
TritonSort

Alexander Rasmussen
University of California San Diego

Harsha V. Madhyastha
University of California San Diego

Radhika Niranjan Mysore
University of California San Diego

Michael Conley
University of California San Diego

Alexander Pucher
Vienna University of Technology

George Porter
University of California San Diego

Amin Vahdat
University of California San Diego

Abstract
We present TritonSort, a sorting system designed to max-
imize system resource utilization. We present the results
of the Indy GraySort and MinuteSort benchmarks. Tri-
tonSort is able to sort 100 TB of 100-byte records at a
rate of 0.582 TB/minute, and is able to sort 1014 GB of
data in under 60 seconds.

1 Architecture

TritonSort is composed of a series of tasks that typically
consist of some simple processing on a small piece of
data. We call the small pieces of data that tasks process
work units. Tasks are composed together into a directed
graph so that workers from one task produce work units
for workers in a subsequent task. In the GraySort ver-
sion of TritonSort, tasks are further subdivided into two
phases, with a distributed barrier between the first and
second phase.

A fixed collection of workers, each of which is a
thread, perform a given task. A single worker tracker
for each task coordinates the passing of work units to
and from the workers performing that task. For brevity,
we will name workers based on the task that those work-
ers perform; for example, workers performing the “read”
task are simply called “readers”.

When a worker is ready to send a work unit to the next
stage, it can direct the next stage’s tracker either to give
the work unit to a particular worker or to give the work
unit to the next worker that runs out of work to do.

When a task runs out of work to do, the task’s workers
shut down. When a task tracker is notified that an up-
stream task tracker has shut down, it waits until all out-
standing work units have been processed and then begins
shutting down itself. In this way, the entire graph is shut
down at the end of the phase.

Tasks that are sources in the task graph do not receive
work units from other tasks, but rather generate work

units themselves. In TritonSort, these are tasks that re-
ceive from the network or read from a disk. Tasks that
are sinks in the task graph do not produce work units for
other tasks; these are tasks that write to a disk or transfer
data over the network.

1.1 Disks

We subdivide the disks on each machine into equal num-
bers of input and output disks. In the first phase, input
data is read sequentially from the input disks and inter-
mediate data is written to the output disks. In phase two
the disks’ roles are reversed; intermediate data is read
from the output disks and the final output is written to
the input disks.

Each disk in the cluster stores tuples whose keys are in
a given range. Physical disks are further subdivided into
a number of logical disks, each of which is a file. Each
logical disk on a given physical disk is responsible for
its own disjoint sub-range of that physical disk’s range.
In this way, every tuple can be mapped to a destination
logical disk according to that tuple’s key.

We explore how the number of logical disks per phys-
ical disk is chosen in more detail in Section 2.4.

2 GraySort Architecture

TritonSort’s architecture for the GraySort benchmark
aims to sort large datasets by reading and writing each tu-
ple exactly twice, which is the theoretical minimum I/O
when the amount of memory in the system is less than the
amount of data to be sorted [1]. The task pipeline is de-
signed so that (ideally) all workers constantly have work
units to process, thus maximizing utilization of disk I/O,
network bandwidth, and CPU processing power.



2.1 Phase One: Distribute

The goal of TritonSort’s first phase is to read all tuples
from the input disks and transfer each tuple to the appro-
priate intermediate logical disk. The tasks that make up
TritonSort’s first phase are as follows:

Read: read from an input file into a collection of
80 MB in-memory producer buffers. When a producer
buffer becomes full, pass it to the next stage. There is
one reader for each input disk.

Spray Tuples: scan through a producer buffer, hash-
ing each of its tuples to determine that tuple’s destina-
tion logical disk. Copy each tuple into an in-memory
send buffer appropriate to its destination. When a large
enough group of send buffers become full, pass them to
the next phase as a group. The number of tuple sprayers
is variable, but is usually set to be equal to the number of
readers.

Send: transmit a group of send buffers to the appro-
priate destination node. There is one sender responsible
for communicating with each node, and tuple sprayers
explicitly pass groups of send buffers to the appropriate
sender.

Connect: establish connections with remote senders.
When a connection is established, the connection’s
socket descriptor is passed to the first available receiver.
That receiver reads from the connection until it closes,
at which time it notifies the connector that the socket
has been closed. A connector waits until all sockets are
closed before tearing itself down.

Receive: receive send buffers into a collection of cir-
cular buffers, one per logical disk. There is one receiver
per node, and that receiver is responsible for receiving all
data from that node.

Write: repeatedly write data from the most full circu-
lar buffer to its corresponding logical disk. There is one
writer per physical intermediate disk.

2.2 Phase Two: Sort

Once each tuple has been transferred to its appropriate
logical disk, each logical disk must be sorted. The sort-
ing of logical disks is done with three tasks:

Phase Two Read: read an entire logical disk into an
850MB in-memory buffer. There is one phase two reader
per intermediate disk.

Sort: sort the tuples in a buffer using a variant of radix
sort. The number of sorters is variable, and is currently
set to half the number of phase two readers.

Phase Two Write: write a buffer to a file on the ap-
propriate input disk. There is one phase two writer per
input disk.

The tasks in both phases are logically connected to
each other as shown in Figure 1.

2.3 MinuteSort Architecture

For the MinuteSort benchmark, we modify our architec-
ture as follows. In the first phase, as before, we read the
input data and spray tuples across machines based on the
logical disk to which the tuple maps. However, logical
disks are maintained in memory instead of being written
to disk immediately.

In phase two (once all input tuples have been trans-
ferred to their appropriate logical disks), the in-memory
logical disks are directly passed to workers that sort
them. These sorters in turn pass sorted logical disks to
writers to be written to disk. Hence, logical disks are
still written to disk but are not written until after they
have been sorted.

2.4 Logical Disks

An operator specifies the number of logical disks for
each physical disk before running TritonSort. The num-
ber of logical disks per physical disk is determined dif-
ferently depending on the architecture. For GraySort, the
number of logical disks is chosen such that three logical
disks for each physical disk can be resident in memory at
the same time during phase two; in this way, each worker
in phase two will always have a logical disk to process
at any given time. For MinuteSort, the number of logi-
cal disks is chosen such that all logical disks for a given
node can be resident in that node’s memory simultane-
ously; this is necessary because the logical disks are not
written to disk before they are sorted.

3 Testbed Setup

Our testbed consisted of 52 HP ProLiant DL380 G6
servers, although we use different numbers of servers
for different benchmarks. Each server has two quad-
core Intel Xeon E5520 processors, clocked at 2.27 GHz,
and 24 GB of RAM. Each server also hosts 16 2.5-inch
500 GB, 7200 RPM SATA hard drives. 40 of the ma-
chines use HP Seagate MM0500EANCR drives that are
enterprise-grade and therefore have a much higher reli-
ability. The remaining machines use Seagate Momentus
7200.4 drives, which are consumer-grade.

Each machine is equipped with a 1Gbps on-board net-
work card as well as a Myricom 10Gbps network card.
Both network cards run unmodified Ethernet. All the
machines in our testbed are inter-connected via a Cisco
Nexus 5020 switch, which provides 10 Gbps connectiv-
ity between all pairs.

All machines are running version 2.6.32.8 of the Linux
operating system. All disks use the ext4 filesystem.

2




 


 






 

 









(a)





 
















(b)

Figure 1: Architecture pipeline for (a) phase one and (b) phase two.

4 Experimental Setup

TritonSort is bootstrapped by a pair of shell scripts. The
user executes a central shell script (called the coordina-
tor) that is responsible for starting TritonSort on all clus-
ter nodes. This script is assumed to run on the same sub-
net as the cluster nodes. The coordinator starts a script
called a monitor as a daemon on each cluster node. After
a monitor finishes initializing its internal state, it opens
a TCP pipe to the coordinator and announces that the
node it is monitoring is ready to run. The monitor then
waits for a UDP broadcast packet. Once the coordinator
has established connections to all monitors and all mon-
itors are ready, the coordinator sends a UDP broadcast
indicating that the experiment is ready to begin. Once a
monitor receives the UDP broadcast, it starts the Triton-
Sort instance for its node immediately.

Each monitor checks the status of its TritonSort in-
stance every tenth of a second. While its TritonSort in-
stance is still running, the monitor transmits a keep-alive
message to the coordinator via its established TCP pipe
every second. Once the TritonSort instance has finished,
the monitor notifies the coordinator that it is done.

The coordinator and monitor scripts are not strictly
part of TritonSort, and were built primarily for exper-
imental convenience. For our MinuteSort runs, where
strict timing is essential, we measure the elapsed time of
the sort as the time between when the coordinator sends
the UDP broadcast to start the experiment and when the
last monitor reports to the coordinator that it is done.
This ensures that the measured time encompasses the
starting up and shutting down of all TritonSort instances.
For GraySort, we choose to underestimate our perfor-
mance by a few seconds to make logging simple, and
time the duration between when the monitor starts at the
beginning of phase one and when it stops at the end of
phase two.

5 Evaluation

In this section, we present the results of our sort bench-
mark runs.

5.1 Minute Sort
We ran TritonSort in its MinuteSort configuration on 52
nodes with 19.5 GB per node for a total of 1014 GB of
data. TritonSort was configured to use 12 logical disks
per physical disk for a total of 192 logical disks. We
performed 15 consecutive trials. For these trials, Tri-
tonSort’s median elapsed time was 57.9 seconds, with a
maximum time of 59.9 seconds, a minimum time of 55.9
seconds, and an average time of 57.9 seconds. All times
were rounded to the nearest tenth of a second.

5.2 GraySort
We ran GraySort on 100 TB (1,000,000,000,000 100-
byte records) of data with 47 nodes. Each physical disk
stores 315 logical disks.

We verified that the resulting output’s checksum
matches the input’s checksum. We sorted the data in
10318 seconds, for a total rate of approximately 0.582
TB per minute.

References
[1] AGGARWAL, A., AND VITTER, J. S. The input/output complex-

ity of sorting and related problems. Communications of the ACM
(1988).

3


