=A′(Xi)

{

∑

ℓ∈N

vi(A
−1(ℓ))

}

the maximum efficient allocation that agrees with A′ on Xi in time nO(k).

PROOF. Consider the tree T and fix an arbitrary root bag Xr. For any bag Xj let
M [Xj] ⊆ M be the set of all nodes that are in bags that are in the subtree of T that
contains Xj and all its descendant bags (with respect to the root Xr).
Consider any two immediate children bags Y1, Y2 of a bag Xi and letMj = M [Yj ]\Xi

for j ∈ {1, 2}. The main observation is that there does not exists a pair (u, v) ∈ M ×M
such that u ∈ M1 and v ∈ M2 (this includes the case that u = v). This is true because
by the property of a tree decomposition, such an edge (or vertex if u = v) would imply
that both u and v must belong to Xi, but we removedXi from both M1 and M2.
This observation suggests that the optimal allocation for M [Xi] has the property

that its restriction to M [Yj ] is also the optimal solution for subgraph induced by M [Yj]
(for any j ∈ {1, 2}). This implies that we can use a standard dynamic programming
algorithm. Given a bag Xi we can compute for each allocation A′ : Xi → N (there
are at most nk such allocations), the optimal allocation A : M [Xi] → N that agrees
with A′ (so A′(Xi) = A(Xi)). This can be done by going over all immediate children
bags of Xi (Y1, . . . , Yℓ) and for each such bag Yj going over all partial allocations A′

j :

Yj → N that agree with A′ : Xi → N and choose the one whose optimal allocation
Aj : M [Yj ] → N for subgraph induced M [Yj ] has maximal welfare. By the observation
above, this procedure will find the optimal allocation for M [Xi] that agrees with any

partial allocation A′ : Xi → N . Moreover this can be done using nk+O(1) space and time
using a standard dynamic programming approach.

Using the result on bounded treewidth graphs, we devise an approximately efficient,
truthful mechanism for valuation that are subgraphs of graphs excluding a fixed mi-
nor. We begin by presenting the result for planar graphs on which the basic tool we use
is Baker’s decomposition:



Common Knowledge: a planar graph G = (M,E), parameter ǫ > 0.
Input: reported graph valuations (that are subgraphs of G) v1 = (M,E1, w1), . . . , vn =
(M,En, wn).

(1) Let k = ⌈2/ǫ⌉. Choose an arbitrary root r and for any 0 ≤ i ≤ k let Pi be the set of
all points whose distance from r is (k + 1)ℓ+ i for some integer ℓ.

(2) For every 0 ≤ i ≤ k let Mi be the graph induced by M \ Pi. Note that Mi is k
outer-planar and hence has tree width ≤ 3k.

(3) For every 0 ≤ i ≤ k, compute the efficient allocation for Mi using the valuations
that are induced by these items. (can be done in polynomial time by Theorem 3.2).
Let Ai be the resulting allocation, and let Ri be the welfare of Ai.

(4) Pick any i∗ ∈ argmaxi{Ri}, then use the allocation Ai∗ .

Fig. 1. A maximal-in-range (1+ǫ)-approximation algorithm when all players’ valuations are subgraphs of a given
planar graph

THEOREM 3.4. [Baker 1994] For any planar graph G = (M,E) and parameter k
there exists a partition of G into k + 1 parts P0, . . . , Pk such that for any 0 ≤ i ≤ k the
graph induced by M \ Pi has treewidth ≤ 3k.

As shown in Baker [1994] a simple way to generate the elements of the partition is
to choose an arbitrary root r and for any 0 ≤ i ≤ k let Pi be the set of all points whose
distance from r is (k + 1)ℓ+ i for some integer ℓ.

THEOREM 3.5. Fix any ǫ > 0. Assume that we are given a planar graphG such that
the valuations of all the players are subgraphs of G. The algorithm of Figure 1, when
combined with VCG payments, yields a truthful, polynomial time, (1+ǫ)-approximation
mechanism for the welfare maximization problem.

PROOF. Let P0, . . . , Pk be the parts. For each graphGi induced by the verticesM \Pi,
let Ai be the allocation that is maximally efficient for Gi among all allocations that are
restricted to items M \ Pi. By Theorem 3.2 Ai can be computed in polynomial time.
Note that the allocation rule that computes Ai is maximal-in-range, and therefore the
algorithm that chooses the best Ai is also maximal in range. Maximal in range algo-
rithms can be combined with truth-telling VCG payments, computable in polynomial
time, to yield a truthful mechanism.
Consider an optimal allocation A. For any item u ∈ M let βu be the contribution of

u to the welfare induced by A, for any edge e = (u, v) ∈ E let βe be the contribution of
edge e to the welfare induced by A. Let β =

∑

u∈M βu+
∑

e∈E βe be the optimal welfare
obtained by A. For any part Pi, let αi be the welfare of A from the items in Pi and the
edges that have at least one vertex in Pi (formally αi =

∑

u∈Pi
βu+

∑

e∈E|e∩Pi 6=∅ βe). Ob-

serve that
∑

0≤i≤k αi ≤ 2β (since each vertex is counted once and each edge is counted

at most twice). A mechanism that optimizes on the graph induced by M \ Pi obtains
welfare of at least β − αi. Thus the welfare of choosing the part P ∗

i with the highest

welfare is at least 1
k+1

∑

0≤i≤k β − αi ≥ β − 2
k
β ≥ β(1− ǫ).

We can extend Theorem 3.5 to a much larger family of graphs excluding any fixed
minor using the following powerful decomposition theorem.

THEOREM 3.6. [DeVos et al. 2004] For any graph X and parameter k there exists
a constant c = c(X, k) such that the following holds. For any graph G = (M,E) that
excludes X as a minor there exists a partition into k + 1 parts P0, . . . , Pk such that for
any i the graph induced by M \ Pi has treewidth c.



Moreover, the proof in DeVos et al. [2004] (along with the required structure theorem)
implies that the partition can be computed in polynomial time. Using this and the
same approach as in Theorem 3.5 gives the following result.

PROPOSITION 3.7. Fix any ǫ > 0 and a graph X . Assume that we are given a graph
G that excludes X as a minor such that the valuations of all the players are subgraphs
of G. There exists a truthful mechanism that runs in polynomial time and guarantees a
(1 + ǫ)-approximation to the social welfare.

4. APPROXIMATE WELFARE MAXIMIZATION ALGORITHM

This section gives an r-approximation algorithm for welfare maximization with gen-
eral and private hypergraph-r valuations. We do not expect that this algorithm, or
small modifications to it, can lead to a truthful auction (see Remark 4.3). Nonetheless,
this result makes two important points. First, in conjunction with known hardness
results (Theorem 4.2), it precisely pins down the approximability of the welfare max-
imization problem for this class of bidder valuations. Second, it demonstrates that
welfare maximization with hypergraph-r valuations is as tractable as with the far less
expressive class of single-minded valuations with bundle size at most r.
Recall that an instance of the welfare maximization problem is described by n hy-

pergraphs H1 = (M,E1, w1), . . . , Hn = (M,En, wn) of rank r, which represent players’
valuations, all with a common vertex set M , which represents the goods. Feasible so-
lutions are assignments of the goods to the players, which correspond to an ordered
partition S1, . . . , Sn of M . The goal is to compute the assignment maximizing the wel-
fare

∑n

i=1 vi(Si), where the hypergraph Hi defines the value vi(Si) as in equation (1).
We next present the main result of this section.

THEOREM 4.1. There is a polynomial-time, r-approximation randomized algorithm
for welfare maximization with hypergraph-r valuations.

Our result almost matches the lower bound for the algorithmic problem.

THEOREM 4.2 ([TREVISAN 2001]). There is no r/2O(
√
log r) approximation algo-

rithm2 for welfare maximization with hypergraph-r valuations, unless P = NP .

Theorem 4.2 follows easily from hardness results for finding independent sets in
bounded-degree graphs. It even applies to the special case of single-minded valuations
with desired bundles of size at most r, which correspond to hypergraph-r valuations
with only one edge with non-zero weight.
We next describe our approximation algorithm. Algorithms that use only “local” in-

formation to make allocation decisions, like natural greedy algorithms, do not seem
capable of achieving an approximation ratio that depends only on the rank r.3 Our
algorithm solves and randomly rounds the following linear programming relaxation of
the problem.

2In particular, for any ǫ > 0 there is no r1−ǫ approximation algorithm.
3This contrasts with single-minded valuations with bundle size at most r, for which a simple greedy algo-
rithm provides an r-approximation. For example, consider an instance with 2 players and m goods. The first
player has value

√
m, say, for the first good, and no value for anything else. The second player’s valuation is

a star centered on the first good, where each vertex has weight 0 and each edge has unit weight. The optimal
solution gives all goods to the second player and has welfare m − 1, while most natural greedy algorithms
allocate the first good to the first player and achieve welfare only

√
m.



max

n
∑

i=1

(

∑

j∈M wijxij +
∑

e∈Ei
wiezie

)

(2)

subject to:
∑n

i=1 xij = 1 for every good j. (3)

zie ≤ xij for every player i, edge e ∈ Ei,

and good j ∈ e. (4)

xij ≥ 0 for every player i and good j ∈ M . (5)

zie ≥ 0 for every player i and edge e ∈ Ei. (6)

Every feasible assignment naturally induces a 0-1 feasible solution to (2)–(6) with
equal objective function value, where xij = 1 if and only if player i is assigned good j,
and zie = 1 if and only if player i is assigned every good in e. The size of the linear
program (2)–(6) is polynomial in the input size, so it can be solved in polynomial time.
We round the optimal solution to the linear program (2)–(6) using the randomized

algorithm shown in Figure 2. The algorithm uses only the x-variables to make assign-
ments; the z-variables are used in the analysis.

PROOF. (of Theorem 4.1) Since by equality (3) every good is fully assigned in x∗,
the algorithm runs in polynomial time (both in expectation and with high probability).
We next prove the approximation. We claim that, for every player i and edge e ∈ Ei,
player i is assigned every good in e by the algorithm in Figure 2 with probability at
least z∗ie/|e|. Similarly, each player i is assigned good j with probability at least x∗

ij .

This claim, combined with linearity of expectation and the assumption that |e| ≤ r for
all i and e ∈ Ei, implies the theorem.
We observe that if a player ℓ is chosen in an iteration of the randomized rounding

algorithm and no good of an edge e has been assigned in a previous iteration, then this
player will get at least one good of e with probability maxj∈e x

∗
ℓj , and every good of e

with probability minj∈e x
∗
ℓj .

Now fix a player i and an edge e. (The same argument works for a good j, viewed as
an edge of size 1.) We only need to lower bound the probability that i receives all of the
goods in e in the same iteration of the randomized rounding algorithm.
Consider the first iteration q that assigns at least one good of e to some player. Us-

ing Bayes’ rule and the fact that a single player is chosen uniformly at random each
iteration, the probability that i is the chosen player in iteration q is

maxj∈e x
∗
ij

∑n

ℓ=1 maxj∈e x∗
ℓj

≥
maxj∈e x

∗
ij

∑n

ℓ=1

∑

j∈e x
∗
ℓj

=
maxj∈e x

∗
ij

∑

j∈e

∑n

ℓ=1 x
∗
ℓj

=
maxj∈e x

∗
ij

|e| , (7)

where the final equality follows from the linear program constraints (3).
The probability that player i receives every good in e in round q, conditioned on i

being chosen in iteration q (and hence receiving at least one good of e at this round), is

minj∈e x
∗
ij

maxj∈e x∗
ij

≥ z∗ie
maxj∈e x∗

ij

, (8)

where the inequality follows from the linear program constraints (4). Combining in-
equalities (7) and (8) shows that, independent of the value of q, player i is assigned
every good in e with probability at least z∗ie/|e| ≥ z∗ie/r. This completes the proof.



Input: an optimal solution (x∗, z∗) of the linear program (2)–(6).

(1) While there is at least one unassigned good:
(a) Choose a player i uniformly at random.
(b) Choose a threshold t ∈ [0, 1] uniformly at random.
(c) Assign to i every unassigned good j with x∗

ij ≥ t.

Fig. 2. The randomized rounding algorithm for the linear program (2)–(6).

Remark 4.3. Turning the algorithm in Theorem 4.1 into a truthful mechanism
with a similar approximation ratio seems difficult. Essentially, the only general tech-
nique for designing (randomized) truthful mechanisms for multi-parameter valuations
like hypergraph valuations is via “maximal-in-distributional-range (MIDR)” approxi-
mation algorithms, which we define in the next section. The algorithm in Theorem 4.1
is not MIDR. There are several reasons for this; perhaps the most fundamental one is
that hyperedges of different sizes lose different approximation factors in (7). The de-
composition technique of Lavi and Swamy [2005] cannot be used to transform it into an
MIDR algorithm, as our algorithm does not provide an approximation guarantee for
hypergraphs with negative edge weights. (Negative edge weights cannot be ignored
or rounded up to zero without changing the problem.) The convex rounding technique
of Dughmi, Roughgarden, and Yan [2011] seems to yield interesting results only for
subclasses of complement-free valuations, and not for valuations with complements as
studied here.

5. A TRUTHFUL APPROXIMATION MECHANISM

In this section we present our truthful, O(logr m)-approximation mechanism for rank
r valuations. Section 5.1 proves that demand oracles can be implemented in polyno-
mial time for hypergraph valuations. Section 5.2 describes and analyzes our truthful
approximate combinatorial auction for hypergraph valuations.

5.1. Demand Oracles and Hypergraph Valuations

The first step of our algorithm, described in the next section, solves an exponential-size
linear programming relaxation of the welfare maximization problem. The complexity
of solving this linear program reduces, by dualizing and the ellipsoid method, to that
of a demand oracle for a valuation v: given a price pj for each good j ∈ M , compute a
bundle S ∈ argmax{v(S)−∑

j∈S pj}. Such queries can be answered in polynomial time

for hypergraph valuations.

PROPOSITION 5.1. Given a valuation v represented as a hypergraphH = (M,E,w)
and prices p for the goods of M , a bundle S ⊆ M that maximizes v(S)−∑

j∈S pj can be

computed in polynomial time.

PROOF. (Sketch.) First, a value query — given a subset S ⊆ M of goods, return the
value v(S) — can be computed in time polynomial in the size ofH by brute force, using
equation (1).
Next, recall that a function v is supermodular if and only if, for every S ⊆ M and

j, k ∈ M \ S, v(S ∪ {j, k}) − v(S ∪ {j}) ≥ v(S ∪ {k}) − v(S). Since edge weights are
nonnegative, the definition in equation (1) of a hypergraph valuation v easily implies
that v(S), and hence also v(S)−∑

j∈S pj, is a supermodular function on M .

Finally, recall that every supermodular function can be maximized using a polyno-
mial number of value queries (e.g. [Fleischer 2000]).



5.2. Description and Analysis of the Mechanism

The main result of this section is the following theorem

THEOREM 5.2. Fix any constant r. There is a polynomial time, truthful-in-
expectation mechanism that guarantees O(logr m)-approximation to the social welfare
when all players have hypergraph-r valuations.

We now describe our new allocation rule. Like the welfare maximization algo-
rithm in Section 4, it randomly rounds a linear programming relaxation. To obtain
both truthfulness-in-expectation and a good approximation, we make two non-trivial
changes. First, our linear program fractionally allocates each good at most B times,
where B = Ω(logm). On one hand, this duplication of the items results in a linear
program with a constant integrality gap. On the other hand, rounding the linear pro-
gram involves more “conflict resolution”. We define a natural rounding procedure that
degrades the objective value by a factor of at most O(Br). The objective function of our
linear program will involve modified valuation profiles, first proposed by Feige [2009]
and termed proxy valuations by Dobzinski, Fu, and Kleinberg [2010]. The proxy valua-
tions will take into account the rounding procedure, and guarantee that the allocation
rule that first solves the linear program and then rounds the fractional solution is
MIDR.
Our high-level algorithm is described in Figure 3. In more detail, the first step is to

scale the edge weights of the reported valuations v1, . . . , vn to obtain the corresponding
proxy valuations v′1, . . . , v

′
n, as follows,

v′i(S) =
∑

v∈S

wiv

B
+

∑

e : e⊆S

wie

B|e| . (9)

We call v′i the proxy valuation corresponding to vi. Note that the proxy valuation of
any set is exactly the expected value of the set when each item is assigned to the
bidder independently with probability 1/B. The next step formulates the following
linear program

max f(y) =
∑

i,S 6=∅ v
′
i(S)yi,S (10)

subject to:
∑

S 6=∅ yi,S ≤ 1 for every player i. (11)
∑

i

∑

S|j∈S yi,S ≤ B for every good j ∈ M . (12)

yi,S ≥ 0 for every player i and bundle S ⊆ M . (13)

While the linear program has exponential size, it can be solved in polynomial time (by
dualizing and using the ellipsoid algorithm) given access to a demand oracle [Blum-
rosen and Nisan 2005]. By Proposition 5.1, such a demand oracle can be computed
in polynomial-time for hypergraph-r valuations. The next step is to use the Lavi-
Swamy [Lavi and Swamy 2005] approach to compute, in polynomial time, a distribu-
tion over integral solutions with polynomial size support with the following property.
The expectation of this distribution over integer solutions is equal to the optimal frac-
tional solution, divided by a universal constant α. Any choice of α greater than the

integrality gap of the linear program suffices; The integrality gap is m
1

B+1 , which is
bounded by a universal constant for any choice of B = Ω(logm) (c.f. [Lavi and Swamy
2005]). In the fourth step we choose one of the integral solutions according to the pre-
scribed distribution. Finally, in the last stage we resolve conflicts in the integral solu-
tion in such a way that if a player received a copy of the good in the integral solution
then he is allocated that good with probability 1/B, independently over all goods.



Parameters: B = Ω(logm). Universal constant α exceeding integrality gap of linear
program (10)–(13).
Input: reported hypergraph-r valuations v1 = (M,E1, w1), . . . , vn = (M,En, wn).

(1) Form proxy valuations v′i from vi for every player i. Let v′ = (v′1, v
′
2, . . . , v

′
n).

(2) Solve the linear program (10)–(13) with respect to v′, obtaining optimal solu-
tion y∗ = {y∗iS}1≤i≤n,S⊆M .

(3) Compute a decomposition y
∗

α
=

∑

ℓ∈Ł λlzℓ into a convex combination of a polyno-

mial number of feasible integral solutions.
(4) Sample a feasible integral solution z = {z∗iS}1≤i≤n,S⊆M according to the distribu-

tion {λℓ}ℓ∈Ł.
(5) Independently for each good j = 1, 2, . . . ,m: let Ij = {i | zi,S = 1, j ∈ S}, then

with probability
|Ij |
B

allocate j to a uniformly random player in Ij , otherwise do not

allocate j. Note that |Ij | =
∑

i

∑

S|j∈S zi,S ≤ B for every good j, thus
|Ij |
B

≤ 1.

Fig. 3. The MIDR randomized rounding allocation rule for the linear program (10)–(13).

From the above description and Proposition 5.1 is it clear that the mechanism runs
in polynomial time. Next we prove the approximation guarantee and show that the
mechanism is MIDR.

PROPOSITION 5.3. The mechanism is MIDR and the approximation guarantee is at
most αBr

PROOF. First, we prove that the mechanism is MIDR. LetM(v) denote the expected
social welfare achieved by the mechanism on receiving reports v. Let x(z) be the in-
tegral allocation of the mechanism (at the end of stage (5)) given a feasible integral
solution z from stage 4. Then from linearity of expectation and the fact that per player,
the probability of getting allocated each good in step (5) is independent we have

E[v(x(z))] =
∑

i,S 6=∅
v′i(S)zi,S = f(z). (14)

for any z. By definition of the decomposition of stage 3, and using linearity of f(.), we
have

E{λℓ}
ℓ∈Ł

[f(zℓ)] = f(y∗)/α. (15)

Thus, from equalities (14),(15) we conclude that

M(v) = E{λℓ}
ℓ∈Ł

[E[v(x(zl))]] = f(y∗)/α (16)

Since the linear programmaximizes f over its feasible domain, equation (16) implies
that the mechanism optimizes M over the set of distributions in its range. Thus, the
mechanism is MIDR.
We now prove the approximation guarantee. Let x∗ denote the vector encoding

the welfare-maximizing allocation for valuation profile v, let v(x∗) denote the op-
timum welfare, and v′(x∗) denote the corresponding “proxy” welfare. Observe that
f(y∗) ≥ f(x∗) by optimality of y∗ for the linear program. Since x∗ is a feasible inte-
gral allocation, f(x∗) = v′(x∗). By equation (9) we have that

v′(x) ≥ v(x)

Br
(17)



for any integral allocation x, in particular, for x∗. Combining with (16),(17) it follows
that

M(v) =
f(y∗)

α
≥ v′(x∗)

α
≥ v(x∗)

αBr
(18)
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A. WHEN THE SQUARE OF THE LINE GRAPH HAS A SMALL CHROMATIC NUMBER

In this section we present a truthful mechanism with approximation that equals to
the chromatic number of the square of the line graph of the common graph G (when
all valuations are subgraphs of G). For example, if G has bounded degree d then the
square of its line graph has chromatic number O(d2).
We begin with some standard definitions. Given a graph G = (V,E) let L(G) =

(E, {(u, v), (w, x) ∈ E | |{u, v} ∩ {w, x} 6= ∅}) be the line graph of G whose vertices are
the edges of G and nodes in L(G) share an edge in L(G) if the two corresponding edges
in G intersect at some vertex of G. Given a graph G = (V,E) let G2 = (V, {(u, v) |
∃w, (u,w), (w, v) ∈ E ∨ (u, v) ∈ E}) be the square graph whose edges are all length one
and two paths in G.
We are now ready to present our result.

PROPOSITION A.1. Let G by any graph such that the valuations of all players are
subgraphs of G. Then there exists a truthful mechanism that runs in polynomial time
and is a χ(L(G)2)-approximation.

PROOF. One can color edges of the square graph with χ(L(G)2) colors. So any two
edges with the same color are at distance at least 2. We can iterate over all colors and
for each color allocate only the items that are induced by the edges of that color. Since
edges are at distance at least 2, we can compute the optimal allocation for each such
edge independently.

One simple corollary of the proposition is that if the common graph G has bounded
degree d then we can design a truthful mechanism with O(d2)-approximation.


