
Characterization of File I/O Activity for
SPEC CPU2006

Dong Ye
Northeastern University

Boston, MA

dye@ece.neu.edu

Joydeep Ray
Advanced Micro Devices

Austin, TX

joydeep.ray@amd.com

David Kaeli
Northeastern University

Boston, MA

kaeli@ece.neu.edu

ABSTRACT

SPEC CPU2006 is a compute-intensive benchmark suite
designed to stress a computer system’s processor, memory
subsystem, and compiler. To construct this suite, SPEC
has selected benchmarks that are derived from real world
applications. When run with their reference inputs, these
programs place a significant computational burden on to-
day’s mainstream desktops as well as high-end workstations
and servers.

For these applications to thoroughly exercise the merits of
a particular processor/memory design point, it is necessary
to limit the amount of I/O activity generated. Since these
applications come from real world applications, the suite
developers have considered how best to limit the amount of
file-based I/O activity present in these applications. This
paper presents the characteristics of file I/O activity in the
resulting suite and its overall impact on the performance of
these applications. We also report on some of the choices
SPEC has made in order to reduce the file I/O activity in
some specific programs of the suite.

1. INTRODUCTION

The SPEC CPU benchmark suites are designed to mea-
sure the performance of a computer system’s processor and
memory subsystem, as well as the platform’s compiler code
quality. The SPEC CPU suites are used both in indus-
trial environments [8] and by the academic community [3].
These suites have undergone five major releases since SPEC’s
inception in 1989. Its latest release, CPU2006 (V1.0), was
released in August 2006 [4].

I/O operations are a necessary part of the execution of
any program. There is presently a substantial performance
gap between the speed of processor/memory and the sup-
porting I/O subsystem. Therefore I/O operations tend not
to enjoy benefits from further improvements made to the
underlying processor core and memory subsystem. Com-
piler technologies aimed at improving I/O performance are
better evaluated with dedicated workloads instead of the
SPEC CPU suites [9]. Any significant amount of I/O ac-
tivity would hinder the SPEC CPU suites from fulfilling
their design goals.

The SPEC CPU subcommittee provides a set of guide-
lines [10] to address this concern when selecting candidate

benchmarks. For CPU2006, SPEC has required that all its
constituent programs must spend at least 95% of their ex-
ecution time in the submitted code and that at least 95%
of the execution time be compute bound. We chose to look
at the user time percentage reported by the top utility as
a useful metric: a program that spends at least 95% of its
execution time in user space is guaranteed to meet the sec-
ond requirement; and a program that spends less than 95%
execution time in user space fails the first requirement.

Another design goal of the SPEC CPU suites is to es-
tablish a correlation between the performance measured by
these suites and the performance of real world compute-
intensive applications. One way SPEC approaches this goal
is by preferring real world programs for the suite [8]. How-
ever most applications contain some file I/O activity, which
must be reduced if SPEC wishes to measure the compute-
intensive portion. This paper presents a characterization of
the file I/O activity present in the CPU2006 suite and re-
ports on its performance implications. We confirm that the
file I/O activity of CPU2006 carries little weight in terms of
performance impact. We also explain the steps the SPEC
CPU subcommittee has taken to reduce the amount of file
I/O activity in CPU2006.

The organization of this paper is as follows: Section 2
presents the general characteristics of the file I/O activity
present in CPU2006. Section 3 presents the performance
impact of file I/O activity. Section 4 briefly reviews some
of the effort expended by the SPEC CPU subcommittee
to reduce the amount of file I/O in this suite. We then
conclude the paper.

The studies in this paper used SPEC CPU2006 V1.0,
plus one bugfix that reduces the amount of I/O for the
benchmark 453.povray. SPEC plans to include the bugfix
in the V1.1 maintenance release for CPU2006.

2. CHARACTERIZATION OF CPU2006

FILE I/O ACTIVITY

First, we present the characteristics of file I/O activity.
We have captured a number of statistics related to the file
I/O activity, in an attempt to have a first-order understand-
ing of the volume of file I/O activity present in this suite.

The experimental system used to gather this data is de-
scribed in Table 1. All of the data was collected when

CPU

AMD Athlon
TM

64 3400+, 2.2
GHz, single-core, with an integrated
single-channel DDR memory con-
troller

Memory
2 DIMMs of 1GB DDR333 memory
modules, with peak memory band-
width 2.66 GB/s

OS

Novell SUSE r© Linux Enterprise
Server 9 x86-64 Edition [5], Service
Pack 3, run level 5, kernel version
2.6.5

I/O
HyperTransport r© bus (maximum
bandwidth: 4 GB/s),

ATA-133 (maximum bandwidth:
133 MB/s)

Compiler

PathScale
TM

EKOPath
TM

Compiler
Suite 2.4 [7], “-O3” optimization
switch turned on, 64-bit binaries
built and run for all benchmarks

Table 1: A uniprocessor, single-core system
was used to study the overall characteristics of
CPU2006’s file I/O activity: its volume and its per-
formance impact.

running each benchmark program with its reference inputs.
The reference inputs for some programs are composed of
multiple input files. SPEC requires that the same program
be executed multiple times over each of these input files in
order to be qualified as a reference run. For such bench-
marks, we report aggregate statistics of a reference run over
all the input files in a reference input.

The Linux tool strace was used to collect the information
on each system call related to file I/O activity. Using this
data, we have calculated the statistics in the Table 2. The
middle pane of Table 2 (the six columns next to the column
listing benchmark names) presents the following file I/O
statistics:

• The number of open system calls reported by strace,

• The number of close system calls reported by strace,

• The number of read system calls reported by strace,

• The number of write system calls reported by strace,

• The total number of kilo-bytes (1,024 bytes) read from
files, calculated by adding up the return values of all
the read system calls collected by strace,

• The total number of kilo-bytes written to files, cal-
culated by adding up the return values of all write
system calls collected by strace.

It is interesting to note that three benchmarks (444.namd,
481.wrf and 482.sphinx3) have some discrepancy between
the number of open system calls and the number of close
system calls, which normally suggests a bug exists in the

code. After further investigation of all the individual files
for which mismatched open and close system calls were ob-
served, we have found that they are all due to the same
reason in the source code: an opened file is not closed be-
fore the program exits.

3. PERFORMANCE ANALYSIS OF FILE

I/O ACTIVITY

Performance characteristics of the file I/O activity are
presented in three parts: (1) Section 3.1 looks at the over-
all performance impact of file I/O activity during the entire
execution of the programs in CPU2006. (2) Section 3.2 in-
vestigates the performance impact of file I/O activity under
SPECrate runs, where multiple copies of the benchmark are
run simultaneously. (3) Section 3.3 takes a closer look at
the performance impact of file I/O activity over time for
four selected benchmarks (i.e., the histograms of file I/O
bandwidth and user time ratio observed during the execu-
tion of these programs.)

3.1 Overall performance impact of file I/O ac
tivity

The overall performance impact due to file I/O activity
is measured using two statistics: 1) the average I/O band-
width consumed during the entire execution, and 2) the
average user time (user space execution time) ratio during
the entire execution.

We ran all experiments on the same system as was de-
scribed in Table 1. The total run time for each benchmark
was reported. The average I/O bandwidth during the entire
execution for each benchmark was calculated by dividing
the total number of bytes read and written by the total ex-
ecution time. Using the utility top, we periodically collected
the user time ratio observed through the entire execution.
Since a constant sampling frequency was used during the
entire run, the average user time ratio for the program’s
execution is computed as the arithmetic mean of the ratios
collected. The right pane of Table 2 (the rightmost three
columns) lists three statistics: 1) total run time, 2) average
file I/O bandwidth, and 3) average user time ratio.

In terms of average behavior, the file I/O bandwidth is
well below the bandwidth of the hard disk interface. The
hard disk interface of the experimental system has a peak
bandwidth of 133 MB/s (as shown in Table 1) and is most
likely to be limiting factor of filesystem performance. The
average user time ratio observed also confirms that the file
I/O activity is minimal. We will take a further look at these
two characteristic over time in Section 3.3 to gain a better
understanding of the performance impact due to file I/O
activity.

3.2 Effect of scaling the number of program
instances on a multiprocessor versus the
file I/O activity.

We are starting to see multi-core and multiprocessing
become commonplace in the server and workstation mar-
kets [2]. The SPEC CPU suites have been widely used to

Benchmark
of
opens

of
closes

of
reads

of
writes

Bytes
read
(KB)

Bytes
written
(KB)

Run
time

(second)

Avg.
I/O b/w
(KB/s)

User time
(%)

int

400.perlbench 213 213 12,983 42,229 50,951 2,158 1,110 48 98

401.bzip2 18 18 896 6 112,004 5 1,530 73 98

403.gcc 72 72 63 5,717 5,535 22,846 1,350 21 99

429.mcf 8 8 803 59 3,189 232 2,220 2 99

445.gobmk 569 569 597 4,329 807 10 958 1 99

456.hmmer 16 16 13,406 13 53,563 40 972 55 99

458.sjeng 3 3 4 3,376 1 23 1,280 0 99

462.libquantum 6 6 6 1 3 0 2,740 0 99

464.h264ref 33 33 1,275 14 50,118 40 1,560 32 99

471.omnetpp 10 10 10 290 7 1,135 1,310 1 99

473.astar 24 24 72 2 13,066 2 1,310 10 99

483.xalancbmk 10 10 12 361 75 0 1,540 0 99

fp

410.bwaves 15 15 13 3 6 4 1,570 0 99

416.gamess 53 53 14,418 4,022 344,623 158,451 1,880 268 99

433.milc 6 6 8 19 4 6 1,570 0 99

434.zeusmp 13 13 13 3 7 7 1,270 0 99

435.gromacs 16 16 830 1 3,285 0 1,020 3 99

436.cactusADM 9 9 9 121 5 13 2,160 0 99

437.leslie3d 13 13 14 17 9 64 1,830 0 99

444.namd 10 9 1,860 25 7,409 93 878 9 99

447.dealII 56 56 8 15,690 4 62,472 1,110 56 99

450.soplex 18 18 37,759 229 301,925 1 1,560 194 99

453.povray 43 43 85 26,145 258 5,305 489 11 99

454.calculix 126 126 328 2,151 1,273 8,590 1,520 6 99

459.GemsFDTD 15 15 228 135 847 537 2,740 1 99

465.tonto 37 37 213 69 1,844 1,491 1,210 3 99

470.lbm 8 8 648 3 2,568 10 2,990 1 99

481.wrf 39 38 2,396 6 21,662 22 1,570 14 99

482.sphinx3 137 134 3,098 2,972 36,160 3,968 2,420 17 99

Table 2: The I/O activity in CPU2006 and its overall performance impact.

evaluate the performance of the processor and memory sub-
systems of these systems [11, 13]. Given the expanded re-
sources on these systems (multiple processors and/or cores),
it is of interest to see how running multiple programs con-
currently introduces additional I/O activity and affects the
performance of these applications. The system utilized for
this study is shown in Table 3.

The experiments involved in this study are as follows:
SPECrate [12] runs with 1-4 copies were performed for all
the CPU2006 programs (During an n-copy SPECrate run,
n processes are run concurrently. Each process runs the
same benchmark binary with its own copy of the reference
input in its own directory.) To reduce the variation intro-
duced by the operating system scheduler, each process was
bound to a dedicated processor as recognized by the op-
erating system. The user time ratio on processor #0 was
recorded periodically using the same method as described
in Section 2. Table 4 lists the average user time ratio ob-

served on processor #0 during all the four SPECrate runs.
We observed that for the vast majority of the programs in

CPU2006, multiple copies of the benchmark program run-
ning on a multiprocessor of up to four processors did not
increase the I/O activity noticeably. The only exception to
this observation was 429.mcf. Due to its large memory foot-
print (especially when run as a 64-bit binary [14], which is
the case for this study), 429.mcf incurs heavy paging activ-
ity on this 4GB system, during both three- and four-copy
SPECrate runs. The steady-state memory footprint (resi-
dent memory) of a single-copy SPECrate run for 429.mcf
with its reference input is about 1.6 GB on this experi-
mental system. In fact the program itself does not incur
significant file-based I/O activity, as shown in Table 2.

3.3 Performance impact of file I/O activity
over time

Real world applications generally incur some I/O activity.

CPU

AMD Opteron
TM

2218 dual-core
processor, 2.6 GHz, two processors
on board, dual-channel DDR2 mem-
ory controller integrated in each core

Memory
4 DIMMs 1GB DDR2-667 memory
modules, with peak memory band-
width 10.67 GB/s

OS
openSUSE 10.1 x86-64 Edition [6],
run level 3, kernel version 2.6.16

I/O
HyperTransport r© (maximum band-
width: 4 GB/s),

SATA-I (maximum bandwidth: 150
MB/s)

Compiler

GCC 4.1.1 [1], “-O3” optimization
switch turned on to build all bench-
marks except 400.perlbench, “-O2”
optimization switch turned on to
compile 400.perlbench, 64-bit bina-
ries built and run for all benchmarks

Table 3: A multiprocessor (two dual-core proces-
sors) system was used to study the performance
impact of file I/O activity under SPECrate runs
with 1-4 copies.

Programs commonly read the bulk of their initial memory
values from the filesystem upon startup and then write re-
sults to files upon completion. Sporadic interactions with
the filesystem in the middle of execution may also be en-
countered. As long as the file I/O activity is concentrated
(i.e., lasts only a short period of time) and is infrequent, it
has only limited influence on the performance of the appli-
cation. The SPEC CPU subcommittee has made a delib-
erate effort to only include programs containing little and
infrequent I/O activity.

In this section we investigate the dynamics of the perfor-
mance impact of file I/O activity over the entire execution
for four selected benchmarks. Both file I/O bandwidth and
user time ratio were collected using the same method as
was described in Section 2. Figures 1- 4 show these two
pieces of data plotted over time for the following four bench-
marks: 401.bzip2, 416.gamess, 447.dealII, and 450.soplex.
These four benchmarks experienced the heaviest average
I/O bandwidth usage over their executions (as shown in
Table 2).

Each data point in these figures represents the average
file I/O bandwidth and user time ratio observed during the
preceding 5 seconds of run time. Since different profiling
methods were used to collect these two pieces of data, the
two figures for each benchmark do not match exactly in
terms of its total execution time. However neither of the
run times reported under these profiling settings deviates
from the native (when no profiling is performed) run time
by more than 2%. For all four benchmarks we show that
there is infrequent file I/O activity, and we find that the
user time ratio observed confirms that file I/O activity has

Benchmark 1 2 3 4

int

400.perlbench 99 98 99 99

401.bzip2 99 98 98 98

403.gcc 98 97 98 97

429.mcf 99 99 82 12

445.gobmk 98 98 98 98

456.hmmer 99 99 99 99

458.sjeng 99 99 99 99

462.libquantum 99 99 99 99

464.h264ref 99 99 99 99

471.omnetpp 99 99 99 99

473.astar 99 99 99 99

483.xalancbmk 99 99 99 99

fp

410.bwaves 99 99 99 99

416.gamess 99 99 99 99

433.milc 99 99 99 99

434.zeusmp 99 99 99 99

435.gromacs 99 99 99 99

436.cactusADM 99 99 99 99

437.leslie3d 99 99 99 99

444.namd 99 99 99 99

447.dealII 99 99 99 99

450.soplex 99 99 99 98

453.povray 99 99 99 99

454.calculix 99 99 99 99

459.GemsFDTD 99 99 99 99

465.tonto 99 99 99 99

470.lbm 99 99 99 99

481.wrf 99 99 99 99

482.sphinx3 99 99 99 99

Table 4: The average user time ratio observed on
processor #0 under SPECrate runs with 1-4 copies.

little impact on performance for these programs. In three
of four of these benchmarks (416.gamess, 447.dealII, and
450.soplex), we can see that programs or runtime periods
that have little file I/O activity tend to spend almost all of
their time in user mode.

4. COMMENTS AND CONCLUSIONS

During the development of CPU2006, the SPEC CPU
subcommittee measured the amount of file I/O activity in
the candidate benchmarks and also took steps to keep I/O
under control. For example, in the compression benchmarks
like bzip2, the input data is read from memory and the
compressed data is written into memory, instead of being
read from or written to disk. Another benchmark that per-
forms a significant amount of file I/O is 416.gamess. This
benchmark is a computational chemistry program. Some
algorithms used in the original application store interme-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200

F
ile

 I
/O

 b
a

n
d

w
id

th
 (

K
B

/s
)

Time (seconds)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

U
s
e

r
ti
m

e
 r

a
ti
o

 (
p

e
rc

e
n

ta
g

e
)

Time (seconds)

Figure 1: The file I/O bandwidth and user time ratio observed during the execution of 401.bzip2. Note
that each vertical dashed line in the left figure indicates that the benchmark changes its input file at that
point during the run. (The reference input set for 401.bzip2 is composed of six input files.)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000 1200 1400 1600

F
ile

 I
/O

 b
a

n
d

w
id

th
 (

K
B

/s
)

Time (seconds)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

U
s
e

r
ti
m

e
 r

a
ti
o

 (
p

e
rc

e
n

ta
g

e
)

Time (seconds)

Figure 2: The file I/O bandwidth and user time ratio observed during the execution of 416.gamess.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900

U
s
e

r
ti
m

e
 r

a
ti
o

 (
p

e
rc

e
n

ta
g

e
)

Time (seconds)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900 1000

F
ile

 I
/O

 b
a

n
d

w
id

th
 (

K
B

/s
)

Time (seconds)

Figure 3: The file I/O bandwidth and user time ratio observed during the execution of 447.dealII.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 200 400 600 800 1000 1200

F
ile

 I
/O

 b
a

n
d

w
id

th
 (

K
B

/s
)

Time (seconds)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

U
s
e

r
ti
m

e
 r

a
ti
o

 (
p

e
rc

e
n

ta
g

e
)

Time (seconds)

Figure 4: The file I/O bandwidth and user time ratio observed during the execution of 450.soplex.

diate SCF computation results on disk. This causes a rel-
atively heavy amount of file I/O activity. The code used
for 416.gamess in the CPU2006 suite only uses the “direct
SCF” algorithm for SCF computation, which minimizes the
amount of intermediate storage consumed.

In summary, all programs in the CPU2006 suite contain
very little file I/O activity. This helps to bolster the posi-
tion of this suite as a CPU benchmark set to measure the
performance of processor, memory subsystem and compiler
technology. Our scalability analysis done in this paper in-
dicates that the I/O activity present in this suite and its
associated performance impact will remain small on today’s
mainstream desktop and workstations systems, although we
have not explored I/O on large servers.

5. ACKNOWLEDGMENTS

The authors want to thank Darryl Gove, John Henning,
and Jeff Reilly for their helpful reviews and/or constructive
suggestions. Part of this work was performed on equip-
ments donated by AMD Inc.

AMD, AMD Athlon 64, AMD Opteron, and AMD Hyper-
Transport are trademarks of Advanced Micro Devices, Inc.
SUSE is the registered trademark of Novell, Inc. EKOPath
and PathScale are trademarks of QLogic, Co. Linux r© is
the registered trademark of Linus Torvalds.

6. DISCLAIMER

All performance numbers reported in this paper are esti-
mates because they are not fully compliant with SPEC run
and reporting rules [12]. It is expected, though not proven,
that results from a fully compliant run would be very close.

7. REFERENCES

[1] Free Software Foundation. GCC, GNU Compiler
Collection, http://gcc.gnu.org.

[2] Ace’s Hardware. Volume MP Systems, http:
//www.aceshardware.com/read.jsp?id=45000338.

[3] John Hennessy, Daniel Citron, David Patterson, and
Guri Sohi. The Use and Abuse of SPEC: An ISCA
Panel. IEEE Micro, 23(4):73–77, July/August 2003.

[4] John L. Henning. SPEC CPU2006 Benchmark
Descriptions. ACM SIGARCH Computer Architecture
News, 34(4):1–17, September 2006.

[5] Novell. SUSE Linux,
http://www.novell.com/products/suselinux.

[6] openSUSE. openSUSE, http://www.opensuse.org.

[7] QLogic. PathScale EKOPath
TM

Compiler Suite,
http://www.pathscale.com.

[8] Jeff Reilly. Invited Talk on “Evolve or Die: Making
SPEC’s CPU Suite Relevant Today and Tomorrow”.
In 2006 IEEE International Symposium on Workload
Characterization (IISWC 2006), pages 119–119,
October 2006.

[9] Kevin Skadron, Margaret Martonosi, David I.
August, Mark D. Hill, David J. Lilja, and Vijay S.
Pai. Challenges in Computer Architecture
Evaluation. IEEE Computer, 36(8):30–36, 2003.

[10] SPEC. SPEC CPU Benchmark Search Program,
http://www.spec.org/cpu2005/search.

[11] SPEC. SPEC CPU2000 published results,
http://www.spec.org/cpu2000/results.

[12] SPEC. SPEC CPU2006 Documentation,
http://www.spec.org/cpu2006/Docs.

[13] SPEC. SPEC CPU2006 published results,
http://www.spec.org/cpu2006/results.

[14] Dong Ye, Joydeep Ray, Christophe Harle, and David
Kaeli. The Performance Characterization of SPEC
CPU2006 Integer Benchmarks on x86-64
Architecture. In 2006 IEEE International Symposium
on Workload Characterization (IISWC 2006), pages
120–127, October 2006.

