Application Performance Analysis with
SGI MPInside

Daniel Thomas, Jean-Pierre Panziera, John Baron
SGI Performance Engineering Team

= MPI| and MPInside overview
= Profiling capabilities
— Basic features

— Collective wait time evaluation
— Send late time

= Modeling capabilities
= Case study
= Availability
= Conclusion

(TRl ®
el

How important is MPI for SGI

= The Message Passing Interface (MPI) standard

MPIl is a library specification for message-passing, proposed as a standard by a broadly

based committee of vendors, implementers, and users.

= SGlis a major provider in the High Performance Processing (HPC) world with 20 machines in

the top500 faster computer in the world

Rank Site Manurfacturer Computer Counitry Year Cores RMax RPeak
4 MASAMAmes Research CenterdMAS Sl SG| Altix ICE 8200EX, Xeon Q0 United States 2008 51200 487005 B0O8529
17 Mew Mexico Computing Applications Center (M S5 SG| Altix (CE 8200, Xeon gquad United States 2007 14336 133200 172032
20 Grand Equipement Mational de Calcul Intensif - SG1 SG| Altix (CE B200EX, Xeon gqu France 2005 12285 126400 146736
29 Total Exploration Production =] SGE1 Al ICE B200EX, Xeon qu France 2008 10240 105100 122830
43 HLEM at Universitaet Hannover f REZMN =51 S| Altix (CE B200EX, Xeon ¥5 Germany 2009 TB20 22570 90009 5
44 HLEM at ZIBEA<onrad Zuse-Zentrum fuer Inform: S Gl SGE| Altix ICE B200EX, Xeon =5 Germany 2009 B30 B2e70 90009 5
55 US Army Research Laboratory (&RL) Sl Sl Altix (CE 5200 Enhanced L United States 2002 BE5E FO000 74547 .2
55 MNASAS/AmMmes Research CenterdMAS 3Gl SG] Altix 1.5/1.6/1 .66 GHz, %o Linited States 2008 13524 BE567 525944
BE Leibniz Rechenzentrum =11l Altix 4700 1.6 GHz Sermany 2007 9728 SEE20 B2259 2
75 WWright-Patterson Air Force Base/DoD ASC SGl Altiv 4700 1.5 GH= United States 2007 29216 51441 55952
93 klational Institute for kdaterials Science =17 Sl Al [CE 8200EX, Xeon X5 Japan 2009 A095 42690 45875 2
199 HLRM at Universitaet Hanno — — 5G| Altix ICE B200EX, Xeon gu Germany 2008 2560 2E690 30720
200 HLRM at ZIBA<onrad Zuse-F SG| Altix (CE B200EX, Xeon gqu Germany 2005 2560 2690 30720
222 Irish Centre for High-End Caon SG| Altix (CE B200EX, Xeon ou lreland 2005 2560 25110 28672
292 RACHPY/Compute Canada Altiz XE320 Cluster, Xeon 2.8G Canada 2009 2464 21600 275965 0
301 IFREMER Sl Altix ICE B200EX, ¥Xeon ¥5 France 2009 2048 21345 22937 6
308 Wright-Patterson Lir Force E UPERCOMPUTER SITES S| Altix ICE 8200 Enhanced [United States 2009 2048 21160 22937 6
356 SGI S| Altix ICE 5200, 3.0 GHz United States 2007 2045 19360 24576
A70 Idaho Mational Laboratory S S Altix ICE §200, 2.66 GHz United States 2007 2045 17780 21791
490 University of Minnesota SGl Sl Altix XE 1300 Cluster Solu United States 2007 2045 17310 21791

A large majority of the flops executed with these
machines are executed by MPI applications

A general performance tool tradeoff

= What do we want to know with the tool

— Data about elements that are important for the MPI library developer may be
of little interest for the user that have no way to interact with such elements

= How to use the tool

— Use the binary the way it is or change it (recompile, relink, insert calls in the
source)

— How to fire up the tool
= What to gather
— Cumulative measurement stats
— Modeled results
— Traces
= What to report

— Raw data
* Need for powerful post-processing ?

— Pre-interpreted data
= Amount of resources to make it

MPInside Purpose

= To gain a better understanding of the interaction between application and MPI
library/interconnect network by diving “inside” the internals of each

Lammps standart Steps 200-1700 (measures)
ICE+ 256 CPU Nehalem-EP

m allred
irecv

msdrv_S

wsend

W Waitany
sdrv_WS
sdrv_R

m wait

m Comput

Elapse(s)

0 O N ¥ © @ O o
Q‘LDI\CDG)ON(V)g
A -

156
168
180
192
204
216
228
240
252

MPI ranks

=For the application developers to understand the consequence of their choices for exchanging
data

*For our performance engineering group that needs to commit on application performance
with future hardware

- Y
2010 S I®
5

MPInside Design goals

= To require no re-compilation or re-linking.
= To use a simple command line interface.

= To be useable with thousands of ranks without overhead.

= To work without traces and without post-processing.

o This is a strong constraint that needs to use innovative and courageous
solutions

= To handle various communication models, in particular the perfect
interconnect (zero latency, infinite bandwidth).

= To produce simple text, easy to parse, raw output to be processed
with common scripting tools(awk,..) and a spreadsheet

To be portable to any MPI library for its basic features.

To support the full MPI 1.2 specifications and the MPI-2 one-sided
communications.

MPInside Basic Statistics

>>>> Elapse times i) cecs NPB CG, 256 ranks, SGI Altix ICE
CPU Comput init wait send irecv bcast overheac
07.7442 0.0486 (2.1606 0.0000 0.0034 0.0146 0.0033 200
196735 0.0471 0.0000 0.2357 |0.0000 |0.0150 0.0020
27.7667 (0.0458 0.2484 0.0000 0.0042 1.9045 0.0023 180 |
377251 0.0450 |0.0000 0.2633 0.0000 1.9361 0.0016 W W VY Vo= W T Y Y T W WYYV oV T s ooy
==z Kbytes with send attribute <<<< 160 -
CPU Comput init wait send irecv bhcast overheac
| J— 0 0 0 0 0
1 0 0 400000 1000 0o | 107
2 0 0 0 0 0
k] — 0 0 400000 0 0 120 1
R Number | of request: with Send attributes<<s<
CFU Comput init wait send irecv bhcast overheac 100
| J— 1 0 0 0 0 0
L 1 0 1000 0 1000 0 80
2 1 0 0 0 0 0 .
3 1 0 1000 0 0 0 60 O Compute Einit
R Khytes with Recv attribute<<<<
CPU Comput init wait send irecv bcast overheac 40
| — 0 0 0 400000 4000 0 Ebarrier
L 0 0 0 0 0
I 0 0 0 400000 4000 0 20 BMreduce Ooverhead
K | — 0 0 0 4000 0 0
L Number of request with Recv attribute<<<<
CPu Comput init wait send irecy bhcast overheac 0 16 32 48 64 80 9 112128144160 176 192 208 224 240
| J— 1000 0 1000, 1000 0
L 0 0 0 0 . .
2l 10000 1000] 1000 0 mpirun —np NNN MPInside <cmd>

sgi

Collective Wait Time

WRF 480 ranks + 32 10 ranks

1800

original o moarer
application MPI rank O g
| collective rank 1 e o
| rank 2 w0 e
rank 1
rank 2
instrumented

setenv MPINSIDE_EVAL_COLLECTIVE_WAIT

A simple MPI_Barrier is inserted before the collective function assuming:

<Time collective> = <time to synchronize> + <time collective with fully
synchronized arrivals>

W
SPI
8

Late Senders

application send rank 0
I recv rank 1

rank 0

send late rank 1

setenv MPINSIDE_EVAL_SLT

Calculates per-rank times when sends were late for blocking MPI
functions(MPI_Recv, MPI_Wait,..)

| sgi

Late Senders Time: How to capture it ?

"Have a synchronized clock (SGI Altix, UV, future ICE):

» A mechanism to send/recv a supplemental piece of information (at least the
send posting time) with the user buffer needs to be implemented

=Clocks are not synchronized and deviates (the casual situation on clusters)
»Use a stuttering method:
Send/recv fisrt a zero message size then the data
Time recv =Time Waiting send is posted + time transfer
Approximated as
Time to get zero message size + time to recv when send is surely posted

Only applicable with Bandwidth sensitive applications

) sgi

Stuttering method: Just look at my local

clock

Rank O Rank 1

1:MPI_Irecv(from 1,app tag) MPI_Irecv(from 0,app tag)

2:MPI_send(to 1) MPI_send(to 0) -The 3a ”zero .
message” Time is

3:MPI_Wait (recv) MPI_Wait(recv) the “Send Late

Stuterring method: Time”

la:MPI_lIrecv(from 1, app tag) MPI_lIrecv(app tag from 0)

2a:MP1_lIsend(to 1,app tag) MPI_Isend(to 0,app tag)

2b:MP1_lIsend(to 1,data,token tag) MPI_Isend(to 0,da ta,token tag)

2c:MPI_Wait (request 2a) MPI_Wait(request 2a) -The 3b time is the

2d:MPI1_Wait (request 2b) MPI-Wait(request 2b) time of a transfer

3a:MPI-Wait(request 1a) MPI_Wait(request 1a) with ready send

3b:MPI_Recv(from 1, token tag) MPI_Recv(from 0,token tag)

n sgi

PARATEC Example

PARATEC 256 ranks, SGI Altix ICE

250

50

MPI ranks

200
@
£ 150 Send Late time and
S Collective wait time
§ 100 evaluation
:

M allred
@b allred
W wait

B w_wait

W Other MPI
@ Compute

12

sgi

Derived Statistics

Linpack 256 CPU on ICE

400

350

300 -

250 -

200

Mbytes/s

150 -

100 WWW

50

0 AR e
O © NN O ¥ O O N 000 ¥ O O N O I O
- MO < O© 0 O € N I O ~~ O O N <

= = " =" —H << N N «

MPI ranks

actual Mb/s

- \|b/S seen by the
application

13

MPInside Modeling

Reference
application MPI rank 0
rank 1
Faster
CPU
Faster
interconnect

= Uses virtual clocks to perform on-the-fly “what if” experiments. Such
virtual clocks are incremented by the measured computational times and
by an evaluation of the communication times

= Communication model:

— T(size) = latency + size / bandwidth(size, network load)
= “Perfect” interconnect:

— latency = 0, bandwidth =«

) sgi

MPInside Modeling continue

= As there is no standard mechanism in MPI for the library to
notify tools for internal event a deep knowledge of the MPI
library internals is necessary to handle collective function

properly. This is why modeling is restricted to the SGI MPI
library

= Perfect interconnect is an exception:

— For each collective operation all the virtual clocks are exchanged
between processors. The latter arrival imposes its clock. Then the

collective operation is perfect.

15 sgi

Perfect Interconnect Example

PARATEC 256 ranks, SGI Altix ICE

250
200
D
GEJ 150
= Perfect interconnect
°
cqé_ 100 Basic profiling
© M allred
L]

W wait
W Other MPI
m Compute

o)
-]

PARATEC 256 ranks, SGI Altix ICE

Send Late time and M PI ran kS

Collective wait time

evaluation

Basic profiling B allred

Elapsed time(s)

W Compute

setenv MPINSIDE_ MODEL PERFECT+1.0

) sgi

Case Study

SPEC MPI candidate code, 256 ranks, SGI Altix ICE

Perfect interconnect

140
MComput Mw sdrv_R
120 sdrv_R b_bcast
g 100 M bcast W barrier
> M Other MPI
£ 80
8 60
(V)]
o
i NI i'““
’ ol
20 I ij " I "
SLT + collective wait time

0

0 64 128 192 0 64 128 192
MPI rank

) sgi

Communication “Stiffness”

4
3

2

1

B comput
B wait

¥ send

|

|

Lowering the Stiffness

EM code performance on SGI Altix ICE

35

30 —e— Original, SendRecv, stiffness = 38

25 —— New, Isend / Irecv, stiffness =2

20 _u

Scaling relative to 64 ranks

5 '.k—\
0 T T T T T T T —’_
0 256 512 768 1024 1280 1536 1792 2048

Number of ranks

19 sgi

MPInside : MPI function “branches” with “partner” cross

references

Run:
setenv MPINSIDE_CALL_STACK_DEPTH 5

Setenv MPINSIDE_CROSS_REFENCE
mpirun —np xxx MPInside your_apps your_args

MPInside report rank O

MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss% Rcv_W(s)

MPI_Recv #265 1.552 38.06 38.1 0 105 0 182972 0.0 1.552413
Ancestors: HPL_spreadT HPL_pdlaswpOl1T HPL_pdupdateTT HPL_pdgesv0 HPL pdgesv HPL_pdtest
Partners_| 0: 240:#19:14.81:97.18 192:#15:8.91:95 .18 96:#15:8.82:95.42 32:#15:7.74:97.41 144:#19:6.5

MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%

MPI_Send #19 0.125 3.06 90.0 102 01 370801 0 0.0

Ancestors: HPL_bcast_1rinM HPL_bcast HPL_pdgesv0 HPL _pdgesv HPL_pdtest main
MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%

MPI_Wait #524 0.983 24.10 62.2 0 1200 0 0 0.0
Ancestors: HPL_rollIT HPL_pdlaswp01T HPL_ pdupdateTT HP L_pdgesvO HPL_pdgesv HPL_pdtest
Partners_| 0: 0:#273:100.00

MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss% Rcv_W(s)

MPI_lrecv #273 0.026 0.63 96.9 0 1200 0 70269 0.0 0.982906

Ancestors: HPL_rollIT HPL_pdlaswp01T HPL_ pdupdateTT HP L_pdgesvO HPL_pdgesv HPL_pdtest

Partners_| 0: 240:#19:14.30:55.34 208:#19:10.93:5 6.13 224:#19:9.99:70.97 16:#19:7.91:73.19 160:#16:7

3:93.12...

.75:48.53...

20

I®

MPInside :

MPI Receive function branch partners

MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss% Rcv_W(s)
MPI_Recv #265 1.552 38.06 38.1 0 105 0 182972 0.0 1.552413

Ancestors: HPL_spreadT HPL_pdlaswpOl1T HPL_pdupdateTT HPL_pdgesvO HPL_pdgesv HPL_pdtest

Partners_| 0: 240:#19:14.81:97.18 192:#15:8.91:95 .18 96:#15:8.82:95.42 32:#15:7.74.97.41

» Partner list format: CPU:#Branch:Wait:Send _|ate

CPU: Rank number that did an MPI Send/Isend for this branch:

#Branch: MPI_Send/Isend Branch ident(brid):

Wait: percent of this MPI_Recv that involved this “A” rank “#B” MPI Send/Isend
branch

Send _late: percent of this MPI_Recv where the corresponding Send was arriving
late

For example: “240:#19:14.81:97.18” means:

This MPI_Recv branch was “partner” with the MPI_Send branch id 19 of CPU 240 and this
partnership is accountable for 14.81% of this MPI_Recv branch communication time and
97.18 % of this 14.81% was just wait because the sends were arriving late

) sgi

MPInside availability

Basic profiling functionality is supported for SGI MPT,
Intel MPI, HP MPI and ScaliMPI Platform MPI

— Open MPI support to be added soon.

General modeling capabilities require detailed
knowledge of the inner workings of the library
— Current support is for SGI MPT only.

Perfect interconnect modeling is currently supported
on all MPI supported. MPInside is available via

SupportFolio

] sgi

Tools need MPI standardizations

= Performance tools are of great importance for parallel
applications in particular for MPI applications.

= MPI Standard only provides the “PMPI” mechanism allowing
easy wrapping of MPI functions
— Better than nothing but this is not much as wrapping is easy

= Advance profiling interfaces should be part of the standard:

— For notification to the tools about MPI internal library events
e P2P collective transfers
e Operation delayed because of lack of buffers

— A mechanism to carry supplemental information that the tools may
wish to associate with user messages

= Standard don’t want to impose a particular implementation
but all the MPI work more or less the same. Based on this
experience more attention should be given to MPI tools

57" ®
wIbis Sgl
®

23

®

accelerating
results™

) sgi

