TeraByte Sort on Apache Hadoop

Owen O’Malley
Yahoo!
owen@yahoo-inc.com

May 2008

Apache Hadoop is a open source software framework that dramatically sim-
plifies writing distributed data intensive applications. It provides a distributed
file system, which is modelled after the Google File System[2], and a map/reduce[I]
implementation that manages distributed computation. Since the primary prim-
itive of map/reduce is a distributed sort, most of the custom code is glue to get
the desired behavior.

I wrote 3 Hadoop applications to run the terabyte sort:

1. TeraGen is a map/reduce program to generate the data.

2. TeraSort samples the input data and uses map/reduce to sort the data
into a total order.

3. TeraValidate is a map/reduce program that validates the output is
sorted.

The total is around 1000 lines of Java code, which will be checked in to the
Hadoop example directory.

TeraGen generates output data that is byte for byte equivalent to the C
version including the newlines and specific keys. It divides the desired number
of rows by the desired number of tasks and assigns ranges of rows to each map.
The map jumps the random number generator to the correct value for the first
row and generates the following rows. For the final run, I configured TeraGen
to use 1800 tasks to generate a total of 10 billion rows in HDFS, with a block
size of 512MB.

TeraSort is a standard map/reduce sort, except for a custom partitioner
that uses a sorted list of N — 1 sampled keys that define the key range for each
reduce. In particular, all keys such that sample[i — 1] <= key < sampleli] are
sent to reduce i. This guarantees that the output of reduce i are all less than
the output of reduce i+ 1. To speed up the partitioning, the partitioner builds a
two level trie that quickly indexes into the list of sample keys based on the first
two bytes of the key. TeraSort generates the sample keys by sampling the input
before the job is submitted and writing the list of keys into HDFS. I wrote an
input and output format, which are used by all 3 applications, that read and


http://hadoop.apache.org/core
http://issues.apache.org/jira/brows/HADOOP-3402

write the text files in the right format. The output of the reduce has replication
set to 1, instead of the default 3, because the contest does not require the output
data be replicated on to multiple nodes. I configured the job with 1800 maps
and 1800 reduces and io0.sort.mb, io.sort.factor, fs.inmemory.size.mb, and task
heap size sufficient that transient data was never spilled to disk other at the end
of the map. The sampler used 100,000 keys to determine the reduce boundaries,
although as can be seen in figure [2] the distribution between reduces was hardly
perfect and would benefit from more samples.

TeraValidate ensures that the output is globally sorted. It creates one map
per a file in the output directory and each map ensures that each key is less
than or equal to the previous one. The map also generates records with the
first and last keys of the file and the reduce ensures that the first key of file i is
greater that the last key of file ¢ — 1. Any problems are reported as output of
the reduce with the keys that are out of order.

The cluster I ran on was:

e 910 nodes
e 4 dual core Xeons @ 2.0ghz per a node
e 4 SATA disks per a node

8G RAM per a node

1 gigabit ethernet on each node

40 nodes per a rack

8 gigabit ethernet uplinks from each rack to the core
e Red Hat Enterprise Linux Server Release 5.1 (kernel 2.6.18)
e Sun Java JDK 1.6.0_.05-b13

The sort completed in 209 seconds (3.48 minutes). I ran Hadoop trunk
(pre-0.18.0) with patches for HADOOP-3443 and HADOOP-3446 which were
required to remove intermediate writes to disk. Although I had the 910 nodes
mostly to myself, the network core was shared with another active 2000 node
cluster, so the times varied a lot depending on the other activity.

References

[1] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Sizth Symposium on Operating System Design and Implementa-
tion, San Francisco, CA, December 2004.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In 19th
Symposium on Operating Systems Principles, Lake George, NY, October
2003. ACM.


http://issues.apache.org/jira/browse/HADOOP-3443
http://issues.apache.org/jira/browse/HADOOP-3446

Tasks

4000

Runing Tasks Over Time

3500

3000

1 13 25 37 4% 61

Seconds

73 B5 97 109 121 133 145 157 169 181 193 205

W Reduce

Merge
W Shuffle
W Maps

Figure 1: Number of tasks in each phase across time

Bytes

1000000000

Finish Time Vs. Size

900000000

800000000

700000000

600000000

500000000

| o®

400000000

300000000

't

200000000

100000000

0

50 100 150 200
Seconds

250

+ Reduces

Figure 2:

Plot of reduce output size versus finish time




