
CS364A: Problem Set #3

Due in class on Thursday, November 6, 2008

Instructions: Same as previous problem sets.

Problem 11

(a) (5 points) Algorithmic Game Theory, Exercise 17.2.

(b) (5 points) Algorithmic Game Theory, Exercise 17.3.

(c) [Do not hand in.] Consider an atomic selfish routing network in which each user i has a weight wi. The
interpretation is that player i contributes wi units of flow to each edge of its chosen path Pi. (In the
standard model, wi = 1 for all i.) Observe that the upper bound of ≈ 2.618 given in class on the POA
in atomic selfish routing networks with affine cost functions continues to hold for arbitrary positive
player weights. (Or see Chapter 18 for a proof of this more general statement.)

(d) (5 points) Algorithmic Game Theory, Exercise 18.2(a).

Problem 12

(25 points) Algorithmic Game Theory, Exercise 18.8.

Problem 13

In this problem we consider nonatomic selfish routing networks with one source, one sink, one unit of selfish
traffic, and affine cost functions (of the form ce(x) = aex + be for ae, be ≥ 0). In parts (a)-(c), we consider
the objective of the maximum cost incurred by a flow f :

max
P : fP >0

∑
e∈P

ce(fe).

The price of anarchy is then defined in the usual way, as the ratio between the maximum cost of an equilibrium
flow and that of a flow with minimum-possible maximum cost. (Of course, in an equilibrium flow, all traffic
incurs exactly the same cost; this is not generally true in a non-equilibrium flow.)

(a) (4 points) Prove that in a network of parallel links (each directly connecting the source to the sink),
the price of anarchy with respect to the maximum cost objective is 1.

(b) (4 points) Prove that the price of anarchy with respect to the maximum cost objective can be as large
as 4/3 in general networks (with affine cost functions, one source and one sink).

(c) (5 points) Prove that the price of anarchy with respect to the maximum cost objective is never larger
than 4/3 (in networks with affine cost functions, one source and one sink).

[Hint: try to reduce this to facts you already know.]
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(d) (7 points) A flow that minimizes the average cost of traffic generally routes some traffic on costlier
paths than others. Prove that the ratio between the cost of the longest used path and that of the
shortest used path in a minimum-cost flow is at most 2 (in networks with affine cost functions, one
source and one sink). Prove that this bound can be achieved.

[Hint: use the characterization of optimal flows given in class.]

Problem 14

Recall that in class we proved a theorem stating that upper-bounding the price of anarchy with respect to
a set C of allowable convex cost functions reduces to upper-bounding the price of anarchy just in Pigou-like
networks, where a Pigou-like network has two vertices, two parallel edges, a traffic rate r > 0, one arbitrary
cost function c1 ∈ C, and one constant cost function c2 that is everywhere equal to c1(r).

(a) (5 points) For a positive integer d ≥ 1, let Cd denote the set {axi : a ≥ 0, i ∈ {0, 1, . . . , d}} of monomials
with a nonnegative coefficient and degree at most d. What is the largest price of anarchy possible in
a Pigou-like network with cost functions in Cd?

(b) (5 points) For a positive integer d ≥ 1, let Cd denote the set {
∑d

i=0 aix
i : a0, . . . , ad ≥ 0} of polynomials

with nonnegative coefficients and degree at most d. What is the largest price of anarchy possible in a
Pigou-like network with cost functions in Cd?

[Hint: consider graph transformations that might reduce this question to the answer in part (a).]

(c) (Up to 10 points extra credit) What if Cd is the set of nondecreasing, nonnegative polynomials with
degree at most d? [Note: such polynomials may have some negative coefficients.]

Problem 15

Consider n machines and m selfish jobs (the players). Each job j has a processing time pj and a set Sj

of machines on which it can be scheduled (i.e., Sj is the strategy set of player j). Once jobs have chosen
machines, the jobs on each machine are processed serially from shortest to longest. (You can assume that
the pj ’s are distinct.) For example, if jobs with processing times 1, 3, and 5 are scheduled on a common
machine, then they will complete at times 1, 4, and 9, respectively. The following questions concern the
game in which players choose machines in order to minimize their completion times.

(a) (5 points) Consider the following scheduling algorithm: (1) Sort the jobs in order from smallest to
largest; (2) schedule the jobs one-at-a-time, assigning a job j to the machine of Sj with minimum
load-so-far (breaking ties arbitrarily).

Prove that the (pure-strategy) Nash equilibria of the scheduling game are precisely the possible outputs
of this scheduling algorithm (with the different equilibria arising from different ways of breaking ties).

[Hint: For example, if you were the smallest player, how is your personal cost affected by the others’
decisions?]

(b) (9 points) For this and the next part, we consider the makespan objective function, defined as the
time at which the final job is completed. (See also the AGT book, Section 17.2.3 and Chapter 20.)
Prove that the price of anarchy in every such scheduling game, with respect to the makespan objective,
is O(log n).

[Hint: You might read the proof of Theorem 20.7 in the AGT book to get an idea for the kinds of
arguments that could be useful here.]

(c) (6 points) Prove that, for arbitrarily large n, there are scheduling games of the above type in which
the price of anarchy is Ω(log n).
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