(CS364A: Problem Set #2

Due in class on Tuesday, November 7, 2006

Instructions:

(1) This is a long and challenging problem set, and you are not expected to solve all of the problems to
completion. You are, however, expected to think hard about all of them. Give complete solutions for
as many as you can; for the others, explain your progress and where you got stuck. (If you've spent,
say, 12 hours on the problem set and are sick of it, then you should just turn it what you have.)

(2) You may refer to your course notes, general references (e.g., textbooks), and material on the course
Web site, but not to additional specific research papers.

(3) Collaboration on this homework is actively encouraged. However, your write-up must be your own,
and you must list the names of your collaborators on the front page.

(4) Grades will be assigned on a plus/check/minus scale.

Problem 0

By Tuesday, October 31st, pick a project topic from the list at
http://theory.stanford.edu/ " tim/f06/projects.html, or come up with your own topic. Email the
instructor with your choice. Note that topics are available on a first-come, first-serve basis, with at most
one student (or team of students) from the class working on a single project topic.

Problem 1

Consider a set Q of outcomes and n players, where player i has a private real-valued valuation v;(0) for each
outcome o € ). Suppose the function f : 2 — R has the form

f(0) =clo) + Z w;v;(0),

where ¢ is a publicly known function of the outcome, and where each w; is a nonnegative, public, player-
specific weight. Such a function is called an affine mazximizer.

(a) Show that for every affine maximizer objective function, there is a truthful mechanism that optimizes
it.
(Hint: modify the VCG mechanism. Don’t worry about computational issues or individual rationality.)

(b) (Easy.) Argue that maximizing surplus in the presence of costs (as discussed in lecture) reduces to
optimizing an affine maximizer.

(¢) Argue that the VCG mechanism can be implemented in polynomial time for the special case of the
fixed-tree multicast problem.

(d) Give a concrete example showing that the VCG mechanism is not budget-balanced in the special case
of the fixed-tree multicast problem. (A detail: recall that the VCG mechanism is defined up to the
choice of the “pivot term”. Restrict attention to pivot terms which ensure individual rationality.)



Problem 2

In this problem we return to the winner determination problem and the design of truthful, polynomial-time,
approximate combinatorial auctions. Recall that a valuation v; is subadditive if v;(Th) +v;(Ta) > v;(T1 UT3)
for every pair Ty, T5 of disjoint subsets of goods. As usual, we assume that valuations are nondecreasing (so
Ty C Ty implies that v;(Th) < v;(Ty)) and that v;(0) = 0.

(a) In the first three parts, we consider the winner determination problem with subadditive valuations (i.e.,
we don’t worry about payments or incentive constraints, just surplus maximization). Fix a set S of
goods and subadditive valuations v1, ..., v,. Call the problem lopsided if there is an optimal allocation
in which at least half of the total surplus of the allocation is due to players that were allocated a bundle
with at least \/m goods. (Le., if 23", , vi(T}) > Y1 vi(T;), where {T;} is the optimal allocation
and A is the subset of bidders ¢ with || > v/m.)

Show that in a lopsided problem, there is an allocation that gives all of the goods to a single player
and achieves an Q(1/4/m) fraction of the maximum-possible surplus.

(b) Show that in a problem that is not lopsided, there is an allocation that gives at most one good to each
player and achieves an (1/4/m) fraction of the maximum-possible surplus.

(Hint: use subadditivity.)

(¢) Give a polynomial-time O(y/m)-approximate winner determination algorithm for subadditive valua-
tions.

(Hint: make use of a graph matching algorithm.)

(d) Give a polynomial-time, O(y/m)-approximate, truthful combinatorial auction for subadditive valua-
tions.

(Hint: what happens to the VCG mechanism if you restrict it to optimize only over a subset of all
possible outcomes?)

Problem 3

Suppose we are given a set N = {1,2,...,n} of players and a nonnegative, nondecreasing cost function C' :
2V — R*. Recall that a nonnegative vector ci,..., ¢, is in the coreif Y,y ¢; = C(N) and Y, . g ¢; < C(S)
for every S C N. Recall that the Shapley value of i is the expected value of C'(S U {i}) — C(S), where the
expectation is over the uniformly random ordering of the players, and S denotes the players preceding i in
this ordering.

(a) Suppose that C is a submodular function in the sense of Problem 4 from HW #1. Show that the
Shapley value of C is in the core.

(You can prove this directly or derive it from (b), below.)

(b) For a subset S C N of players, let C¥ denote the restriction of the cost function C' to S. Define a
cost-sharing method y for C by, for every S C N and i € S, setting x(¢,S) equal to the Shapley value
of i with respect to the set S of players and the cost function C.

Show that if C' is submodular, then x is budget-balanced and cross-monotonic. (Recall that y is called
cross-monotonic if for all S CT C N and i € S, x(4,5) > x(4,T).)

(¢) Show that for every fixed-tree multicast instance, the corresponding cost function is submodular. Show
that the “Shapley cost-sharing method” from lecture (share each edge cost equally) coincides with the
one defined by part (b) for this cost function.

(d) Prove that a cost function C admits a budget-balanced, cross-monotonic cost-sharing method only if
it is subadditive (in the same sense as in Problem 2).



()

Extra credit: The converse of (d) is false. A natural example is the following. Let G = (V, E) be
an undirected complete graph, with a root vertex » € V' and a nonnegative cost on each edge. The
players N are the non-root vertices V' \ {r}. For a subset S C N of players, let C(S) denote the cost
of a minimum-spanning tree in the subgraph induced by S U {r}. (As a warm-up, prove that C is
subadditive but not necessarily submodular.) Show that there is a choice of the graph G that yields a
cost function C' that admits no budget-balanced, cross-monotonic cost-sharing method.

(Hint: one approach is to give an example of such a function with an empty core.)

Problem 4

Recall the definitions of cross-monotonic cost-sharing methods and the corresponding Moulin mechanisms
from lecture.

(a)

Recall digital goods auctions from lecture and Problem 1 of HW #1. There is a 4-competitive (in
expectation) digital goods auction, called RSPE, that works as follows. First, bids are collected and
then each bidder is randomly placed into one of two groups. Second, the auction uses the bids to
compute the maximum-possible profits P; and Py (respectively) obtainable from the bidders in each
of these groups using a fixed price (a different price can be used for each group). Third, the auction
tries to extract P;* profit from the second group and Py profit from the first group.

The third step of the RSPE auction motivates the following profit extraction problem for digital goods
(unlimited supply, no costs): given a set of bidders and a revenue target P*, design a truthful mechanism
that extracts revenue P* whenever this is possible via a fixed price. (If there is no fixed price that
extracts revenue P*, the mechanism is permitted to generate zero revenue.) First, show how to solve the
profit extraction problem using a Moulin mechanism based on a cross-monotonic cost-sharing method.
(Truthfulness of this mechanism follows from the next part of this problem.) Second, describe what the
bid-independent thresholds of your profit extraction mechanism are (recall the characterization from
Problem 1 in HW #1).

Prove that every Moulin mechanism induced by a cross-monotonic cost-sharing method is truthful.
Show by counterexample that the “cross-monotonic” hypothesis is in general necessary for truthfulness.

A Moulin mechanism is called groupstrategyproof (GSP) if every coordinated set of false bids by a
coalition decreases the utility of some player in the coalition (or has no effect on any of their utilities).
This is a form of collusion-resistance, assuming that “side payments” between colluding players are not
allowed. Formally, let T C N be a coalition of players. Let b and b’ be two bid vectors (indexed by N)
for which b; = b} for all players ¢ ¢ T outside the coalition. Assume that players of T bid truthfully in
b (b =wv; foralli € T). Let (S,p) and (S’,p’) be the mechanism outcomes (winners and prices) given
the bids b and b, respectively. The GSP condition requires that if w;(S’,p") > u;(.S, p) for some player
i €T, then u;(S’,p") < u;(S,p) for some other player j € T. (Here u; denotes the usual quasi-linear
utility function.) Note that truthfulness is simply the GSP condition for singleton coalitions.

Prove that every Moulin mechanism induced by a cross-monotonic cost-sharing method is GSP.

Problem 5

This problem considers the following scheduling game. There are n players, where player j has a nonnegative
weight w;. There are m identical machines. Each player picks one machine, and wants to minimize the total
weight (aka load) on its machine. In addition, each player j has a restricted (non-empty) subset S; of eligible
machines that it can use—player j cannot be assigned to a machine outside of S;. The global objective
function is the makespan—the total weight on the most heavily loaded machine.

A pure-strategy Nash equilibrium is an assignment of players to machines so that no player has a unilateral
incentive to deviate. In other words, in a pure-strategy Nash equilibrium, no player can switch machines
and wind up on a less loaded machine than before.



(a)

(d)

Prove that every such scheduling game has at least one pure-strategy Nash equilibrium.

(Hint: prove that “best-response dynamics”—iteratively allowing an unsatisfied player to switch to its
favorite machine—converges, necessarily to a Nash equilibrium, in a finite number of iterations.)

(Easy.) Consider a pure-strategy Nash equilibrium, and suppose that player j is scheduled on a machine
with load L. What can you say about the loads of the other machines?

Suppose that for all players j, the set .S; is all of the machines—so every machine is eligible for every
player. What is the largest-possible price of anarchy—the ratio between the largest makespan of a
pure-strategy Nash equilibrium and the minimum-possible makespan—in such a game? Prove the best
upper and lower bounds that you can. Such bounds can be constant or functions of the number of
machines and/or players.

(Hint: to prove an upper bound on the price of anarchy, make use of the following two lower bounds
on the minimum-possible makespan: (1) the maximum weight of a player; (2) the sum of the players’
weights divided by the number of machines.)

What is the largest-possible price of anarchy when the sets S; are arbitrary?

(Hint: for both the upper and lower bounds, you might initially restrict attention to instances with
only unit-weight players.)



