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MAKING THE MOST OF YOUR SAMPLES∗

ZHIYI HUANG† , YISHAY MANSOUR‡ , AND TIM ROUGHGARDEN§

Abstract. We study the problem of setting a price for a potential buyer with a valuation drawn
from an unknown distribution D. The seller has “data” about D in the form of m ≥ 1 independent
and identically distributed samples, and the algorithmic challenge is to use these samples to obtain
expected revenue as close as possible to what could be achieved with advance knowledge of D. Our
first set of results quantifies the number of samples m that are necessary and sufficient to obtain a
(1− ε)-approximation. For example, for an unknown distribution that satisfies the monotone hazard
rate (MHR) condition, we prove that Θ̃(ε−3/2) samples are necessary and sufficient. Remarkably, this
uses fewer samples than is necessary to accurately estimate the expected revenue obtained for such a
distribution by even a single reserve price. We also prove essentially tight sample complexity bounds
for regular distributions, bounded-support distributions, and a wide class of irregular distributions.
Our lower bound approach, which applies to all randomized pricing strategies, borrows tools from
differential privacy and information theory, and we believe it could find further applications in auction
theory. Our second set of results considers the single-sample case. While no deterministic pricing
strategy is better than 1

2
-approximate for regular distributions, for MHR distributions we show how

to do better: there is a simple deterministic pricing strategy that guarantees expected revenue at least
0.589 times the maximum possible. We also prove that no deterministic pricing strategy achieves an
approximation guarantee better than e

4
≈ .68.
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1. Introduction. We study the basic pricing problem of making an “optimal”
take-it-or-leave-it price to a potential buyer with an unknown willingness to pay (also
known as valuation). Offering a price of p to a buyer with valuation v yields revenue
p if v ≥ p, and 0 otherwise. The traditional approach in theoretical computer science
to such problems is to assume as little as possible about the buyer’s valuation—for
example, only lower and upper bounds on its value—and to compare the performance
of different prices using worst-case analysis. The traditional approach in economics
is to assume that the buyer’s valuation is drawn from a distribution D that is known
to the seller, and to use average-case analysis. In the latter case, the optimal solution
is clear—it is the monopoly price maxp≥0 p · (1 − F (p)), where F is the cumulative
distribution function (c.d.f.) of D.

Cole and Roughgarden [9] recently proposed adapting the formalism of learning
theory [25] to interpolate between the traditional worst- and average-case approaches,
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in the context of single-item auction design. The idea is to parameterize a seller’s
knowledge about an unknown distribution D through a number m of independent
and identically distributed (i.i.d.) samples from D. When m = 0 this is equivalent to
the worst-case approach, and as m → ∞ it becomes equivalent to the average-case
approach. The benchmark is the maximum expected revenue obtainable when the
distribution D is known a priori. The algorithmic challenge is to use the m samples
from D to get expected revenue as close to this benchmark as possible, no matter
what the underlying distribution D is.1

This “hybrid” model offers several benefits. First, it is a relatively faithful model
of many realistic computer science applications, where data from the past is assumed
to be a reasonable proxy for future inputs and guides the choice of an algorithm.
For example, in Yahoo!’s keyword auctions, the choice of reserve prices is guided by
past bid data in a natural way [21]. Second, the model is a potential “sweet spot”
between worst-case and average-case analysis, inheriting much of the robustness of
the worst-case model (since we demand guarantees for every underlying D) while
allowing very good approximation guarantees with respect to a strong benchmark.
Third, by analyzing the trade-offs between the number of samples m available from
D and the best-possible worst-case approximation guarantee, the analysis framework
implicitly quantifies the value of data (i.e., of additional samples). It becomes possible,
for example, to make statements like “4 times as much data improves our revenue
guarantee from 80% to 90%.” Finally, proving positive results in this model involves
rigorously justifying natural methods of incorporating past data into an algorithm,
and this task is interesting in its own right.

1.1. Our results. Formally, we study a single seller of some good, and a single
buyer with a private valuation v for the good drawn from an unknown distribution
D. The seller has access to m ≥ 1 i.i.d. samples v1, . . . , vm from D. The goal is
to identify, among all m-pricing strategies—functions from a sample v1, . . . , vm to a
price p—the strategy that has the highest expected revenue. The expectation here is
over m + 1 i.i.d. draws from D—the samples v1, . . . , vm and the unknown valuation
v of the buyer—and the randomness of the pricing strategy. The approximation
guarantee of a pricing strategy p(·) for a set D of distributions is its worst-case (over
D) approximation of the (optimal) expected revenue obtained by the monopoly price:

inf
D∈D

Ev1,...,vm∼D[p(v1, . . . , vm) · (1− F (p(v1, . . . , vm)))]

maxp p(1− F (p))
,

where F is the c.d.f. of D.
We first describe our results that quantify the inherent trade-off between the

number of samples m and the best-possible approximation guarantee of an m-pricing
strategy; see also Table 1. Some restriction on the class D of allowable distributions
is necessary for the existence of pricing strategies with any nontrivial approximation
of the optimal expected revenue.2 We give essentially tight bounds on the number of
samples that are necessary and sufficient to achieve a target approximation of 1−ε for

1There are, of course, other ways one can parameterize partial knowledge about valuations. See,
e.g., [2, 8] for alternative approaches.

2To appreciate this issue, consider all distributions that take on a value M2 with probability 1
M

and 0 with probability 1− 1
M

. The optimal price for such a distribution earns expected revenue at
least M . It is not difficult to prove that, for every m, there is no way to use m samples to achieve
near-optimal revenue for every such distribution—for sufficiently large M , all m samples are 0 with
high probability and the algorithm has to resort to an uneducated guess for M .



MAKING THE MOST OF YOUR SAMPLES 653

Table 1
Sample complexity of a (1 − ε)-approximation. For bounded-support distributions, the support

is a subset of [1, H]. For general distributions, the benchmark is the optimal revenue of prices with
sale probability at least δ.

Upper bound Lower bound

MHR O(ε−3/2 log ε−1) (Thm. 3.2) Ω(ε−3/2) (Thm. 4.12)

Regular O(ε−3 log ε−1) (see [11]) Ω(ε−3) (Thm. 4.8)

General O(δ−1ε−2 log(δ−1ε−1)) (Thm. 3.6) Ω(δ−1ε−2) (Thm. 4.6)

Bounded support O(Hε−2 log(Hε−1)) (Thm. 3.7 and [4]) Ω(Hε−2) (Thm. 4.7)

all of the choices of the class D that are common in auction theory. For example, when
D is the set of distributions that satisfy the monotone hazard rate (MHR) condition,3

we prove that m = Ω(ε−3/2) samples are necessary and that m = O(ε−3/2 log ε−1)
samples are sufficient to achieve an approximation guarantee of 1 − ε.4 This bound
holds more generally for the class of “α-strongly regular distributions” introduced
in [9] (for fixed α > 0). When D is the (larger) set of regular distributions,5 we prove
that the sample complexity is Θ̃(ε−3). When D is the set of arbitrary distributions
with support contained in [1, H], the sample complexity is Θ̃(Hε−2). We also give
essentially optimal sample complexity bounds for distributions that are parameterized
by the probability of a sale at the monopoly price; see section 1.2 for more discussion.
On the upper bound side, our primary contribution is the bound for MHR and strongly
regular distributions.6 All of our lower bounds, which are information theoretic and
apply to arbitrary randomized pricing strategies, are new.

Our second set of results considers the regime where the seller has only one sample
(m = 1) and wants to use it in the optimal deterministic way.7 Dhangwatnotai,
Roughgarden, and Yan [11] observed that an elegant result from auction theory, the
Bulow–Klemperer theorem on auctions versus negotiations [6], implies that the 1-
sample pricing strategy p(v) = v has an approximation guarantee of 1

2 when D is
the set of regular distributions.8 It is not hard to prove that there is no better
deterministic pricing strategy for this set of distributions. We show how to do better,
however, when D is the smaller set of MHR distributions: a simple 1-pricing strategy
of the form p(v) = cv for some c < 1 has an approximation guarantee of 0.589. We
also prove that no deterministic 1-pricing strategy is better than an e

4 -approximation
for MHR distributions, and that no continuously differentiable such strategy is better
than a 0.677-approximation.

3D satisfies the monotone hazard condition if
f(v)

1−F (v)
is nondecreasing; see section 2 for details.

4We suppress only universal constant factors, which do not depend on the specific distribution
D ∈ D. Such uniform sample complexity bounds are desirable because the valuation distribution is
unknown. Law-of-large-numbers–type arguments do not generally give uniform bounds.

5D is regular if the “virtual valuation function” v − 1−F (v)
f(v)

is nondecreasing; see section 2 for

details.
6The upper bound for regular distributions was proved in [11] and the upper bound for bounded

valuations can be deduced from [4].
7We offer the problems of determining the best randomized pricing strategy for m = 1 and the

best way to use a small m ≥ 2 number of samples as challenging and exciting directions for future
work. See [14] for recent progress on these questions.

8Dhangwatnotai, Roughgarden, and Yan [11] observed this in the context of the design and anal-
ysis of prior-independent auctions. Plugging our better bounds for single-sample pricing strategies
with MHR distributions into the framework of [11] immediately yields analogously better prior-
independent mechanisms.
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1.2. A few technical highlights. This section singles out a few of our re-
sults and techniques that seem especially useful or motivating for follow-up work.
First, recall that we prove that O(ε−3/2 log ε−1) samples from an unknown MHR
distribution—or more generally, an unknown α-strongly regular distribution [9]—are
sufficient to achieve expected revenue at least 1− ε times that of the monopoly price.
Remarkably, this is fewer than the ≈ ε−2 samples necessary to accurately estimate
the expected revenue obtained by even a single fixed price for such a distribution!9 In
this sense, we prove that near-optimal revenue maximization is strictly easier than ac-
curately learning even very simple statistics of the underlying distribution. The most
important idea in our upper bound is that, because of the structure of the revenue-
maximization problem, the estimation errors of different competing prices are usefully
correlated. For example, if the estimated expected revenue of the true monopoly price
is significantly less than its actual expected revenue (because of a higher-than-expected
number of low samples), then this probably also holds for prices that are relatively
close to the monopoly price. Moreover, these are precisely the incorrect prices that an
algorithm is most likely to choose by mistake. The second ingredient is the fact that
MHR distributions have strongly concave “revenue curves,” and this limits how many
distinct prices can achieve expected revenue close to that of the monopoly price.

Second, recall that we prove essentially matching lower bounds for all of our sam-
ple complexity upper bounds. For example, there is no (1 − ε)-approximate pricing
strategy (deterministic or randomized) for MHR distributions when m = o(ε−3/2)
or for regular distributions when m = o(ε−3). For both of these lower bounds, we
reduce the existence of a (1 − ε)-optimal pricing strategy to that of a classifier that
distinguishes between two similar distributions. We borrow methodology from the dif-
ferential privacy literature to construct two distributions with small Kullback–Leibler
(KL) divergence and disjoint sets of near-optimal prices, and use Pinsker’s inequality
to derive the final sample complexity lower bounds. This lower bound approach is
novel in the context of auction theory and we expect it to find further applications.

Third, we offer a simple and novel approach for reasoning about irregular dis-
tributions. We noted above the problematic irregular distributions that place a very
low probability on a very high value. Regularity can also fail for more reasonable
distributions, such as mixtures of common distributions. In section 3.3, we consider
a benchmark R∗δ defined as the maximum expected revenue achievable for the un-
derlying distribution using a price that sells with probability at least δ, and prove
essentially tight sample complexity bounds for approximating this benchmark. As a
special case, if for every distribution in D the monopoly price sells with probability
at least δ—as is the case for sufficiently small δ and typical reasonable distributions,
even irregular ones—then approximating R∗δ is equivalent to approximating the opti-
mal revenue. Even if not all distributions of D satisfy this property, this benchmark
enables parameterized sample complexity bounds that do not require blanket distri-
butional restrictions such as regularity. We believe that this parameterized approach
will find more applications.10

9It is well known (e.g., [1, Lemma 5.1]) that, given a coin that either has bias 1
2
− ε or bias

1
2

+ ε, Ω(ε−2 log 1
δ

) coin flips are necessary to distinguish between the two cases with probability
at least 1 − δ. This lower bound is information theoretic and applies to arbitrarily sophisticated
learning methods. This sample complexity lower bound translates straightforwardly to the problem
of estimating, by any means, the expected revenue of a fixed price for an unknown MHR distribution
up to a factor of (1± ε).

10See, e.g., [18, Appendix D], [16, Chapter 4], and [24] for alternative approaches to parameterizing
irregularity.



MAKING THE MOST OF YOUR SAMPLES 655

Table 2
Optimal approximation ratio with a single sample.

Positive result Negative result

Regular ≥ 0.5 (see [6, 11]) ≤ 0.5 (Thm. 6.1)

MHR ≥ 0.589 (Thm. 5.2) ≤ 0.68 (Thm. 6.3)

1.3. Further related work. We already mentioned the related work of Cole
and Roughgarden [9]; the present work follows the same formalism. Specializing the
results in [9] to the sample complexity questions that we study here yields much
weaker results than the ones we prove—only a lower bound of ε−1/2 and an upper
bound of ε−c for a large constant c. Two of the upper bounds in Table 2 follow
from previous work. The upper bound of O(ε−3 log ε−1) for regular distributions was
proved in [11]. (They also proved a bound of O(ε−2 log ε−1) for MHR distributions,
which is subsumed by our nearly tight bound of O(ε−3/2 log ε−1).) The upper bound
of O(Hε−2 logHε−1) for bounded valuations can be deduced from Balcan et al. [4].11

We emphasize that, in addition to our new upper bound results in the large-sample
regime, there is no previous work on sample complexity lower bounds for our pricing
problem nor on the best-possible approximation given a single sample.

There are many less related previous works that also use the idea of independent
samples in the context of auction design. For example, some previous works study
the asymptotic (in the number of samples) convergence of an auction’s revenue to
the optimal revenue, without providing any uniform sample complexity bounds. See
Neeman [20], Segal [23], Baliga and Vohra [5], and Goldberg et al. [15] for several
examples. Some recent and very different uses of samples in auction design include
Fu et al. [13], who use samples to extend the Crémer–McLean theorem [10] to partially
known valuation distributions, and Chawla, Hartline, and Nekipelov [7], who design
auctions that have both near-optimal revenue and enable accurate inference about
the valuation distribution from samples.

2. Preliminaries. Suppose the buyer’s value is drawn from a publicly known
distribution D whose support is a continuous interval. Let F be the c.d.f. of D.
If F is differentiable, let f be the probability density function (p.d.f.) of D. Let
q(v) = 1 − F (v) be the quantile of value v, i.e., the sale probability of reserve price
v.12 Let v(q) be the value with quantile q.

The first set of distributions we study are those satisfying standard small-tail
assumptions such as regularity, MHR, and α-strong regularity [9]. We explain these
assumptions in more detail next. For these distributions, we assume F is differentiable
and f exists.

Let R(q) = qv(q) be the revenue as a function over the quantiles space (meaning
the expected revenue obtained from a price v(q) with quantile q on a random draw
from D). We have

R′(q) = v(q) + q
dv

dq
= v − q(v)

f(v)
.

11The paper by Balcan et al. [4] studies a seemingly different problem—the design of digital good
auctions with n buyers in a prior-free setting (with bounded valuations). But if one instantiates their
model with bidders with i.i.d. valuations from a distribution D, then their performance analysis of
their random sampling optimal offer (RSO) mechanism essentially gives a performance guarantee
for the empirical monopoly price for D with n/2 samples, relative to the expected revenue of the
monopoly price with a single bidder.

12This terminology is for consistency with the recent literature on related topics. “Reverse quan-
tile” might be a more accurate term.
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The virtual valuation function is defined to be φ(v) = v − 1−F (v)
f(v) = R′(q). A

distribution D is regular if for all values v in its support,

(1)
dφ

dv
≥ 0.

Note that v(q) is decreasing in q. A distribution is regular if R′(q) = φ(v) is decreasing
in q and, thus, R(q) is concave. In this case, R(q) is maximized whenever R′(q) =
φ(v(q)) = 0. Let q∗ and v∗ = v(q∗) be the revenue-optimal quantile and reserve
prices, respectively.

A distribution D satisfied the MHR condition if for all values v in its support,

(2)
dφ

dv
≥ 1.

We’ll make use of the following property of MHR distributions.

Lemma 2.1 (see [17]). For every MHR distribution, q∗ ≥ 1
e .

Cole and Roughgarden [9] defined α-strong regular distributions (where α ∈ [0, 1])
to interpolate between (1) and (2):

(3)
dφ

dv
≥ α.

Many properties of MHR distributions carry over to α-strongly regular distributions
with different constants. For example, we have the following.

Lemma 2.2 (see [9]). For every α-strongly regular distribution with α > 0, q∗ ≥
α1/(1−α).

To reason about general (irregular) distributions, we require an alternative bench-
mark (recall footnote 2). We propose

R∗δ = max
q≥δ

qv(q),

the optimal revenue if we only consider reserve prices with sale probability at least δ.
Here, we expect the sample complexity to depend on both ε and δ.

3. Asymptotic upper bounds. We now present our positive results in the
asymptotic regime.

Definition 3.1. Given m samples v1 ≥ v2 ≥ · · · ≥ vm, the empirical reserve is

arg max
i≥1

i · vi.

If we only consider i ≥ cm for some parameter c, it is called the c-guarded empir-
ical reserve.

3.1. MHR upper bound. We next prove the following.

Theorem 3.2. The empirical reserve with m = Θ(ε−3/2 log ε−1) samples is
(1− ε)-approximate for all MHR distributions.

We also give a matching lower bound (up to the log factor) in section 4.
For simplicity of presentation, we prove Theorem 3.2 for the 1

e -guarded empirical
reserve. (Recall that q∗ ≥ 1

e for MHR distributions.) The unguarded version is similar
but requires some extra care on the small quantiles.
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To show Theorem 3.2, we use two properties of MHR distributions. First, the
optimal quantile of an MHR distribution is at least e−1 (Lemma 2.1). Second, the rev-
enue decreases quadratically in how much the reserve price deviates from the optimal
one in quantile space, which we formulate as the following lemma.

Lemma 3.3. For every 0 ≤ q′ ≤ 1, we have R(q∗)−R(q′) ≥ 1
4 (q∗ − q′)2R(q∗).

Proof. First, consider the case when q′ > q∗. By the optimality of q∗, for any q
s.t. q∗ ≤ q ≤ q′, we have qv(q) ≤ q∗v(q∗) and, hence,

(4) v(q) ≤ q∗

q
v(q∗).

Further, since the MHR assumption implies that dφ(v)
dv ≥ 1 for every q∗ ≤ q ≤ q′, we

have
φ(v(q)) ≤ φ(v(q∗)) + v(q)− v(q∗) = v(q)− v(q∗).

Combining this with the inequality (4), we get that

φ(v(q)) ≤ q∗ − q
q

v(q∗).

Therefore,

R(q∗)−R(q′) =

∫ q′

q∗
−R′(q)dq =

∫ q′

q∗
−φ(v(q))dq ≥

∫ q′

q∗

q − q∗

q
v(q∗)dq.

Note that q−q∗
q ≥ 0 for every q∗ ≤ q ≤ q′. Moreover, for any q ≥ q′+q∗

2 , we have
q−q∗
q ≥ q′−q∗

q′+q∗ . Hence,

R(q∗)−R(q′) ≥
∫ q′

q′+q∗
2

q′ − q∗

q′ + q∗
v(q∗)dq =

(q′ − q∗)2

2(q′ + q∗)
v(q∗) =

(q′ − q∗)2

2q∗(q′ + q∗)
R(q∗).

The lemma then follows from the fact that 0 ≤ q′, q∗ ≤ 1.
Next, we consider the case when q′ < q∗. The high-level proof idea of this case is

similar to the previous case, but requires some subtle changes in the inequalities. For
completeness, we include the proof below.

By concavity of the revenue curve, for any q′ ≤ q ≤ q∗, we have

qv(q) ≥ q − q′

q∗ − q′
q∗v(q∗) +

q∗ − q
q∗ − q′

q′v(q′).

Dividing both sides by q, we have

(5) v(q) ≥ q∗v(q∗)− q′v(q′)

q∗ − q′
+

q∗q′

q(q∗ − q′)
(
v(q′)− v(q∗)

)
.

Further, by the MHR assumption,

φ(v(q)) ≥ φ(v(q∗)) + v(q)− v(q∗) = v(q)− v(q∗).

Note that the direction of this inequality is the opposite of its counterpart in the
first case (because v(q) > v(q∗) rather than v(q) < v(q∗)). Combining this with
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inequality (5), we get

φ(v(q)) ≥ q∗v(q∗)− q′v(q′)

q∗ − q′
+

q∗q′

q(q∗ − q′)
(
v(q′)− v(q∗)

)
− v(q∗)

=
q′(q∗ − q)
q(q∗ − q′)

(
v(q′)− v(q∗)

)
≥ q′(q∗ − q)
q∗(q∗ − q′)

(
v(q′)− v(q∗)

)
,

where the last inequality is due to q ≤ q∗. Hence, we have

R(q∗)−R(q′) =

∫ q∗

q′
R′(q)dq(6)

=

∫ q∗

q′
φ(v(q))dq

≥
∫ q∗

q′

q′(q∗ − q)
q∗(q∗ − q′)

(
v(q′)− v(q∗)

)
dq

=
q′

2q∗
(q∗ − q′)

(
v(q′)− v(q∗)

)
.(7)

On the other hand, we have

(8) R(q∗)−R(q′) = q∗v(q∗)− q′v(q′).

Taking the convex combination of 2q∗

3q∗−q′ times the expression in (7) plus q∗−q′
3q∗−q′ times

the right-hand side of (8) yields

R(q∗)−R(q′) ≥ (q∗ − q′)2

3q∗ − q′
v(q∗) =

1

q∗(3q∗ − q′)
(q∗ − q′)2R(q∗) ≥ 1

3
(q∗ − q′)2R(q∗),

where the last inequality holds because 0 ≤ q∗, q′ ≤ 1.

Next we show how to use the lemma (and additional ideas) to prove Theorem 3.2.

Proof of Theorem 3.2. We first show that for any two samples v1 and v2 with
quantiles q1, q2 such that either q1 < q2 < q∗ or q∗ < q1 < q2, if the revenue of one
of v1, v2 is at least 1− ε

2 times smaller than that of the other, then with probability
at least 1 − o( 1

m2 ), the algorithm correctly determines which of v1, v2 is the price
with the higher revenue. Further, with high probability, there is at least one sample
that is ε

2 -close to q∗ in quantile space both among samples with quantile at least q∗

and among those with quantile at most q∗. By concavity of the revenue curve, such
samples are (1− ε

2 )-optimal. So the theorem follows from union bound.
Let us focus on the case when q1 < q2 < q∗ and v1q1 < (1− ε)v2q2; the other case

is almost identical. Suppose R(q1) = (1−∆)R(q2) and q1 = q2 − δ. By concavity of
the revenue curve and Lemma 3.3, we have

R(q2)−R(q1) ≥ R(q∗)−R(q∗ − q2 + q1) ≥ 1

4
(q2 − q1)2R(q∗) ≥ 1

4
(q2 − q1)2R(q2).

So we have ∆ = Ω(δ2).
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Let q̃im be the number of samples with value at least vi, i = 1, 2. The goal is
to show that q̃1v1 < q̃2v2 with probability at least 1 − o( 1

m2 ). The straightforward

argument does not work because we would need Ω̃(ε−2) samples to estimate qi up to
a 1− ε factor.

Before diving into the technical proof, let us explain informally how to get away
with fewer samples. A bad scenario for the straightforward argument is when, say,
q̃1 > (1 + ∆)q1 and q̃2 < (1 − ∆)q2. We observe that such a bad scenario is very
unlikely due to correlation between q̃1 and q̃2: the samples used to estimate q1 and
q2 are the same; those that cause the algorithm to overestimate q1 also contribute to
the estimation of q2; for the bad scenario to happen, it must be that the number of
samples between q1 and q2 is much smaller than its expectation (as we will formulate
as (9)), and this probability is tiny.

Now we proceed with the formal proof. Since we consider the 1
e -guarded empirical

reserve, q1, q2 ≥ 1
e . By the Chernoff bound, with Θ(ε−3/2 log ε−1) samples, we have

q̃i ≥ (1− ε3/4)qi = Ω(1) and q̃i ≤ (1 + ε3/4)qi with high probability.
If q̃1v1 ≥ q̃2v2, then

q̃1

q̃2
≥ v2

v1
=
R(q2)

R(q1)

q1

q2
= (1−∆)−1 q1

q2
=
q1

q2
+ Ω(∆) .

So

q̃2 − q̃1 =

(
1− q̃1

q̃2

)
q̃2

≤
(

1− q̃1

q̃2

)(
1 + ε3/4

)
q2

≤
(

1− q1

q2
− Ω(∆)

)(
1 + ε3/4

)
q2

= q2 − q1 + δε3/4 − Ω(∆).

Since δ = O(
√

∆) and ∆ ≥ ε
2 , we have δε3/4 = o(∆). So

(9) q̃2 − q̃1 ≤ q2 − q1 − Ω(∆) .

That is, the number of samples that fall between q1 and q2 is smaller than its expec-
tation by at least Ω(∆m). By the Chernoff bound, the probability of this event is

at most exp(−∆2m
δ ). Recall that ∆ = Ω(δ2), ∆ ≥ ε

2 , and m = Θ(ε−3/2 log ε−1). So
this probability is at most exp(−Ω(log ε−1)) = o( 1

m2 ) with an appropriate choice of
parameters.

3.2. α-strongly regular upper bound. Our proof of Theorem 3.2 can be
extended to α-strongly regular distributions with α > 0. We present the formal
statement and sketch the necessary changes below.

Theorem 3.4. For every α > 0, the empirical reserve with m = Θ(ε−3/2 log ε−1)
samples is (1− ε)-approximate for all α-strongly regular distributions (with the hidden
constant depending on α).

The proof of Theorem 3.2 relies on two properties: the monopoly price having
at least constant sale probability (Lemma 2.1), and strict concavity of the revenue
curve at the monopoly quantile (Lemma 3.3). The proof of Theorem 3.4 is identical,
modulo using weaker versions of the lemmas. Specifically, we will replace Lemma 2.1
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by Lemma 2.2, and Lemma 3.3 by the following lemma, whose proof is almost identical
to that of Lemma 3.3.

Lemma 3.5. For any 0 ≤ q′ ≤ 1, we have R(q∗)−R(q′) ≥ α
3 (q∗ − q′)2R(q∗).

Proof of Theorem 3.4. We use the same setup and notation as in the MHR case.
Using the weaker lemmas, we have qi, q̃i = Ω(α1/(1−α)) and ∆ ≥ Ω(αδ2).

If q̃1v1 ≥ q̃2v2, then

q̃1

q̃2
≥ v2

v1
=
R(q2)

R(q1)

q1

q2
= (1−∆)−1 q1

q2
=
q1

q2
+ Ω

(
α1/(1−α)∆

)
.

So

q̃2 − q̃1 =

(
1− q̃1

q̃2

)
q̃2

≤
(

1− q̃1

q̃2

)(
1 + ε3/4

)
q2

≤
(

1− q1

q2
− Ω(α1/(1−α)∆)

)(
1 + ε3/4

)
q2

= q2 − q1 + δε3/4 − Ω
(
α1/(1−α)∆

)
.

Since δ = O(
√

∆/α) and ∆ ≥ ε
2 , we have δε3/4 = o(∆). So

(10) q̃2 − q̃1 ≤ q2 − q1 − Ω
(
α1/(1−α)∆

)
.

That is, the number of samples that fall between q1 and q2 differs from its expectation
by at least Ω(α1/(1−α)∆m). By the Chernoff bound, the probability of this event

is at most exp(− (α1/(1−α)∆)2m
δ ). Recall that ∆ = Ω(αδ2), ∆ ≥ ε

2 , and set m =

Θ(α−2/(1−α)−1/2ε−3/2 log ε−1). Then, this probability is at most exp(−Ω(log ε−1)) =
o( 1
m2 ) with a suitable choice of parameters.

3.3. General upper bounds. Next, we present a sample complexity upper
bound for general distributions using R∗δ as a benchmark. Recall that R∗δ is the
optimal revenue by prices with sale probability at least δ.

Theorem 3.6. The δ
2 -guarded empirical reserve with m = Θ(δ−1ε−2 log(δ−1ε−1))

gives revenue at least (1− ε)R∗δ for all distributions.

Sketch. The proof is standard so we present only a sketch here. Let q∗δ =
arg maxq≥δ qv(q) be the optimal reserve price with sale probability at least δ. With
high probability, there exists at least one sampled price with quantile between (1− ε

3 )q∗

and q∗: this price has revenue at least (1− ε
3 )R∗δ . Further, since q∗ ≥ δ, this price has

rank at least δ
2 (among sampled prices) with high probability and thus is considered

by the empirical reserve algorithm. Finally, with high probability, any sampled price
with rank at least δ

2 has sale probability at least δ
4 ; for prices with sale probability at

least δ
4 , the algorithm estimates their sale probability up to a 1− ε

3 factor with high
probability with m = Θ(δ−1ε−2 log(δ−1ε−1)) samples. The theorem then follows.

We remark that one can also derive a bound for a single sample (i.e., m = 1)
which guarantees expected revenue at least (δ/2)R∗δ .

Note that for distributions with support [1, H], the optimal sale probability is at
least 1/H. So we have the following theorem as a direct corollary of Theorem 3.6.
This bound can also be deduced from [4]; we include it for completeness.
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Theorem 3.7. The empirical reserve with m = Θ(Hε−2 log(Hε−1)) samples is
(1− ε)-approximate for all distributions with support [1, H].

4. Asymptotic lower bounds. This section gives asymptotically tight (up to
a log factor) sample complexity lower bounds. These lower bounds are information
theoretic and apply to all possible pricing strategies, including randomized strategies.
We first present a general framework for proving sample complexity lower bounds,
and then instantiate it for each of the classes of distributions listed in Table 1.

4.1. Lower bound framework: Reducing pricing to classification. The
high-level plan is to reduce the pricing problem to a classification problem. We will
construct two distributions D1 and D2 and show that given any pricing algorithm
that is (1 − ε)-approximate for both D1 and D2, we can construct a classification
algorithm that can distinguish D1 and D2 with constant probability, say, 1

3 , using the
same number of samples as the pricing algorithm. Further, we will construct D1 and
D2 to be similar enough and use tools from information theory to show a lower bound
on the number of samples needed to distinguish the two distributions.

Information theory preliminaries. Consider two distributions P1 and P2 over a
sample space Ω. Let p1 and p2 be the density functions. The statistical distance
between P1 and P2 is

δ(P1, P2) =
1

2

∫
Ω

∣∣p1(ω)− p2(ω)
∣∣dω.

In information theory, it is known (e.g., [3]) that no classification algorithm A :
Ω → {1, 2} can distinguish P1 and P2 correctly with probability strictly better than
δ(P1,P2)+1

2 , i.e., there exists i ∈ {1, 2}, Prω∼Pi [A(ω) = i] ≤ δ(P1,P2)+1
2 . This lower

bound applies to arbitrary randomized classification algorithms.
Suppose we want to show a sample complexity lower bound of m. Then we will let

Pi = Dm
i and then upper bound δ(P1, P2). However, the statistical distance is hard

to bound directly when we have multiple samples: δ(Dm
1 , D

m
2 ) cannot be written as

a function of m and δ(D1, D2). In particular, the statistical distance does not grow
linearly with the number of samples.

In order to derive an upper bound on the statistical distance with multiple sam-
ples, it is many times convenient to use the KL divergence, which is defined as follows:

DKL(P1‖P2) = Eω∼P1

[
ln
p1(ω)

p2(ω)

]
.

In information theory, the KL divergence can be viewed as the redundancy in the
encoding in the case that the true distribution is P1 and we use the optimal encoding
for distribution P2. One nice property of the KL divergence is that it is additive over
samples: if P1 = Dm

1 and P2 = Dm
2 are the distributions over m samples of D1 and

D2, then the KL divergence of P1 and P2 is m times DKL(D1‖D2).
We can relate the KL divergence to the statistical distance through Pinsker’s

inequality [22], which states that

δ(P1, P2) ≤
√

1
2DKL(P1‖P2).

By symmetry, we also have δ(P1, P2) ≤
√

1
2DKL(P2‖P1), so

δ(P1, P2) ≤ 1

2

√
DKL(P1‖P2) +DKL(P2‖P1).
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This implies that we can upper bound the statistical distance of m samples from D1

and D2 by 1
2

√
m · (DKL(D1‖D2) +DKL(D2‖D1)). To get a statistical distance of at

least, say, 1
3 , we need m = 4

9
1

DKL(D1‖D2)+DKL(D2‖D1) samples.

Reducing pricing to classification. Next, we present the reduction from pricing
to classification. Given a value distribution D and α < 1, its α-optimal price set is
defined to be the set of reserve prices that induce at least an α fraction of the optimal
revenue.

Lemma 4.1. If value distributions D1 and D2 have disjoint (1− 3ε)-approximate
price sets, and there is a pricing algorithm that is (1−ε)-approximate for both D1 and
D2, then there is a classification algorithm that distinguishes P1 and P2 correctly with
probability at least 2

3 , using the same number of samples as the pricing algorithm.

We omit the straightforward proof. Note that to distinguish P1 and P2 correctly
with probability at least 2

3 , the statistical distance between P1 and P2 is least 1
3 . So

we have the following theorem.

Theorem 4.2. If value distributions D1 and D2 have disjoint (1−3ε)-approximate
price sets, and there is a pricing algorithm that is (1 − ε)-approximate for both D1

and D2, then the algorithm uses at least 4
9

1
DKL(D1‖D2)+DKL(D2‖D1) samples.

A tool for constructing distributions with small KL divergence. Given Theorem 4.2,
our goal is to construct a pair of distributions with small relative entropy subject to
having disjoint approximately optimal price sets. Here we introduce a lemma from
the differential privacy literature that is useful for constructing pairs of distributions
with small KL divergence.

Lemma 4.3 (see [12, Lemma III.2]). If distributions D1 and D2 with densities

f1 and f2 satisfy that (1 + ε)−1 ≤ f1(ω)
f2(ω) ≤ (1 + ε) for every ω ∈ Ω, then

DKL(D1‖D2) +DKL(D2‖D1) ≤ ε2 .

For completeness, we include the proof.

Proof. By the definition of KL divergence, we have

DKL(D1‖D2) +DKL(D2‖D1)

=

∫
Ω

[
p1(ω) ln

p1(ω)

p2(ω)
+ p2(ω) ln

p2(ω)

p1(ω)

]
dω

=

∫
Ω

[
p1(ω)

(
ln
p1(ω)

p2(ω)
+ ln

p2(ω)

p1(ω)

)
+
(
p2(ω)− p1(ω)

)
ln
p2(ω)

p1(ω)

]
dω

≤
∫

Ω

[
0 + |p2(ω)− p1(ω)| ln(1 + ε)

]
dω.

The last inequality follows by (1 + ε)−1 ≤ f1(ω)
f2(ω) ≤ (1 + ε). Further, this condition also

implies that

|p2(ω)− p1(ω)| ≤
(
(1 + ε)− 1

)
min{p1(ω), p2(ω)} = εmin{p1(ω), p2(ω)}.

Thus, we have

DKL(D1‖D2) +DKL(D2‖D1) ≤ ε ln(1 + ε)

∫
Ω

min{p1(ω), p2(ω)}dω

≤ ε ln(1 + ε)

≤ ε2.
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The following two useful variants have similar proofs.

Lemma 4.4. If distributions D1 and D2 satisfy the condition in Lemma 4.3, and
further there is a subset of outcomes Ω′ such that p1(ω) = p2(ω) for every ω ∈ Ω′,
then

DKL(D1‖D2) +DKL(D2‖D1) ≤ ε2
(
1− p1(Ω′)

)
.

Lemma 4.5. If distributions D1 and D2 satisfy that (1 + ε)−1 ≤ f1(ω)
f2(ω) ≤ (1 + ε)

for every ω ∈ Ω and (1 + ε′)−1 ≤ f1(ω)
f2(ω) ≤ (1 + ε′) for any ω ∈ Ω′ ⊆ Ω, then

DKL(D1‖D2) +DKL(D2‖D1) ≤ ε2p1(Ω \ Ω′) + (ε′)2p1(Ω′) .

4.2. Applications. Inspired by the above lemmas, we will aim to construct D1

and D2 such that the densities of all values are close in the two distributions.
General lower bound. As a warm-up case, we demonstrate how to use the above

framework to derive a tight (up to a log factor) sample complexity lower bound for
general distributions using R∗δ as benchmark. Recall that R∗δ is the optimal revenue
by prices with sale probability at least δ.

Theorem 4.6. Every pricing algorithm that guarantees at least (1−ε)R∗δ revenue
for all distributions uses Ω(δ−1ε−2) samples.

Proof. Let D1 and D2 be two distributions with support {H = δ−1, 2, 1}: D1

takes values H with probability 1+4ε
H , 2 with probability 1−4ε

H , and 1 with probability
1− 2

H ; D2 takes values H with probability 1−4ε
H , 2 with probability 1+4ε

H , and 1 with
probability 1− 2

H . Clearly, D1 and D2 have disjoint (1− 3ε)-approximate price sets.
Further,

DKL(D1‖D2) = DKL(D2‖D1) = 1+4ε
H ln 1+4ε

1−4ε + 1−4ε
H ln 1−4ε

1+4ε = 8ε
H ln 1+4ε

1−4ε = O
(
ε2

H

)
.

So the claim follows from Theorem 4.2.

The way we prove Theorem 4.6 also implies a tight (up to a log factor) sample
complexity lower bound for distributions with support in [1, H].

Theorem 4.7. Every pricing algorithm that is (1− ε)-approximate for all distri-
butions with support in [1, H] uses Ω(Hε−2) samples.

Regular lower bound. We now show that (1 − ε)-approximate pricing for regular
distributions requires Ω(ε−3) samples.

Theorem 4.8. Any pricing algorithm that is (1 − ε)-approximate for all regular

distributions uses at least (1−6ε)2

486ε3 = Ω( 1
ε3 ) samples.

This result implies, for example, that we need at least 12 samples to guarantee
95 percent of the optimal revenue, and at least 1935 samples to guarantee 99 percent.

We next describe the two distributions that we use and explain the lower bound
for regular distributions. Let D1 be the distribution with c.d.f. F1(v) = 1− 1

v+1 and

p.d.f. f1(v) = 1
(v+1)2 . Let ε0 = 3ε and let D2 be the distribution with c.d.f.

F2(v) =

1− 1
v+1 if 0 ≤ v ≤ 1−2ε0

2ε0
,

1− (1−2ε0)2

v−(1−2ε0) if v > 1−2ε0
2ε0

,
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Fig. 1. D1 is the distribution with revenue curve R1 that goes from (0, 1) to (1, 0). D2 is
identical to D1 for quantiles from 2ε0 to 1; for quantiles from 0 to 2ε0, D2’s revenue curve goes
from (0, (1− 2ε0)2) to (2ε0, 1− 2ε0).

and p.d.f.

f2(v) =


1

(v+1)2 if 0 ≤ v ≤ 1−2ε0
2ε0

,

(1−2ε0)2

(v−(1−2ε0))2 if v > 1−2ε0
2ε0

.

We have
(11)

f1

f2
=


1 if 0 ≤ v ≤ 1− 2ε0

2ε0
,

1

(1− 2ε0)2

(v − (1− 2ε0))2

(v + 1)2
∈ [(1− 2ε0)2, (1− 2ε0)−2] if v >

1− 2ε0
2ε0

.

The revenue curves of D1 and D2 are summarized in Figure 1.

Lemma 4.9.

DKL(D1‖D2) +DKL(D2‖D1) ≤ 8ε30
(1− 2ε0)2

.

Proof. By (11), we have (1 − 2ε0) ≤ f1
f2
≤ (1 − 2ε0)−1. Further, note that a

1− 2ε fraction (w.r.t. quantile) of D1 and D2 are identical. The lemma follows from
Lemma 4.4.

Let R1 and R2 be the revenue curves of D1 and D2. Let R∗1 and R∗2 be the corre-
sponding optimal revenues. The following lemmas follow directly from the definition
of D1 and D2.

Lemma 4.10. R1(v) ≥ (1− ε0)R∗1 if and only if v ≥ 1
ε0
− 1.

Lemma 4.11. R2(v) ≥ (1− ε0)R∗1 if and only if 1
ε0
− 3 + 2ε0 ≥ v ≥ 1

2ε0−ε20
− 1.

Recall that ε0 = 3ε. The (1 − 3ε)-optimal price sets of D1 and D2 are disjoint.
Theorem 4.8 now follows from Theorem 4.2 and Lemma 4.9.

MHR lower bound. We now turn to MHR distributions and show that (1 − ε)-
approximate pricing for MHR distributions requires Ω(ε−3/2) samples.

Theorem 4.12. Any pricing algorithm that is (1 − ε)-approximate for all MHR
distributions uses at least Ω(ε−3/2) samples.

We first describe the two distributions that we use. Let D1 be the uniform
distribution over [1, 2]. Let ε0 = cε, where c is a sufficiently large constant to be
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Fig. 2. R1 (the lower solid curve) is a quadratic curve that peaks at q = 1, R1 = 1, and passes
through q = 0, R1 = 0. To construct R2, first draw the revenue curves of the uniform distributions
over [1+ 2ε0

1−√ε0+2ε0
, 2] (the dashed curve) and [1, 1+ 1

1−2
√
ε0

] (the dash-dotted curve). R2 (the bold

solid curve) is the lower envelope of the two curves.

determined later. Define D2 by scaling up the density (of D1) in v ∈ [1 +
√
ε0, 2] by

a factor of 1 + 2ε0
1−√ε0 and scaling down the density in v ∈ [1, 1 +

√
ε0] by a factor

1− 2
√
ε0, i.e.,

f2(v) =

{
1− 2

√
ε0 if 1 ≤ v ≤ 1 +

√
ε0,

1 + 2ε0
1−√ε0 if 1 +

√
ε0 < v ≤ 2.

We summarize the revenue curves of D1 and D2 in Figure 2.

Lemma 4.13.

DKL(D1‖D2) +DKL(D2‖D1) = O
(
ε
3/2
0

)
.

Proof. By our choice of D1 and D2, D1 and D2 differ by 1 + 2ε0
1−√ε0 for v ∈

[1+
√
ε0, 2], and by 1−2

√
ε0 for v ∈ [1, 1+

√
ε0]. The lemma follows from Lemma 4.5.

Let q∗i be the revenue optimal quantile of Ri, and let R∗i = Ri(q
∗
i ) be the optimal

revenue.

Lemma 4.14. q∗1 = 1 and R∗1 = 1.

Proof. R1(q) = q(2−q) is a quadratic curve that peaks at q = 1 withR1(1) = 1.

Lemma 4.15. q∗2 = 1−√ε0 + 2ε0 and R∗2 = 1 + ε0 + 2ε3/2.

Proof. For 1 ≤ v ≤ 1 +
√
ε0 and 1−√ε0 + 2ε0 ≤ q(v) ≤ 1, R2 is identical to the

revenue curve of the uniform distribution over [1, 1+ 1
1−2
√
ε0

], i.e., q(
2−2
√
ε0

1−2
√
ε0
− 1

1−2
√
ε0
q),

which is maximized at q = 1−√ε0.
For 1 +

√
ε0 ≤ v ≤ 2 and 0 ≤ q(v) ≤ 1−√ε0 + 2ε0, R2 is identical to the revenue

curve of the uniform distribution over [1+ 2ε0
1−√ε0+2ε0

, 2], i.e., q(2− 1−√ε0
1−√ε0+2ε0

q), which

is maximized at q = 1 in interval [0, 1].
R2 is maximized at the intersection of the two parts, where q = 1 − √ε0 + 2ε0,

and R2(1−√ε0 + 2ε0) = 1 + ε0 + 2ε3/2.

The following lemmas follow from our construction of D1 and D2.

Lemma 4.16. If R1(q) ≥ (1− 3ε)R∗1, then q ≥ 1−
√

3ε and v(q) ≤ 1−3ε
1−
√

3ε
R∗1.

Lemma 4.17. If R2(q) ≥ (1 − 3ε)R∗2, then q ≤ 1 − √ε0 + 2ε0 +
√

3ε and v(q) ≥
1−3ε

1−√ε0+2ε0+
√

3ε
R∗2.
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Therefore, when ε0 = cε for sufficiently large constant c, we have 1 −
√

3ε >
1 − √ε0 + 2ε0 +

√
3ε. Further note that R∗2 > R∗1, so the (1 − 3ε)-optimal price

sets of D1 and D2 are disjoint. Theorem 4.12 then follows from Theorem 4.2 and
Lemma 4.13.

5. The single-sample regime: Beating identity pricing for MHR dis-
tributions. This section considers deterministic 1-sample pricing strategies. Recall
from the introduction that “identity pricing,” meaning p(vi) = v1, has an approxima-
tion guarantee of 1

2 for the class of regular distributions. There is no better 1-sample
deterministic pricing strategy for the class of regular distributions (Theorem 6.1).
Also, identity pricing is no better than 1

2 -approximate even for the special case of
MHR distributions.

Theorem 5.1. The identity pricing algorithm is no better than a 1
2 -approximation

for MHR distributions.

Proof. Consider the uniform distribution over [1 − ε, 1]. The optimal revenue is

1−ε, with reserve price 1−ε. The identity pricing algorithm gets revenue 1
ε2

∫ 1

1−ε v(1−
v)dv = 1

2 −
1
3ε. The approximation ratio approaches 1

2 as ε goes to zero.

We remark that the lower bound still holds if the support must start from 0
because we can add a little mass on [0, 1− ε] without changing the nature of the lower
bound. The same trick applies to the lower bounds in section 6.

Our next goal is to show that scaling down the sampled value, i.e., p(v) = cv
for some constant c < 1, achieves an approximation ratio better than 1

2 for MHR
distributions.

Theorem 5.2. p(v) = 0.85v is 0.589-approximate for MHR distributions.

The intuition is as follows. We divide the quantile space into two subsets: those
that are larger than the quantile of the optimal reserve, i.e., q∗, and those that are
smaller.

• First, consider those that are larger. We recall the argument that identity
pricing is 1

2 -approximate: the expected revenue of identity pricing is the area
under the revenue curve; by concavity of the revenue curve, this is at least
half the height and, thus, half the optimal revenue. We show that the revenue
curve of an MHR distribution is at least as concave as that of an exponential
distribution. This implies that identity pricing is strictly better than 1

2 -
approximate for quantiles larger than q∗. Furthermore, scaling down the
price by a factor of c decreases the revenue by at most a factor of c. For c < 1
close enough to 1, the expected revenue of this part is still strictly better than
one-half of the optimal.

• Next, consider quantiles that are smaller than q∗. A worst-case scenario for
identity pricing is an approximate point mass, where the sale probability of
identity pricing is only 1

2 on average. By scaling down the sampled value by a
little, we double the selling probability w.r.t. a point mass without changing
the price by much. So the expected revenue of this part is also strictly better
than one-half of the optimal.

We now proceed with the formal argument.
Let R̂(q) be the expected revenue of reserve price p(v(q)) = cv(q) w.r.t. revenue

curve R. Define R̂exp(q) similarly w.r.t. the exponential distribution Dexp. For ease of
presentation, we will without loss of generality scale the values so that v(q∗) = vexp(q∗)
and, thus, R(q∗) = Rexp(q∗).
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Technical lemmas about MHR distributions. Given the revenue at quan-
tile q∗, Rexp minimizes the revenue at any quantile larger than q∗ among all MHR
distributions.

Lemma 5.3. For any 1 ≥ q ≥ q∗, R(q) ≥ Rexp(q).

Proof. Suppose it is not true. Let q0 be a quantile such that R(q0) < Rexp(q0).
Since R(q∗) = Rexp(q∗) and R and Rexp are continuous, there exists q1 ∈ [q∗, q0] such
that R(q1) = Rexp(q1) and R′(q1) ≤ (Rexp)′(q1). Similarly, since R(1) ≥ 0 = Rexp(1),
there exists q2 ∈ [q0, 1] such that R(q2) < Rexp(q2) and R′(q2) > (Rexp)′(q2).

Recall that R′(q1) = φ(v(q1)) and R′(q2) = φ(v(q2)). By the MHR assumption,

(12) R′(q1)−R′(q2) = φ(v(q1))− φ(v(q2)) ≥ v(q1)− v(q2) =
R(q1)

q1
− R(q2)

q2
.

By the definition of Rexp, the above relation holds with equality for Rexp:

(13) (Rexp)′(q1)− (Rexp)′(q2) =
Rexp(q1)

q1
− Rexp(q2)

q2
.

Subtracting (13) from (12) and using that R(q1) = Rexp(q1), we have

R′(q1)−R′(q2)− (Rexp)′(q1) + (Rexp)′(q2) ≥ Rexp(q2)

q2
− R(q2)

q2
> 0 ,

contradicting R′(q1) ≤ (Rexp)′(q1) and R′(q2) > (Rexp)′(q2).

As a corollary of Lemma 5.3, Rexp minimizes the value at each quantile larger
than q∗ (Lemma 5.4), and it maximizes the quantile at each value smaller than v(q∗)
(Lemma 5.5).

Lemma 5.4. For any 1 ≥ q ≥ q∗, v(q) ≥ vexp(q).

Lemma 5.5. For any 0 ≤ v ≤ v(q∗), q(v) ≥ qexp(v).

Expected revenue of large quantiles. We show that for quantiles between q∗

and 1, Rexp is indeed the worst-case scenario.

Lemma 5.6. For any 1 ≥ q ≥ q∗, R̂(q) ≥ R̂exp(q).

Proof. We abuse notation and let R(v) = R(q(v)). By Lemma 5.4, v(q) ≥ vexp(q).
So we have cv(q) ≥ cvexp(q). Since R(v) is nondecreasing when v > v(q∗) and
v(q∗) > cv(q) ≥ cvexp(q), we have R̂(q) = R(cv(q)) ≥ R(cvexp(q)).

Further, by Lemma 5.5, Rexp minimizes the sale probability at any price v ≤ v(q∗)
and, thus, minimizes the revenue at price v. So we haveR(cvexp(q)) ≥ Rexp(cvexp(q)) =
R̂exp(q) and the lemma follows.

As a direct corollary of Lemma 5.6, we can lower bound the expected revenue
of quantiles between q∗ and 1 by the expected revenue of the worst-case distribution
Rexp.

Lemma 5.7.
∫ 1

q∗
R̂(q)dq ≥

∫ 1

q∗
R̂exp(q)dq.

Expected revenue of small quantiles. Next, we consider quantiles between 0
and q∗. Let q0 be such that cv(q0) = v(q∗), i.e., the reserve price is smaller than v(q∗)
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if and only if the sample has quantile larger than q0. We will first lower bound the
expected revenue of quantiles smaller than q0, and then handle the other quantiles.

Lemma 5.8. For any 0 ≤ q′ ≤ q0,
∫ q′

0
R̂(q)dq ≥ 1+

√
1−c

2 q′R(q′).

Proof. Let c0 = c
2 . For any i ≥ 0, let ci+1 = 1 − c

4ci
. We will inductively show

that
∫ q′

0
R̂(q)dq ≥ ciq′R(q′), and then prove that ci converges to 1+

√
1−c

2 .

Base case. By concavity of the revenue curve,
∫ q′

0
R(q)dq ≥ 1

2R(q′). Further,

lower reserve prices have larger sale probability. So R̂(q) ≥ cR(q) and the base case
follows.

Inductive step. Let q1 be such that cv(q1) = v(q′), i.e., the reserve price is smaller
than v(q′) if and only if the sample has quantile larger than q1. We have

R(q1) = v(q1)q1 =
v(q′)q1

c
=

q1

cq′
q′v(q′) =

q1

cq′
R(q′).

For the interval from 0 to q1, by the inductive hypothesis we have∫ q1

0

R̂(q)dq ≥ ciq1R(q1) =
ciq

2
1

cq′
R(q′).

Next, consider the interval from q1 to q′. For any q1 ≤ q ≤ q′, by that q′ ≤ q0 and
our choice of q0, we have v(q∗) < cv(q) < cv(q1) = v(q′). So R̂(q) ≥ R(q′). Thus,

∫ q′

q1

R̂(q)dq ≥ (q′ − q1)R(q′).

Putting everything together, we have

∫ q′

0

R̂(q)dq ≥
(
ci
c

(
q1

q′

)2

+

(
1− q1

q′

))
q′R(q′).

Minimizing the right-hand side over 0 ≤ q1 ≤ q′, we have

∫ q′

0

R̂(q)dq ≥
(

1− c

4ci

)
q′R(q′) = ci+1q

′R(q′).

Convergence of ci. There is only one stable stationary point, 1+
√

1−c
2 , for the

recursion ci+1 = 1 − c
4ci

. The other, nonstable, stationary point is 1−
√

1−c
2 . Note

that for any 0 < c < 1, c0 = c
2 > 1−

√
1−c

2 . So ci converges to 1+
√

1−c
2 as i goes to

infinity.

Lemma 5.9. If c = 0.85, then
∫ q∗

0
R̂(q)dq ≥ 0.656q∗R(q∗).

Proof. Recall that cv(q0) = v(q∗). So

R(q0) = q0v(q0) =
q0

cq∗
q∗v(q∗) =

q0

cq∗
R(q∗).
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Plugging c = 0.85 and 1+
√

1−c
2 ≥ 0.693 into Lemma 5.8, we have

(14)

∫ q0

0

R̂(q)dq ≥ 0.693q0R(q0) = 0.693
1

c

(
q0

q∗

)2

q∗R(q∗) ≥ 0.815

(
q0

q∗

)2

q∗R(q∗).

On the other hand, for every q0 ≤ q ≤ q∗, by concavity of the revenue curve, we have

qv(q) ≥ q − q0

q∗ − q0
q∗v(q∗) +

q∗ − q
q∗ − q0

q0v(q0).

Thus,

v(q) ≥ q∗v(q∗)− q0v(q0)

q∗ − q0
+

1

q

q0q
∗

q∗ − q0

(
v(q0)− v(q∗)

)
.

Further, by our choice of q0, the quantile of cv(q) is at least q∗. So we have

R̂(q) ≥ cv(q)q∗ ≥
(
q∗v(q∗)− q0v(q0)

q∗ − q0
+

1

q

q0q
∗

q∗ − q0

(
v(q0)− v(q∗)

))
cq∗.

Let x = q0
q∗ . Plugging in cv(q0) = v(q∗), R(q0) = q0

cq∗R(q∗), and c = 0.85, we have

(
0.85− x
q∗ − q0

+
1

q

(1− 0.85)x

1− x

)
q∗R(q∗).

Integrating over q from q0 to q∗, we have

(15)

∫ q∗

q0

R̂(q)dq ≥
(

(0.85− x) + ln

(
1

x

)
0.15x

1− x

)
q∗R(q∗).

Summing up (14) and (15) gives

∫ q∗

0

R̂(q)dq ≥
(

(0.85− x) + ln

(
1

x

)
0.15x

1− x
+ 0.815x2

)
q∗R(q∗).

We would like to minimize f(x) for x ∈ [0, 1], where

f(x) = (0.85− x) + ln

(
1

x

)
0.15x

1− x
+ 0.815x2.

Taking the derivative we have

f ′(x) = −1− 0.15

1− x
− 0.15 ln(x)

(1− x)2
+ 1.63x.

This function has two roots in x ∈ [0, 1], at x ∈ [0.546, 0.547] (f ′(0.546) < −3 ∗ 10−5
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and f ′(0.547) > 10−3) and at x ∈ [4.7 · 10−4, 4.8 · 10−4] (f ′(4.7 · 10−4) > 1.3 · 10−3

and f ′(4.8 · 10−4) < 1.9 · 10−3). Testing the second derivative

f ′′(x) = − 0.15

(1− x)2
− 0.3 ln(x)

(1− x)3
− 0.15

x(1− x)2
+ 1.63

we have that x ≈ 0.546 is a minimum point (f ′′(0.546) ≈ 1.5) and x ≈ 4.7 ∗ 10−4 is a
local maximum (f ′′(4.7∗10−4) ≈ −315). Therefore, the only remaining point we need
to test is x = 0 (the end of the interval [0, 1]) and we have limx→0 f(x) = 0.85.

Proof of Theorem 5.2. Plugging in the exponential distribution in Lemma 5.7, we
obtain ∫ 1

q∗
R̂(q)dq ≥ c

(c+ 1)2

1− (q∗)c+1 + (q∗)c+1 ln(q∗)c+1

−(q∗) ln(q∗)
R(q∗).

Combining this with Lemma 5.9 yields∫ 1

0

R̂(q)dq ≥
(

0.656q∗ +
c

(c+ 1)2

1− (q∗)c+1 + (q∗)c+1 ln(q∗)c+1

−(q∗) ln(q∗)

)
R(q∗).

We would like to lower bound f(x), where

f(x) = 0.656x+
c

(c+ 1)2

(
− x−1 ln−1(x) + xc ln−1(x)− (c+ 1)xc

)
.

The derivative f ′(x) is

0.656+
c

(c+ 1)2

(
x−2 ln−1(x)+x−2 ln−2(x)+cxc−1 ln−1(x)−xc−1 ln−2(x)−c(c+1)xc

)
.

For c = 0.85, we have a root at some x ∈ [0.544, 0.545] as f ′(0.544) < −1.7 · 10−4 and
f ′(0.545) > 9 · 10−4. By testing the second derivative, this is a local minimum and
the only root in the interval. The minimal value is at least 0.589 and the theorem
follows.

6. Single-sample negative results. First, we note that identity pricing is an
optimal deterministic strategy for regular distributions.

Theorem 6.1. No deterministic 1-pricing strategy is better than a 1
2 -approximation

for regular distributions.

Proof. Distributions with triangle revenue curves (with vertices (0, 0), (1, 0), and
(q∗, R(q∗))) are commonly considered to be the worst-case regular distributions be-
cause they have the least concave revenue curves. In particular, we consider two such
distributions: a point mass at v, whose revenue curve is a triangle with (q∗, R(q∗)) =
(1, v), and the distribution F (v) = 1 − 1

v+1 , whose revenue curve is a triangle with
(q∗, R(q∗)) = (0, 1).

To achieve a nontrivial approximation ratio when the distribution is a point mass
at v, p(v) ≤ v must hold. Then, consider the second distribution. The revenue at price
v is v

v+1 , which is strictly increasing in v. So every deterministic pricing algorithm
that satisfies p(v) ≤ v gets revenue less than or equal to that of the identity pricing
algorithm p(v) = v, which is 1

2 -approximate for the second distribution.

Next, we turn to MHR distributions. We first present a negative result that holds
for every continuously differentiable pricing.



MAKING THE MOST OF YOUR SAMPLES 671

Theorem 6.2. No continuously differentiable 1-pricing strategy is better than
0.677-approximate for MHR distributions.

Proof. Let us first assume that the pricing function is linear, i.e., b(v) = cv. As
in the proof of Theorem 6.1, the algorithm has a finite approximation ratio only if
c ≤ 1.

We consider exponential distributions and truncated exponential distributions,
where all values higher than some threshold v∗ in an exponential distribution are
replaced with a uniform distribution over [v∗, v∗+α], where v∗ and α are parameters
to be determined later. We show that no scaling parameter c can achieve better than
a 0.67-approximation in both the truncated and untruncated cases.

Exponential distribution. Consider the approximation ratio w.r.t. the exponential
distribution Dexp. Given a sample with quantile q, its value is vexp(q) = − ln q. So
b(v(q)) = −c ln q = − ln qc and the sale probability is qc. The expected revenue of
b(v) is ∫ 1

0

−qc ln qcdq =
c

(c+ 1)2
.

Recall that Rexp(q) = −q ln q, which is maximized at q = 1
e with optimal revenue 1

e .
So the approximation ratio w.r.t. Dexp is ec

(c+1)2 . Note that this immediately gives a

lower bound of e
4 ≈ 0.68. If c ≤ 0.878, then ec

(c+1)2 < 0.677. For now on, we assume

that c ≥ 0.878.
Truncated exponential distribution. Let q∗ = 0.43 and consider an exponential

distribution such that v(q∗) = 1. Truncate the exponential distribution at q∗ with a
uniform distribution over [1, 1 + α] with α = 0.74. Hence, for q ∈ [q∗, 1], v(q) = ln q

ln q∗ ;

for q ∈ [0, q∗], v(q) = 1 +α(1− q
q∗ ). It is easy to check that the revenue is maximized

at q = q∗ with maximal revenue q∗.
Next, we upper bound the expected revenue of b(v). Consider first the contribu-

tion from quantiles q ∈ [ 1
e , 1]. The analysis is similar to that of Dexp, except that the

values are scaled up by − 1
ln q∗ . So this part contributes

− 1

ln q∗

∫ 1

q∗
−qc ln qcdq = − 1

ln q∗
c

(c+ 1)2

(
1− (q∗)c+1 + (q∗)c+1 ln(q∗)c+1

)
≤ 2.7556

c

(c+ 1)2

(
1− (q∗)c+1 + (q∗)c+1 ln(q∗)c+1

)
q∗ .

Now consider the quantiles that are smaller than q∗ and have values at most
1
c , i.e., the corresponding reserve price is smaller than 1. These are quantiles q ∈
[ cα+c−1

cα q∗, q∗]. We upper bound the expected revenue by the optimal revenue q∗

when the sampled quantile is in this interval. So this part contributes at most(
q∗ − cα+ c− 1

cα
q∗
)
q∗ =

(
1− c
cα

)
(q∗)2 ≤ 0.5811

(
1

c
− 1

)
q∗ .

Finally, consider quantiles q ∈ [0, cα+c−1
cα q∗]. The corresponding value is v(q) =

1 +α(1− q
q∗ ) and the reserve price is b(v) = c(1 +α(1− q

q∗ )). The sale probability at

this price is 1+α−b(v)
α q∗. So this part contributes

∫ cα+c−1
cα q∗

0

b(v)
1 + α− b(v)

α
q∗dq.
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Note that db(v) = − cαq∗ dq, b = 1 when q = cα+c−1
cα q∗, and b = c(1 + α) when q = 0.

So the above equals

(q∗)2

cα2

∫ c(1+α)

0

b(v)(1 + α− b(v))db(v)

=
(q∗)2

cα2

(
1 + α

2

((
c(1 + α)

)2 − 1
)
− 1

3

((
c(1 + α)

)3 − 1
))

=
(q∗)2

cα2

((
c2

2
− c3

3

)
(1 + α)3 − 1 + α

2
+

1

3

)
≤
(
−1.3789c2 + 2.0683c− 0.4215

1

c

)
q∗.

Putting everything together and dividing the expected revenue by the optimal
revenue q∗, the approximation ratio is at most

2.7556
c

(c+ 1)2

(
1− (q∗)c+1 + (q∗)c+1 ln(q∗)c+1

)
+ 0.5811

(
1

c
− 1

)

+

(
−1.3768c2 + 2.2683c− 0.4215

1

c

)
.

We numerically maximize the above function over c ∈ [0.878, 1]. It is decreasing in
the interval [0.878, 1] and takes value about 0.6762 at c = 0.878. This completes the
proof for linear pricing functions.

Continuously differentiable pricing functions. Next, we explain how to reduce
the case of a continuously differentiable pricing function to the linear pricing function
case. Since b(v) is continuously differentiable, for any δ > 0, there exists ε > 0 such
that for any v ∈ [0, ε], |b′(v)− b′(0)| < δ, i.e., in this neighborhood of 0, b(v) behaves
like a linear function with slope approximately b′(0) (up to error δ). So we can handle
them like the linear case.

Formally, if b′(0) < 1
2 , then b(v) ≤ ( 1

2 + δ)v for v ≤ ε. So its approximation ratio
w.r.t. a point mass at v is at most 1

2 + δ < 0.677 for sufficiently small δ.
Next, assume b′(0) > 1

2 . Let us scale down the values in the exponential distri-
bution and the truncated exponential distribution from the linear case such that all
values are less than ε.13 For any sampled value v, the expected revenue is b(v)q(b(v)),
where (f ′(0)− δ)v < b(v) < (f ′(0) + δ)v. So

b(v)q(b(v)) ≤ (f ′(0) + δ)vq((f ′(0)− δ)v) =
f ′(0) + δ

f ′(0)− δ
(f ′(0)− δ)vq((f ′(0)− δ)v) ,

which is at most f ′(0)+δ
f ′(0)−δ times larger than the revenue of linear pricing function

(f ′(0)− δ)v. Letting δ go to zero completes the proof.

Next, we present a slightly weaker bound that applies to all deterministic 1-pricing
algorithms (continuously differentiable or not).

Theorem 6.3. No deterministic 1-pricing strategy is better than e
4 ≈ 0.68-approx-

imate for MHR distributions.

13Note that the support of the exponential distribution spans all nonnegative real numbers. So
instead of scaling to make all values smaller than ε, we will make sure 1−10−5 fraction of the values
are smaller than ε; the remaining values can change the approximation ratio by at most 10−5.
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Proof. By previous arguments, it suffices to consider only (deterministic) pricing
functions with p(v) ≤ v for all v. We consider a distribution over value distributions.
Draw λ from an exponential distribution with parameter γ, i.e., the density of λ is
γe−γλ, where γ is a parameter to be determined later. Let the value distribution be
an exponential distribution with parameter λ, i.e., the density of v is λe−λv.

We first compute the best response pricing algorithm p(v) subject to p(v) ≤ v for
this case. The expected revenue of p(v) is

R =

∫ ∞
0

[∫ ∞
0

λe−λvp(v)e−λp(v)dv

]
γe−γλdλ

= γ

∫ ∞
0

[∫ ∞
0

λe−λ(v+p(v)+γ)p(v)dλ

]
dv

= γ

∫ ∞
0

[∫ ∞
0

λe−λ(v+p(v)+γ)p(v)dλ

]
dv

= γ

∫ ∞
0

[
p(v)

v + p(v) + γ

∫ ∞
0

(v + p(v) + γ)λe−λ(v+p(v)+γ)dλ

]
dv.

Note that p(v)
(v+p(v)+γ)2 is maximized at p(v) = v for p(v) ≤ v. So the best response

is p(v) = v. Given any λ, the optimal revenue is 1
eλ , and the expected revenue of

p(v) = v is 1
4λ . So the approximation ratio is at most e

4 ≈ 0.68, as desired.
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