CS369N: Problem Set #3

Due in class on Tuesday, November 29, 2011

Instructions: Same as the first homework.

Problem 11

(20 points) Recall in Lectures #7-8 we discussed the Balcan-Blum-Gupta (BBG) k-median algorithm. We
first discussed the simpler version of the problem where we assume that every cluster in the optimal solution
has at least 2b + 2 points, where b = en(1 4+ 2). (This is in addition to the assumption that the instance is
(1 + a, €)-isolated.)

Our goal in lecture was to recover an e-close clustering, rather than to optimize the k-median objective
per se. Show that, nevertheless, the BBG algorithm gives an O(1)-approximation to the k-median objective
in (1 + a, €)-isolated instances that satisfy the large clusters assumption. (The constant can depend on «.)

[Hint: recall that after Step 3 of the BBG algorithm, all but the non-well-separated points are correctly
classified. Use the Triangle Inequality to charge the cost of incorrectly classified points to the cost of the
optimal solution.]

Problem 12

This problem considers 7-stable instances of metric Max Cut (recall Lectures #9 and #10). The input
is a complete undirected graph G = (V, E,w) with nonnegative edge weights w that satisfy the Triangle
Inequality. Recall that such an instance is (1 + €)-stable if the maximum cut stays the same no matter how
you multiply the edge weights by factors in [1,1 4+ €]. (Even for such scalings that yield weights that violate
the Triangle Inequality.) Assume that e > 0 is small but constant. Let (A4, B) denote the maximum cut.

(a) (3 points) Prove that for every vertex v, the total weight of its incident edges that cross (4, B) is at
least (1 + €) times that of those that do not.

(b) (4 points) Without loss of generality, we can scale all the edge weights so that they sum to n?. Define
the weight of a vertex as the sum of the weights of its incident edges. Prove that every vertex has
weight at least n.

(¢) (5 points) Construct a (polynomial-size, non-metric) graph G’ = (V' E’) as follows. For every edge v €
V with weight w,,, add |w, | vertices to V' (“copies of v”). For each u,v € V, add an edge to E’ between
each copy of u and of v, with weight ws,,/|w., ||w,]|. Prove that the property in part (a) continues to
hold for the graph G’ (perhaps with a different constant €’). Prove that a maximum cut of G can be
recovered from one of G'.

(d) (6 points) Prove that in G’, for every vertex u, the maximum weight of an edge incident to u is at most
a constant factor times the average weight of an edge incident to w.

(e) (7 points) Give a polynomial-time approximation scheme (PTAS) for (1 + €)-stable metric Max Cut
instances.

[Hint: use both random sampling and brute-force search.]



Problem 13

(15 points) This problem considers a planted model for graph coloring, to complement the ones we saw in
lecture for the minimum bisection and maximum clique problems. Fix an integer k& (which you should view
as a constant), a number p € (0,1) (also constant), and an integer n (which you should think of as going to
infinity). Consider generating a random k-colorable graph as follows:

1. Each vertex is independently given a label uniformly at random from {1,2,...,k}.

2. For each pair of vertices with endpoints with different labels, include the corresponding edge (indepen-
dently) with probability p.

The ensuing graph is k-colorable with probability 1, with the color classes corresponding to the subsets of
same-labeled vertices.

Design a polynomial-time algorithm that recovers the planted k-coloring in such a random graph with
high probability (for large n).

Problem 14

Recall the setting of online decision-making discussed in Lecture #13.

(a) (8 points) In both algorithms we discussed in class, we assumed that the time horizon T was known
a priori. For one of the two algorithms (your choice), show how to adapt it and its analysis to obtain
similar regret bounds for the case where T is only revealed at the end of the sequence of cost vectors.

(b) (7 points) Consider a setting where the actions correspond to s-t paths in a fixed graph, and at each
time step a cost vector on edges is revealed (with all edge costs between 0 and 1). Which of the
two algorithms discussed in lecture, if any, lends itself to a polynomial-time (in the size of the graph)
implementation for this setting? Discuss what the regret bounds look like in this case.

Problem 15

Recall the setting of revenue-maximizing auctions discussed in Lecture #14. Here we discuss two extensions.

(a) (10 points) Instead of unlimited supply, suppose you have k identical goods and n > k bidders, each
of whom wants one. It turns out that if every bidder’s valuation is drawn i.i.d. from a distribution G
(under mild assumptions which you shouldn’t worry about), the truthful auction that maximizes the
expected revenue is the Vickrey auction with a reserve price r (where r € argmaxp- (1 — F(p))). This
auction sells to all of the buyers ¢ that have a valuation v; above r and are also amongst the top k
valuations overall. All winners pay either r or the (k + 1)th highest valuation, whichever is larger. As
usual, define Cp as the set of all such auctions (i.e., the Vickrey auction with all possible choices of the
reserve r).

Assume that k£ > 2 and design a truthful auction such that, for every input vy, ..., v,, your (random-
ized) auction should have expected revenue at least a constant fraction of that of every auction in Cp
that sells to at least 2 buyers. (You don’t have to compete with auctions of Cp that sell to only one
bidder on input v, just like in Lecture #14).

(b) (6 points) Let’s return to the unlimited supply case. Suppose now that bidders’ valuations are drawn
independently from different distributions F1, ..., F,. What do optimal auctions (that maximize ex-
pected revenue) look like in this case? What is Cp? What can you say about whether or not there are
auctions that are a-instance optimal with respect to Cp (e.g., with the usual constraint of selling to at
least two bidders)?
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(4 points) This part is also about the unlimited supply case. Consider the class C of auctions that
attempt to sell to the bidders at prices p1,...,p, with py > p2 > --- > p,. Call these nonincreasing
auctions. Give examples of sets D of distributions for which the corresponding set Cp is precisely the
set C of nonincreasing auctions.

(Extra credit) For valuations vy, ..., v,, let M®)(v) denote the maximum revenue achieved by a non-
increasing auction that sells to at least two bidders. Is there an auction that has expected revenue at
least a constant fraction of M) (v) on every input? Say whatever you can, positive or negative.



