
Routers with very small buffers∗

Mihaela Enachescu
Department of Computer Science

Stanford University
mihaela@cs.stanford.edu

Yashar Ganjali
Department of Electrical Engineering

Stanford University
yganjali@stanford.edu

Ashish Goel
†

Dept of Management Sci. and Engg.
Stanford University

ashishg@stanford.edu

Nick McKeown
Department of Electrical Engineering

Stanford University
nickm@stanford.edu

Tim Roughgarden
‡

Department of Computer Science
Stanford University

tim@cs.stanford.edu

ABSTRACT
Internet routers require buffers to hold packets during times
of congestion. The buffers need to be fast, and so ideally
they should be small enough to use fast memory technolo-
gies such as SRAM or all-optical buffering. Unfortunately, a
widely used rule-of-thumb says we need a bandwidth-delay
product of buffering at each router so as not to lose link
utilization. This can be prohibitively large. In a recent pa-
per, Appenzeller et al. challenged this rule-of-thumb and
showed that for a backbone network, the buffer size can be
divided by

√
N without sacrificing throughput, where N is

the number of flows sharing the bottleneck. In this paper, we
explore how buffers in the backbone can be significantly re-
duced even more, to as little as a few dozen packets, if we are
willing to sacrifice a small amount of link capacity. We ar-
gue that if the TCP sources are not overly bursty, then fewer
than twenty packet buffers are sufficient for high throughput.
Specifically, we argue that O(log W) buffers are sufficient,
where W is the window size of each flow. We support our
claim with analysis and a variety of simulations. The change
we need to make to TCP is minimal—each sender just needs

∗This work was supported under DARPA/MTO DOD-N
award no. W911NF-04-0001/KK4118 (LASOR PROJECT)
and the Buffer Sizing Grant no. W911NF-05-1-0224.
†Research also supported by an NSF career grant and an
Alfred P. Sloan faculty fellowship.
‡Research also supported in part by ONR grant N00014-04-
1-0725.

to pace packet injections from its window. Moreover, there
is some evidence that such small buffers are sufficient even
if we don’t modify the TCP sources so long as the access
network is much slower than the backbone, which is true
today and likely to remain true in the future.

We conclude that buffers can be made small enough for all-
optical routers with small integrated optical buffers.

Categories and Subject Descriptors
C.2 [Internetworking]: Routers

1. MOTIVATION AND INTRODUCTION
Until quite recently, Internet routers were widely believed
to need large buffers. Commercial routers today have huge
packet buffers, often storing millions of packets, under the
assumption that large buffers lead to good statistical multi-
plexing and hence efficient use of expensive long-haul links.
A widely-used rule-of-thumb states that, because of the dy-
namics of TCP’s congestion control mechanism, a router
needs a bandwidth-delay product of buffering, B = RTT ×
C, in order to fully utilize bottleneck links [5, 4, 10]. Here,
C is the capacity of the bottleneck link, B is the size of
the buffer in the bottleneck router, and RTT is the aver-
age round-trip propagation delay of a TCP flow through the
bottleneck link. Recently, Appenzeller et al. proposed using
the rule B = RTT × C/

√
N instead, where N is the num-

ber of flows through the bottleneck link [2]. In a backbone
network today, N is often in the thousands or the tens of
thousands, and so the sizing rule B = RTT×C/

√
N results

in significantly fewer buffers.

In this paper, we explore if and how we could build a net-
work with much smaller buffers still—perhaps with only a
few dozen packet buffers in each router, and perhaps at the
expense of 100% link utilization. While this is an interesting
intellectual exercise in its own right, there would be practical
consequences if it were possible.

First, it could facilitate the building of all-optical routers.
With recent advances [?, ?, 8], it is now possible to per-
form all-optical switching, opening the door to routers with
huge capacity and lower power than electronic routers. Re-
cent advances in technology make possible optical FCFS
packet buffers that can hold a few dozen packets in an inte-
grated opto-electronic chip [8]. Larger all-optical buffers re-
main infeasible, except with unwieldy spools of optical fiber
(that can only implement delay lines, not true FCFS packet
buffers). We are interested in exploring the feasibility of an
operational all-optical network with just a few dozen optical
packet buffers in each router.

Second, if big electronic routers required only a few dozen
packet buffers, it could reduce their complexity, making
them easier to build and easier to scale. A typical 10Gb/s
router linecard today contains about one million packet buffers,
using many external DRAM chips. The board space the
DRAMs occupy, the pins they require, and the power they
dissipate all limit the capacity of the router [2]. If a few
dozen packet buffers suffice, then packet buffers could be
incorporated inside the network processor (or ASIC) in a
small on-chip SRAM; in fact, the buffers would only occupy
a tiny portion of the chip. Not only would external memo-
ries be removed, but it would allow the use of fast on-chip
SRAM, which scales in speed much faster than DRAM.

Our main result is that minor modifications to TCP would
indeed allow us to reduce buffer-sizes to dozens of packets
with the expense of slightly reduced link utilization. We
obtain this result in a succession of steps. We will start by
adopting two strong assumptions: (1) That we could modify
the way packets are transmitted by TCP senders, and (2)
That the network is over-provisioned. However, we will soon
relax these assumptions.

We start by asking the following question: What if we kept
the AIMD (Additive Increase Multiplicative Decrease) dy-
namics of TCP window control, but changed the TCP trans-
mission scheme to “space out” packet transmissions from the
TCP sender, thereby making packet arrivals less bursty? We
assume that each TCP flow determines its window size us-
ing the standard TCP AIMD scheme. However, if the cur-
rent window size at time t is W and the current round-trip
estimate is RTT, then we assume the TCP sender sends ac-
cording to a Poisson process of rate W/RTT at time t. This
results in the same average rate as sending W packets per
RTT. While this is a slightly unrealistic assumption (it can
result in the window size being violated and so might al-
ter TCP behavior in undesirable ways), this scenario yields
important clues about the feasibility of very small buffers.

We are also going to assume that the network is over-provi-
sioned—even if each flow is sending at its maximum window
size, the network will not be congested.1 Under these as-
sumptions, we show that a buffer size of O(log Wmax) pack-
ets is sufficient to obtain close to peak throughput, where

1This assumption is less restrictive than it might appear.
Current TCP implementations usually cap window sizes at
32 KB or 64 KB[6], and it is widely believed that there is no
congestion in the core of the Internet. All optical networks,
in particular, are likely to be significantly over-provisioned.
Later we will relax this assumption, too.

Wmax is the maximum window size in packets. Some ele-
ments of the proof are interesting in their own right.2 The
exact scenario is explained in section 2 and the proof itself
is in appendix A.

To get some feel for these numbers, consider the scenario
where 1000 flows share a link of capacity 10Gbps. Assume
that each flow has an RTT of 100ms, a maximum window
size of 64KB, and a packet size of 1KB. The peak rate is
roughly 5Gbps. The bandwidth-delay product rule of thumb
suggests a buffer size of 125MB, or around 125,000 packets.
The RTT×C/

√
N rule suggests a buffer size of around 3950

packets. Our analysis suggests a buffer size of twelve packets
plus some small additive constant, which brings the buffer
size down to the realm where optical buffers can be built in
the near future.

We then systematically remove the two assumptions we made
above, using a combination of simulations and analysis. We
first tackle the assumption that TCP sends packets in a lo-
cally Poisson fashion. Intuitively, sending packets at fixed
(rather than random) intervals should give us the same bene-
fit (or better) as sending packets at a Poisson rate. Accord-
ingly, we study the more reasonable case where the TCP
sending agent “paces” its packets deterministically over an
entire RTT. Paced TCP has been studied before [?], and
does not suffer from the problem of overshooting the win-
dow size. We perform an extensive simulation study of
paced TCP with small buffers. When the network is over-
provisioned, the performance of paced TCP closely mirrors
our analytical bound of O(log Wmax) for Poisson sources.
This holds for a wide range of capacities and number of
flows, and not just in the regime where one might expect
the aggregate arrival process at the router to resemble a
Poisson process [3]. These results are presented in section 3.
In appendix B, we provide additional intuition for this re-
sult: if many paced flows are superimposed after a random
jitter, then the packet drop probability is as small as with
Poisson traffic.

The next assumption we attempt to remove is that of the
network being over-provisioned. We consider a single bot-
tleneck link, and assume that if each flow were to send at its
maximum window size, then the link would be severely con-
gested. In our simulations (presented in section 4), TCP
pacing results in high throughput (around 70-80%) with
the relatively small buffers (10-20) predicted by the sim-
ple Poisson-transmissions analysis. While we have not been
able to extend our formal analysis to the under-provisioned
network case, some analytical intuition can also be obtained:
if we assume that the TCP equation [7] holds and that the
router queue follows the M/M/1/B dynamics, then buffers
of size O(log Wmax) suffice to utilize a constant fraction of
the link capacity.

Our results are qualitatively different from the bandwidth-
delay rule of thumb or from the results of Appenzeller et
al. On the positive side, we have completely removed the

2For example, we do not need to assume the TCP equa-
tion [8] or aggregate Poisson arrivals [9]—hence we do not
rely on the simplifying assumptions about TCP dynamics
and about a large number of flows that are required for
these two results.

dependence of the buffer size on the bandwidth-delay prod-
uct. To understand the importance of this, consider the
scaling where the RTT is held fixed at τ , but the maxi-
mum window size Wmax, the number of flows N , and the
capacity C all go to ∞ such that C = NWmax/τ . This is
a very reasonable scaling since τ is restricted by the speed
of light, whereas C, N , and Wmax are all expected to keep
growing as Internet traffic scales. Under this scaling, the
sizing rule of Appenzeller et al. suggests that the buffer size
should grow as

√
NWmax, whereas our results suggest that

the buffer size needs to grow only at the far more benign
rate of log Wmax. On the negative side, unlike the result of
Appenzeller et al. , our result is a tradeoff result—to ob-
tain this large decrease in buffers, we have to sacrifice some
fixed fraction (say around 25%) of link capacity. This is a
very good tradeoff for all-optical routers where bandwidth is
plentiful and buffers are scarce. But for electronic routers,
this trade-off might be sub-optimal.

We give evidence that our result is tight in the following
sense.

1. Under the scaling described above, buffers must at
least grow in proportion to log Wmax to obtain a con-
stant factor link utilization. In Section ??, we present
simulation evidence that constant sized buffers are not
adequate as the maximum window size grows to in-
finity. We also perform a simple calculation which
shows the necessity of the log-scaling assuming the
TCP equation and M/M/1/B queueing.

2. When we run simulations without using TCP pacing,
we can not obtain reasonable link utilizations with log-
sized buffers, even in the over-provisioned case (sec-
tion 3).

While TCP pacing is arguably a small price to pay for dras-
tic reduction in buffer sizes, it does require a change to end-
hosts. Fortunately, we suspect this is not necessary, as two
effects naturally provide some pacing in current networks.
First, the access links are typically much slower than the core
links, and so traffic entering the core from access links is au-
tomatically paced; we call this phenomenon “link-pacing”.
We present simulations showing that with link-pacing we
only need very small buffers, because packets are spaced
enough by the network. Second, the ACK-clocking scheme
of TCP paces packets [?]. The full impact of these two phe-
nomena deserves further study.

Other interesting directions for further study include the
impact of packet sizes, the interaction of switch schedul-
ing algorithms and small buffers, the impact of short flows,
and the stability properties of TCP with our log-scaling
rule. (Significant progress in analyzing stability was made
recently by Raina and Wischik [9].)

Of course, significant additional work—including experimen-
tal verification, more detailed analysis, and larger simulation
studies—is required before we undertake a drastic reduction
in buffer sizes in the current Internet.

2. INTUITION: POISSON INJECTIONS AND
AN OVER-PROVISIONED NETWORK

The intuition behind our approach is quite simple. Imagine
for a moment that each flow is an independent Poisson pro-
cess. This is clearly an unrealistic (and incorrect) assump-
tion, but it serves to illustrate the intuition. Assume too
that each router behaves like an M/M/1 queue. The drop-
rate would be ρB, where ρ is the link utilization and B is
the buffer size. At 75% load and with 20 packet buffers, the
drop rate would be 0.3%, independent of the RTT , number
of flows, and link-rate. This should be compared with a typ-
ical 10Gb/s router line-card today that maintains 1,000,000
packet buffers, and its buffer size is dictated by the RTT ,
number of flows and link-rate. In essence, the cost of not
having Poisson arrivals is about five orders of magnitude
more buffering! An interesting question is: How “Poisson-
like” do the flows need to be in order to reap most of the
benefit of very small buffers?

To answer our question, assume N long-lived TCP flows
share a bottleneck link. Flow i has time-varying window size
Wi(t) and follows TCP’s AIMD dynamics. In other words
if the source receives an ACK at time t, it will increase the
window size by 1/Wi(t), and if the flow detects a packet loss
it will decrease the congestion window by a factor of two.
In any time interval (t, t′] when the congestion window size
is fixed, the source will send packets as a Poisson process
at rate Wi(t)/RTT. Note that this is different from regular
TCP, which typically sends packets as a burst at the start
of the window.

We will assume that the window size is bounded by Wmax.
Implementations today typically have a bound imposed by
the operating system (Linux defaults to Wmax = 64kbytes),
or the window size is limited by the speed of the access
link. We’ll make the simplifying assumption that the two-
way propagation delay of each flow is RTT. Having a differ-
ent propagation delay for each flow leads to the same results,
but the analysis is more complicated. The capacity C of the
shared link is assumed to be at least (1/ρ) · NWmax/RTT
where ρ is some constant less than 1. Hence, the network is
over-provisioned by a factor of 1/ρ, i.e. the peak throughput
is ρC. The effective utilization, θ, is defined as the achieved
throughput divided by ρC.

In this scenario, the following theorem holds:

Theorem 1. To achieve an effective utilization of θ, a
buffer of size

B ≥ logρ

„

2(1 − θ)

W 2
max

«

(1)

suffices.

Proof. See Appendix A.

As an example of the consequences of this simple model, if
Wmax = 64 packets, ρ = 0.5, and we want an effective uti-
lization of 90%, we need a buffer size of 15 packets regardless
of the link capacity. In other words, the AIMD dynamics of
TCP don’t necessarily force us to use larger buffers, if the

arrivals are well-behaved and non-bursty. So what happens
if we make the model more realistic? In the next section
we consider what happens if instead of injecting packets ac-
cording to a Poisson process, each source uses Paced TCP in
which packets are spread uniformly throughout the window.

3. PACED TCP, OVER-PROVISIONED NET-
WORK

It should come as no surprise that we can use very small
buffers when arrivals are Poisson: arrivals to the router are
benign and non-bursty. Queues tend to build up—and hence
we need larger buffers—when large bursts arrive, such as
when a TCP source sends all of its outstanding packets at
the start of the congestion window. But we can prevent
this from happening if we make the source spread the pack-
ets over the whole window. Intuitively, this modification
should prevent bursts and hence remove the need for large
buffers. We next show that this is indeed the case. Through-
out this section, we assume that the bottleneck link is over-
provisioned in the same sense as in the previous section. In
the next section we remove this assumption.

First, suppose N flows, each with maximum window size
Wmax, share a bottleneck link. Then the following is true,
under some mild assumptions (laid out in appendix 3):

Theorem 2. The packet loss probability during a sin-
gle RTT is O(1/W 2

max), if (1) The buffer size is at least
cB log Wmax packets, where cB > 0 is a sufficiently large
constant; and (2) Each flow sends packets at a rate at most
a 1/cS log Wmax fraction times that of the bottleneck link,
where cS is a sufficiently large constant.

Proof. See Appendix 3.

The buffer size requirement for Theorem 2 (Assumption (1))
is comparable to that in Theorem 1—a few dozen packets
for present-day window sizes, independent of the link capac-
ity, number of flows, and RTT. This requirement appears
to be necessary to achieve constant throughput, even with
TCP pacing (see section 4.1). The packet loss probability in
Theorem 2 is comparable to that for Poisson traffic with the
same buffer size. To understand the second assumption of
Theorem 2, note that if flows can send at the same rate as
the bottleneck link, then there is no pacing of traffic what-
soever. In this case, our simulations indicate that constant
throughput is not achievable with log-sized buffers (see sec-
tion ??). The natural goal is thus to obtain good through-
put with small buffers provided flows are “sufficiently non-
bursty”. Theorem 2 quantifies this: as long as all flows send
at a rate that is roughly a log Wmax factor slower than that
of the bottleneck link, a Poisson-like throughput-buffer size
tradeoff is achievable. This slowdown factor is only a few
dozen for present-day window sizes, while access links are
often orders of magnitude slower than backbone links. This
huge difference in access link and backbone link speeds also
seems likely to persist in the near future (especially with an
all-optical backbone).

To explore the validity of Theorem 2, we performed simu-
lations using the popular ns2 simulation tool [1]. We im-

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Time

C
W

N
D

_

TCP−Reno
Paced TCP

Figure 2: Congestion window size (reno vs. pacing)

plemented TCP Pacing and used various values of RTT,
different number of flows, and buffer sizes.

In Figure 1 we compare the number of buffers needed by
TCP Reno with TCP Pacing. We plot the throughput of
the system as function of the buffer size used in the router,
for various number of flows. The capacity of the bottleneck
link is 100Mb/s, and the average RTT is 100ms. In this
experiment, the maximum congestion window size is set to
32 packets, and the size of packets is 1000 bytes. The sim-
ulation is run for 1000 seconds, and we start recording the
data after 200 seconds.

As we can see, with forty unmodified TCP (Reno) flows,
we need to buffer about 100 packets to achieve a through-
put above 80%. However, in the same setting, Paced TCP
achieves 80% throughput with just 10 packet buffers.

Figure 2 compares the congestion window (CWND) of TCP
Reno with Paced TCP. In this experiment, 500 flows share
a bottleneck link with a capacity of 1.5Gb/s; each flow is
limited to a maximum window size of 32 packets. Notice
that TCP Reno rarely reaches the maximum window size
of 32 packets, whereas Paced TCP has a larger congestion
window at almost all times. Paced TCP flows experience
fewer drops, and so CWND grows to larger values.

In Figure 1 we increased the system load as we increased the
number of flows. It’s also interesting to see what happens
if we keep the system load constant (at 80% in this case)
while increasing the number of flows. This is illustrated in
Figure 3, for flows with a maximum congestion window of
32 packets. As we increase the number of flows from one to
more than a thousand, we also increase the bottleneck link
capacity from 3.2Mb/s to 3.4Gb/s to keep the peak load
at 80%. The graph shows that regardless of the number of
flows, throughput is improved by pacing TCP. The through-
put of Paced TCP is around 70% (i.e., the effective utiliza-
tion is more than 85%) while the throughput of the TCP
Reno is around 20% (with an effective utilization of around
25%) regardless of the number of flows in the system.

It is important to note that this siginficant discrepancy be-
tween paced and regular TCP is observed only with small

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

T
hr

ou
gh

pu
t

1 flow
10 flows
20 flows
40 flows

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

T
hr

ou
gh

pu
t

1 flow
10 flows
20 flows
40 flows

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

T
hr

ou
gh

pu
t

1 flow
10 flows
20 flows
40 flows

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

T
hr

ou
gh

pu
t

1 flow
10 flows
20 flows
40 flows

(c) (d)

Figure 1: Bottleneck link utilization for different buffer sizes and number of flows. (a) unmodified TCP
(b) unmodified TCP with logarithmic x-axis (c) paced TCP (d) paced TCP with logarithmic x-axis. The
maximum possible offered load is 0.026 with one flow, 0.26 with 10 flows, 0.52 with 20 flows, and 1 with 40
flows.

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of flows

T
hr

ou
gh

pu
t

Paced TCP
TCP Reno

Figure 3: Paced TCP vs. TCP Reno.

buffers. If we use the bandwidth-delay rule for sizing buffers,
this discrepancy vanishes.

4. UNDER-PROVISIONED NETWORK, LIM-
ITED ACCESS LINK CAPACITY

So far we have assumed that the network is over-provisioned
and we do not have congestion on the link under study. Even
though this is true for most links in the core of the Internet,
it is also interesting to relax this assumption. We next study,
via simulations, how congestion affects link utilization.

Figure 4 shows the throughput of the bottleneck link as a
function of the number of flows, for different amounts of load
in the system, when the bottleneck link has a buffer of size
10 packets. When the load is around 85%, the bottleneck
link utilization is around 70%. As we increase the bottleneck
link load from 85% to 120%, and even up to 200%, there is
no significant degradation in the throughput—in fact, the
throughput increases by about 5-10%.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of flows

T
hr

ou
gh

pu
t

Load = 80%
Load = 120%
Load = 200%

Figure 4: Bottleneck link utilization vs. number of
flows. Access links have a limited capacity, and the
load varies between 85% to 200%.

Another interesting observation is that if the capacity of the
access links is much smaller than the core link, we auto-
matically have spacing between packets without modifying

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450

T
hr

ou
gh

pu
t

Access Link Capacity (Mb/s)

Throubhput vs. Access Link Capacity -- Fixed Number of Flows

’util-vs-bw--buf-10--num-flows-10.dat’ using 4:5
’util-vs-bw--buf-10--num-flows-10.dat’ using 4:7

Figure 5: Throughput as a function of access link
capacity

TCP. Figure 5 shows that as long as the core link is not the
bottleneck, we get a very high utilization.

4.1 The necessity of logarithmic scaling of buffer-
sizes

We have not been able to extend our proof of theorem ?? to
the case when the network is under-provisioned. However,
the TCP equation [7] gives interesting insights if we assume
that the router queue can be modeled as an M/M/1/B sys-
tem [?]. Consider the scaling (described in the introduction)
where the RTT is held fixed at τ , but the maximum window
size Wmax, the number of flows N , and the capacity C all
go to ∞. To capture the fact that the network is under-
provisioned, we will assume that C = NWmax

2τ
i.e. the link

can only support half the peak rate of each flow. Similarly,
C = 2NWmax

τ
represents the under-provisioned case.

Let p be the drop probability, and ρ the link utilization.
Clearly, ρ = RN/C, where R is the average throughput of
each flow. Then, the TCP equation states:

R =
1

τ

r

3

2p
+ o(1/

√
p) ≃ 1

τ

r

3

2p
. (2)

The M/M/1/B assumption yields:

p = ρB 1 − ρ

1 − ρB

ρ

1 + ρ
≃ ρB+1 (3)

Equations 2, 3 immediately yield the following:

1. Assume C = NWmax

2τ
. For any constant α < 1, there

exists another constant β such that setting B = β log Wmax

yields ρ > α. In other words, logarithmic buffer-
sizes suffice for obtaining constant link utilization even
when the network is under-provisioned.

2. Assume C = 2NWmax

τ
. If B = o(log Wmax) then ρ =

o(1). In other words, if the buffer size grows slower
than log Wmax then the link utilization drops to 0 even
in the over-provisioned case.

0 500 1000 1500 2000 2500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Link bandwidth (Mb/s)

U
til

iz
at

io
n

Figure 6: Constant vs. logarithmic buffers

Obtaining formal proofs of the above statements remains
an interesting open problem. Simulation evidence supports
these claims, as can be seen in Figure 6 which describes the
throughput for a constant vs. a logarithmic sized buffer as
N is held fixed at 10, Wmax varies from 10 to 1529, and C
is chosen so that the peak load is held constant to a little
over 50% [actually this is our initial choice of C, after which

C varies with the window size so as to keep constant the ra-

tio NWmax/C – Mihaela]. The buffer size is set to 5 packets
when Wmax = 10. Thereafter, it increases in proportion with
log Wmax for the log-sized-buffer case, and remains fixed at
5 for the constant buffer case. Here, Initially the through-
put is around 50% for both buffer sizing schemes. However,
the throughput for the constant sized buffer drops signifi-
cantly as N, C, Wmax [no N here – Mihaela] increase, while
for the logarithmic sized buffer the throughput remains ap-
proximately the same, just as predicted by our theoretical
model. can not result utilization 50% remains

5. DISCUSSION AND FUTURE WORK
* In the past, it was reasonable to assume that packet buffers
were cheap, and long-haul links were expensive and needed
to be fully utilized. Today, fast, large packet buffers are
relatively painful to design and deploy; whereas link capacity
is plentiful and it is common for links to operate well below
capacity. This is even more so in an all-optical network
where packet buffers are extremely costly and capacity is
abundant.

* Additional points to be made in the paper:

• The TCP dynamics had a very limited impact on buffer-
sizing (an extra factor of 2), and hence, the results may
well apply to large classes of traffic

• We have been assuming that the packet size is fixed at
1 unit (and the window size is at most Wmax packets.

• Short-lived flows

• Cascading

• Fairness

6. ADDITIONAL AUTHORS
7. REFERENCES
[1] The network simulator - ns-2.

http://www.isi.edu/nsnam/ns/.

[2] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
router buffers. In SIGCOMM ’04: Proceedings of the
2004 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 281–292, New York, NY, USA,
2004. ACM Press.

[3] J. Cao, W. Cleveland, D. Lin, and D. Sun. Internet
traffic tends to poisson and independent as the load
increases. Technical report, Bell Labs, 2001.

[4] V. Jacobson. [e2e] re: Latest TCP measurements
thoughts. Posting to the end-to-end mailing list,
March 7, 1988.

[5] V. Jacobson. Congestion avoidance and control. ACM
Computer Communications Review, pages 314–329,
Aug. 1988.

[6] Microsoft. TCP/IP and nbt configuration parameters
for windows xp. Microsoft Knowledge Base Article -
314053, November 4, 2003.

[7] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling tcp throughput: a simple model and its
empirical validation. In SIGCOMM ’98: Proceedings
of the ACM SIGCOMM ’98 conference on
Applications, technologies, architectures, and protocols
for computer communication, pages 303–314, New
York, NY, USA, 1998. ACM Press.

[8] H. Park, E. F. Burmeister, S. Bjorlin, and J. E.
Bowers. 40-gb/s optical buffer design and simulations.
In Numerical Simulation of Optoelectronic Devices
(NUSOD), 2004.

[9] G. Raina and D. Wischik. Buffer sizes for large
multiplexers: Tcp queueing theory and instability
analysis.
http://www.cs.ucl.ac.uk/staff/D.Wischik/Talks/tcptheory.html.

[10] C. Villamizar and C. Song. High performance TCP in
ANSNET. ACM Computer Communications Review,
24(5):45–60, 1994 1994.

APPENDIX
A. PROOF OF THE MAIN THEOREM

C

1s 1d

2d

Nd

2s

sN

v w

Figure 7: Topology

We will use the topology of figure 7. The capacity of the
shared link (v, w), which is denoted by C, is assumed to

be at least (1/ρ) · NWmax/RTT where ρ is some constant
less than 1. Hence, the network is over-provisioned by a
factor of 1/ρ, i.e. the peak throughput is ρC. The effective
utilization, θ, is defined as the achieved throughput divided
by ρC. We also assume that node v is an output queued
switch, and has a buffer size of B.

The flow going through the link (v, w) is the superposition of
the N long-lived TCP flows. Since the packet injection rate
of the i-th flow is Wi(t)/RTT, its flow injection is dominated
by a Poisson process of rate Wmax/RTT. More specifically,
we can consider a virtual system in which flow i has an in-
jection process which is Poisson and of rate Wmax/RTT. We
can couple the packet injection processes in the real system
and this virtual system such that the packets injected by
the real system are a subset of the packets injected by the
virtual system. Therefore, the aggregate of the N flows is
dominated by a Poisson process of rate NWmax/RTT.

Now, let us consider the output queue at node v. We assume
this is a drop-tail queue, and prove the following lemma.

Lemma 1. The number of packet drops in the real system
is less than or equal to the number of packet drops in the
virtual system.

Proof. At a given point of time t, let us denote the resid-
ual amount of data (queue occupancy plus part of the packet
being served which has not left the system yet) in the real
system with QR(t) and the amount of data residing in the
virtual system with QV (t). We also denote the accumula-
tive number of packet drops for the real system by DR(t)
and the number of packet drops for the virtual system by
DV (t). We claim that for any time t,

[QR(t) − QV (t)]+ ≤ (DV (t) − DR(t)). (4)

Clearly this is true when both queues are empty at the be-
ginning. Now we consider the following cases:

1. If we have no arrival and just time passes, the right
hand side does not change, while the left hand side
can only decrease or remain the same. This case also
includes when packets depart either system.

2. If we have arrivals or drops at both queues at the same
time, the inequality still holds.

3. If we have an arrival to the virtual system, and no
arrivals to the real system no matter if we have a drop
or not, the LHS doesn’t increase, and the RHS might
increase, which means the inequality still holds.

4. If we have an arrival to both of the queues and the
real system drops the packet but the virtual system
doesn’t, we consider two cases. If [QR(t)−QV (t)]+ ≥ 1,
then both sides go down by one unit. Otherwise, since
the real system drops the packet but the virtual one
doesn’t, we can conclude that QR(t) > QV (t) (t is
the time right before this last arrival), which means
[QR(t)−QV (t)]+ is strictly greater than zero, and there-
fore DV (t) is greater than DR(t). Now, after the arrival

Time

C
on

ge
st

io
n

W
in

do
w

Area loss
with overlap

Area loss
without overlap

Figure 8: Dynamics of the congestion window.

and the drop, the LHS will become zero, while the RHS
is greater than or equal to zero.

In all cases the inequality holds. Now, since [QR(t)−QV (t)]+

is greater than or equal to zero (by definition), our inequality
is translated to DV (t) ≥ DR(t).

So far we have shown that the number of packet drops in
the virtual system is more than the number of packet drops
in the real system. The next step is to bound the number
of drops in the virtual system. In this system the arrival
process is Poisson. If we assume that the packets are all
of the same size, the service time will be fixed. Therefore,
we have an M/D/1 queue with a service rate of C, and the
arrival rate of ρC.

Lemma 2. The drop probability of the virtual system is
bounded above by ρB.

Proof. The queue occupancy distribution of an M/D/1
FCFS queueing system is equal to that of an M/D/1 LCFS-
PR (last-come first-served with preemptive resume) queue.
This is because both queues have the same arrival process,
are work conserving, and have the same service rate. Now,
for any M/G/1 LCFS-PR system the steady state queue oc-
cupancy distribution is geometric with parameter ρ. There-
fore, the drop probability of the M/G/1 LCFS-PR system
equals ρB , which is an upper bound on the drop probability
of the virtual system.

Note that this is not necessarily an upper bound on the
packet drop probability of the real system.

Now that we have an upper bound on the packet loss prob-
ability of the virtual system, the next step is to find a lower
bound on the throughput of the real system. Without loss of
generality, we consider the dynamics of one of the flows, say
flow number one. For simplicity, we assume that flow one is
in congestion avoidance, i.e., during each RTT the conges-
tion window size is incremented by one if there is no packet
loss, and the congestion window goes to zero if a packet loss
is detected by the source. Once the congestion window size
reaches its maximum value (i.e. Wmax) it will remain fixed.

Figure 8 depicts an example of the changes in congestion
window size. The area under the curve indicates the total
amount of data which has been sent by the flow. We can see
that by each packet loss some portion of this area is lost, and
the amount of loss is maximized when the overlap between

the lost regions is minimum. We omit a formal proof. We
are ignoring slow-start in this system. It is not hard to see
that considering slow-start can only lead to better bounds
(i.e. smaller buffers)—again, we omit the formal proof.

Let us consider a long time interval of length ∆, and let
us denote the number of packets injected by the sources
in the virtual system during this interval with Pv, and the
number of packet drops in the virtual system during this
time interval with DV . Choose an arbitrarily small ǫ > 0.
As ∆ goes to ∞, we have:

Pr

»

Pv >
∆NWmax

RTT
(1 + ǫ)

–

= o(1); (5)

and,

Pr

»

Pv <
∆NWmax

RTT
(1 − ǫ)

–

= o(1). (6)

Since the probability of each packet being dropped is less
than ρB, using Equation 5, we can bound the total number
of packet drops D as follows.

Pr

»

DV >
ρB∆NWmax

RTT
(1 + ǫ)

–

= o(1). (7)

Based on Lemma 1 the number of packet drops in the virtual
system is no less than the number of packet drops in the real
system (henceforth denoted by DR). Therefore, we get the
following.

Pr

»

DR >
ρB∆NWmax

RTT
(1 + ǫ)

–

= o(1). (8)

Now, if none of the flows in the real system encountered any
losses during the time interval ∆, the amount of data that
could have been sent during this time, UT , can be bounded
below as follows.

Pr

»

UT <
∆NWmax

RTT
(1 − ǫ)

–

= o(1). (9)

We will lose some throughput as a result of packet drops
in the system. As we can see in Figure 8, the maximum
amount of loss occurs when the triangles corresponding to
packet losses have the minimum overlap. Therefore, we have

UL ≤ DRW 2
max

2
. (10)

In Equation 8 we have bounded the number of packet losses
in the real system with a high probability. Combining this
bound, with Equation 10 we get

Pr

»

UL >
ρB∆NW 3

max

2RTT
(1 + ǫ)

–

= o(1). (11)

Now, if we want to guarantee an effective utilization through-
put of θ, the following equation must hold.

UT − UL

ρC∆
≥ θ. (12)

Since ρC = NWmax/RTT, we need to satisfy

UL ≤ N∆Wmax(1 − θ − ǫ)/RTT. (13)

Combining Equations 9, 11, and 13. if we want to have a
throughput of θ, we merely need to ensure

(1 + ǫ)ρB∆NW 3
max

2RTT
<

∆NWmax(1 − θ − ǫ)

RTT
, (14)

which, in turn, is satisfied if the following holds:

ρB <
2(1 − θ − O(ǫ))

W 2
max

. (15)

Since ǫ is arbitrarily small, it is sufficient for the buffer size
B to satisfy

B > logρ

„

2(1 − θ)

W 2
max

«

, (16)

which is O(log Wmax) since we assumed that ρ, θ are con-
stants less than 1.

For example, if Wmax = 64 packets, ρ = 0.5, and we want
an effective utilization of 90%, we need a buffer size of just
15 packets.

B. PACING ANALYSIS
In this Appendix we prove Theorem 2. We will consider the
following discrete-time model of the packet arrivals at the
bottlelink link during one RTT. There are a total M = C ·
RTT time slots, where C is the bandwidth of the bottlenexk
link. We assume that N flows will each send at most Wmax

packets, and that there are at least S time slots between
consecutive packet arrivals of a single flow. The parameter
S can be interpreted as a lower bound on the ratio of the
bottleneck link speed to the access link speed. Note S is the
crucial parameter in this section: when S is small traffic can
be arbitrarily bursty and we cannot expect good throughput
with small buffers (see also Section 4.1). We thus aim to
prove that small buffers permit large throughput provided
S is sufficiently large. Finally, we assume that the average
traffic intensity ρ = NWmax/M is bounded below 1.

For the rest of this section, we adopt three assumptions.

(1) Buffers are sufficiently large: B ≥ cB log Wmax, where
cB > 0 is a sufficiently large positive constant.

(2) The distance between consecutive packet arrivals of a
single flow is sufficiently large: S ≥ cS log Wmax, where
cS > 0 is a sufficiently large positive constant.

(3) Random jitter prevents a priori synchronization of the
flows: flow start times are picked independently and
uniformly at random from the M time slots.

As discussed in section 3, the first two assumptions are often
reasonable and are mathematically necessary for our results.
The validity of the third assumption is less clear, especially
in the presence of packet drops, which could increase the
degree of synchronization among flows. Our simulations in
Section 4 indicate, however, that our analytical bounds re-
main valid for long-lived flows that experience packet drops.

Our proof of Theorem 2 will focus on a particular (but arbi-
trary) packet. If the packet arrives during time slot t, then
the probability that it is dropped is at most the probability
that for some interval I of l contiguous time slots ending in
time slot t, there were at least l+B other packet arrivals. If
this event occurs, we will say that the interval I is overpopu-
lated. We will bound the probability of overpopulation, as a
function of the interval length l, via the following sequence
of lemmas. We first state the lemmas, then show how they
imply Theorem 2, and finally prove each of the lemmas in
turn.

The first lemma upper bounds the overpopulation probabil-
ity for small intervals (of length at most S).

Lemma 3. In the notation above, if l ≤ S, then the
probability that the interval I is overpopulated is at most
e−c(B+l), where c > 0 is a positive constant depending only
on cB.

The second lemma considers intervals of intermediate size.

Lemma 4. In the notation above, if S ≤ l ≤ SWmax,
then the probability that the interval I is overpopulated is at
most e−cS, where c > 0 is a positive constant depending only
on cS .

Finally, we upper bound the probability of overpopulation
in large intervals.

Lemma 5. In the notation above, if l ≥ SWmax, then
the probability that the interval I is overpopulated is at most
e−cl/Wmax , where c > 0 is positive constant depending only
on cS .

We now show how Lemmas 3–5 imply Theorem 2.

Proof of Theorem 2: We consider an arbitrary packet ar-
riving in time slot t, and take the Union Bound over the
overpopulation probabilities of all intervals that conclude

with time slot t. First, by Lemma 3, the total overpopula-
tion probability for small intervals (length l at most S) is at

most
R S

1
e−Ω(log Wmax+x)dx, which is O(1/W 2

max) provided
cB (in Assumption (1)) is sufficiently large. Next, Lemma 4
implies that the total overpopulation probability of intervals
with length l in [S, SWmax] is at most SWmaxe−Ω(S), which
is O(1/W 2

max) provided cS (in Assumption (2)) is sufficiently
large. Finally, Lemma 5 implies that the total overpopula-
tion probability of large intervals (l ≥ SWmax) is at most
R

∞

SWmax

e−Ω(x/Wmax)dx. Changing variables (z = x/Wmax),

this quantity equals Wmax

R

∞

S
e−zdz, which is O(1/W 2

max)
provided cS is sufficiently large. Taking the Union Bound
over the three types of intervals, we obtain an upper bound
of O(1/W 2

max) for the total overpopulation probability, and
hence for the probability that the packet is dropped. This
completes the proof.

Proof of Lemma 3: If the length l of interval I is at most
S, then each flow contributes at most 1 packet to I . This
occurs with probability at most Wmaxl/M . Let Xi denote
the corresponding indicator random variable for flow i, and
define X =

P

Xi. Note that EX ≤ ρl. We use the fol-
lowing Chernoff bound (see e.g. [?]) for a sum of indicator
random variables with expectation µ: Pr[X ≥ µ + λ] ≤
exp{−(λ2)/(2µ + λ)}. Setting µ = ρl and λ = (1− ρ)l + B,
we get Pr[X ≥ l + B] ≤ exp{−(Θ(l) + B)2/(Θ(l) + B)} =

e−Θ(l+B) for fixed ρ < 1.

Proof of Lemma 4: Suppose (k − 1)S ≤ l ≤ kS for some
k ∈ {2, 3, ..., Wmax}. Then each flow contributes at most
k packets to I . Assume for simplicity that each flow con-
tributes either 0 or k packets to I , with the latter event
occurring with probability WmaxS/M (so that E[kX] ≈ ρl).
(Here Xi is the indicator for the latter event, so the total
number of arrivals in I is at most kX, where X =

P

i Xi.) A
more accurate analysis that permits each flow to contribute
any number of packets between 0 and k to I (with appropri-
ate proabilities) can also be made, but the results are nearly
identical to those given here.

We use the following Chernoff bound (see e.g. [?]): Pr[X ≥
(1 + β)µ] ≤ exp{−(β2µ)(2 + β)}. We are interested in the
probability Pr[X ≥ (l + B)/k], which we will upper bound
by Pr[X ≥ l/k]. Since µ ≤ ρl/k, the Chernoff bound gives

Pr[X ≥ l/k] ≤ exp{−Θ(l/k)} = e−Θ(S) for fixed ρ < 1.

Proof of Lemma 5: The proof is similar to the previous
one. Suppose that l ≥ WmaxS and assume that each flow i
contributes either 0 or Wmax packets to I , the latter event
occurring with probability l/M . (So E[WmaxX] = ρl.) The
same Chernoff bound argument as in the proof of Lemma 4
gives Pr[WmaxX ≥ l+B] ≤ e−(Θ(l/Wmax) for fixed ρ < 1.

