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Abstract—Following the GraySort rules of sortbenchmark.org, 

this paper reports results of 100 TB in less than 100 sec ( 60.7 TB/
min) for the "Indy" GraySort, 44.8 TB/min for the "Daytona" 
Graysort , 55.3 TB for the "Indy" MinuteSort, and 36.9 TB for 
the "Daytona" Minutesort benchmarks using a cluster of 512 
OpenPOWER  servers optimized for hyperscale data centers. 
 

Index Terms— sorting, distributed algorithms 

I. INTRODUCTION 

The introduction of high-bandwidth NVMe solid-state storage 
devices, 100Gb Mellanox networking, combined with 160 
hardware threads across two 10-core OpenPOWER (POW-
ER8) CPUs, has allowed for a substantial step forward in clus-
ter-level performance and an order of magnitude improvement 
in per-node sort performance. Disproportionate growth in net-
work and storage bandwidth puts a new degree of pressure on 
the CPU, and while sort alone still utilizes less than 10%/70% 
(average/peak) of the CPU, managing the combination of sort, 
network and storage now demands a high-performance CPU 
to achieve maximum performance.  
 The sort application consists of three major phases: 1) read-
ing from storage and partitioning the data into non-overlap-
ping ranges according to the sort keys, 2) distributing the 
ranges to the destination nodes ( shuffle ), and 3) at the desti-
nation nodes combining equivalent ranges from all the nodes 
into a sorted output file. In the case of the Daytona sort there 
are a number of enhancements: 1) Input and output files are 
duplicated across the cluster. 2) The application can handle 
inputs larger than the combined memory in the cluster. 3) The 
application can handle arbitrarily skewed input data sets. 4) 
The application can handle a variety of key types and key and 
record lengths. 
 While tuned for the benchmark, the sort application is able 
to handle a variety of key and record lengths and a variety of 
sort orders. For all the results reported in this paper, the lexi-
cographic ordering was used, as per the benchmark guidance. 
Tencent Sort supports a variable number of nodes. The appli-
cation supports the sorting of skewed datasets as well as 
datasets that do not fit in the aggregate cluster memory. In 
order to support a variety of networking protocols, including 
those that do not guarantee delivery, network retry is handled 
within the application in a modular fashion. Input and/or out-
put data can be recovered and the application restarted without 
data loss in the case of node failure. 

II. SYSTEM CONFIGURATION 

The system used for these benchmarks is a 512-node Open-
POWER cluster with a 100GbE Mellanox data network. Node 
attributes are summarized in Table 1 (hardware) and Table 2 
(software). 

Table 1: Node Hardware Configuration  
(SuperMicro OpenPOWER SSP-6028UP-ENR4T) 

Table 2: Node Software Configuration 
 

Figure 1: Full-bandwidth leaf-spine 100GbE Network. 512 
OpenPOWER servers(blue), 48 Mellanox Spectrum SN2700 
switches(red), Mellanox 100Gb LinkX optical cables between 
switches.  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Figure 2: Indy Sort Software Architecture. Parameters 
shown are for the 100TB Indy GraySort benchmark. 

III. INDY SORT 

Indy sort consists of the following major phases shown in 
Figure 2: 

A.Input Generation (not shown in Figure 2) 
B.Range Partitioning 
C.Network Shuffle 
D.Merge & Sort 
E.Output Validation (not shown in Figure 2) 

Stages B-D comprise the timed Indy GraySort and Minute-
Sort application. At the top level these stages are controlled by 
the host node which issues commands to all other nodes and 

collects their responses to determine successful completion of 
the complete application. For the Indy sorts the range parti-
tioning is completed before the other stages start. The shuffle 
and merge and sort phase are partially overlapped, with some 
of the sort and merge tasks starting before the shuffle com-
pletes. In our benchmark runs four of the merge and sort tasks 
typically operated concurrently. 

A.Input Generation 
Input data is generated on each node in the cluster prior to 

running the benchmark, using gensort with appropriate data 
offsets for each node. The input dataset (gensort output) for 
each node is split to multiple segments that are stored on the 
local xfs file system mounted on NVMe. To best balance 
NVMe read bandwidth, CPU throughput, and main memory 
size, a segment size of 19.54M records is selected.  

For the 100TB GraySort benchmarks on a 512-node cluster, 
each node has 100 19.54M-record segments (195.4GB), for 
total of 51200 segments spread equally across the cluster (a bit 
more than 100TB total). For the MinuteSort benchmarks the 
number of segments is reduced and gensort offsets are adjust-
ed accordingly. 

                Range Partitioning           Shuffle        Merge and Sort  
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B.Range Partitioning 
During the first stage, each node reads the input dataset and 

partitions the data into a set of non-overlapping data ranges 
which are written to a memory-based tmpfs file system. A flex-
ible partitioner is used that is a customized parallel (C/Open-
MP)  version  of  radix  sort  optimized  to  leverage  the  large 
number of threads and large caches of the POWER processor 
architecture. Output data ranges can be fully or partially sort-
ed, depending on the number of radix sort iterations. For the 
benchmark configurations this stage only partitions. 

For the 100TB benchmark, the first stage creates 8K non-
overlapping  ranges  on  each  node  (labeled  “aaa”  though 
“mdb”), such that in the second stage each of 512 nodes can 
concurrently process 16 such ranges (16x512=8K). In order to 
leverage the available NVMe bandwidth, 4 concurrent copies 
of  the  range  partitioner  are  run  on  each  node.  Each  node 
achieves a sustained read bandwidth of about 10GB/s in this 
stage ( about 5TB/s in aggregate ).

C.Network Shuffle 
In the shuffle stage, the output files from the partitioner are 

communicated to the destination nodes such that each node 
collects an approximately equal number of ranges. In our 
100TB run each range consists of 2K files (512 nodes x 4 par-
titioners) and if 512 nodes are available each node processes 
16 such ranges (more if there are fewer nodes). 

Successful file transfers are acknowledged and retry is han-
dled within the shuffle routine. While the current shuffle is 
sockets-based, this approach allows for a variety of network 
protocols, including those that do not guarantee delivery, as is 
the case when ethernet packet retry is turned off.  

So as not to overload the network, the number of simultane-
ous file transfers is controlled by a tuning parameter. 

Maintaining a large number of network connections can lead 
to excessive context switching To limit context switching, a 
single thread in the shuffle handles multiple connections. 

Mellanox ConnectX-4 100GbE NIC optimizations include 
enabling Large Send Offload (LSO), Large Receive Offload 
(LRO), and 64KB socket buffers to leverage LSO and LRO, 
using large packets (MTU 9000), and managing interrupt 
NUMA affinity. When the shuffle stage is run in isolation, per-
node sustained throughput is close to 10GB/s. 

D.Merge And Sort 
The final  stage integrates  data  ranges from multiple  input 

sources and produces a final order across all keys within that 
range using a second sort routine, which is a customized paral-
lel (C/OpenMP) version of a merge and sort optimized to best 
leverage cache and thread attributes of the POWER processor. 
As this operation has no dependencies across the ranges, mul-
tiple  instances  can operate  in  parallel,  each producing their 
own output files. For the 100TB benchmarks,  sixteen merge 
sorters per node are used, each producing one output file. Note 
that because each POWER8 processor core supports 8 (SMT) 
hardware threads, 160 threads are available to the application, 

and each sorter uses multiple threads for input, sort, and out-
put  processing.  The  output  “odirect”  flag  is  used,  and  an 
“fsync” is performed before a node signals completion.

E.Output Validation 
To validate the sort outputs, valsort is run (unmodified) first 

on each local output directory in each node, and then globally 
on the collected outputs of the local runs. The valsort output 
(checksums and duplicate key counts) are recorded.

The settings indicated in the diagram were found to be opti-
mal for the 100TB GraySort, and were modified only modest-
ly for the other benchmarks. 

IV. DAYTONA SORT 

The Daytona sort has the same basic architecture as the 
Indy sort, but with some modifications to most stages and with 
two additional stages added: 

A.Input Generation (not shown in Figure 2) 
B.Range Partitioning 
C.Skew check and repartitioning (added) 
D.Network Shuffle 
E.Merge & Sort 
F.Output replication (2nd write added) 
G.Output Validation (not shown in Figure 2) 

Each stage is discussed below.  

A.Input Generation 
Input data is the same as that of of Indy sort, and every in-

put file is copied to a designated backup node to enable recov-
ery in the case of node failure. 

B.Range Partitioning 
Daytona sort requires handling input data sets that do not fit 

in node memory. If the aggregate input size exceeds the size 
that can be processed, the partitioning stage operates on a part 
of the input data set that fits in memory and write the output 
files for each set to (xfs) storage. For a 1 PetaByte sort, for 
example, eight input file sets of 250GB per node could be pro-
cessed in sequence. For very large input sets the number of 
ranges in the first stage must be increased to ensure a single 
globally aggregated range fits in node memory in the sort and 
merge stage. For the purposes of the reported benchmarks, the 
output of the first stage is written to local tmpfs.

Also for Daytona the application must be able to handle a 
variety of key and record sizes and must be able to support a 
variety of sort orders. To achieve this while maintaining good 
performance the (local) partitioner uses an internal data repre-
sentation consisting of a key and pointer to a data record in 
memory. The partitioner (and similarly the stage 2 sort and 
merge) reconstitutes the 100B records before they are output.  
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C.Skew Check and Optional Data Repartitioning 
At the end of the first stage, before the shuffle, the sizes of 

each global range are conservatively approximated. If the size 
of any global range exceeds the smallest range size by 2x or 
more, then the data is re-partitioned. If re-partitioning is re-
quired then each of the partitioned input data sets (i.e. the out-
put of the range partitioner) is aggregated/divided into a rea-
sonable number of input files (in our 100TB runs 8 input files 
of  about 25GB for each multiple of about 200GB in the input) 
and each of these new input files are sorted.  

If the data was small enough to fit in memory then this 
process does not require storage access. If the input data size 
exceeds the available memory then the output of the range 
partitioner resides in local storage and this stage must read and 
write from local storage as well. 

Depending on the number of desired non-overlapping ranges 
(8K in our case), largest record keys are determined for four 
times that number (32K in our example) of nearly equal-sized 
ranges for each of the sorted files that are the input for this 
stage of the repartitioner. These keys plus for each such key a 
data field indicating their location (node, file, and range id) are 
collected globally. For the 100TB sort with 200GB input data 
sets and 8 sorted files per node, this results in 512(nodes) x 
8(sorted files per node) x 32K(ranges) = 128M key/location 
pairs. These key/location records are then sorted by key, main-
taining key ordering within each file, i.e. ensuring that keys 
originating from the same sorted file do not go out of order. A 
linear scan of the globally collected largest range keys while 
maintaining a list of the last key/location pairs for each file is 
performed, outputting this list for every n_th key in the global-
ly collected list. In our example n=16K and 8K such lists (of 
4K key/location pairs each: one pair for each sorted file in 
each node) are output. Identification of which range to split in 
each file is required to ensure an even distribution even in the 
case of keys that are repeated often. The results of this calcula-
tion are communicated back to all of the nodes, and within 
each node each locally sorted file is divided into a new set of 
ranges (8K in our example) based on the list of global split 
keys and for each global split key the range (of the 32K) to 
split. Note that the range to split is the one following the last 
range that was fully included, indicated by the corresponding 
last key for that file prior to the split key in the globally sorted 
list. A binary search locates the first element within the range 
to be split equal to or larger than the global split key. Note also 
that because the same range may be split multiple times a new 
range may be empty. 

For datasets that do not exceed the size of the available 
memory this stage also completes in memory . 

 This procedure is guaranteed to result in global range par-
titions where each global partition is at least 3/4th the size of 
the average partition and at most 5/4th the average size. 

D.Network Shuffle 
 In the case where the input data does not fit into main 

memory, the network shuffle reads from xfs, and merge and 
sort are alternated, but is otherwise identical to Indy sort. 

E.Merge And Sort 
 The merge and sort stage writes its output to tmpfs instead 

of xfs, but is otherwise the same as for the Indy sort. 

F.Output Replication 
For Daytona output is written both to local xfs and to the 

designated backup node from which data can be recovered in 
the case of node failure. The local copy is written by “dd” us-
ing “oflag=direct”, the output replica is written by the shuffle 
server using OS cached write. A background periodic sync and 
drop cache mitigates the cost of the final synchronization. 

G.Output Validation 
Output Validation for Daytona is the same as for Indy, but 

with the added requirement that Daytona sort needs to be able 
to run continuously for an hour without system failure. This 
capability is documented in Table 7 with 30 successive runs of 
more than 2 minutes each.. 

V. BENCHMARK RESULTS 

Table 3: Benchmark Results 

For each of the reported results, time was measured (using 
the linux time command) on the host node that initiates the 
computation. Care was taken to ensure no results of prior runs 
remain in the caches, and that outputs were fully written to 
secondary storage before the data nodes indicate their comple-
tion to the host.  

Table 4: Approximate timing of the individual Stages. * indi-
cates overlapping stages. 

Table 4 summarizes the typical time spent in each of the 
stages of the computation. Note that for the Indy sorts the 
network shuffle and merge and sort stages partially overlap. 
This lengthens the shuffle and sort and merge stages some-
what. Also note that, as one would expect, even after redistrib-
ution node-to-node variability in runtime is larger for the 
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skewed datasets. CPU utilization is typically less than 10% for 
stages other than sort and merge, where it ranges from 20-30% 
but peaks at about 70% when sort and networking are over-
lapped. 

A summary of all the runtimes of all the consecutive itera-
tions for each benchmark is attached in Tables 5-10. 
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Table 5: Successive Indy GraySort attempts 

512 Node, 100.0448 TB Indy GraySort ( 98.845 sec, 60.7283 TB/min )
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Table 6: Successive Indy MinuteSort attempts 

512 Node, 55.296 TB Indy MinuteSort ( 59.910 sec median ,  55.296 TB/min )
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Table 7: Successive Daytona GraySort attempts 

512 Node, 100.0448TB Daytona GraySort  
( median 134.100 sec,  44.7628 TB/min )
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Table 8: Daytona Graysort skewed dataset 

512 Node, 100.0448TB Daytona GraySort Skewed 
( median  257.960 sec,   23.2698 TB/min )
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Table 9: Successive Daytona MinuteSort attempts 

512 Node, Daytona Minutesort  
( median  57.14 sec,  36.864 TB/min )
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Table 10: Daytona MinuteSort skewed datasets 

512 Node, Daytona Minutesort Skewed Dataset  
( median  108.590 sec,  20.369 TB )


