OS Tuning
ulimit:
Used to set user limits of system-wide resources. Provides control over resources available to the shell and processes started by it. Some common ulimit commands may include:
Disabling Linux services:
Certain Linux services may be disabled to minimize tasks that may consume CPU cycles.
irqbalance:
Disabled through "service irqbalance stop". Depending on the workload involved, the irqbalance service reassigns various IRQ's to system CPUs. Though this service might help in some situations, disabling it can also help environments which need to minimize or eliminate latency to more quickly respond to events.
Performance Governors (Linux):
In-kernel CPU frequency governors are pre-configured power schemes for the CPU. The CPUfreq governors use P-states to change frequencies and lower power consumption. The dynamic governors can switch between CPU frequencies, based on CPU utilization to allow for power savings while not sacrificing performance.
Other options beside a generic performance governor can be set, such as the perf-bias:
--perf-bias, -b
On supported Intel processors, this option sets a register which allows the cpupower utility (or other software/firmware) to set a policy that controls the relative importance of performance versus energy savings to the processor. The range of valid numbers is 0-15, where 0 is maximum performance and 15 is maximum energy efficiency.
The processor uses this information in model-specific ways when it must select trade-offs between performance and energy efficiency. This policy hint does not supersede Processor Performance states (P-states) or CPU Idle power states (C-states), but allows software to have influence where it would otherwise be unable to express a preference.
On many Linux systems one can set the perf-bias for all CPUs through the cpupower utility with one of the following commands:
Tuning Kernel parameters:
The following Linux Kernel parameters were tuned to better optimize performance of some areas of the system:
tuned-adm:
The tuned-adm is a tool allows selecting/applying different tuning profiles (such as throughput-performance, latency-performance, server-powersave, etc) supported in many Linux distributions.
Transparent Huge Pages (THP):
Transparent Hugepages can be used to increase the memory page size from 4 kilobytes to 2 megabytes. THP provide significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead.
Firmware Settings
One or more of the following settings may have been set. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
Intel Hyper-Threading (Default = Enabled):
This feature allows enabling or disabling of logical processor cores on processors supporting Intel Hyper-Threading (HT). When enabled, each physical processor core operates as two logical processor cores. When disabled, each physical core operates as only one logical processor core. Enabling this option can improve overall performance for applications that benefit from a higher processor core count.
Intel Virtualization Technology (Intel VT, VT-x) (Default = Enabled):
When enabled, a hypervisor or operating system supporting this option can use hardware capabilities provided by Intel VT. Some hypervisors require that you enable Intel VT. You can leave this set to enabled even if you are not using a hypervisor or an operating system that uses this option. With default BIOS settings as shipped with most systems, the default state for this setting is Enabled. However, this setting can change it's default setting depending on the Workload Profile that is selected, or what Workload Profile is default for a certain system.
VT-d (Intel VT-d) (Default = Enabled):
If enabled, a hypervisor or operating system supporting this option can use hardware capabilities provided by Intel VT for Directed I/O. You can leave this set to enabled even if you are not using a hypervisor or an operating system that uses this option. With default BIOS settings as shipped with most systems, the default state for this setting is Enabled. However, this setting can change it's default setting depending on the Workload Profile that is selected, or what Workload Profile is default for a certain system.
Processor x2APIC Support (Default = Enabled):
If enabled, x2APIC support enables operating system to run more efficiently on high core count configurations. It also optimizes interrupt distribution in virtualized environments. Setting this option to Enabled is recommended for most cases. When enabled, the operating system can optionally enable x2APCI support when it loads. Older hypervisors and operating systems might have issues with optional x2APIC support, therefore disabling x2APIC could be necessary to address these issues. Setting this option to Enabled also forces Intel VT-D to be enabled.
SR-IOV (Default = Enabled):
If enabled, SR-IOV support enables a hypervisor to create virtual instances of PCI-express device, potentially increasing performance. If enabled, the BIOS allocates additional resources to PCI-express devices. You can leave this option set to Enabled even if you are not using a hypervisor. With default BIOS settings as shipped with most systems, the default state for this setting is Enabled. However, this setting can change it's default setting depending on the Workload Profile that is selected, or what Workload Profile is default for a certain system.
Thermal Configuration (Default = Optimal Cooling):
This feature allows the user to select the fan cooling solution for the system. Values for this BIOS option can be:
Enhanced Processor Performance Profile (Default = Disabled):
Use this option to enable or disable processor performance profile. Based upon the selection, this feature will adjust the processor settings for improved performance, but may result in higher power consumption. Values for this BIOS option can be:
Workload Profile (Default = General Power Efficient Compute):
This option allows a user to choose one workload profile that best fits the user`s needs. The workload profiles control many power and performance settings that are relevant to general workload areas. Values for this BIOS option can be:
Power Regulator (Default = Static High Performance Mode):
This option can only be configured if the Workload Profile is set to Custom. This feature allows the user to select the following Power Regulator support:
Minimum Processor Idle Power Core C-State (Default = C6 State):
This option can only be configured if the Workload Profile is set to Custom, or this option is not a dependent value for the Workload Profile. This feature selects the processor's lowest idle power state (C-state) that the operating system uses. The higher the C-state, the lower the power usage of that idle state (C6 is the lowest power idle state supported by the processor). Values for this setting can be:
Minimum Processor Idle Power Package C-State (Default = Package C6 (retention) State):
This option can only be configured if the Workload Profile is set to Custom, or this option is not a dependent value for the Workload Profile. This feature selects the processor's lowest idle package power state (C-state) that is enabled. The processor will automatically transition into the package C-states based on the Core C-states, in which cores on the processor have transitioned. The higher the package C-state, the lower the power usage of that idle package state. Package C6 (retention) is the lowest power idle package state supported by the processor). Values for this setting can be:
Energy/Performance Bias (Default = Balanced Performance):
This option can only be configured if the Workload Profile is set to Custom, or this option is not a dependent value for the Workload Profile. This option configures several processor subsystems to optimize the processor's performance and power usage. Values for this BIOS setting can be:
Energy Efficient Turbo (Default = Enabled):
This option controls whether the processor uses an energy efficiency based policy when engaging turbo range frequencies. This option is only applicable when Turbo Mode is enabled. Values for this BIOS setting can be: Enabled or Disabled.
HW Prefetcher (Default = Enabled):
Use this option to disable the processor HW Prefetch feature. In some cases, setting this option to disabled can improve performance. Typically, setting this option to enabled provides better performance. Only disable this option after performing application benchmarking to verify improved performance in the environment. The HW Prefetcher fetches streams of data and instruction from the memory into the second-level (L2) cache if it determines this data is likely to be required in the near future. The prefetcher is capable of handling multiple streams in either the forward or backward direction. The HW Prefetcher is triggered when successive cache misses occur in the last-level cache and a stride in the access pattern is detected, such as in the case of loop iterations that access array elements. The prefetching occurs up to a page boundary. This option can reduce the latency associated with memory reads. Values for this BIOS setting can be enabled or disabled.
Adjacent Sector Prefetch (Default = Enabled):
Use this option to disable the processor Adjacent Sector Prefetch feature. In some cases, setting this option to disabled can improve performance. Typically, setting this option to enabled provides better performance. Only disable this option after performing application benchmarking to verify improved performance in the environment. The Adjacent Sector Prefetch retrieves both sectors of a cache line when it requires data that isn't currently in the cache. When disabled, the processor will only fetch the sector of the cache line that includes the requested data. Values for this BIOS setting can be enabled or disabled.
Intel DMI Link Frequency (Default = Auto):
Use this option to set the DMI Link frequency to a lower frequency between the processor and PCH. Running at a lower frequency can reduce power consumption, but can also affect system performance. Values for this BIOS setting can be:
Last modified Nov 23, 2023.