

Performance Prediction using Program Similarity

Aashish Phansalkar Lizy K. John

{aashish, ljohn}@ece.utexas.edu

University of Texas at Austin

Abstract - Modern computer applications are developed at

a very fast rate and new features are being added to the

current ones everyday. A computer architect is always

looking for quicker ways to evaluate performance of the

design on these applications in a relatively shorter time.

Simulation is a very popular tool used in the early design

phase of a microprocessor. But applications run for a long

time and microprocessors are getting complex which leads

to very high simulation times. With a reasonably quick

workload characterization we should be able to predict

performance of the new application on the system(s). This

paper proposes two simple techniques to predict

performance based on the similarity of the new application

with already characterized benchmarks whose

performance numbers are available. Each of these

techniques is then used to show how speedup and cache

miss-rates can be predicted for a given program.

1. Introduction

 Computer benchmarking involves use of application

programs as benchmarks. The process of performance

evaluation includes using these programs as standard tests to

evaluate performance of a computer system. Benchmarks are

also used by computer architects to evaluate enhancements

and various design options in the early phase of design space

exploration. Due to increase in complexity of systems and

many times, long running programs, cycle accurate simulation

becomes a difficult option to choose. Also, simulating

individual components like cache, although not very

expensive need to be evaluated for a lot of different

configurations. Ideally, to overcome this challenge in shortest

possible time one can build a mathematical or analytical

model for each of the design blocks which can estimate

performance when the necessary parameters are plugged in.

But it is well known that building a mathematical or analytical

model is difficult because the system that needs to be modeled

is extremely complex which makes the process non-trivial and

a lot of times very difficult.

 In such situation using the knowledge of similarity of

programs in predicting performance can be helpful. New

applications are being developed everyday. Our methodology

is based on using the microarchitecture independent metrics to

characterize programs in [1]. We also use Principal

Components Analysis (PCA) to transform these metrics into

set of variables that are uncorrelated with respect to each other

as discussed in [1]. A benchmark suite like SPEC CPU 2000

has a wide variety of applications that may cover a significant

amount of workload space. Hence we use SPEC CPU 2000

benchmarks in our study.

 The pace of software development is on the rise. New

features are being added to make incremental or drastic

changes to the behavior of applications on a microprocessor. It

is in prime interest of a microprocessor designer or an

architect to measure performance of these new or modified

programs. It is difficult to use cycle accurate simulation to do

the same because of long simulation time. An architect or

designer may have many other application programs from

customers or other collaborative software vendors in his

repository of benchmarks for which the performance is

already known. If we measure similarity between the new

application and the set of benchmarks in the repository one

can predict performance of the new application without

running cycle accurate simulation.

2. Methodology

 Figure 1 shows the block diagram of the prediction

methodology. We will first describe the microarchitecture

independent metrics we used to characterize and measure

similarity between the benchmarks and the new application

and then briefly describe the statistical multivariate analysis

technique called Principal Components Analysis (PCA) that

we used in our methodology. We then briefly describe how we

use the microarchitecture independent metrics to find

similarity between programs and then predict performance of

the new program based on its similarity with the programs in

the repository.

2.1. Metrics used for measuring program similarity
 Microarchitecture independent metrics allow for a

comparison between programs by understanding the inherent

characteristics of a program isolated from features of

particular microarchitectural components. This section also

provides an intuitive reasoning to illustrate how the measured

metrics can affect the manifested performance. The metrics

measured in this study are a subset of all the

microarchitecture-independent characteristics that can be

potentially measured, but we believe that our metrics cover a

wide enough range of the program characteristics to make a

meaningful comparison between the programs. The metrics

that we use can be broadly classified into five categories:

instruction mix, branch behavior, metrics to measure

Figure 1: Block diagram of prediction methodology

instruction level parallelism, data locality and instruction

locality. Other program characteristics, such as value

predictability can also be added to the analysis if they are

exploited by the microarchitecture for performance benefit.

The detailed list of all the microarchitecture-independent

metrics we use in our study is as follows:
Instruction Mix:
Instruction mix of a program measures the relative frequency

of various operations performed by a program. We measured

the percentage of computation, data memory accesses (load

and store), and branch instructions in the dynamic instruction

stream of a program. This information can be used to

understand the control flow of the program and/or to calculate

the ratio of computation to memory accesses, which gives us

an idea of whether the program is computation or memory

bound.

Behavior of branches:
We used the following set of metrics to compare branch

behavior of programs:

Branch Direction: Backward branches are typically more

likely to be taken than forward branches. This metric

computes the percentage of forward branches out of the total

branch instructions in the dynamic instruction stream of the

program. Obviously, hundred minus this percentage is the

percentage of backward branches.

Fraction of taken branches: This metric is the ratio of taken

branches to the total number of branches in the dynamic

instruction stream of the program.

Fraction of forward-taken branches: We measure the fraction

of taken forward branches in the dynamic instruction stream of

the program.

Inherent Instruction Level Parallelism:

Basic Block Size: A basic block is a section of code with one

entry and one exit point. We measure the basic block size,

which quantifies the average number of instructions between

two consecutive branches in the dynamic instruction stream of

the program. Larger basic block size is useful in exploiting

instruction level parallelism (ILP).

Register Dependency Distance: We use a distribution of

dependency distances as a measure of the inherent ILP in the

program. Dependency distance is defined as the total number

of instructions in the dynamic instruction stream between the

production (write) and consumption (read) of a register

instance [2] [3]. While techniques such as value prediction

reduce the impact of these dependencies on ILP, information

on the dependency distance is very useful in understanding

ILP inherent to a program. The dependency distance is

classified into six categories: percentage of total dependencies

that have a distance of 1, and the percentage of total

dependencies that have a distance of up to 2, 4, 8, 16, 32, and

greater than 32. Programs that have a higher percentage of

dependency distances that are greater than 32, are likely to

exhibit a higher ILP (provided control flow is not the limiting

factor).

Data locality:
 Data Temporal Locality: Several locality metrics have been

proposed in the past [4] [5] [6] [7] [8] [9] [10], however, many

of them are computation and memory intensive. We picked

the average memory reuse distance metric from [9] since it is

more computationally feasible than other metrics. In this

metric, locality is quantified by computing the average

distance (in terms of number of memory accesses) between

two consecutive accesses to the same address, for every

unique address in the program. The evaluation is performed in

four distinct window sizes, analogous to cache block sizes.

This metric is calculated for window sizes of 16, 64, 256 and

4096 bytes. The choice of the window sizes is based on the

experiments conducted by Lafage et.al. [9]. Their

experimental results show that the above set of window sizes

was sufficient to characterize the locality of the data reference

stream with respect to a wide range of data cache

configurations.

Microarchitecture

independent

metrics for known

benchmarks

Program

similarity

measurement

Prediction of

target metric

for the new

application

Predicted value of the

target metric like

speedup or cache miss-

rate

Microarchitecture

independent metrics

for new application

Similarity information

Example of memory reuse distance:

Consider the following data memory address stream (address,

access #): 0x2004 (#1), 0x2022 (#2), 0x300c (#3), 0x2108

(#4), 0x3204(#5), 0x200a (#6), 0x2048 (#7), 0x3108(#8),

0x3002(#9), 0x320c (#10), 0x2040(#11), 0x202f (#12). For a

memory line of 16 bytes, the memory lines to which these

addresses maps is calculated by masking the least significant 4

bits in the address. Therefore, the address in the data stream,

0x2004 will map to memory line 0x200, etc. The sequence of

memory lines accessed by this address stream is: 0x200 (#1),

0x202 (#2), 0x300(#3), 0x210 (#4), 0x320(#5), 0x200(#6),

0x204(#7),0x310(#8), 0x300(#9), 0x320(#10), 0x204(#11),

0x202(#12). Addresses for reference #1 and #6 are different,

but they map to the same memory line, 0x200, and therefore

form a reuse pair (#1, #6). The list of all the reuse pairs in the

example address stream is (#1, #6), (#2, #12), (#3, #9), (#5,

#10), (#7, #11). For reuse pair (#1, #6), the reuse distance is

the number of memory lines accessed between the reference

#1 and #6, which is equal to 4.

Data Spatial Locality: Spatial locality information for data

accesses is characterized by the ratio of the data temporal

locality metric for higher window sizes to that of window size

16 mentioned above. As the window size is increased,

programs with a high spatial locality will have a lower value

for the data temporal locality metric and vice versa. Therefore,

the ratio of the data temporal locality metric for two different

window sizes can be used to quantify the spatial locality in a

program.

Instruction locality

Instruction Temporal Locality: The instruction temporal

locality metric is quantified by computing the average distance

(in terms of number of instructions) between two consecutive

accesses to the same static instruction, for every unique static

instruction in the program that is executed at least twice. The

instruction temporal locality is calculated for window sizes of

16, 64, 256, and 4096 bytes. The reuse distance is calculated

in the same fashion as shown in the example above

Instruction Spatial Locality: Spatial locality of the instruction

stream is characterized by the ratio of instruction temporal

locality metrics for higher window sizes to that of window

size 16. As the window size is increased, programs with a high

spatial locality will have a lower value for the data temporal

locality metric and vice versa. Therefore, the ratio of the data

temporal locality metric for two different window sizes can be

used to quantify the spatial locality in a program.

2.2. Principal Components Analysis
 There are many variables (29 microarchitecture-

independent characteristics) involved in our study. It is

humanly impossible to simultaneously look at all the data and

draw meaningful conclusions from them. We thus use

multivariate statistical data analysis techniques, namely

Principal Component Analysis. We first normalize the data to

have the mean equal to zero and standard deviation of one for

each variable. Principal components analysis (PCA) [11] is a

classic multivariate statistical data analysis technique that is

used to reduce the dimensionality of a data set while retaining

most of the original information. It builds on the assumption

that many variables (in our case, microarchitecture-

independent program characteristics) are correlated. PCA

computes new variables, so called principal components,

which are linear combinations of the original variables, such

that all the principal components are uncorrelated. PCA

transforms p variables X1, X2,...., Xp into p principal

components (PC) Z1,Z2,…,Zp such that:

∑
=

=

p

j jiji XaZ
0

This transformation has the property Var [Z1] ≥ Var [Z2] ≥…≥

Var [Zp] which means that 1Z contains the most information

and Zp the least. Given this property of decreasing variance of

the principal components, we can remove the components

with the lower values of variance from the analysis. This

reduces the dimensionality of the data set while controlling the

amount of information that is lost. In other words, we retain q

principal components (q << p) that explain at least 75% to 90

% of the total information.

 We propose two methods which use the

microarchitecture independent metrics to measure similarity

and then predict performance of the new program on

microprocessor component/system.

1) Assign weights to each of the benchmark programs based

on their similarity to new application and then use the

weighted mean to predict the performance.

2) Cluster similar benchmarks in the microarchitecture

independent workload space and then use the

representative program from the cluster which contains

the new application program to predict performance.

In the next section we discuss our results where we estimate

speedup and cache miss-rates of programs using the two

techniques mentioned above and discuss the techniques in

more detail applied to predict each of the metrics.

3. Results

In this section we show the results of using the two methods

discussed above to predict the speedup of a new application

program and also predict cache miss-rate of a new application

program for one choice of cache configuration. For brevity of

results we show it for only one cache configuration.

3.1. Knowledge based prediction of speedup
The standard benchmark suites like the SPEC

CPU2000 have programs from many different application

domains. Almost all big computer system manufacturers

report performance results for their systems. Here is another

scenario where the prediction of performance using the

knowledge of benchmarks is useful. A user can compare

performance of different computer systems by referring to the

reported scores. But many times, the user has his own

application(s) for which he needs to predict performance for a

Statistics

% Error in

predicted speedup

of bzip2 using

Weighted GM

% Error in predicted

speedup

of bzip2 using

Weighted HM

% Error in

predicted speedup

of bzip2 using

Weighted AM

% Error in

predicted

speedup of

bzip2 using GM

Average 14.37 11.31 18.05 16.41

Std. deviation 9.69 8.58 11.22 10.15

Standard Error 0.387 0.342 0.449 0.406

Lower CI 13.72 10.74 17.30 15.73

Upper CI 15.02 11.89 18.80 17.09

Table 1: Percentage error in predicting speedup for 256.bzip2 based on other integer programs from the

SPEC CPU2000 suite

particular system. In a very rare case the same application is a

part of the benchmark suite. In short the way SPEC calculates

the aggregate performance metric, involves calculating the

geometric mean of speedups for all benchmark programs ran

in conformation with the run rules. In this case SPEC gives

equal importance to all the programs. But the user might only

be concerned about his application program’s performance on

a particular machine. In using SPEC recorded aggregate

metric of speedup for predicting performance of user’s

application might have large error. Also, giving equal

importance to all programs might lead to misleading

conclusion. To demonstrate the two methods we carefully pick

fifty different machines from different manufacturers and their

scores for SPEC CPU2000 programs from the SPEC website

[12]. For the simplicity of study and ease of validation, we

consider one of the benchmarks bzip2 from the SPECint2000

suite as the user’s application program. The aim of this study

is to improve the prediction of performance of bzip2. With the

available information from SPEC website the user’s best

prediction for his application program (bzip2 in this case) is

the geometric mean of speedup of all benchmark programs.

Method I
An important part of this study is to find how similar each of

the benchmark programs is to the user’s application program.

To quantify similarity between the application program and all

the benchmark programs, we use the twenty nine

microarchitecture independent characteristics of programs

described in Section 2.1 for the nine SPECint2000 benchmark

programs and the bzip2 program. The measure of similarity is

based on distance between two programs in the transformed

space (PCA space) of these twenty nine metrics. Similarity has

inverse relation with distance in our research. We use the

reciprocal of distance as a measure to assign weights to each

of the programs. Let 1d , 2d , 3d … nd be the distances

between the application program and each of the benchmarks

programs and 1r , 2r , 3r … nr be their reciprocals

respectively. Since the distance is inversely proportional to the

weight we calculate each weight iw in the following way

(/ sumrw ii = 1r , 2r , 3r … nr)

All the weights should add up to the number of benchmark

programs n. The benchmark program that is closest to the

user’s application gets the highest weight and so on. If the

application program is exactly identical to one of the

benchmark programs, then the distance between them

becomes zero and that benchmark program gets all the weight

(n). In a very rare case if all the benchmark programs are

equidistant from the user’s application program in the

workload space, then all the weights will be equal to one and

the weighted mean will be equal to the mean of speedups of

all the benchmark programs. After we have the weights for

each benchmark, we calculate the weighted mean of speedups

of all the benchmark programs. We experimented with

different means i.e. weighted geometric mean, weighted

harmonic mean and weighted arithmetic mean to see which

mean gives a better estimate of the speedup. We then find the

average error shown by each of these weighted means in

predicting the speedup of bzip2 for all the fifty machines. We

also find the confidence interval for average error calculated

using each different type of mean over fifty different machines.

Table 1 shows the results for method I. The last column shows

the statistics for percentage error in predicting speedup of

bzip2 if the aggregate metric of geometric mean reported on

the SPEC website was used. An average error of 16.41% can

be seen over all fifty machines. At 95% confidence level the

confidence interval is (15.73%, 17.09%). This can be

considered as the base case to which the rest of the weighted

means will be compared. We observe that the weighted

harmonic mean shows the lowest average error of 11.31%.

The confidence interval of average error in predicting speedup

for weighted harmonic mean is (10.74%, 11.89%). We can see

that the confidence interval of the best case (using weighted

HM) and none of the other cases(weighted AM/GM) overlap,

which shows that they are statistically distinct.

 Cluster 1 parser, twolf, vortex

Cluster 2 bzip2, gzip

Cluster 3 eon, vpr

Cluster 4 mcf

Cluster 5 crafty

Cluster 6 gcc

Table 2: Clusters for SPECint2000 programs using

overall program characteristics

Method II
In this method we consider the same fifty machines from

method I. We use the twenty nine microarchitecture

independent characteristics of programs for the nine

SPECint2000 benchmark programs and the bzip2 program.

We then put all these programs together and apply Principal

Components Analysis and then k-means clustering [13] to the

transformed data. We use BIC (Baysian Information Criterion)

[13] to find optimal number of clusters. In this method the

process of prediction is simpler. We look at the cluster results

and see which cluster contains program bzip2. If bzip2 forms

its own cluster this method fails. In such a case method I can

be used. But if bzip2 has more than one program in its cluster

then the representative of the cluster i.e. the speedup of

program which is closest to the centre of the cluster is used to

predict the speedup of bzip2. Using the BIC we get 6 optimal

clusters. Table 2 shows the six optimal clusters. In this case

Cluster 2 contains bzip2 and gzip. Since there are only two

programs in the cluster, any program can be the representative

of the cluster. We predict the speedup of bzip2 to be

equivalent to gzip. We find that the average error in

predicting the speedup of bzip2 is 20.29% and with 95% level

of confidence the average error will be between (19.36%,

21.22%).

3.2. Knowledge based prediction of cache miss-

rate
Performance of caches depends significantly on locality

of the memory reference stream of a program. If the user

knows the cache miss-rates and memory reference behavior of

few benchmark programs, the user can predict the cache miss-

rates of his application program based on its similarity of

locality characteristics to the benchmark programs. We

capture the information about locality of memory reference

stream of a program using microarchitecture independent

metrics. Predicting cache miss-rate of a program for several

configurations can save time in early design space exploration.

We modify the microarchitecture independent metric

described in Section 2.1 to quantify locality of a program. In

section 2.1 we calculate the weighted average of all the reuse

distances and have a single number for each block size. We

modify this metric to put the reuse distances in three different

buckets of small, medium and large values for each block size.

The modified metric is only measured for block size of 16 and

64 bytes. We use this metric to measure similarity between

memory reference behavior of programs. We describe two

methods to use the microarchitecture independent metric and

predict cache miss-rates for different configurations of cache

for a given program.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a
m

m
p
_
2
k

a
p
p
lu

_
2
k

a
rt

_
2
k

b
z
ip

2
_
2
k

c
ra

ft
y
_
2
k

e
o
n
_
2
k

e
q
u
a
k
e
_
2
k

fm
a
3
d
_
2
k

g
a
lg

e
l_

2
k

g
c
c
2
k

g
z
ip

_
2
k

lu
c
a
s
_
2
k

m
c
f_

2
k

m
e
s
a
_
2
k

m
g
ri
d
_
2
k

p
a
rs

e
r_

2
k

s
w

im
_
2
k

tw
o
lf_

2
k

v
o
rt

e
x
_
2
k

v
p
r_

2
k

w
u
p
w

is
e
_
2
k

Programs

C
a
c
h

e
 m

is
s
-r

a
te

Measured

Predicted

 Figure 2: Comparison of measured and predicted data cache miss-rate for SPEC CPU2000 programs using

method I

Method I
We describe the methodology using an example where we

predict cache miss-rates of each of the SPEC CPU2000

benchmark program assuming that the cache miss-rates of the

rest of the programs are known. Each SPEC CPU2000

program is considered as the user’s application and its cache

miss-rate is predicted based on it similarity to other SPEC

CPU2000 programs. This helps us ease our validation efforts.

For the microarchitecture independent metric described above

we transform them to principal components space using PCA.

We use the principal component scores in the transformed

workload space to obtain the weights for the programs for

which the cache miss-rates are known. The weights are

calculated as described in Method I of Section 3.1. The

distance in principal components space is inversely

proportional to similarity in data memory reference behavior

of programs. After assigning weights to each program we

calculate the weighted arithmetic mean of the cache miss-rates.

This mean is used as the predicted cache miss-rate of the

program. Figure 2 shows the actual and predicted cache miss-

rates of SPEC CPU2000 programs for a single cache

configuration of 8KB, 64 byte block, direct mapped cache.

Method II
 In this method, instead of giving a weight to each program we

use k-means clustering to cluster programs in the principal

component space which we obtain by transforming the

microarchitecture independent locality metric. We use the

Bayesian Information Criterion (BIC) [13] to obtain optimal

clusters. Table 3 shows the 4 optimal clusters and the

programs in each cluster.

Cluster 1 applu,equake,lucas,mgrid,swim

Cluster 2 art, mcf

Cluster 3 ammp, bzip2, eon, fma3d, gcc, gzip, mesa, parser,

twolf, vortex, vpr, wupwise

Cluster 4 crafty, galgel

Table 3: Clusters obtained using microarchitecture

independent metrics for data locality

When we predict cache miss-rate of equake which lies in

cluster 1 we simply look at the cache miss-rate of applu which

is the representative of its cluster. But if we want to predict the

cache miss-rate of applu, we choose the cache miss-rate of

program among the rest that is closest to the centre of the

cluster. If there are two programs in a cluster e.g. cluster 2

then the other program’s cache miss-rate is used as prediction.

Figure 3 shows the measured and predicted cache miss-rates

of all the programs for 8KB, 64 byte block size, direct mapped

cache. Except a few programs e.g. mgrid the absolute error in

predicting cache miss-rate is relatively small. The error

introduced for a program in predicting cache miss-rate has two

sources, one due to not having a program similar to itself in

the repository and the other if the microarchitecture

independent metric does not capture locality behavior of

access stream.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a
m

m
p

a
p
p
lu a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fm
a
3
d

g
a
lg

e
l

g
c
c

g
z
ip

lu
c
a
s

m
c
f

m
e
s
a

m
g
ri
d

p
a
rs

e
r

s
w

im

tw
o
lf

v
o
rt
e
x

v
p
r

w
u
p
w

is
e

Programs

C
a
c
h

e
 m

is
s
-r

a
te

Measured

Predicted

 Figure 3: Comparison of measured and predicted data cache miss-rates for SPEC CPU2000 programs using

method II

4. Discussion
 The two methods discussed in this paper are two

simple ways to predict performance based on the similarity of

programs. In method II we predict performance based on only

a few similar programs and ignore the rest of the programs

that are far away or distantly similar. In a way we assign a

weight of zero to such programs. But this method fails if we

do not have a program that is similar to the new programs in

the repository. If there are only a few programs in the

repository there is a lesser chance of finding a similar program

and hence method I may work better. If there are many

benchmarks and the range of target performance metric is

quite high, then clustering will give a smaller set of programs

which show similar behavior and hence reduce the range over

which we predict. If the new application program is not

similar to any or few of the benchmark programs, then the

error of performance prediction will be quite large if we use

weights.

5. Conclusion
This paper demonstrates the use of two simple techniques

to predict the performance of a new application. First

technique uses the weights calculated based on similarity of

new application program with the benchmark programs to find

weights and then use the weighted means to predict

performance. The second technique uses clustering to find

benchmarks that lie in the same cluster as the application

program and use only those benchmarks to predict the

performance of the new application program. The strength of

the techniques lay in the fact that microarchiture independent

metrics are used to characterize all the programs and same

metrics are used to predict performance on different

configurations of a system instead of running multiple cycle

accurate simulations or using microarchitecture dependent

metrics which might limit the configurations over which the

results are valid or accurate.

Reference

[1] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John.

“Measuring Program Similarity: Experiments with

SPEC CPU Benchmark Suites” IEEE International

Symposium on Performance Analysis of Systems and

Software. March 2005

[2] D. Noonburg and J. Shen, “A Framework for Statistical

Modeling of Superscalar Processor Performance”, Proc.

of International Symposium on High Performance

Computer Architecture, 1997, pp. 298-309.

[3] P. Dubey, G. Adams, and M. Flynn, “Instruction

Window Size Trade-Offs and Characterization of

Program Parallelism”, IEEE Transactions on

Computers, vol. 43, no. 4, pp. 431-442, 1994.

[4] L. John, P. Vasudevan and J. Sabarinathan, "Workload

Characterization: Motivation, Goals and methodology",

pages 3 to 12 in "Workload Characterization:

Methodology and Case Studies", IEEE Computer

Society, 1999

[5] E. Sorenson and J.Flanagan, “Cache Characterization

Surfaces and Prediction of Workload Miss Rates”,

Proc. of International Workshop on Workload

Characterization, pp. 129-139, Dec 2001.

[6] E. Sorenson and J.Flanagan, “Evaluating Synthetic

Trace Models Using Locality Surfaces”, Proceedings

of the Fifth IEEE Annual Workshop on Workload

Characterization, pp. 23-33, November 2002.

[7] J. Spirn and P. Denning, “Experiments with Program

Locality”, The Fall Joint Conference, pp. 611-621,

1972.

[8] P. Denning, “The Working Set Model for Program

Behavior”, Communications of the ACM, vol 2, no. 5,

pp. 323-333, 1968

[9] T. Lafage and A. Seznec, “Choosing Representative

Slices of Program Execution for Microarchitecture

Simulations: A Preliminary Application to the Data

Stream”, Workshop on Workload Characterization

(WWC-2000), Sept 2000.

[10] T. Conte, and W. Hwu, “Benchmark Characterization

for Experimental System Evaluation”, Proc. of Hawaii

International Conference on System Science, vol. I,

Architecture Track, pp. 6-18, 1990.

[11] G. Dunteman, Principal Component Analysis, Sage

Publications, 1989

[12] http://www.spec.org/cpu2000/results/

[13] T. Sherwood, E. Perelman, and B. Calder, “Basic block

distribution analysis to find periodic behavior and

simulation points in applications”, Proc. of the

International Conference on Parallel Architectures and

Complication Techniques, pp. 3-14, 2000

