
psort 2011 – pennysort, datamation, joulesort ∗

Paolo Bertasi, Federica Bogo, Marco Bressan, Enoch Peserico
Univ. Padova, Italy - psort@dei.unipd.it

Abstract

This memo reports the results of our psort (general purpose) sorting
software on a number of hardware configurations. “Vanilla” psort sorted
10GB for 2122 joules on a Nokia N900 smartphone with an extra Kingston
16GB flash drive (joulesort 10GB Daytona+Indy benchmark). It sorted
over 286.2 GB for 0.01$ of computing time on a PC equipped with an AMD
2.7GHz Sempron processor, 4 GB of RAM and 5 Samsung SpinPoint F4
HD322GJ drives (pennysort Daytona benchmark); on the same hardware,
a hand tailored version of psort sorted over 334.4 GB for 0.01$ (pennysort
Indy benchmark). Finally, a cluster version of psort sorted 100 MB in
40.5 milliseconds from disk to disk (and in 55 milliseconds from platter
to platter) on a 16 PC cluster with 96 Samsung SpinPoint F3 HD103SJ
drives and 10Gb/s Ethernet (datamation benchmark).

1 Introduction

This memo describes the psort entry for the 2011 sorting benchmarks – more
specifically pennysort (both Indy and Daytona), datamation, and joulesort
(10GB Daytona). Section 2 briefly describes the structure of psort (for a more
in-depth description see [3, 2]). Section 3 describes the pennysort benchmark
results. Section 4 describes the datamation benchmark results. Section 5 de-
scribes the joulesort benchmark results.

2 psort

psort is a fast, stable external sorting software originally designed for PC class
platforms. The experiments described in this memo show, however, that it
can also run surprisingly well on small embedded platforms and can be easily
extended to run on small-to-medium sized PC clusters. Its architecture is de-
scribed in detail in [2, 3]; however, in this section we briefly review its internals.

In a nutshell, psort is a “classic” (deterministic and stable) merge-based
sorter; it sorts files viewed as sequences of (at most 264) records of arbitrary

∗This work was support in part by project AACSE, and in part by Samsung through a
generous equipment donation.

1



size (up to 264 bytes), according to an arbitrary infix, by first sorting individual
“runs” of data approximately the size of the main memory and then merging
those runs into a single sorted run. psort is entirely merge-based even in the
first phase, using k−way mergesort (with adaptive k) to sort the initial runs.
Note how this is a marked difference from most other Pennysort competitors,
that first distribute the records into small buffers according to a (usually 16
bit long) prefix of the key and then sort those buffers according to a variety of
algorithms, sometimes randomized. The rationale behind psort ’s purely merge-
based implementation is providing a deterministic behavior: this guarantees
stability and high performance even against adversarially chosen inputs. psort
can use disks independently (as described e.g. in [4]), or as a single RAID
logical volume. Furthermore, psort can efficiently exploit multicore processors;
however, with the record footprint of the sorting benchmarks (10 byte keys with
90 bytes of payload), a single core always appears more than adequate for its
needs.

3 Pennysort

The pennysort benchmark involves sorting as many 100 byte records as possible
(according to the first, random 10 bytes), in 0.01$ of computer time (assuming
the cost of a machine is amortized over three years). “Indy” software can be
specifically optimized for the pennysort record format and key distribution;
“Daytona” software must be general purpose sorting software.

This section describes our hardware, filesystem and OS choices for the pen-
nysort benchmark (Subsection 3.1), the “Indy” optimizations – taylored to the
hardware and the specific key distribution of the pennysort benchmark (Sub-
section 3.2) – and the actual test results for both the Daytona and the Indy
version of psort (Subsection 3.3).

3.1 Hardware, filesystem and OS

Hardware – at least the parts critical to efficient external sorting – has not
considerably improved in terms of price-performance in the last two years. Disk
performance has increased somewhat; RAM and motherboard performance less
so; the processor critical statistics (size and access speed of the various levels
of cache) have remained almost unchanged. On the other hand, prices have
slightly increased across the board.

After various tests, we selected as the best disk candidates the Hitachi
HDS721050CLA362 500GB and the Samsung SpinPoint F4 HD322GJ 320GB.
The Hitachi disks had on their side an extremely low price of 39$, and a slightly
larger size of 500GB (meaning speed remained closer to the top speed achiev-
able on the outer rim throughout the sort). The Samsung disks were, however,
some 15−25% faster on the outer rim and, perhaps more importantly, appeared
more reliable (exhibiting far less performance variation over time and between
different disks).

2



We paired our disks with the cheapest processor we could find (a Sempron
Sargas 140 2.7 GHz), an ASRock 880 gm-le motherboard, and 2 banks of 2GB
DDR3 1333 MHz 8-8-8-24 RAM.

We installed Gentoo GNU/Linux on our system (compiled with Huge Pages
support), and created a number of XFS RAID 0 (stripe size: 128KB) parti-
tions, starting from the (faster) portion of the disk closer to the outer rim; each
partition was just large enough to hold our input and output. Note how this
size was different for the Daytona and Indy tests (see below); the number of
partitions was also different – 2 for the Indy test and 3 for the Daytona test (for
the latter, the new 2009 rules forbid overwriting the input). [2] motivates our
choice of XFS as a filesystem. We also disabled any “smart” disk scheduling.

We compiled psort using gcc version 4.4.5.

3.2 Indy optimizations

In an effort to push psort as far as it can go when hand-optimized for a specific
machine and architecture, we retooled it into an Indy version optimized for
the pennysort benchmark. We hard-coded all parameters (record and sort size,
key position and length etc.), and re-coded the first phase so as to actually
distribute records into bins according to the initial 16 bits of the key before
actually sorting each bin. This latter sort uses “standard” psort merge-based
code, with one catch: it only operates on the first 8 bytes of each key. Because
of the random distribution of the keys, it is extremely unlikely for two keys to
actually coincide on the first 8 bytes; we leave the check that this is really the
case to the second phase of the sort, where the computational pressure is lower.
We actually have code in place to deal with identical key prefixes and guarantee
the final output is sorted, but it never gets invoked for the current sort sizes.

3.3 Pennysort results

A 451.36$ cost yielded a 2096 seconds time budget (see figure 3.3). In this time,
“vanilla” psort sorted and merged 91 runs of 31457280 records each, for a total
of 2862612480 records (of 100 bytes each) and a Daytona sort size of slightly
more than 286.2 GB. This was achieved starting with the input (generated by
the gensort software from the sort benchmark site) on the innermost (slowest)
partition, writing the temporary output of the first phase on the outermost
(fastest) partition, from which it was read during the second phase to produce
a final output on the middle partition. For checking purposes, the sum of the
32 bit CRCs of all records was 55 : 50 : 23 : c7 : f7 : de : b3 : cc.

In the same time, Indy psort sorted 116 runs (of 28835840 records of 100
bytes each), for a sort size of slightly more than 334.4 GB. This was achieved
positioning the input on the faster, outermost partition, overwriting it with the
temporary output at the end of the first phase, and writing the final output
into a second, slower partition immediately closer to the spindle. For checking
purposes, the sum of the 32 bit CRCs of all records was 63 : b0 : 3d : 80 : 31 :
9f : 72 : fa.

3



Figure 1: The newegg price listing for our hardware. Note that we are not
taking into account any instant savings for the final price calculation

4



4 Datamation

Datamation is the “original” sorting benchmark [1]: benchmarks such as pen-
nysort, minutesort, joulesort [5, 7] etc. are all derived from it, and maintain its
record format (a 10 byte key followed by an incompressible 90 byte payload).
Datamation involves sorting 1 million such records in as little time as possible.
When datamation was first proposed as a benchmark of transaction processing
power, over twenty years ago, the sorting time was of the order of an hour. Ten
years ago, it had already dropped to less than a second, becoming a benchmark
of a system’s responsiveness rather than of its sustained throughput.

Still, responsiveness is an extremely important characteristic for many data
management systems (webserver-linked databases, online game servers, auto-
matic trading systems etc.) and one that none of the other sorting benchmarks
currently addresses. Thus, while the focus of datamation may have shifted, it
still remains a crucial sorting benchmark [6].

4.1 Hardware, filesystem and OS

We tested psort on a 16 PC Linux cluster provided by Univ. Padova Project
AACSE. Each machine is equipped with 6 Samsung Spinpoint F3 HD103SJ
(1TB) drives, generously donated by Samsung. These drives, exhibiting a peak
transfer rate close to 150 MB/s, were the fastest 7200 rpm drives in mid 2010,
when the cluster was set up. Each node runs a Nehalem core i7 950 CPU at
3.07Ghz, supported by an ASUS P6T SE motherboard with 3 banks of 4 GB
tri-channel DDR3 running at 1.6 GHz. The cluster is connected by a dedicated
10Gb/s Ethernet through Myricom 10G-PCIE-8B-S cards and a Fujitsu XG2600
switch.

The operating system is Gentoo Linux – with a 2.6.36 kernel, patched with
Con Kolivas’s (CK) kernel patch set. The drives are configured as a RAID 0
with 1024 KB stripe size, with maximum (2048 blocks) readahead, and XFS as
a filesystem. On sequential reads, they saturate the ICHR10 southbridge of the
motherboard when reaching the value of approximately 680 MB/s.

Perhaps more important for the datamation benchmark is the disk access la-
tency. Each disk takes approximately 8.3 milliseconds to complete a revolution.
According to specifications, the disk head can typically access a given track in
less than 5 milliseconds “on average”. In theory, if one could align a read in
such a way that it was all positioned on a single track (over 1.2 MB of data on
the outer rim), this would entail reads of up to 1.2 MB per disk in less than 15
millisecond. However, such positioning is extremely difficult to achieve (due to
the variable number of bytes per track) and in practice, we have seen slightly
longer access times to read or write 1 MB on each disk (over 20 milliseconds).
On the other hand, transfering data to/from the hard disk on-board cache is
definitely faster: about 2− 3 milliseconds plus a time proportional to the trans-
fer time at the peak bandwidth (i.e. about 11−12 milliseconds to transfer 6MB
from or to a RAID of 6 disks).

5



4.2 Cluster psort

Like virtually all cluster sorting software, cluster psort reads samples data from
each node, determines a partition of the (sorted) data between the various nodes,
sends each record to the appropriate destination node, and finally sorts and
writes the record to disk. Data can actually be partitioned into a number of
subsets that is a multiple of the number of nodes; this allows data that reaches
each node to be already partially sorted, minimizing computational pressure and
allowing the destination node to pipeline network I/O, computation, and disk
I/O. In the case of the datamation benchmark, to minimize latency we replaced
the portion of the code that determines the partition of the sorted data on a
simple, static partition based on the random distribution of the keys; data were
partitioned into 256 sets, with 16 sets assigned to each node.

The psort process is launched through command-line on one of the 16 nodes.
Every node in the cluster listens on a specified UDP port for commands from
the rest of the cluster, executing them through a fork() and an exec() –
essentially a very minimal, but “general purpose” shell that allows the master
node to create psort processes on the rest of the cluster. After reading and
partitioning the data from its local RAID, each of the 16 nodes goes through
15 phases. During the ith phase, the jth node sends to the ((i+ j)modn)th node
“its” records – and signals to the ((j − 1)modn)th node that it has done so,
allowing it to enter the next phase. This simple barrier mechanism is crucial to
avoid expensive collisions on the network.

Once every node has received all the records partitioned in 16 sets (with all
records in each set smaller than all records in the next) it sorts and sends to
disk each set. After this, each node signals the master node it has finished; the
master process terminates after receiving such an acknowledgement from every
node.

4.3 Datamation results

psort was compiled with gcc version 4.4.4, with flags -O3 -mtune=native -march=native

-funroll-loops -funsafe-loop-optimizations.
To minimize the execution time, we placed the data on a small partition

close to the outer rim of each disk, and before launching psort, we read the
data once. This ensured that all the data was already in the disk onboard cache
when we launched psort (there was slightly more than 1MB of data per disk).
Similarly, each disk was configured with hdparm -W1 to ensure that every write
command returned as soon as the data was on the onboard cache of the disk,
and not necessarily on the physical platter.

Out of 200 trial runs, the minimum was slightly below 40.5 milliseconds
and the median slightly below 40.8 (see figure 4.3). This “cache-to-cache” time
is approximately the interval between two consecutive TV frames, and, to the
best of our knowledge, over an order of magnitude less than the last recorded
datamation result [6].

While the onboard cache is part of the disk – and thus the “cache-to-cache”

6



0

0.05

0.1

0.15

0.2

40.4 40.6 40.8 41 41.2 41.4 41.6 41.8

fr
e
q
u
e
n
c
y

execution time (ms)

datamation cache-to-cache

Figure 2: Datamation time distribution, sorting from and to the disk onboard
cache

time is the disk-to-disk time of the Datamation benchmark, we also measured
the “platter-to-platter” sort time, by flushing the disk onboard caches (with
dummy reads) before launching psort, and by configuring the disks with hdparm

-W0 to ensure that no write command would return before the data was on the
platter. This led to a somewhat larger variance in the sort times; out of 200 trial
runs, the fastest took slightly less than 55 milliseconds to complete, the median
57 (see figure 4.3). For checking purposes, the sum of the 32 bit CRCs of all
records was 7 : a1 : 9c : ff : 46 : 74 : 38, and 0 duplicate keys were encountered
when the output was (automatically) verified to be in sorted order.

5 Joulesort

To test its versatility, we also decided to test “vanilla” psort on a computing
platform that was completely different from that for which it was originally

7



0

0.05

0.1

0.15

0.2

0.25

54 56 58 60 62 64 66

fr
e
q
u
e
n
c
y

execution time (ms)

datamation platter-to-platter

Figure 3: Datamation time distribution, sorting from and to the physical platter

8



designed: namely, a Nokia N900 smartphone. Surprisingly, psort managed to
sort 10GB of data for slightly less energy than the 2010 joulesort record.

5.1 Hardware, filesystem and OS

The Nokia N900 is based on an ARM 7 Cortex A8 processor running at 600
MHz, Maemo 5 Linux, and an internal 32GB flash drive. We found that we
had about 100MB of memory space available for running psort. We added a
16GB Kingston class 10 flash drive in the Nokia N900 expansion slot. We used
ext3 as a filesystem for the internal card and vfat for the microSDHC. We cross
compiled psort with the Scratchbox toolchain.

5.2 Test setup

We tested the total energy consumption with a Yokogawa WT 130 wattmeter
(0.5% RDG + 0.3% MG error), sampling at 200 millisecond intervals.

Interfacing the Nokia N900 with the wattmeter was not easy – the main
means of communication of the Nokia is its wireless system, which can drain a
considerable amount of energy, distorting the measurement. Instead, we opted
to have the Nokia N900 launch psort after a brief sleep period, emitting a
beep immediately before beginning the sort, and a second beep immediately
after completing it. To emit the beep, the sound system must be activated,
creating a small energy spike that can be detected before the actual beep is
emitted. Thus, the wattmeter starts measuring on the energy spike, is verified
to be already measuring when the first beep is emitted, and stops measuring
immediately after the second beep. This provides an upper bound to the total
energy consumption (introducing an error that is still probably below 0.1% -
less than 2 seconds, over more than 40 minutes of sorting time).

5.3 Joulesort results

We measured time and energy of 5 different psort trial runs, with all the sub-
systems of the Nokia N900 not instrumental to the sort (screen, wireless etc.)
turned off. The average time was 2583 seconds. The average energy was 2122
joules (with an instrument error of at most 17 joules) and a standard deviation
of 2.22 joules.

S1 time (s) S1 energy (Wh) S2 time (s) S2 energy (Wh) total energy (Wh) total energy (J)
1430 0.305 1152 0.2842 0.5892 2121
1435 0.3060 1151 0.2839 0.59 2124
1438 0.3067 1149 0.2834 0.5901 2124
1430 0.305 1150 0.2837 0.5887 2119
1430 0.305 1152 0.2842 0.5892 2121

9



References

[1] A measure of transaction processing power. Datamation, 31(7):112–118,
1985.

[2] P. Bertasi, M. Bressan, and E. Peserico. psort, yet another fast stable sorting
software. In SEA, pages 76–88, 2009.

[3] P. Bertasi, M. Bressan, and E. Peserico. psort, yet another fast stable sorting
software – in press. Journal of Experimental Algorithmics – in press, 2011.

[4] R. Dementiev and L. Kettner. Stxxl: Standard template library for xxl data
sets. In In: Proc. of ESA 2005., pages 640–651.

[5] J. Gray. A measure of transaction processing 20 years later. CoRR,
abs/cs/0701162, 2007.

[6] F. I. Popovici, J. Bent, B. Forney, A. Arpaci-dusseau, and R. Arpaci-dusseau.
Abstract datamation 2001: A sorting odyssey, 2002.

[7] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. Joulesort: a
balanced energy-efficiency benchmark. In SIGMOD Conference, pages 365–
376, 2007.

10


