
CS364A: Algorithmic Game Theory
Lecture #18: From External Regret to Swap Regret and

the Minimax Theorem∗

Tim Roughgarden†

November 20, 2013

1 Swap Regret and Correlated Equilibria

Last lecture we proved that coarse correlated equilibria (CCE) are tractable, in a satisfy-
ing sense: there are simple and computationally efficient learning procedures that converge
quickly to the set of CCE. Of course, if anything in our equilibrium hierarchy (Figure 1) was
going to be tractable, it was going to be CCE, the biggest set.

The good researcher is never satisfied and always seeks stronger results. What can we say
if we zoom in to the next-biggest set, the correlated equilibria? The first part of this lecture
shows that correlated equilibria are also tractable. We’ll give computationally efficient — if
not quite as simple — learning procedures that converge fairly quickly to this set.

Remark 1.1 (Learning vs. Linear Programming) The computational tractability of cor-
related and coarse correlated equilibria — and mixed Nash equilibria of two-player zero-sum
games, see Section 3 — can also be demonstrated by formulating linear programs for them.
A bonus of the linear programming approach is that an exact, rather than an approximate,
equilibrium can be computed in polynomial time. Another advantage is that linear optimiza-
tion over the set of equilibria remains computationally tractable, while learning procedures
merely guide behavior to somewhere in the set. On the other hand, exact linear programming
algorithms seem wholly unrelated to any reasonable model of how agents learn in games.

Recall from Lecture 13 and Exercise 59 that a correlated equilibrium of a cost-minimization
game is a distribution σ over outcomes such that, for every player i with strategy set Si and
every switching function δ : Si → Si,

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(δ(si), s−i)] .

∗ c©2013, Tim Roughgarden. These lecture notes are provided for personal use only. See my book Twenty
Lectures on Algorithmic Game Theory, published by Cambridge University Press, for the latest version.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1



PNE

MNE

CorEq

CCE

easy to compute and learn

subject of this lecture

Figure 1: The hierarchy of equilibria from Lecture 13.

For example, in the “traffic intersection game” of Lecture 13, mixing 50/50 between the two
pure Nash equilibria gives a (non-Nash) correlated equilibria.

Recall the online decision-making setting from last time: every day t = 1, 2, . . . , T , a
decision-maker commits to a distribution pt over its n actions A, then an adversary chooses
a cost function ct : A → [0, 1], and finally an action at is chosen according to pt, resulting
in cost ct(at) to the decision-maker. Last lecture described an algorithm with time-averaged
expected cost as small as that of every fixed action, up to an error term that goes to 0
as the time horizon T grows. When every player of a game uses such a no-external-regret
algorithm to choose a strategy at each time step, the time-averaged history of joint play
is an approximate CCE. Is there a more stringent regret notion that enjoys an analogous
correspondence with correlated equilibria?

Definition 1.2 An online decision-making algorithm has no swap regret if for every adver-
sary for it, the expected swap regret

1

T

[
T∑
t=1

ct(at)−
T∑
i=1

ct(δ(at))

]
(1)

with respect to every switching function δ : A→ A is o(1) as T →∞.

Because fixed actions are the special case of constant switching functions, an algorithm with
no swap regret also has no external regret.

In each time step t of no-swap-regret dynamics, every player i independently chooses a
mixed strategy pti according to a no-swap-regret algorithm. Cost vectors are defined as in
no-regret dynamics: cti(si) is the expected cost of strategy si ∈ Si, given that every other
player j plays its chosen mixed strategy ptj. The connection between correlated equilibria
and no-swap-regret dynamics is the same as that between CCE and no-(external-)regret
dynamics.

2



Proposition 1.3 Suppose after T iterations of no-swap-regret dynamics, every player of a
cost-minimization game has swap regret at most ε for each of its switching functions. Let
σt =

∏k
i=1 p

t
i denote the outcome distribution at time t and σ = 1

T

∑T
t=1 σ

t the time-averaged
history of these distributions. Then σ is an ε-approximate correlated equilibrium, in the sense
that

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(δ(si), s−i)] + ε

for every player i and switching function δ : Si → Si.

2 A Black-Box Reduction From Swap Regret to Ex-

ternal Regret

This section gives a “black-box reduction” from the problem of designing a no-swap-regret
algorithm to that of designing a no-external-regret algorithm — a problem that we already
solved in the previous lecture.

Theorem 2.1 ([1]) If there is a no-external-regret algorithm, then there is a no-swap-regret
algorithm.

As we’ll see, the reduction in Theorem 2.1 also preserves computational efficiency. For ex-
ample, plugging the multiplicative weights algorithm into this reduction yields a polynomial-
time no-swap-regret algorithm. We conclude that correlated equilibria are tractable in the
same strong sense as coarse correlated equilibria.

Proof of Theorem 2.1: The reduction is very natural, one that you’d hope would work. It
requires one clever trick, as we’ll see at the end of the proof.

Let n denote the number of actions. LetM1, . . . ,Mn denote n different no-(external-)regret
algorithms, for example n instantiations of the multiplicative weights algorithm. Each of
these algorithms is poised to produce probability distributions over actions and receive cost
vectors as feedback. Very roughly, we can think of algorithm Mj as responsible for protecting
against profitable deviations from action j to other actions.

The “master algorithm” M is as follows; see also Figure 2.

1. At time t = 1, 2, . . . , T :

(a) Receive distributions qt1, . . . , q
t
n over actions from the algorithms M1, . . . ,Mn.

(b) Compute and output a consensus distribution pt.

(c) Receive a cost vector ct from the adversary.

(d) Give algorithm Mj the cost vector pt(j) · ct.

We discuss how to compute the consensus distribution pt from the distributions qt1, . . . , q
t
n

at the end of the proof; this is the clever trick in the reduction. The fourth step parcels out

3



M1

M2

Mn

pt

ct

qt
1

pt(1) · ct

qt
2

qt
n

pt(n) · ct

pt(2) · ct

Figure 2: Blackbox reduction from swap regret to external regret.

the true cost vector ct to the no-external-regret algorithms, scaled according to the current
relevance (i.e., pt(j)) of the algorithm.

Our hope is that we can piggyback on the no-external-regret guarantee provided by each
algorithm Mj and conclude a no-swap-regret guarantee for the master algorithm M . Let’s
take stock of what we’ve got and what we want, parameterized by our computed consensus
distributions p1, . . . , pT .

The time-averaged expected cost of the master algorithm is

1

T

T∑
t=1

n∑
i=1

pt(i) · ct(i). (2)

The time-averaged expected cost under a switching function δ : A→ A is

1

T

T∑
t=1

n∑
i=1

pt(i) · ct(δ(i)). (3)

Remember that our goal is to prove that (2) is at most (3), plus a term that goes to 0 as
T →∞, for every switching function δ.

Now adopt the perspective of an algorithm Mj. This algorithm believes that actions are
being chosen according to its recommended distributions q1

j , . . . , q
T
j and that the true cost

vectors are p1(j) ·c1, . . . , pT (j) ·cT . Thus, the algorithm perceives its time-averaged expected
cost as

1

T

T∑
t=1

n∑
i=1

qtj(i)
(
pt(j)ct(i)

)
. (4)

4



Since Mj is a no-regret algorithm, its perceived cost (4) is, up to the regret term, at most
that of every fixed action k ∈ A:

1

T

T∑
t=1

pt(j)ct(k) +Rj, (5)

where Rj → 0 as T →∞.
Now fix a switching function δ. Summing the inequality between (4) and (5) over all

j = 1, 2, . . . , n, with k instantiated as δ(j) in (5), yields

1

T

T∑
t=1

n∑
i=1

n∑
j=1

qtj(i)p
t(j)ct(i) ≤ 1

T

T∑
t=1

n∑
j=1

pt(j)ct(δ(j)) +
n∑
j=1

Rj. (6)

Observe that the right-hand side of (6) is exactly (3), up to a term
∑n

j=1Rj that goes to 0
as T →∞. (Recall that we think of n as fixed as T →∞.) Indeed, we chose the splitting of
the cost vector ct amongst the no-external-regret algorithms M1, . . . ,Mn to guarantee this
property.

If we can choose the consensus distributions p1, . . . , pT so that (2) and the left-hand side
of (6) coincide, then the reduction will be complete. We show how to choose each pt so that,
for each i ∈ A and t = 1, 2, . . . , T ,

pt(i) =
n∑
j=1

qtj(i)p
t(j). (7)

The left- and right-hand sides of (7) are the coefficients of ct(i) in (2) and in the left-hand
side of (6), respectively.

The equations (7) might be familiar as those defining the stationary distribution of a
Markov chain. This is the key trick in the reduction: given distributions qt1, . . . , q

t
n from

algorithms M1, . . . ,Mn at time t, form the following Markov chain (Figure 3): the set of
states is A = {1, 2, . . . , n}, and for every i, j ∈ A, the transition probability from j to i
is qtj(i). That is, the distribution qtj specifies the transition probabilities out of state j. A
probability distribution pt satisfies (7) if and only if it is the stationary distribution of this
Markov chain. At least one such distribution exists, and one can be computed in polynomial
time via an eigenvector computation (see e.g. [3]). This completes the reduction. �

Our choice of the consensus distribution pt from the no-external-regret algorithms’ sug-
gestions qt1, . . . , q

t
n is uniquely defined by the proof approach, but it also has a natural in-

terpretation as a limit of the following decision-making process. Suppose you first ask an
arbitrary algorithm Mj1 for a recommended strategy. It gives you a recommendation j2
drawn from its distribution qtj1 . You then ask algorithm Mj2 for a recommendation, which it
draws from its distribution qtj2 , and so on. This random process is effectively trying to con-
verge to a stationary distribution pt of the Markov chain defined above, and will successfully
do so when the chain is ergodic.

5



1

2

3

n

qt
2(1)

qt
1(2) qt

2(3)

qt
3(2)

qt
n(1)

qt
1(n)

Figure 3: Markov chain.

3 The Minimax Theorem for Two-Player, Zero-Sum

Games

Having resolved the complexity of correlated equilibria in satisfactory fashion, we now zoom
in further to the set of mixed Nash equilibria (Figure 1). We’ll see next week that, while
the set of mixed Nash equilibria is guaranteed to be non-empty, computing one is a compu-
tationally intractable problem. Today we’ll focus on a special case with a happier answer:
two-player zero-sum games.

In a two-player zero-sum game, the payoff of each player is the negative of the other —
one player can win only at the other’s expense. Such a game can be specified by a single
matrix A, with the two strategy sets corresponding to the rows and columns. The entry aij
specifies the payoff of the row player in the outcome (i, j) and the negative payoff of the
column player in this outcome. Thus, the row and column players prefer bigger and smaller
numbers, respectively. The matrix below describes the payoffs in the Rock-Paper-Scissors
game (Lecture 1) in our current language.

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

Pure Nash equilibria generally don’t exist in two-player zero-sum games, so the focus is
squarely on mixed Nash equilibria. We use x and y to denote mixed strategies (probability
distributions) over the rows and columns, respectively.

6



With mixed strategies, we think of each player as randomizing independently. Thus, the
expected payoff of the row player when payoffs are given by A, the row strategy is x, and
the column strategy is y, is ∑

i,j

Prx[i] ·Pry[j] · aij = xTAy;

the column player’s expected payoff is the negative of this. Thus, a mixed Nash equilibrium
is a pair (x̂, ŷ) such that

x̂TAŷ ≥ xTAŷ for all distributions x over rows

and
x̂TAŷ ≤ x̂TAy for all distributions y over columns.

Suppose you’re due to play a zero-sum game with someone else. Would you rather move
— meaning commit to a mixed strategy — first or second? Intuitively, there is only a first-
mover disadvantage, since the second player can adapt to the first player’s strategy. The
Minimax Theorem is the amazing statement that it doesn’t matter.

Theorem 3.1 (Minimax Theorem) For every two-player zero-sum game A,

max
x

(
min

y
xTAy

)
= min

y

(
max

x
xTAy

)
. (8)

On the left-hand side of (8), the row player moves first and the column player second. The
column plays optimally given the strategy chosen by the row player, and the row player plays
optimally in light of the column player’s behavior. On the right-hand side of (8), the roles
of the two players are reversed.

The Minimax Theorem is equivalent to the statement that every two-player zero-sum
game has at least one mixed Nash equilibrium (see the Exercises). Borel, who you might
know from his work developing measure-theoretic probability, was interested in the latter
problem. He was discouraged after he noticed the equivalence with the Minimax Theorem,
which seemed intuitively false [2, Chapter 15]. In the 1920’s, von Neumann proved the
Minimax Theorem using Brouwer’s fixed-point theorem. Many equilibrium existence results
require fixed-point theorems — more on this soon — but the Minimax Theorem can also be
proved with less heavy machinery. In the 1940’s, von Neumann proved the Minimax Theorem
again, using arguments equivalent to strong linear programming duality.1 This is why, when
a very nervous George Dantzig first explained his new simplex algorithm to von Neumann,
the latter was able to respond with an impromptu lecture outlining the corresponding duality
theory [4]. These days, we don’t even need linear programming per se to prove the Minimax

1This implies that minimax pairs and, equivalently, Nash equilibria, can be computed in polynomial time
in two-player zero-sum games. See the Problems for details.

7



Theorem — all we need is the existence of a no-(external-)regret algorithm, such as the
multiplicative weights algorithm!2

Proof of Theorem 3.1: Since it’s only worse to go first, the left-hand side of (8) is at most
the right-hand side: if x̂ is optimal for the row player when it plays first, it always has the
option of playing x̂ when it plays second. We turn our attention to the reverse inequality.

Given a two-player zero-sum game A, suppose both players play the game using their
favorite no regret algorithms, for a long enough time T so that both have expected regret
at most ε with respect to every fixed strategy. For example, if both players use the MW
algorithm from last lecture, then T = Θ((lnn)/ε2) is long enough.3

Formally, let p1, . . . ,pT and q1, . . . ,qT be the mixed strategies played by the row and
column players, respectively, as advised by their no-regret algorithms. The inputs to the
no-regret algorithms at time t are Aqt for the row player and (pt)TA for the column player
— the expected payoff of each strategy on day t, given the mixed strategy played by the
other player on day t. Set

x̂ =
1

T

T∑
t=1

pt

to be the time-averaged mixed-strategy of the row player,

ŷ =
1

T

T∑
t=1

qt

to be the time-averaged mixed-strategy of the column player, and

v =
1

T

T∑
t=1

(pt)TAqt

the time-averaged expected payoff of the row player.
Adopt the row player’s perspective. Since its expected regret is at most ε with respect

to every row i and corresponding pure strategy ei, we have

(ei)
TAŷ =

1

T

T∑
t=1

(ei)
TAqt ≤ 1

T

T∑
t=1

(pt)TAqt + ε = v + ε. (9)

Since an arbitrary row mixed strategy x is just a distribution over the ei’s, by linearity (9)
implies that

xTAŷ ≤ v + ε (10)

2It is not hard to prove that the Minimax Theorem and strong linear programming duality are equivalent,
so this argument establishes the latter as well!

3Last lecture we defined online decision-making problems and regret in terms of cost vectors. It is straight-
forward to adjust the definitions for payoff vectors. It is also straightforward to adapt the MW algorithm
to payoff-maximization while preserving its optimal regret bound of O(

√
(ln n)/T ); see the Exercises for

details.

8



for every mixed row strategy x.
A symmetric argument from the column player’s perspective, using that its expected

regret is also at most ε for every fixed strategy, shows that

x̂TAy ≥ v − ε (11)

for every mixed column strategy y. Thus

max
x

(
min

y
xTAy

)
≥ min

y
x̂TAy

≥ v − ε (12)

≥ max
x

xTAŷ − 2ε (13)

≥ min
y

(
max

x
xTAy

)
− 2ε,

where (12) and (13) follow from (11) and (10), respectively. Taking the limit as ε ↓ 0 (and
T →∞) completes the proof. �

There are a number of easy but useful corollaries of the Minimax Theorem and its proof.
First, in the limit, the mixed strategies x̂ and ŷ are a Nash equilibrium of the game A.
This establishes the existence of Nash equilibria in all two-player zero-sum games. This
is remarkable because most equilibrium existence results require the use of a fixed-point
theorem. Second, the equivalence between Nash equilibria and minimax pairs — row and
column mixed strategies x̂, ŷ that optimize the left- and right-hand sides of (8), respectively
— implies a “mix and match” property: if (x1,y1) and (x2,y2) are Nash equilibria of the
same two-player zero-sum game, then so are (x1,y2) and (x2,y1).

References

[1] A. Blum and Y. Mansour. From external to internal regret. Journal of Machine Learning
Research, 8:1307–1324, 2007.

[2] V. Chvátal. Linear Programming. Freeman, 1983.

[3] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,
2012. Fourth edition.

[4] J. K. Lenstra, A. H. G. Rinnooy Kan, and A. Schrijver, editors. History of Mathematical
Programming: A Collection of Personal Reminiscences. CWI, 1991.

9


