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Abstract 

On August 24, 2006, the Standard Performance Evalua-

tion Corporation (SPEC) announced CPU2006 – the next gen-

eration of industry-standardized CPU-intensive benchmark 

suite. The SPEC CPU benchmark suite has become the most 

frequently used suite for simulation-based computer architec-

ture research. Detailed processor simulators take days to 

weeks to simulate each of the SPEC CPU programs. In order 

to reduce simulation to a tractable time, architects and re-

searchers often use only a subset of benchmarks from the 

SPEC CPU suite to evaluate the potential of their ideas. Prior 

research has demonstrated that statistical techniques are most 

effective to find a representative subset of benchmark pro-

grams from a benchmark suite.   The objective of this paper is 

to apply multivariate statistical data analysis techniques for 

selecting a representative subset of programs from the SPEC 

CPU2006 benchmark suite.  We measure a set of performance 

counter based characteristics for the SPEC CPU2006 pro-

grams across a large number of architectures and apply multi-

variate statistical analysis techniques to find a representative 

subset of benchmarks and representative input sets wherever 

multiple input sets are provided.  The results from this paper 

will help architects and researchers to find a smaller but repre-

sentative set of programs from the SPEC CPU2006 bench-

mark suite, when time or resource constraints prohibit experi-

mentation with the entire benchmark suite. 

 

1.  Introduction 

SPEC, since its formation in 1988, has made many con-

tributions in developing and distributing technically credible, 

portable, real-world application-based benchmarks for com-

puter designers, architects, and consumers. SPEC CPU 

benchmark suite comprises of compute-intensive floating 

point and integer programs for measuring the performance of a 

computer’s processor, memory, and compiler.  In order to 

keep pace with the technological advancements, compiler im-

provements, and emerging workloads, new programs were 

added,  programs that are susceptible to unfair compiler op-

timizations were removed, program run times were increased, 

and memory access intensity of programs was increased in 

every generation of the benchmark suite.  The SPEC CPU 

benchmark suite, which was first released in 1989 as a collec-

tion of ten computation-intensive benchmark programs, is now 

in its fifth generation and has grown to 29 benchmarks. The 

SPEC CPU benchmark suite is primarily used by computer 

system manufacturers to measure and report performance of 

their computer systems and by microprocessor designers and 

researchers for evaluating design trade-offs and novel design 

ideas. Customers typically use the results reported to SPEC to 

make purchasing decisions.  

As computer systems get faster the benchmark run times 

are increased across generations, to ensure that the bench-

marks run for a long enough time to make meaningful meas-

urements. However, longer-running benchmarks significantly 

increase the cost of performance evaluation, more so when 

simulating them on cycle accurate simulators.  The response 

of researchers to this has been two fold – develop intelligent 

techniques to reduce simulation time of each benchmark and 

find a smaller but representative set of benchmark programs. 

In this paper we focus on the second approach. 

A poorly chosen set of benchmark programs may not ac-

curately depict the true performance of the processor design.  

On one hand, selecting too few benchmarks may not cover the 

entire spectrum of applications that may be executed on a 

computer; while on the other hand, selecting too many similar 

programs will increase evaluation time without providing ad-

ditional information.  Therefore, in order to reduce the bench-

marking effort, a good workload should have programs that 

are well distributed within the target workload space (compris-

ing of N axes, each representing a program characteristic) 

without being clustered in specific areas.  Understanding simi-

larity between programs can help in selecting benchmark pro-

grams that are distinct, but are still representative of the target 

workload space.  

In this paper we use multivariate statistical analysis tech-

niques such as Principal Components Analysis (PCA) and 

Cluster Analysis to find a subset of CPU2006 programs that is 

representative of the whole suite. This is a quantitative ap-

proach to selecting benchmarks based on the diversity of their 

characteristics. There are many workload characteristics that 

affect performance. It is difficult to visualize the workload 

space formed by these characteristics. Multivariate statistical 

analysis techniques help us to visualize the workload space 

and find representative benchmarks. The method has two main 

steps: The first step involves selecting the important character-

istics of programs that form the workload space; in the second 

step we use the characteristics of all programs to perform PCA 



 

[7] and Cluster Analysis to find a subset of programs. We will 

discuss each of these steps in detail in the subsequent sections. 

The characteristics that are used in this paper are derived from 

the performance counter measurements of a wide range of 

state-of-the-art processors.   A set of workload characteristics 

that  cover a wide enough range of the program characteristics 

are included to make a meaningful comparison between the 

programs. As the programs in SPEC CPU2006 suite are very 

long (some of them in the range of few trillion instructions), 

the cost of measurement significantly increases if we use 

simulation methodology. Therefore, we use performance 

counter based characteristics such as cache miss-rates, branch 

mispredictions per instruction etc. More details on the differ-

ent characteristics of programs and the method used to choose 

them are described in section 2. 

The new suite is larger than the previous, and will exer-

cise new corners of CPUs, memory systems, and compilers – 

especially C++ compilers.  Where CPU2000 had only 1 

benchmark in C++, the new suite has 7, including one with ½  

million lines of C++ code.  As in the previous CPU suites, 

Fortran and C languages are also well represented. 

 

2.  Methodology 

The SPEC CPU2006 suite, like its predecessors is di-

vided into two parts: the integer component (CINT2006 

benchmarks) and the floating point component (CFP2006 

benchmarks). Since the results are reported separately for 

these two groups of programs we perform the analysis and 

find a subset for each of these groups separately. Measuring 

characteristics that are used to find similarity between bench-

mark programs is a very important part of the methodology. 

Many researchers have proposed different ways to measure 

these characteristics. The characteristics can be broadly classi-

fied into microarchitecture-dependent and microarchitecture- 

independent characteristics [4]. The microarchitecture-

independent characteristics measure inherent characteristics of 

program at the level of Instruction Set Architecture (ISA), or 

at source code level. The microarchitecture-dependent charac-

teristics such as cache miss-rate and branch misprediction rate 

are characteristics of a program that are dependent on the 

hardware configurations. These characteristics depend on the 

underlying microarchitecture and therefore can vary with ma-

chine configurations. Both the microarchitecture-independent 

and microarchitecture-dependent characteristics are dependent 

on the compiler and the ISA. Phansalkar et al.[4] show how 

microarchitecture-independent characteristics at ISA level can 

be used to categorize programs.  

During the process of benchmark selection for SPEC 

CPU2006, benchmark similarity was used as one of the many 

criteria. However, the time required to measure the microar-

chitecture-independent characteristics proposed by Phansalkar 

et al.[4] is very high and hence cannot be completed in the 

short span of time. Therefore, we used an alternative approach 

of measuring the important characteristics using hardware 

performance monitoring counters from a wide range of archi-

tectures. A potential problem of using this method is that the 

characteristics that have lesser impact on performance nay get 

equal weight as the characteristics that show significant per-

formance impact. In order to reduce such undesirable effects, 

four different SPEC members performed a correlation analysis 

of Cycles-Per-Instruction (CPI) with various characteristics on 

their respective machines. A common set of characteristics 

were chosen based on such a correlation analysis, and the ex-

perience of the hardware designers and the compiler experts. 

Since the different characteristics are measured on different 

machines, each of them forms a characteristic of a program. If 

we have n machines and we measure m metrics for each ma-

chine, we have n x m characteristics for each program. We 

then perform statistical analysis such as PCA and cluster 

analysis for these n x m characteristics for all programs.  It is 

likely that some of these characteristics are correlated (for 

instance, consider that 2 machines have very similar microar-

chitectures). This correlation will be removed by PCA. 

A weakness of using microarchitecture-dependent meas-

urements is the bias towards the architecture of a particular 

system.  However, we try to eliminate that bias by using 

measurements from multiple state-of-the-art computer sys-

tems. These systems have varying microarchitecture (includ-

ing dynamic and statically scheduled architecture), varying 

degrees of out-of-order instruction issue, varying cache sizes 

and different cache hierarchy structures. Several different 

commercial-grade compilers are also used, in order to reduce 

the sensitivity to compiler differences.  We would also like to 

point out that in addition to the characteristics shown in Ta-

ble 1, new characteristics may be required to represent fea-

tures in future systems that significantly affect performance. In 

summary, we hope that the variability in the microarchitec-

tures/ISAs/compilers, have resulted in capturing most of the 

differences between the benchmarks. 

 

Table 1: List of program characteristics for Integer and FP 

benchmarks 

 

Integer benchmarks Floating point benchmarks 

Integer operations per in-

struction 

Floating point ops per in-

struction 

L1 I- cache misses per in-

struction 

Memory references per in-

struction 

Number of branches per 

instruction 

L2 D-cache misses per in-

struction 

Number of mispredicted 

branches per instruction 

L2 data cache misses per L2  

Accesses 

L2 data cache misses per 

instruction 

Data TLB misses per in-

struction 

ITLB misses per instruction L1 data cache misses per 

instruction 

 



 

Table 1 shows the characteristics that were measured 

for each program on five different computer systems (four 

different ISAs) from SPEC member companies. Note that the 

important characteristics that affect performance for the CINT 

and CFP benchmarks are different. As mentioned before, these 

characteristics that form the workload space were based on the 

experience of hardware architects, compiler designers, and the 

correlation analysis from four different SPEC affiliated com-

panies. In general, the characteristics that were chosen are also 

the ones that are well correlated to performance.  

 

2.1 Principal Components Analysis 
The measured data consists of a large number of vari-

ables - each performance counter characteristic for each ma-

chine is considered a separate variable. Considering the six 

characteristics measured on each of the five different systems, 

we have thirty characteristics per program. It is humanly im-

possible to simultaneously look at all the data and draw mean-

ingful conclusions from them.  Hence a multivariate statistical 

data analysis technique, namely Principal Component Analy-

sis [7] is used to analyze the data. In order to isolate the effect 

of varying ranges of each parameter, the data is first normal-

ized i.e. translated to  zero mean and standard deviation equal 

to one, for each variable. This technique also allowed us to 

work with the SPEC member companies without disclosing 

the raw data about their individual state of the art machines. 

PCA is a classic multivariate statistical data analysis technique 

that helps to reduce the dimensionality of a data set while re-

taining most of the original information. PCA computes new 

variables, so called principal components (PCs), which are 

linear combinations of the original variables, such that all the 

PCs are uncorrelated. PCA transforms p variables X1, X2,...., 

Xp into p PCs Z1,Z2,…,Zp  such that:  
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 This transformation has the property Var [Z1] � Var [Z2] 

�…� Var [Zp] which means that 1Z  contains the most infor-

mation and Zp the least.  Given this property of decreasing 

variance of the PCs, we can remove the components with the 

lower values of variance from the analysis.  This reduces the 

dimensionality of the data set while controlling the amount of 

information that is lost. We use a standard technique to choose 

PCs where only the top few PCs which have eigen-values 

greater than or equal to one are retained.  In order to capture 

the entire information from p original variables, p PCs may be 

required, but if there are several correlated variables, a small 

number of PCs can capture most of the information from the 

original variables. This results in reduced dimensionality.  

 

2.2 Cluster Analysis 
Clustering is a statistical technique that groups programs 

with similar features. There are two commonly used clustering 

techniques called the k-means clustering and hierarchical clus-

tering. In this paper we use hierarchical clustering since hier-

archical clustering and dendrogram helps us to look at multi-

ple clustering possibilities at the same time and the user can 

pick the number of clusters to be formed.  Hierarchical cluster-

ing is a technique for finding relatively homogeneous clusters 

of items based on their measured characteristics.  Given a set 

of N programs to be clustered and an N x N similarity matrix 

containing the distance between the programs using the meas-

ured workload characteristics, the hierarchical technique starts 

with each case (benchmark or program-input pair in our case) 

in a separate cluster and then combines the clusters sequen-

tially, merging the clusters at each step until all cases merge to 

form one cluster.  When there are N cases, this involves N-1 

clustering steps, or fusions.  The algorithm used for hierarchi-

cal clustering is as follows: 

1. Each program is assigned to its own cluster, such that if we 

have N programs, we now have N clusters, each containing 

just one program. The distances (similarities) between the 

clusters equal the distances (similarities) between the pro-

grams they contain (we used complete linkage, which 

means that the distance between two clusters is the dis-

tance between the two farthest points in the clusters).  

2. Find the closest (most similar) pair of clusters and merge 

them into a single cluster, so that we have one less cluster. 

3. Compute distances (similarities) between the new cluster 

and each of the old clusters. 

4. Repeat steps 2 and 3 until all items are clustered into a 

single cluster of size N. 

This hierarchical clustering process can be represented as 

a tree or dendrogram, where each step in the clustering process 

is illustrated by a joint in the tree. The numbered scale corre-

sponds to the linkage distance obtained from the hierarchical 

cluster analysis. 

 

 

3.  Subsetting the CPU2006 suite 

Many CPU2006 benchmarks execute trillions of instruc-

tions, and the time required to simulate them on cycle-accurate 

simulators is prohibitively high. This section demonstrates the 

result of applying PCA and cluster analysis for selecting a 

subset of benchmark programs when an architect or researcher 

is constrained and wants to select a reduced subset of pro-

grams from the suite.  The Euclidean distance between the 

benchmarks is used as a measure of dissimilarity and com-

plete-linkage distance is computed to create a dendrogram as 

shown in Figure 1. Eight PCs are chosen which retain 97% 

of the variance. The dimensionality of the data is reduced from 

thirty (six characteristics for five machines each) to eight. This 

shows that there were many variables that were correlated. 

The dendrogram can be used by researchers to select bench-

marks by using a simple technique discussed below.  

In the dendrogram in Figure 1 for CINT2006, the 

horizontal axis shows the linkage distance indicating the dis-

similarity between the benchmarks. The ordering on the y-axis 



 

does not have particular significance, except that similar 

benchmarks appear together. Depending on the number of 

representative benchmarks to be chosen, and the degree of 

similarity desired, one can draw a vertical line at a location 

and read from there how many benchmarks are in a subset. 

For example, if a vertical line is drawn at linkage distance of 

4.5 we get 5 clusters (k=5) and at about 4.3 we get 6 clusters 

(k=6). Table 2 has two rows with each showing the repre-

sentative set of benchmarks for k=5 and k=6. All the bench-

marks which join to form a single horizontal line that is inter-

sected by the vertical line form a cluster. The benchmark clos-

est to the center of the cluster is identified from the distance 

matrix of all the benchmarks and chosen as the representative. 

As we travel from right to left on the dendrogram the number 

of benchmarks in a subset increases. This helps the user to 

select appropriate benchmarks depending on the desired num-

ber of benchmarks. When forming a subset of 6 benchmarks, 

429.mcf gets added to the subset of 5 benchmarks. In both the 

subsets of six and five the first cluster is represented by 

458.sjeng. The distance of each of the benchmarks in the clus-

ter to the centre of its own cluster has to be recalculated and a 

representative has to be chosen again as we move left but in 

this case 458.sjeng remains the representative. In the next sec-

tion we compare the two subsets shown in Table 2 and vali-

date their ability to predict the average speedup of all bench-

marks on 5 different machines.   

 

 
 

Figure 1: Dendrogram for CINT2006 benchmarks 

 

Table 2: Subsets of CINT2006 benchmarks 

Subset of  5 458.sjeng, 462.libquantum, 403.gcc, 456.hmmer, 

483.xalancbmk 

Subset of  6 458.sjeng, 429.mcf, 462.libquantum, 403.gcc, 

456.hmmer, 483.xalancbmk  

 

Figure 2 shows a dendrogram for the floating point 

benchmarks in CPU2006 suite. Seven PCs were retained after 

performing PCA. Similar to Figure 1, Figure2 also dem-

onstrates the formation of a subset of 4 and 6 benchmarks by 

drawing vertical lines on the dendrogram at linkage distance 

of 5.25 and 4.5 respectively. The subsets are shown in Table 

3. In the next section we validate the representativeness of the 

subset of benchmarks.    

 

 
Figure 2: Dendrogram for CFP2006 benchmarks 

 

Table 3: Subset of CFP2006 benchmarks 

 
Subset of 4 481.wrf, 253.povray, 436.cactusADM, 433.milc 

Subset of 6 481.wrf, 450.soplex, 470.lbm, 453.povray, 
436.cactusADM, 433.milc 

 

4.  Validation of the subsets 

The subsets that were generated in the previous section 

are validated in this section using a carefully chosen set of 5 

different machines from the SPEC website [12]. The aim of 

this validation experiment is to see how well the subset of k 

benchmarks predicts the average speedup on the five ma-

chines. Figure 3 shows three bars for each machine. The 

first two bars for each machine are the weighted geometric 

mean of speedup numbers for the subsets with 5 and 6 bench-

marks respectively. The third bar is the average speedup of all 

benchmarks measured on that machine with respect to the 

SPEC standard baseline machine. These numbers are obtained 

from the SPEC website where the scores are reported by dif-

ferent members. We can see that the difference in errors be-

tween the two subsets is not very significant. Figure 4 

shows a similar validation experiment for the floating point 

benchmarks. This validation experiment shows the error that 

will be seen if only a subset of benchmarks is used as com-

pared to the whole suite. Also, the errors are within reasonable 

limits so that they do not change the ranking of these five ma-

chines in almost all the cases.   
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Figure 3: Validation of subsets of integer benchmarks using 

speedup with respect to SPEC base machine 
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Figure 4: Validation of subsets of floating point benchmarks 

using speedup with respect to SPEC base machine 

 

5.  Selecting representative input sets  

 Many benchmarks in the CPU2006 have multiple 

input sets called workloads. A reportable SPEC run uses all 

the workloads for each benchmark; however it is possible to 

use PCA and clustering to identify a representative input set, 

helping architecture researchers to reduce simulation 

time/effort. Henceforth we will refer to a program input pair as 

a workload. In SPEC CPU2006 403.gcc benchmark has nine 

workloads. The program characteristics shown in Table 1 

were measured for all the different workloads separately and 

for the whole benchmark. Whenever a performance data is 

reported for a benchmark, it is the aggregate behavior sum-

ming up all its workloads. The benchmark suffix shows the 

workload and the benchmark name without a suffix signifies 

the benchmark (aggregating all inputs).  

 A benchmark’s workload closest to the whole 

benchmark in the workload space is marked as the representa-

tive workload. This can be done by looking up in the distance 

matrix. In CINT2006, the benchmarks that have multiple input 

sets are 400.perlbench, 401.bzip2, 403.gcc, 445.gobmk, 

456.hmmer, 464.h264ref, 473.astar. For each of these bench-

marks we list a representative workload. Table 4 shows the 

list. We also do similar analysis for CFP2006. In this category 

there are only two benchmarks with multiple workloads. i.e. 

416.gamess and 450.soplex. For each of these benchmarks 

their representative workloads are listed in Table 4.  

 

Table 4: List of representative input sets for SPEC CPU2006 

 

CINT2006 benchmarks 464.h264avc   -  input set 2 

400.perlbench -  input set 1 473.astar      -  input set 2 

401.bzip2       -   input set 4  

403.gcc          -   input set 1 CFP2006 benchmarks 

445.gobmk     -  input set 5 416.gamess  -  input set 3 

456.hmmer     -  input set 2 450.soplex    -  input set 1 

 

 

6.  Subsets based on branch and memory 
access characteristics 

Often, researchers focus on optimizing the design to take 

advantage of certain characteristics of programs. In this sec-

tion, we look at the data access performance characteristics 

and branch prediction characteristics separately to identify 

unique programs from these perspectives. These subsets will 

be useful for data cache and branch predictor related stuides. 

When performing this analysis we put CINT and CFP work-

loads in the same pool i.e. we do not evaluate them as two 

separate components. 

Figures 5 and 6 show the scatter plot and dendrogram 

respectively, based on the first 2 PCs of the branch character-

istics, covering approximately 92% of the variance. The scat-

terplots of PC2 vs. PC1 can be easily used to visually identify 

the clusters as the benchmarks are plotted directly in the trans-

formed workload space.  The CFP benchmarks are clustered 

together but the CINT programs clearly show the diversity. A 

few CINT workloads overlap with the cluster of CFP work-

loads on the right side of the plot. Two CINT benchmarks 

464.h264ref and 456.hmmer have branch characteristics that 

are not very different from the CFP programs. Majority of the 

floating point programs have very little diversity in their 

branch characteristics. The benchmarks with high or positive 

value of PC1, e.g. majority of CFP benchmarks and 

464.h264ref and 456.hmmer show less misprediction rates. On 

the other hand CINT benchmarks are more spread out in the 

space and show significantly diverse behavior. CINT bench-

marks like 458.sjeng and 445.gobmk lie on the left side of the 

plot and hence show much higher misprediction rate. The 

dendrogram shown in the Figure 6 below can be used to 

select benchmarks with diverse branch characteristics. A simi-

lar technique of drawing a line intersecting the axis showing 

the linkage distance can be used to find a subset. The bench-

marks seen clustered in Figure 5 are also seen to be close in 

the dendrogram.  



 

 

Figure 5: The CINT and CFP programs plotted in the 

PC space using only branch predictor characteristics  

 

 

Figure 6: Dendrogram of CINT and CFP benchmarks 

based on branch characteristics only 

 
Figure 7: The CINT and CFP programs plotted in the 

PC space using only data access characteristics 

(PC2 Vs PC1) 

 

 

     Figure 8: The CINT and CFP programs plotted in the PC   

space using only data access characteristics (PC4 Vs PC3) 

 

In Figure 7 the benchmarks that show negative value 

of PC1 e.g. 429.mcf, 471.omnettp, 462.libquantum show 

higher miss-rates. The CFP benchmarks that are located at the 

top show very high percentage of memory accesses and hence 

should also be considered while picking benchmarks for cache 

studies.  In Figure 8, benchmarks that show a positive value 

of PC3 and PC4 show a higher DTLB misses and percentage 

of memory accesses. The scatter plots can be used to visually 

identify the similarity between benchmarks but the dendro-

gram should be used to pick a subset of benchmarks in the 

same way as shown in Figure 1. Figure 9 shows the den-

drogram of CINT and CFP benchmarks based on only the data 

accesses behavior. This can be used by researcher to find a 

subset of diverse benchmarks for cache studies.  

 



 

 
 

Figure 9: Dendrogram for CINT2006 and CFP2006 bench-

marks based on data access characteristics only 

 

7.  Related Work 

Eeckhout et.al. [1,2] measure many different workload 

characteristics such as instruction mix, branch prediction accu-

racy, the data and instruction cache miss rates, average num-

ber of instructions in a basic block, maximum amount of par-

allelism inherent to programs. In  their work [1,2], two pro-

grams are considered to be similar if they show similar work-

load characteristics and hence lie close to each other in the 

workload space built from these characteristics. The authors 

use PCA and Cluster Analysis to find similar programs. The 

characteristics chosen are a mix of microarchitecture-

dependent and microarchitecture-independent metrics. 

Vandierendonck and Bosschere [3] primarily used mi-

croarchitecture-dependent metrics such as execution time or 

SPEC CPU peak performance rating for classifying programs.  

The technique aims at finding redundant programs which are 

inherently similar to the others and do not add any information 

while using benchmarks to rank machines. Vandierendonck 

and Bosschere [3] analyzed the SPEC CPU2000 benchmark 

suite peak results on 340 different machines representing eight 

architectures, and used PCA to identify the redundancy in the 

benchmark suite. In [3], the authors quantify redundancy as 

the inability of a program to show different speedup on two 

different machines. The programs that do not show very dif-

ferent speedups are considered redundant. In other words [3] 

concludes that we do not need such redundant programs to 

rank the predecided 340 machines. The main drawback of that 

method is that it cannot be used if the performance scores for 

many machines are not available especially at the time of de-

signing a benchmark suite. Giladi and Ahituv [6] also had a 

similar approach towards finding a subset of programs. They 

found that the ten programs of SPEC89 suite could be reduced 

to six without affecting the SPEC rating. They also found that 

for SPECint92, three instead of six programs are sufficient and 

for SPECfp92 seven out of fourteen are enough to get a simi-

lar SPEC rating on all the machines at that time. 

Phansalkar et.al. [4] characterized benchmarks using mi-

croarchitecture-independent metrics to find a representative 

subset. The metrics are independent of microarchitecture but 

dependent on compiler used to compile benchmarks. It takes a 

significantly long time to generate the microarchitecture-

independent metrics. This methodology is suitable for the 

problems discussed in this paper. But very long runtime of the 

benchmarks with some of them about few trillion instructions 

long makes the methodology in [4] impractical. Citron [9] 

presented subsets based on use by the computer architecture 

research community. The subsets had similarity to the subsets 

presented by Phansalkar et .al, however, there were differ-

ences as well.  

 

8.  Conclusion 

The process of subsetting may result in loss of informa-

tion and should only be used when it is difficult to run the 

complete SPEC CPU suite. This paper provides a quantitative 

approach to guide selection of benchmarks when a researcher 

cannot use all the benchmarks in the process of performance 

evaluation and helps to keep the loss of information very low. 

This methodology is based on using performance counters to 

measure different characteristics of programs on different sys-

tems, and using statistical analysis techniques such as PCA 

and clustering to visualize the workload space. A weakness of 

using microarchitecture-dependent measurements is the bias 

towards the architecture of a particular system.  However, we 

try to eliminate that bias by using measurements from multiple 

computer systems with four different ISAs. Other than the 

characteristics of programs used in this paper, users may be 

interested in measuring more characteristics relevant to their 

study. Users should use their expertise to select characteristics 

specific to their objectives.  In this paper, two sets of dendro-

grams are presented, one that illustrates the similarity between 

benchmarks based on overall performance characteristics, and 

the other which includes only branch and data access metrics. 

The paper also shows the methodology to find the input set 

that represents the whole run of the benchmark with all the 

input sets. This is very useful in academic research since a lot 

of research papers show the use of only a single input set per 



 

benchmark. In such a case the input set that is most represen-

tative of the whole run of the benchmark should be chosen.  

 

9.  Disclaimer 

All the observations and analysis done in this paper on 

SPEC CPU2006 benchmarks are the authors’ opinions and 

should not be used as official or unofficial guidelines from 

SPEC in selecting benchmarks for any purpose. This paper 

only provides guidelines for researchers and academic users to 

choose a subset of benchmarks should the need be.  

 

10.  Acknowledgements 

The authors express their gratitude to the following 

SPEC member companies  (IBM, Sun Microsystems, Intel, 

AMD, Apple, HP, SGI) for providing performance counter 

data from their systems, for the analysis presented in this pa-

per and/or the clustering analysis during the selection of the 

CPU2006 suite. We enjoyed the opportunity to interact with 

the SPEC CPU Subcommittee and provide our analysis re-

garding the similarity of the programs. The researchers are 

supported in part by National Science Foundation under grant 

number 0429806. Ajay Joshi is supported by an IBM fellow-

ship. 

 

11.  References 

[1] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, 

“Designing computer architecture research workloads”, 

IEEE Computer, 36(2), pp. 65-71, Feb 2003. 

 

[2] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, 

“Quantifying the impact of input data sets on program be-

havior and its applications”, Journal of Instruction Level 

Parallelism, vol 5, pp. 1-33, 2003. 

 

[3] H. Vandierendonck, K. Bosschere, “Many Benchmarks 

Stress the Same Bottlenecks”, Proc. of the Workshop on 

Computer Architecture Evaluation using Commerical 

Workloads (CAECW-7), pp. 57-71, 2004. 

 

[4] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, 

“Measuring Program Similarity: Experiments with SPEC 

CPU Benchmark Suites”.  IEEE International Symposium 

on Performance Analysis of Systems and Software. 

March 2005 

 

[5] K. M. Dixit: Overview of the SPEC Benchmarks. "The 

Benchmark Handbook", Chapter 9, 1993 

 

[6] R. Giladi and N. Ahituv, “SPEC as a Performance 

Evaluation Measure”, IEEE Computer, Aug 1995, Vol. 

28, No. 8, pp 33-42 

 

[7] G. Dunteman, Principal Components Analysis, Sage Pub-

lications, 1989 

 

[8] L. John, P. Vasudevan and J. Sabarinathan, “Workload 

Characterization: Motivation, Goals and Methodology”, 

In Workload Characterization: Methodology and Case 

Studies, Edited by L. John and A. M. G. Maynard, IEEE 

Computer Society, pp. 3-14, November 1998 

 

[9]   D. Citron, J. Hennessy, D. Patterson, G. Sohi, "The Use 

and Abuse of SPEC: An ISCA panel", Proceedings of the 

30th Annual International Symposium on Computer Ar-

chitecture, pp. 73-77, June 9-11, 2003. 

 

[10]   J. Henning, “SPEC CPU2000: Measuring CPU Perform-

ance in the New Millennium” IEEE Computer, July 2000 

Vol. 33, No. 7,   pp. 28-35  

 

[11]   A. Joshi, A. Phansalkar, L. Eeckhout, and L. John, 

“Measuring Benchmark Similarity using Inherent Pro-

gram Characteristics”  IEEE Transactions on Computes, 

vol 55(6), pp. 769-782, June 2006. 

 

[12]  SPEC CPU2006 published results page :         

http://www.spec.org/cpu2006/results/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


