
Subsetting the SPEC CPU2006 Benchmark Suite

Aashish Phansalkar, Ajay Joshi and Lizy K. John

Department of ECE, University of Texas at Austin.

{aashish, ajoshi, ljohn}@ece.utexas.edu

Abstract

On August 24, 2006, the Standard Performance Evalua-

tion Corporation (SPEC) announced CPU2006 – the next gen-

eration of industry-standardized CPU-intensive benchmark

suite. The SPEC CPU benchmark suite has become the most

frequently used suite for simulation-based computer architec-

ture research. Detailed processor simulators take days to

weeks to simulate each of the SPEC CPU programs. In order

to reduce simulation to a tractable time, architects and re-

searchers often use only a subset of benchmarks from the

SPEC CPU suite to evaluate the potential of their ideas. Prior

research has demonstrated that statistical techniques are most

effective to find a representative subset of benchmark pro-

grams from a benchmark suite. The objective of this paper is

to apply multivariate statistical data analysis techniques for

selecting a representative subset of programs from the SPEC

CPU2006 benchmark suite. We measure a set of performance

counter based characteristics for the SPEC CPU2006 pro-

grams across a large number of architectures and apply multi-

variate statistical analysis techniques to find a representative

subset of benchmarks and representative input sets wherever

multiple input sets are provided. The results from this paper

will help architects and researchers to find a smaller but repre-

sentative set of programs from the SPEC CPU2006 bench-

mark suite, when time or resource constraints prohibit experi-

mentation with the entire benchmark suite.

1. Introduction

SPEC, since its formation in 1988, has made many con-

tributions in developing and distributing technically credible,

portable, real-world application-based benchmarks for com-

puter designers, architects, and consumers. SPEC CPU

benchmark suite comprises of compute-intensive floating

point and integer programs for measuring the performance of a

computer’s processor, memory, and compiler. In order to

keep pace with the technological advancements, compiler im-

provements, and emerging workloads, new programs were

added, programs that are susceptible to unfair compiler op-

timizations were removed, program run times were increased,

and memory access intensity of programs was increased in

every generation of the benchmark suite. The SPEC CPU

benchmark suite, which was first released in 1989 as a collec-

tion of ten computation-intensive benchmark programs, is now

in its fifth generation and has grown to 29 benchmarks. The

SPEC CPU benchmark suite is primarily used by computer

system manufacturers to measure and report performance of

their computer systems and by microprocessor designers and

researchers for evaluating design trade-offs and novel design

ideas. Customers typically use the results reported to SPEC to

make purchasing decisions.

As computer systems get faster the benchmark run times

are increased across generations, to ensure that the bench-

marks run for a long enough time to make meaningful meas-

urements. However, longer-running benchmarks significantly

increase the cost of performance evaluation, more so when

simulating them on cycle accurate simulators. The response

of researchers to this has been two fold – develop intelligent

techniques to reduce simulation time of each benchmark and

find a smaller but representative set of benchmark programs.

In this paper we focus on the second approach.

A poorly chosen set of benchmark programs may not ac-

curately depict the true performance of the processor design.

On one hand, selecting too few benchmarks may not cover the

entire spectrum of applications that may be executed on a

computer; while on the other hand, selecting too many similar

programs will increase evaluation time without providing ad-

ditional information. Therefore, in order to reduce the bench-

marking effort, a good workload should have programs that

are well distributed within the target workload space (compris-

ing of N axes, each representing a program characteristic)

without being clustered in specific areas. Understanding simi-

larity between programs can help in selecting benchmark pro-

grams that are distinct, but are still representative of the target

workload space.

In this paper we use multivariate statistical analysis tech-

niques such as Principal Components Analysis (PCA) and

Cluster Analysis to find a subset of CPU2006 programs that is

representative of the whole suite. This is a quantitative ap-

proach to selecting benchmarks based on the diversity of their

characteristics. There are many workload characteristics that

affect performance. It is difficult to visualize the workload

space formed by these characteristics. Multivariate statistical

analysis techniques help us to visualize the workload space

and find representative benchmarks. The method has two main

steps: The first step involves selecting the important character-

istics of programs that form the workload space; in the second

step we use the characteristics of all programs to perform PCA

[7] and Cluster Analysis to find a subset of programs. We will

discuss each of these steps in detail in the subsequent sections.

The characteristics that are used in this paper are derived from

the performance counter measurements of a wide range of

state-of-the-art processors. A set of workload characteristics

that cover a wide enough range of the program characteristics

are included to make a meaningful comparison between the

programs. As the programs in SPEC CPU2006 suite are very

long (some of them in the range of few trillion instructions),

the cost of measurement significantly increases if we use

simulation methodology. Therefore, we use performance

counter based characteristics such as cache miss-rates, branch

mispredictions per instruction etc. More details on the differ-

ent characteristics of programs and the method used to choose

them are described in section 2.

The new suite is larger than the previous, and will exer-

cise new corners of CPUs, memory systems, and compilers –

especially C++ compilers. Where CPU2000 had only 1

benchmark in C++, the new suite has 7, including one with ½

million lines of C++ code. As in the previous CPU suites,

Fortran and C languages are also well represented.

2. Methodology

The SPEC CPU2006 suite, like its predecessors is di-

vided into two parts: the integer component (CINT2006

benchmarks) and the floating point component (CFP2006

benchmarks). Since the results are reported separately for

these two groups of programs we perform the analysis and

find a subset for each of these groups separately. Measuring

characteristics that are used to find similarity between bench-

mark programs is a very important part of the methodology.

Many researchers have proposed different ways to measure

these characteristics. The characteristics can be broadly classi-

fied into microarchitecture-dependent and microarchitecture-

independent characteristics [4]. The microarchitecture-

independent characteristics measure inherent characteristics of

program at the level of Instruction Set Architecture (ISA), or

at source code level. The microarchitecture-dependent charac-

teristics such as cache miss-rate and branch misprediction rate

are characteristics of a program that are dependent on the

hardware configurations. These characteristics depend on the

underlying microarchitecture and therefore can vary with ma-

chine configurations. Both the microarchitecture-independent

and microarchitecture-dependent characteristics are dependent

on the compiler and the ISA. Phansalkar et al.[4] show how

microarchitecture-independent characteristics at ISA level can

be used to categorize programs.

During the process of benchmark selection for SPEC

CPU2006, benchmark similarity was used as one of the many

criteria. However, the time required to measure the microar-

chitecture-independent characteristics proposed by Phansalkar

et al.[4] is very high and hence cannot be completed in the

short span of time. Therefore, we used an alternative approach

of measuring the important characteristics using hardware

performance monitoring counters from a wide range of archi-

tectures. A potential problem of using this method is that the

characteristics that have lesser impact on performance nay get

equal weight as the characteristics that show significant per-

formance impact. In order to reduce such undesirable effects,

four different SPEC members performed a correlation analysis

of Cycles-Per-Instruction (CPI) with various characteristics on

their respective machines. A common set of characteristics

were chosen based on such a correlation analysis, and the ex-

perience of the hardware designers and the compiler experts.

Since the different characteristics are measured on different

machines, each of them forms a characteristic of a program. If

we have n machines and we measure m metrics for each ma-

chine, we have n x m characteristics for each program. We

then perform statistical analysis such as PCA and cluster

analysis for these n x m characteristics for all programs. It is

likely that some of these characteristics are correlated (for

instance, consider that 2 machines have very similar microar-

chitectures). This correlation will be removed by PCA.

A weakness of using microarchitecture-dependent meas-

urements is the bias towards the architecture of a particular

system. However, we try to eliminate that bias by using

measurements from multiple state-of-the-art computer sys-

tems. These systems have varying microarchitecture (includ-

ing dynamic and statically scheduled architecture), varying

degrees of out-of-order instruction issue, varying cache sizes

and different cache hierarchy structures. Several different

commercial-grade compilers are also used, in order to reduce

the sensitivity to compiler differences. We would also like to

point out that in addition to the characteristics shown in Ta-

ble 1, new characteristics may be required to represent fea-

tures in future systems that significantly affect performance. In

summary, we hope that the variability in the microarchitec-

tures/ISAs/compilers, have resulted in capturing most of the

differences between the benchmarks.

Table 1: List of program characteristics for Integer and FP

benchmarks

Integer benchmarks Floating point benchmarks

Integer operations per in-

struction

Floating point ops per in-

struction

L1 I- cache misses per in-

struction

Memory references per in-

struction

Number of branches per

instruction

L2 D-cache misses per in-

struction

Number of mispredicted

branches per instruction

L2 data cache misses per L2

Accesses

L2 data cache misses per

instruction

Data TLB misses per in-

struction

ITLB misses per instruction L1 data cache misses per

instruction

Table 1 shows the characteristics that were measured

for each program on five different computer systems (four

different ISAs) from SPEC member companies. Note that the

important characteristics that affect performance for the CINT

and CFP benchmarks are different. As mentioned before, these

characteristics that form the workload space were based on the

experience of hardware architects, compiler designers, and the

correlation analysis from four different SPEC affiliated com-

panies. In general, the characteristics that were chosen are also

the ones that are well correlated to performance.

2.1 Principal Components Analysis
The measured data consists of a large number of vari-

ables - each performance counter characteristic for each ma-

chine is considered a separate variable. Considering the six

characteristics measured on each of the five different systems,

we have thirty characteristics per program. It is humanly im-

possible to simultaneously look at all the data and draw mean-

ingful conclusions from them. Hence a multivariate statistical

data analysis technique, namely Principal Component Analy-

sis [7] is used to analyze the data. In order to isolate the effect

of varying ranges of each parameter, the data is first normal-

ized i.e. translated to zero mean and standard deviation equal

to one, for each variable. This technique also allowed us to

work with the SPEC member companies without disclosing

the raw data about their individual state of the art machines.

PCA is a classic multivariate statistical data analysis technique

that helps to reduce the dimensionality of a data set while re-

taining most of the original information. PCA computes new

variables, so called principal components (PCs), which are

linear combinations of the original variables, such that all the

PCs are uncorrelated. PCA transforms p variables X1, X2,....,

Xp into p PCs Z1,Z2,…,Zp such that:

�
=

=

p

j jiji XaZ
0

 This transformation has the property Var [Z1] � Var [Z2]

�…� Var [Zp] which means that 1Z contains the most infor-

mation and Zp the least. Given this property of decreasing

variance of the PCs, we can remove the components with the

lower values of variance from the analysis. This reduces the

dimensionality of the data set while controlling the amount of

information that is lost. We use a standard technique to choose

PCs where only the top few PCs which have eigen-values

greater than or equal to one are retained. In order to capture

the entire information from p original variables, p PCs may be

required, but if there are several correlated variables, a small

number of PCs can capture most of the information from the

original variables. This results in reduced dimensionality.

2.2 Cluster Analysis
Clustering is a statistical technique that groups programs

with similar features. There are two commonly used clustering

techniques called the k-means clustering and hierarchical clus-

tering. In this paper we use hierarchical clustering since hier-

archical clustering and dendrogram helps us to look at multi-

ple clustering possibilities at the same time and the user can

pick the number of clusters to be formed. Hierarchical cluster-

ing is a technique for finding relatively homogeneous clusters

of items based on their measured characteristics. Given a set

of N programs to be clustered and an N x N similarity matrix

containing the distance between the programs using the meas-

ured workload characteristics, the hierarchical technique starts

with each case (benchmark or program-input pair in our case)

in a separate cluster and then combines the clusters sequen-

tially, merging the clusters at each step until all cases merge to

form one cluster. When there are N cases, this involves N-1

clustering steps, or fusions. The algorithm used for hierarchi-

cal clustering is as follows:

1. Each program is assigned to its own cluster, such that if we

have N programs, we now have N clusters, each containing

just one program. The distances (similarities) between the

clusters equal the distances (similarities) between the pro-

grams they contain (we used complete linkage, which

means that the distance between two clusters is the dis-

tance between the two farthest points in the clusters).

2. Find the closest (most similar) pair of clusters and merge

them into a single cluster, so that we have one less cluster.

3. Compute distances (similarities) between the new cluster

and each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a

single cluster of size N.

This hierarchical clustering process can be represented as

a tree or dendrogram, where each step in the clustering process

is illustrated by a joint in the tree. The numbered scale corre-

sponds to the linkage distance obtained from the hierarchical

cluster analysis.

3. Subsetting the CPU2006 suite

Many CPU2006 benchmarks execute trillions of instruc-

tions, and the time required to simulate them on cycle-accurate

simulators is prohibitively high. This section demonstrates the

result of applying PCA and cluster analysis for selecting a

subset of benchmark programs when an architect or researcher

is constrained and wants to select a reduced subset of pro-

grams from the suite. The Euclidean distance between the

benchmarks is used as a measure of dissimilarity and com-

plete-linkage distance is computed to create a dendrogram as

shown in Figure 1. Eight PCs are chosen which retain 97%

of the variance. The dimensionality of the data is reduced from

thirty (six characteristics for five machines each) to eight. This

shows that there were many variables that were correlated.

The dendrogram can be used by researchers to select bench-

marks by using a simple technique discussed below.

In the dendrogram in Figure 1 for CINT2006, the

horizontal axis shows the linkage distance indicating the dis-

similarity between the benchmarks. The ordering on the y-axis

does not have particular significance, except that similar

benchmarks appear together. Depending on the number of

representative benchmarks to be chosen, and the degree of

similarity desired, one can draw a vertical line at a location

and read from there how many benchmarks are in a subset.

For example, if a vertical line is drawn at linkage distance of

4.5 we get 5 clusters (k=5) and at about 4.3 we get 6 clusters

(k=6). Table 2 has two rows with each showing the repre-

sentative set of benchmarks for k=5 and k=6. All the bench-

marks which join to form a single horizontal line that is inter-

sected by the vertical line form a cluster. The benchmark clos-

est to the center of the cluster is identified from the distance

matrix of all the benchmarks and chosen as the representative.

As we travel from right to left on the dendrogram the number

of benchmarks in a subset increases. This helps the user to

select appropriate benchmarks depending on the desired num-

ber of benchmarks. When forming a subset of 6 benchmarks,

429.mcf gets added to the subset of 5 benchmarks. In both the

subsets of six and five the first cluster is represented by

458.sjeng. The distance of each of the benchmarks in the clus-

ter to the centre of its own cluster has to be recalculated and a

representative has to be chosen again as we move left but in

this case 458.sjeng remains the representative. In the next sec-

tion we compare the two subsets shown in Table 2 and vali-

date their ability to predict the average speedup of all bench-

marks on 5 different machines.

Figure 1: Dendrogram for CINT2006 benchmarks

Table 2: Subsets of CINT2006 benchmarks

Subset of 5 458.sjeng, 462.libquantum, 403.gcc, 456.hmmer,

483.xalancbmk

Subset of 6 458.sjeng, 429.mcf, 462.libquantum, 403.gcc,

456.hmmer, 483.xalancbmk

Figure 2 shows a dendrogram for the floating point

benchmarks in CPU2006 suite. Seven PCs were retained after

performing PCA. Similar to Figure 1, Figure2 also dem-

onstrates the formation of a subset of 4 and 6 benchmarks by

drawing vertical lines on the dendrogram at linkage distance

of 5.25 and 4.5 respectively. The subsets are shown in Table

3. In the next section we validate the representativeness of the

subset of benchmarks.

Figure 2: Dendrogram for CFP2006 benchmarks

Table 3: Subset of CFP2006 benchmarks

Subset of 4 481.wrf, 253.povray, 436.cactusADM, 433.milc

Subset of 6 481.wrf, 450.soplex, 470.lbm, 453.povray,
436.cactusADM, 433.milc

4. Validation of the subsets

The subsets that were generated in the previous section

are validated in this section using a carefully chosen set of 5

different machines from the SPEC website [12]. The aim of

this validation experiment is to see how well the subset of k

benchmarks predicts the average speedup on the five ma-

chines. Figure 3 shows three bars for each machine. The

first two bars for each machine are the weighted geometric

mean of speedup numbers for the subsets with 5 and 6 bench-

marks respectively. The third bar is the average speedup of all

benchmarks measured on that machine with respect to the

SPEC standard baseline machine. These numbers are obtained

from the SPEC website where the scores are reported by dif-

ferent members. We can see that the difference in errors be-

tween the two subsets is not very significant. Figure 4

shows a similar validation experiment for the floating point

benchmarks. This validation experiment shows the error that

will be seen if only a subset of benchmarks is used as com-

pared to the whole suite. Also, the errors are within reasonable

limits so that they do not change the ranking of these five ma-

chines in almost all the cases.

0
2
4
6
8

10
12
14
16
18
20

AMD Tyan

Thunder K8E

Apple iMac

2.0GHz Intel

Core Duo

Fujitsu SC

CELSIUS

M440

Intel

DG965WH

motherboard

Sun Blade

2000

S
p

e
e
d

u
p

subset of 5 subset of 6 Using all benchmarks

Figure 3: Validation of subsets of integer benchmarks using

speedup with respect to SPEC base machine

0
2
4
6
8

10
12
14
16
18

HP Integrity

rx6600

(Itanium 2)

Fujitsu SC

CELSIUS

V830

Apple

2.0GHz Intel

Core Duo

Dell

Precision

380

Workstation

Sun Fire

X2100

S
p

e
e
d

u
p

subset of 4 subset of 6 Using all benchmarks

Figure 4: Validation of subsets of floating point benchmarks

using speedup with respect to SPEC base machine

5. Selecting representative input sets

 Many benchmarks in the CPU2006 have multiple

input sets called workloads. A reportable SPEC run uses all

the workloads for each benchmark; however it is possible to

use PCA and clustering to identify a representative input set,

helping architecture researchers to reduce simulation

time/effort. Henceforth we will refer to a program input pair as

a workload. In SPEC CPU2006 403.gcc benchmark has nine

workloads. The program characteristics shown in Table 1

were measured for all the different workloads separately and

for the whole benchmark. Whenever a performance data is

reported for a benchmark, it is the aggregate behavior sum-

ming up all its workloads. The benchmark suffix shows the

workload and the benchmark name without a suffix signifies

the benchmark (aggregating all inputs).

 A benchmark’s workload closest to the whole

benchmark in the workload space is marked as the representa-

tive workload. This can be done by looking up in the distance

matrix. In CINT2006, the benchmarks that have multiple input

sets are 400.perlbench, 401.bzip2, 403.gcc, 445.gobmk,

456.hmmer, 464.h264ref, 473.astar. For each of these bench-

marks we list a representative workload. Table 4 shows the

list. We also do similar analysis for CFP2006. In this category

there are only two benchmarks with multiple workloads. i.e.

416.gamess and 450.soplex. For each of these benchmarks

their representative workloads are listed in Table 4.

Table 4: List of representative input sets for SPEC CPU2006

CINT2006 benchmarks 464.h264avc - input set 2

400.perlbench - input set 1 473.astar - input set 2

401.bzip2 - input set 4

403.gcc - input set 1 CFP2006 benchmarks

445.gobmk - input set 5 416.gamess - input set 3

456.hmmer - input set 2 450.soplex - input set 1

6. Subsets based on branch and memory
access characteristics

Often, researchers focus on optimizing the design to take

advantage of certain characteristics of programs. In this sec-

tion, we look at the data access performance characteristics

and branch prediction characteristics separately to identify

unique programs from these perspectives. These subsets will

be useful for data cache and branch predictor related stuides.

When performing this analysis we put CINT and CFP work-

loads in the same pool i.e. we do not evaluate them as two

separate components.

Figures 5 and 6 show the scatter plot and dendrogram

respectively, based on the first 2 PCs of the branch character-

istics, covering approximately 92% of the variance. The scat-

terplots of PC2 vs. PC1 can be easily used to visually identify

the clusters as the benchmarks are plotted directly in the trans-

formed workload space. The CFP benchmarks are clustered

together but the CINT programs clearly show the diversity. A

few CINT workloads overlap with the cluster of CFP work-

loads on the right side of the plot. Two CINT benchmarks

464.h264ref and 456.hmmer have branch characteristics that

are not very different from the CFP programs. Majority of the

floating point programs have very little diversity in their

branch characteristics. The benchmarks with high or positive

value of PC1, e.g. majority of CFP benchmarks and

464.h264ref and 456.hmmer show less misprediction rates. On

the other hand CINT benchmarks are more spread out in the

space and show significantly diverse behavior. CINT bench-

marks like 458.sjeng and 445.gobmk lie on the left side of the

plot and hence show much higher misprediction rate. The

dendrogram shown in the Figure 6 below can be used to

select benchmarks with diverse branch characteristics. A simi-

lar technique of drawing a line intersecting the axis showing

the linkage distance can be used to find a subset. The bench-

marks seen clustered in Figure 5 are also seen to be close in

the dendrogram.

Figure 5: The CINT and CFP programs plotted in the

PC space using only branch predictor characteristics

Figure 6: Dendrogram of CINT and CFP benchmarks

based on branch characteristics only

Figure 7: The CINT and CFP programs plotted in the

PC space using only data access characteristics

(PC2 Vs PC1)

 Figure 8: The CINT and CFP programs plotted in the PC

space using only data access characteristics (PC4 Vs PC3)

In Figure 7 the benchmarks that show negative value

of PC1 e.g. 429.mcf, 471.omnettp, 462.libquantum show

higher miss-rates. The CFP benchmarks that are located at the

top show very high percentage of memory accesses and hence

should also be considered while picking benchmarks for cache

studies. In Figure 8, benchmarks that show a positive value

of PC3 and PC4 show a higher DTLB misses and percentage

of memory accesses. The scatter plots can be used to visually

identify the similarity between benchmarks but the dendro-

gram should be used to pick a subset of benchmarks in the

same way as shown in Figure 1. Figure 9 shows the den-

drogram of CINT and CFP benchmarks based on only the data

accesses behavior. This can be used by researcher to find a

subset of diverse benchmarks for cache studies.

Figure 9: Dendrogram for CINT2006 and CFP2006 bench-

marks based on data access characteristics only

7. Related Work

Eeckhout et.al. [1,2] measure many different workload

characteristics such as instruction mix, branch prediction accu-

racy, the data and instruction cache miss rates, average num-

ber of instructions in a basic block, maximum amount of par-

allelism inherent to programs. In their work [1,2], two pro-

grams are considered to be similar if they show similar work-

load characteristics and hence lie close to each other in the

workload space built from these characteristics. The authors

use PCA and Cluster Analysis to find similar programs. The

characteristics chosen are a mix of microarchitecture-

dependent and microarchitecture-independent metrics.

Vandierendonck and Bosschere [3] primarily used mi-

croarchitecture-dependent metrics such as execution time or

SPEC CPU peak performance rating for classifying programs.

The technique aims at finding redundant programs which are

inherently similar to the others and do not add any information

while using benchmarks to rank machines. Vandierendonck

and Bosschere [3] analyzed the SPEC CPU2000 benchmark

suite peak results on 340 different machines representing eight

architectures, and used PCA to identify the redundancy in the

benchmark suite. In [3], the authors quantify redundancy as

the inability of a program to show different speedup on two

different machines. The programs that do not show very dif-

ferent speedups are considered redundant. In other words [3]

concludes that we do not need such redundant programs to

rank the predecided 340 machines. The main drawback of that

method is that it cannot be used if the performance scores for

many machines are not available especially at the time of de-

signing a benchmark suite. Giladi and Ahituv [6] also had a

similar approach towards finding a subset of programs. They

found that the ten programs of SPEC89 suite could be reduced

to six without affecting the SPEC rating. They also found that

for SPECint92, three instead of six programs are sufficient and

for SPECfp92 seven out of fourteen are enough to get a simi-

lar SPEC rating on all the machines at that time.

Phansalkar et.al. [4] characterized benchmarks using mi-

croarchitecture-independent metrics to find a representative

subset. The metrics are independent of microarchitecture but

dependent on compiler used to compile benchmarks. It takes a

significantly long time to generate the microarchitecture-

independent metrics. This methodology is suitable for the

problems discussed in this paper. But very long runtime of the

benchmarks with some of them about few trillion instructions

long makes the methodology in [4] impractical. Citron [9]

presented subsets based on use by the computer architecture

research community. The subsets had similarity to the subsets

presented by Phansalkar et .al, however, there were differ-

ences as well.

8. Conclusion

The process of subsetting may result in loss of informa-

tion and should only be used when it is difficult to run the

complete SPEC CPU suite. This paper provides a quantitative

approach to guide selection of benchmarks when a researcher

cannot use all the benchmarks in the process of performance

evaluation and helps to keep the loss of information very low.

This methodology is based on using performance counters to

measure different characteristics of programs on different sys-

tems, and using statistical analysis techniques such as PCA

and clustering to visualize the workload space. A weakness of

using microarchitecture-dependent measurements is the bias

towards the architecture of a particular system. However, we

try to eliminate that bias by using measurements from multiple

computer systems with four different ISAs. Other than the

characteristics of programs used in this paper, users may be

interested in measuring more characteristics relevant to their

study. Users should use their expertise to select characteristics

specific to their objectives. In this paper, two sets of dendro-

grams are presented, one that illustrates the similarity between

benchmarks based on overall performance characteristics, and

the other which includes only branch and data access metrics.

The paper also shows the methodology to find the input set

that represents the whole run of the benchmark with all the

input sets. This is very useful in academic research since a lot

of research papers show the use of only a single input set per

benchmark. In such a case the input set that is most represen-

tative of the whole run of the benchmark should be chosen.

9. Disclaimer

All the observations and analysis done in this paper on

SPEC CPU2006 benchmarks are the authors’ opinions and

should not be used as official or unofficial guidelines from

SPEC in selecting benchmarks for any purpose. This paper

only provides guidelines for researchers and academic users to

choose a subset of benchmarks should the need be.

10. Acknowledgements

The authors express their gratitude to the following

SPEC member companies (IBM, Sun Microsystems, Intel,

AMD, Apple, HP, SGI) for providing performance counter

data from their systems, for the analysis presented in this pa-

per and/or the clustering analysis during the selection of the

CPU2006 suite. We enjoyed the opportunity to interact with

the SPEC CPU Subcommittee and provide our analysis re-

garding the similarity of the programs. The researchers are

supported in part by National Science Foundation under grant

number 0429806. Ajay Joshi is supported by an IBM fellow-

ship.

11. References

[1] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,

“Designing computer architecture research workloads”,

IEEE Computer, 36(2), pp. 65-71, Feb 2003.

[2] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,

“Quantifying the impact of input data sets on program be-

havior and its applications”, Journal of Instruction Level

Parallelism, vol 5, pp. 1-33, 2003.

[3] H. Vandierendonck, K. Bosschere, “Many Benchmarks

Stress the Same Bottlenecks”, Proc. of the Workshop on

Computer Architecture Evaluation using Commerical

Workloads (CAECW-7), pp. 57-71, 2004.

[4] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John,

“Measuring Program Similarity: Experiments with SPEC

CPU Benchmark Suites”. IEEE International Symposium

on Performance Analysis of Systems and Software.

March 2005

[5] K. M. Dixit: Overview of the SPEC Benchmarks. "The

Benchmark Handbook", Chapter 9, 1993

[6] R. Giladi and N. Ahituv, “SPEC as a Performance

Evaluation Measure”, IEEE Computer, Aug 1995, Vol.

28, No. 8, pp 33-42

[7] G. Dunteman, Principal Components Analysis, Sage Pub-

lications, 1989

[8] L. John, P. Vasudevan and J. Sabarinathan, “Workload

Characterization: Motivation, Goals and Methodology”,

In Workload Characterization: Methodology and Case

Studies, Edited by L. John and A. M. G. Maynard, IEEE

Computer Society, pp. 3-14, November 1998

[9] D. Citron, J. Hennessy, D. Patterson, G. Sohi, "The Use

and Abuse of SPEC: An ISCA panel", Proceedings of the

30th Annual International Symposium on Computer Ar-

chitecture, pp. 73-77, June 9-11, 2003.

[10] J. Henning, “SPEC CPU2000: Measuring CPU Perform-

ance in the New Millennium” IEEE Computer, July 2000

Vol. 33, No. 7, pp. 28-35

[11] A. Joshi, A. Phansalkar, L. Eeckhout, and L. John,

“Measuring Benchmark Similarity using Inherent Pro-

gram Characteristics” IEEE Transactions on Computes,

vol 55(6), pp. 769-782, June 2006.

[12] SPEC CPU2006 published results page :

http://www.spec.org/cpu2006/results/

