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Distribution-Free Models of Social Networks
Tim Roughgarden and C. Seshadhri

Abstract

The structure of large-scale social networks has predominantly been articulated

using generative models, a form of average-case analysis. This chapter surveys recent

proposals of more robust models of such networks. These models posit deterministic

and empirically supported combinatorial structure rather than a specific probability

distribution. We discuss the formal definitions of these models and how they relate

to empirical observations in social networks, as well as the known structural and

algorithmic results for the corresponding graph classes.

1.1 Introduction

Technological developments in the 21st century have given rise to large-scale social

networks, such as the graphs defined by Facebook friendship relationships or follow-

ers on Twitter. Such networks arguably provide the most important new application

domain for graph analysis in well over a decade.

1.1.1 Social Networks Have Special Structure

There is wide consensus that social networks have predictable structure and fea-

tures, and accordingly are not well modeled by arbitrary graphs. From a structural

viewpoint, the most well studied and empirically validated properties of social net-

works are:

1 A heavy-tailed degree distribution, such as a power-law distribution.

2 Triadic closure, meaning that pairs of vertices with a common neighbor tend to

be directly connected—that friends of friends tend to be friends in their own

right.

3 The presence of “community-like structures,” meaning subgraphs that are much

more richly connected internally than externally.
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4 The small-world property, meaning that it’s possible to travel from any vertex to

any other vertex using remarkably few hops.

These properties are not generally possessed by Erdős-Rényi random graphs (in

which each edge is present independently with some probability p); a new model is

needed to capture them.

From an algorithmic standpoint, empirical results indicate that optimization

problems are often easier to solve in social networks than in worst-case graphs.

For example, lightweight heuristics are unreasonably effective in practice for find-

ing the maximum clique or recovering dense subgraphs of a large social network.

The literature on models that capture the special structure of social networks is

almost entirely driven by the quest for generative (i.e., probabilistic) models that

replicate some or all of the four properties listed above. Dozens of generative models

have been proposed, and there is little consensus about which is the “right” one.

The plethora of models poses a challenge to meaningful theoretical work on social

networks—which of the models, if any, is to be believed? How can we be sure that

a given algorithmic or structural result is not an artifact of the model chosen?

This chapter surveys recent research on more robust models of large-scale social

networks, which assume deterministic combinatorial properties rather than a spe-

cific generative model. Structural and algorithmic results that rely only on these

deterministic properties automatically carry over to any generative model that pro-

duces graphs possessing these properties (with high probability). Such results effec-

tively apply “in the worst case over all plausible generative models.” This hybrid of

worst-case (over input distributions) and average-case (with respect to the distri-

bution) analysis resembles several of the semi-random models discussed elsewhere

in the book, such as in the preceding chapters on pseudorandom data (Chapter 26)

and prior-independent auctions (Chapter 27).

Sections 1.2 and 1.3 of this chapter cover two models of social networks that are

motivated by triadic closure, the second of the four signatures of social networks

listed in Section 1.1. Sections 1.4 and 1.5 discuss two models motivated by heavy-

tailed degree distributions.

1.2 Cliques of c-Closed Graphs

1.2.1 Triadic Closure

Triadic closure is the property that, when two members of a social network have

a friend in common, they are likely to be friends themselves. In graph-theoretic

terminology, two-hop paths tend to induce triangles.

Triadic closure has been studied for decades in the social sciences and there is

compelling intuition for why social networks should exhibit strong triadic closure

properties. Two people with a common friend are much more likely to meet than
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(a) Triadic closure in the Enron email network (b) Triadic closure in a random graph

Figure 1.1 In the Enron email graph, vertices correspond to Enron employees, and there is
an edge connecting two employees if one sent at least one email to the other. In (a), vertex
pairs of this graph are grouped according to the number of common neighbors (indicated
on the x-axis). The y-axis shows the fraction of such pairs that are themselves connected
by an edge. The edge density—the fraction of arbitrary vertex pairs that are directly
connected—is roughly 10−4. In (b), a cartoon of the analogous plot for an Erdős-Rényi
graph with edge density p = 10−4 is shown. Erdős-Rényi graphs are not a good model for
networks like the Enron network—their closure rate is too small, and the closure rate fails
to increase as the number of common neighbors increases.

two arbitrary people, and are likely to share common interests. They might also

feel pressure to be friends to avoid imposing stress on their relationships with their

common friend.

The data support this intuition. Numerous large-scale studies on online social

networks provide overwhelming empirical evidence for triadic closure. The plot in

Figure 1.1, derived from the network of email communications at the disgraced

energy company Enron, is representative. Other social networks exhibit similar

triadic closure properties.

1.2.2 c-Closed Graphs

The most extreme version of triadic closure would assert that whenever two vertices

have a common neighbor, they are themselves neighbors: whenever (u, v) and (v, w)

are in the edge set E, so is (u,w). The class of graphs satisfying this property is

not very interesting—it is precisely the (vertex-)disjoint unions of cliques—but it

forms a natural base case for more interesting parameterized definitions.1

Our first definition of a class of graphs with strong triadic closure properties is

that of c-closed graphs.

1 Recall that a clique of a graph G = (V,E) is a subset S ⊆ V of vertices that are fully connected,
meaning that (u, v) ∈ E for every pair u, v of distinct vertices of S.
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Definition 1.1 (Fox et al. (2018)) For a positive integer c, a graph G = (V,E)

is c-closed if, whenever u, v ∈ V have at least c common neighbors, (u, v) ∈ E.

For a fixed number of vertices, the parameter c interpolates between unions of

cliques (when c = 1) and all graphs (when c = |V | − 1). The class of 2-closed

graphs—the graphs that do not contain a square (i.e., K2,2) or a diamond (i.e.,

K4 minus an edge) as an induced subgraph—is already non-trivial. The c-closed

condition is a coarse proxy for the empirical closure rates observed in social networks

(like in Figure 1.1), asserting that the closure rate jumps to 100% for vertices with c

or more common neighbors.

Next is a less stringent version of the definition, which is sufficient for the main

algorithmic result of this section.

Definition 1.2 (Fox et al. (2018)) For a positive integer c, a vertex v of a graph

G = (V,E) is c-good if whenever v has at least c common neighbors with another

vertex u, (u, v) ∈ E. The graph G is weakly c-closed if every induced subgraph has

at least one c-good vertex.

A c-closed graph is also weakly c-closed, as each of its vertices is c-good in each

of its induced subgraphs. The converse is false; for example, a path graph is not 1-

closed, but it is weakly 1-closed (as the endpoints of a path are 1-good). Equivalent

to Definition 1.2 is the condition that the graph G has an elimination ordering of

c-good vertices, meaning the vertices can be ordered v1, v2, . . . , vn such that, for ev-

ery i = 1, 2, . . . , n, the vertex vi is c-good in the subgraph induced by vi, vi+1, . . . , vn
(Exercise 1.1). Are real-world social networks c-closed or weakly c-closed for rea-

sonable values of c? The next table summarizes some representative numbers.

These social networks are c-closed for much smaller values of c than the trivial

bound of n− 1, and are weakly c-closed for quite modest values of c.

1.2.3 Computing a Maximum Clique: A Backtracking Algorithm

Once a class of graph has been defined, such as c-closed graphs, a natural agenda

is to investigate fundamental optimization problems with graphs restricted to the

class. We single out the problem of finding the maximum-size clique of a graph,

primarily because it is one of the most central problems in social network analysis.

In a social network, cliques can be interpreted as the most extreme form of a

community.

The problem of computing the maximum clique of a graph reduces to the problem

of enumerating the graph’s maximal cliques2—the maximum clique is also maximal,

so it appears as the largest of the cliques in the enumeration.

How does the c-closed condition help with the efficient computation of a maxi-

mum clique? We next observe that the problem of reporting all maximal cliques is

2 A maximal clique is a clique that is not a strict subset of another clique.
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n m c weak c

email-Enron 36692 183831 161 34

p2p-Gnutella04 10876 39994 24 8

wiki-Vote 7115 103689 420 42

ca-GrQc 5242 14496 41 9

Table 1.1 The c-closure and weak c-closure of four well-studied social networks

from the SNAP (Stanford Large Network Dataset) collection of benchmarks

(http: // snap. stanford. edu/ ). “email-Enron” is the network described in

Figure 1.1; “p2p-Gnutella04” is the topology of a Gnutella peer-to-peer network

circa 2002; “wiki-Vote” is the network of who votes on whom in promotion cases

on Wikipedia; and “ca-GrQc” is the collaboration network of authors of papers

uploaded to the General Relativity and Quantum Cosmology section of arXiv. For

each network G, n indicates the number of vertices, m the number of edges, c the

smallest value γ such that G is γ-closed, and “weak c” the smallest value γ such

that G is weakly γ-closed.

polynomial-time solvable in c-closed graphs when c is a fixed constant. The algo-

rithm is based on backtracking. For convenience, we give a procedure that, for any

vertex v, identifies all maximal cliques that contain v. (The full procedure loops

over all vertices.)

1 Maintain a history H, initially empty.

2 Let N denote the vertex set comprising v and all vertices w that are adjacent to

both v and all vertices in H.

3 If N is a clique, report the clique H ∪N and return.

4 Otherwise, recurse on each vertex w ∈ N \ {v} with history H := H ∪ {v}.

This subroutine reports all maximal cliques that contain v, whether the graph is

c-closed or not (Exercise 1.2). In a c-closed graph, the maximum depth of the

recursion is c—once |H| = c − 1, every pair of vertices in N \ {v} has c common

neighbors (namely H ∪ {v}) and hence N must be a clique. The running time of

the backtracking algorithm is therefore nc+O(1) in c-closed graphs.

This simplistic backtracking algorithm is extremely slow except for very small

values of c. Can we do better?
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Figure 1.2 The Moon-Moser graph with n = 12 vertices.

1.2.4 Computing a Maximum Clique: Fixed-Parameter Tractability

There is a simple but clever algorithm that, for an arbitrary graph, enumerates all

of the maximal cliques while using only polynomial time per clique.

Theorem 1.3 (Tsukiyama et al. (1977)) There is an algorithm that, given any

input graph with n vertices and m edges, outputs all of the maximal cliques of the

graph in O(mn) time per maximal clique.

Theorem 1.3 reduces the problem of enumerating all maximal cliques in polyno-

mial time to the combinatorial task of proving a polynomial upper bound on the

number of maximal cliques.

Computing a maximum clique of an arbitrary graph is an NP -hard problem, so

presumably there exist graphs with an exponential number of maximal cliques. The

Moon-Moser graphs are a simple and famous example. For n a multiple of 3, the

Moon-Moser graph with n vertices is the perfectly balanced n
3 -tite graph, meaning

the vertices are partitioned into n
3 groups of 3, and every vertex is connected to

every other vertex except for the 2 vertices in the same group (Figure 1.2). Choosing

one vertex from each group induces a maximal clique, for a total of 3n/3 maximal

cliques, and these are all of the maximal cliques of the graph. More generally, a

basic result in graph theory asserts that no n-vertex graph can have more than 3n/3

maximal cliques.

Theorem 1.4 (Moon and Moser (1965)) Every n-vertex graph has at most 3n/3

maximal cliques.

A Moon-Moser graph on n vertices is not c-closed even for c = n − 3, so there

remains hope for a positive result for c-closed graphs with small c. The Moon-

Moser graphs do show that the number of maximal cliques of a c-closed graph can

be exponential in c (since a Moon-Moser graph on c vertices is trivially c-closed).

Thus the best-case scenario for enumerating the maximal cliques of a c-closed graph

is a fixed-parameter tractability result (with respect to the parameter c), stating
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that, for some function f and constant d (independent of c), the number of maximal

cliques in an n-vertex c-closed graph is O(f(c) · nd). The next theorem shows that

this is indeed the case, even for weakly c-closed graphs.

Theorem 1.5 (Fox et al. (2018)) Every weakly c-closed graph with n vertices has

at most

3(c−1)/3 · n2

maximal cliques.

The following corollary is immediate from Theorems 1.3 and 1.5.

Corollary 1.6 The maximum clique problem is polynomial-time solvable in weakly

c-closed n-vertex graphs with c = O(log n).

1.2.5 Proof of Theorem 1.5

The proof of Theorem 1.5 proceeds by induction on the number of vertices n. (One

of the factors of n in the bound is from the n steps in this induction.) Let G be an

n-vertex weakly c-closed graph. Assume that n ≥ 3; otherwise, the bound is trivial.

By assumption, G has a c-good vertex v. By induction, G \ {v} has at most

(n − 1)2 · 3(c−1)/3 maximal cliques. (An induced subgraph of a weakly c-closed

graph is again weakly c-closed.) Every maximal clique C of G \ {v} gives rise to a

unique maximal clique in G (namely C or C∪{v}, depending on whether the latter

is a clique). It remains to bound the number of uncounted maximal cliques of G,

meaning the maximal cliques K of G for which K \ {v} is not maximal in G \ {v}.
An uncounted maximal clique K must include v, with K contained in v’s neigh-

borhood (i.e., in the subgraph induced by v and the vertices adjacent to it). Also,

there must be a vertex u /∈ K such that K \ {v} ∪ {u} is a clique in G \ {v};
we say that u is a witness for K, as it certifies the non-maximality of K \ {v} in

G \ {v}. Such a witness must be connected to every vertex of K \ {v}. It cannot

be a neighbor of v, as otherwise K ∪ {u} would be a clique in G, contradicting K’s

maximality.

Choose an arbitrary witness for each uncounted clique of G and bucket these

cliques according to their witness; recall that all witnesses are non-neighbors of v.

For every uncounted clique K with witness u, all vertices of the clique K \ {v} are

connected to both v and u. Moreover, because K is a maximal clique in G, K \ {v}
is a maximal clique in the subgraph Gu induced by the common neighbors of u

and v.

How big can such a subgraph Gu be? This is the step of the proof where the

weakly c-closed condition is important: Because u is a non-neighbor of v and v is

a c-good vertex, u and v have at most c− 1 common neighbors and hence Gu has

at most c − 1 vertices (Figure 1.3). By the Moon-Moser theorem (Theorem 1.4),
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Figure 1.3 Proof of Theorem 1.5. N(v) denotes the neighbors of v. K denotes a maximal
clique of G such that K \{v} is not maximal in G\{v}. There is a vertex u, not connected
to v, that witnesses the non-maximality of K \{v} in G\{v}. Because v is a c-good vertex,
u and v have at most c− 1 common neighbors.

each subgraph Gu has at most 3(c−1)/3 maximal cliques. Adding up over the at

most n choices for u, the number of uncounted cliques is at most n · 3(c−1)/3; this

sum over possible witnesses is the source of the second factor of n in Theorem 1.5.

Combining this bound on the uncounted cliques with the inductive bound on the

remaining maximal cliques of G yields the desired upper bound of

(n− 1)2 · 3(c−1)/3 + n · 3(c−1)/3 ≤ n2 · 3(c−1)/3.

1.3 The Structure of Triangle-Dense Graphs

1.3.1 Triangle-Dense Graphs

Our second graph class inspired by the strong triadic closure properties of social

and information networks is the class of δ-triangle-dense graphs. These are graphs

where a constant fraction of vertex pairs having at least one common neighbor are

directly connected by an edge. Equivalently, a constant fraction of the wedges (i.e.,

two-hop paths) of the graph belong to a triangle.

Definition 1.7 (Gupta et al. (2016)) The triangle density of an undirected

graph G is τ(G) := 3t(G)/w(G), where t(G) and w(G) denote the number of

triangles and wedges of G, respectively. (We define τ(G) = 0 if w(G) = 0.) The

class of δ-triangle-dense graphs consists of the graphs G with τ(G) ≥ δ.

(In the social networks literature, this is also called the transitivity or the global

clustering coefficient.) Because every triangle of a graph contains 3 wedges, and no

two triangles share a wedge, the triangle density of a graph is between 0 and 1—the

fraction of wedges that belong to a triangle. Triangle density is another coarse proxy

for the empirical closure rates observed in social networks (like in Figure 1.1(a)).

The 1-triangle-dense graphs are precisely the unions of disjoint cliques, while
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(a) An ideal triangle-dense graph (b) The lollipop graph

Figure 1.4 Two examples of δ-triangle-dense graphs with δ close to 1.

triangle-free graphs constitute the 0-triangle-dense graphs. The triangle density

of an Erdős-Rényi graph with edge probability p is concentrated around p (cf.,

Figure 1.1(b)). For an Erdős-Rényi graph to have constant triangle density, one

would need to set p = Ω(1). This would imply that the graph is dense, quite unlike

social networks. For example, in the year 2011 the triangle density of the Facebook

graph was computed to be 0.16, which is five orders of magnitude larger than in a

random graph with the same number of vertices (roughly 1 billion at the time) and

edges (roughly 100 billion).

1.3.2 Visualizing Triangle-Dense Graphs

What do δ-triangle-dense graphs look like? Can we make any structural assertions

about them, akin to separator theorems for planar graphs (allowing them to be

viewed as “approximate grids”) or the regularity lemma for dense graphs (allowing

them to viewed as approximate unions of random bipartite graphs)?

Given that 1-triangle-dense graphs are unions of cliques, a first guess might be

that δ-triangle-dense graphs look like the approximate union of approximate cliques

(as in Figure 1.4(a)). Such graphs certainly have high triangle density; could there

be an “inverse theorem,” stating that these are in some sense the only graphs with

this property?

In its simplest form, the answer to this question is “no,” as δ-triangle-dense

graphs become quite diverse once δ is bounded below 1. For example, adding a

clique on n2/5 vertices to an arbitrary bounded-degree n-vertex graph produces a

δ-triangle-dense graph with δ = 1− o(1) as n→∞ (see Figure 1.4(b)).

Nonetheless, an inverse theorem does hold if we redefine what it means to approx-

imate a graph by a collection of approximate cliques. Instead of trying to capture

most of the vertices or edges (which is impossible, as the previous example shows),
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we consider the goal of capturing a constant fraction of the triangles of a graph by

a collection of dense subgraphs.

1.3.3 An Inverse Theorem

To state an inverse theorem for triangle-dense graphs, we require a preliminary

definition.

Definition 1.8 (Tightly Knit Family) Let ρ > 0. A collection V1, V2, . . . , Vk of

disjoint sets of vertices of a graph G = (V,E) forms a ρ-tightly-knit family if:

1 For each i = 1, 2, . . . , k, the subgraph induced by Vi has at least ρ ·
(|Vi|

2

)
edges

and ρ ·
(|Vi|

3

)
triangles. (That is, a ρ-fraction of the maximum possible edges and

triangles.)

2 For each i = 1, 2, . . . , k, the subgraph induced by Vi has radius at most 2.

In Definition 1.8, the vertex sets V1, V2, . . . , Vk are disjoint but need not cover all

of V ; in particular, the empty collection is technically a tightly knit family.

The following inverse theorem states that every triangle-dense graph contains

a tightly-knit family that captures most of the “meaningful social structure”—a

constant fraction of the graph’s triangles.

Theorem 1.9 (Gupta et al. (2016)) There is a function f(δ) = O(δ4) such

that for every δ-triangle dense graph G, there exists an f(δ)-tightly-knit family that

contains an f(δ) fraction of the triangles of G.

Graphs that are not triangle dense, such as sparse Erdős-Rényi random graphs,

do not generally admit ρ-tightly-knit families with constant ρ. The complete tri-

partite graph shows that Theorem 1.9 does not hold if the “radius-2” condition in

Definition 1.7 is strengthened to “radius-1” (Exercise 1.4).

1.3.4 Proof Sketch of Theorem 1.9

The proof of Theorem 1.9 is constructive, and interleaves two subroutines. To state

the first, define the Jaccard similarity of an edge (u, v) of a graph G as the fraction

of neighbors of u and v that are neighbors of both:

|N(u) ∩N(v)|
|N(u) ∪N(v)| − 2

,

where N(·) denotes the neighbors of a vertex and the “-2” is to avoid counting u

and v themselves. The first subroutine, called the cleaner, is given a parameter ε

as input and repeatedly deletes edges with Jaccard similarity less than ε until none

remain. Removing edges from the graph is worrisome because it removes triangles,

and Theorem 1.9 promises that the final tightly knit family captures a constant
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fraction of the original graph’s triangles. But removing an edge with low Jaccard

similarity destroys many more wedges than triangles, and the number of triangles

in the graph is at least a constant fraction of the number of wedges (because it

is δ-triangle-dense). A charging argument along these lines shows that, provided ε

is at most δ/4, the cleaner cannot destroy more than a constant fraction of the

graph’s triangles.

The second subroutine, called the extractor, is responsible for extracting one of

the clusters of the tightly-knit family from a graph in which all edges have Jaccard

similarity at least ε. (Isolated vertices can be discarded from further consideration.)

How is this Jaccard similarity condition helpful? One easy observation is that, post-

cleaning, the graph is “approximately locally regular,” meaning that the endpoints

of any edge have degrees within a 1
ε factor of each other. Starting from this fact,

easy algebra shows that every one-hop neighborhood of the graph (i.e., the sub-

graph induced by a vertex and its neighbors) has constant (depending on ε) density

in both edges and triangles, as required by Theorem 1.9. The bad news is that

extracting a one-hop neighborhood can destroy almost all of a graph’s triangles

(Exercise 1.4). The good news is that supplementing a one-hop neighborhood with

a judiciously chosen subset of the corresponding two-hop neighborhood (i.e., neigh-

bors of neighbors) fixes the problem. Precisely, the extractor subroutine is given

a graph G in which every edge has Jaccard similarity at least ε and proceeds as

follows:

1 Let v be a vertex of G with the maximum degree. Let dmax denote v’s degree

and N(v) its neighbors.

2 Calculate a score θw for every vertex w outside {v} ∪N(v) equal to the number

of triangles that include w and two vertices of N(v). In other words, θw is the

number of triangles that would be saved by supplementing the one-hop neigh-

borhood {v}∪N(v) by w. (On the flip side, this would also destroy the triangles

that contain w and two vertices outside N(v).)

3 Return the union of {v}, N(v), and up to dmax vertices outside {v} ∪N(v) with

the largest non-zero θ-scores.

It is clear that the extractor outputs a set S of vertices that induces a subgraph

with radius at most 2. As with one-hop neighborhoods, easy algebra shows that,

because every edge has Jaccard similarity at least ε, this subgraph is dense in both

edges and triangles. The important non-obvious fact, whose proof is omitted here,

is that the number of triangles saved by the extractor (i.e., triangles with all three

vertices in its output) is at least a constant fraction of the number of triangles

it destroys (i.e., triangles with one or two vertices in its output). It follows that

alternating between cleaning and extracting (until no edges remain) will produce a

tightly-knit family meeting the promises of Theorem 1.9.
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1.4 Power-Law Bounded Networks

Arguably the most famous property of social and information networks, even more

so than triadic closure, is a power-law degree distribution, also referred to as a

heavy-tailed or scale-free degree distribution.

1.4.1 Power-Law Degree Distributions and Their Properties

Consider a simple graph G = (V,E) with n vertices. For each positive integer d,

let n(d) denote the number of vertices of G with degree d. The sequence {n(d)} is

called the degree distribution of G. Informally, a degree distribution is said to be a

power-law with exponent γ > 0 if n(d) scales as n/dγ .

There is some controversy about how to best fit power-law distributions to data,

and whether such distributions are the “right” fit for the degree distributions in

real-world social networks (as opposed to, say, lognormal distributions). Neverthe-

less, several of the consequences of a power-law degree distribution assumption are

uncontroversial for social networks, and so a power-law distribution is a reasonable

starting point for mathematical analysis.

This section studies the algorithmic benefits of assuming that a graph has an

(approximately) power-law degree distribution, in the form of fast algorithms for

fundamental graph problems. To develop our intuition about such graphs, let’s

do some rough calculations under the assumption that n(d) = cn/dγ (for some

constant c) for every d up to the maximum degree dmax; think of dmax as nβ for

some constant β ∈ (0, 1).

First, we have the implication∑
d≤dmax

n(d) = n =⇒ cn
∑

d≤dmax

d−γ = n. (1.1)

When γ ≤ 1,
∑
d<∞ d−γ is a divergent series. In this case, we cannot satisfy the

right-hand side of (1.1) with a constant c. For this reason, results on power-law

degree distributions typically assume that γ > 1.

Next, the number of edges is exactly

1

2

∑
d≤dmax

d · n(d) =
cn

2

∑
d≤dmax

d−γ+1. (1.2)

Thus, up to constant factors,
∑
d≤dmax d

−γ+1 is the average degree. For γ > 2,∑
d<∞ d−γ+1 is a convergent series, and the graph has constant average degree.

For this reason, much of the early literature on graphs with power-law degree dis-

tributions focused on the regime where γ > 2. When γ = 2, the average degree

scales with log n, and for γ ∈ (1, 2), it scales with (dmax)2−γ , which is polynomial

in n.

One of the primary implications of a power-law degree distribution is upper
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bounds on the number of high-degree vertices. Specifically, under our assumption

that n(d) = cn/dγ , the number of vertices of degree at least k can be bounded by

dmax∑
d=k

n(d) ≤ cn
∞∑
d=k

d−γ ≤ cn
∫ ∞
k

x−γ dx = cnk−γ+1/(γ − 1) = Θ(nk−γ+1). (1.3)

1.4.2 PLB Graphs

The key definition in this section is a more plausible and robust version of the

assumption that n(d) = cn/dγ , for which the conclusions of calculations like those

in Section 1.4.1 remain valid. The definition allows individual values of n(d) to

deviate from a true power law, while requiring (essentially) that the average value

of n(d) in sufficiently large intervals of d does follow a power law.

Definition 1.10 (Berry et al. (2015); Brach et al. (2016)) A graph G with degree

distribution {n(d)} is a power-law bounded (PLB) graph with exponent γ > 1 if

there is a constant c > 0 such that

2r+1∑
d=2r

n(d) ≤ cn
2r+1∑
d=2r

d−γ

for all r ≥ 0.

Many real-world social networks satisfy a mild generalization of this definition,

in which n(d) is allowed to scale with n/(d+ t)γ for a “shift” t ≥ 0; see the Notes

for details. For simplicity, we continue to assume in this section that t = 0.

Definition 1.10 has several of the same implications as a pure power law assump-

tion, including the following lemma (cf. (1.2)).

Lemma 1.11 Suppose G is a PLB graph with exponent γ > 1. For every c > 0

and natural number k,

∑
d≤k

dc · n(d) = O

n∑
d≤k

dc−γ

 .

The proof of Lemma 1.11 is technical but not overly difficult; we do not discuss

the details here.

The first part of the next lemma provides control over the number of high-degree

vertices and is the primary reason why many graph problems are more easily solved

on PLB graphs than on general graphs. The second part of the lemma bounds the

number of wedges of the graph when γ ≥ 3.

Lemma 1.12 Suppose G is a PLB graph with exponent γ > 1. Then:

(a)
∑
d≥k n(d) = O(nk−γ+1).
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(b) Let W denote the number of wedges (i.e., two-hop paths). If γ = 3, W =

O(n log n). If γ > 3, W = O(n).

Part (a) extends the computation in (1.3) to PLB graphs, while part (b) follows

from Lemma 1.11 (see Exercise 1.5).

1.4.3 Counting Triangles

Many graph problems appear to be easier in PLB graphs than in general graphs. To

illustrate this point, we single out the problem of triangle counting, which is one of

the most canonical problems in social network analysis. For this section, we assume

that our algorithms can determine in constant time if there is an edge between a

given pair of vertices; these lookups can be avoided with a careful implementation

(Exercise 1.6), but such details detract from the main analysis.

As a warm up, consider the following trivial algorithm to count (three times) the

number of triangles of a given graph G (“Algorithm 1”):

• For every vertex u of G:

– For every pair v, w of u’s neighbors, check if u, v, and w form a triangle.

Note that the running time of Algorithm 1 is proportional to the number of wedges

in the graph G. The following running time bound for triangle counting in PLB

graphs is an immediate corollary of Lemma 1.12(b), applied to Algorithm 1.

Corollary 1.13 Triangle counting in n-vertex PLB graphs with exponent 3 can

be carried out in O(n log n) time. If the exponent is strictly greater than 3, it can

be done in O(n) time.

Now consider an optimization of Algorithm 1 (“Algorithm 2”):

• Direct each edge of G from the lower-degree endpoint to the higher-degree end-

point (breaking ties lexicographically) to obtain a directed graph D.

• For every vertex u of D:

– For every pair v, w of u’s out-neighbors, check if u, v, and w form a triangle

in G.

Each triangle is counted exactly once by Algorithm 2, in the iteration where the

lowest-degree of its three vertices plays the role of u. Remarkably, this simple idea

leads to massive time savings in practice.

A classical way to capture this running time improvement mathematically is to

parameterize the input graph G by its degeneracy, which can be thought of as a

refinement of the maximum degree. The degeneracy α(G) of a graph G can be

computed by iteratively removing a minimum-degree vertex (updating the vertex

degrees after each iteration) until no vertices remain; α(G) is then the largest degree

of a vertex at the time of its removal. (For example, every tree has degeneracy equal
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to 1.) We have the following guarantee for Algorithm 2, parameterized by a graph’s

degeneracy:

Theorem 1.14 (Chiba and Nishizeki (1985)) For every graph with m edges and

degeneracy α, the running time of Algorithm 2 is O(mα).

Every PLB graph with exponent γ > 1 has degeneracy α = O(n1/γ); see Exer-

cise 1.8. For PLB graphs with γ > 2, we can apply Lemma 1.11 with c = 1 to obtain

m = O(n) and hence the running time of Algorithm 2 is O(mα) = O(n(γ+1)/γ).

Our final result for PLB graphs improves this running time bound, for all γ ∈
(2, 3), through a more refined analysis.3

Theorem 1.15 (Brach et al. (2016)) In PLB graphs with exponent γ ∈ (2, 3),

Algorithm 2 runs in O(n3/γ) time.

Proof Let G = (V,E) denote an n-vertex PLB graph with exponent γ ∈ (2, 3).

Denote the degree of vertex v in G by dv and its out-degree in the directed graph D

by d+
v . The running time of Algorithm 2 is O(n +

∑
v

(
d+v
2

)
) = O(n +

∑
v(d

+
v )2),

so the analysis boils down to bounding the out-degrees in D. One trivial upper

bound is d+
v ≤ dv for every v ∈ V . Because every edge is directed from its lower-

degree endpoint to its higher-degree endpoint, we also have d+
v ≤

∑
d≥dv n(d). By

Claim 1.12(a), the second bound is O(nd−γ+1
v ). The second bound is better than

the first roughly when dv ≥ nd−γ+1
v , or equivalently when dv ≥ n1/γ .

Let V (d) denote the set of degree-d vertices of G. We split the sum over vertices

according to how their degrees compare to n1/γ , using the first bound for low-degree

vertices and the second bound for high-degree vertices:∑
v∈V

(d+
v )2 =

∑
d

∑
v∈V (d)

(d+
v )2

≤
∑

d≤n1/γ

∑
v∈V (d)

d2 +
∑

d>n1/γ

∑
v∈V (d)

O(n2d−2γ+2)

=
∑

d≤n1/γ

d2 · n(d) +O

n2 ·
∑

d>n1/γ

d−2γ+2 · n(d)

 .

Applying Lemma 1.11 (with c = 2) to the sum over low-degree vertices, and using

the fact that with γ < 3 the sum
∑
d d

2−γ is divergent, we derive

∑
d≤n1/γ

d2 · n(d) = O

n ∑
d≤n1/γ

d2−γ

 = O(n(n1/γ)3−γ) = O(n3/γ).

The second sum is over the highest-degree vertices, and Lemma 1.11 does not

3 The running time bound actually holds for all γ ∈ (1, 3), but is an improvement only for γ > 2.
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apply. On the other hand, we can invoke Claim 1.12(a) to obtain the desired bound:

n2
∑

d>n1/γ

d−2γ+2 · n(d) ≤ n2(n1/γ)−2γ+2
∑

d>n1/γ

n(d)

= O(n2/γ · n(n1/γ)−γ+1)

= O(n3/γ).

The same reasoning shows that Algorithm 2 runs in O(n log n) time in n-vertex

PLB graphs with exponent γ = 3, and in O(n) time in PLB graphs with γ > 3

(Exercise 1.9).

1.4.4 Discussion

Beyond triangle counting, which computational problems should we expect to be

easier on PLB graphs than on general graphs? A good starting point is problems

that are relatively easy on bounded-degree graphs. In many cases, fast algorithms

for bounded-degree graphs remain fast for graphs with bounded degeneracy. In

these cases, the degeneracy bound for PLB graphs (Exercise 1.8) can already lead

to fast algorithms for such graphs. For example, this approach can be used to show

that all of the cliques of a PLB graph with exponent γ > 1 can be enumerated

in subexponential time (see Exercise 1.10). In some cases, like in Theorem 1.15,

one can beat the bound from the degeneracy-based analysis through more refined

arguments.

1.5 The BCT Model

This section gives an impressionistic overview of another set of deterministic condi-

tions meant to capture properties of “typical networks,” proposed by Borassi et al.

(2017) and hereafter called the BCT model. The precise model is technical with

a number of parameters; we give only a high-level description that ignores several

complications.

To illustrate the main ideas, consider the problem of computing the diameter

maxu,v∈V dist(u, v) of an undirected and unweighted n-vertex graph G = (V,E),

where dist(u, v) denotes the shortest-path distance between u and v in G. Define the

eccentricity of a vertex u by ecc(u) := maxv∈V dist(u, v), so that the diameter is the

maximum eccentricity. The eccentricity of a single vertex can be computed in linear

time using breadth-first search, which gives a quadratic-time algorithm for com-

puting the diameter. Despite much effort, no subquadratic (1 + ε)-approximation

algorithm for computing the graph diameter is known for general graphs. Yet there
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are many heuristics that perform well in real-world networks. Most of these heuris-

tics compute the eccentricities of a carefully chosen subset of vertices. An extreme

example is the TwoSweep algorithm:

1 Pick an arbitrary vertex s, and perform breadth-first search from s to compute

a vertex t ∈ argmaxv∈V dist(s, v).

2 Use breadth-first search again to compute ecc(t) and return the result.

This heuristic always produces a lower bound on a graph’s diameter, and in practice

usually achieves a close approximation. What properties of “real-world” graphs

might explain this empirical performance?

The BCT model is largely inspired by the metric properties of random graphs.

To explain, for a vertex s and natural number k, let τs(k) denote the smallest

length ` so that there are at least k vertices at distance (exactly) ` from s. Ignoring

the specifics of the random graph model, the `-step neighborhoods (i.e., vertices at

distance exactly `) of a vertex in a random graph resemble uniform random sets of

size increasing with `. We next use this property to derive a heuristic upper bound

on dist(s, t). Define `s := τs(
√
n) and `t := τt(

√
n). Since the `s-step neighborhood

of s and the `t-step neighborhood of t act like random sets of size
√
n, a birthday

paradox argument implies that they intersect with non-trivial probability. If they

do intersect, then `s+`t is an upper bound on dist(s, t). In any event, we can adopt

this inequality as a deterministic graph property, which can be tested against real

network data.4

Property 1.16 For all s, t ∈ V , dist(s, t) ≤ τs(
√
n) + τt(

√
n).

One would expect this distance upper bound to be tight for pairs of vertices that

are far away from each other, and in a reasonably random graph, this will be true

for most of the vertex pairs. This leads us to the next property.5

Property 1.17 For all s ∈ V : for “most” t ∈ V , dist(s, t) > τs(
√
n)+τt(

√
n)−1.

The third property posits a distribution on the τs(
√
n) values. Let T (k) denote

the average n−1
∑
s∈V τs(k).

Property 1.18 There are constants c, γ > 0 such that the fraction of vertices s

satisfying τs(
√
n) ≥ T (

√
n) + γ is roughly c−γ .

A consequence of this property is that the largest value of τs(
√
n) is T (

√
n) +

logc n+ Θ(1).

As we discuss below, these properties will imply that simple heuristics work well

for computing the diameter of a graph. On the other hand, these properties do not

generally hold in real-world graphs. The actual BCT model has a nuanced version

4 The actual BCT model uses the upper bound τs(n
x) + τt(n

y) for x+ y > 1 + δ, to ensure
intersection with high enough probability.

5 We omit the exact definition of this property in the BCT model, which is quite involved.
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of these properties, parameterized by vertex degrees. In addition, the BCT model

imposes an approximate power-law degree distribution, in the spirit of power-law

bounded graphs (Definition 1.10 in Section 1.4). This nuanced list of properties can

be empirically verified on a large set of real-world graphs.

Nonetheless, for understanding the connection of metric properties to diameter

computation, it suffices to look at Properties 1.16–1.18. We can now bound the

eccentricities of vertices. The properties imply that

dist(u, v) ≤ τu(
√
n) + τv(

√
n) ≤ τu(

√
n) + T (

√
n) + logc n+O(1).

Fix u and imagine varying v to estimate ecc(u). For “most” vertices v, dist(u, v) ≥
τu(
√
n) + τv(

√
n)− 1. By Property 1.18, one of the vertices v satisfying this lower

bound will also satisfy τv(
√
n) ≥ T (

√
n) + logc n−Θ(1). Combining, we can bound

the eccentricity by

ecc(u) = max
v

dist(u, v) = τu(
√
n) + T (

√
n) + logc n±Θ(1). (1.4)

The bound (1.4) is significant because it reduces maximizing ecc(u) over u ∈ V to

maximizing τu(
√
n).

Pick an arbitrary vertex s and consider a vertex u that maximizes dist(s, u). By an

argument similar to the one above (and because most vertices are far away from s),

we expect that dist(s, u) ≈ τs(
√
n)+τu(

√
n). Thus, a vertex u maximizing dist(s, u)

is almost the same as a vertex maximizing τu(
√
n), which by (1.4) is almost the

same as a vertex maximizing ecc(u). This gives an explanation of why the TwoSweep

algorithm performs so well. Its first use of breadth-first search identifies a vertex u

that (almost) maximizes ecc(u). The second pass of breadth-first search (from u)

then computes a close approximation of the diameter.

The analysis in this section is heuristic, but it captures much of the spirit of

algorithm analysis in the BCT model. These results for TwoSweep can be extended

to other heuristics that choose a set of vertices through a random process to lower

bound the diameter. In general, the key insight is that most distances dist(u, v) in

the BCT model can be closely approximated as a sum of quantities that depend

only on either u or v.

1.6 Discussion

Let’s take a bird’s-eye view of this chapter. The big challenge in the line of research

described in this chapter is the formulation of graph classes and properties that

both reflect real-world graphs and lead to a satisfying theory. It seems unlikely that

any one class of graphs will simultaneously capture all the relevant properties of

(say) social networks. Accordingly, this chapter described several graph classes that

target specific empirically observed graph properties, each with its own algorithmic

lessons:
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• Triadic closure aids the computation of dense subgraphs.

• Power-law degree distributions aid subgraph counting.

• `-hop neighborhood structure influences the structure of shortest paths.

These lessons suggest that, when defining a graph class to capture “real-world”

graphs, it may be important to keep a target algorithmic application in mind.

Different graph classes differ in how closely the definitions are tied to domain

knowledge and empirically observed statistics. The c-closed and triangle-dense graph

classes are in the spirit of classical families of graphs (e.g., planar or bounded-

treewidth graphs), and they sacrifice precision in the service of generality, cleaner

definitions, and arguably more elegant theory. The PLB and BCT frameworks take

the opposite view: the graph properties are quite technical and involve many pa-

rameters, and in exchange tightly capture the properties of “real-world” graphs.

These additional details can add fidelity to theoretical explanations for the surpris-

ing effectiveness of simple heuristics.

A big advantage of combinatorially defined graph classes—a hallmark of graph-

theoretic work in theoretical computer science—is the ability to empirically validate

them on real data. The standard statistical viewpoint taken in network science has

led to dozens of competing generative models, and it is nearly impossible to validate

the details of such a model from network data. The deterministic graph classes

defined in this chapter give a much more satisfying foundation for algorithmics on

real-world graphs.

Complex algorithms for real-world problems can be useful, but practical algo-

rithms for graph analysis are typically based on simple ideas like backtracking or

greedy algorithms. An ideal theory would reflect this reality, offering compelling

explanations for why relatively simple algorithms have such surprising efficacy in

practice.

We conclude this section with some open problems.

1 Theorem 1.5 gives, for constant c, a bound of O(n2) on the number of maxi-

mal cliques in a c-closed graph. Fox et al. (2018) also prove a sharper bound of

O(n2(1−2−c)), which is asymptotically tight when c = 2. Is it tight for all values

of c? Additionally, parameterizing by the number of edges (m) rather than ver-

tices (n), is the number of maximal cliques in a c-closed graph with c = O(1)

bounded by O(m)? Could there be a linear-time algorithm for maximal clique

enumeration for c-closed graphs with constant c?

2 Theorem 1.9 guarantees the capture by a tightly-knit family of an O(δ4) fraction

of the triangles of a δ-triangle-dense graph. What is the best-possible constant in

the exponent? Can the upper bound be improved, perhaps under additional as-

sumptions (e.g., about the distribution of the clustering coefficients of the graph,

rather than merely about their average)?

3 Ugander et al. (2013) observe that 4-vertex subgraph counts in real-world graphs

exhibit predictable and peculiar behavior. By imposing conditions on 4-vertex
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subgraph counts (in addition to triangle density), can one prove decomposition

theorems better than Theorem 1.9?

4 Is there a compelling algorithmic application for graphs that can be approximated

by tightly-knit families?

5 Benson et al. (2016) and Tsourakakis et al. (2017) defined the triangle conduc-

tance of a graph, where cuts are measured in terms of the number of triangles cut

(rather than the number of edges). Empirical evidence suggests that cuts with

low triangle conductance give more meaningful communities (i.e., denser sub-

graphs) than cuts with low (edge) conductance. Is there a plausible theoretical

explanation for this observation?

6 A more open-ended goal is to use the theoretical insights described in this chapter

to develop new and practical algorithms for fundamental graph problems.

1.7 Notes

The book by Easley and Kleinberg (2010) is a good introduction to social networks

analysis, including discussions of heavy-tailed degree distributions and triadic clo-

sure. A good if somewhat outdated review of generative models for social and in-

formation networks is Chakrabarti and Faloutsos (2006). The Enron email network

was first studied by Klimt and Yang (2004).

The definitions of c-closed and weakly c-closed graphs (Definitions 1.1–1.2) are

from Fox et al. (2018), as is the fixed-parameter tractability result for the maximum

clique problem (Theorem 1.5). Eppstein et al. (2010) proved an analogous result

with respect to a different parameter, the degeneracy of the input graph. The

reduction from efficiently enumerating maximal cliques to bounding the number

of maximal cliques (Theorem 1.3) is from Tsukiyama et al. (1977). Moon-Moser

graphs and the Moon-Moser bound on the maximum number of maximal cliques

of a graph are from Moon and Moser (1965).

The definition of triangle-dense graphs (Definition 1.7) and the inverse theorem

for them (Theorem 1.9) are from Gupta et al. (2016). The computation of the

triangle density of the Facebook graph is detailed by Ugander et al. (2011).

The definition of power law bounded graphs (Definition 1.10) first appeared in

Berry et al. (2015) in the context of triangle counting, but it was formalized and ap-

plied to many different problems by Brach et al. (2016), including triangle counting

(Theorem 1.15), clique enumeration (Exercise 1.10), and linear algebraic problems

for matrices with a pattern of non-zeroes that induces a PLB graph. Brach et al.

(2016) also performed a detailed empirical analysis, validating Definition 1.10 (with

small shifts t) on real data. The degeneracy-parameterized bound for counting tri-

angles is essentially due to Chiba and Nishizeki (1985).

The BCT model (Section 1.5) and the fast algorithm for computing the diameter

of a graph are due to Borassi et al. (2017).
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Exercises

1.1 Prove that a graph is weakly c-closed in the sense of Definition 1.2 if and only

if its vertices can be ordered v1, v2, . . . , vn such that, for every i = 1, 2, . . . , n,

the vertex vi is c-good in the subgraph induced by vi, vi+1, . . . , bn.

1.2 Prove that the backtracking algorithm in Section 1.2.3 enumerates all of the

maximal cliques of a graph.

1.3 Prove that a graph has triangle density 1 if and only if it is a disjoint union

of cliques.

1.4 Let G be the complete regular tripartite graph with n vertices—three vertex

sets of size n
3 each, with each vertex connected to every vertex of the other

two groups and none of the vertices within the same group.

(a) What is the triangle density of the graph?

(b) What is the output of the cleaner (Section 1.3.4) when applied to this graph?

What is then the output of the extractor?

(c) Prove that G admits no tightly-knit family that contains a constant fraction

(as n→∞) of the graph’s triangles and uses one radius-1 clusters.

1.5 Prove Claim 1.12.

[Hint: To prove (a), break up the sum over degrees into sub-sums between

powers of 2. Apply Definition 1.10 to each sub-sum.]

1.6 Implement Algorithm 2 from Section 1.4.3 in O(
∑
v(d

+
v )2 +n) time, where d+

v

is the number of out-neighbors of v in the directed version D of G, assuming

that the input G is represented using only adjacency lists.

[Hint: you may need to store the in- and out-neighbor lists of D.]

1.7 Prove that every graph with m edges has degeneracy at most
√

2m. Exhibit

a family of graphs showing that this bound is tight (up to lower order terms).

1.8 Suppose G is a PLB graph with exponent γ > 1.

(a) Prove that the maximum degree of G is O(n1/(γ−1)).

(b) Prove that the degeneracy is O(n1/γ).

[Hint: For (b), use the main idea in the proof of Exercise 1.7 and Claim 1.12.]

1.9 Prove that Algorithm 2 in Section 1.4.3 runs in O(n log n) time and O(n) time

in n-vertex PLB graphs with exponents γ = 3 and γ > 3, respectively.

1.10 Prove that all of the cliques of a graph with degeneracy α can be enumerated

in O(n2α) time. (By Exercise 1.8(b), this immediately gives a subexponential-

time algorithm for enumerating the cliques of a PLB graph.)


