OMP2012 Flag Description
Cisco Systems Cisco UCS C240 M5 (Intel Xeon Platinum 8280, 2.70 GHz)

Copyright © 2012 Intel Corporation. All Rights Reserved.


Base Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks


Base Portability Flags

350.md

357.bt331

363.swim

367.imagick


Base Optimization Flags

C benchmarks

C++ benchmarks

Fortran benchmarks


Implicitly Included Flags

This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.


Shell, Environment, and Other Software Settings

Open MP Tuning Flags

  • KMP_AFFINITY

    The KMP_AFFINITY environment variable uses the following general syntax:

    Syntax

    KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

    For example, to list a machine topology map, specify KMP_AFFINITY=verbose,none to use a modifier of verbose and a type of none.

    The following table describes the supported specific arguments.

    Argument

    Default

    Description

    modifier

    noverbose

    respect

    granularity=core

    Optional. String consisting of keyword and specifier.

    • granularity=<specifier>
      takes the following specifiers: fine, thread, and core

    • norespect

    • noverbose

    • nowarnings

    • proclist={<proc-list>}

    • respect

    • verbose

    • warnings

    type

    none

    Required string. Indicates the thread affinity to use.

    • compact

    • disabled

    • explicit

    • none

    • scatter

    • logical (deprecated; instead use compact, but omit any permute value)

    • physical (deprecated; instead use scatter, possibly with an offset value)

    The logical and physical types are deprecated but supported for backward compatibility.

    permute

    0

    Optional. Positive integer value. Not valid with type values of explicit, none, or disabled.

    offset

    0

    Optional. Positive integer value. Not valid with type values of explicit, none, or disabled.

    Affinity Types

    Type is the only required argument.

    type = none (default)

    Does not bind OpenMP threads to particular thread contexts; however, if the operating system supports affinity, the compiler still uses the OpenMP thread affinity interface to determine machine topology. Specify KMP_AFFINITY=verbose,none to list a machine topology map.

    type = compact

    Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as possible to the thread context where the <n> OpenMP thread was placed. For example, in a topology map, the nearer a node is to the root, the more significance the node has when sorting the threads.

    type = disabled

    Specifying disabled completely disables the thread affinity interfaces. This forces the OpenMP run-time library to behave as if the affinity interface was not supported by the operating system. This includes the low-level API interfaces such as kmp_set_affinity and kmp_get_affinity, which have no effect and will return a nonzero error code.

    type = explicit

    Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been explicitly specified by using the proclist= modifier, which is required for this affinity type.

    type = scatter

    Specifying scatter distributes the threads as evenly as possible across the entire system. scatter is the opposite of compact; so the leaves of the node are most significant when sorting through the machine topology map.

    Deprecated Types: logical and physical

    Types logical and physical are deprecated and may become unsupported in a future release. Both are supported for backward compatibility.

    For logical and physical affinity types, a single trailing integer is interpreted as an offset specifier instead of a permute specifier. In contrast, with compact and scatter types, a single trailing integer is interpreted as a permute specifier.

    Specifying logical assigns OpenMP threads to consecutive logical processors, which are also called hardware thread contexts. The type is equivalent to compact, except that the permute specifier is not allowed. Thus, KMP_AFFINITY=logical,n is equivalent to KMP_AFFINITY=compact,0,n  (this equivalence is true regardless of the whether or not a  granularity=fine modifier is present).

    Permute and offset combinations

    For both compact and scatter, permute and offset are allowed; however, if you specify only one integer, the compiler interprets the value as a permute specifier. Both permute and offset default to 0.  

    The permute specifier controls which levels are most significant when sorting the machine topology map. A value for permute forces the mappings to make the specified number of most significant levels of the sort the least significant, and it inverts the order of significance. The root node of the tree is not considered a separate level for the sort operations.

    The offset specifier indicates the starting position for thread assignment.

    Modifier Values for Affinity Types

    Modifiers are optional arguments that precede type. If you do not specify a modifier, the noverbose, respect, and granularity=core modifiers are used automatically.

    Modifiers are interpreted in order from left to right, and can negate each other. For example, specifying KMP_AFFINITY=verbose,noverbose,scatter is therefore equivalent to setting KMP_AFFINITY=noverbose,scatter, or just KMP_AFFINITY=scatter.

    modifier = noverbose (default)

    Does not print verbose messages.

    modifier = verbose

    Prints messages concerning the supported affinity. The messages include information about the number of packages, number of cores in each package, number of thread contexts for each core, and OpenMP thread bindings to physical thread contexts.

    Information about binding OpenMP threads to physical thread contexts is indirectly shown in the form of the mappings between hardware thread contexts and the operating system (OS) processor (proc) IDs. The affinity mask for each OpenMP thread is printed as a set of OS processor IDs.

  • KMP_LIBRARY

    KMP_LIBRARY = { throughput | turnaround | serial }, Selects the OpenMP run-time library execution mode. The options for the variable value are throughput, turnaround, and serial.

    Execution modes

    The compiler with OpenMP enables you to run an application under different execution modes that can be specified at run time. The libraries support the serial, turnaround, and throughput modes.

    Serial

    The serial mode forces parallel applications to run on a single processor.

    Turnaround

    In a dedicated (batch or single user) parallel environment where all processors are exclusively allocated to the program for its entire run, it is most important to effectively utilize all of the processors all of the time. The turnaround mode is designed to keep active all of the processors involved in the parallel computation in order to minimize the execution time of a single job. In this mode, the worker threads actively wait for more parallel work, without yielding to other threads.

    Avoid over-allocating system resources. This occurs if either too many threads have been specified, or if too few processors are available at run time. If system resources are over-allocated, this mode will cause poor performance. The throughput mode should be used instead if this occurs.

    Throughput

    In a multi-user environment where the load on the parallel machine is not constant or where the job stream is not predictable, it may be better to design and tune for throughput. This minimizes the total time to run multiple jobs simultaneously. In this mode, the worker threads will yield to other threads while waiting for more parallel work.

    The throughput mode is designed to make the program aware of its environment (that is, the system load) and to adjust its resource usage to produce efficient execution in a dynamic environment. This mode is the default.

  • KMP_BLOCKTIME

    KMP_BLOCKTIME = value. Sets the time, in milliseconds, that a thread should wait, after completing the execution of a parallel region, before sleeping.Use the optional character suffixes: s (seconds), m (minutes), h (hours), or d (days) to specify the units.Specify infinite for an unlimited wait time.

  • KMP_STACKSIZE

    KMP_STACKSIZE = value. Sets the number of bytes to allocate for each OpenMP* thread to use as the private stack for the thread. Recommended size is 16m. Use the optional suffixes: b (bytes), k (kilobytes), m (megabytes), g (gigabytes), or t (terabytes) to specify the units. This variable does not affect the native operating system threads created by the user program nor the thread executing the sequential part of an OpenMP* program or parallel programs created using -parallel.

  • OMP_NUM_THREADS

    Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -openmp and -parallel. Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8

  • OMP_DYNAMIC

    OMP_DYNAMIC={ 1 | 0 } Enables (1, true) or disables (0,false) the dynamic adjustment of the number of threads.

  • OMP_SCHEDULE

    OMP_SCHEDULE={ type,[chunk size]} Controls the scheduling of the for-loop work-sharing construct. type can be either of static,dynamic,guided,runtime chunk size should be positive integer

  • OMP_NESTED

    OMP_NESTED={ 1 | 0 } Enables creation of new teams in case of nested parallel regions (1,true) or serializes (0,false) all nested parallel regions. Default is 0.


  • Operating System Tuning Parameters

    Operating System and Software Tuning Parameters

    ulimit -s <n>

    Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.

    numactl --interleave=all "runspec command"

    Launching a process with numactl --interleave=all sets the memory interleave policy so that memory will be allocated using round robin on nodes. When memory cannot be allocated on the current interleave target fall back to other nodes.

    Free the file system page cache

    The command "echo 1> /proc/sys/vm/drop_caches" is used to free up the filesystem page cache.

    Using numactl to bind processes and memory to cores

    For multi-copy runs or single copy runs on systems with multiple sockets, it is advantageous to bind a process to a particular core. Otherwise, the OS may arbitrarily move your process from one core to another. This can affect performance. To help, SPEC allows the use of a "submit" command where users can specify a utility to use to bind processes. We have found the utility 'numactl' to be the best choice.

    numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a command and inherited by all of its children. The numactl flag "--physcpubind" specifies which core(s) to bind the process. "-l" instructs numactl to keep a process memory on the local node while "-m" specifies which node(s) to place a process memory. For full details on using numactl, please refer to your Linux documentation, 'man numactl'

    Linux Huge Page settings

    In order to take advantage of large pages, your system must be configured to use large pages. To configure your system for huge pages perform the following steps:

    Create a mount point for the huge pages: "mkdir /mnt/hugepages" The huge page file system needs to be mounted when the systems reboots. Add the following to a system boot configuration file before any services are started: "mount -t hugetlbfs nodev /mnt/hugepages" Set vm/nr_hugepages=N in your /etc/sysctl.conf file where N is the maximum number of pages the system may allocate. Reboot to have the changes take effect. (Not necessary on some operating systems like RedHat Enterprise Linux 5.5).

    Note that further information about huge pages may be found in your Linux documentation file: /usr/src/linux/Documentation/vm/hugetlbpage.txt

    Transparent Huge Pages

    On RedHat EL 6 and later, Transparent Hugepages increases the memory page size from 4 kilobytes to 2 megabytes. Transparent Hugepages provides significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead. Hugepages are used by default if /sys/kernel/mm/redhat_transparent_hugepage/enabled is set to always.

    HUGETLB_MORECORE

    Set this environment variable to "yes" to enable applications to use large pages.

    KMP_STACKSIZE

    Specify stack size to be allocated for each thread.

    KMP_AFFINITY

    KMP_AFFINITY = < physical | logical >, starting-core-id specifies the static mapping of user threads to physical cores. For example, if you have a system configured with 8 cores, OMP_NUM_THREADS=8 and KMP_AFFINITY=physical,0 then thread 0 will mapped to core 0, thread 1 will be mapped to core 1, and so on in a round-robin fashion. KMP_AFFINITY = granularity=fine,scatter The value for the environment variable KMP_AFFINITY affects how the threads from an auto-parallelized program are scheduled across processors. Specifying granularity=fine selects the finest granularity level, causes each OpenMP thread to be bound to a single thread context. This ensures that there is only one thread per core on cores supporting HyperThreading Technology Specifying scatter distributes the threads as evenly as possible across the entire system. Hence a combination of these two options, will spread the threads evenly across sockets, with one thread per physical core.

    OMP_NUM_THREADS

    Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8


    Firmware / BIOS / Microcode Settings

    Intel Turbo Boost Technology:

    Enabling this option allows the processor cores to automatically increase their frequency if they are running below power and temperature, thereby increasing performance. By default, this option is enabled.

    Intel Hyper Threading Technology:

    Enabling this option allows processor resources to be used more efficiently, enabling multiple threads to run on each core and increasing processor throughput, improving overall performance on threaded software.

    Enhanced Intel SpeedStep:

    Enabling this option allows the system to dynamically adjust processor voltage and core frequency. This technology can result in decreased average power consumption and decreased average heat production.

    Core Multi Processing:

    This option specifies the number of logical processor cores that can run on the server. This option sets he state of logical processor cores in a package. If you disable this setting, Hyper Threading is also disabled.

    Virtualization Technology:

    This option allows the user whether the processor uses Intel Virtualization Technology, which allows a platform to run multiple operating systems and applications in independent partitions. This can be one of the following: Disabled - The processor does not permit virtualization. enabled — The processor allows multiple operating systems in independent partitions. Platform Default — The BIOS option uses the value for this attribute contained in the BIOS defaults for the server type and vendor. By default this BIOS option is enabled.

    Direct Cache Access:

    Enabling this option allows processors to increase I/O performance by placing data from I/O devices directly into the processor cache. This setting helps to reduce cache misses.

    Power Technology:

    This BIOS option enables the user to configure the CPU power management settings such as Enhanced Intel SpeedStep, Intel Turbo Boost Technology and Processor Power State C6. Settings in Custom will allow the user to change individual settings for the BIOS parameters in the preceding list. You must select this option if you want to change any of these BIOS parameters. Settings in Energy Efficient will determines the best settings for the BIOS parameters in the preceding list and ignores the individual settings for these parameters. Settings in Disabled state do not perform any CPU power management and any settings for the BIOS parameters in the preceding list are ignored

    Processor C1 Enhanced:

    Enabling this option allows the processor to transition to its minimum frequency upon entering C1. This setting does not take effect until after you have rebooted the server. In disabled state, the CPU continues to run at its maximum frequency in C1 state. Users should disable this option for performing application benchmarking. In enabled state, the CPU transitions to its minimum frequency. This option saves the maximum amount of power in the C1 state.

    Processor State C6:

    Enabling this option allows the processor to send the C6 report to the operating system. Users should disable this option for performing application benchmarking.

    Energy Performance:

    This BIOS option allows you to determine whether system Performance or energy efficiency is more important on server. This can be one of the following: Balanced Energy, Balanced Performance, Energy Efficient and Performance. Balanced Performance optimized to maximum power savings with minimal impact on performance and it is enabled by default. Performance disables all power management options with any impact on performance. Balanced Energy is optimized for power efficiency and "Energy Efficient" for power savings. The BIOS option is only selectable if “Power Technology" is set to "Custom".

    CPU Performance:

    This BIOS option allows the enabling/disabling of a processor mechanism in 3 modes: Enterprise, High-Throughput and HPC. Setting this BIOS option in Enterprise and High-Throughput modes, will enable all the prefetchers and disable Data Reuse Technology. Setting this BIOS option in HPC mode will enable all the prefetchers and enable Data Reuse Technology.

    LLC Prefetch:

    This BIOS option configures the processor last level cache (LLC) prefetch feature as a result of the non-inclusive cache architecture. The LLC prefetcher exists on top of other prefetchers that can prefetch data into the core data cache unit (DCU) and mid-level cache (MLC). In some cases, setting this option to disabled can improve performance. Values for this BIOS option can be: Disabled: Disables the LLC prefetcher. The other core prefetchers are unaffected. Enabled: Gives the core prefetcher the ability to prefetch data directly to the LLC. By default, LLC prefetch option is disabled.

    Power Performance Tuning:

    This BIOS option determines how aggressively the CPU will be power managed and placed into turbo. With “BIOS Controls”, the system controls the setting. Selecting "OS Controls” allows the operating system to control it.

    Memory Power Saving Mode:

    This BIOS option controls the DIMM power savings mode policy. Setting this BIOS option in Disabled, DIMMs do not enter power saving mode. Setting this BIOS option in Slow, DIMMs can enter power saving mode, but the requirements are higher. Therefore, DIMMs enter power saving mode less frequently. Setting this BIOS option in Fast, DIMMs enter power saving mode as often as possible. Setting this BIOS option in Auto, BIOS controls when a DIMM enters power saving mode based on the DIMM configuration.

    LV DDR Mode or Low Voltage DDR Mode and DRAM Clock Throttling:

    This BIOS option controls the prioritization of memory operations. Setting this BIOS option in Power-saving-mode will prioritize low voltage memory operations over high frequency memory operations. This mode may lower memory frequency in order to keep the voltage low. Setting this BIOS option in Performance-mode will prioritize high frequency operations over low voltage operations.

    Closed Loop Thermal Throttling:

    This BIOS option allows the user to enable/disable temperature-based memory throttling. By default this BIOS option is enabled. By enabling this BIOS option, the system BIOS will initiate memory throttling to manage memory performance by limiting bandwidth to the DIMMs, therefore capping the power consumption and preventing the DIMMs from overheating.

    Memory RAS Configuration:

    This BIOS option allows the user to configure memory reliability, availability and serviceability (RAS). Setting this BIOS option in Maximum Performance, system performance is optimized Setting this BIOS option in Mirroring, system reliability is optimized by using half the system memory as backup. Setting this BIOS option in Lockstep, if the DIMM pairs in the server have an identical type, size, and organization and are populated across the SMI channels, you can enable lockstep mode to minimize memory access latency and provide better performance. Setting this BIOS option in Sparing, system reliability is enhanced with a degree of memory redundancy while making more memory available to the operating system than mirroring.

    DRAM Refresh Rate:

    This option controls the refresh interval rate for internal memory. By default, the refresh interval rate set as Auto, which is 2X DRAM refresh for every 32ns. Setting this BIOS option in 1X, DRAM cells are refreshed every 64ns.

    Patrol Scrub:

    This BIOS option is memory RAS feature which runs a background memory scrub against all DIMMs and it can negatively impact performance. By default, this option is enabled. Disabling this option, improves performance.

    QPI Snoop Configuration:

    There are 4 snoop mode options for how to maintain cache coherency across the Intel QPI fabric, each with varying memory latency and bandwidth characteristics depending on how the snoop traffic is generated.

    Cluster on Die (COD) mode logically splits a socket into 2 NUMA domains that are exposed to the OS with half the amount of cores and LLC assigned to each NUMA domain in a socket. This mode utilizes an on-die directory cache and in memory directory bits to determine whether a snoop needs to be sent. Use this mode for highly NUMA optimized workloads to get the lowest local memory latency and highest local memory bandwidth for NUMA workloads.

    Home Directory Snoop with OSB is the Opportunistic Snoop Broadcast (OSB) directory mode, the HA could choose to do speculative home snoop broadcast under very lightly loaded conditions even before the directory information has been collected and checked.

    In Home Snoop and Early Snoop modes, snoops are always sent , they just originate from different places: the caching agent (earlier) in Early Snoop mode and the home agent (later) in Home Snoop mode.

    Sub Numa Clustering:

    This BIOS option provides similar localization benefits as cluster-on-die (COD), without some of COD’s downsides. SNC breaks up the LLC into two disjoint clusters based on address range, with each cluster bound to a subset of the memory controllers in the system. SNC improves average latency to the LLC (last level cache) and memory. SNC is a replacement for the COD feature found in previous processor families. For a multi-socketed system, all SNC clusters are mapped to unique NUMA domains. IMC Interleaving must be set to the correct value to correspond with SNC enable/disable. Values for this BIOS option can be: Disabled: The LLC is treated as one cluster when this option is disabled Enabled: Utilizes LLC capacity more efficiently and reduces latency due to core/IMC proximity. This may provide performance improvement on NUMA-aware operating systems By default this BIOS option set to Disabled.

    IMC Interleaving:

    This BIOS option controls the interleaving between the Integrated Memory Controllers (IMCs). There are two IMCs per socket in Skylake Server. If IMC Interleaving is set to 2-way, addresses will be interleaved between the two IMCs. If IMC Interleaving is set to 1-way, there will be no interleaving. If SNC is disabled, IMC Interleaving should be set to 2-way. If SNC is enabled, IMC Interleaving should be set to 1-way.

    High Bandwidth:

    Enabling this option allows the chipset to defer memory transactions and process them out of order for optimal performance.

    submit= MYMASK=`printf '0x%x' \$((1<< \$SPECCOPYNUM))`; /usr/bin/taskset \$MYMASK $command

    When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux. The description of the elements of the command are:

    /usr/bin/taskset [options] [mask] [pid | command [arg] ... ] :
    taskset is used to set or retreive the CPU affinity of a running process given its PID or to launch a new COMMAND with a given CPU affinity. The CPU affinity is represented as a bitmask, with the lowest order bit corresponding to the first logical CPU and highest order bit corresponding to the last logical CPU. When the taskset returns, it is guaranteed that the given program has been scheduled to a legal CPU.
    :
    The default behaviour of taskset is to run a new command with a given affinity mask: :
    taskset [mask] [command] [arguments]

    Flag description origin markings:

    [user] Indicates that the flag description came from the user flags file.
    [suite] Indicates that the flag description came from the suite-wide flags file.
    [benchmark] Indicates that the flag description came from a per-benchmark flags file.

    The flags files that were used to format this result can be browsed at
    http://www.spec.org/omp2012/flags/Intel-ic19.0-linux64.html,
    http://www.spec.org/omp2012/flags/Cisco-Platform-Settings-V1.2-revH.html.

    You can also download the XML flags sources by saving the following links:
    http://www.spec.org/omp2012/flags/Intel-ic19.0-linux64.xml,
    http://www.spec.org/omp2012/flags/Cisco-Platform-Settings-V1.2-revH.xml.


    For questions about the meanings of these flags, please contact the tester.
    For other inquiries, please contact webmaster@spec.org
    Copyright 2012-2019 Standard Performance Evaluation Corporation
    Tested with SPEC OMP2012 v1.1.
    Report generated on Wed May 1 12:07:39 2019 by SPEC OMP2012 flags formatter v538.