
SIAM J. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 46, No. 3, pp. 992–1017

A PAC APPROACH TO APPLICATION-SPECIFIC
ALGORITHM SELECTION∗

RISHI GUPTA† AND TIM ROUGHGARDEN†

Abstract. The best algorithm for a computational problem generally depends on the “relevant
inputs,” a concept that depends on the application domain and often defies formal articulation.
While there is a large body of literature on empirical approaches to selecting the best algorithm for a
given application domain, there has been surprisingly little theoretical analysis of the problem. This
paper adapts concepts from statistical and online learning theory to reason about application-specific
algorithm selection. Our models capture several state-of-the-art empirical and theoretical approaches
to the problem, ranging from self-improving algorithms to empirical performance models, and our
results identify conditions under which these approaches are guaranteed to perform well. We present
one framework that models algorithm selection as a statistical learning problem, and our work
here shows that dimension notions from statistical learning theory, historically used to measure the
complexity of classes of binary- and real-valued functions, are relevant in a much broader algorithmic
context. We also study the online version of the algorithm selection problem, and give possibility
and impossibility results for the existence of no-regret learning algorithms.

Key words. algorithm selection, parameter tuning, PAC learning, online learning, meta-
algorithms

AMS subject classification. 68Q32

DOI. 10.1137/15M1050276

1. Introduction. Rigorously comparing algorithms is hard. The most basic
reason for this is that two different algorithms for a computational problem generally
have incomparable performance: one algorithm is better on some inputs, but worse
on the others. How can a theory advocate one of the algorithms over the other?
The simplest and most common solution in the theoretical analysis of algorithms
is to summarize the performance of an algorithm using a single number, such as
its worst-case performance or its average-case performance with respect to an input
distribution. This approach effectively advocates using the algorithm with the best
summarizing value (e.g., the smallest worst-case running time).

Solving a problem “in practice” generally means identifying an algorithm that
works well for most or all instances of interest. When the “instances of interest”
are easy to specify formally in advance—say, planar graphs—the traditional analysis
approaches often give accurate performance predictions and identify useful algorithms.
However, instances of interest commonly possess domain-specific features that defy
formal articulation. Solving a problem in practice can require selecting an algorithm
that is optimized for the specific application domain, even though the special structure
of its instances is not well understood. While there is a large literature, spanning
numerous communities, on empirical approaches to algorithm selection (e.g. [13, 18,
16, 17, 22, 24]), there has been surprisingly little theoretical analysis of the problem.

∗Received by the editors November 30, 2015; accepted for publication (in revised form) January
25, 2017; published electronically June 13, 2017. A preliminary version of this paper appeared in the
Proceedings of the 7th Innovations in Theoretical Computer Science Conference, January 2016.

http://www.siam.org/journals/sicomp/46-3/M105027.html
Funding: This research was supported in part by NSF awards CCF-1215965 and CCF-1524062.
†Dept. of Computer Science, Stanford University, Stanford, CA 94305 (rishig@cs.stanford.edu,

tim@cs.stanford.edu).

992

http://www.siam.org/journals/sicomp/46-3/M105027.html
mailto:rishig@cs.stanford.edu
mailto:tim@cs.stanford.edu

A PAC APPROACH TO ALGORITHM SELECTION 993

One possible explanation is that worst-case analysis, which is the dominant algorithm
analysis paradigm in theoretical computer science, is deliberately application-agnostic.

This paper demonstrates that application-specific algorithm selection can be use-
fully modeled as a learning problem. Our models are straightforward to understand,
but also expressive enough to capture several existing approaches in the theoreti-
cal computer science and AI communities, ranging from the design and analysis of
self-improving algorithms [1] to the application of empirical performance models [18].

We present one framework that models algorithm selection as a statistical learn-
ing problem in the spirit of Haussler [15]. We prove that many useful families
of algorithms, including broad classes of greedy and local search heuristics, have
small pseudo-dimension and hence low generalization error. Previously, the pseudo-
dimension (and the Vapnik–Chervonenk is (VC) dimension, fat shattering dimension,
etc.) has been used almost exclusively to quantify the complexity of classes of pre-
diction functions (e.g., [15, 2]).1 Our results demonstrate that this concept is useful
and relevant in a much broader algorithmic context. It also offers a novel approach to
formalizing the oft-mentioned but rarely defined “simplicity” of a family of algorithms.

We also study regret-minimization in the online version of the algorithm selection
problem. We show that the “non-Lipschitz” behavior of natural algorithm classes
precludes learning algorithms that have no regret in the worst case, and prove positive
results under smoothed analysis-type assumptions.

Paper organization. Section 2 outlines a number of concrete problems that mo-
tivate the present work, ranging from greedy heuristics to SAT (satisfiability prob-
lem) solvers, and from self-improving algorithms to parameter tuning. The reader
interested solely in the technical development can skip this section with little loss.
Section 3 models the task of determining the best application-specific algorithm as a
PAC (probably approximately correct) learning problem, and brings the machinery
of statistical learning theory to bear on a wide class of problems, including greedy
heuristic selection, sorting, and gradient descent step size selection. A time-limited
reader can glean the gist of our contributions from subsection 3.1–3.3.3. Section 4
considers the problem of learning an application-specific algorithm online, with the
goal of minimizing regret. Subsection 4.2 and 4.3 present negative and positive re-
sults for worst-case and smoothed instances, respectively. Section 5 concludes with a
number of open research directions.

2. Motivating scenarios. Our learning framework sheds light on several well-
known approaches, spanning disparate application domains, to the problem of learning
a good algorithm from data. To motivate and provide interpretations of our results,
we describe several of these in detail.

2.1. Example #1: Greedy heuristic selection. One of the most common
and also most challenging motivations for algorithm selection is presented by compu-
tationally difficult optimization problems. When the available computing resources
are inadequate to solve such a problem exactly, heuristic algorithms must be used.
For most hard problems, our understanding of when different heuristics work well re-
mains primitive. For concreteness, we describe one current and high-stakes example

1A few exceptions: Srebro and Ben-David [32] use the pseudo-dimension to study the problem of
learning a good kernel for use in a support vector machine, Long [26] parameterizes the performance
of the randomized rounding of packing and covering linear programs by the pseudo-dimension of a
set derived from the constraint matrix, and Mohri and Medina [28] and Morgenstern and Rough-
garden [29] use dimension notions from learning theory to bound the sample complexity of learning
approximately revenue-maximizing truthful auctions.

994 RISHI GUPTA AND TIM ROUGHGARDEN

of this issue, which also aligns well with our model and results in subsection 3.3. The
computing and operations research literature has many similar examples.

The Federal Communications Commission (FCC) is currently (in 2016) running a
novel double auction to buy back licenses for spectrum from certain television broad-
casters and resell them to telecommunication companies for wireless broadband use.
The auction is expected to generate over 20 billion dollars for the US government [7].
The “reverse” (i.e., buyback) phase of the auction must determine which stations
to buy out (and what to pay them). The auction is tasked with buying out suffi-
ciently many stations so that the remaining stations (who keep their licenses) can be
“repacked” into a small number of channels, leaving a target number of channels free to
be repurposed for wireless broadband. To first order, the feasible repackings are deter-
mined by interference constraints between stations. Computing a repacking therefore
resembles familiar hard combinatorial problems like the independent set and graph
coloring problems. The reverse auction uses a greedy heuristic to compute the order in
which stations are removed from the reverse auction (removal means the station keeps
its license) [27]. The chosen heuristic favors stations with high value, and discrimi-
nates against stations that interfere with a large number of other stations.2 There are
many ways of combining these two criteria, and no obvious reason to favor one specific
implementation over another. The specific implementation in the FCC auction has
been justified through trial-and-error experiments using synthetic instances that are
thought to be representative [27]. One interpretation of our results in subsection 3.3
is as a post hoc justification of this exhaustive approach for sufficiently simple classes
of algorithms, including the greedy heuristics considered for this FCC auction.

2.2. Example #2: Self-improving algorithms. The area of self-improving
algorithms was initiated by Ailon et al. [1], who considered sorting and clustering
problems. Subsequent work [11, 9, 10] studied several problems in low-dimensional
geometry, including the maxima and convex hull problems. For a given problem, the
goal is to design an algorithm that, given a sequence of i.i.d. samples from an unknown
distribution over instances, converges to the optimal algorithm for that distribution.
In addition, the algorithm should use only a small amount of auxiliary space. For
example, for sorting independently distributed array entries, the algorithm by Ailon
et al. [1] solves each instance (on n numbers) in O(n log n) time, uses space O(n1+c)
(where c > 0 is an arbitrarily small constant), and after a polynomial number of
samples has expected running time within a constant factor of that of an information-
theoretically optimal algorithm for the unknown input distribution. Subsection 3.4
reinterprets self-improving algorithms via our general framework.

2.3. Example #3: Parameter tuning in optimization and machine
learning. Many “algorithms” used in practice are really meta-algorithms, with a
large number of free parameters that need to be instantiated by the user. For instance,
implementing even in the most basic version of gradient descent requires choosing a
step size and error tolerance. For a more extreme version, CPLEX, a widely-used
commercial linear and integer programming solver, comes with a 221-page parameter
reference manual describing 135 parameters [34].

An analogous problem in machine learning is “hyperparameter optimization,”
where the goal is to tune the parameters of a learning algorithm so that it learns

2Analogously, greedy heuristics for the maximum-weight independent set problem favor vertices
with higher weights and with lower degrees [30]. Greedy heuristics for welfare maximization in
combinatorial auctions prefer bidders with higher values and smaller demanded bundles [23].

A PAC APPROACH TO ALGORITHM SELECTION 995

(from training data) a model with high accuracy on test data, and in particular
a model that does not overfit the training data. A simple example is regularized
regression, such as ridge regression, where a single parameter governs the trade-off
between the accuracy of the learned model on training data and its “complexity.”
More sophisticated learning algorithms can have many more parameters.

Figuring out the “right” parameter values is notoriously challenging in prac-
tice. The CPLEX manual simply advises that “you may need to experiment with
them.” In machine learning, parameters are often set by discretizing and then ap-
plying brute-force search (a.k.a. “grid search”), perhaps with random subsampling
(“random search”) [4]. When this is computationally infeasible, variants of gradient
descent are often used to explore the parameter space, with no guarantee of converging
to a global optimum.

The results in subsection 3.6 can be interpreted as a sample complexity analysis
of grid search for the problem of choosing the step size in gradient descent to minimize
the expected number of iterations needed for convergence. We view this as a first step
toward reasoning more generally about the problem of learning good parameters for
machine learning algorithms.

2.4. Example #4: Empirical performance models for SAT algorithms.
The examples above already motivate selecting an algorithm for a problem based on
characteristics of the application domain. A more ambitious and refined approach is
to select an algorithm on a per-instance (instead of a per-domain) basis. While it’s
impossible to memorize the best algorithm for every possible instance, one might hope
to use coarse features of a problem instance as a guide to which algorithm is likely to
work well.

For example, Xu et al. [33] applied this idea to the satisfiability (SAT) problem.
Their algorithm portfolio consisted of seven state-of-the-art SAT solvers with incom-
parable and widely varying running times across different instances. The authors
identified a number of instance features, ranging from simple features like input size
and clause/variable ratio, to complex features like Knuth’s estimate of the search tree
size [21] and the rate of progress of local search probes.3 The next step involved
building an “empirical performance model” (EPM) for each of the seven algorithms
in the portfolio—a mapping from instance feature vectors to running time predic-
tions. They then computed their EPMs using labeled training data and a suitable
regression model. With the EPMs in hand, it is clear how to perform per-instance
algorithm selection: given an instance, compute its features, use the EPMs to predict
the running time of each algorithm in the portfolio, and run the algorithm with the
smallest predicted running time. Using these ideas (and several optimizations), their
“SATzilla” algorithm won numerous medals at the 2007 SAT Competition.4 Subsec-
tion 3.5 outlines how to extend our PAC learning framework to reason about EPMs
and feature-based algorithm selection.

3. PAC learning an application-specific algorithm. This section casts the
problem of selecting the best algorithm for a poorly understood application domain
as one of learning the optimal algorithm with respect to an unknown instance dis-
tribution. Subsection 3.1 formally defines the basic model, subsection 3.2 reviews
relevant preliminaries from statistical learning theory, subsection 3.3 bounds the

3It is important, of course, that computing the features of an instance is an easier problem than
solving it.

4See Xu et al. [35] for details on the latest generation of their solver.

996 RISHI GUPTA AND TIM ROUGHGARDEN

pseudo-dimension of many classes of greedy and local search heuristics, subsection 3.4
re-interprets the theory of self-improving algorithms via our framework, subsection 3.5
extends the basic model to capture empirical performance models and feature-based
algorithm selection, and subsection 3.6 studies step size selection in gradient descent.

3.1. The basic model. Our basic model consists of the following ingredients.
1. A fixed computational or optimization problem Π. For example, Π could be

computing a maximum-weight independent set of a graph (subsection 2.1),
or sorting n elements (subsection 2.2).

2. An unknown distribution D over instances x ∈ Π.
3. A set A of algorithms for Π; see subsections 3.3 and 3.4 for concrete examples.
4. A performance measure cost : A×Π→ [0, H] indicating the performance of

a given algorithm on a given instance. Two common choices for cost are the
running time of an algorithm, and, for optimization problems, the objective
function value of the solution produced by an algorithm.

The “application-specific information” is encoded by the unknown input distribu-
tion D, and the corresponding “application-specific optimal algorithm” AD is the al-
gorithm that minimizes or maximizes (as appropriate) Ex∈D[cost(A, x)] over A ∈ A.
The error of an algorithm A ∈ A for a distribution D is∣∣Ex∼D[cost(A, x)]−Ex∼D[cost(AD, x)]

∣∣.
In our basic model, the goal is

Learn the application-specific optimal algorithm from data (i.e., samples
from D).

More precisely, the learning algorithm is given m i.i.d. samples x1, . . . , xm ∈ Π from D,
and (perhaps implicitly) the corresponding performance cost(A, xi) of each algorithm
A ∈ A on each input xi. The learning algorithm uses this information to suggest an
algorithm Â ∈ A to use on future inputs drawn from D. We seek learning algorithms
that almost always output an algorithm of A that performs almost as well as the
optimal algorithm in A for D.

Definition 3.1. A learning algorithm L (ε, δ)-learns the optimal algorithm in A
from m samples if, for every distribution D over Π, with probability at least 1−δ over
m samples x1, . . . , xm ∼ D, L outputs an algorithm Â ∈ A with error at most ε.

3.2. Pseudo-dimension and uniform convergence. PAC learning an opti-
mal algorithm, in the sense of Definition 3.1, reduces to bounding the “complexity”
of the class A of algorithms. We next review the relevant definitions from statistical
learning theory.

Let H denote a set of real-valued functions defined on the set X. A finite subset
S = {x1, . . . , xm} of X is (pseudo-)shattered by H if there exist real-valued witnesses
r1, . . . , rm such that, for each of the 2m subsets T of S, there exists a function h ∈ H
such that h(xi) > ri if and only if i ∈ T (for i = 1, 2, . . . ,m). The pseudo-dimension
of H is the cardinality of the largest subset shattered by H (or +∞, if arbitrarily
large finite subsets are shattered by H). The pseudo-dimension is a natural extension
of the VC dimension from binary-valued to real-valued functions.5

5The fat shattering dimension is another common extension of the VC dimension to real-valued
functions. It is a weaker condition, in that the fat shattering dimension of H is always at most the
pseudo-dimension of H, that is still sufficient for sample complexity bounds. Most of our arguments
give the same upper bounds on pseudo-dimension and fat shattering dimension, so we present the
stronger statements.

A PAC APPROACH TO ALGORITHM SELECTION 997

To bound the sample complexity of accurately estimating the expectation of all
functions in H, with respect to an arbitrary probability distribution D on X, it is
enough to bound the pseudo-dimension of H.

Theorem 3.2 (Uniform convergence (e.g. [2])). Let H be a class of functions
with domain X and range in [0, H], and suppose H has pseudo-dimension dH. For
every distribution D over X, every ε > 0, and every δ ∈ (0, 1], if

(1) m ≥ c
(
H

ε

)2(
dH + ln

(
1

δ

))
for a suitable constant c (independent of all other parameters), then with probability
at least 1− δ over m samples x1, . . . , xm ∼ D,∣∣∣∣∣

(
1

m

m∑
i=1

h(xi)

)
−Ex∼D[h(x)]

∣∣∣∣∣ < ε

for every h ∈ H.

We can identify each algorithm A ∈ A with the real-valued function x 7→
cost(A, x). Regarding the class A of algorithms as a set of real-valued functions
defined on Π, we can discuss its pseudo-dimension, as defined above. We need one
more definition before we can apply our machinery to learn algorithms from A.

Definition 3.3 (Empirical risk minimization (ERM)). Fix an optimization prob-
lem Π, a performance measure cost, and a set of algorithms A. An algorithm L is an
ERM algorithm if, given any finite subset S of Π, L returns an (arbitrary) algorithm
from A with the best average performance on S.

For example, for any Π, cost, and finite A, there is the trivial ERM algorithm
that simply computes the average performance of each algorithm on S by brute force,
and returns the best one. The next corollary follows easily from Definition 3.1, The-
orem 3.2, and Definition 3.3.

Corollary 3.4. Fix parameters ε > 0, δ ∈ (0, 1], a set of problem instances
Π, and a performance measure cost. Let A be a set of algorithms that has pseudo-
dimension d with respect to Π and cost. Then any ERM algorithm (2ε, δ)-learns the
optimal algorithm in A from m samples, where m is defined as in (1).

Corollary 3.4 is only interesting if interesting classes of algorithms A have small
pseudo-dimension. In the simple case where A is finite, as in our example of an
algorithm portfolio for SAT (subsection 2.4), the pseudo-dimension of A is trivially
at most log2 |A|. The following sections demonstrate the much less obvious fact that
natural infinite classes of algorithms also have small pseudo-dimension.

Remark 3.5 (Computational efficiency). The present work focuses on the sample
complexity rather than the computational aspects of learning, so outside of a few
remarks we won’t say much about the existence or efficiency of ERM in our exam-
ples. A priori, an infinite class of algorithms may not admit any ERM algorithm at
all, though all of the examples in this paper do have ERM algorithms under mild
assumptions.

3.3. Application: Greedy heuristics and extensions. The goal of this sec-
tion is to bound the pseudo-dimension of many classes of greedy heuristics including,
as a special case, the family of heuristics relevant for the FCC double auction de-
scribed in subsection 2.1. It will be evident that analogous computations are possible

998 RISHI GUPTA AND TIM ROUGHGARDEN

for many other classes of heuristics, and we provide several extensions in subsec-
tion 3.3.4 to illustrate this point. Throughout this section, the performance measure
cost is the objective function value of the solution produced by a heuristic on an
instance, where we assume without loss of generality a maximization objective.

3.3.1. Definitions and examples. Our general definitions are motivated by
greedy heuristics for (NP -hard) problems like the following; the reader will have no
difficulty coming up with additional natural examples.

1. Knapsack. The input is n items with values v1, . . . , vn, sizes s1, . . . , sn, and
a Knapsack capacity C. The goal is to compute a subset S ⊆ {1, 2, . . . , n}
with maximum total value

∑
i∈S vi, subject to having total size

∑
i∈S si at

most C. Two natural greedy heuristics are to greedily pack items (subject
to feasibility) in order of nonincreasing value vi, or in order of nonincreasing
density vi/si (or to take the better of the two; see subsection 3.3.4).

2. Maximum-weight independent set (MWIS). The input is an undirected graph
G = (V,E) and a non-negative weight wv for each vertex v ∈ V . The goal is to
compute the independent set—a subset of mutually non-adjacent vertices—
with maximum total weight. Two natural greedy heuristics are to greedily
choose vertices (subject to feasibility) in order of nonincreasing weight wv, or
nonincreasing density wv/(1 + deg(v)). (The intuition for the denominator
is that choosing v “uses up” 1 + deg(v) vertices: v and all of its neighbors.)
The latter heuristic also has a (superior) adaptive variant, where the degree
deg(v) is computed in the subgraph induced by the vertices not yet blocked
from consideration, rather than in the original graph.6

3. Machine scheduling. This is a family of optimization problems, where n jobs
with various attributes (processing time, weight, deadline, etc.) need to be
assigned to m machines, perhaps subject to some constraints (precedence
constraints, deadlines, etc.), to optimize some objective (makespan, weighted
sum of completion times, number of late jobs, etc.). A typical greedy heuristic
for such a problem considers jobs in some order according to a score derived
from the job parameters (e.g., weight divided by processing time), subject to
feasibility, and always assigns the current job to the machine that currently
has the lightest load (again, subject to feasibility).

In general, we consider object assignment problems, where the input is a set of
n objects with various attributes, and the feasible solutions consist of assignments
of the objects to a finite set R, subject to feasibility constraints. The attributes of
an object are represented as an element ξ of an abstract set. For example, in the
Knapsack problem ξ encodes the value and size of an object; in the MWIS problem,
ξ encodes the weight and (original or residual) degree of a vertex. In the Knapsack
and MWIS problems, R = {0, 1}, indicating whether or not a given object is selected.
In machine scheduling problems, R could be {1, 2, . . . ,m}, indicating the machine to
which a job is assigned, or a richer set that also keeps track of the job ordering on
each machine.

By a greedy heuristic, we mean algorithms of the following form (cf. the “priority
algorithms” of Borodin et al. [5]):

1. While there remain unassigned objects,
(a) Use a scoring rule σ (see below) to compute a score σ(ξi) for each unas-

signed object i, as a function of its current attributes ξi.

6An equivalent description is, whenever a vertex v is added to the independent set, delete v and
its neighbors from the graph, and recurse on the remaining graph.

A PAC APPROACH TO ALGORITHM SELECTION 999

(b) For the unassigned object i with the highest score, use an assignment
rule to assign i a value from R and, if necessary, update the attributes
of the other unassigned objects.7 For concreteness, assume that ties are
always resolved lexicographically.

A scoring rule assigns a real number to an object as a function of its attributes.
Assignment rules that do not modify objects’ attributes yield nonadaptive greedy
heuristics, which use only the original attributes of each object (like vi or vi/si in the
Knapsack problem, for instance). In this case, objects’ scores can be computed in
advance of the main loop of the greedy heuristic. Assignment rules that modify ob-
ject attributes yield adaptive greedy heuristics, such as the adaptive MWIS heuristic
described above.

In a single-parameter family of scoring rules, there is a scoring rule of the form
σ(ρ, ξ) for each parameter value ρ in some interval I ⊆ R. Moreover, σ is assumed
to be continuous in ρ for each fixed value of ξ. Natural examples include Knapsack
scoring rules of the form vi/s

ρ
i and MWIS scoring rules of the form wv/(1+deg(v))ρ for

ρ ∈ [0, 1] or ρ ∈ [0,∞). A single-parameter family of scoring rules is κ-crossing if, for
each distinct pair of attributes ξ, ξ′, there are at most κ values of ρ for which σ(ρ, ξ) =
σ(ρ, ξ′). For example, all of the scoring rules mentioned above are 1-crossing rules.

For an example assignment rule, in the Knapsack and MWIS problems, the rule
simply assigns i to 1 if it is feasible to do so, and to 0 otherwise. A typical machine
scheduling assignment rule assigns the current job to the machine with the lightest
load. In the adaptive greedy heuristic for the MWIS problem, whenever the assign-
ment rule assigns 1 to a vertex v, it updates the residual degrees of other unassigned
vertices (two hops away) accordingly.

We call an assignment rule β-bounded if every object i is guaranteed to take
on at most β distinct attribute values. For example, an assignment rule that never
modifies an object’s attributes is 1-bounded. The assignment rule in the adaptive
MWIS algorithm is n-bounded, since it only modifies the degree of a vertex (which
lies in {0, 1, 2 . . . , n− 1}).

Coupling a single-parameter family of κ-crossing scoring rules with a fixed β-
bounded assignment rule yields a (κ, β)-single-parameter family of greedy heuristics.
All of our running examples of greedy heuristics are (1, 1)-single-parameter families,
except for the adaptive MWIS heuristic, which is a (1, n)-single-parameter family.

3.3.2. Upper bound on pseudo-dimension. We next show that every (κ, β)-
single-parameter family of greedy heuristics has small pseudo-dimension. This result
applies to all of the concrete examples mentioned above, and it is easy to come up with
other examples (for the problems already discussed, and for additional problems).

Theorem 3.6 (Pseudo-dimension of greedy algorithms). If A denotes a (κ, β)-
single-parameter family of greedy heuristics for an object assignment problem with n
objects, then the pseudo-dimension of A is O(log(κβn)).

In particular, all of our running examples are classes of heuristics with pseudo-
dimension O(log n).

Proof. Recall from the definitions (subsection 3.2) that we need to upper bound
the size of every set that is shatterable using the greedy heuristics in A. For us, a set
is a fixed set of s inputs (each with n objects) S = x1, . . . , xs. For a potential witness
r1, . . . , rs ∈ R, every algorithm A ∈ A induces a binary labeling of each sample xi,

7We assume that there is always as least one choice of assignment that respects the feasibility
constraints; this holds for all of our motivating examples.

1000 RISHI GUPTA AND TIM ROUGHGARDEN

according to whether cost(A, xi) is strictly more than or at most ri. We proceed
to bound from above the number of distinct binary labellings of S induced by the
algorithms of A, for any potential witness.

Consider ranging over algorithms A ∈ A; equivalently, over parameter values
ρ ∈ I. The trajectory of a greedy heuristic A ∈ A is uniquely determined by the
outcome of the comparisons between the current scores of the unassigned objects in
each iteration of the algorithm. Since the family uses a κ-crossing scoring rule, for
every pair i, j of distinct objects and possible attributes ξi, ξj , there are at most κ
values of ρ for which there is a tie between the score of i (with attributes ξi) and that
of j (with attributes ξj). Since σ is continuous in ρ, the relative order of the score of i
(with ξi) and j (with ξj) remains the same in the open interval between two successive
values of ρ at which their scores are tied. The upshot is that we can partition I into
at most κ + 1 intervals such that the outcome of the comparison between i (with
attributes ξi) and j (with attributes ξj) is constant on each interval.8

Next, the s instances of S contain a total of sn objects. Each of these objects
has some initial attributes. Because the assignment rule is β-bounded, there are at
most snβ object-attribute pairs (i, ξi) that could possibly arise in the execution of
any algorithm from A on any instance of S. This implies that, ranging across all
algorithms of A on all inputs in S, comparisons are only ever made between at most
(snβ)2 pairs of object-attribute pairs (i.e., between an object i with current attributes
ξi and an object j with current attributes ξj). We call these the relevant comparisons.

For each relevant comparison, we can partition I into at most κ+ 1 subintervals
such that the comparison outcome is constant (in ρ) in each subinterval. Intersect-
ing the partitions of all of the at most (snβ)2 relevant comparisons splits I into at
most (snβ)2κ + 1 subintervals such that every relevant comparison is constant in
each subinterval. That is, all of the algorithms of A that correspond to the pa-
rameter values ρ in such a subinterval execute identically on every input in S. The
number of binary labellings of S induced by algorithms of A is trivially at most
the number of such subintervals. Our upper bound (snβ)2κ + 1 on the number of
subintervals exceeds 2s, the requisite number of labellings to shatter S, only if s =
O(log(κβn)).

Theorem 3.6 and Corollary 3.4 imply that, if κ and β are bounded above by a
polynomial in n, then an ERM algorithm (ε, δ)-learns the optimal algorithm in A
from only m = Õ(H

2

ε2) samples,9 where H is the largest objective function value of a
feasible solution output by an algorithm of A on an instance of Π.10

We note that Theorem 3.6 gives a quantifiable sense in which natural greedy
algorithms are indeed “simple algorithms.” Not all classes of algorithms have such a
small pseudo-dimension; see also the next section for further discussion.11

8This argument assumes that ξi 6= ξj . If ξi = ξj , then because we break ties between equal
scores lexicographically, the outcome of the comparison between σ(ξi) and σ(ξj) is in fact constant
on the entire interval I of parameter values.

9The notation Õ(·) suppresses logarithmic factors.
10Alternatively, the dependence of m on H can be removed if learning error εH (rather than ε)

can be tolerated; for example, if the optimal objective function value is expected to be proportional
to H anyway.

11When the performance measure cost is solution quality, as in this section, one cannot identify
“simplicity” with “low pseudo-dimension” without caveats: strictly speaking, the set A containing
only the optimal algorithm for the problem has pseudo-dimension 1. When the problem Π is NP -hard
and A consists only of polynomial-time algorithms (and assuming P 6= NP), the pseudo-dimension
is a potentially relevant complexity measure for the heuristics in A.

A PAC APPROACH TO ALGORITHM SELECTION 1001

Remark 3.7 (Non-Lipschitzness). We noted in subsection 3.2 that the pseudo-
dimension of a finite set A is always at most log2 |A|. This suggests a simple dis-
cretization approach to learning the best algorithm from A: take a finite “ε-net” of
A and learn the best algorithm in the finite net. (Indeed, subsection 3.6 uses pre-
cisely this approach.) The issue is that without some kind of Lipschitz condition—
stating that “nearby” algorithms in A have approximately the same performance on
all instances—there’s no reason to believe that the best algorithm in the net is almost
as good as the best algorithm from all of A. Two different greedy heuristics—two
MWIS greedy algorithms with arbitrarily close ρ-values, say—can have completely
different executions on an instance. This lack of a Lipschitz property explains why
we take care in Theorem 3.6 to bound the pseudo-dimension of the full infinite set of
greedy heuristics.12

3.3.3. Computational considerations. The proof of Theorem 3.6 also demon-
strates the presence of an efficient ERM algorithm: the O((snβ)2) relevant compar-
isons are easy to identify, the corresponding subintervals induced by each are easy to
compute (under mild assumptions on the scoring rule), and brute-force search can be
used to pick the best of the resulting O((snβ)2κ) algorithms (an arbitrary one from
each subinterval). This algorithm runs in polynomial time as long as β and κ are
polynomial in n, and every algorithm of A runs in polynomial time.

For example, for the family of Knapsack scoring rules described above, implement-
ing this ERM algorithm reduces to comparing the outputs of O(n2m) different greedy
heuristics (on each of the m sampled inputs), with m = O(log n). For the adaptive
MWIS heuristics, where β = n, it is enough to compare the sample performance of
O(n4m) different greedy algorithms, with m = O(log n).

3.3.4. Extensions: Multiple algorithms, multiple parameters, and local
search. Theorem 3.6 is robust and its proof is easily modified to accommodate various
extensions. For a first example, consider algorithms than run q different members of a
single-parameter greedy heuristic family and return the best of the q feasible solutions
obtained.13 Extending the proof of Theorem 3.6 yields a pseudo-dimension bound of
O(q log(κβn)) for the class of all such algorithms.

For a second example, consider families of greedy heuristics parameterized by
d real-valued parameters ρ1, . . . , ρd. Here, an analog of Theorem 3.6 holds with the
crossing number κ replaced by a more complicated parameter: essentially, the number
of connected components of the co-zero set of the difference of two scoring functions
(with ξ, ξ′ fixed and variables ρ1, . . . , ρd). This number can often be bounded (by a
function exponential in d) in natural cases, for example using Bézout’s theorem (see,
e.g., [14]).

For a final extension, we sketch how to adapt the definitions and results of this
section from greedy to local search heuristics. The input is again an object assignment
problem (see subsection 3.3.1), along with an initial feasible solution (i.e., an assign-
ment of objects to R, subject to feasibility constraints). By a k-swap local search
heuristic, we mean algorithms of the following form:

1. Start with arbitrary feasible solution.

12The ε-net approach has the potential to work for greedy algorithms that choose the next object
using a softmax-type rule, rather than deterministically as the unassigned object with the highest
score.

13For example, the classical 1
2

-approximation for Knapsack has this form (with q = 2).

1002 RISHI GUPTA AND TIM ROUGHGARDEN

2. While the current solution is not locally optimal,
(a) Use a scoring rule σ to compute a score σ({ξi : i ∈ K}) for each set of

objects K of size k, where ξi is the current attribute of object i.
(b) For the set K with the highest score, use an assignment rule to re-

assign each i ∈ K to a value from R. If necessary, update the at-
tributes of the appropriate objects. (Again, assume that ties are resolved
lexicographically.)

We assume that the assignment rule maintains feasibility, so that we have a feasible
assignment at the end of each execution of the loop. We also assume that the scoring
and assignment rules ensure that the algorithm terminates, e.g., via the existence
of a global objective function that decreases at every iteration (or by incorporating
timeouts).

A canonical example of a k-swap local search heuristic is the k-OPT heuristic
for the traveling salesman problem (TSP)14 (see, e.g., [20]). We can view TSP as an
object assignment problem, where the objects are edges and R = {0, 1}; the feasibility
constraint is that the edges assigned to 1 should form a tour. Recall that a local move
in k-OPT consists of swapping out k edges from the current tour and swapping in
k edges to obtain a new tour. (So in our terminology, k-OPT is a 2k-swap local
search heuristic.) Another well-known example is the local search algorithms for the
p-median problem studied in Arya et al. [3], which are parameterized by the number
of medians that can be removed and added in each local move. Analogous local search
algorithms make sense for the MWIS problem as well.

Scoring and assignment rules are now defined on subsets of k objects, rather than
individual objects. A single-parameter family of scoring rules is now called κ-crossing
if, for every subset K of at most k objects and each distinct pair of attribute sets ξK
and ξ′K , there are at most κ values of ρ for which σ(ρ, ξK) = σ(ρ, ξ′K). An assignment
rule is now β-bounded if for every subset K of at most k objects, ranging over all
possible trajectories of the local search heuristic, the attribute set of K takes on at
most β distinct values. For example, in MWIS, suppose we allow two vertices u, v to
be removed and two vertices y, z to be added in a single local move, and we use the
single-parameter scoring rule family

σρ(u, v, y, z) =
wu

(1 + deg(u))ρ
+

wv
(1 + deg(v))ρ

− wy
(1 + deg(y))ρ

− wz
(1 + deg(z))ρ

.

Here deg(v) could refer to the degree of vertex v in original graph, to the number of
neighbors of v that do not have any neighbors other than v in the current independent
set, etc. In any case, since a generalized Dirichlet polynomial with t terms has at most
t − 1 zeroes (see, e.g., [19, Corollary 3.2]), this is a 3-crossing family. The natural
assignment rule is n4-bounded.15

By replacing the number n of objects by the number O(nk) of subsets of at most
k objects in the proof of Theorem 3.6, we obtain the following.

Theorem 3.8 (Pseudo-dimension of local search algorithms). If A denotes a
(κ, β)-single-parameter family of k-swap local search heuristics for an object assign-
ment problem with n objects, then the pseudo-dimension of A is O(k log(κβn)).

14Given a complete undirected graph with a cost cuv for each edge (u, v), compute a tour (visiting
each vertex exactly once) that minimizes the sum of the edge costs.

15In general, arbitrary local search algorithms can be made β-bounded through timeouts: if such
an algorithm always halts within T iterations, then the corresponding assignment rule is T -bounded.

A PAC APPROACH TO ALGORITHM SELECTION 1003

3.4. Application: Self-improving algorithms revisited. We next give a
new interpretation of the self-improving sorting algorithm of Ailon et al. [1]. Namely,
we show that the main result in [1] effectively identifies a set of sorting algorithms
that simultaneously has low representation error (for independently distributed array
elements) and small pseudo-dimension (and hence low generalization error). Other
constructions of self-improving algorithms [1, 11, 9, 10] can be likewise reinterpreted.
In contrast to subsection 3.3, here our performance measure cost is related to the
running time of an algorithm A on an input x, which we want to minimize, rather
than the objective function value of the output, which we wanted to maximize.

Consider the problem of sorting n real numbers in the comparison model. By a
bucket-based sorting algorithm, we mean an algorithm A for which there are “bucket
boundaries” b1 < b2 < · · · < b` such that A first distributes the n input elements
into their rightful buckets, and then sorts each bucket separately, concatenating the
results. The degrees of freedom when defining such an algorithm are (i) the choice
of the bucket boundaries; (ii) the method used to distribute input elements to the
buckets; and (iii) the method used to sort each bucket. The performance measure
cost is the number of comparisons used by the algorithm.16

The key steps in the analysis in [1] can be reinterpreted as proving that this set of
bucket-based sorting algorithms has low representation error, in the following sense.

Theorem 3.9 ([1, Theorem 2.1]). Suppose that each array element ai is drawn
independently from a distribution Di. Then there exists a bucket-based sorting algo-
rithm with expected running time at most a constant factor times that of the optimal
sorting algorithm for D1 × · · · × Dn.

The proof in [1] establishes Theorem 3.9 even when the number ` of buckets is only
n, each bucket is sorted using InsertionSort, and each element ai is distributed inde-
pendently to its rightful bucket using a search tree stored in O(nc) bits, where c > 0
is an arbitrary constant (and the running time depends on 1

c).17 Let Ac denote the
set of all such bucket-based sorting algorithms.

Theorem 3.9 reduces the task of learning a near-optimal sorting algorithm to
the problem of (ε, δ)-learning the optimal algorithm from Ac. Corollary 3.4 reduces
this learning problem to bounding the pseudo-dimension of Ac. We next prove such
a bound, which effectively says that bucket-based sorting algorithms are “relatively
simple” algorithms.18

Theorem 3.10 (Pseudo-dimension of bucket-based sorting algorithms). The
pseudo-dimension of Ac is O(n1+c).

Proof. Recall from the definitions (subsection 3.2) that we need to upper bound
the size of every set that is shatterable using the bucket-based sorting algorithms in
Ac. For us, a set is a fixed set of s inputs (i.e., arrays of length n), S = x1, . . . , xs. For
a potential witness r1, . . . , rs ∈ R, every algorithm A ∈ Ac induces a binary labeling of
each sample xi, according to whether cost(A, xi) is strictly more than or at most ri.

16Devroye [12] studies similar families of sorting algorithms, with the goal of characterizing the
expected running time as a function of the input distribution.

17For small c, each search tree Ti is so small that some searches will go unresolved; such unsuc-
cessful searches are handled by a standard binary search over the buckets.

18Not all sorting algorithms are simple in the sense of having polynomial pseudo-dimension. For
example, the space lower bound in [1, Lemma 2.1] can be adapted to show that no class of sorting
algorithms with polynomial pseudo-dimension (or fat shattering dimension) has low representation
error in the sense of Theorem 3.9 for general distributions over sorting instances, where the array
entries need not be independent.

1004 RISHI GUPTA AND TIM ROUGHGARDEN

We proceed to bound from above the number of distinct binary labelings of S induced
by the algorithms of Ac, for any potential witness.

By definition, an algorithm from Ac is fully specified by (i) a choice of n bucket
boundaries b1 < · · · < bn; and (ii) for each i = 1, 2, . . . , n, a choice of a search tree Ti of
size at most O(nc) for placing xi in the correct bucket. Call two algorithms A,A′ ∈ Ac
equivalent if their sets of bucket boundaries b1, . . . , bn and b′1, . . . , b

′
n induce the same

partition of the sn array elements of the inputs in S; that is, if xij < bk if and only
if xij < b′k (for all i, j, k). The number of equivalence classes of this equivalence
relation is at most (sn+nn) ≤ (sn+ n)n. Within an equivalence class, two algorithms
that use structurally identical search trees will have identical performance on all s
of the samples. Since the search trees of every algorithm of Ac are described by at
most O(n1+c) bits, ranging over the algorithms of a single equivalence class generates

at most 2O(n1+c) distinct binary labelings of the s sample inputs. Ranging over all
algorithms thus generates at most (sn + n)n2O(n1+c) labelings. This exceeds 2s, the
requisite number of labellings to shatter S, only if s = O(n1+c).

Theorem 3.10 and Corollary 3.4 imply that m = Õ(H
2

ε2 n
1+c) samples are enough

to (ε, δ)-learn the optimal algorithm in Ac.19 The results implicit in [1] are similarly
for relative error. Since the minimum running time is Ω(n), taking ε = Θ(n) is
enough to ensure that all running times are correctly estimated up to a constant
factor. We can also assume that the maximum running time H of any algorithm in
Ac is O(n log n), since if an algorithm exceeds this bound, we can abort and safely
run MergeSort instead. Hence we obtain a sample complexity bound of Õ(n1+c).

Remark 3.11 (Comparison to [1]). The sample complexity bound implicit in [1]
for learning a near-optimal sorting algorithm is Õ(nc), a linear factor better than the
Õ(n1+c) bound implied by Theorem 3.10. There is good reason for this: the pseudo-
dimension bound of Theorem 3.10 implies that an even harder problem has sample
complexity Õ(n1+c), namely that of learning a near-optimal bucket-based sorting
algorithm with respect to an arbitrary distribution over inputs, even with correlated
array elements.20 The bound of Õ(nc) in [1] applies only to the problem of learning a
near-optimal bucket-based sorting algorithm for an unknown input distribution with
independent array entries; the savings comes from the fact that all n near-optimal
search trees T1, . . . , Tn can be learned in parallel.

3.5. Application: Feature-based algorithm selection. Previous sections
studied the problem of selecting a single algorithm for use in an application domain,
i.e., using training data to make an informed commitment to a single algorithm from
a class A, which is then used on all future instances. A more refined and ambitious
approach is to select an algorithm based both on previous experience and on the cur-
rent instance to be solved. This approach assumes, as in the scenario in subsection 2.4,
that it is feasible to quickly compute some features of an instance and then to select
an algorithm as a function of these features.

Throughout this section, we augment the basic model of subsection 3.1 with
5. A set F of possible instance feature values, and a map f : X → F that

computes the features of a given instance.21

19We again use Õ(·) to suppress logarithmic factors.
20When array elements are not independent, however, Theorem 3.9 fails and the best bucket-based

sorting algorithm might be more than a constant factor worse than the optimal sorting algorithm.
21Defining a good feature set is a notoriously challenging and important problem, but it is beyond

the scope of our model; we take the set F and map f as given.

A PAC APPROACH TO ALGORITHM SELECTION 1005

For instance, if X is the set of SAT instances, then f(x) might encode the clause/
variable ratio of the instance x, Knuth’s estimate of the search tree size [21], and
so on.

When the set F of possible instance feature values is finite, the guarantees for the
basic model extend easily with a linear (in |F|) degradation in the pseudo-dimension.22

To explain, we add an additional ingredient to the model.
6. A set G of algorithm selection maps, with each g ∈ G a function from F to A.

An algorithm selection map recommends an algorithm as a function of the features
of an instance.

We can view an algorithm selection map g as a real-valued function defined on
the instance space X, with g(x) defined as cost(g(f(x)), x). That is, g(x) is the
running time on x of the algorithm g(f(x)) advocated by g, given that x has features
f(x). The basic model studied earlier is the special case where G is the set of constant
functions, which are in correspondence with the algorithms of A.

Corollary 3.4 reduces bounding the sample complexity of (ε, δ)-learning the best
algorithm selection map of G to bounding the pseudo-dimension of the set of real-
valued functions induced by G. When G is finite, there is a trivial upper bound of
log2 |G|. The pseudo-dimension is also small whenever F is small and the set A of
algorithms has small pseudo-dimension.23

Proposition 3.12 (Pseudo-dimension of algorithm selection maps). If G is a
set of algorithm selection maps from a finite set F to a set A of algorithms with
pseudo-dimension d, then G has pseudo-dimension at most |F|d.

Proof. A set of inputs of size |F|d+ 1 is shattered only if there is a shattered set
of inputs with identical features of size d+ 1.

Now suppose F is very large (or infinite). We focus on the case where A is small
enough that it is feasible to learn a separate performance prediction model for each
algorithm A ∈ A (though see Remark 3.15). This is exactly the approach taken in
the motivating example of empirical performance models (EPMs) for SAT described
in subsection 2.4. In this case, we augment the basic model to include a family of
performance predictors.

7. A set P of performance predictors, with each p ∈ P a function from F to R.
Performance predictors play the same role as the EPMs used in [33].

The goal is to learn, for each algorithm A ∈ A, among all permitted predictors
p ∈ P, the one that minimizes some loss function. Like the performance measure
cost, we take this loss function as given. The most commonly used loss function
is squared error; in this case, for each A ∈ A we aim to compute the function that
minimizes

Ex∼D
[
(cost(A, x)− p(f(x)))2

]
over p ∈ P.24 For a fixed algorithm A, this is a standard regression problem, with
domain F , real-valued labels, and a distribution on F × R induced by D via x 7→

22For example, [33] first predicts whether or not a given SAT instance is satisfiable or not, and
then uses a “conditional” empirical performance model to choose a SAT solver. This can be viewed
as an example with |F| = 2, corresponding to the feature values “looks satisfiable” and “looks
unsatisfiable.”

23When G is the set of all maps from F to A and every feature value of F appears with approxi-
mately the same probability, one can alternatively just separately learn the best algorithm for each
feature value.

24Note that the expected loss incurred by the best predictor depends on the choices of the predictor
set P, the feature set F , and map f . Again, these choices are outside our model.

1006 RISHI GUPTA AND TIM ROUGHGARDEN

(f(x),cost(A, x)). Bounding the sample complexity of this learning problem reduces
to bounding the pseudo-dimension of P. For standard choices of P, such bounds are
well known. For example, suppose the set P is the class of linear predictors, with each
p ∈ P having the form p(f(x)) = aT f(x) for some coefficient vector a ∈ Rd.25

Proposition 3.13 (Pseudo-dimension of linear predictors). If F contains real-
valued d-dimensional features and P is the set of linear predictors, then the pseudo-
dimension of P is at most d.

If all functions in P map all possible ϕ to [0, H], then Proposition 3.13 and Corol-

lary 3.4 imply a sample complexity bound of Õ(H
4

ε2 d) for (ε, δ)-learning the predictor
with minimum expected square error. Similar results hold, with worse dependence
on d, if P is a set of low-degree polynomials [2].

For another example, suppose P` is the set of regression trees with at most `
nodes, where each internal node performs an inequality test on a coordinate of the
feature vector ϕ (and leaves are labeled with performance estimates).26 This class
also has low pseudo-dimension, and hence the problem of learning a near-optimal
predictor has correspondingly small sample complexity.

Proposition 3.14 (Pseudo-dimension of regression trees). Suppose F contains
real-valued d-dimensional features and let P` be the set of regression trees with at
most ` nodes, where each node performs an inequality test on one of the features.
Then, the pseudo-dimension of P` is O(` log(`d)).

Remark 3.15 (Extension to large A). We can also extend our approach to sce-
narios with a large or infinite set A of possible algorithms. This extension is relevant
to state-of-the-art empirical approaches to the auto-tuning of algorithms with many
parameters, such as mathematical programming solvers [18]; see also the discussion in
subsection 2.3. (Instantiating all of the parameters yields a fixed algorithm; ranging
over all possible parameter values yields the set A.) Analogous to our formalism for
accommodating a large number of possible features, we now assume that there is a
set F ′ of possible “algorithm feature values” and a mapping f ′ that computes the
features of a given algorithm. A performance predictor is now a map from F ×F ′ to
R, taking as input the features of an algorithm A and of an instance x, and returning
as output an estimate of A’s performance on x. If P is the set of linear predictors,
for example, then by Proposition 3.13 its pseudo-dimension is d+ d′, where d and d′

denote the dimensions of F and F ′, respectively.

3.6. Application: Choosing the step size in gradient descent. For our last
PAC example, we give sample complexity results for the problem of choosing the best
step size in gradient descent. When gradient descent is used in practice, the step size is
generally taken much larger than the upper limits suggested by theoretical guarantees,
and often converges in many fewer iterations than with the step size suggested by
theory. This motivates the problem of learning the step size from examples. We view
this as a baby step towards reasoning more generally about the problem of learning
good parameters for machine learning algorithms. Unlike the applications we’ve seen

25A linear model might sound unreasonably simple for the task of predicting the running time of
an algorithm, but significant complexity can be included in the feature map f(x). For example, each
coordinate of f(x) could be a nonlinear combination of several “basic features” of x. Indeed, linear
models often exhibit surprisingly good empirical performance, given a judicious choice of a feature
set [24].

26Regression trees, and random forests thereof, have emerged as a popular class of predictors in
empirical work on application-specific algorithm selection [18].

A PAC APPROACH TO ALGORITHM SELECTION 1007

so far, the parameter space here satisfies a Lipschitz-like condition, and we can follow
the discretization approach suggested in Remark 3.7.

3.6.1. Gradient descent preliminaries. Recall the basic gradient descent al-
gorithm for minimizing a function f given an initial point z0 over Rn:

1. Initialize z := z0.
2. While ‖∇f(z)‖2 > ν

(a) z := z − ρ · ∇f(z).
We take the error tolerance ν as given and focus on the more interesting parameter,
the step size ρ. Bigger values of ρ have the potential to make more progress in each
step, but run the risk of overshooting a minimum of f .

We instantiate the basic model (subsection 3.1) to study the problem of learning
the best step size. There is an unknown distribution D over instances, where an
instance x ∈ Π consists of a function f and an initial point z0. Each algorithm Aρ of
A is the basic gradient descent algorithm above, with some choice ρ of a step size drawn
from some fixed interval [ρ`, ρu] ⊂ (0,∞). The performance measure cost(A, x) is
the number of iterations (i.e., steps) taken by the algorithm for the instance x.

To obtain positive results, we need to restrict the allowable functions f (see
Appendix A). First, we assume that every function f is convex and L-smooth for a
known L. A function f is L-smooth if it is everywhere differentiable, and ‖∇f(z1)−
∇f(z2)‖ ≤ L‖z1 − z2‖ for all z1 and z2 (all norms in this section are the `2 norm).
Since gradient descent is translation invariant, and f is convex, we can assume for
convenience that the (uniquely attained) minimum value of f is 0, with f(0) = 0.

Second, we assume that the magnitudes of the initial points are bounded, with
‖z0‖ ≤ Z for some known constant Z > ν.

Third, we assume that there is a known constant c ∈ (0, 1) such that ‖z −
ρ∇f(z)‖ ≤ (1 − c)‖z‖ for all ρ ∈ [ρ`, ρu]. In other words, the norm of any point
z—equivalently, the distance to the global minimum—decreases by some minimum
factor after each gradient descent step. We refer to this as the guaranteed progress
condition. This is satisfied (for instance) by L-smooth, m-strongly convex functions,27

which is a well studied regime (see, e.g., [6]). The standard analysis of gradient descent
implies that c ≥ ρm for ρ ≤ 2/(m+ L) over this class of functions.

Under these restrictions, we will be able to compute a nearly optimal ρ given a
reasonable number of samples from D.

Other notation. All norms in this section are `2-norms. Unless otherwise stated,
ρ means ρ restricted to [ρ`, ρu], and z means z such that ‖z‖ ≤ Z. We let g(z, ρ) :=
z − ρ∇f(z) be the result of taking a single gradient descent step, and gj(z, ρ) be the
result of taking j gradient descent steps.

Typical textbook treatments of gradient descent assume ρ < 2/L or ρ ≤ 2/(m+
L), which give various convergence and running time guarantees. The learning results
of this section apply for any ρ, but this natural threshold will still appear in our
analysis and results. Let D(ρ) := max{1, Lρ− 1} denote how far ρ is from 2/L.

By the guaranteed progress condition, ‖gj(z, ρ)‖ ≤ (1−c)j‖z‖, and so by L-
smoothness, ∥∥∇f (gj(z, ρ)

)∥∥ ≤ (1−c)jL‖z‖.

27A (continuously differentiable) function f is m-strongly convex if f(y) ≥ f(w) + ∇f(w)T (y −
w) + m

2
‖y − w‖2 for all w, y ∈ Rn. The usual notion of convexity is the same as 0-strong convexity.

Note that the definition of L-smooth implies m ≤ L.

1008 RISHI GUPTA AND TIM ROUGHGARDEN

Since ‖z0‖ ≤ Z, and we stop once the gradient is ≤ ν, cost(Aρ, x) ≤ log(ν/LZ)/
log(1−c) for all ρ and x. Let H = log(ν/LZ)/ log(1−c).

3.6.2. A Lipschitz-like bound on COST(Aρ, x) as a function of ρ. This
will be the bulk of the argument. Our first lemma shows that for fixed ρ, the gradient
descent step g is a Lipschitz function of z, even when ρ is larger than 2/L. One might
hope that the guaranteed progress condition would be enough to show that (say) g is
a contraction, but the Lipschitzness of g actually comes from the L-smoothness. (It
is not too hard to come up with nonsmooth functions that make guaranteed progress,
and where g is arbitrarily non-Lipschitz.)

Lemma 3.16. ‖g(w, ρ)− g(y, ρ)‖ ≤ D(ρ)‖w − y‖.
Proof. For notational simplicity, let α = ‖w − y‖ and β = ‖∇f(w) − ∇f(y)‖.

Now,

‖g(w, ρ)− g(y, ρ)‖2 = ‖(w − y)− ρ(∇f(w)−∇f(y))‖2

= α2 + ρ2β2 − 2ρ〈α, β〉
≤ α2 + ρ2β2 − 2ρβ2/L

= α2 + β2ρ(ρ− 2/L).

The only inequality above is a restatement of a property of L-smooth functions called
the co-coercivity of the gradient, namely that 〈α, β〉 ≥ β2/L.

Now, if ρ ≤ 2/L, then ρ(ρ− 2/L) ≤ 0, and we’re done. Otherwise, L-smoothness
implies β ≤ Lα, so the above is at most α2(1 + Lρ(Lρ − 2)), which is the desired
result.

The next lemma bounds how far two gradient descent paths can drift from each
other, if they start at the same point. The main thing to note is that the right-hand
side goes to 0 as η becomes close to ρ.

Lemma 3.17. For any z, j, and ρ ≤ η,

∥∥gj(z, ρ)− gj(z, η)
∥∥ ≤ (η − ρ)

D(ρ)jLZ

c
.

Proof. We first bound ‖g(w, ρ)− g(y, η)‖, for any w and y. We have

g(w, ρ)− g(y, η) = [w − ρ∇f(w)]− [y − η∇f(y)]

= g(w, ρ)− [g(y, ρ)− (η − ρ)∇f(y)]

by definition of g. The triangle inequality and Lemma 3.16 then give

‖g(w, ρ)− g(y, η)‖ = ‖g(w, ρ)− g(y, ρ) + (η − ρ)∇f(y)‖
≤ D(ρ) ‖w − y‖+ (η − ρ)‖∇f(y)‖.

Plugging in w = gj(z, ρ) and y = gj(z, η), we have∥∥gj+1(z, ρ)− gj+1(z, η)
∥∥ ≤ D(ρ)

∥∥gj(z, ρ)− gj(z, η)
∥∥+ (η − ρ)

∥∥∇f(gj(z, η))
∥∥

for all j.
Now, ∥∥∇f(gj(z, η))

∥∥ ≤ L∥∥gj(z, η)
∥∥ ≤ L‖z‖(1− c)j ≤ LZ(1− c)j ,

A PAC APPROACH TO ALGORITHM SELECTION 1009

where the first inequality is from L-smoothness, and the second is from the guaranteed
progress condition. Letting rj = ‖gj(z, ρ)− gj(z, η)‖, we now have the simple recur-
rence r0 = 0, and rj+1 ≤ D(ρ) rj + (η − ρ)LZ(1 − c)j . One can check via induction
that

rj+1 ≤ D(ρ)j(η − ρ)LZ

j∑
i=0

(1− c)iD(ρ)−i

for all j. Recall that D(ρ) ≥ 1. Rounding D(ρ)−i up to 1 and doing the summation
gives the desired result.

Finally, we show that cost(Aρ, x) is essentially Lipschitz in ρ. The “essentially”
is necessary, since cost is integer-valued.

Lemma 3.18. |cost(Aρ, x)−cost(Aη, x)| ≤ 1 for all x, ρ, and η with 0 ≤ η−ρ ≤
νc2

LZD(ρ)−H .

Proof. Assume that cost(Aη, x) ≤ cost(Aρ, x); the argument in the other case
is similar. Let j = cost(Aη, x), and recall that j ≤ H. By Lemma 3.17, ‖gj(x, ρ)−
gj(x, η)‖ ≤ νc. Hence, by the triangle inequality,∥∥gj(x, ρ)

∥∥ ≤ νc+
∥∥gj(x, η)

∥∥ ≤ νc+ ν.

Now, by the guaranteed progress condition, ‖w‖ − ‖g(w, p)‖ ≥ c‖w‖ for all w.
Since we only run a gradient descent step on w if ‖w‖ > ν, each step of gradient
descent run by any algorithm in A drops the magnitude of w by at least νc.

Setting w = gj(x, ρ), we see that either ‖gj(x, ρ)‖ ≤ ν, and cost(Aρ, x) = j, or
that ‖gj+1(x, ρ)‖ ≤ (νc+ ν)− νc = ν, and cost(Aρ, x) = j + 1, as desired.

3.6.3. Learning the best step size. We can now apply the discretization

approach suggested by Remark 3.7. Let K = νc2

LZD(ρu)−H . Note that since D is an

increasing function, K is less than or equal to the νc2

LZD(ρ)−H of Lemma 3.18 for every
ρ. Let N be a minimal K-net, such as all integer multiples of K that lie in [ρ`, ρu].
Note that |N | ≤ ρu/K + 1.

We tie everything together in the theorem below.28

Theorem 3.19 (Learnability of step size in gradient descent). There is a learning
algorithm that (1 + ε, δ)-learns the optimal algorithm in A using m = Õ(H3/ε2)
samples from D.29

Proof. The pseudo-dimension of AN = {Aρ : ρ ∈ N} is at most log |N |, since
AN is a finite set. Since AN is finite, it also trivially admits an ERM algorithm LN ,
and Corollary 3.4 implies that LN (ε, δ)-learns the optimal algorithm in AN using
m = Õ(H2 log |N |/ε2) samples.

Now, Lemma 3.18 implies that for every ρ, there is a η ∈ N such that, for every
distribution D, the difference in expected costs of Aη and Aρ is at most 1. Thus LN
(1 + ε, δ)-learns the optimal algorithm in A using m = Õ(H2ε−2 log |N |) samples.

Since log |N | = Õ(H), we get the desired result.

28Alternatively, this guarantee can be phrased in terms of the fat-shattering dimension (see,
e.g., [2]). In particular, A has 1.001 fat-shattering dimension at most log |N | = Õ(H).

29We use Õ(·) to suppress logarithmic factors in Z/ν, c, L, and ρu.

1010 RISHI GUPTA AND TIM ROUGHGARDEN

4. Online learning of application-specific algorithms. This section studies
the problem of learning the best application-specific algorithm online, with instances
arriving one by one.30 The goal is choose an algorithm at each time step, before
seeing the next instance, so that the average performance is close to that of the best
fixed algorithm in hindsight. This contrasts with the statistical (or “batch”) learning
setup used in section 3, where the goal was to identify a single algorithm from a
batch of training instances that generalizes well to future instances from the same
distribution. For many of the motivating examples in section 2, both the statistical
and online learning approaches are relevant. The distribution-free online learning
formalism of this section may be particularly appropriate when instances cannot be
modeled as i.i.d. draws from an unknown distribution.

4.1. The online learning model. Our online learning model shares with the
basic model of subsection 3.1 a computational or optimization problem Π (e.g., MWIS),
a set A of algorithms for Π (e.g., a single-parameter family of greedy heuristics), and
a performance measure cost : A × Π → [0, 1] (e.g., the total weight of the returned
solution).31 Rather than modeling the specifics of an application domain via an un-
known distribution D over instances, however, we use an unknown instance sequence
x1, . . . , xT .32

A learning algorithm now outputs a sequence A1, . . . , AT of algorithms, rather
than a single algorithm. Each algorithm Ai is chosen (perhaps probabilistically) with
knowledge only of the previous instances x1, . . . , xi−1. The standard goal in online
learning is to choose A1, . . . , AT to minimize the worst-case (over x1, . . . , xT) regret,
defined as the average performance loss relative to the best algorithm A ∈ A in
hindsight:33

1

T

(
sup
A∈A

T∑
t=1

cost(A, xi)−
T∑
t=1

cost(Ai, xi)

)
.(2)

A no-regret learning algorithm has expected (over its coin tosses) regret o(1), as
T → ∞, for every instance sequence. The design and analysis of no-regret online
learning algorithms is a mature field (see, e.g., [8]). For example, many no-regret
online learning algorithms are known for the case of a finite set |A| (such as the
“multiplicative weights” algorithm).

4.2. An impossibility result for worst-case instances. This section proves
an impossibility result for no-regret online learning algorithms for the problem of
application-specific algorithm selection. We show this for the running example in
subsection 3.3: maximum-weight independent set (MWIS) heuristics34 that, for some
parameter ρ ∈ [0, 1], process the vertices in order of nonincreasing value of wv/(1 +
deg(v))ρ. Let A denote the set of all such MWIS algorithms. Since A is an infinite
set, standard no-regret results (for a finite number of actions) do not immediately

30The online model is obviously relevant when training data arrives over time. Also, even with
offline data sets that are very large, it can be computationally necessary to process training data in
a one-pass, online fashion.

31One could also have cost take values in [0, H] rather than [0, 1], to parallel the PAC setting;
we set H = 1 here since the dependence on H will not be interesting.

32For simplicity, we assume that the time horizon T is known. This assumption can be removed
by standard doubling techniques (e.g., [8]).

33Without loss of generality, we assume cost corresponds to a maximization objective.
34Subsection 3.3 defined adaptive and nonadaptive versions of the MWIS heuristic. All of the

results in section 4 apply to both, so we usually won’t distinguish between them.

A PAC APPROACH TO ALGORITHM SELECTION 1011

apply. In online learning, infinite sets of options are normally controlled through
a Lipschitz condition, stating that “nearby” actions always yield approximately the
same performance; our set A does not possess such a Lipschitz property (recall Re-
mark 3.7). The next section shows that these issues are not mere technicalities: there
is enough complexity in the set A of MWIS heuristics to preclude a no-regret learning
algorithm.

4.2.1. A hard example for MWIS. We show a distribution over sequences
of MWIS instances for which every (possibly randomized) algorithm has expected
regret 1 − on(1). Here and for the rest of this section, by on(1) we mean a function
that is independent of T and tends to 0 as the number of vertices n tends to infinity.
Recall that cost(Aρ, x) is the total weight of the returned independent set, and we
are trying to maximize this quantity. The key construction is the following:

Lemma 4.1. For any constants 0 < r < s < 1, there exists a MWIS instance x on
at most n vertices such that cost(Aρ, x) = 1 when ρ ∈ (r, s), and cost(Aρ, x) = on(1)
when ρ < r or ρ > s.

Proof. Let A,B, and C be three sets of vertices of sizes m2 − 2,m3 − 1, and
m2 +m+1 respectively, such that their sum m3 +2m2 +m is between n/2 and n. Let
(A,B) be a complete bipartite graph. Let (B,C) also be a bipartite graph, with each
vertex of B connected to exactly one vertex of C, and each vertex of C connected to
exactly m− 1 vertices of B. See Figure 1.

Now, set the weight of every vertex in A, B, and C to tmr, t, and tm−s, respec-
tively, for t = (m3−1)−1. Table 1 summarizes some straightforward calculations. We
now calculate the cost of Aρ on this instance.

If ρ < r, the algorithm Aρ first chooses a vertex in A, which immediately removes
all of B, leaving at most A and C in the independent set. The total weight of A and
C is on(1), so cost(Aρ) is on(1).

If ρ > s, the algorithm first chooses a vertex in C, which removes a small chunk
of B. In the nonadaptive setting, Aρ simply continues choosing vertices of C until
B is gone. In the adaptive setting, the degrees of the remaining elements of B never

Fig. 1. A rough depiction of the MWIS example from Lemma 4.1.

Table 1
Details and simple calculations for the vertex sets comprising the MWIS example from

Lemma 4.1.

size weight deg weight/(deg+1)ρ size × weight

A m2 − 2 tmr m3 − 1 tmr−3ρ on(1)
B m3 − 1 t m2 − 1 tm−2ρ 1
C m2 +m+ 1 tm−s m− 1 tm−s−ρ on(1)

1012 RISHI GUPTA AND TIM ROUGHGARDEN

change, but the degrees of A decrease as we pick more and more elements of C. We
eventually pick a vertex of A, which immediately removes the rest of B. In either case,
the returned independent set has no elements from B, and hence has cost on(1).

If ρ ∈ (r, s), the algorithm first picks a vertex of B, immediately removing all of
A, and one element of C. The remaining graph comprises m − 2 isolated vertices of
B (which get added to the independent set), and m2 +m stars with centers in C and
leaves in B. It is easy to see that both the adaptive and the nonadaptive versions of
the heuristic return exactly B.

We are now ready to state the main result of this section.

Theorem 4.2 (Impossibility of worst-case online learning). There is a distribu-
tion on MWIS input sequences over which every algorithm has expected regret 1−on(1).

Proof. Let tj = (rj , sj) be a distribution over sequences of nested intervals with
sj − rj = n−j , t0 = (0, 1), and with tj chosen uniformly at random from within
tj−1. Let xj be an MWIS instance on up to n vertices such that cost(Aρ, x) = 1 for
ρ ∈ (rj , sj), and cost(Aρ, x) = on(1) for ρ < rj and ρ > sj (Lemma 4.1).

The adversary presents the instances x1, x2, . . . , xT , in that order. For every
ρ ∈ tT , cost(Aρ, xj) = 1 for all j. However, at every step t, no algorithm can have a
better than 1/n chance of picking a ρt for which cost(Aρt , xt) = Θn(1), even given
x1, x2, . . . , xt−1 and full knowledge of how the sequence is generated.

4.3. A smoothed analysis. Despite the negative result above, we can show
a “low-regret” learning algorithm for MWIS under a slight restriction on how the
instances xt are chosen. By low-regret we mean that the regret can be made poly-
nomially small as a function of the number of vertices n. This is not the same as
the no-regret condition, which requires regret tending to 0 as T → ∞. Nevertheless,
inverse polynomially small regret poly(n−1) is a huge improvement over the constant
regret incurred in the worst-case lower bound (Theorem 4.2).

We take the approach suggested by smoothed analysis [31]. Fix a parameter
σ ∈ (0, 1). We allow each MWIS instance xt to have an arbitrary graph on n vertices,
but we replace each vertex weight wv with a probability distribution ∆t,v with density
at most σ−1 (pointwise) and support in [0, 1]. A simple example of such a distribution
with σ = 0.1 is the uniform distribution on [0.6, 0.65]∪ [0.82, 0.87]. To instantiate the
instance xt, we draw each vertex weight from its distribution ∆t,v. We call such an
instance a σ-smooth MWIS instance.

For small σ, this is quite a weak restriction. As σ → 0 we return to the worst-case
setting, and Theorem 4.2 can be extended to the case of σ exponentially small in n.
Here, we think of σ as bounded below by an (arbitrarily small) inverse polynomial
function of n. One example of such a smoothing is to start with an arbitrary MWIS
instance, keep the first O(log n) bits of every weight, and set the remaining lower-order
bits at random.

The main result of this section is a polynomial-time low-regret learning algorithm
for sequences of σ-smooth MWIS instances. Our strategy is to take a finite net
N ⊂ [0, 1] such that, for every algorithm Aρ and smoothed instance xt, with high
probability over xt the performance of Aρ is identical to that of some algorithm in
{Aη : η ∈ N}. We can then use any off-the-shelf no-regret algorithm to output a
sequence of algorithms from the finite set {Aη : η ∈ N}, and show the desired regret
bound.

A PAC APPROACH TO ALGORITHM SELECTION 1013

4.3.1. A low-regret algorithm for σ-smooth MWIS. We start with some
definitions. For a fixed x, let τ ′(x) be the set of transition points, namely,35

τ ′(x) := {ρ : Aρ−ω(x) 6= Aρ+ω(x) for arbitrarily small ω}.

It is easy to see τ ′(x) ⊂ τ(x), where

τ(x) := {ρ : wv1/k
ρ
1 = wv2/k

ρ
2 for some v1, v2, k1, k2 ∈ [n]; k1, k2 ≥ 2}.

With probability 1, the vertex weights wv are all distinct and non-zero, so we can
rewrite τ as

τ(x) := {ρ(v1, v2, k1, k2) : v1, v2, k1, k2 ∈ [n]; k1, k2 ≥ 2; k1 6= k2} ,

where

(3) ρ(v1, v2, k1, k2) =
ln(wv1)− ln(wv2)

ln(k1)− ln(k2)

and ln is the natural logarithm function. The main technical task is to show that no
two elements of τ(x1) ∪ · · · ∪ τ(xm) are within q of each other, for a sufficiently large
q and sufficiently large m, and with high enough probability over the randomness in
the weights of the xt’s.

We first make a few straightforward computations. The following brings the noise
into log space.

Lemma 4.3. If X is a random variable over (0, 1] with density at most δ, then
ln(X) also has density at most δ.

Proof. Let Y = ln(X), let f(x) be the density of X at x, and let g(y) be the
density of Y at y. Note that X = eY , and let v(y) = ey. Then g(y) = f(v(y)) ·v′(y) ≤
f(v(y)) ≤ δ for all y.

Since | ln(k1) − ln(k2)| ≤ lnn, Lemma 4.3 and our definition of σ-smoothness
implies the following.

Corollary 4.4. For every σ-smooth MWIS instance x, and every v1, v2, k1, k2 ∈
[n], k1, k2 ≥ 2, k1 6= k2, the density of ρ(v1, v2, k1, k2) is bounded by σ−1 lnn.

We now show that it is unlikely that two distinct elements of τ(x1)∪ · · · ∪ τ(xm)
are very close to each other.

Lemma 4.5. Let x1, . . . , xm be σ-smooth MWIS instances. The probability that
no two distinct elements of τ(x1) ∪ · · · ∪ τ(xm) are within q of each other is at least
1− 4qσ−1m2n8 lnn.

Proof. Fix instances x and x′, and choices of (v1, v2, k1, k2) and (v′1, v
′
2, k
′
1, k
′
2).

Denote by ρ and ρ′ the corresponding random variables, defined as in (3). We compute
the probability that |ρ − ρ′| ≤ q under various scenarios, over the randomness in
the vertex weights. We can ignore the case where x = x′, v1 = v′1, v2 = v′2, and
k1/k2 = k′1/k

′
2, since then ρ = ρ′ with probability 1. We consider three other cases.

Case 1. Suppose x 6= x′, and/or {v1, v2} and {v′1, v′2} don’t intersect. In this case,
ρ and ρ′ are independent random variables. Hence the maximum density of ρ−ρ′ is at

35The corner cases ρ = 0 and ρ = 1 require straightforward but wordy special handling in this
statement and in several others in this section. We omit these details to keep the argument free of
clutter.

1014 RISHI GUPTA AND TIM ROUGHGARDEN

most the maximum density of ρ, which is σ−1 lnn by Corollary 4.4. The probability
that |ρ− ρ′| ≤ q is hence at most 2q · σ−1 lnn.

Case 2. Suppose x = x′, and {v1, v2} and {v′1, v′2} share exactly one element, say

v2 = v′2. Then ρ− ρ′ has the form X − Y , where X =
ln(wv1

)

ln(k1)−ln(k2) and X and Y are

independent. Since the maximum density of X is at most σ−1 lnn (by Lemma 4.3),
the probability that |ρ− ρ′| ≤ q is again at most 2q · σ−1 lnn.

Case 3. Suppose x = x′ and {v1, v2} = {v′1, v′2}. In this case, k1/k2 6= k′1/k
′
2.

Then

|ρ− ρ′| =
∣∣∣∣(ln(wv1)− ln(wv2)

)(1

ln(k1)− ln(k2)
− 1

ln(k′1)− ln(k′2)

)∣∣∣∣
≥ | ln(wv1)− ln(wv2)|

n2
.

Since wv1 and wv2 are independent, the maximum density of the right-hand side is at
most σ−1n2, and hence the probability that |ρ− ρ′| ≤ q is at most 2q · σ−1n2.

We now upper bound the number of tuple pairs that can appear in each case
above. Each set τ(xi) has at most n4 elements, so there are at most m2n8 pairs in
Cases 1 and 2. There are at most n4 choices of (k1, k2, k

′
1, k
′
2) for each (x, v1, v2) in

Case 3, for a total of at most mn6 pairs. The theorem now follows from the union
bound.

Lastly, we formally state the existence of no-regret algorithms for the case of
finite |A|.

Fact 4.6 (E.g. [25]). For a finite set of algorithms A, there exists a random-
ized online learning algorithm L∗ that, for every m > 0, has expected regret at most
O(
√

(log |A|)/m) after seeing m instances. If the time cost of evaluating cost(A, x)
is bounded by B, then this algorithm runs in O(B|A|) time per instance.

We can now state our main theorem.

Theorem 4.7 (Online learning of smooth MWIS). There is an online learning
algorithm for σ-smooth MWIS that runs in time poly(n, σ−1) and has expected regret
at most poly(n−1) (as T →∞).

Proof. Fix a sufficiently large constant d > 0 and consider the first m instances of
our sequence, x1, . . . , xm, with m = nd ln(σ−1). Let q = 1/(nd · 4σ−1m2n8 lnn). Let
Eq be the event that every two distinct elements of τ(x1) ∪ · · · ∪ τ(xm) are at least
q away from each other. By Lemma 4.5, Eq holds with probability at least 1− 1/nd

over the randomness in the vertex weights.
Now, let AN = {Ai : i ∈ {0, q, 2q, . . . , b1/qcq, 1}} be a “q-net.” Our desired

algorithm L is simply the algorithm L∗ from Fact 4.6, applied to AN . We now
analyze its expected regret.

If Eq does hold, then for every algorithm A ∈ A, there is an algorithm A′ ∈
AN such that cost(A, xt) = cost(A′, xt) for x1, . . . , xm. In other words, the best
algorithm of AN is no worse than the best algorithm from all of A, and in this case
the expected regret of L is simply that of L∗. By Fact 4.6 and our choice of m, the
expected regret (over the coin flips made by L∗) is at most inverse polynomial in n.

If Eq does not hold, our regret is at most 1, since cost is between 0 and 1.
Averaging over the cases where Eq does and does not hold (with probabilities 1−1/nd

and 1/nd), the expected regret of the learning algorithm L (over the randomness in
L∗ and in the instances) is at most inverse polynomial in n.

A PAC APPROACH TO ALGORITHM SELECTION 1015

5. Conclusions and future directions. Empirical work on application-specific
algorithm selection has far outpaced theoretical analysis of the problem, and this
paper takes an initial step towards redressing this imbalance. We formulated the
problem as one of learning the best algorithm or algorithm sequence from a class with
respect to an unknown input distribution or input sequence. Many state-of-the-art
empirical approaches to algorithm selection map naturally to instances of our learning
frameworks. This paper demonstrates that many well-studied classes of algorithms
have small pseudo-dimension, and thus it is possible to learn a near-optimal algorithm
from a relatively modest amount of data. While worst-case guarantees for no-regret
online learning algorithms are impossible, good online learning algorithms exist in a
natural smoothed model.

Our work suggests numerous wide-open research directions worthy of further
study. For example,

1. Which computational problems admit a class of algorithms that simultane-
ously has low representation error and small pseudo-dimension (as in subsec-
tion 3.4)?

2. Which algorithm classes can be learned online, in either a worst-case or a
smoothed model?

3. When is it possible to learn a near-optimal algorithm using only a polyno-
mial amount of computation, ideally with a learning algorithm that is better
than brute-force search? Alternatively, are there (conditional) lower bounds
stating that brute-force search is necessary for learning?36

4. Are there any nontrivial relationships between statistical learning measures
of the complexity of an algorithm class and more traditional computational
complexity measures?

5. How should instance features be chosen to minimize the representation error
of the induced family of algorithm selection maps (cf. subsection 3.5)?

Appendix A. A bad example for gradient descent. We depict a family F
of real-valued functions (defined on the plane R2) for which the class A of gradient
descent algorithms from subsection 3.6 has infinite pseudo-dimension. We parameter-
ize each function fI ∈ F in the class by a finite subset I ⊂ [0, 1]. The “aerial view”
of fI is as follows:

36Recall the discussion in subsection 2.3: even in practice, the state of the art for application-
specific algorithm selection often boils down to brute-force search.

1016 RISHI GUPTA AND TIM ROUGHGARDEN

The “squiggle” s(I) intersects the relevant axis at exactly I (to be concrete,
let s(I) be the monic polynomial with roots at I). We fix the initial point z0 to
be at the tail of the arrow for all instances, and fix ρ` and ρu so that the first
step of gradient descent takes z0 from the upper incline into the middle of the lower
flat or wavy areas. Let xI be the instance corresponding to fI with starting point
z0. If for a certain ρ and I, g(z0, ρ) lands in the flat area, gradient descent stops
immediately and cost(Aρ, xI) = 1. If g(z0, ρ) instead lands in the sloped, wavy area,
cost(Aρ, xI)� 1.

It should be clear that F can shatter any finite subset of (ρ`, ρu), and hence has
infinite pseudo-dimension. One can also make slight modifications to ensure that all
the functions in F are continuously differentiable and L-smooth.

Acknowledgments. We are grateful for the many helpful comments provided
by the anonymous SICOMP and ITCS reviewers.

REFERENCES

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu, Self-improving algorithms, in Proceedings
of the Symposium on Discrete Algorithms (SODA), 2006, pp. 261–270.

[2] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foundations, Cam-
bridge University Press, Cambridge, 1999.

[3] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit, Local
search heuristics for k-median and facility location problems, SIAM J. Comput., 33 (2004),
pp. 544–562.

[4] J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, J. Mach.
Learn. Res., 13 (2012), pp. 281–305.

[5] A. Borodin, M. N. Nielsen, and C. Rackoff, (Incremental) priority algorithms, Algorith-
mica, 37 (2003), pp. 295–326.

[6] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cam-
bridge, 2004.

[7] The Budget and Economic Outlook : 2015 to 2025, U. S. Congressional Budget Office, 2014.
[8] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games, Cambridge University

Press, Cambridge, 2006.
[9] K. L. Clarkson, W. Mulzer, and C. Seshadhri, Self-improving algorithms for convex hulls,

in Proceedings of the Symposium on Discrete Algorithms (SODA), 2010, pp. 1546–1565.
[10] K. L. Clarkson, W. Mulzer, and C. Seshadhri, Self-improving algorithms for coordinate-

wise maxima, in Proceedings of the Symposium on Computational Geometry (SoCG),
2012, pp. 277–286.

[11] K. L. Clarkson and C. Seshadhri, Self-improving algorithms for Delaunay triangulations, in
Proceedings of the Symposium on Computational Geometry (SoCG), 2008, pp. 148–155.

[12] L. Devroye, Lectures Notes on Bucket Algorithms, Birkhäuser, Basel, 1986.
[13] E. Fink, How to solve it automatically: Selection among problem solving methods, in Pro-

ceedings of the International Conference on Artificial Intelligence Planning Systems, 1998,
pp. 128–136.

[14] A. Gathmann, Lectures Notes on Algebraic Geometry, TU Kaiserslautern, 2014.
[15] D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other

learning applications, Inf. Comput., 100 (1992), pp. 78–150.
[16] E. Horvitz, Y. Ruan, C. P. Gomes, H. A. Kautz, B. Selman, and D. M. Chickering, A

Bayesian approach to tackling hard computational problems, in Proceedings of the Confer-
ence in Uncertainty in Artificial Intelligence (UAI), 2001, pp. 235–244.

[17] L. Huang, J. Jia, B. Yu, B. Chun, P. Maniatis, and M. Naik, Predicting execution time
of computer programs using sparse polynomial regression, in Proceedings of Advances in
Neural Information Processing Systems (NIPS), 2010, pp. 883–891.

[18] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, Algorithm runtime prediction:
Methods & evaluation, Artif. Intell., 206 (2014), pp. 79–111.

[19] G. J. O. Jameson, Counting zeros of generalized polynomials: Descartes rule of signs and
Laguerres extensions, Math. Gaz., 90 (2006), pp. 223–234.

[20] D. S. Johnson and L. A. McGeoch, The traveling salesman problem: A case study in
local optimization, in Local Search in Combinatorial Optimization, E. Aarts and

A PAC APPROACH TO ALGORITHM SELECTION 1017

J. K. Lenstra, eds., Wiley, New York, 1997, pp. 215–310. Reprinted by Princeton Uni-
versity Press, Princeton, 2003.

[21] D. E. Knuth, Estimating the efficiency of backtrack programs, Math. Comput., 29 (1975),
pp. 121–136.

[22] L. Kotthoff, I. P. Gent, and I. Miguel, An evaluation of machine learning in algorithm
selection for search problems, AI Commun., 25 (2012), pp. 257–270.

[23] D. Lehmann, L. I. O’Callaghan, and Y. Shoham, Truth revelation in approximately efficient
combinatorial auctions, J. ACM, 49 (2002), pp. 577–602.

[24] K. Leyton-Brown, E. Nudelman, and Y. Shoham, Empirical hardness models: Methodology
and a case study on combinatorial auctions, J. ACM, 56 (2009).

[25] N. Littlestone and M. K. Warmuth, The weighted majority algorithm, Inf. Comput., 108
(1994), pp. 212–261.

[26] P. M. Long, Using the pseudo-dimension to analyze approximation algorithms for integer pro-
gramming, in Proceedings of the International Workshop on Algorithms and Data Struc-
tures (WADS), 2001, pp. 26–37.

[27] P. Milgrom and I. Segal, Deferred-acceptance auctions and radio spectrum reallocation, in
Proceedings of the Fifteenth ACM Conference on Economics and Computation, Palo Alto,
CA, Association for Computing Machinery, 2014, pp. 185–186.

[28] M. Mohri and A. M. Medina, Learning theory and algorithms for revenue optimization in sec-
ond price auctions with reserve, in Proceedings of the International Conference on Machine
Learning (ICML), 2014, pp. 262–270.

[29] J. Morgenstern and T. Roughgarden, The pseudo-dimension of near-optimal auctions, in
Proceedings of Advances in Neural Information Processing Systems, 2015, pp. 136–144.

[30] S. Sakai, M. Togasaki, and K. Yamazaki, A note on greedy algorithms for the maximum
weighted independent set problem, Discrete Appl. Math., 126 (2003), pp. 313–322.

[31] D. A. Spielman and S. Teng, Smoothed analysis: an attempt to explain the behavior of
algorithms in practice, Commun. ACM, 52 (2009), pp. 76–84.

[32] N. Srebro and S. Ben-David, Learning bounds for support vector machines with learned
kernels, in Proceedings of the 19th Annual Conference on Learning Theory, 2006,
pp. 169–183.

[33] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, SATzilla: Portfolio-based algorithm
selection for SAT, J. Artif. Intell. Res., 32 (2008), pp. 565–606.

[34] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, Hydra-MIP: Automated algorithm
configuration and selection for mixed integer programming, in Proceedings of the RCRA
Workshop on Combinatorial Explosion at the International Joint Conference on Artificial
Intelligence (IJCAI), 2011, pp. 16–30.

[35] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, SATzilla 2012: Improved algorithm
selection based on cost-sensitive classification models, in Proceedings of the International
Conference on Theory and Applications of Satisfiability Testing (SAT), 2012.

	Introduction
	Motivating scenarios
	Example #1: Greedy heuristic selection
	Example #2: Self-improving algorithms
	Example #3: Parameter tuning in optimization and machinelearning
	Example #4: Empirical performance models for SAT algorithms

	PAC learning an application-specific algorithm
	The basic model
	Pseudo-dimension and uniform convergence
	Application: Greedy heuristics and extensions
	Definitions and examples
	Upper bound on pseudo-dimension
	Computational considerations
	Extensions: Multiple algorithms, multiple parameters, and local search

	Application: Self-improving algorithms revisited
	Application: Feature-based algorithm selection
	Application: Choosing the step size in gradient descent
	Gradient descent preliminaries
	A Lipschitz-like bound on COST(A,x) as a function of
	Learning the best step size

	Online learning of application-specific algorithms
	The online learning model
	An impossibility result for worst-case instances
	A hard example for MWIS

	A smoothed analysis
	A low-regret algorithm for -smooth MWIS

	Conclusions and future directions
	Appendix A. A bad example for gradient descent
	Acknowledgments
	References

