
Beyond the Worst-Case Analysis of Algorithms

Edited by

Tim Roughgarden

Contents

1 Resource Augmentation T. Roughgarden page 4

1.1 Online Paging Revisited 4

1.2 Discussion 8

1.3 Selfish Routing 9

1.4 Speed Scaling in Scheduling 14

1.5 Loosely Competitive Algorithms 20

1.6 Notes 23

Exercises 25

1

Resource Augmentation
Tim Roughgarden

Abstract

This chapter introduces resource augmentation, where the performance of an al-

gorithm is compared to the best-possible solution that is handicapped by less re-

sources. We consider three case studies: online paging, with cache size as the re-

source; selfish routing, with capacity as the resource; and scheduling, with processor

speed as the resource. Resource augmentation bounds also imply “loosely competi-

tive” bounds, which show that an algorithm’s performance is near-optimal for most

resource levels.

1.1 Online Paging Revisited

This section illustrates the idea of resource augmentation with a familiar example,

the competitive analysis of online paging algorithms. Section 1.2 discusses the pros

and cons of resource augmentation more generally, Sections 1.3 and 1.4 describe ad-

ditional case studies in routing and scheduling, and Section 1.5 shows how resource

augmentation bounds lead to “loosely competitive” guarantees.

1.1.1 The Model

Our first case study of resource augmentation concerns the online paging problem

introduced in Chapter 1. Recall the ingredients of the problem:

• There is a slow memory with N pages.

• There is a fast memory (a cache) that can hold only k < N of the pages at a

time.

• Page requests arrive online over time, with one request per time step. The deci-

sions of an online algorithm at time t can depend only on the requests arriving

at or before time t.

• If the page pt requested at time t is already in the cache, no action is necessary.

Resource Augmentation 5

• If pt is not in the cache, it must be brought in; if the cache is full, one of its k

pages must be evicted. This is called a page fault.1

We measure the performance Perf(A, z) of an algorithm A on a page request

sequence z by the number of page faults incurred.

1.1.2 FIF and LRU

As a benchmark, what would we do if we had clairvoyance about all future page

requests? An intuitive greedy algorithm minimizes the number of page faults.

Theorem 1.1 (Bélády (1967)) The Furthest-in-the-Future (FIF) algorithm, which

on a page fault evicts the page to be requested furthest in the future, always mini-

mizes the number of page faults.

The FIF algorithm is not an online algorithm, as its eviction decisions depend on

future page requests. The Least Recently Used (LRU) policy, which on a page fault

evicts the page whose most recent request is furthest in the past, is an online sur-

rogate for the FIF algorithm that uses the past as an approximation for the future.

Empirically, the LRU algorithm performs well on most “real-world” page request

sequences—not much worse than the unimplementable FIF algorithm, and better

than other online algorithms such as first-in first-out (FIFO). The usual explana-

tion for the superiority of the LRU algorithm is that the page request sequences

that arise in practice exhibit locality of reference, with recent requests likely to

be requested again soon, and that LRU automatically adapts to and exploits this

locality.

1.1.3 Competitive Ratio

One popular way to assess the performance of an online algorithm is through its

competitive ratio:2

Definition 1.2 (Sleator and Tarjan (1985)) The competitive ratio of an online

algorithm A is its worst-case performance (over inputs z) relative to an optimal

offline algorithm OPT that has advance knowledge of the entire input:

max
z

Perf(A, z)

Perf(OPT, z)
.

1 This model corresponds to “demand paging,” meaning algorithms that modify the cache only in
response to a page fault. The results in this section continue to hold in the more general model in
which an algorithm is allowed to make arbitrary changes to the cache at each time step, whether or
not there is a page fault, with the cost incurred by the algorithm equal to the number of changes.

2 See Chapter 24 for a deep dive on alternatives to worst-case analysis in the competitive analysis of
online algorithms.

6 T. Roughgarden

For the objective of minimizing the number of page faults, the competitive ratio

is always at least 1, and the closer to 1 the better.3

Exercise 1.1 of Chapter 1 shows that, for every deterministic online paging algo-

rithm A and cache size k, there are arbitrarily long page request sequences z such

that A faults at every time step while the FIF algorithm faults at most once per k

time steps. This example shows that every deterministic online paging algorithm

has a competitive ratio of at least k. For most natural online algorithms, there is a

matching upper bound of k. This state of affairs is unsatisfying for several reasons:

1. The analysis gives an absurdly pessimistic performance prediction for LRU (and

all other deterministic online algorithms), suggesting that a 100% page fault rate

is unavoidable.

2. The analysis suggests that online algorithms perform worse (relative to FIF) as

the cache size grows, a sharp departure from empirical observations.

3. The analysis fails to differentiate between competing policies like LRU and FIFO,

which both have a competitive ratio of k.

We next address the first two issues through a resource augmentation analysis (but

not the third, see Exercise 1.2).

1.1.4 A Resource Augmentation Bound

In a resource augmentation analysis, the idea is to compare the performance of

a protagonist algorithm (like LRU) to an all-knowing optimal algorithm that is

handicapped by “less resources.” Naturally, weakening the capabilities of the offline

optimal algorithm can only lead to better approximation guarantees.

Let Perf(A, k, z) denote the number of page faults incurred by the algorithm A

with cache size k on the page request sequence z. The main result of this section

is:

Theorem 1.3 (Sleator and Tarjan (1985)) For every page request sequence z and

cache sizes h ≤ k,

Perf(LRU, k, z) ≤ k

k − h+ 1
·Perf(FIF, h, z),

plus an additive error term that goes to 0 with Perf(FIF, h, z).

For example, LRU suffers at most twice as many page faults as the unimple-

mentable FIF algorithm when the latter has roughly half the cache size.

Proof Consider an arbitrary page request sequence z and cache sizes h ≤ k. We

first prove an upper bound on the number of page faults incurred by the LRU

algorithm, and then a lower bound on the number of faults incurred by the FIF

3 One usually ignores any extra additive terms in the competitive ratio, which vanish as
Perf(OPT, z)→∞.

Resource Augmentation 7

σ1 σ2 σ3 σ4 σb

...etc.maximal subject to
≤ k distinct requests

maximal subject to
≤ k distinct requests

(a) Blocks of a request sequence

σ1 σ2
σ3 σ4 σb

...etc.≥ 1 fault ≥ 1 fault

(b) Lower bound for FIF (with h = k)

Figure 1.1 Proof of Theorem 1.3. In (a), the blocks of a page request sequence; the LRU
algorithm incurs at most k page faults in each. In (b), the FIF algorithm incurs at least
k − h + 1 page faults in each “shifted block.”

algorithm. A useful idea for accomplishing both goals is to break z into blocks

σ1, σ2, . . . , σb. Here σ1 is the maximal prefix of z in which only k distinct pages are

requested; the block σ2 starts immediately after and is maximal subject to only k

distinct pages being requested (ignoring what was requested in σ1); and so on.

For the first step, note that LRU faults at most k times within a single block—at

most once per page requested in the block. The reason is that once a page is brought

into the cache, LRU won’t evict it until k other distinct pages are requested, and

this can’t happen until the following block. Thus LRU incurs at most bk page faults,

where b is the number of blocks. See Figure 1.1(a).

For the second step, consider the FIF algorithm with a cache size h ≤ k. Con-

sider the first block σ1 plus the first request of the second block σ2. Since σ1 is

maximal, this represents requests for k + 1 distinct pages. At least k − h + 1 of

these pages are initially absent from the size-h cache, so no algorithm can serve all

k+ 1 pages without incurring at least k− h+ 1 page faults. Similarly, suppose the

first request of σ2 is the page p. After an algorithm serves the request for p, the

cache contains only h−1 pages other than p. By the maximality of σ2, the “shifted

block” comprising the rest of σ2 and the first request of σ3 includes requests for k

distinct pages other than p; these cannot all be served without incurring another

k︸︷︷︸
requests other than p

− (h− 1)︸ ︷︷ ︸
pages in cache other than p

page faults. And so on, resulting in at least (b − 1)(k − h + 1) page faults overall.

See Figure 1.1(b).

We conclude that

Perf(LRU, k, z) ≤ bk ≤ k

k − h+ 1
·Perf(FIF, h, z) +

k

(b− 1)(k − h+ 1)
.

The additive error term goes to 0 with b, and the proof is complete.

8 T. Roughgarden

(a) A good competitive ratio (b) A resource augmentation guarantee

Figure 1.2 Competitive ratio guarantees vs. resource augmentation guarantees. All curves
plot, for a fixed input, the cost incurred by an algorithm (e.g., number of page faults)
as a function of the resource level (e.g., the cache size). In (a), a good upper bound on
the competitive ratio requires that the curve for the online algorithm closely approximates
that of the offline optimal algorithm pointwise over the x-axis. In (b), the vertical distance
between the two curves (and hence the competitive ratio) grows large as the resource level
approaches its minimum. A resource augmentation guarantee roughly translates to the
relaxed requirement that every point of the online algorithm’s performance curve has a
nearby neighbor somewhere on the optimal offline algorithm’s performance curve.

1.2 Discussion

Resource augmentation guarantees make sense for any problem where there’s a nat-

ural notion of a “resource,” with algorithm performance improving in the resource

level; see Sections 1.3 and 1.4 for two further examples. In general, a resource aug-

mentation guarantee implies that the performance curves (i.e., performance as a

function of resource level) of an online algorithm and the offline optimal algorithm

are similar (Figure 1.2).

The resource augmentation guarantees in this chapter resemble worst-case anal-

ysis, in that no model of data is proposed; the difference is purely in the method

of measuring algorithm performance (relative to optimal performance). As usual,

this is both a feature and a bug: the lack of a data model guarantees universal ap-

plicability, but also robs the analyst of any opportunity to articulate properties of

“real-world” inputs that might lead to a more accurate and fine-grained analysis.

There is nothing inherently worst-case about resource augmentation guarantees,

Resource Augmentation 9

however, and the concept can equally well be applied with one of the models of

data discussed in the other parts of this book.4

How should you interpret a resource augmentation guarantee like Theorem 1.3?

Should you be impressed? Taken at face value, Theorem 1.3 seems much more

meaningful than the competitive ratio of k without resource augmentation, even

though it doesn’t provide particularly sharp performance predictions (as to be ex-

pected, given the lack of a model of data). But isn’t it an “apples vs. oranges”

comparison? The optimal offline algorithm is powerful in its knowledge of all future

page requests, but it’s artificially hobbled by a small cache.

One interpretation of a resource augmentation guarantee is as a two-step recipe

for building a system in which an online algorithm has good performance.

1. Estimate the resource level (e.g., cache size) such that the optimal offline algo-

rithm has acceptable performance (e.g., page fault rate below a given target).5

This task can be simpler than reasoning simultaneously about the cache size and

paging algorithm design decisions.

2. Scale up the resources to realize the resource augmentation guarantee (e.g., dou-

bling the cache size needed by the FIF algorithm to achieve good performance).

A second justification for resource augmentation guarantees is that they usually

lead directly to good “apples vs. apples” comparisons for most resource levels (as

suggested by Figure 1.2(b)). Section 1.5 presents a detailed case study in the context

of online paging.

1.3 Selfish Routing

Our second case study of a resource augmentation guarantee concerns a model of

selfish routing in a congested network.

1.3.1 The Model and a Motivating Example

In selfish routing, we consider a directed flow network G = (V,E), with r units of

flow traveling from a source vertex s to a sink vertex t; r is called the traffic rate.

Each edge e of the network has a flow-dependent cost function ce(x). For example,

in the network in Figure 1.3(a), the top edge has a constant cost function c(x) = 1,

while the cost to traffic on the bottom edge equals the amount of flow x on the

edge.

The key approximation concept in selfish routing networks is the price of anarchy

4 For example, Chapter 27 combines robust distributional analysis with resource augmentation, in the
context of prior-independent auctions.

5 Remember: competing with the optimal algorithm is only useful when its performance is good in
some absolute sense!

10 T. Roughgarden

(a) (b)

Figure 1.3 Two selfish routing networks. Each cost function c(x) describes the cost in-
curred by users of an edge, as a function of the amount of traffic routed on that edge.

which, as usual with approximation ratios, is defined as the ratio between two

things: a realizable protagonist and a hypothetical benchmark.

Our protagonist is an equilibrium flow, in which all traffic is routed on short-

est paths, where the length of an s-t path P is the (flow-dependent) quantity∑
e∈P ce(fe), where fe denotes the amount of flow using the edge e. In Figure 1.3(a),

with one unit of traffic, the only equilibrium flow sends all traffic on the bottom

edge. If ε > 0 units of traffic were routed on the top path, that traffic would not be

routed on a shortest path (incurring cost 1 instead of 1− ε), and hence would want

to switch paths.

Our benchmark is the optimal solution, meaning the fractional s-t flow that

routes the r units of traffic to minimize the total cost
∑
e∈E ce(fe)fe. For example,

in Figure 1.3(a), the optimal flow splits traffic evenly between the two paths, for a

cost of 1
2 · 1 + 1

2 · 1
2 = 3

4 . The cost of the equilibrium flow is 0 · 1 + 1 · 1 = 1.

The price of anarchy of a selfish routing network is defined as the ratio between

the cost of an equilibrium flow and that of an optimal flow.6 In the network in

Figure 1.3(a), the price of anarchy is 4/3.

An interesting research goal is to identify selfish routing networks in which the

price of anarchy is close to 1—networks in which decentralized optimization by self-

ish users performs almost as well as centralized optimization. Unfortunately, with-

out any restrictions on edges’ cost functions, the price of anarchy can be arbitrarily

large. To see this, replace the cost function on the bottom edge in Figure 1.3(a) by

the function c(x) = xd for a large positive integer d (Figure 1.3(b)). The equilibrium

flow and its cost remain the same, with all selfish traffic using the bottom edge for

an overall cost of 1. The optimal flow, however, improves with d: Routing 1 − ε
units of flow on the bottom edge and ε units on the top edge yields a flow with cost

ε+ (1− ε)d+1. This cost tends to 0 as d tends to infinity and ε tends appropriately

to 0, and hence the price of anarchy goes to infinity with d.

6 It turns out that the equilibrium flow cost is uniquely defined in every selfish routing network with
continuous and nondecreasing edge cost functions; see the Notes for details.

Resource Augmentation 11

1.3.2 A Resource Augmentation Guarantee

Despite the negative example above, a very general resource augmentation guaran-

tee holds in selfish routing networks.7

Theorem 1.4 (Roughgarden and Tardos (2002)) For every network G with non-

negative, continuous, and nondecreasing cost functions, for every traffic rate r > 0,

and for every δ > 0, the cost of an equilibrium flow in G with traffic rate r is at

most 1
δ times the cost of an optimal flow with traffic rate (1 + δ)r.

For example, consider the network in Figure 1.3(b) with r = δ = 1 (and large d).

The cost of the equilibrium flow with traffic rate 1 is 1. The optimal flow can route

one unit of traffic cheaply (as we’ve seen), but then the network gets clogged up

and it has no choice but to incur one unit of cost on the second unit of flow (the

best it can do is route it on the top edge). Thus the cost of an optimal flow with

double the traffic exceeds that of the original equilibrium flow.

Theorem 1.4 can be reformulated as a comparison between an equilibrium flow

in a network with “faster” edges and an optimal flow in the original network. For

example, simple calculations (Exercise 1.5) show that the following statement is

equivalent to Theorem 1.4 with δ = 1.

Corollary 1.5 For every network G with nonnegative, continuous, and nonde-

creasing cost functions and for every traffic rate r > 0, the cost of an equilibrium

flow in G with traffic rate r and cost functions {c̃e}e∈E is at most that of an optimal

flow in G with traffic rate r and cost functions {ce}e∈E, where each function c̃e is

derived from ce as c̃e(x) = ce(x/2)/2.

Corollary 1.5 takes on a particularly appealing form in networks with M/M/1

delay functions, meaning cost functions of the form ce(x) = 1/(ue−x), where ue can

be interpreted as an edge capacity or a queue service rate. (If x ≥ ue, interpret ce(x)

as +∞.) In this case, the modified function c̃e in Corollary 1.5 is

c̃e(x) =
1

2(ue − x
2)

=
1

2ue − x
.

Corollary 1.5 thus translates to the following design principle for selfish routing

networks with M/M/1 delay functions: to outperform optimal routing, double the

capacity of every edge.

1.3.3 Proof of Theorem 1.4 (Parallel Edges)

As a warm-up to the proof of Theorem 1.4, consider the special case where G =

(V,E) is a network of parallel edges, meaning V = {s, t} and every edge of E is

directed from s to t (as in Figure 1.3). Choose a traffic rate r > 0; a cost function ce

7 This result holds still more generally, in networks with multiple source and sink vertices
(Exercise 1.4).

12 T. Roughgarden

for each edge e ∈ E that is nonnegative, continuous, and nondecreasing; and the

parameter δ > 0. Let f and f∗ denote equilibrium and optimal flows in G at traffic

rates r and (1 + δ)r, respectively. The equilibrium flow f routes traffic only on

shortest paths, so there is a number L (the shortest s-t path length) such that

ce(fe) = L if fe > 0;

ce(fe) ≥ L if fe = 0.

The cost of the equilibrium flow f is then∑
e∈E

ce(fe)fe =
∑

e∈E : fe>0

ce(fe)fe =
∑

e∈E : fe>0

L · fe = r · L,

as the total amount of flow
∑
e : fe>0 fe equals the traffic rate r.

How can we bound from below the cost of the optimal flow f∗, relative to the

cost rL of f? To proceed, bucket the edges of E into two categories:

E1 := the edges e with f∗e ≥ fe;
E2 := the edges e with f∗e < fe.

With so few assumptions on the network cost functions, we can’t say much about

the costs of edges under the optimal flow f∗. The two things we can say are that

ce(f
∗
e) ≥ L for all e ∈ E1 (because cost functions are nondecreasing) and that

ce(f
∗
e) ≥ 0 for all e ∈ E2 (because cost functions are nonnegative). At the very

least, we can therefore lower bound the cost of f∗ by∑
e∈E

ce(f
∗
e)f∗e ≥

∑
e∈E1

ce(f
∗
e)f∗e ≥ L ·

∑
e∈E1

f∗e . (1.1)

How little traffic could f∗ possibly route on the edges of E1? The flow routes (1+δ)r

units of traffic overall. It routes less flow than f on the edges of E2 (by the definition

of E2), and f routes at most r units (i.e., its full traffic rate) on these edges. Thus∑
e∈E1

f∗e = (1 + δ)r −
∑
e∈E2

f∗e ≥ (1 + δ)r −
∑
e∈E2

fe︸ ︷︷ ︸
≤r

≥ δr. (1.2)

Combining the inequalities (1.1) and (1.2) shows that the cost of f∗ is at least δ ·rL,

which is δ times the cost of f , as desired.

1.3.4 Proof of Theorem 1.4 (General Networks)

Consider now the general case of Theorem 1.4, in which the network G = (V,E)

is arbitrary. General networks are more complex than networks of parallel edges

because there is no longer a one-to-one correspondence between edges and paths—

a path might comprise many edges, and an edge might participate in many different

paths. This complication aside, the proof proceeds similarly to that for the special

case of networks of parallel edges.

Resource Augmentation 13

fe

flow

fe ��
��
��

��
��
��

������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

c
o
st

ec ()

(a) Graph of cost function ce and its value
at flow value fe

fe

flow

fe ��
��
��

��
��
��

������������

c
o
st

ec ()

(b) Graph of cost function c̄e

Figure 1.4 Construction in the proof of Theorem 1.4 of the fictitious cost function c̄e from
the original cost function ce and equilibrium flow value fe.

Fix a traffic rate r, a cost function ce for each edge e ∈ E, and the parameter

δ > 0. As before, let f and f∗ denote equilibrium and optimal flows in G at traffic

rates r and (1 + δ)r, respectively. It is still true that there is a number L such

that all traffic in f is routed on paths P with length
∑
e∈P ce(fe) equal to L, and

such that all s-t paths have length at least L. The cost of the equilibrium flow is

again rL.

The key trick in the proof is to replace, for the sake of analysis, each cost func-

tion ce(x) (Figure 1.4(a)) by the larger cost function c̄e(x) = max{ce(x), ce(fe)}
(Figure 1.4(b)). This trick substitutes for the decomposition in Section 1.3.3 of E

into E1 and E2. With the fictitious cost functions c̄e, edge costs are always as large

as if the equilibrium flow f had already been routed in the network.

By design, the cost of the optimal flow f∗ is easy to bound from below with the

fictitious cost functions. Even with zero flow in the network, every s-t path has cost

at least L with respect to these functions. Because f∗ routes (1+δ)r units of traffic

on paths with (fictitious) cost at least L, its total (fictitious) cost with respect to

the c̄e’s is at least (1 + δ)rL.

We can complete the proof by showing that the fictitious cost of f∗ (with respect

to the c̄e’s) exceeds its real cost (with respect to the ce’s) by at most rL, the

equilibrium flow cost. For each edge e ∈ E and x ≥ 0, c̄e(x) − ce(x) is either 0 (if

x ≥ fe) or bounded above by ce(fe) (if x < fe); in any case,

c̄e(f
∗
e)f∗e︸ ︷︷ ︸

fictitious cost of f∗ on e

− ce(f
∗
e)f∗e︸ ︷︷ ︸

real cost of f∗ on e

≤ ce(fe)fe︸ ︷︷ ︸
real cost of f on e

.

Summing this inequality over all edges e ∈ E shows that the difference between the

costs of f∗ with respect to the different cost functions is at most the cost of f (i.e.,

rL); this completes the proof of Theorem 1.4.

14 T. Roughgarden

1.4 Speed Scaling in Scheduling

The lion’s share of killer applications of resource augmentation concern scheduling

problems. This section describes one paradigmatic example.

1.4.1 Non-Clairvoyant Scheduling

We consider a model with a single machine and m jobs that arrive online. Each

job j has a release time rj and the algorithm is unaware of the job before this

time. Each job j has a processing time pj , indicating how much machine time is

necessary to complete it. We assume that preemption is allowed, meaning that a

job can be stopped mid-execution and restarted from the same point (with no loss)

at a subsequent time.

We consider the basic objective of minimizing the total flow time:8

m∑
j=1

(Cj − rj) ,

where Cj denotes the completion time of job j. For an alternative formulation, note

that each infinitesimal time interval [t, t+dt] contributes dt to the flow time Cj−rj
of every job that is active at time t, meaning released but not yet completed. Thus,

the total flow time can be written as∫ ∞
0

|Xt|dt, (1.3)

where Xt denotes the active jobs at time t.

The shortest remaining processing time (SRPT) algorithm always processes the

job that is closest to completion (preempting jobs as needed). This algorithm

makes |Xt| as small as possible for all times t (Exercise 1.7) and is therefore op-

timal. This is a rare example of a problem where the optimal offline algorithm is

implementable as an online algorithm.

SRPT uses knowledge of the job processing times to make decisions, and as such

is a clairvoyant algorithm. What about applications in which a job’s processing

time is not known before it completes, where a non-clairvoyant algorithm is called

for? No non-clairvoyant online algorithm can guarantee a total flow time close to

that achieved by SRPT (Exercise 1.8). Could a resource augmentation approach

provide more helpful algorithmic guidance?

1.4.2 A Resource Augmentation Guarantee for SETF

The natural notion of a “resource” in this scheduling problem is processor speed.

Thus, a resource augmentation guarantee would assert that the total flow time of

8 This objective is also called the total response time.

Resource Augmentation 15

some non-clairvoyant protagonist with a faster machine is close to that of SRPT

with the original machine.

We prove such a guarantee for the shortest elapsed time first (SETF) algorithm,

which always processes the job that has been processed the least so far. When mul-

tiple jobs are tied for the minimum elapsed time, the machine splits its processing

power equally between them. SETF does not use jobs’ processing times to make

decisions, and as such is a non-clairvoyant algorithm.

Example 1.6 Fix parameters ε, δ > 0, with δ much smaller than ε. With an eye

toward a resource augmentation guarantee, we compare the total flow time of SETF

with a machine with speed 1 + ε—meaning that the machine can process (1 + ε)t

units of jobs in a time interval of length t—to that of SRPT with a unit-speed

machine.

Suppose m jobs arrive at times r1 = 0, r2 = 1, . . . , rm = m − 1, where m is

b 1
ε c−1. Suppose pj = 1+ε+δ for every job j. Under the SRPT algorithm, assuming

that ε+ δ is sufficiently small, there will be at most 2 active jobs at all times (the

most recently released jobs); using (1.3), the total flow time of its schedule is O(1
ε).

The SETF algorithm will not complete any jobs until after time m, so in each time

interval [j − 1, j] there are j active jobs. Using (1.3) again, the total flow time of

SETF’s schedule is Ω(1
ε2).

Example 1.6 shows that SETF is not optimal, and it draws a line in the sand:

The best we can hope for is that the SETF algorithm with a (1 + ε)-speed machine

achieves total flow time O(1
ε) times that suffered by the SRPT algorithm with a

unit-speed machine. The main result of this section states that this is indeed the

case.

Theorem 1.7 (Kalyanasundaram and Pruhs (2000)) For every input and ε > 0,

the total flow time of the schedule produced by the SETF algorithm with a machine

with speed 1 + ε is at most

1 +
1

ε

times that by the SRPT algorithm with a unit-speed machine.

Using the second version (1.3) of the objective function, Theorem 1.7 reduces to

the following pointwise (over time) bound.

Lemma 1.8 Fix ε > 0. For every input, at every time step t,

|Xt| ≤
(

1 +
1

ε

)
|X∗t |,

where Xt and X∗t denote the jobs active at time t under SETF with a (1 + ε)-speed

machine and SRPT with a unit-speed machine, respectively.

16 T. Roughgarden

In Example 1.6, at time t = m, |X∗t | = 1 (provided ε, δ are sufficiently small)

while |Xt| = m ≈ 1
ε . Thus, every inequality used in the proof of Lemma 1.8 should

hold almost with equality for the instance in Example 1.6. The reader is encouraged

to keep this example in mind throughout the proof.

To describe the intuition behind Lemma 1.8, fix a time t. Roughly:

1. SRPT must have spent more time processing the jobs of Xt \ X∗t than SETF

(because SRPT finished them by time t while SETF did not).

2. SETF performed 1 + ε times as much job processing as SRPT, an ε portion of

which must have been devoted to the jobs of X∗t .

3. Because SETF prioritizes the jobs that have been processed the least, it also

spent significant time processing the jobs of Xt \X∗t .

4. SRPT had enough time to complete all the jobs of Xt \X∗t by time t, so there

can’t be too many such jobs.

The rest of this section supplies the appropriate details.

1.4.3 Proof of Lemma 1.8: Preliminaries

Fix an input and a time t, with Xt and X∗t defined as in Lemma 1.8. Rename the

jobs of Xt \X∗t = {1, 2, . . . , k} such that r1 ≥ r2 ≥ · · · ≥ rk.

Consider the execution of the SETF algorithm with a (1 + ε)-speed machine. We

say that job ` interferes with job j if there is a time s ≤ t at which j is active and `

is processed in parallel with or instead of j. The interference set Ij of a job j is the

transitive closure of the interference relation:

1. Initialize Ij to {j}.
2. While there is a job ` that interferes with a job of Ij , add one such job to Ij .

In Example 1.6 with t = +∞, the interference set of every job is the set of all jobs

(because all of the jobs are processed in parallel at the very end of the algorithm).

If instead t = m, then Ij = {j, j + 1, . . . ,m} for each job j ∈ {1, 2, . . . ,m}.
The interference set of a job is uniquely defined, independent of which interfering

job is chosen in each iteration of the while loop. Note that the interference set can

contain jobs that were completed by SETF strictly before time t.

We require several properties of the interference sets of the jobs in Xt \X∗t . To

state the first, define the lifetime of a job j as the interval [rj ,min{Cj , t}] up to

time t during which it is active.

Proposition 1.9 Let j ∈ {1, 2, . . . , k} be a job of Xt \ X∗t . The union of the

lifetimes of the jobs in an interference set Ij is the interval [sj , t], where sj is the

earliest release time of a job in Ij.

Resource Augmentation 17

Proof One job can interfere with another only if their lifetimes overlap. By induc-

tion, the union of the lifetimes of jobs in Ij is an interval. The right endpoint of the

interval is at most t by definition, and is at least t because job j is active at time t.

The left endpoint of the interval is the earliest time at which a job of Ij is active,

which is min`∈Ij r`.

Conversely, every job processed in the interval corresponding to an interference

set belongs to that set.

Proposition 1.10 Let j ∈ {1, 2, . . . , k} be a job of Xt \X∗t and [sj , t] the union

of the lifetimes of the jobs in j’s interference set Ij. Every job processed at some

time s ∈ [sj , t] belongs to Ij.

Proof Suppose job ` is processed at some time s ∈ [sj , t]. Since [sj , t] is the union

of the lifetimes of the jobs in Ij , Ij contains a job i that is active at time s. If i 6= `,

then job ` interferes with i and hence also belongs to Ij .

The next proposition helps implement the third step of the intuition outlined in

Section 1.4.2.

Proposition 1.11 Let j ∈ {1, 2, . . . , k} be a job of Xt \ X∗t . Let w` denote the

elapsed time of a job ` under SETF by time t. Then w` ≤ wj for every job ` in j’s

interference set Ij.

Proof We proceed by induction on the additions to the interference set. Consider

an iteration of the construction that adds a job j1 to Ij . By construction, there is a

sequence of already-added jobs j2, j3, . . . , jp such that jp = j and ji interferes with

ji+1 for each i = 1, 2, . . . , p−1. (Assume that p > 1; otherwise we’re in the base case

where j1 = j and there’s nothing to prove.) As in Proposition 1.9, the union of the

lifetimes of the jobs {j2, j3, . . . , jp} forms an interval [s, t]; the right endpoint is t

because jp = j is active at time t. By induction, wji ≤ wj for every i = 2, 3, . . . , p.

Thus, whenever j1 is processed in the interval [s, t], there is an active job with

elapsed time at most wj . By virtue of being processed by SETF, the elapsed time

of j1 at any such point in time is also at most wj . The job j1 must be processed

at least once during the interval [s, t] (as the job interferes with j2), so its elapsed

time by time t is at most wj .

1.4.4 Proof of Lemma 1.8: The Main Argument

We are now prepared to implement formally the intuition outlined in Section 1.4.2.

Fix a job j ∈ Xt \X∗t ; recall that Xt \X∗t = {1, 2, . . . , k}, with jobs indexed in

nonincreasing order of release time. Let Ij denote the corresponding interference

set and [sj , t] the corresponding interval in Proposition 1.9. As in Proposition 1.11,

let wi denote the elapsed time of a job i under SETF at time t. All processing of the

jobs in Ij (by SETF or SRPT) up to time t occurs in this interval, and all processing

18 T. Roughgarden

by SETF in this interval is of jobs in Ij (Proposition 1.10). Thus, the value wi is

precisely the amount of time devoted by SETF to the job i in the interval [sj , t].

During the interval [sj , t], the SRPT algorithm (with a unit-speed machine)

spends at most t − sj time processing jobs, and in particular at most t − sj time

processing jobs of Ij . Meanwhile, the SETF algorithm works continually over the

interval [sj , t]; at all times s ∈ [sj , t] there is at least one active job (Proposition 1.9),

and the SETF algorithm never idles with an active job. Thus SETF (with a (1+ ε)-

speed machine) processes (1 + ε)(t− sj) units worth of jobs in this interval, and all

of this work is devoted to jobs of Ij (Proposition 1.10).

Now group the jobs of Ij into three categories:

1. Jobs i ∈ Ij that belong to X∗t (i.e., SRPT has not completed i by time t).

2. Jobs i ∈ Ij that belong to Xt but not X∗t (i.e., SETF has not completed i by

time t, but SRPT has).

3. Jobs i ∈ Ij that belong to neither Xt nor X∗t (i.e., both SETF and SRPT have

completed i by time t).

The SRPT algorithm spends at least as much time as SETF in the interval [sj , t]

processing category-2 jobs (as the former completes them and the latter does not),

as per the first step of the intuition in Section 1.4.2. Both algorithms spend exactly

the same amount of time on category-3 jobs in this interval (namely, the sum

of the processing times of these jobs). We can therefore conclude that the excess

time ε(t−sj) spent by the SETF algorithm (beyond that spent by SRPT) is devoted

entirely to category-1 jobs—the jobs of X∗t (cf., the second step of the outline in

Section 1.4.2). We summarize our progress so far in a proposition.

Proposition 1.12 For every j = 1, 2, . . . , k,∑
i∈Ij∩X∗

t

wi ≥ ε · (t− sj).

The sum in Proposition 1.12 is, at least, over the jobs {1, 2, . . . , j}.

Proposition 1.13 For every j = 1, 2, . . . , k, the interference set Ij includes the

jobs {1, 2, . . . , j}.

Proof Recall that the jobs {1, 2, . . . , k} of Xt \ X∗t are sorted in nonincreasing

order of release time. Each job i = 1, 2, . . . , j − 1 is released after job j and before

job j completes (which is at time t or later), and interferes with j at the time of its

release (as SETF begins processing it immediately).

Combining Propositions 1.12 and 1.13, we can associate unfinished work at time t

for SETF with that of SRPT:

Resource Augmentation 19

Corollary 1.14 For every j = 1, 2, . . . , k,

∑
i∈Ij∩X∗

t

wi ≥ ε ·
j∑
`=1

w`.

For example, taking j = 1, we can identify εw1 units of time that SETF spends

processing the jobs of I1 ∩X∗t before time t. Similarly, taking j = 2, we can iden-

tify εw2 different units of time that SETF spends processing the jobs of I2 ∩ X∗t :

Corollary 1.14 ensures that the total amount of time so spent is at least εw1 + εw2,

with at most εw1 of it already accounted for in the first step. Continuing with j =

3, 4, . . . , k, the end result of this process is a collection {α(j, i)} of nonnegative

“charges” from jobs j of Xt \X∗t to jobs i of X∗t that satisfies the following prop-

erties:

1. For every j = 1, 2, . . . , k,
∑
i∈X∗

t
α(j, i) = εwj .

2. For every i ∈ X∗t ,
∑k
j=1 α(j, i) ≤ wi.

3. α(j, i) > 0 only if i ∈ Ij ∩X∗t .

Combining the third property with Proposition 1.11:

wi ≤ wj whenever α(j, i) > 0. (1.4)

We can extract from the α(j, i)’s a type of network flow in a bipartite graph with

vertex sets Xt \X∗t and X∗t . Precisely, define the flow f+
ji outgoing from j ∈ Xt \X∗t

to i ∈ X∗t by

f+
ji =

α(j, i)

wj

and the flow f−ji incoming to i from j by

f−ji =
α(j, i)

wi
.

If we think of each vertex h as having a capacity of wh, then f+
ji (respectively, f−ji)

represents the fraction of j’s capacity (respectively, i’s capacity) consumed by the

charge α(j, i). Property (1.4) implies that the flow is expansive, meaning that

f+
ji ≤ f−ji

for every j and i.

The first property of the α(j, i)’s implies that there are ε units of flow outgoing

from each j ∈ Xt \ X∗t , for a total of ε · |Xt \ X∗t |. The second property implies

that there is at most one unit of flow incoming to each i ∈ X∗t , for a total of at

most |X∗t |. Because the flow is expansive, the total amount of flow incoming to X∗t
is at least that outgoing from Xt \X∗t , and so

|X∗t | ≥ ε · |Xt \X∗t |.

20 T. Roughgarden

This completes the proof of Lemma 1.8:

|Xt| ≤ |X∗t |+ |Xt \X∗t | ≤ |X∗t | ·
(

1 +
1

ε

)
.

1.5 Loosely Competitive Algorithms

An online algorithm with a good resource augmentation guarantee is usually “loosely

competitive” with the offline optimal algorithm, which roughly means that, for every

input, its performance is near-optimal for most resource levels (cf., Figure 1.2(b)).

We illustrate the idea using the online paging problem from Section 1.1; Exercise 1.6

outlines an analogous result in the selfish routing model of Section 1.3.

There is simple and accurate intuition behind the main result of this section.

Consider a page request sequence z and a cache size k. Suppose the number of page

faults incurred by the LRU algorithm is roughly the same—within a factor of 2,

say—with the cache sizes k and 2k. Theorem 1.3, with 2k and k playing the roles

of k and h, respectively, then immediately implies that the number of page faults

incurred by the LRU algorithm with cache size k is at most a constant (roughly 4)

times that incurred by the offline optimal algorithm with the same cache size. In

other words, in this case the LRU algorithm is competitive in the traditional sense

(Definition 1.2). Otherwise, the performance of the LRU algorithm improves rapidly

as the cache size is expanded from k to 2k. But because there is a bound on the

maximum fluctuation of LRU’s performance (between no page faults and faulting

every time step), its performance can only change rapidly for a bounded number of

different cache sizes.

Here is the precise statement, followed by discussion and a proof.

Theorem 1.15 (Young (2002)) For every ε, δ > 0 and positive integer n, for every

page request sequence z, for all but a δ fraction of the cache sizes k in {1, 2, . . . , n},
the LRU algorithm satisfies either:

1. Perf(LRU, k, z) = O(1
δ log 1

ε) ·Perf(FIF, k, z); or

2. Perf(LRU, k, z) ≤ ε · |z|.

Thus, for every page request sequence z, each cache size k falls into one of three

cases. In the first case, the LRU algorithm with cache size k is competitive in

the sense of Definition 1.2, with the number of page faults incurred at most a

constant (i.e., O(1
δ log 1

ε)) times the minimum possible. In the second case, the LRU

algorithm has a page fault rate of at most ε, and thus has laudable performance in

an absolute sense. In the third case neither good event occurs, but fortunately this

happens for only a δ fraction of the possible cache sizes.

The parameters δ, ε, and n in Theorem 1.15 are used in the analysis only—no

“tuning” of the LRU algorithm is needed—and Theorem 1.15 holds simultaneously

Resource Augmentation 21

for all choices of these parameters. The larger the fraction δ of bad cache sizes or

the absolute performance bound ε that can be tolerated, the better the relative

performance guarantee in the first case.

In effect, Theorem 1.15 shows that a resource augmentation guarantee like The-

orem 1.3—an apples vs. oranges comparison between an online algorithm with a

big cache and an offline algorithm with a small cache—has interesting implications

for online algorithms even compared with offline algorithms with the same cache

size. This result dodges the lower bound on the competitive ratio of the LRU al-

gorithm (Section 1.1.3) in two ways. First, Theorem 1.15 offers guarantees only

for most choices of the cache size k; LRU might perform poorly for a few unlucky

cache sizes. This is a reasonable relaxation, given that we don’t expect actual page

request sequences to be adversarially tailored to the choice of cache size. Second,

Theorem 1.15 does not insist on good performance relative to the offline optimal

algorithm—good absolute performance (i.e., a very small page fault rate) is also

acceptable, as one would expect in a typical application.9

We proceed to the proof of Theorem 1.15, which follows closely the intuition laid

out at the beginning of the section.

Proof Fix a request sequence z and values for the parameters δ, ε, and n. Let b be

a positive integer, to be chosen in due time. The resource augmentation guarantee

in Theorem 1.3 states that, ignoring additive terms,

Perf(LRU, k + b, z) ≤ k + b

b+ 1
·Perf(FIF, k, z), (1.5)

where k + b and k are playing the roles of k and h in Theorem 1.3, respectively.

There are two cases, depending on whether

Perf(LRU, k + b, z) ≥ 1

2
·Perf(LRU, k, z) (1.6)

or

Perf(LRU, k + b, z) <
1

2
·Perf(LRU, k, z).

Call a cache size k good or bad according to whether it belongs to the first or second

case, respectively. For good cache sizes k, chaining together the inequalities (1.5)

and (1.6) shows that

Perf(LRU, k, z) ≤ 2 · k + b

b+ 1
·Perf(FIF, k, z), (1.7)

and hence LRU is competitive (with ratio 2(k+b)
b+1) in the sense of Definition 1.2.

Consider the set of bad cache sizes; for every such size, adding b extra pages to

the cache decreases the number of page faults incurred by the LRU algorithm on z

by at least a factor of 2. If there are at least ` bad cache sizes between 1 and t− b
9 This may seem like an obvious point, but such appeals to good absolute performance are

uncommon in the analysis of online algorithms.

22 T. Roughgarden

for some t, then we can find `/b bad cache sizes k1 < k2 < · · · < k`/b in this interval

that are each at least b apart (by taking every bth bad cache size).10 In this case,

using that Perf(LRU, k, z) is nonincreasing in k (Exercise 1.1), we have

Perf(LRU, ki+1, z) <
1

2
·Perf(LRU, ki, z)

for each i = 1, 2, . . . , `/b, where k(`/b)+1 should be interpreted as k`/b + b ≤ t.

Chaining all of these inequalities together yields

Perf(LRU, t, z) < 2−`/b ·Perf(LRU, 1, z).

Thus, once

` ≥ b · log2
1
ε , (1.8)

we have a page fault rate of at most ε:

Perf(LRU, t, z) ≤ ε · |z|, (1.9)

where |z| is the length of the request sequence z.

The time has come to instantiate the parameter b. Guided by our desire to

have δn bad cache sizes between 1 and some number t force the condition that

Perf(LRU, k, z) ≤ ε|z| for all cache sizes k ≥ t, we take ` = δn. The inequal-

ity (1.8) then suggests taking b = δn/ log2
1
ε .

Cache sizes now fall into three categories:

1. Good cache sizes. By the inequality (1.7) and our choice of b,

Perf(LRU, k, z) = O(1
δ log 1

ε) ·Perf(FIF, k, z)

for every such cache size k.

2. The smallest δn bad cache sizes in {1, 2, . . . , n}. There is no performance guar-

antee for these cache sizes.

3. Bad cache sizes that are bigger than at least δn other bad cache sizes. Our

choices of ` and b ensure that the inequality (1.9) holds for such a cache size k,

with

Perf(LRU, k, z) ≤ ε|z|.

Cache sizes in the first and third categories meet the first and second guarantees,

respectively, of Theorem 1.15. Cache sizes in the second category constitute at most

a δ fraction of the possible cache sizes, so the proof is complete.

10 For clarity, we omit the appropriate ceilings and floors from fractions such as `/b.

Resource Augmentation 23

1.6 Notes

Resource augmentation was first stressed as a first-order analysis framework by

Kalyanasundaram and Pruhs (2000), although there were compelling examples

much earlier (such as Theorem 1.3, which was proved by Sleator and Tarjan (1985)).

The phrase “resource augmentation” was proposed shortly thereafter, by Phillips

et al. (2002).

The competitive analysis of online algorithms, including the model and results in

Section 1.1, was developed by Sleator and Tarjan (1985). A good general reference

for the topic is the book by Borodin and El-Yaniv (1998). Theorem 1.1 is due to

Bélády (1967). See Young (1991, §2.4) for empirical comparisons of the FIF, LRU,

and FIFO cache replacement policies on benchmark page request sequences.

The selfish routing model described in Section 1.3 was defined by Wardrop (1952).

Existence and uniqueness of equilibrium flows (see footnote 6) was proved by Beck-

mann et al. (1956); see also Roughgarden (2007). The price of anarchy was defined,

in a different context, by Koutsoupias and Papadimitriou (1999). Theorem 1.4 and

the extension in Exercise 1.4 were proved by Roughgarden and Tardos (2002).

The consequent loosely competitive bound (Exercise 1.6) was proved by Friedman

(2004).

Pruhs et al. (2004) is a good reference on the competitive analysis of online

scheduling algorithms; it includes a figure that inspired Figure 1.2. The optimal-

ity of SRPT (Exercise 1.7) was first proved by Schrage (1968). Theorem 1.7 is by

Kalyanasundaram and Pruhs (2000), as is Exercise 1.9. One solution to Exercise 1.8

appears in Motwani et al. (1994). There are several more recent and sophisticated

resource augmentation guarantees for more complex scheduling problems, for exam-

ple with multiple machines, jobs with different priorities, and preemptions replaced

by a small number of rejections. Good entry points to this literature include Im

et al. (2011), Anand et al. (2012), and Thang (2013).

The concept of a loosely competitive online algorithm is due to Young (1994)

and Theorem 1.15 is from Young (2002).

Acknowledgments

I thank Jérémy Barbay, Feder Fomin, Kirk Pruhs, Nguyen Kim Thang, and Neal

Young for helpful comments on a preliminary draft of this chapter.

References

Anand, S., Garg, N., and Kumar, A. 2012. Resource Augmentation for Weighted
Flow-Time Explained by Dual Fitting. Pages 1228–1241 of: Proceedings of

24 T. Roughgarden

the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA).

Beckmann, M. J., McGuire, C. B., and Winsten, C. B. 1956. Studies in the Eco-
nomics of Transportation. Yale University Press.

Bélády, L. A. 1967. A Study of Replacement Algorithms for a Virtual Storage
Computer. IBM Systems Journal, 5(2), 78–101.

Borodin, A., and El-Yaniv, R. 1998. Online Computation and Competitive Analysis.
Cambridge University Press.

Friedman, E. J. 2004. Genericity and Congestion Control in Selfish Routing. Pages
4667–4672 of: Proceedings of the 43rd Annual IEEE Conference on Decision
and Control (CDC).

Im, S., Moseley, B., and Pruhs, K. 2011. A Tutorial on Amortized Local Competi-
tiveness in Online Scheduling. SIGACT News, 42(2), 83–97.

Kalyanasundaram, B., and Pruhs, K. 2000. Speed Is as Powerful as Clairvoyance.
Journal of the ACM, 47(4), 617–643.

Koutsoupias, E., and Papadimitriou, C. H. 1999. Worst-case Equilibria. Pages
404–413 of: Proceedings of the 16th Annual Symposium on Theoretical Aspects
of Computer Science (STACS).

Motwani, R., Phillips, S., and Torng, E. 1994. Nonclairvoyant Scheduling. Theo-
retical Computer Science, 130(1), 17–47.

Phillips, C. A., Stein, C., Torng, E., and Wein, J. 2002. Optimal Time-Critical
Scheduling via Resource Augmentation. Algorithmica, 32(2), 163–200.

Pruhs, K., Sgall, J., and Torng, E. 2004. Online Scheduling. Chap. 15 of: Handbook
of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press.

Roughgarden, T. 2007. Routing Games. Chap. 18, pages 461–486 of: Nisan, N.,
Roughgarden, T., Tardos, É., and Vazirani, V. (eds), Algorithmic Game The-
ory. Cambridge University Press.

Roughgarden, T., and Tardos, É. 2002. How Bad Is Selfish Routing? Journal of
the ACM, 49(2), 236–259.

Schrage, L. 1968. A Proof of the Optimality of the Shortest Remaining Processing
Time Discipline. Operations Research Letters, 16(3), 687–690.

Sleator, D. D., and Tarjan, R. E. 1985. Amortized Efficiency of List Update and
Paging Rules. Communications of the ACM, 28(2), 202–208.

Thang, N. K. 2013. Lagrangian Duality in Online Scheduling with Resource Aug-
mentation and Speed Scaling. Pages 755–766 of: 21st Annual European Sym-
posium on Algorithms (ESA).

Wardrop, J. G. 1952. Some Theoretical Aspects of Road Traffic Research. Pages
325–378 of: Proceedings of the Institute of Civil Engineers, Pt. II, vol. 1.

Young, N. 2002. On-Line File Caching. Algorithmica, 33(3), 371–383.

Young, N. E. 1991. Competitive Paging and Dual-Guided Algorithms for Weighted
Caching and Matching. Ph.D. thesis, Princeton University, Department of
Computer Science.

Young, N. E. 1994. The k-Server Dual and Loose Competitiveness for Paging.
Algorithmica, 11(6), 525–541.

Resource Augmentation 25

Exercises

1.1 Prove that for every cache size k ≥ 1 and every page sequence z,

Perf(LRU, k + 1, z) ≤ Perf(LRU, k, z).

1.2 Prove that Theorems 1.3 and 1.15 hold also for the FIFO caching policy.

1.3 Prove a lower bound for all deterministic online algorithms that matches the

upper bound for LRU in Theorem 1.3. That is, for every choice of k and

h ≤ k, every constant α < k
k−h+1 , and every deterministic online paging

algorithm A, there exist arbitrarily long sequences z such that Perf(A, k, z) >

α ·Perf(FIF, h, z).

1.4 Consider a multicommodity selfish routing network G = (V,E), with source

vertices s1, s2, . . . , sk, sink vertices t1, t2, . . . , tk, and traffic rates r1, r2, . . . , rk.

A flow now routes, for each i = 1, 2, . . . , k, ri units of traffic from si to ti. In

an equilibrium flow f , all traffic from si to ti travels on si-ti paths P with the

minimum-possible length
∑
e∈P ce(fe), where fe denotes the total amount of

traffic (across all source-sink pairs) using edge e.

State and prove a generalization of Theorem 1.4 to multicommodity selfish

routing networks.

1.5 Deduce Corollary 1.5 from Theorem 1.4.

1.6 This problem derives a loosely competitive-type bound from a resource aug-

mentation bound in the context of selfish routing (Section 1.3). Let π(G, r)

denote the ratio of the costs of equilibrium flows in G at the traffic rates r

and r/2. By Theorem 1.4, the price of anarchy in the network G at rate r is

at most π(G, r).

(a) Use Theorem 1.4 to prove that, for every selfish routing network G and

traffic rate r > 0, and for at least an α fraction of the traffic rates r̂ in

[r/2, r], the price of anarchy in G at traffic rate r̂ is at most β log π(G, r)

(where α, β > 0 are constants, independent of G and r).

(b) Prove that for every constant K > 0, there exists a network G with non-

negative, continuous, and nondecreasing edge cost functions and a traffic

rate r such that the price of anarchy in G is at least K for every traffic rate

r̂ ∈ [r/2, r].

[Hint: use a network with many parallel links.]

1.7 Prove that the shortest remaining processing time (SRPT) algorithm is an

optimal algorithm for the problem of scheduling jobs on a single machine

(with preemption allowed) to minimize the total flow time.

1.8 Prove that for every constant c > 0, there is no non-clairvoyant deterministic

online algorithm that always produces a schedule with total flow time at most c

times that of the optimal (i.e., SRPT) schedule.

26 T. Roughgarden

1.9 Consider the objective of minimizing the maximum idle time of a job, where

the idle time of job j in a schedule is Cj − rj − pj
s , where Cj is the job’s

completion time, rj is its release time, pj is its processing time, and s is the

machine speed. Show that the maximum idle time of a job under the SETF

algorithm with a (1 + ε)-speed machine is at most 1
ε times that in an optimal

offline solution to the problem with a unit-speed machine.

[Hint: Start from Proposition 1.11.]

