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Abstract - Modern computer applications are developed at 

a very fast rate and new features are being added to the 

current ones everyday. A computer architect is always 

looking for quicker ways to evaluate performance of the 

design on these applications in a relatively shorter time. 

Simulation is a very popular tool used in the early design 

phase of a microprocessor. But applications run for a long 

time and microprocessors are getting complex which leads 

to very high simulation times. With a reasonably quick 

workload characterization we should be able to predict 

performance of the new application on the system(s). This 

paper proposes two simple techniques to predict 

performance based on the similarity of the new application 

with already characterized benchmarks whose 

performance numbers are available. Each of these 

techniques is then used to show how speedup and cache 

miss-rates can be predicted for a given program. 

 

1. Introduction 

 
      Computer benchmarking involves use of application 

programs as benchmarks. The process of performance 

evaluation includes using these programs as standard tests to 

evaluate performance of a computer system. Benchmarks are 

also used by computer architects to evaluate enhancements 

and various design options in the early phase of design space 

exploration. Due to increase in complexity of systems and 

many times, long running programs, cycle accurate simulation 

becomes a difficult option to choose. Also, simulating 

individual components like cache, although not very 

expensive need to be evaluated for a lot of different 

configurations. Ideally, to overcome this challenge in shortest 

possible time one can build a mathematical or analytical 

model for each of the design blocks which can estimate 

performance when the necessary parameters are plugged in. 

But it is well known that building a mathematical or analytical 

model is difficult because the system that needs to be modeled 

is extremely complex which makes the process non-trivial and 

a lot of times very difficult. 

 In such situation using the knowledge of similarity of 

programs in predicting performance can be helpful. New 

applications are being developed everyday. Our methodology 

is based on using the microarchitecture independent metrics to 

characterize programs in [1]. We also use Principal 

Components Analysis (PCA) to transform these metrics into 

set of variables that are uncorrelated with respect to each other 

as discussed in [1]. A benchmark suite like SPEC CPU 2000 

has a wide variety of applications that may cover a significant 

amount of workload space. Hence we use SPEC CPU 2000 

benchmarks in our study. 

 The pace of software development is on the rise. New 

features are being added to make incremental or drastic 

changes to the behavior of applications on a microprocessor. It 

is in prime interest of a microprocessor designer or an 

architect to measure performance of these new or modified 

programs. It is difficult to use cycle accurate simulation to do 

the same because of long simulation time. An architect or 

designer may have many other application programs from 

customers or other collaborative software vendors in his 

repository of benchmarks for which the performance is 

already known. If we measure similarity between the new 

application and the set of benchmarks in the repository one 

can predict performance of the new application without 

running cycle accurate simulation. 

 

2. Methodology 
 
 Figure 1 shows the block diagram of the prediction 

methodology. We will first describe the microarchitecture 

independent metrics we used to characterize and measure 

similarity between the benchmarks and the new application 

and then briefly describe the statistical multivariate analysis 

technique called Principal Components Analysis (PCA) that 

we used in our methodology. We then briefly describe how we 

use the microarchitecture independent metrics to find 

similarity between programs and then predict performance of 

the new program based on its similarity with the programs in 

the repository. 

 

2.1.     Metrics used for measuring program similarity 
 Microarchitecture independent metrics allow for a 

comparison between programs by understanding the inherent 

characteristics of a program isolated from features of 

particular microarchitectural components. This section also 

provides an intuitive reasoning to illustrate how the measured 

metrics can affect the manifested performance.  The metrics 

measured in this study are a subset of all the 

microarchitecture-independent characteristics that can be 

potentially measured, but we believe that our metrics cover a 

wide enough range of the program characteristics to make a 

meaningful comparison between the programs. The metrics 

that we use can be broadly classified into five categories: 

instruction mix, branch behavior, metrics to measure 



                           

Figure 1: Block diagram of prediction methodology 

 

instruction level parallelism, data locality and instruction 

locality. Other program characteristics, such as value 

predictability can also be added to the analysis if they are 

exploited by the microarchitecture for performance benefit. 

The detailed list of all the microarchitecture-independent 

metrics we use in our study is as follows: 
Instruction Mix:  
Instruction mix of a program measures the relative frequency 

of various operations performed by a program.  We measured 

the percentage of computation, data memory accesses (load 

and store), and branch instructions in the dynamic instruction 

stream of a program.  This information can be used to 

understand the control flow of the program and/or to calculate 

the ratio of computation to memory accesses, which gives us 

an idea of whether the program is computation or memory 

bound. 

Behavior of branches:  
We used the following set of metrics to compare branch 

behavior of programs:  

Branch Direction: Backward branches are typically more 

likely to be taken than forward branches.  This metric 

computes the percentage of forward branches out of the total 

branch instructions in the dynamic instruction stream of the 

program.  Obviously, hundred minus this percentage is the 

percentage of backward branches.   

Fraction of taken branches:  This metric is the ratio of taken 

branches to the total number of branches in the dynamic 

instruction stream of the program. 

Fraction of forward-taken branches: We measure the fraction 

of taken forward branches in the dynamic instruction stream of 

the program. 

Inherent Instruction Level Parallelism: 

Basic Block Size: A basic block is a section of code with one 

entry and one exit point. We measure the basic block size, 

which quantifies the average number of instructions between 

two consecutive branches in the dynamic instruction stream of  

 

the program.  Larger basic block size is useful in exploiting 

instruction level parallelism (ILP). 

Register Dependency Distance: We use a distribution of 

dependency distances as a measure of the inherent ILP in the 

program. Dependency distance is defined as the total number 

of instructions in the dynamic instruction stream between the 

production (write) and consumption (read) of a register 

instance [2] [3]. While techniques such as value prediction 

reduce the impact of these dependencies on ILP, information 

on the dependency distance is very useful in understanding 

ILP inherent to a program.  The dependency distance is 

classified into six categories: percentage of total dependencies 

that have a distance of 1, and the percentage of total 

dependencies that have a distance of up to 2, 4, 8, 16, 32, and 

greater than 32.  Programs that have a higher percentage of 

dependency distances that are greater than 32, are likely to 

exhibit a higher ILP (provided control flow is not the limiting 

factor). 

Data locality:  
 Data Temporal Locality: Several locality metrics have been 

proposed in the past [4] [5] [6] [7] [8] [9] [10], however, many 

of them are computation and memory intensive. We picked 

the average memory reuse distance metric from [9] since it is 

more computationally feasible than other metrics. In this 

metric, locality is quantified by computing the average 

distance (in terms of number of memory accesses) between 

two consecutive accesses to the same address, for every 

unique address in the program. The evaluation is performed in 

four distinct window sizes, analogous to cache block sizes. 

This metric is calculated for window sizes of 16, 64, 256 and 

4096 bytes. The choice of the window sizes is based on the 

experiments conducted by Lafage et.al. [9].  Their 

experimental results show that the above set of window sizes 

was sufficient to characterize the locality of the data reference 

stream with respect to a wide range of data cache 

configurations. 

Microarchitecture 

independent  

metrics for known 

benchmarks  

Program 

similarity 

measurement 

Prediction of 

target metric 

for the new 

application 

Predicted value of the 

target metric like 

speedup or cache miss-

rate 

Microarchitecture 

independent metrics  

for new application 

Similarity information 



Example of memory reuse distance: 

Consider the following data memory address stream (address, 

access #): 0x2004 (#1), 0x2022 (#2), 0x300c (#3), 0x2108 

(#4), 0x3204(#5), 0x200a (#6), 0x2048 (#7), 0x3108(#8), 

0x3002(#9), 0x320c (#10), 0x2040(#11), 0x202f (#12). For a 

memory line of 16 bytes, the memory lines to which these 

addresses maps is calculated by masking the least significant 4 

bits in the address. Therefore, the address in the data stream, 

0x2004 will map to memory line 0x200, etc.  The sequence of 

memory lines accessed by this address stream is:  0x200 (#1), 

0x202 (#2), 0x300(#3), 0x210 (#4), 0x320(#5), 0x200(#6), 

0x204(#7),0x310(#8), 0x300(#9), 0x320(#10), 0x204(#11), 

0x202(#12). Addresses for reference #1 and #6 are different, 

but they map to the same memory line, 0x200, and therefore 

form a reuse pair (#1, #6).  The list of all the reuse pairs in the 

example address stream is (#1, #6), (#2, #12), (#3, #9), (#5, 

#10), (#7, #11). For reuse pair (#1, #6), the reuse distance is 

the number of memory lines accessed between the reference 

#1 and #6, which is equal to 4.  

Data Spatial Locality: Spatial locality information for data 

accesses is characterized by the ratio of the data temporal 

locality metric for higher window sizes to that of window size 

16 mentioned above. As the window size is increased, 

programs with a high spatial locality will have a lower value 

for the data temporal locality metric and vice versa.  Therefore, 

the ratio of the data temporal locality metric for two different 

window sizes can be used to quantify the spatial locality in a 

program. 

Instruction locality 

Instruction Temporal Locality: The instruction temporal 

locality metric is quantified by computing the average distance 

(in terms of number of instructions) between two consecutive 

accesses to the same static instruction, for every unique static 

instruction in the program that is executed at least twice. The 

instruction temporal locality is calculated for window sizes of 

16, 64, 256, and 4096 bytes. The reuse distance is calculated 

in the same fashion as shown in the example above 

Instruction Spatial Locality: Spatial locality of the instruction 

stream is characterized by the ratio of instruction temporal 

locality metrics for higher window sizes to that of window 

size 16. As the window size is increased, programs with a high 

spatial locality will have a lower value for the data temporal 

locality metric and vice versa.  Therefore, the ratio of the data 

temporal locality metric for two different window sizes can be 

used to quantify the spatial locality in a program. 

 

2.2. Principal Components Analysis 
 There are many variables (29 microarchitecture- 

independent characteristics) involved in our study.  It is 

humanly impossible to simultaneously look at all the data and 

draw meaningful conclusions from them.  We thus use 

multivariate statistical data analysis techniques, namely 

Principal Component Analysis. We first normalize the data to 

have the mean equal to zero and standard deviation of one for 

each variable. Principal components analysis (PCA) [11] is a 

classic multivariate statistical data analysis technique that is 

used to reduce the dimensionality of a data set while retaining 

most of the original information.  It builds on the assumption 

that many variables (in our case, microarchitecture-

independent program characteristics) are correlated.  PCA 

computes new variables, so called principal components, 

which are linear combinations of the original variables, such 

that all the principal components are uncorrelated.  PCA 

transforms p variables X1, X2,...., Xp into p principal 

components (PC) Z1,Z2,…,Zp  such that:  

 

∑
=

=

p

j jiji XaZ
0

 

 

This transformation has the property Var [Z1] ≥ Var [Z2] ≥…≥ 

Var [Zp] which means that 1Z  contains the most information 

and Zp the least.  Given this property of decreasing variance of 

the principal components, we can remove the components 

with the lower values of variance from the analysis.  This 

reduces the dimensionality of the data set while controlling the 

amount of information that is lost.  In other words, we retain q 

principal components (q << p) that explain at least 75% to 90 

% of the total information.  

 We propose two methods which use the 

microarchitecture independent metrics to measure similarity 

and then predict performance of the new program on 

microprocessor component/system.  

1) Assign weights to each of the benchmark programs based 

on their similarity to new application and then use the 

weighted mean to predict the performance. 

2) Cluster similar benchmarks in the microarchitecture 

independent workload space and then use the 

representative program from the cluster which contains 

the new application program to predict performance. 

In the next section we discuss our results where we estimate 

speedup and cache miss-rates of programs using the two 

techniques mentioned above and discuss the techniques in 

more detail applied to predict each of the metrics. 

 

3. Results 
  

In this section we show the results of using the two methods 

discussed above to predict the speedup of a new application 

program and also predict cache miss-rate of a new application 

program for one choice of cache configuration. For brevity of 

results we show it for only one cache configuration. 

 

3.1. Knowledge based prediction of speedup 
The standard benchmark suites like the SPEC 

CPU2000 have programs from many different application 

domains. Almost all big computer system manufacturers 

report performance results for their systems. Here is another 

scenario where the prediction of performance using the 

knowledge of benchmarks is useful. A user can compare 

performance of different computer systems by referring to the 

reported scores. But many times, the user has his own 

application(s) for which he needs to predict performance for a  



Statistics 

% Error in 

predicted speedup 

of bzip2 using 

Weighted GM 

% Error in predicted 

speedup  

of bzip2 using    

Weighted HM 

% Error in 

predicted speedup  

of bzip2 using    

Weighted AM 

% Error in 

predicted 

speedup  of 

bzip2 using GM 

Average 14.37 11.31 18.05 16.41 

Std. deviation 9.69 8.58 11.22 10.15 

Standard Error 0.387 0.342 0.449 0.406 

Lower CI 13.72 10.74 17.30 15.73 

Upper CI 15.02 11.89 18.80 17.09 

 

Table 1: Percentage error in predicting speedup for 256.bzip2 based on other integer programs from the 

SPEC CPU2000 suite 

 

particular system. In a very rare case the same application is a 

part of the benchmark suite. In short the way SPEC calculates 

the aggregate performance metric, involves calculating the 

geometric mean of speedups for all benchmark programs ran 

in conformation with the run rules. In this case SPEC gives 

equal importance to all the programs. But the user might only 

be concerned about his application program’s performance on 

a particular machine. In using SPEC recorded aggregate 

metric of speedup for predicting performance of user’s 

application might have large error. Also, giving equal 

importance to all programs might lead to misleading 

conclusion. To demonstrate the two methods we carefully pick 

fifty different machines from different manufacturers and their 

scores for SPEC CPU2000 programs from the SPEC website 

[12]. For the simplicity of study and ease of validation, we 

consider one of the benchmarks bzip2 from the SPECint2000 

suite as the user’s application program. The aim of this study 

is to improve the prediction of performance of bzip2. With the 

available information from SPEC website the user’s best 

prediction for his application program (bzip2 in this case) is 

the geometric mean of speedup of all benchmark programs. 

 

Method  I 
An important part of this study is to find how similar each of 

the benchmark programs is to the user’s application program. 

To quantify similarity between the application program and all 

the benchmark programs, we use the twenty nine 

microarchitecture independent characteristics of programs 

described in Section 2.1 for the nine SPECint2000 benchmark 

programs and the bzip2 program. The measure of similarity is 

based on distance between two programs in the transformed 

space (PCA space) of these twenty nine metrics. Similarity has 

inverse relation with distance in our research. We use the 

reciprocal of distance as a measure to assign weights to each 

of the programs. Let 1d , 2d , 3d  … nd be the distances 

between the application program and each of the benchmarks 

programs and 1r , 2r , 3r  … nr  be their reciprocals 

respectively. Since the distance is inversely proportional to the 

weight we calculate each weight iw  in the following way 

(/ sumrw ii = 1r , 2r , 3r  … nr ) 

All the weights should add up to the number of benchmark 

programs n. The benchmark program that is closest to the 

user’s application gets the highest weight and so on. If the 

application program is exactly identical to one of the 

benchmark programs, then the distance between them 

becomes zero and that benchmark program gets all the weight 

(n).  In a very rare case if all the benchmark programs are 

equidistant from the user’s application program in the 

workload space, then all the weights will be equal to one and 

the weighted mean will be equal to the mean of speedups of 

all the benchmark programs. After we have the weights for 

each benchmark, we calculate the weighted mean of speedups 

of all the benchmark programs. We experimented with 

different means i.e. weighted geometric mean, weighted 

harmonic mean and weighted arithmetic mean to see which 

mean gives a better estimate of the speedup. We then find the 

average error shown by each of these weighted means in 

predicting the speedup of bzip2 for all the fifty machines. We 

also find the confidence interval for average error calculated 

using each different type of mean over fifty different machines.  

Table 1 shows the results for method I. The last column shows 

the statistics for percentage error in predicting speedup of 

bzip2 if the aggregate metric of geometric mean reported on 

the SPEC website was used. An average error of 16.41% can 

be seen over all fifty machines. At 95% confidence level the 

confidence interval is (15.73%, 17.09%). This can be 

considered as the base case to which the rest of the weighted 

means will be compared. We observe that the weighted 

harmonic mean shows the lowest average error of 11.31%. 

The confidence interval of average error in predicting speedup 

for weighted harmonic mean is (10.74%, 11.89%). We can see 

that the confidence interval of the best case (using weighted 

HM) and none of the other cases(weighted AM/GM) overlap, 

which shows that they are statistically distinct. 



 Cluster  1 parser, twolf, vortex 

Cluster 2 bzip2, gzip 

Cluster 3 eon, vpr 

Cluster 4 mcf 

Cluster 5 crafty 

Cluster 6 gcc 

 

Table 2:  Clusters for SPECint2000 programs using 

overall program characteristics 

 

Method II 
In this method we consider the same fifty machines from 

method I. We use the twenty nine microarchitecture 

independent characteristics of programs for the nine 

SPECint2000 benchmark programs and the bzip2 program. 

We then put all these programs together and apply Principal 

Components Analysis and then k-means clustering [13] to the 

transformed data. We use BIC (Baysian Information Criterion) 

[13] to find optimal number of clusters. In this method the 

process of prediction is simpler. We look at the cluster results 

and see which cluster contains program bzip2. If bzip2 forms 

its own cluster this method fails. In such a case method I can 

be used. But if bzip2 has more than one program in its cluster 

then the representative of the cluster i.e. the speedup of 

program which is closest to the centre of the cluster is used to 

predict the speedup of bzip2. Using the BIC we get 6 optimal 

clusters. Table 2 shows the six optimal clusters. In this case 

Cluster 2 contains bzip2 and gzip. Since there are only two 

programs in the cluster, any program can be the representative 

of the cluster. We predict the speedup of bzip2 to be 

equivalent to gzip.  We find that the average error in 

predicting the speedup of bzip2 is 20.29% and with 95% level 

of confidence the average error will be between (19.36%, 

21.22%). 

 

3.2. Knowledge based prediction of cache miss-

rate  
Performance of caches depends significantly on locality 

of the memory reference stream of a program. If the user 

knows the cache miss-rates and memory reference behavior of 

few benchmark programs, the user can predict the cache miss-

rates of his application program based on its similarity of 

locality characteristics to the benchmark programs. We 

capture the information about locality of memory reference 

stream of a program using microarchitecture independent 

metrics. Predicting cache miss-rate of a program for several 

configurations can save time in early design space exploration. 

We modify the microarchitecture independent metric 

described in Section 2.1 to quantify locality of a program. In 

section 2.1 we calculate the weighted average of all the reuse 

distances and have a single number for each block size. We 

modify this metric to put the reuse distances in three different 

buckets of small, medium and large values for each block size. 

The modified metric is only measured for block size of 16 and 

64 bytes. We use this metric to measure similarity between 

memory reference behavior of programs. We describe two 

methods to use the microarchitecture independent metric and 

predict cache miss-rates for different configurations of cache 

for a given program.  
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          Figure 2: Comparison of measured and predicted data cache miss-rate for SPEC CPU2000 programs using 

method I 



Method I 
We describe the methodology using an example where we 

predict cache miss-rates of each of the SPEC CPU2000 

benchmark program assuming that the cache miss-rates of the 

rest of the programs are known. Each SPEC CPU2000 

program is considered as the user’s application and its cache 

miss-rate is predicted based on it similarity to other SPEC 

CPU2000 programs. This helps us ease our validation efforts. 

For the microarchitecture independent metric described above 

we transform them to principal components space using PCA. 

We use the principal component scores in the transformed 

workload space to obtain the weights for the programs for 

which the cache miss-rates are known. The weights are 

calculated as described in Method I of Section 3.1. The 

distance in principal components space is inversely 

proportional to similarity in data memory reference behavior 

of programs. After assigning weights to each program we 

calculate the weighted arithmetic mean of the cache miss-rates. 

This mean is used as the predicted cache miss-rate of the 

program. Figure 2 shows the actual and predicted cache miss-

rates of SPEC CPU2000 programs for a single cache 

configuration of 8KB, 64 byte block, direct mapped cache. 

 

Method II 
 In this method, instead of giving a weight to each program we 

use k-means clustering to cluster programs in the principal 

component space which we obtain by transforming the 

microarchitecture independent locality metric. We use the 

Bayesian Information Criterion (BIC)   [13] to obtain optimal 

clusters. Table 3 shows the 4 optimal clusters and the 

programs in each cluster.  

 

Cluster 1 applu,equake,lucas,mgrid,swim 

Cluster 2 art, mcf 

Cluster 3 ammp, bzip2, eon, fma3d, gcc, gzip, mesa, parser, 

twolf, vortex, vpr, wupwise 

Cluster 4 crafty, galgel  

 

Table 3: Clusters obtained using microarchitecture 

independent metrics for data locality 

 
When we predict cache miss-rate of equake which lies in 

cluster 1 we simply look at the cache miss-rate of applu which 

is the representative of its cluster. But if we want to predict the 

cache miss-rate of applu, we choose the cache miss-rate of 

program among the rest that is closest to the centre of the 

cluster. If there are two programs in a cluster e.g. cluster 2 

then the other program’s cache miss-rate is used as prediction. 

Figure 3 shows the measured and predicted cache miss-rates 

of all the programs for 8KB, 64 byte block size, direct mapped 

cache. Except a few programs e.g. mgrid the absolute error in 

predicting cache miss-rate is relatively small. The error 

introduced for a program in predicting cache miss-rate has two 

sources, one due to not having a program similar to itself in 

the repository and the other if the microarchitecture 

independent metric does not capture locality behavior of 

access stream. 
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  Figure 3: Comparison of measured and predicted data cache miss-rates for SPEC CPU2000 programs using 

method II 



4. Discussion 
 The two methods discussed in this paper are two 

simple ways to predict performance based on the similarity of 

programs. In method II we predict performance based on only 

a few similar programs and ignore the rest of the programs 

that are far away or distantly similar. In a way we assign a 

weight of zero to such programs. But this method fails if we 

do not have a program that is similar to the new programs in 

the repository. If there are only a few programs in the 

repository there is a lesser chance of finding a similar program 

and hence method I may work better. If there are many 

benchmarks and the range of target performance metric  is 

quite high, then clustering will give a smaller set of programs 

which show similar behavior and hence reduce the range over 

which we predict. If the new application program is not 

similar to any or few of the benchmark programs, then the 

error of performance prediction will be quite large if we use 

weights.  

 

5. Conclusion 
This paper demonstrates the use of two simple techniques 

to predict the performance of a new application. First 

technique uses the weights calculated based on similarity of 

new application program with the benchmark programs to find 

weights and then use the weighted means to predict 

performance. The second technique uses clustering to find 

benchmarks that lie in the same cluster as the application 

program and use only those benchmarks to predict the 

performance of the new application program. The strength of 

the techniques lay in the fact that microarchiture independent 

metrics are used to characterize all the programs and same 

metrics are used to predict performance on different 

configurations of a system instead of running multiple cycle 

accurate simulations or using microarchitecture dependent 

metrics which might limit the configurations over which the 

results are valid or accurate. 
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