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Guest Editorial: Demographic Criteria for Downlisting and Delisting Kemp’s Ridley Sea 
Turtle Based on Numbers of Females Nesting in a Season Need Revision

Charles W. Caillouet, Jr.1 & Benny J. Gallaway2

1Montgomery, Texas 77356, USA (Corresponding Author, E-mail: caillouetcw2@gmail.com; 
2LGL Ecological Research Associates, Inc., Bryan, Texas 77802 (E-mail: bjg@lgltex.com)

Under the U.S. Endangered Species Act, the USDOC et al. (2020) 
recovery planning handbook states: “If a review of the plan and its 
implementation, whether during a 5-year review or other process, 
shows that the plan is not current (i.e., is no longer being used to 
guide recovery efforts or does not contain adequate criteria) or that 
its usefulness is limited, the plan should be modified as discussed in 
8.5, Recovery Plan Modifications.” Herein, we focus attention on the 
need for revision of some of the demographic criteria for downlisting 
and delisting the endangered Kemp’s ridley sea turtle (Lepidochelys 
kempii). The following demographic criteria are specified by the 
second revision of the binational (United States-Mexico) recovery 
plan for Kemp’s ridley (NMFS et al. 2011): 
Downlisting  

1. A population of at least 10,000 nesting females in a season (as 
measured by clutch frequency per female per season) distributed 
at the primary nesting beaches (Rancho Nuevo, Tepehuajes, and 
Playa Dos) in Mexico is attained. Methodology and capacity 
to implement and ensure accurate nesting female counts have 
been developed.
2. Recruitment of at least 300,000 hatchlings to the marine 
environment per season at the three primary nesting beaches 
(Rancho Nuevo, Tepehuajes, and Playa Dos) in Mexico is 
attained to ensure a minimum level of known production through 
in situ incubation, incubation in corrals, or a combination of both.

Delisting
1. An average population of at least 40,000 nesting females 
per season (as measured by clutch frequency per female per 
season) over a 6-year period distributed among nesting beaches 
in Mexico and the U.S. is attained. Methodology and capacity 
to ensure accurate nesting female counts have been developed 
and implemented.
2. Ensure average annual recruitment of hatchlings over a 
6-year period from in situ nests and beach corrals is sufficient 
to maintain a population of at least 40,000 nesting females per 
nesting season distributed among nesting beaches in Mexico 
and the U.S into the future. This criterion may rely on massive 
synchronous nesting events (i.e., arribadas) that will swamp 
predators as well as rely on supplemental protection in corrals 
and facilities.

The origin of the recovery plan’s (NMFS et al. 2011) demographic 
criteria based on 10,000 and 40,000 females nesting in a season 
appears to be from Hildebrand (1963). On 18 June 1947, Ingeniero 
Andrés Herrera discovered Kemp’s ridley’s primary nesting beach 
near Rancho Nuevo, Municipio de Aldama, Tamaulipas, Mexico, 
and on that day he filmed a movie of this species largest ever 
documented arribada (Carr 1963; Hildebrand 1963). This discovery 
was made public in 1961, when Hildebrand (1963) screened a 
copy of Herrera’s movie of the arribada at the Austin, TX meeting 
of the American Society of Ichthyologists and Herpetologists. In 

a translation (Caillouet 2010) of Hildebrand (1963), Hildebrand 
stated: “…I estimated there were at least 10,000 turtles on the beach 
at a given time and that probably 40,000 individuals nested on that 
day, between 9 in the morning and 1 in the afternoon.” Hildebrand 
(1963) wisely distinguished “turtles on the beach” from “individuals 
[that] nested” during the 1947 arribada, but he provided no details 
regarding how he estimated the numbers that nested. 

Using frames from Herrera’s film, Bevan et al. (2016) estimated 
the arithmetic mean size of the 1947 arribada to have been 26,916 
females that nested. Although they also referred to 26,916 as the 
number of nests (clutches laid) during the 1947 arribada, we assume 
that 26,916 nesting females was intended. Bevan et al. (2016) 
stated: “Although the dynamics of arribada nesting have not been 
well quantified, if the main portion of an arribada represents a 
steady state in which the same number of turtles are moving onto 
as well as off of the beach, then we could predict that during this 
portion of the arribada, approximately 60% would be engaged in the 
nesting process and 30% would be in transit moving up the beach 
preparing to nest or returning to the sea.” It is unknown whether 
arithmetic mean Kemp’s ridley arribadas larger than 26,916 nesting 
females occurred prior to or during the 1947 season or before 
annual monitoring of nesting began in 1966, but none have been 
documented since annual monitoring began. It is noteworthy that 
Bevan et al. (2016) estimated the range for nesting females in the 
1947 arribada to be 15,384-45,760, which is asymmetric around 
their estimated arithmetic mean.

In 1966, Mexico’s Instituto Nacional de Investigaciones 
Biologícas Pesqueras (INIBP) implemented highly manipulative 
conservation interventions that protected Kemp’s ridley nesters, 
nests and hatchlings on the beach near Rancho Nuevo (Adams 
1966; Márquez-Millán & Garduño-Dionate 2014). In 1978, the 
National Park Service (NPS et al. 1978) implemented an action 
plan for restoration and enhancement of  Kemp’s ridley populations 
near Rancho Nuevo and Padre Island National Seashore, Texas 
(Caillouet et al. 2015b). Márquez-M. (1994) noted that “young” 
(neophyte) adult female Kemp’s ridleys began appearing on the 
beach near Rancho Nuevo by 1976. He attributed this to Mexico’s 
conservation interventions during 1966-1976, noting that “old” adult 
females (those remaining from the pre-1966 residual population) 
disappeared by 1984. We agree with Márquez-M. (1994) that 
conservation interventions near Rancho Nuevo during 1966-1976 
contributed to reversal of the decline in nesting by 1986, because 
this reversal occurred despite pre-1986 anthropogenic mortality 
caused by unintended bycatch of neritic life stage Kemp’s ridleys 
in shrimp trawls and natural mortality of all life stages (Carr 1977; 
Márquez-Millán & Garduño-Dionate 2014; Caillouet et al. 2015a; 
Bevan et al. 2016; Wibbels & Bevan 2019). Beginning around the 
mid-1980s, the suite of manipulative conservation interventions 
later referred to as rescue, resuscitation, rehabilitation and release 
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(RRRR) of live-stranded, debilitated Kemp’s ridleys were added, 
but the contribution of RRRR to Kemp’s ridley population recovery 
has not been determined (Caillouet et al. 2016). The National 
Research Council (1990) concluded that for sea turtle “juveniles, 
subadults, and breeders in the coastal waters, the most important 
human-associated source of mortality is incidental capture in 
shrimp trawls, which accounts for more deaths than all other 
human activities combined.” The National Research Council 
(1990) proposed regulations requiring turtle excluder devices in 
shrimp trawls. Jenkins (2012) reviewed implementation of those 
regulations. Putman et al. (2023) modeled bycatch of Kemp’s ridley 
and green sea turtles (Chelonia mydas) in recreational fisheries along 
the southeastern U.S. coasts for years 1996-2017 and estimated it 
to be greater than the sum of bycatch that occurred in commercial 
fisheries that used trawls, gillnets and bottom longlines.

Beginning in 1966 and continuing annually since then, numbers 
of Kemp’s ridley nests, eggs and hatchlings were monitored on the 
Tamaulipas index beach during each nesting season. Initially, the 
index beach was limited to the beach segment near Rancho Nuevo 
only. The index beach was later extended by adding Tepehuajes and 
Playa Dos beach segments (Márquez-Millán & Garduño-Dionate 
2014). Herein Nt (where t is calendar year) represents the number 
of nests on the Tamaulipas index beach during a nesting season, and 
ht represents the total number hatchlings released from the index 
beach during a nesting season (Caillouet et al. 2018; Caillouet 2021; 
Arendt et al. 2023). 

The Turtle Expert Working Group (TEWG 1998) estimated the 
number of nests/female/season on the index beach to be 2.5 as 
follows:

“Nests/female/season were calculated by Rostal (1991) to be 
3.075 from a physiological/ultrasonographic study. Pritchard 
(1990) estimated 2.31 nests/female/season and a recent pit-tag 
study by Marquez (unpublished data) suggests the mean is 1.8 
nests/female/season. We used the mean of means from these 
studies (2.4 nests/female/season), which we rounded to 2.5 
nests/female/season.” 

The estimate of 2.5 nests/female/season is accepted in both the 
current recovery plan (NMFS et al. 2011) and the most recent 5-year 
review of Kemp’s ridley (NMFS & USFWS 2015). We make no 
claims regarding accuracy of the estimated 2.5 nests/female/season 
or its application to estimating number of nesters in a season. 

Herein we show trends for Nt/2.5 (Fig. 1), ht (Fig. 2) and ht/Nt 
(Fig. 3) for years 2000-2022. Although Gladys Porter Zoo’s annual 
report for 2023 (Burchfield & Adams 2023) was available, data for 
Rancho Nuevo and Barra Del Tordo (= Playa Dos) beach segments 
were not included, so Nt for 2023 could not be calculated. For 
graphic comparisons with the trends in Nt/2.5 (Fig. 1) and ht (Fig. 
2) during 2000-2022, we included a horizontal line representing the 
recovery plan’s (NMFS et al. 2011) first demographic criterion for 
downlisting (10,000 females = 25,000 nests/2.5) and a horizontal 
line representing its second demographic criterion for downlisting 
(recruitment of at least 300,000 hatchlings per season), respectively. 
The first demographic criterion for downlisting has not been attained 
through 2022 (Fig. 1), while the second criterion for downlisting 
has been exceeded in each year 2000 and 2002-2022, and it came 
close to 300,000 at 291,268 in 2001 (Fig. 2). Caillouet (2019) stated: 
“Given that density dependence appears to have begun reducing the 
rate of growth of the Kemp’s ridley population around year 2000, 
I hypothesize that annual numbers of neritic immatures became 
excessive around that year.” Caillouet (2019) stated further: “If 
annual numbers of neritic immatures in the population are already 
excessive and preventing population recovery as defined by NMFS 
et al. (2011), it would seem prudent to begin reducing numbers of 
neritic immatures by reducing annual numbers of hatchlings released 
from Tamaulipas beaches.”

Caillouet et al. (2018) fitted a logistic model to Nt over years 
1966-2017 and noted that Nt exhibited multiplicative error around 
the model-fitted trendline. Two upper asymptotes of the fitted line 
were 24,306 (which preceded the pre-1986 decline in Nt) and 17,434 
(which followed the 1986-2009 exponential increase in Nt). The 
exponential increase in Nt was abruptly interrupted in 2010, the year 
in which the Deepwater Horizon oil spill occurred in the northern 

Figure 1. Number of Kemp’s ridley females in a season, Nt/2.5, on the Tamaulipas index beach during 2000-
2022, where t is calendar year; the horizontal red line represents the recovery plan’s (NMFS et al. 2011) first 
demographic criterion for downlisting Kemp’s ridley.
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Gulf of Mexico off the coast of Louisiana (Caillouet 2014). Divided 
by 2.5, the  pre-1986 and post-2009 asymptotes from Caillouet et 
al. (2018) represent 9,722 and 6,974 adult females, respectively. 
Arendt et al. (2023) developed a Kemp’s ridley population model 
of changes in age-structure and various demographic rates, based on 
Nt and ht for years 1947 and 1966-2022; however, they overlooked 
the arribada of 1,500 nesting females, the largest of seven arribadas 
observed in 1966 (Chavez et al. 1968). Among the conclusions of 
Arendt et al. (2023) were:

1. “Barring changes in demographic rates or survival, the 
null model nest and hatchlings per nest values predict nesting 
potential as Nests = [(30,000 * hatchlings]/(30,000 * 49.6)]. 
Accordingly, hatchlings released since 2013 may support 17,519 
nests (range = 11,780 to 21,298) annually during 2023–2032.” 
2. “Kemp’s ridley sea turtle nesting may not achieve 1947 
levels by 2048, …”

Divided by 2.5, 17,519 nests (range 11,780 to 21,298) represent 
7,008 females nesting in a season (range 4,712 to 8,519). The 
observed levels of Nt during 2013-2022 averaged 15,141 and 
ranged from 9,932 to 22,415, which equate to 6,056 (range 3,973 
to 8,966) females nesting in a season, all of which are below 
10,000. It is noteworthy that the highest level of Nt observed 
post-1985 (22,415 in 2017) was 5% higher than the highest level 
of Nt (21,298) predicted for 2023-2032 by Arendt et al. (2023). 
Post-2009 predictions for Nt by Arendt et al. (2013) suggest that 
Kemp’s ridleys on the Tamaulipas index beach may not reach the 
downlisting level of 10,000 females nesting in a season any time 
soon. The anticipated mean number of females nesting in a season 
(7,008) during 2023-2032, based on Arendt et al. (2023), is 30% 
lower than 10,000. However, Hays et al. (2024) confirmed that the 
Kemp’s ridley population is not decreasing. 

The recovery plan’s (NMFS et al. 2011) second criterion for 
delisting relies “on massive synchronous nesting events (arribadas) 
that will swamp predators as well as rely on supplemental protection 
in corrals and facilities.” It therefore is clear that arribada size is 

important to fulfillment of this delisting criterion. 
We suggest that better criteria for the recovery plan would be ones 

linked to the original baseline metric for the population, which is the 
1947 arribada (Bevan et al. 2016). Specifically, we recommend that 
a 10,000 nesting female arribada during a season be the threshold for 
downlisting and a 27,000 nesting female arribada during a season 
be the threshold for delisting. Data on arribadas are more readily 
available and arribadas are more easily monitored than total nests 
per season. If our suggested criteria are adapted, it will be necessary 
to develop a method of estimating the number of females that nest 
during the largest arribada within each season. 

The first downlisting criterion of 10,000 nesting females in a 
season is not expected to be reached by 2032 or even 2048 (Arendt 
et al. 2023). Yet, from year 2000 onward (except for year 2001) 
through 2022, the second demographic criterion for downlisting 
(recruitment of at least 300,000 hatchlings per season) has been 
exceeded by average hatchling releases of 668,358 per season 
within a range from 291,268 in 2001 to 1,025,027 in 2009 (Fig. 2). 
During 2000-2022, there was an initial downward trend in hatchlings 
released per nest (ht/Nt) followed by an increase in recent years 
(Fig. 3), but such variation did not prevent hatchling releases from 
exceeding the recovery plan’s (NMFS et al. 2011) downlisting level 
by 2 or 3 times. 

It will be challenging to determine the amount of hatchling 
recruitment necessary to meet the recovery plan’s (NMFS et al. 
2011) first demographic criterion for delisting, an average of 
40,000 nesting females per season over the 6-year period by 2024. 
In addition, attainment of an arithmetic average of 40,000 nesting 
females per season over the 6-year period by 2024 would require 
at least 216,216 females nesting on beaches in Mexico and the 
U.S. during years 2023-2024 combined (Table 1). As far as we are 
aware, no estimates of a 6-year average of Kemp’s ridley females 
nesting in a season on beaches of Mexico and the U.S. combined 
have ever been published. It is highly unlikely that 40,000 nesting 
females per season can be attained by 2024, despite all the reductions 
in anthropogenic mortality of Kemp’s ridleys that have occurred 

Figure 2. Number of Kemp’s ridley hatchlings, ht, released in a season from the Tamaulipas index beach during 
2000-2022, where t is calendar year; the horizontal red line represents the recovery plan’s (NMFS et al. 2011) 
second demographic criterion for downlisting Kemp’s ridley.
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since the 1990s, and all the hatchlings that have been released since 
1966. NMFS & USFWS (2015) reviewed the threats that have 
been mitigated and those that have emerged since 2007 (NMFS & 
USFWS 2007). 

The number of females nesting in a season is obviously higher 
than the number of females nesting in the largest arribada during a 
nesting season (Bevan et al. 2016; Burchfield & Adams 2022). For 
each nesting season during years 2006-2013, Bevan et al. (2016) 
estimated the percentage that the number of nests in the largest 
seasonal arribada represented of the total season’s nests; it ranged 
from 12.82% in 2010 to 32.62% in 2011. Arribada nesting during 
daytime is characteristic of Kemp’s ridley, although nighttime 
arribadas are characteristic of its congener species, olive ridley 
(Lepidochelys olivacea), with some nesting during daytime. Data 
may exist for the 1978 nesting season (and possibly for earlier 
years) onward, from which graphs of cumulative numbers of nests 

over each nesting season could be developed (Jiménez-Quiroz et al. 
2003; Bevan et al. 2016; Burchfield & Adams 2022). Such graphs 
could be informative by depicting seasonal progress in nestings and 
the timing and sizes of arribadas over the years. A report by Thane 
Wibbels and Forrest Collins, found within Burchfield & Adams 
(2023), describes the use of aerial drones to conduct surveys of adult 
Kemp’s ridley movements, behavior, courtship and nesting, showing 
promise that such drone surveys will generate data on the number 
of nesting females in the largest arribada of a season. 

Although the public comment period for the next 5-year review of 
Kemp’s ridley ended on 30 August 2021 (NMFS & USFWS 2021), 
we hope that our recommendations can and will be examined and 
evaluated by that review. 
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Sea turtle eggs that fail to hatch can provide valuable insight 
into the timing and conditions under which embryonic mortality 
occurs. Additionally, the study of unhatched, nonviable eggs can 
improve our understanding of the role of infertility in egg failure. 
Nest monitoring programs that estimate infertility by observing 
eggs during nest excavations at the end of incubation are likely 
to overestimate infertility due to the difficulty of identifying signs 
of early embryonic development (e.g., egg chalking, embryos, 
blood islands, embryonic tissues, or germinal disc development) 
(Parmenter 1980; Blanck & Sawyer 1981; Limpus et al. 1984; 
Wyneken et al. 1988; Bell et al. 2003; Phillott & Godfrey 2020). 
In earlier studies, if none of these were found, an egg would be 
designated as infertile (Bell et al. 2003). Recognizing the difference 
between infertility and early embryonic death is important when 
studying egg failure, as they have different causes and implications 
for management and conservation. 

The necropsy of unhatched sea turtle eggs typically includes 
both an external and internal examination. Externally, eggs can be 
examined for signs of fungal infection, predation, and egg chalking 
(the whitening of the eggshell). Indications of egg chalking have 
been used as a sign of fertility, because only fertile eggs will chalk 
(Blanck & Sawyer 1981). However, not all fertile eggs will appear 
chalked, because the embryo could die before the chalking process 
begins or the chalking could fade after embryo death (Miller 1985; 
Phillott & Parmenter 2007). Internally, eggs are examined for any 
signs of embryonic development (an embryo, blood islands, other 
embryonic tissues, or germinal disc development). If an embryo is 
found, it can be staged based on its morphological characteristics 
(Miller 1985; Miller et al. 2017). However, it is often difficult to 
stage an embryo or even identify if an embryo is present, because 
the egg contents continue to incubate in warm conditions until 
the clutch hatches and the nest is excavated for inventory of the 
contents (Miller 1996). During the time between egg failure and 
nest inventory, the egg contents significantly degrade (Bell et al. 
2003). If an embryo dies early in development, it can be difficult 
or impossible to identify any clear signs of an embryo with the 
naked eye (Parmenter 1980; Wyneken et al. 1988). Therefore, 
microscopic examination of unhatched eggs is necessary to more 
accurately classify an egg as fertile or infertile (Parmenter 1980; 
Phillott & Godfrey 2020).

Previous studies that investigated sea turtle fertility have included 
excavating in situ eggs early in incubation to look for egg chalking 
(Abella et al. 2017), monitoring egg chalking in ex situ conditions 
(Rafferty & Reina 2014; Williamson et al. 2017a,b; Booth et al. 
2021) and necropsying eggs if no chalking was detected (Bell 
et al. 2003), and sacrificing eggs that are collected freshly after 
oviposition to look for embryos (Limpus et al., 1984; Wyneken et 
al. 1988; Miller et al. 2003). This last technique is lethal, and the 
other approaches are invasive as they require working with eggs 

that have not degraded in natural nests. Thus, there is a need for 
methods of fertility assessment that are nonlethal and can be used 
despite egg degradation.

Fluorescent microscopic approaches for assessing fertilization 
have been described in birds (Birkhead et al. 2008; Croyle et 
al. 2012; 2015), crocodiles (Augustine 2017), and non-marine 
chelonians (Croyle et al. 2016) but have yet to be validated in sea 
turtles. Here we test this method in unhatched, nonviable eggs from 
two sea turtle species, the loggerhead (Caretta caretta) (n=12 eggs) 
and leatherback (Dermochelys coriacea) (n=43 eggs). Eggs were 
either collected at or shortly after oviposition and incubated in 
controlled conditions or were collected from natural nests at the end 
of incubation during nest inventory. Eggs incubated in controlled 
conditions were monitored daily for signs of embryonic development 
(i.e., egg chalking or vascular formation visible during candling). 
If these were not found within 14 days, eggs were removed from 
the incubators and necropsied. Unhatched, nonviable eggs from 
natural nests were collected during routine nest excavations at the 
end of incubation (58-80 days) and necropsied. During egg necropsy, 
perivitelline membranes (PVMs) were collected for analysis using 
fluorescent microscopy. 

The approach described here is a modification of the methods 
of Assersohn et al. (2021) and Birkhead et al. (2008). PVMs are 
collected from unhatched eggs and stained with Hoechst 33342, a  
fluorescent nucleic acid stain that binds to DNA. PVMs are then 
examined microscopically for the presence of spermatozoa and/or 
embryonic cells. The collection of PVMs requires tissue forceps, 
dissection scissors, petri dishes, and 1% phosphate buffered saline 
(PBS). The eggs were gently washed in water to remove external 
debris, and then either held in the hand or placed on a stable surface, 
such as a petri dish with a small ring of clay to prevent rolling. If the 
original orientation of the egg from its position in the nest is known, 
keep the egg oriented the same way with the top facing up. The 
eggshell was cut away beginning in the upper 1/3 of the egg, with 
care taken to not puncture the yolk. The cut eggshell was removed, 
and the yolk (with the intact PVM) was separated from the albumen. 
Next, the PVM was grasped with tissue forceps and an opening was 
cut in order to evacuate the yolk. The remaining yolk was rinsed 
from the PVM using 1% PBS, and the PVM was excised from the 
rest of the egg (Fig. 1). The PVM then was placed as flat as possible 
on a microscope slide and stained with working solution (1μg/mL) 
Hoechst 33342 (Thermo Scientific™), using enough to ensure that 
the entire sample was covered. The slides were covered with a cover 
slip and left in the dark (in a closed drawer or box) to incubate for at 
least 10 minutes. The slides were then examined under a compound 
microscope with the appropriate fluorescent attachments for Hoechst 
33342 (maximal excitation at 350 nanometers and maximal emission 
at 461 nanometers). For this study, an Olympus BX50 compound 
microscope with a Chroma 69002 ET DAPI/FITC/Texas Red® filter 
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Figure 1. Egg necropsy process for perivitelline membrane collection. (AL=albumen, Y=yolk, 
PVM=perivitelline membrane). A: Eggshell top is removed to expose the egg contents. B and C: 
Yolk and PVM are separated from albumen. D: The yolk is separated from the PVM. E: A PVM 
separated from yolk and albumen after rinsing in 1% phosphate buffered saline. 

Table 1. Description of egg and perivitelline membrane (PVM) storage conditions in which embryonic cells were visualized 
within the PVM. Eggs from the “Incubator” incubation condition were in controlled temperatures (28, 30, or 32°C).

Species
Incubation condition 
(days of incubation)

Egg storage condition prior to 
necropsy (storage time in days)

PVM storage condition prior to 
examination (storage time in days)

Number 
of eggs

Leatherback Natural nest (58-59) Necropsied same day as 
collection

70% ethanol (7-163) 3

Leatherback Natural nest (59-80) Refrigerated at 4°C (1-2) 10% buffered formalin (148-287) 7

Leatherback Natural nest (59-80) Refrigerated at 4°C (1-6) 70% ethanol (4-171) 7

Leatherback Natural nest (71) Frozen at -18°C (169) 70% ethanol (4-259) 4

Leatherback Natural nest (78) Frozen at -18°C (48) 10% buffered formalin (290) 1

Leatherback Incubator (15) Necropsied same day as 
collection

No fixation, examined same day as 
necropsy

2

Leatherback Incubator (15-19) Refrigerated at 4°C (1-2) No fixation, examined same day as 
necropsy

2

Leatherback Incubator (14) Refrigerated at 4°C (12) 10% buffered formalin (1) 2

Leatherback Incubator (12) Frozen at -18°C (315) 10% buffered formalin (9) 2

Loggerhead Incubator (16) Frozen at -18°C (238) No fixation, examined same day as 
necropsy

1

Loggerhead Incubator (17-24) Frozen at -18°C (238-276) 10% buffered formalin (1-12) 4

Loggerhead Incubator (16-17) Frozen at -18°C (130-141) 70% ethanol (4-96) 5
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Figure 2. Embryonic cells stained with Hoechst 33342 nucleic acid stain as light 
blue on a perivitelline membrane from a loggerhead egg (100x magnification). 
Lighter lines of material in this figure are folds in the perivitelline membrane. 
Scale bar = 100μm.

Figure 3. Sperm heads stained with Hoechst 33342 nucleic acid stain on a 
perivitelline membrane from a leatherback egg (200x magnification). Arrows point 
to fluorescing sperm heads. Scale bar = 50μm.
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set was used, and slides were examined at 100x, 200x, and 400x. 
The fluorescent stain dyes blastodermal embryonic cells (Fig. 2) 
and/or the heads of spermatozoa (Fig. 3) in the PVMs. An embryo’s 
blastodermal cells will be too numerous to count in the PVM of a 
fertile egg, while an infertile egg will have a uniform background 
(Barna et al. 2020).

This study is the first to validate this PVM analysis approach to 
identify fertility in sea turtle eggs. Embryonic cells and spermatozoa 
were identified in nonviable eggs from various incubation and 
storage conditions (Tables 1 and 2). Therefore, this method can be 
used with eggs collected shortly after oviposition, degraded eggs 
in various post-collection storage conditions, and PVMs stored 
in fixatives (10% buffered formalin or 70% ethanol) for various 
amounts of time. Phillott & Godfrey (2020) recommend that studies 
focused on fertility should use eggs that are collected freshly after 
oviposition since this approach avoids major degradation. However, 
such studies are not always possible due to logistic or permitting 
constraints. 

Validation of this method in sea turtles provides a valuable 
tool for studying egg failure because it clarifies the differences 
between infertility and early embryonic death in unhatched eggs 
that show no signs of development, including degraded eggs. A 
deeper understanding of fertility rates of different nests, individual 
females, populations, and species can be further developed using 
this technique. Identifying how much infertility contributes to egg 
failure may inform further studies on reproductive shortcomings, 
such as causes for ova to fail to be fertilized and changes in fertility 
rates over time. Alternatively, if infertility is not a major contributor 
to egg failure, this suggests that investigations into early embryonic 
mortality are necessary. 

Although an improvement, this method of fertility identification 
remains limited by the level of degradation of the PVM and the 

spermatozoa. As they degrade, PVMs become extremely fragile and 
difficult to recover (Croyle et al. 2012), which can limit the number 
of eggs that can be examined. Additionally, especially in degraded 
eggs, the absence of spermatozoa could be the result of spermatozoa 
degradation during incubation, rather than infertility (Croyle et 
al. 2015). It is important to note that if spermatozoa are detected, 
their presence is not necessarily indicative of the multiple essential 
processes that must occur to facilitate syngamy (the fusion of two 
nuclei) (Birkhead & Fletcher 1998; Croyle 2015). Further research 
is necessary to understand what numbers (or threshold numbers) 
of spermatozoa are representative of successful fertilization, as this 
likely varies across species and is usually identified in controlled 
studies (Birkhead & Fletcher 1998; Liptói et al. 2004; Croyle et 
al. 2015). Conservatively, only eggs that are identified to have 
embryonic cells should be distinguished as fertile when using 
fluorescent microscopy methods. However, eggs with at least two 
spermatozoa present on the PVM have been classified as fertile in 
studies on avian fertility and could be considered as “apparently 
fertile” (Croyle et al. 2015). The presence of spermatozoa indicates 
successful mating at some point. However, the presence or absence 
of spermatozoa in sea turtle eggs is not yet a definitive marker 
for fertility.  There is a need for further research on PVM-bound 
spermatozoa numbers and their relationship to fertility.
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Marinelife Center, especially M.D. Anderson, R. Germany, S. 
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Table 2. Description of egg and perivitelline membrane (PVM) storage conditions in which spermatozoa were visualized 
within the PVM. Eggs from the “Incubator” incubation condition were in controlled temperatures (28, 30, or 32°C). Some 
leatherback eggs (n=11) had PVMs separated into multiple storage conditions.

Species
Incubation condition 
(days of incubation)

Egg storage condition prior to 
necropsy (storage time in days)

PVM storage condition prior to 
examination (storage time in days)

Number 
of eggs

Leatherback Natural nest (60) Refrigerated at 4°C (1) 70% ethanol (224) 1

Leatherback Natural nest (71) Frozen at -18°C (169) 70% ethanol (4) 1

Leatherback Incubator (14-15) Necropsied same day as collection No fixation, examined same day as 
necropsy

6

Leatherback Incubator (14) Necropsied same day as collection 10% buffered formalin (254-354) 4

Leatherback Incubator (14-15) Refrigerated at 4°C (2-12) No fixation, examined same day as 
necropsy

7

Leatherback Incubator (14-15) Refrigerated at 4°C (6) 10% buffered formalin (1-348) 7

Leatherback Incubator (14) Refrigerated at 4°C (6) 70% ethanol (218) 1

Loggerhead Incubator (22) Frozen at -18°C (4-23) 10% buffered formalin (1) 2
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The leatherback sea turtle (Dermochelys coriacea, Vandelli, 1761), 
is one of four sea turtle species found along the Caribbean coast of 
Limon province, Costa Rica. The other species include hawksbill 
(Eretmochelys imbricata), loggerhead (Caretta caretta) and green 
(Chelonia mydas) turtles (Sasa et al. 2009). All four sea turtle species 
utilize various beaches for nesting (Sasa et al. 2009). The breeding 
season for leatherback sea turtles occurs from February to August, 
with peak activity in April and May. The main nesting beaches, from 
north to south, include Tortuguero, Parismina, Pacuare, Laguna 
Urpiano, Mondonguillo, Moin, Cahuita, Negra, and Gandoca (Fon-
seca et al. 2012). Globally, the leatherback sea turtle is classified as 
Vulnerable on the IUCN (International Union for the Conservation 
of Nature) Red List of Threatened species (Wallace et al. 2013). The 
primary threats to this species include incidental capture in fishing 
gears, poaching, and egg collection for human consumption. In the 
northwestern Atlantic Ocean, the leatherback sea turtle subpopula-
tion is categorized as Endangered and is declining (Wallace et al. 
2013). In Costa Rica’s Caribbean region, egg poaching for black 
market sales is the most significant threat to sea turtles (Fonseca & 
Echeverria 2018). Despite the various threats affecting leatherback 
sea turtles in the Caribbean Sea region, little is known about their 
distribution and behavior, particularly at sea.

Here, we report a rare observation of two mating leatherback 
sea turtles on 06 March 2023, along the southern Caribbean coast 
of Costa Rica (Fig. 1). This event took place during boat-based 
surveys conducted to monitor coastal dolphin populations in this 
region. Initially, a pectoral fin was detected from a distance at 
07:34 h. We approached a pair of turtles at a slow speed (<1 knot) 
and maintained a distance of about 25 m to avoid disturbance from 
our research vessel. The engine was set to neutral at 7:36 h. The 
turtles were located outside Punta Cocles (9°40’ N and 82°42’ W), 
approximately 3.68 km from the coastline and at a depth of 65 m. 
The large female and significantly smaller male (Fig. 1A) were 
actively mating at the surface, with the female frequently moving 
her pectoral fins and splashing water. The pair separated at 7:41 h, 
as the female was vigorously trying to separate from the male (Fig. 
1B). Shortly after the separation, the male was observed actively 
swimming, possibly searching for the female. The research vessel 
left the area at 7:42 h. Another research vessel conducting dolphin 
surveys also observed a single adult leatherback sea turtle, offshore 
of Gandoca beach (9° 35’ N and 82° 36’W) on the same day (L. 
May Collado & M. Austin, pers. comm.).

The nearest nesting beaches for leatherback turtles are Negra 
close to Cahuita National Park, 8.3 km to the northeast, and Gan-
doca, 17.9 km to the south. Both beaches are located within pro-
tected areas under the Costa Rican Sistema Nacional de Areas de 
Conservación. The events described here have rarely been reported 
in the Caribbean region, except off Culebra in Puerto Rico (Carr & 
Carr 1986) and in Matapica beach in Suriname (Godfrey & Barreto 

1998). In previous observations (Carr & Carr 1986; Godfrey & Bar-
reto 1998), copulations occurred in waters adjacent to the nesting 
beach (between 50-400 m), in the present event it is reported in 
waters more distant from the nesting beach. This provides further 
evidence of the areas used for mating by leatherback turtles in the 
coastal waters of the Caribbean region and Costa Rica. Previous 
research using satellite telemetry revealed that both breeding males 
and females occur in this region, but this is the first evidence that this 
species breeds in the coastal waters of the Caribbean coast of Costa 
Rica (Bond & James 2017). Future studies are needed to evaluate 
the importance of the coastal waters of the Caribbean coast of Costa 
Rica for leatherback sea turtles. A better understanding of the co-
occurrence between leatherback sea turtles and human activities, 
particularly fisheries, would also be important to potentially mitigate 
impacts on this endangered species.
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Figure 1. Figure 1. Leatherback sea turtles mating at the surface in the Caribbean waters off Punta Cocles, Limon, Costa Rica. 
A: Female and male mating at the surface; B: Female emerging out of the water once the male released her (Photographs: 
Jeremy J. Kiszka).
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Satellite transmitters have been used to track sea turtles for over 
four decades and can provide high-resolution data on movement, 
behavior, and environmental variables (Stoneburner 1982; Hays & 
Hawkes 2018). When considering which technology to use, animal 
welfare is a priority followed by transmission quality and duration 
of service (Hawkins 2004; Wilson & McMahon 2006). Piacenza 
et al. (2018) suggested key areas of focus for the improvement of 
sea turtle satellite tracking device designs, including attachment 
methods, minimizing hydrodynamic drag, and alternative energy 
harvesting options.

Leatherback sea turtles (Dermochelys coriacea) have a pliable 
carapace and easily abraded skin, unlike the hard-shelled Cheloniids, 
making transmitter attachment uniquely challenging. Eckert & 
Eckert (1986) pioneered satellite tracking leatherback sea turtles, 
using backpack harness systems, which provide researchers the 
ability to gain valuable insight into the in-water ecology on this 
cryptic species (Hughes et al. 1998). However, backpack harnesses 
can physically damage the turtle (Troëng et al. 2006), decrease the 
locomotor travel rate by 16% (Fossette et al. 2008), and increase drag 
coefficients by 91 to 112% (Jones et al. 2011). These hydrodynamic 
impacts, combined with potential restrictions of flipper movement, 
may result in increased transit times and decreased dive times, 
likely impacting foraging efficiency (Fossette et al. 2008). For these 
reasons, along with the development of new technologies, the United 
States National Oceanic and Atmospheric Administration (NOAA) 
has stated that they do not use or endorse the use of backpack harness 
systems for modern leatherback satellite tracking (NMFS 2008). 

Platform terminal transmitters (PTT) mounted directly to the 
medial ridge of the carapace (Fossette et al. 2008) result in less 
impact on contact tissues, providing a preferential configuration 
compared to harness-attached PTTs (Hamelin & James 2018). 
However, the ridges found on the leatherbacks’ carapace enhance 
the animal’s hydrodynamic performance (Bang et al. 2016). When 
tested in a lab, directly attached PTTs increased the drag coefficient 
on leatherback models by up to 3% (Jones et al. 2011). Additionally, 
the direct attachment of PTTs necessitates drilling up to four holes 
through the carapace (Byrne et al. 2009). Despite these liabilities, 
directly mounted PTTs offer a considerable reduction in drag and 
potential for tissue damage relative to harness techniques. 

A third approach to tracking leatherbacks is the use of towable 
pop-up satellite transmitter (PSAT) tags attached by a tether 
(Morreale et al. 1996). This method has been used successfully to 
continuously track leatherbacks over long distances and extended 
periods (up to 10,000 km and over 240 days) (Bailey et al. 2012; 
Roe et al. 2014; Robinson et al. 2016; Sasso et al. 2021; Rider 
et al. 2022). Towable PSATs have been estimated to increase the 
drag of an adult leatherback by 1.5-2.8%, which is comparable to 

that of directly mounted PTTs (Jones et al. 2014). However, the 
attachment method for towable tags only requires a single small 
hole to be drilled in the overhanging rear margin of the carapace 
(pygal process), thereby minimizing handling effort and time, and 
decreasing tissue damage and potential sites of infection.

Despite these advantages, consideration should be given to the 
potential of entanglement and a higher probability of loss during 
movement, mating, or due to ‘predatory nipping’ of the tags. 
Furthermore, if the turtle returns to nest with the tag still attached, 
the tag may fall into the nest cavity or interfere with the rear flippers 
during nesting and lead to an abandoned nest. It remains unclear 
if the advantages of towable PSATs outweigh these risks. Further 
exploration of towable PSATs and their design is needed to compare 
their utility to that of directly mounted PTTs on leatherbacks.

Alternative energy harvesting remains the area of sea turtle 
satellite tracking with the most potential for technology development. 
Advances in this area could increase transmitter longevity (Piacenza 
et al. 2018) and decrease environmental contamination from non-
recovered transmitters if batteries are excluded (Mrozik et al. 2021). 
Shafer & Morgan (2014) proposed capitalizing on pressure cycles 
from repeat dives or harvesting kinetic energy from drag to increase 
the longevity of PTTs. While these methods remain largely untested, 
Mansfield et al. (2012, 2021) has demonstrated solar-generated PTTs 
as an effective method of satellite tracking sea turtles. To the best of 
our knowledge, there has been no such attempt to incorporate solar 
energy harvesting into towable PSATs on leatherback sea turtles. 

In January 2023, we used solar-reliant towable PSATs to further 
explore the post-nesting movements and migratory behavior of 
leatherback sea turtles nesting on Bioko Island, Equatorial Guinea. 
Bioko Island has the second-largest number of nesting leatherback 
encounters in the Gulf of Guinea, a region that includes the world’s 
largest leatherback rookery (Witt et al. 2009; Honarvar et al. 2016). 
Understanding the spatiotemporal behaviors of leatherbacks in the 
region may provide additional insight into the connectivity of nesting 
habitats and help explain nesting trends (Garzon et al. 2023). Here, 
we report on negative results following the deployment of Desert 
Star Systems (DSS) SeaTag-MOD PSATs, configured as solar-reliant 
towable transmitters, on leatherbacks nesting on Bioko Island.

Six SeaTag-MOD modular PSATs (Desert Star Systems, Marina, 
CA, USA) were adapted for use as towable real-time satellite 
transmitters to be deployed on leatherbacks nesting on Bioko 
Island, Equatorial Guinea. We chose these tags because, at the time 
of purchase, they were the only PSATs on the commercial market 
manufactured to function for an extended duration on solar power. 
Furthermore, these tags incorporate a low-profile float, and include 
depth, accelerometer, magnetometer, and temperature sensors that 
are advertised to withstand depths of up to 2 km (approximately 
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twice as deep as the deepest known leatherback depths). To ensure 
an upright posture of the tag when the turtle surfaced to breathe, 
we supplemented the buoyancy with a small amount of syntactic 
foam resistant to crushing at depths exceeding 1 km. We omitted 
the optional battery and timed-release section of each transmitter, 
reducing the transmitter weight by 55 g and the length by 100 mm 
(originally 163 g and 275 mm, total); resulting in tags that rely solely 
on a solar-powered capacitor for energy. We applied an anti-fouling 
agent (Propspeed, Auckland, New Zealand) to each transmitter 
to prevent the loss of solar functions due to biofouling (Fig. 1) 
(Robinson et al. 2016). We included corrodible in-line crimps on 
the lanyard to release the transmitter, crimps, and swivel within 
approximately one year (Belskis et al. 2010).

Transmitters were programmed in DSS’ SeaDock (2.5.0.17793) 
software. The mission type was set to PSAT with real-time tracking, 
sensor sampling interval was set at four minutes, and release 
conditions were set to 14 days at a constant depth, crush depth 
exceeded, or mission end/release date. The mission end date was 
programmed as 15 August 2028, well after the expected transmitter 
release dates. The transmission function of each transmitter was 
checked using a TSUR-400 hand-held receiver (Telonics, Inc. Mesa, 
AZ, USA) during programming, after arrival on Bioko Island, and 
again at the field site.

Leatherbacks nest predominantly on the southeastern beaches 
of Bioko Island, with their primary nesting season occurring from 
November to March (Tomás et al. 2010; Honarvar et al. 2016). Two 
teams of two to three people conducted nighttime visual surveys 

between spatial coordinates of 3.240234 °N, 8.601610 °E and 
3.232639 °N, 8.614697 °E throughout January 2023. This stretch 
of shoreline consists of a black sand beach with relatively low wave 
energy and little offshore obstruction (Honarvar et al. 2016).

Teams of four to six people conducted leatherback processing 
and data collection on the nesting beach. Following deposition of 
the first eggs, half of the team measured the curved carapace length 
(CCL) and curved carapace width (CCW), recorded the GPS location 
of the nest (GPSMAP 65s; Garmin, Olathe, KS, USA), and scanned 
for a passive integrated transponder (PIT) tag. If no PIT tag was 
detected, a new tag (Avid Identification Systems Inc, Norco, CA, 
USA) was placed in the right shoulder. Simultaneously, other team 
members conducted ultrasound examinations of the oviducts (Edge 
Life Technologies, Miami, FL, USA). Six nesting females were 
selected for transmitter attachment based on the following criteria: 
1) no external evidence of recent injury or disease (e.g., no missing 
limbs, major lesions, or heavy epibiota); 2) ultrasound examination 
showed fewer than 30 vitellogenic follicles in each ovary (in an 
effort to identify turtles depositing their last clutch for the season); 
and 3) the presence of a complete pygal process with appropriate 
anatomy to attach the transmitter.

For tether attachment, we followed protocols described by 
Robinson et al. (2016) (Fig. 2). Following the completion of egg 
deposition, a 5 mm hole was drilled approximately 3-6 cm from 
the distal end of the pygal process. Silicone surgical tubing was 
inserted into the hole and trimmed flush to the carapace, to prevent 
the lanyard from abrading the carapace (Hamelin & James 2018). 

Figure 1. (a) Desert Star Systems Sea-MOD transmitters before (left) and after (right) additional buoyancy and an antifouling 
agent were added. (b) Transmitters were towed by a tether attached to the pygal process of leatherback sea turtles.
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The drill bit, surgical tubing, and pygal process were disinfected 
using 4% betadine antiseptic solution. Predrilled Delrin buttons were 
placed on the dorsal and ventral surfaces of the carapace to distribute 
the force of the lanyard. A 200 lb. test Diamond Presentation 100% 
Fluorocarbon leader (Momoi Fishing Manufacturing, Co. Ltd., 
Ako, Japan) with a diameter of 1.56 mm tether line was passed 
through the dorsal Delrin button and the surgical tubing, looped 
through the ventral Delrin button, then brought back up through 
the surgical tubing and dorsal Delrin button, where it was secured 
using a corrodible crimp (mini double-barrel copper sleeve, inner 
dimension of 1.6 mm). An approximately 20cm length of line was 
terminated in a loop with a size 4 wind-on swivel rated for 240 lb 
(SPRO Sports Professionals, Kennesaw, GA, USA) using another 
corrodible crimp. The satellite tag was similarly affixed to the swivel 
via another ~20 cm length of line to yield a total lanyard length 
of approximately 40 cm. This length was sufficient to allow the 
transmitter to break the water’s surface when the turtle breathed, yet 
short enough to negate the possibility of front flipper entanglement. 
Total attachment time was recorded for each transmitter. Averages 
are reported as mean ±SE, unless stated otherwise.

The attachment process lasted an average of 21 ±3 min (range 
14-37, Table 1). The average CCL of the tagged turtles was 154 ±2 
cm (range 150-159) and CCW was 116 ±3 cm (range 104-123). 
Turtle #01 returned to the beach without nesting on 22 January 
2023 (14 days after the initial transmitter attachment) and there was 
no injury to the turtle, nor damage or biofouling of the transmitter 
observed. On 30 January 2023, local community members observed 
another turtle with one of our transmitters attached, nesting on the 

beach. The tag ID was not recorded, so the turtle’s identity remains 
unknown, but no injury to the turtle, abnormal nesting behavior, or 
damage/fouling of the tag was reported.

We monitored Argos for transmissions for one year following 
the completion of tag deployments. During this period, we received 
a total of 94 transmissions from the six deployed transmitters, 
averaging 16 ±3 messages per tag (range 8-24). The average 
number of days between transmitter attachment and the cessation 
of messages was 20 ±4 days (range 10-34). Transmitters on turtles 
#01 and #04 each provided a single dive histogram; however, the 
depth sensor on turtle #04 was deemed nonfunctional, based on the 
interpretation of the data received. Messages received from turtles 
#02 and #05 relayed little-to-no usable data. Eight satellite locations 
were recorded from turtles #03 (n=1), #04 (n=2), and #06 (n=5). The 
Euclidian distances from the nesting locations to the last received 
locations were 10.6, 11.7, and 21.4 km for turtles #03, #04, and #06, 
respectively. The total distances recorded were 10.6, 81.4, and 120.1 
km for turtles #03, #04, and #06, respectively. All these data were 
likely transmitted before the turtles embarked on a migration. As 
of 11 February 2024, we have not retrieved any of the transmitters. 

While PSATs are generally useful for the broad-scale collection 
of data from some marine species (Thorstad et al. 2013) and DSS 
SeaTag-MODs have been successful in several cases (Goetz et al. 
2017; Pohlot & Ehrhardt 2018; Doukakis et al. 2020), the tags and 
configuration used in this study did not yield sufficient data on the 
post-nesting migratory movements of leatherbacks to be useful. 
In reviewing the literature, we found our results were not unique. 
Stewart et al. (2016) reported little success using DSS SeaTag-

Figure 2. A diagram of the tether assemblage used to attach Desert Star Systems Sea-MOD transmitter to the pygal process 
of leatherback sea turtles (Modified from Robinson et al. 2016). Tethers were made from a 200 lb. fluorocarbon leader with 
a swivel in the middle to prevent coiling of the line. Loops were held together by corrodible crimps which, allowing release 
of the assemblage from the turtle after approximately one year.
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Table 1. A summary of tag attachments and transmissions. CCL: Curved Carapace Length (cm). CCW: Curved Carapace 
Width (cm). Attachment Time: duration between drilling the hole in the carapace and finishing the attachment process (min). 
Dates are shown as MM/DD/YYYY.

MODs to document the movements of oceanic manta rays (Manta 
birostris), with only two of the four deployed DSS tags reporting 
data (lasting 7-28 days) and they similarly received few location 
estimates. Over a 16-year period, Lutcavage et al. (2015) deployed 
various models of PSATs from different manufacturers on bluefin 
tuna (Thunnus thynnus) and Atlantic bigeye (Thunnus obesus), 
including nine DSS SeaTag-MODs. Eight of the nine DSS tags 
reported some data, but none reported for the full 12-month term 
they were programmed for, and the attachment durations averaged 
19 days. The short attachment period was attributed to the nose cone 
shearing due to pin breakage during high-force acceleration; DSS 
reports that the tags have been strengthened to address this issue 
(Lutcavage et al. 2015). Of the eight tags that reported data, only 
three produced usable data, which the authors attributed, in part, to 
DSS’s Argos transmission protocol. PSAT failure from leaking is 
a documented concern, especially with species that make deep and 
frequent dives (Musyl et al. 2011). This may be one reason for the 
nonreporting PSATs in our study, as leatherbacks dive repetitively 
(Sale et al. 2006) and to depths exceeding 1 km, although dives 
to this depth are thought to be uncommon and should not be 
exaggerated (Eckert et al. 1989). Increasing the strength of the 
housing and/or potting material to withstand the forces of repeated 
deep dives may be an effective approach to addressing this issue.

The low number of messages and locations in this study could 
also be attributed to the timing of transmissions when tags broke 
the surface of the water.  When these DSS tags are set to real-time 
tracking, they transmit each time the capacitor reaches a set voltage 
limit, regardless of the location of the tag in the water column. It 
is likely that when attached to sea turtles, many transmissions get 
sent while the tag’s antenna is submerged underwater, preventing 
transmissions from reaching the satellites. The transmission 
discharges the capacitor to below the set voltage limit and the 
capacitor must be recharged before another transmission can be 
sent. Thus, when the turtle is at the surface breathing, the tag 
must recharge before the first transmission can be sent.  While the 
transmitters can be programmed to transmit only when the tag is 
in a vertical position, this is likely an uncommon scenario as the 
transmitter is dragged behind the leatherback, which may maintain 
forward momentum while surfacing to breathe or be surfacing in a 
current. Alternately, the incorporation of a salt-water switch into the 
design of DSS SeaTag-MODs could be tied to satellite transmission 
signaling, which would allow capacitor charge to be conserved until 
the antenna is clear of the water, thereby increasing opportunities 

for successful satellite communications.
Despite the efforts made to attach the transmitters to leatherbacks 

during their last nesting event of the season, we documented two 
occurrences of tagged turtles returning to the beach. The first turtle 
tagged, turtle #01, returned to the beach without nesting, with 
the transmitter attached. We attributed this to an incorrect image 
depth setting of ~9 cm during the ultrasound examination of turtle 
#01, preventing visualization of developing follicles deeper than 
9cm. This was attributed to user error, as this was our first in-
field use of a new ultrasound unit and user interface. The second 
tagged leatherback that returned was observed on the beach after 
the research team had departed the field and was not definitively 
identified. 

Researchers should make every effort to minimize the risk of 
negative impacts of research activities on study animals, especially 
when studying endangered populations. For example, prolonged 
or repeated stressors, extended restraint, pain, and increases in 
hydrodynamic drag, may negatively impact individual animals. 
Cumulatively, these impacts on the most reproductively important 
adults in a population (nesting female leatherbacks in this case), 
could potentially hinder population stability or recovery (Romero 
et al. 2015). Handling sea turtles is known to increase levels of 
stress hormones and stress-related behaviors (Gregory & Schmid 
2001; Hunt et al. 2016; Mills 2022). While we were able to attach 
transmitters in an average of 21 min, which is less than NOAA’s 
recommended maximum of two hours (NMFS 2008), we suggest 
that continued efforts are warranted to improve attachment methods 
and reduce handling time. 

Little to no useful geolocation data were collected through this 
effort, thus we are unable to assert that solar powered towable 
PSATs are a preferred method of satellite tracking leatherbacks, 
especially when compared to some battery powered towable 
PSATs, which have recorded leatherback migratory distances up 
to 10,000 km, and for periods exceeding 200 d (Robinson et al. 
2016). However, it is our opinion that fundamental technological 
failures could be resolved with further effort, and we encourage 
continued development to explore the feasibility of solar-powered 
Argos transmitters for this species. Continued efforts to advance 
tag technology, such as alternative energy harvesting, improved 
energy management, and satellite transmission efficacy, have the 
potential to decrease the drawbacks of instrumentation and lead to 
improved understanding of the long-term migratory behaviors of 
leatherback sea turtles.

Leatherback 
ID CCL CCW

Attachment 
Time

Attachment 
Date

Last Transmission 
Received

Total Messages 
Received

Total Locations 
Received

#01 157 112 37 1/10/2023 1/24/2023 17 0
#02 152 121 21 1/12/2023 2/4/2023 9 0
#03 150 116 22 1/15/2023 1/25/2023 8 1
#04 158 119 17 1/16/2023 2/14/2023 24 2
#05 159 123 14 1/20/2023 2/23/2023 13 0
#06 149 104 17 1/22/2023 2/3/2023 23 5
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Figure 1. Map of locations where 
Hawksbill 1 (white dot), Hawksbill 
2 (black dot) and Hawksbill 3 
(grey dot) were captured and 
recaptured. Hawksbill 1 was 
tagged at Punta Carola (San 
Cristobal Island) in Galápagos and 
recaptured in Pampanal de Bolivar 
(REMACAM: Reserva Ecológica 
Manglares Cayapas Mantaje) in 
Continental Ecuador. Hawksbill 
2 was tagged at Punta Nuñez 
(Santa Cruz Island) in Galápagos 
and recaptured in Salango (MNP: 
Machalilla National Park) in 
Continental Ecuador. Hawksbill 3 
was tagged at Rosa Blanca (San 
Cristobal Island) in Galápagos 
and recaptured in Puerto López in 
Continental Ecuador.

Ecuador hosts the southernmost nesting sites for hawksbill sea 
turtles (Eretmochelys imbricata) in the Eastern Pacific Ocean (EPO). 
Hawksbills are a highly threatened species whose populations 
are particularly vulnerable in the EPO (Gaos et al. 2010, 2018; 
Rguez-Barón et al. 2019). Ecuador consists of both mainland 
(herein referred to as Continental Ecuador) and insular land masses, 
with the latter including the Galápagos Islands, an archipelago of 
volcanic islands covering approximately 8,000 km2 and located 
approximately 900 km west of Continental Ecuador (Mestanza-
Ramón, et al. 2019; Fig. 1).

Consistent hawksbill nesting in Ecuador has been documented 
in two areas along Continental Ecuador (Gaos et al. 2010, 2017a), 
and although a single hawksbill hatchling was encountered on the 
Galápagos Islands in 2015 (Gaos et al. 2018; J.P. Muñoz pers. 
obs.), no confirmed records of nesting by the species exist for the 
archipelago. In contrast, foraging by juveniles, and to a lesser extent 
adults, has been documented in several areas along both Continental 
Ecuador and the Galápagos Islands (Zárate et al. 2015; Alarcón et 
al. 2016; Gaos et al. 2018).

Post-nesting hawksbills equipped with satellite telemetry tags 
by Equilibrio Azul (EA) at Machalilla National Park (MNP) on 
Continental Ecuador have been recorded undertaking limited 
migrations (<300km) to foraging grounds located along the 
country’s southern coast, including to mangrove estuaries in the 
Gulf of Guayaquil and Jambeli Archipelago (Gaos et al. 2012a, 
2012b). Records of migrations for juvenile hawksbills are rare in 
Ecuador and other parts of the EPO, with turtles in this life stage 
typically remaining within geographically restricted home ranges for 
extended periods (Carrión-Cortez et al. 2013; Miranda et al. 2019). 
There is no information available for the movement of adult male 
hawksbills in Ecuador, but preliminary information from Pacific 
Nicaragua suggests reproductively mature males do not migrate 
(A.R. Gaos pers. obs.; FFI-Nicaragua unpublished data).

Genetic studies indicate that nesting hawksbills in Ecuador 
represent a distinct management unit that is demographically 
isolated from populations in other parts of the EPO (Gaos et al. 
2016). Genetic studies also suggest that EPO hawksbills use feeding 
grounds in the vicinity of their natal beaches (Gaos et al. 2017b). 
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Figure 2. Photographs of Hawksbill 1 when first captured by PTN-GSC at Punta Carola, Galápagos 
Islands (a), and when recaptured by a local fisherman at Pampanal de Bolivar, Continental Ecuador (b). 
Photos by Juan Pablo Muñoz/PTN-GSC (a) , and MAATE (b).

Combined results from satellite telemetry and genetic studies 
suggest the species rarely, if ever, undertake long-distance 
migrations in the EPO (Gaos et al. 2018; Gaos et al. 2017b; Gaos et 
al. 2016). Despite nearly a decade of flipper tagging efforts of adult 
and juvenile hawksbill turtles at multiple locations in Continental 
Ecuador and the Galápagos Islands, a flipper tag from Ecuador has 
never been registered in another country of the EPO, and vice versa. 
Similarly, flipper tag returns have not been previously documented 
between disparate nesting and foraging grounds in Ecuador.  

This report discusses the first capture-recapture events of three 
hawksbill turtles, including one male, one female and one juvenile, 
all of which were originally tagged in the Galápagos Islands and 
subsequently encountered in Continental Ecuador. The hawksbill 
records were obtained from three different sources: ongoing and 
prior in-water monitoring efforts in Continental Ecuador and the 
Galápagos Islands,  reports from local fishers and environmental 
authorities in Continental Ecuador and reports from the EA citizen-
science photo-identification project, Foto-ID.

Along Continental Ecuador, monthly in-water censuses of 
hawksbill turtles are carried out by EA in collaboration with the 

Eastern Pacific Hawksbill Initiative (ICAPO), with a focus on 
surveying nearshore habitats of MNP and surrounding areas. 
The surveys are conducted by at least three observers, snorkeling 
in defined transects, and in an attempt to observe and capture 
hawksbills using free-diving techniques. Similar in-water surveys 
are conducted by an ongoing project in the Galápagos Islands led 
by the group Proyecto Tortuga Negra - Galápagos Science Center 
(PTN-GSC). PTN-GSC surveys primarily occur on the island of 
San Cristobal but are undertaken opportunistically in other parts 
of the archipelago. Additionally, although focused on green turtles 
(Chelonia mydas), a past project in the Galápagos Islands led by the 
Charles Darwin Foundation (CDF) included in-water monitoring 
using tangle-nets around Santa Cruz Island, during which hawksbill 
turtles were occasionally captured (Zárate et al. 2015). Finally, 
the EA Foto-ID project consists of a citizen-science program 
where people get involved in sea turtle research by reporting any 
encounters with turtles with photographs, videos and the location 
and date of the encounter. The objective is to identify individuals 
using the information in the images through photo-identification 
using recognition of scales or other visual means such as flipper tags. 

Table 1. Capture and recapture data on the three hawksbills included in this study, including size (CCL: Curved Carapace 
Length), weight (kg), location, growth, distanced travelled (straight line measurement). Dash indicates no data available. 
MNP: Machalilla National Park. REMACAM: Manglares Cayapas-Mataje Ecological Reserve.

a b
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During the initial capture events of all hawksbills, morphometric 
measurements were taken and Inconel (Style 681, National Band 
& Tag, Newport, KY, USA) flipper tags were applied to the trailing 
edge of both front flippers. Curved carapace length (CCL) was 
measured for all captured turtles using a flexible measuring tape, 
and, when feasible, weight was calculated using a portable scale.  

The first record of connectivity came from a turtle (herein referred 
to as Hawksbill 1) originally tagged by GSC on 24 June 2014 in 
Punta Carola, San Cristobal Island, Galápagos Islands (Fig. 2a). 
The turtle measured 70 cm CCL and weighed 38 kg. Based on 
the turtle’s size and lack of an elongated tail, it was determined to 

be a putative female (Table 1). Hawksbill 1 was recaptured on 14 
August 2015 when it became incidentally entangled in a gillnet 
of a fisher in the Manglares Cayapas Mantaje Ecological Reserve 
(REMACAM) in Continental Ecuador (Fig. 2b). Observing the tag 
on the flipper, the fisher held the turtle and provided it to members 
of Ecuador’s Ministry of Environment, Water and Ecological 
Transition (MAATE). The turtle had no CCL change at recapture and 
no weight information was collected. MAATE personnel reported 
the turtle and relevant data to EA. The time between capture events 
was approximately 1.3 years, and the straight-line distance between 
the two capture sites was 1,224.1 km. 

Figure 3. Photographs of Hawksbill 2 when captured as a juvenile by CDF in the Galápagos 
Islands (a), and when captured by EA as an adult (b) in Continental Ecuador. Photos by Patricia 
Zárate/CDF (a) and Felipe Vallejo/Equilibrio Azul (b).

Figure 4. Photographs of 
Hawksbill 3 when captured in 
Galapagos in 2020 (a) and when 
recaptured through the Equilibrio 
Azuls Photo-ID project in Puerto 
López, Continental Ecuador 
in 2023 (b). Photos by Juan 
Pablo Muñoz from Galapagos 
Science Center (a) and Sebastián 
Hernández during a session with 
his freediving school in Puerto 
López, Continental Ecuador 
(b). Highlighted in red is one 
of the tags when the turtle was 
encountered by the citizen-
science project.

a b

a b
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The second record of connectivity came from a turtle (herein 
referred to as Hawksbill 2) originally tagged by CDF on 18 June 
2004 in Punta Nuñez, Santa Cruz Island, Galápagos Islands (Fig. 3a). 
The turtle measured 38.1 cm CCL and weighed 12 kg. Hawksbill 2 
was recaptured on 3 February 2017 during a monthly survey carried 
out by EA at Salango Island (MNP) in Continental Ecuador (Fig. 3b). 
The time between capture events was approximately 12.6 years, and 
the straight-line distance between the two capture sites was 1,046.9 
km. The turtle measured 83.4 cm CCL at the time of recapture and 
60 kg, increasing by 45.3 cm and 48 kg between capture events. 
The turtle was confirmed as a male during the recapture as a result 
of its elongated tail and increased size (Fig.3b). 

The third record of connectivity came from a turtle (herein 
referred to as Hawksbill 3) originally tagged by GSC on 22 January 
2020, in Rosa Blanca, San Cristobal Island, Galápagos Islands (Fig 
4a). This turtle was observed on 27 August 2023 by a free-diving 
instructor in Puerto López who registered the turtle using photos, 
videos and the number of one flipper tag to the Foto-ID project. One 
month later, on 29 September 2023 the turtle was recaptured during 
EA’s monthly surveys in the same place in Puerto López where it 
was reported to Foto-ID. The time between capture events was 3.5 
years, and the straight-line distance between the two sites was 953.76 
km. The turtle was a juvenile when first captured, measuring 60 cm 
CCL, and when recaptured measured 62.1 cm CCL, representing an 
increase in size of 2.1cm. The location of recapture is one of EA’s 
monthly monitoring sites adjacent to the main index nesting beach 
of the area within MNP, and this turtle had not been observed prior 
to this event, suggesting a recent recruitment to the reef. 

These results provide the first records of hawksbill turtle 
connectivity between the Galápagos Islands and Continental 
Ecuador, as well as the first records of tag returns from different 
monitoring programs within the country as a result of a citizen-
science project. To our knowledge, these findings also represent 
the longest migrations for hawksbill turtles documented in the 
EPO to date (Gaos et al. 2012a), as well as the longest recapture 
timeframe of an individual hawksbill in this ocean region. In the case 
of Hawksbill 2 and 3, considering the turtles were juveniles when 
first captured, the migration registered represents a developmental 
migration and for Hawksbill 1, an actual migration.  

Given hawksbill turtles have never been documented nesting 
in the Galápagos Islands, despite monitoring at nesting beaches 
around the archipelago (Zárate et al. 2013), it is likely that these 
turtles originated from nesting beaches on Continental Ecuador, 
dispersing to the Galápagos Islands as post-hatchlings, where 
they settled to forage and grow. The movements to Continental 
Ecuador could be the first leg of a round-trip migration to nest, 
demonstrated by Hawksbill 1, and to copulate for developmental 
migration, demonstrated by Hawksbill 2. Alternatively, one or both 
turtles could have made permanent shifts to habitats in Continental 
Ecuador at some point prior to recapture. Of note is that REMACAM 
is a mangrove estuary, coinciding with habitat preferences for adult 
hawksbills in several countries of the EPO (Gaos et al. 2012a,b; 
2018) and MNP, including the adjacent Puerto López is a reef and 
the main nesting area in the country.
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Figure 1. Geographic locations of Monito Island (Puerto Rico) and Los Garzos (Venezuela).

On September 25, 2023, a hawksbill turtle (Eretmochelys imbri-
cata), bearing Inconel tags (X7113, X7114) on its front flippers, 
was captured during in-water surveys in front of the nesting beach, 
Los Garzos, Gulf of Paria, Venezuela (Balladares et al. 2019; Fig 
1). The recovered tags were in good condition (Fig 2).  At the time 
of capture, the turtle’s curved carapace length (CCL) was 76 cm 
and its tail extended beyond the carapace, suggesting it was an adult 
male (Van Dam & Diez, 1998, Fig 3 & 4). The animal received new 
Inconel tag (V014M, V015M) on its front flippers.

This turtle had been originally tagged 25 years earlier, on 16 
September 1998 during in-water surveys by personnel from Proyecto 
Carey-Isla de Mona in the feeding grounds of Monito Island (near 
Mona Island, Diez & Van Dam 2002; Fig 1). At the time of original 
capture, the turtle measured 30.4 cm CCL and weighed 2.3 kg. Ac-
cording to Diez & Van Dam (2002), this animal was considered a 
juvenile with undetermined sex due to its size (Fig 5).

The time interval between the tagged date on this turtle in Puerto 
Rico and when it was found in Venezuela was 25 years, which in-
dicates that the turtle survived for more than two decades bearing 
the tags and reached its sexual maturity within that time (Van Dam 
& Diez 1998; Diez & Van Dam 2002). This current report not only 
confirms the connectivity between different areas in the Caribbean 
for the hawksbill migrations (Velez-Zuazo et al. 2008), but also is 
the oldest long distance tag recapture for a hawksbill turtle tagged at 
Monito Island and a record Inconel tag retention duration (Van Dam 
& Diez 1999). This type of information reinforces the importance 
of collaborative regional conservation networks.
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Figure 2. Condition of the 25 year old Inconel tag on a hawksbill turtle encountered during an in-water study in Venezuela 
after being initially tagged in Puerto Rico.

Figure 3. Recapture of the tagged adult hawksbill turtle with 
76 cm curved carapace length in Venezuela.

Figure 4. Elongated tail of the adult hawksbill turtle 
encountered during an in-water study in Venezuela.
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Running out of Sand: Sea Turtle Nesting Activity on Félicité Island, Seychelles
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The Seychelles are home to one of five regional populations of 
hawksbill turtles with more than 1,000 females nesting annually 
(Mortimer 2000) with a distinct nesting period from October until 
March. Green turtles are also known to nest in the Seychelles, but 
nesting density in the granitic inner islands is significantly lower 
compared to the coralline outer islands (Salm 1976). Félicité Island, 
located in the inner islands of the Seychelles, and its nearby marine 
park Ile Coco Marine Park are renowned for their hawksbill turtle 
population. Six Senses Zil Pasyon resort was established on the 
privately owned island in October 2016, occupying one third of 
the island. The island harbors five sandy beaches, of which four 
are easily accessible. The fifth beach (Anse Takamaka) is located 
at the southwestern side of the island and is difficult to reach due 
to challenging terrain.

In December 2021 the Olive Ridley Project partnered with 
Six Senses Zil Pasyon to establish a monitoring and conservation 
program to ensure long-term data collection and protection for 
nesting turtles on the islands. The partnership was established in 
the middle of the hawksbill turtle nesting season, therefore data 

collected from the 2021/2022 period is incomplete and this paper 
will exclusively focus on data from the 2022/2023 season. 

Daily patrols, on the four main beaches (Fig. 1), were carried out 
between April 2022 and April 2023 to record any nesting attempts 
and true nests. GPS location, species, and track width were recorded 
for each nest and false crawl. If the turtle was encountered whilst 
laying eggs, photographs for the identification of the nesting female 
were taken. Photo identification, a non-invasive mark-recapture 
method (Gonzalo et al. 2016), allowed for the identification of 
individual females, clutches per female per season and an estimate 
of the length of internesting intervals. 

Nest excavations were carried out 48-72 hours after emergence 
to ensure all hatchlings had the chance to emerge by themselves 
before recording clutch size, depth of egg chamber, the estimated 
developmental stage of unhatched eggs and releasing any trapped 
hatchlings.

During the reporting period 87 false crawls and 51 true nests 
were recorded on all five beaches on Félicité Island (Fig. 2). The 
majority of the nesting activity was recorded on Grand Anse, the 

Figure 1. Map showing the location and number of 
true nests on the four beaches on Félicité Island: Anse 
Peniche (n = 4), Security Beach (n = 2), Anse la Cour 
(n = 4), and Grande Anse (n = 30) on Félicité Island 
in Seychelles. Made with QGIS 2021. Seychelles 
Shapefile: https://data.humdata.org/dataset/cod-ab-syc
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Figure 3. Temporal distribution of sea 
turtle nesting activity on Félicité Island 
from April 2022 to April 2023. GR = 
green turtle, HK = hawksbill turtle.

Figure 2. Sea turtle nesting activity per beach on Félicité 
Island from April 2022 to April 2023. GR = green turtle, HK 
= hawksbill turtle.

longest beach on the island. Hawksbill nesting activity reached its 
peak from October to February (Fig. 3), with the highest number 
of nests recorded in December (n=16) (Fig. 3). Of 41 hawksbill 
nests laid during this season, 30 were laid on Grand Anse. The 
mean track size recorded for hawksbill turtles was 78 cm (±7 SD, 
n=73). Nesting activity by green turtles was comparatively low 
with a peak in nesting observed between July and September 2022, 
with a total of eight true nests and seven false crawls. During a 
second smaller wave of green turtle nesting activity in January and 
February 2023, eight false crawls were observed, and two nests 
were laid (Fig. 3). Mean track width for green turtles was 122 cm 
(±13 SD, n=14). Measuring tracks width aids species identification 
and serves as a proxy for estimates of the individuals body size and 
nest characteristics. 

Median egg chamber depth for green turtles (105 cm ±14.3 SD) 
was deeper than for hawksbill turtle nests (45 cm ±13.8 SD), but the 
incubation time was similar for both species throughout the season 
(Table 1). Median incubation time from April 2022 to April 2023 
was similar for both species with 62 days for green turtles and 64 
days for hawksbill turtles (Table 1). 

Clutch size was recorded for 88% of nests (n = 44), while clutch 
size remained unclear in the remaining 12% due to full or partial 
clutches being lost to predation by crabs. Mean clutch size for 
hawksbill turtles was 160.6 eggs (±23.5 SD, n=38), which was 
significantly larger compared to 137.3 for green turtles (±17.6 SD, 
n=6; t-test, p<0.005).

Hatching success, the percentage of eggs within a nest that 
hatched, was 80.1% for green turtles (±35.5 SD, n = 7) and 76.2% 
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for hawksbill turtles on average (±30.1 SD, n=36).  Twelve of the 
hawksbill turtle nests had to be relocated due to immediate threat 
by beach erosion. Nests were relocated to the eastern side of Grand 
Anse, the only area not affected by erosion during this period. Four 
hawksbill turtle nests had 0% hatching success due to complete 
predation by ghost crabs (Ocypode spp.), out of which two were 
relocated and two remained in situ. Predation was observed in all 
relocated nests with a range of 17 up to 167 predated eggs per clutch. 
Relocated nests had 58.9% average hatching success (±33.7 SD, 
n=12) compared to 74.9% for non-relocated nests (±31.8 SD, n = 
15) on Grand Anse, including completely predated nests. When nests 
with 100% predation were excluded, average hatching success for 
relocated nests was 72% (±19 SD, n=10), compared to 86.5% (±10 
SD, n=13) for in situ nests on Grand Anse. 

Sea turtles in Seychelles have been legally protected by the Wild 
Animals Birds and Protection Act since 1994 (Burt et al. 2015). 
Records from the inner islands Cousin and Cousine indicated 
increasing hawksbill nest numbers since 1999 and 2006 respectively 
(Allen et al. 2010; Gane et al. 2020), with numbers of up to 256 
individual females emerging to nest per season. D’Arros Island in 
the outer islands of the Seychelles hosts 277-318 hawksbill nests 
per year according to Mortimer et al. (2011a). In our study, a lower 
number of hawksbill turtle nests were recorded on Félicité than in 
the aforementioned studies. This is mainly attributed to two factors: 
Firstly, Anse Takamaka, a beach on the eastern side of Félicité, was 
monitored only ad hoc due to its remote and highly inaccessible 
location. Nesting activity on this beach is potentially high as 
previously unrecorded sea turtle tracks were observed during each ad 
hoc site visit. Additionally, the beach offers completely undisturbed 
nesting habitat, as it is not frequently visited by either resort guests 
or outside operators. Secondly, Félicité offers sparse nesting space in 
general. The sandy beaches on the island all together span less than 
750 m in length at their greatest extent and are extremely dynamic, 
undergoing drastic transformations with the changes in the monsoon 
season. This change results in complete erosion of nesting areas 
especially on the main beach of Grand Anse and coincides with the 
beginning of the hawksbill turtle nesting season. The erosion makes 
the majority of the beach inaccessible for turtles and causes the loss 
or inundation of previously laid nests. Due to the severe erosion, 
the suitability of the island’s beaches for nesting are questionable 
in the future in the face of increasing environmental challenges, 
including sea level rise (Fish et al. 2008). Mitigation measures 
such as construction setback regulations, which are promising on 
other turtle nesting beaches (Fish et al. 2008) are unlikely to prove 
successful on Félicité, because the main limiting factor is natural 
granite boulders. Lastly, since Cousin has been identified as one of 
the most important hawksbill nesting spots in the region and has been 
managed as a nature reserve (Allen et al. 2010), it is to be expected 

that the number of hawksbill turtle nests in this location are higher 
than on other less protected islands such as Félicité.

For green sea turtles, Burt et al. (2015) reported an average of 
13.5 nests per year on the inner island of Curieuse, which is located 
only 17 km away from Felicité; this level is similar to the 10 nests 
reported in this study. This contrasts with an average of 65-120 nests 
per year reported on the outer island of D’Arros (Mortimer et al. 
2011a), and even more so to the increase from 2,000-3,000 to over 
15,600 green turtle nests per year has been observed in the Aldabra 
atoll in the outer islands (Mortimer et al. 2011b). These numbers 
may be attributed to the intense protection of the species since 1968 
(Mortimer et al. 2022). The example of Cousin Island and Aldabra 
illustrates how effective protection of the area led to increasing sea 
turtle populations, both for hawksbills as well as for green turtles. 

No previous data are available to comment on a trend in nest 
numbers for either hawksbill or green turtles on Félicité, therefore 
we recommend continuation of nest monitoring to compare the 
development to that observed on other islands in the Seychelles. 
Additionally, the expansion of the nearby Ile Coco Marine Park to 
include Félicité Island would be beneficial to increase the number 
of nests on the island. The inclusion of the island in the Marine 
Park will reduce the number of outside visitors that are currently 
visiting the public beaches, and therefore reduce disturbance of 
nesting sea turtles. In addition, this could serve as the starting point 
for a collaborative coral restoration initiative with the Seychelles 
Parks and Gardens Authority. The restoration of the deteriorated 
reef structure has the potential to mitigate beach erosion and provide 
vital protection for nesting habitats.

Green turtle nests on Félicité are deeper compared to those 
reported in the literature for example from Australia and Taiwan (see 
for example Bustard et al. 1968; Chen & Cheng 1995). Published 
literature values on egg chamber depth of green turtles in Seychelles 
is available only from Ascension Island, located in the outer islands. 
The author reported a mean egg chamber depth at the bottom of 85 
cm (±18.8 SD, Mortimer 1990). The mean depth at the bottom during 
this study is markedly deeper at 102 cm (±14 SD). Egg chamber 
depth on Félicité was measured during nest excavations, 58-71 days 
after the nest was laid. Given the significant amount of movement 
of materials along the coast by longshore drift it is possible that 
additional sand accumulated on top of the egg chambers resulting 
in an increased depth measurement. This effect might be more 
significant on Félicité than in the other study locations.

Besides beach erosion, predation by crabs is a severe threat to 
sea turtle nests on Félicité Island. Especially on the main nesting 
beach of Grand Anse, high crab densities are observed and a total 
of five nests were completely predated. This resulted in a high 
standard deviation for the average recorded hatching success for 
green turtles as well as hawksbill turtles.  Relocation zones might 

Median depth to top of 
egg cavity (cm)

Median depth to bottom of 
egg cavity(cm)

Median Incubation 
in days

Green 89 ±20.3 SD, n=7 105 ±14.3 SD, n=7 62  ±19.0 SD, n=6
Hawksbill 30.5  ±11.5 SD, n=40 45  ±13.8 SD, n=40 64  ±12.9 SD, n=36

Table 1. Egg chamber depth and incubation time of green and hawksbill turtle nests on 
Félicité Island during the 2022/2023 season.
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lead to a clustering of nests in one area and the resulting high nest 
density may lead to an increase in predation risk (for example, see 
Leighton et al. 2011). In the future the establishment of further 
relocation zones as well as the development of predator protection 
measures should be considered.
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SUBSCRIPTIONS AND DONATIONS

	 The Marine Turtle Newsletter (MTN) is distributed quarterly to more than 2000 recipients in over 100 nations world-wide. In order 
to maintain our policy of free distribution and free access to colleagues throughout the world, the MTN relies heavily on donations. 
We appeal to all of you, our readers and contributors, for continued financial support to maintain this venture. All donations are greatly 
appreciated and will be acknowledged in a future issue of the MTN. Typical personal donations have ranged from $25-100 per annum, 
with organisations providing significantly more support. Please give what you can. Donations to the MTN are handled under the auspices 
of SEATURTLE.ORG and are fully tax deductible under US laws governing 501(c)(3) non-profit organisations. Donations are preferable 
in US dollars as a Credit Card payment (MasterCard, Visa, American Express or Discover) via the MTN website <http://www.seaturtle.
org/mtn/>. In addition we are delighted to receive donations in the form of either a Personal Cheque drawn on a US bank, an International 
Banker’s Cheque drawn on a US bank, a US Money Order, an International Postal Money Order,  or by Direct Bank Wire (please contact 
mcoyne@seaturtle.org for details). Please do not send non-US currency cheques.

Please make cheques or money orders payable to Marine Turtle Newsletter and send to: 

 Michael Coyne (Managing Editor)
Marine Turtle Newsletter

1 Southampton Place
Durham, NC 27705, USA

Email: mcoyne@seaturtle.org

The MTN was founded in 1976 by Nicholas Mrosvosky
at the University of Toronto, Canada 

Non-nesting crawl (false crawl or half moon crawl) on a North Carolina beach made by a loggerhead sea 
turtle. Photo by M. Godfrey


