GraySort on Apache Spark by Databricks

Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia
Databricks Inc.

Apache Spark
Sorting in Spark
Overview
Sorting Within a Partition
Range Partitioner and Sampling
Input Data
Output and Data Validation
Task Scheduling
Locality Scheduling
Straggler Mitigation
System Configuration
Results
Acknowledgements
References

This document describes our entry into the Gray Sort 100TB benchmark using Apache Spark.

Apache Spark

Apache Spark [1] is a general cluster compute engine for scalable data processing. It was
originally developed by researchers at UC Berkeley AMPLab [2]. The engine is fault-tolerant
and is designed to run on commodity hardware. It generalizes two stage Map/Reduce to
support arbitrary DAGs of tasks and fast data sharing between operations.

Spark can work with a wide variety of storage systems, including Amazon S3, Hadoop HDFS,
and any POSIX-compliant file system.

Although often used for in-memory computation, Spark is capable of handling workloads
whose sizes are greater than the aggregate memory in a cluster, as demonstrated by this
submission. Almost all Spark built-in operators, including sort and aggregation, automatically
spill to local disks when the working set does not fit in memory.

Sorting in Spark

Overview

Similar to MapReduce, our program uses Spark to sort data in a two stage distributed
environment:

(1) In the map stage, each map task reads in its own partition of data, in the form of a file
from HDFS, and sorts each the file locally, and then writes the sorted output to local
disks (not replicated). As it is writing the sorted output out, it also builds an index
pointing to locations of the output file based on a given range partitioner so the reduce
tasks can retrieve ranges of data quickly. The map stage is entirely bounded by the 10
in reading from HDFS and and writing out the locally sorted files. There is no network
usage at all in the map stage.

(2) In the reduce stage, each reduce task fetches its own range of data, as determined by
the partitioner, from all the map outputs from daemon processes on other nodes. It
then sorts these outputs using TimSort and writes the sorted output out to HDFS with
the same replication factor as the input, i.e. the output files are two-way replicated.
The reduce stage is mostly network bound, because reduce tasks need to fetch data
over the network and also replicate the sorted output over the network.

Sorting Within a Partition

Spark’s shuffle monitors the memory used by running tasks. If the memory usage is greater
than a configurable threshold (spark.shuffle.memoryFraction - a percentage of the total heap
size), it starts spilling data to disk to perform external sorts.

TimSort [3] is used as the in-memory sorting algorithm. When data does not fit in memory,
Spark uses TimSort for in-memory sorting for partial runs, and then the standard priority
queue based merging of the sorted runs. TimSort performs better when data is partially
sorted. In the reduce stage, we also perform a full sort rather than simply merging partially
sorted runs. Although it might be more efficient to do only a merge in the reduce stage, our
program was bounded by mainly network 1/0 and thus we did not optimize the CPU time of
sorting.

To better exploit cache locality and reduce data movement during sorting, we store each
record in memory as a 16-byte record, where 10 bytes are used for tracking the 10 byte key
(taking endianness and signedness into account), and another 4 bytes are used for tracking
the position of the original 100-byte record.

Even though Spark can handle external sorting within a partition, in our experiment we made
sure no spilling could happen to avoid the extra I/O incurred from external sorting.

Range Partitioner and Sampling

In the case of Daytona Sort, we sample the input to generate the range partitioner. Let P be
the number of partitions. The program launches a Spark job to sample evenly on each
partition. On each partition, we pick S (default value 79) random locations and collect these
samples back to the driver. That is to say, in total we collect S * P samples. The driver node
then sorts these S * P samples, and downsamples to find (P - 1) range boundaries for the
range partitioner. As an example, if we have 28000 partitions of data, and 79 random
locations on each partition, we collect 2212000 samples and the driver node will generate
27999 range boundaries.

We measured the sampling time and it took ~ 10 secs in wall clock time.

One thing to note is that Spark out-of-the-box uses binary search on the range boundaries to
find the partition ID a record belongs to, because Spark is overly general and does not
assume the input to its range partitioner is sorted. This would result in a trillion of binary
search operations.

For the purpose of this benchmark, since input to the range partitioner is already sorted, we
created a new partitioner implementation for Spark that simply compares the current record
key with the range boundaries in ascending order, starting from the boundary from the
previous key. This is effectively performing a sort-merge join between the sorted records and
the range bounds. This amortizes the partition ID computation to O(1) per record.

Input Data

The input data is divided into fixed size partitions and stored in HDFS with a replication factor
of two to avoid data loss due to the event of single node failure(s). The input data was
generated using gensort provided by the benchmark committee. We use Spark to parallelize
the data generation, running gensort on each node. Because gensort only writes data to a
POSIX file system, we copy the gensort output into HDFS.

Each partition of input is one HDFS file, occupying one HDFS block to ensure one replica of
the partition is on a single node, and can be read entirely without triggering network 1/O.

Output and Data Validation

In the reduce stage, each task writes one output file to HDFS, with a replication factor of 2.

We validate the data using valsort. Similar to the input data generation, we use a Spark
program to parallelize the data validation itself. Each Spark task runs valsort on one partition
of data (one output file copied from HDFS to local disks), and then the outputs are aggregated
onto the driver node, and “valsort -s” is used to validate the checksum and global ordering.

Task Scheduling

Spark has a centralized scheduler that schedules tasks onto slots. On each machine, there
are 32 slots. That is to say, for 28000 partitions on 206 worker nodes, it runs 5 waves of map
tasks and 5 waves of reduce tasks.

Locality Scheduling

Spark’s scheduler uses a technique called Delay Scheduling [5] to schedule tasks based on
the locality preference, i.e. it tries to schedule tasks onto nodes with local data. In this
experiment, we increased the delay scheduling wait to a very large number so our sorting job
gets 100% locality. Locality scheduling coupled with HDFS short-circuit local reads result in all
tasks reading from local disks directly rather than going through the HDFS client. It also
means the map stage does not have any network 1/0.

Straggler Mitigation

Stragglers appear naturally on a large cluster. Stragglers are mitigated by the fact that we run
more than 4 waves of tasks. Due to the two-way replication, slow nodes get scheduled less
often for tasks. Spark also supports speculative task execution. For the purpose of this
experiment, this feature was turned off.

System Configuration
We used 207 nodes (206 workers and 1 master) with the following configuration:

i2.8xlarge Amazon EC2 instances

Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz (32 virtual cores)

244 GB of RAM

8 x 800GB SSDs per node with NOOP scheduler and RAID 0 setup [4]
o Once formatted with ext4, each node has 6TB capacity reported by “df -h”
o In our testing, we can perform roughly 3GB/s mixed read/write in aggregate

e Network
All nodes put in a placement group in a VPC

o

o

o

O O O O O

Results

Enhanced networking via single root 1/O virtualization (SR-10V)

In our testing of bandwidth between two random nodes in the cluster, iperf

shows ~9.5Gbps
e Software configuration

Linux 3.10.53-56.140.amzn1.x86_64
OpendDK 1.7 amzn-2.5.1.2.44.amzn1-x86_64 u65-b17
Apache Hadoop HDFS 2.4.1 with short-circuit local reads enabled
Apache Spark master branch (target for Spark 1.2.0 release)
Netty 4.0.23.Final with native Epoll transport

e For the purpose of this benchmark, we use the same number of map partitions and
reduce partitions, i.e. the number of input partitions equals the number of output
partitions.
Compression was turned off for all parts, including input, output, and network.

File system buffer cache was dropped before each run and writes are flushed in each

run.

The system was up for more than 10 hours running various experiments.

Runtime was measured using Linux time command. Each reported time represents

one attempt.
e The map stage was able to saturate 3GB/s throughput per node, and the reduce stage

sustained 1.1GB/s network.

Benchmark | Skew Data Size P: Num Time Rate
(Bytes) Partitions

Daytona non-skewed 100,000,000, | 29000 23m25.980s | 4.27 TB/min

GraySort 011,000

Daytona skewed 100,000,000, | 28000 31m53.453s | 3.14 TB/min

GraySort 008,000

Acknowledgements

We would like to thank:

- The EC2 and EBS teams from Amazon Web Services

- Norman Maurer for reviewing our Netty-based network transport module code

- Aaron Davidson for his TimSort code implementation

- Min Zhou for various performance tuning & debugging help

- Andrew Wang for help identifying some performance issues with the OS kernel

- All our colleagues at Databricks and the Spark community in general for their support

- The Sort Benchmark committee members Chris Nyberg, Mehul Shah, and Naga
Govindaraju for their help and support

References

[1] Apache Spark, http://spark.apache.org

[2] M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. NSDI 2012.

[3] TimSort. https://en.wikipedia.org/wiki/Timsort

[4] RAID Configuration.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/raid-config.html

[5] M. Zaharia et al. Delay Scheduling: A Simple Technique for Achieving Locality and
Fairness in Cluster Scheduling. EuroSys 2010.

http://www.google.com/url?q=http%3A%2F%2Fspark.apache.org&sa=D&sntz=1&usg=AFQjCNHcBkcejNSXwp_dwtxrQ6CFe6AmoA
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTimsort&sa=D&sntz=1&usg=AFQjCNHxpLYRd9HQRMl1YLabsW1ZQ4EIzg
http://www.google.com/url?q=http%3A%2F%2Fdocs.aws.amazon.com%2FAWSEC2%2Flatest%2FUserGuide%2Fraid-config.html&sa=D&sntz=1&usg=AFQjCNGUEtX7N8HPlIjrME_7ZoyEATnXoA

