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1 Introduction

We present ELSAR, our submission for the 2022 JouleSort 1TB Indy benchmark.
Unlike the traditional external merge-sort framework, ELSAR partitions records
based on non-overlapping and monotonous ranges of their CDF4 values. Then,
the partitions are sorted using LearnedSort 2.0 - an in-memory sort that has
shown great results in numerous evaluations[11]. Finally, the partitions records
are simply concatenated consecutively onto a single output file, which is much
faster than the traditionally used k-way merge.

In terms of the hardware, we use a desktop computer running on an Intel®
Core™ i5 processor with 32GB of RAM and four SSDs. As a result, ELSAR
achieves a rate of 158,951 sorted records per Joule, which is 1.4× the
current record held by KioxiaSort[14] (see Figure 1).

In the remainder of this report, we describe the sorting algorithm in detail,
list the system components that we use, explain our evaluation method, and
present the results.

2 The ELSAR algorithm

ELSAR stands for External LearnedSort for ASCII Records. It is a learning-
enhanced, data distribution-based, external sorting algorithm that sorts ASCII
records by leveraging small, accurate, and fast linear models. The algorithm
combines various techniques to achieve high sorting rates, such as sample-based
distribution learning, numerical encoding for ASCII keys, and parallel, buffered,
and lock-less file I/O. The central idea of ELSAR is shuffling input records in
mutually exclusive, monotonic, and equi-depth partitions. Once sorted, they can
simply be concatenated to form an output file, avoiding the expensive merging
routine. The sorting algorithm is shown in Figure 2.

4 The Cumulative Distribution Function (CDF) is calculated as the probability
P (X ≤ x), where x is a key in the input, and X is the random variable associ-
ated with the all the input keys.
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Fig. 1: The energy efficiency (in sorted records per Joule) of the ELSAR
algorithm as compared to previous winners of the JouleSort 1TB Indy
category[14,8,13,7]

2.1 Model training

Initially, the algorithm reads 10GB of the input file in memory and picks 10%
of the records uniformly-at-random to form a training set for the prediction
model. The model uses an RMI architecture[9] and approximates the distribution
function (CDF) of the input dataset, thus estimating the position of a particular
record in the final sorted order. The RMI architecture consists of layered linear
models in a directed acyclic structure whose leaf nodes output a value x ∈ [0, 1]
that represents the percentile rank of the record among the estimated population.
The algorithm will use the model’s rank predictions to shuffle records into logical
partitions so that the partitions will eventually be evenly-sized, regardless of the
input’s distribution skew.

It is important to note that, even if the input was drawn from a uniformly-
distributed population, we are interested in modeling the empirical distribution,
i.e., the distribution of the observed data, rather than the theoretical one. The
difference is that the observed sample does not follow a smooth distribution that
could be modeled with a single linear model. At a fine scale, the data will behave
like a step-function, with more structure, noise, and irregularities. That is why
it is necessary to use a more complex architecture than a single linear model,
which can capture and encode the empirical distribution’s subtle characteristics.

The original paper[10] provides a detailed explanation of the CDF model’s
architecture, complexity, training algorithm, and analysis.
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Fig. 2: The ELSAR algorithm.



4 A. Kristo et al.

2.2 Encoding ASCII records

In order to model the distribution of the input, the ASCII records have to be
projected onto a numerical space on which the CDF model can make linear re-
gression calculations to predict the rank of the records. Therefore, the algorithm
operates on the key’s numerical encoding and a pointer to the ASCII record
while in memory.

The encodings are calculated using the binary values of each character in
the key represented as base-95 numbers. Since printable ASCII characters have
codes between 32 and 127, the encoding of a character in position xi of the key
of length l (1 ≤ i ≤ l) is (ASCII(xi)−32)×95l−i. Then, the numerical encoding
of the entire key is:

l∑
i=1

(
(ASCII(xi)− 32)× 95l−1

)
With a 64-bit primitive type, we can encode up to the 9th byte of the key.

Nevertheless, the LearnedSort routine has an Insertion Sort-based touch-up step
that performs last-mile sorting (on the 10th byte). This step also handles pre-
diction inaccuracies from the CDF model and is quite fast since Insertion Sort
works very well for nearly-sorted arrays[10].

2.3 Partitioning

Then, ELSAR spawns r threads, each responsible for reading a specific, non-
overlapping range of records from the input file (Figure 2a). The best choice for
the value of r is the number of cores in the processors (10 in our case). Each
thread reads the input records in batches of 1MB at a time. Each of these reader
threads initializes a set of f thread-local partition fragments, one for each logical
partition. For an average partition size of 1GB, each thread i will have to create
1000 temporary fragment files (P1Fi, P2Fi, ..., P1000Fi). The set of fragments
across all reader threads (e.g., P1F1, P1F2, ..., P1F10) forms a logical partition.

Next, the algorithm processes the keys in the batch through a trained CDF
model, which estimates the rank of a record among all records (Figure 2b). Each
reader thread has its read-only copy of the model. Then, threads distribute the
records into their predicted partitions using the model’s output.

After the reader threads have processed their batches, they append the
records in each fragment to their corresponding temporary files and continue
reading the next batch of records. This results in 10K temporary files, each
having an average size of 100MB. Note that each reader thread maintains a
thread-local partition fragment instead of concurrently writing to the same phys-
ical partition file, to avoid using mutexes and locks, which are costly. Since the
reader threads have mutually disjoint working sets, we can perform file I/O with
the non-locking versions of the STDIO library (i.e., fread_unlocked()). These
functions omit the file pointer’s lock check and run slightly faster.
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2.4 Sorting partitions

After the entire input file has been read, ELSAR creates s threads, each respon-
sible for sorting a logical partition. The number s is calculated as the minimum
of 1) the number of cores and 2) the maximum number of partitions that can be
in memory simultaneously. In our system s = 10. The sorter threads read all the
fragment files that belong to the logical partition assigned to them and append
their records into a single large buffer (Figure 2c).

Then, the algorithm calls LearnedSort 2.0[11] as an in-memory sorting rou-
tine for the partition buffer (Figure 2d). LearnedSort also uses a CDF model to
learn the distribution of the partition data and quickly sort the records. Since
we are dealing with ASCII keys, ELSAR first encodes them into a numerical
representation which can be used to train the CDF model. At this stage, the al-
gorithm only uses the numerical encodings (8 bytes) and pointers to the records
(4 bytes) for the sorting procedure, hence reducing the size of memory copying
and moving operations, especially for such large records (otherwise, 100 bytes).

Finally, after the partition contents have been sorted, they are concatenated
sequentially with the neighboring partitions’ records to form a single continuous
output file (Figure 2e). Each sorter thread maintains an open descriptor for
the output file, and, for each partition i that it will flush, it seeks to the offset
location pre-calculated as the sum of the sizes of the partitions [1..(i− 1)].

Since the sorted buffer contains only encodings and pointers to the records,
it is not possible to flush the entire buffer in one sequential call. Therefore, the
thread first coalesces the records in batches of 100KB by dereferencing the sorted
pointers in order. Then, it performs a buffered write of the coalesced buffer using
fwrite_unlocked(), thus optimizing the write performance.

3 The hardware

Table 1: Summary of hardware components for ELSAR.
Type Part Name Qty. Cost

Motherboard ASUS PRIME Z690-A 1 $279.99

CPU Intel® Core™ i5-12600K 1 $278.99

CPU Cooler Noctua NH-L12S 1 $54.95

Memory G.Skill Trident Z5 16GB 2 $759.98

Storage WD_BLACK™ SN850 2TB 4 $1,199.96

Power Supply Corsair SF Series® SF450 1 $138.89

Case NZXT H510 Mid-Tower 1 $89.99

Total $2,802.75

In Table 1 we have listed the hardware components that we use to perform
the benchmark measurements and their associated cost in USD. All parts are
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Fig. 3: Photos of the desktop computer used for ELSAR.

available for retail in all major online marketplaces. Below we describe the hard-
ware in more detail.

Processor We chose to use the Intel® Core™ i5-12600K as it belongs to the
newest, 12th generation processors, and provides a great balance between perfor-
mance and power consumption. While some other desktop CPUs, such as Intel®
Core™ i7 and Intel® Core™ i9 series processors, are faster, they also consume
more power. In contrast, the Intel® Core™ i5 series processors have demonstrated
the lowest energy readings among 12th generation CPUs in several benchmarks
[6].

An exciting feature of these new-generation processors is the hybrid archi-
tecture that utilizes high-performance cores (P-Cores) and power-efficient ones
(E-Cores). The i5-12600K processor has ten cores (6P + 4E) and 16 threads
(E-Cores do not support SMT). The P-Cores can achieve speeds up to 4.90GHz,
whereas the E-Cores up to 3.70GHz, operating at a maximum power of 150W.
Our software currently does not specifically exploit differences in the cores,
though, and simply utilizes 16 threads on the processor.

Note that our processor is the clock unlocked variant. However, we have
disabled overclocking in the BIOS. At the time of this report, the base model
(i5-12600) is not available in retail in the US.

Memory This generation of processors also introduces support for DDR5 mem-
ory, which can achieve 1.5× higher speeds than its predecessor, DDR4. This new
generation memory offers improved performance with greater power efficiency[2].
Therefore, we decided to use the G.Skill Trident Z5 DDR5 RAM with a total
capacity of 32GB, operating at 4800MT/s in our system.
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Storage Given that external sorting is disk IO-bound, investing in high-speed
storage technology is paramount. This does not come at the expense of higher
power consumption since M.2 NVMe™ SSDs wattage is roughly the same as the
mSATA and 2.5" counterparts, while still operating at less than 5W[15]. We used
four WD_BLACK™ SN850 2TB SSDs, which can reach sequential read speeds
of up to 7000MB/s, and sequential writes up to 5100 MB/s[5].

Power Supply When choosing the power supply unit, an important factor
is the 80 Plus™ efficiency rating. We chose Corsair SF Series® SF450 80 Plus™
Platinum-certified, which is a fully-modular, high-end PSU that is said to achieve
an energy efficiency of 92% on the 100-200W range[12] where our system oper-
ates. For the same workloads, a lower-efficiency-rated PSU would draw more
power from the wall than the Corsair SF450, increasing the system’s total en-
ergy consumption. Our PSU’s maximum power is 450W, which is well above the
observed maximum of 170W during the sorting task.

Motherboard Our motherboard’s model is ASUS PRIME Z690-A, which is
compatible with the processor’s LGA 1700 socket and supports DDR5 memory.
It has an ATX form factor with four PCIe® Gen4 M.2 slots.

CPU Cooler Since the processor does not have a stock cooler, we purchased
the Noctua NH-L12S. This is a single-fan, 120mm cooler geared towards compact
builds, thus providing high-efficiency cooling at less than 2W[3].

Case Finally, all the components are mounted onto an NZXT H510 Mid-tower
case compatible with ATX boards. The case has two Aer F 120mm fans, one for
intake and one for exhaust. Each of these fans consumes less than 2W[1].

The total cost of the system is $2,802.75, which represents a 14.7% decrease
from KioxiaSort’s build cost ($3,286.665), and the lowest cost to date among all
JouleSort entries in the last ten years (see Figure 4).

4 System Configuration

Table 2 summarizes the system configuration of ELSAR. The computer runs on a
Ubuntu 20.04 operating system with a text-only interface. As per the benchmark
requirements, we have disabled Intel®’s Extreme Memory Profile (XMP) in the
BIOS, which would otherwise allow CPU and memory overclocking. The code is
written in C++ and compiled with g++ 9.4.

5 We estimated KioxiaSort’s build cost based on the lowest available prices on online
US marketplaces and the current conversion rate of 1USD = 122JPY for the parts
only available from retailers in Japan.
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Table 2: System configuration for ELSAR.
Description Value Notes

Intel® XMP Disabled

OS Ubuntu 20.04.4 LTS (focal)

Kernel 5.4.0-105-generic

Volume Manager LVM 2.03.07(2) 2 LVs × 2 PVs each

Logical Volumes /data, /tmp-data Striped (size = 64KiB)

File system XFS V5 Opts: defaults, noatime

Compiler g++ 9.4.0 Opts: -Ofast -march=native
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In order to maximize the disk IO bandwidth, we use RAID-0 with the Linux
Volume Manager (LVM). As shown in Figure 5, all four SSDs are connected via
PCIe® Gen4 M.2 connectors to the CPU socket. We separated the four physical
volumes into two volume groups (vg0 and vg1), each containing a logical volume
(vg0/lvol0 and vg1/lvol0) with a stripe size of 64KiB. Both logical volumes
use the XFS file system, and they are of size 3.45TiB and 3.15TiB, respec-
tively, leaving some space for the boot and root partitions. We use vg0/lvol0
(mounted on /data) for the input and output files, and vg1/lvol0 (mounted
on /tmp-data) for temporary files created during the sort. The input file will be
read and temporaries created during the first phase, while the temporaries are
read and the the output file is written during the second phase of the algorithm.
This drive configuration ensures the drives do not experience concurrent reads
and writes.
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Fig. 5: The system configuration of ELSAR.

5 Measurement procedure

5.1 Power logging

We used the Watts Up! PRO power meter as several previous JouleSort submis-
sions. The meter logs every 1 second with 0.1W precision and 1.5% accuracy[4].
As shown in Figure 5, the computer is plugged into the power meter, which is,
in turn, plugged into the wall. The meter is connected to a separate monitoring
computer via a USB cable. The monitoring computer uses a publicly-available
Python utility[16] that reads the meter’s data from the given serial port and saves
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them to a CSV file. Each reading is associated with the respective timestamps
in the log file. Both machines use NTP and are synchronized to time.nist.gov.

5.2 Input file generation

We generate the input file only once at the experiments’ beginning and reuse
it for each run. Per the requirements, we use the gensort program with the -c
option to display the checksum and the -a option to generate ASCII keys. The
checksum obtained for the 1TB file is 12a06cd06eeb64b16.

5.3 Performing measurements

We perform five consecutive runs to measure the energy consumption. The mea-
surements follow the process below:

1. Memory cache is cleared using the command:

$ sync ; echo 1 > /proc / sys /vm/drop_caches ;

2. The execution is paused for 5 seconds to allow the computer to go back to
idle power consumption after the cache clearing.

3. The current timestamp is displayed.
4. The ELSAR algorithm is executed using the time utility which will report

the total elapsed time after the sorting process terminates.
5. The current timestamp is displayed again. (These timestamps are necessary

for accurately calculating the average power later on.)
6. The output’s checksum and sortedness are verified with the valsort pro-

gram. For a successfully sorted output file, valsort should report no duplicate
keys, the same checksum as the input (12a06cd06eeb64b16), and the fol-
lowing message: SUCCESS - all records are in order.

7. After verification, the output file is deleted from the disk, and all unused
blocks in the filesystem are discarded using the fstrim -a command.

5.4 Calculating energy consumption

For each run, the monitoring computer generates a separate power log file. We
calculate the mean power of each run using all the rows in the CSV file whose
timestamps are between the starting and ending timestamps displayed in Steps
3 & 5 above, exclusive. We do not include the readings that correspond to the
starting and ending timestamps above in order to avoid fractional readings.

Finally, we obtain the energy consumption of each run by multiplying the
mean power with the execution time (in seconds) reported by the time utility.
The results are shown in the next section.

https://tf.nist.gov/tf-cgi/servers.cgi
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Table 3: ELSAR performance results
Run Time Power Energy

Run 1 617.4s 101.82W 62,862J

Run 2 623.8s 100.79W 62,869J

Run 3 620.9s 101.71W 63,153J

Run 4 618.3s 102.42W 63,325J

Run 5 610.4s 102.14W 62,346J

Mean 618.1s 101.78W 62,912J

Stdev 5.0s 0.62W 372J
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6 Results

The execution times, average power, and energy consumption of all five runs
are displayed in Table 3. Figure 6 displays a run’s typical power readings at 1-
second intervals. The mean execution time is 618.1 seconds, and the mean power
is 101.78W, hence resulting in an average of 62,912J ±372 for sorting the
1TB ASCII dataset. This represents a 29.1% decrease from the current winner
of the JouleSort Indy Category (KioxiaSort).

On the other hand, Figure 7 shows the break-down of the time required by
each phase of the algorithm, as well as their proportional energy consumption.
The Load phase refers to the read operation performed by each reader thread,
which brings a batch of records to memory. Whereas, Combine refers to the
operation that brings together the records across fragment files that belong to
the same partition (i.e., PxF0, PxF1, . . . , PxFr=999), which will be used by the
sorter threads. The CDF model training only accounts for a small fraction of
the algorithm (<1%), whereas the biggest time and energy consumer is the par-
titioning phase that splits the input file onto multiple fragments for each logical
partition. Record coalescing takes up roughly 7%, however, it is an optimization
that brings down the total execution time of the algorithm, specifically helping
reduce the Concatenation phase.
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Fig. 7: A break-down of the time and energy consumption for each phase of the
ELSAR algorithm.

7 Summary

We presented ELSAR, a new external sorting algorithm for the 1TB JouleSort
Indy dataset that works by partitioning records based on their keys’ CDF values,
thus bypassing the typical file merging phase employed by the typical external
sorting algorithms. Our evaluations indicate 29.1% more energy savings than
the current winner of the this benchmark, hence setting a new record in this
category.
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