
DEMSort — Distributed External Memory Sort

Mirko Rahn, Peter Sanders, Johannes Singler∗, Tim Kieritz
Karlsruhe Institute of Technology

Abstract

We present the results of our DEMSort program in var-
ious categories of the SortBenchmark. DEMSort is a so-
phisticated and highly tuned implementation of a merge-
sort-based algorithm. It makes use of several libraries to
support at the same time distributed-memory parallelism
and shared-memory parallelism, in addition to very efficient
disk I/O. This makes it excellent for sorting huge volumes of
data.

Our timings beat previous result by more than a factor of
three, albeit using a much smaller machine.

1 Algorithm

Based on merge sort and a multiway selection algo-
rithm1, we developed an algorithm that is I/O-optimal up to
lower order terms. The detailed algorithm analysis will fol-
low in a more theoretical paper, here we content ourselves
with a rough description of the algorithm and our environ-
ment used for the SortBenchmark.

The algorithm works in three stages, run formation, dis-
tribution of data to the final node, and local merge.

Run formation During run formation, so-called runs of
the size of the global internal memory are sorted. For each
of the R runs, a node first fills the local internal memory
with data from the local external storage. This data is then
sorted globally (i. e. across all nodes), and written back to
the disks. The sequential (but disk-parallel) algorithm that
serves as a basis here is described in [2].

Distribution We use a multiway selection algorithm to
get the exact split positions in the runs, and redistribute the
elements to their final target node accordingly. The transfer
volume could we very well larger than the internal mem-
ory, but we can communicate from/to internal memory only.

∗Partially supported by DFG grant SA 933/3-1.
1A multiway selection consists of finding the element of a certain

global rank among several sorted sequences.

Therefore, we split the distribution stage into many rounds,
each one fitting into internal memory.

Local Merging After distribution, each node stores R
(possibly empty) sorted sequences in its external memory.
This sequences are then merged together in a completely
node-local operation.

1.1 Analysis

• During run formation, each record is read and written
once.

• During the distribution, in the best case input (e. g. ran-
dom input) only a very small amount of data is re-
distributed. However, there are worst case inputs for
which nearly all records are on the wrong node af-
ter run formation. In that case, all data has to be re-
distributed, so every record is read and written once,
again.

• During the local merge, again each record is read and
written anyway.

Altogether, the algorithm reads and writes each record
between four and six times, which is optimal in the best
case.

Of course, there is also communication involved. Again,
for best case inputs, a record is communicated in run for-
mation only. For worst case inputs, each record is commu-
nicated once more in the distribution stage.

1.2 Output scheme

The output is a sorted permutation of the input records.
Each node has one file, nodes with smaller numbers having
smaller records. Thus, the concatenation of files in the or-
der of the nodes gives the completely sorted sequence. The
output files are created during the sort, they do not exist be-
fore.

1

2 Implementation Details

We have implemented the algorithm in C++ using the
STXXL, the standard template library for XXL data sets [1].
This library handles asynchronous block-wise access on lo-
cal disks2 in a very efficient way. To sort and to merge data
internally, we used routines of the parallel mode in GCC,
which exploits multi-core parallelism, and is based on the
Multi-Core Standard Template Library [4]. Communication
between nodes is done using the message passing interface
MPI [3]. Unfortunately, data volumes are specified using
32-bit signed integers in MPI, so no data volume greater
than 2 GiB can be passed to MPI-routines. We have re-
implemented one of them, namely MPI Alltoallv (bas-
ing on ordinary Isends and Ireceives), to break this
barrier.

2.1 Overlapping

In all stages, we overlap disk I/O with internal work and
communication: During run formation, for instance, we sort
run i while run i− 1 is written to disk, and run i + 1 is read
from disk, subsequently. Here is room for further improve-
ment as we do not overlap communication and sorting.

Particularly important for the “internal case” (all data fits
into the global main memory) is the very tight overlapping
of I/O and computation in the run formation stage. We can-
not overlap runs as stated above since there is only one run.
Instead, we first sort each block individually, immediately
after been read from disk. When all blocks are fetched, a
multiway merge instead of a full sort suffices to get the lo-
cal data sorted. The global internal sort then further pro-
cesses this data. As a special optimization for the internal
case, we prefill the output file as far as possible while doing
the global sort computation and communication. Disk op-
eration is cancelled immediately when the computation is
finished. This trick allows for best disk performance even
though the output files are newly created. For the external
case, this is not useful, since there are no disk idle times
thanks to overlapping.

2.2 In-place operation

Our implementation has another valuable feature: It
works (nearly) in-place. To sort a certain volume of data,
we need only a very small amount of additional external
space, independent of the input size. This feature pays off
particularly on huge input volumes. If you can store 1014

bytes, can you also store 2× 1014? We only had less space
than 2× 1014 available.

To keep the data in place we use several tricks:

2In our tests, we used a RAID seen as a single disk.

• We read the input files from end to begin and shrink
their size accordingly.

• As the result of the run formation, we write many small
files (one file per block). Thus, the disk space can be
freed later independently of the block access order.

• The distribution uses a newly developed Alltoall algo-
rithm that works (nearly) in-place with these files.

• The small files are read and deleted one after the other
during merging, as the program produces a single final
output file per node.

3 Results

First, we would like to thank the people from the Stein-
buch Centre for Computing in Karlsruhe. Their support was
terrific, permitting the great results presented here.

3.1 Machine

The testing machine was a 200-node Intel Xeon Clus-
ter running Suse Linux Enterprise 10 SP 1 with kernel
2.6.22.19. Each node consists of two Quad-Core Intel Xeon
X5355 processors clocked at 2667 MHz with 16 GiB main
memory and 2 × 4 MiB Cache, and has attached 4 Sea-
gate Barracuda 7200.10 disks. So in total, the machine has
3 TiB of internal and about exactly 200 TB of disk space,
but only 117 TiB were usable to us. The typical maximum
I/O rate of the disks is about 80 MiB/s for reading as well
as for writing (outermost tracks). Most of the disks are of
type ST3250820AS, some of them (below 2 %) are of type
ST3250310AS, the latter being faster. For the contest runs
we selected the 195 fastest out of 198 nodes available to us.
The nodes are connected by an 288-port InfiniBand 4xDDR
switch. The theoretical point to point bandwidth between
two nodes is more than 1300 MiB/s, which goes down to
an average of 500 MiB/s when all nodes are communicat-
ing.

The compiler was GCC 4.3.1, and the MPI-
implementation MVAPICH 1.1.

3.2 Parameters

We used one process per node, i. e. 16 GiB main mem-
ory and 4 disks per process, combined as a RAID-0 (strip-
ing). The RAID was formatted using XFS with the options
agcount=1 and unwritten=0.

We transfer records from/to disk in blocks of a certain
size, which is a tuning parameter. In the benchmark runs,
each block contained 10× 214 records, i. e. about 16 MiB.

In order to use multi-core parallelism each process was
allowed to use 4 cores.

2

3.3 Generation and Verification

We used the program gensort from Chris Nyberg to
generate the data in parallel. Each node generates its own
data, starting with an appropriate offset. During genera-
tion we calculated checksums3 using the routines from libz.
Each node stores the number of generated records as well
as the checksum. The global checksum is calculated as the
sum of all the local checksums and also stored.

After sorting, each node verifies the local order of
the records and again calculates checksums and records
counts. The checksums and record counts are collected and
summed up to form a second global checksum. Addition-
ally each node communicates its first and last record, whose
ordering is then also verified.

So we have four things to check for: Whether or not
the number of records is the same before and after sorting,
whether or not the two global checksums are equal, whether
or not all nodes have sorted data and whether or not the con-
necting records are sorted. If all answers are “Yes”, we have
good evidence that the output is indeed a sorted permutation
of the input.

3.4 Timings

We measured the time from issuing the sort command
on the head node until the control flow returns, e. g.
/usr/bin/time mpirun demsort ... This in-
cludes the time to distribute the program itself, the MPI
startup time and the MPI finalization time. We ensure that
the input file is completely written to disk and that the
system disk caches are flushed on startup time. Since the
STXXL avoids file caching, we can be sure that the output
files are completely written to disk when the control flow
comes back.

All timings are given in seconds.

3.4.1 TeraByte

We made four attempts for the now outdated TeraByte cat-
egory and got the following results:

complete time variance among nodes

min avg max

1 66.02 56.27 59.61 61.90
2 63.57 56.23 59.26 62.13
3 64.83 56.25 59.39 63.49
4 66.75 56.27 59.54 62.64

3According to the rules, we actually sum up the CRC-32 checksums of
the individual records.

The complete time includes all startup and finalization
overhead, the sort time is measured by the program inter-
nally. All attempts were done on 192 nodes, sorting 318
blocks each. That is 52,101,120 records per node, summing
up to 10,003,415,040 records. The checksum is 12A212A
4122242209.

Our result for the TeraByte category is:

We have sorted more than 1010 records in less than
64 seconds.

3.4.2 Minute

We need less than 64 seconds to sort 1010 records. Our hope
was to sort 1010 records in less than a minute. We tried
hard and our program is very well able to do so when using
another MPI Implementation. But on the other hand, there
is some overhead in distributing and starting the program,
which is important for such “small” inputs. After all, we
gave up and tried to find out the maximal volume we can
sort in less a minute on 195 nodes.

The following table summarizes our attempts:

Blocks

per node
∑

records complete time

299 58,305 9,552,691,200 59.99
63.85
60.17

Our result for the Minute category is:

We have sorted 9,552,691,200 records in less than a
minute.

The checksum is 11CB255282001DCCB.

3.4.3 GraySort

We made three attempts using 195 nodes. The results are:

complete time

1 10,743
2 10,628
3 10,915

All running times are very close to three hours.
We sorted 31,301 blocks per node. That is 5,128,355,840

records per node, summing up to and 1,000,029,388,800
records. The checksum is 746B2FCE425B12DFB2.

3

So our result for the GraySort is:

We have sorted more than 1012 records in less than
10,628 seconds.

According to the new metric, this reads as:

We have sorted more than 5,645,630,723 records per
minute.

We have transferred 4.015 times the size of the input
data. The overall transfer rate is 35.19 GiB/s in total, i. e.
46.19 MiB/s per disk.

3.5 Daytona or Indy

Our program works according to the Indy rules.
Our algorithm and implementation is generic. However,

the record type and the block size is fixed at compile time,
and the block size must be a multiple of the record size.
So definition of the type and the comparison functor, fol-
lowed by a recompilation, is needed to sort another type of
data. However, this could be automatized, in particular if
we restrict ourselves to natural sorting orders (ascending or
descending lexicographic). Such a wrapper would induce
some additional overhead, which is negligible for huge in-
puts but not for the TeraByte and the Minute category. After
all, we do not have such a wrapper.

There are two more requirements for the Daytona cate-
gory, namely to demonstrate a run that lasts at least one hour
and does not overwrite the input. In our GraySort attempts,
we fulfil the first, but we are unable to fulfil the second,
since we do not have enough external space on our machine
to store both the input and the output file at the same time.
However, this is not a problem in principle. The program
can be parametrized to keep the input file.

References

[1] R. Dementiev, L. Kettner, and P. Sanders. STXXL:
Standard Template Library for XXL data sets. Software
Practice & Experience, 38(6):589–637, 2008.

[2] R. Dementiev and P. Sanders. Asynchronous parallel
disk sorting. In 15th ACM Symposium on Parallelism
in Algorithms and Architectures, pages 138–148, San
Diego, 2003.

[3] MPI Forum. MPI: A message-passing interface stan-
dard. Technical report, University of Tennessee, May
1994.

[4] J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-
core standard template library. In 13th International
Euro-Par Conference, volume 4641 of LNCS, pages
682–694. Springer, 2007.

4

