
psort 2009

Paolo Bertasi, Marco Bressan, Enoch Peserico
Univ. Padova, Italy - psort@dei.unipd.it

Abstract

This memo reports the results of our psort (general purpose) sorting
software on a 5 disk 427.86$ PC with 4 GB of RAM and an Athlon LE
1640 2.6 GHz processor. psort sorted 67 · 225 records in 2211 seconds,
for a Daytona sort size slightly larger than 224.8 GB. A version of psort
hand-optimized for the Pennysort benchmark sorted 74 ·225 records in the
same time and on the same hardware, for an Indy sort size slightly larger
than 248.3 GB.

1 Introduction

This memo describes the psort entry for the 2009 Pennysort (Indy and Daytona)
sort benchmarks. Section 2 describes psort - both the “stock” Daytona version
designed for general purpose sorting with strong worst case guarantees, and
the Indy version specifically optimized for the Pennysort benchmark. Section
3 describes the PC on which the tests were performed. Section 4 describes the
actual results of the tests.

2 psort

psort is a fast, stable external sorting software for PC class platforms that
established the 2008 Pennysort Daytona sort record. It is described in detail
in [1] (in press at the date of this writing - the preprint version can be found
at http://www.dei.unipd.it/∼bertasi/psort), but this section briefly reviews its
internals.

In a nutshell psort is a “classic” (deterministic, stable) merge-based sorter
that sorts files viewed as sequences of (at most 264) records of arbitrary size (up
to 264 bytes) according to an arbitrary infix, by first sorting individual “runs”
of data approximately the size of the main memory and then merging those
runs into a single sorted run. psort is entirely merge based even in the first
phase, using k−way mergesort (with adaptive k) to sort the initial runs; this is
a marked difference from most other Pennysort competitors, that first distribute
the records into small buffers according to a (usually 16 bit) prefix of the key
and then sort those buffers according to a variety of algorithms, sometimes
randomized. The rationale behind psort ’s purely merge-based implementation is
providing deterministic behavior that guarantees stability and high performance

1



even against adversarially chosen inputs. The same design goal motivates the
choice of using parallel disks as RAID in all phases of the sort, rather than as
“independent disks” (as described e.g. in [2]).

In an effort to push psort as far as it can go when hand-optimized for a
specific machine and architecture, we retooled it into an Indy version optimized
for the Pennysort benchmark. We hard-coded all parameters (record and sort
size, key position and length etc.), and re-coded the first phase so as to actually
distribute records into bins according to the initial 16 bits of the key before
actually sorting each bin (with “standard” psort merge-based code).

3 Hardware (and OS)

We were somewhat disappointed by the fact that 2009 hardware did not show
marked improvements and/or price drops compared to the hardware we had
tested in 2008. The total cost of our test platform (including the “virtual” 35$
assembly fee) at Newegg.com on March 31st was 427.86$, slightly higher than
last year’s (see end of memo). In particular, the best price/performance disks
were the same as last year’s - Western Digital’s 160GB, 7200 rpm Caviar SE
WD1600 AAJS with a peak transfer rate of approximately 100GB/s, at a price
over 90% of last year’s price.

We paired a Gygabyte GA-MA74GM-S2 motherboard with a cheap, 2.6
GHz, AMD Athlon LE 1640 with 1MB L2 cache (at approximately the same
price that we paid last year for the 2.4 GHz version - now unavailable) more
for their price than for their performance. While this motherboard can support
up to six disks, only five of ours could be fully exploited without saturating the
bandwidth of the southern bridge - a sixth disk did not yield enough speed ben-
efits to be worth the extra price. Also, this motherboard/processor combination
(as the vast majority of AM2, rather than AM2+, architectures) successfully
supports RAM only up to 800 MHz, rather than 1066, which makes RAM a
slight bottleneck during the first phase of the sort. Still, better architectures
(from the point of view of the memory and disk bandwidth - the CPU in itself
was not a bottleneck) entailed multi-core processors and a quantum leap in price
that, again, was not justified by sufficient increases in performance.

RAM was the only component that was significantly better than what was
available last year - we could afford 2 banks of 2GB Dual Channel PC6400
(800MHz) RAM for approximately the same price paid last year for a pair of
1GB banks with the same characteristics. It is perhaps interesting to observe
that this year’s market fluctuations meant that the RAM size doubled, while the
processor’s L2 cache remained constant - contrary to the “average” trend that
has the two quantities grow by approximately the same factor each year, and
in particular has the size of the L2 cache (measured in cache lines) grow faster
than the square root of the size of the RAM. This increased the pressure on the
main memory bus and slightly increased the advantage of the distribution-based
approach we implemented in our Indy version. We remark again that this is
just a fluctuation - we expect the pressure on the main memory bus to decrease
“on average” in the coming years.

2



We installed Gentoo GNU/Linux on our system (compiled with Huge Pages
support), and created a number of XFS RAID 0 (stripe size: 1024KB) parti-
tions, starting from the (faster) portion of the disk closer to the outer rim, each
just large enough to hold our input and output. This size was different for the
Daytona and Indy tests (see below); the number of partitions was also different,
and in particular 2 for the Indy test and 3 for the Daytona test (for the latter,
the new 2009 rules forbid overwriting the input). [1] motivates our choice of
XFS as a filesystem. We also disabled any “smart” disk scheduling.

4 Pennysort results

A 427.86$ cost yielded a 2211.19 seconds time budget. In this time “vanilla”
psort sorted and merged 67 runs of 225 records each, for a total of 2248146944
records (of 100 bytes each) and a Daytona sort size of slightly more than 224.8
GB - approximately 24% more than last year (far below the average 60% yearly
improvement of the last 10 years). This was achieved starting with the input
(generated by the gensort software from the sort benchmark site) on the inner-
most (slowest) partition, writing the temporary output of the first phase on the
outermost (fastest) partition, from which it was read during the second phase to
produce a final output on the middle partition. This meant that the performance
of disks was slightly worse during the first phase, but since during this phase
the RAM was (for a very small margin) the bottleneck, in the end we witnessed
essentially the same performance that could be achieved overwriting the input
and making heavier use of the outer portions of the disk. For checking purposes,
the sum of the 32 bit CRCs of all records was 43 : 00 : 33 : dd : 4d : b0 : 5f : 68,
and 0 duplicate keys were encountered when the output was (automatically)
verified to be in sorted order.

In the same time Indy psort sorted 74 runs (also of 225 records of 100 bytes
each), for a total of 2483027968 records and a sort size of slightly more than 248.3
GB - approximately 31% faster than last year. This was achieved positioning
the input on the faster, outermost partition, overwriting it with the temporary
output at the end of the first phase, and writing the final output into a second,
slower partition immediately closer to the spindle. For checking purposes, the
sum of the 32 bit CRCs of all records was 4a : 00 : 26 : 68 : 09 : 7b : 2a : 29, and
0 duplicate keys were encountered when the output was (automatically) verified
to be in sorted order.

References

[1] P. Bertasi, M. Bressan, and E. Peserico. psort, yet another fast stable sorting
software. In Proc. Symp. on Experimental Algorithms (SEA), pp. 76–88,
2009.

[2] R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In Proc.
ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 138–148.

3



Shopping Cart Print

 

 

 

 

 

 

 

Newegg.com - Once You Know, You Newegg http://secure.newegg.com/Shopping/ShoppingCartPr...

1 of 2 14/04/2009 15:35

4


