
Yingjin Qian, Oleg Drokin

Lustre Metadata Writeback Cache
Design and implementation

whamcloud.com2

Why (Metadata) Write Back Caching for Lustre?

• Cache is the key for good performance

• Page cache, inode cache, dentry cache

• Data is well cached in Lustre

• Page cache for both data writing and reading

• No client cache for metadata changes

• Each metadata modification sent to MDS

• Metadata performance is important

• Applications create many files today

• Millions of RPCs sent over network

CPU
Cache

DDR DRAM

Persistent
Memory

NAND SSD

Hard Disk Drives

Tape

CPU Register 0.1ns

1-10ns

80-100ns

<1us

~10ms

10-100us

~1s+

Capacity

whamcloud.com3

Current Data Cache/Acceleration Inside Lustre

• Persistent Client Cache
• Local storage on clients for read-only or exclusive files

• Lustre on Demand to cache file sets of jobs
• Quicker client networks and storage for running jobs

• Data on MDT for data acceleration
• Less RPC and quick MDT for small files

• OST pool on SSD for cache
• Quicker OSTs for hot data

• Data read/write are fully cached
• LDLM lock protects data consistency

• Page level cache management

• Metadata needs acceleration too!

OST
OST

OSTs
OST

OST
OSTs

OST Pool Based on SSD

OST
OST

OSTs
OST

OST
OSTs

OST Pool Based on HDD

Client

Lustre on Demand

Client Client Client

Persistent Client Cache

Client Client

Attach/DetachStage-in/out

Data on
MDTData on

MDT

Same Namespace

whamcloud.com4

When Metadata is Nothing Special

⚫ Shared block filesystems have it easy – metadata is just data

• Client locks the block(s), reads and interprets the contents

• Perfect cache for both reads and modifications, just like a local filesystem

• Crumbles under contention as lock-read-modify-write-unlock cycles get expensive fast

⚫ To address the contention various tricks are played

• Various libraries embed subdirectory trees inside specially formatted files are common

• Minimize roundtrips by trying to send updates directly between clients (GPFS)

• Complicate matters by reducing lockable block size

whamcloud.com5

When Metadata is Unique

⚫ Lustre is not a shared block filesystem

• Metadata is interpreted on the server

• Client receives piecemeal bits, that allows each one to be locked/cached separately

• Changes are sent piecemeal, no need to read entire directory to create a new name

• This gets expensive when there is no contention

⚫ To address uncontended cases some tricks are played

• Block-based images of filesystems for “filesets” that are separately mounted (CCI)

whamcloud.com6

When Metadata is Just the VFS

⚫ Exclusive lock at the root of subtree

• The subtree could be populated by new creates (common)

• Or reading data from the server

⚫ All the operations then become node local

• It’s like a shared block filesystem without a block underneath

• Super low latency

⚫ Granularity of this lock is “whole subtree underneath”

whamcloud.com7

General Idea of Lustre WBC

MDS

Normal Lustre tree

Tree cached locally on client

Tree not yet flushed to MDS

Lustre Client

Batched & Delayed & Aggregated
Metadata Flush

Lustre Client

whamcloud.com8

Batching of Metadata Modifying Operations

⚫ Now with full cache of modifications we can also batch updates

⚫ One RPC brings along many changes to the server

⚫ Some updates could be coalesced locally and even reduced to nothing

touch file; chmod o-r file; mv file file2; rm file2 => no RPCs

⚫ Some audit folks might not be happy about this though

whamcloud.com9

Batching of Read Operations

⚫ Lustre already has a “statahead” metadata readahead

⚫ Makes a good natural first step to showcase batched RPC functionality

⚫ Will plug into the batched RPC mechanism nicely

⚫ Coming in Lustre 2.16

⚫ Will aggregate getattr RPCs for statahead

⚫ Detects breadth-first (BFS) or Depth-first (DFS)
• Direct statahead to next file/subdirectory based on tree walk pattern

• Detect strided pattern for alphanumeric ordered traversal + stat()
⚫ e.g. file00001,file001001,file002001… or file1,file17,file31,… order

⚫ IO500 mdtest-{easy/hard}-stat performance improved 77%/95%

dir0

fileA subdirB

subdirBB

fileBB01

fileBB02

fileBB03

subdirC

fileC101

fileC102

fileC103

fileC104

BFS

DFS

whamcloud.com10

Handling Contention in a Cached Directory Tree

⚫ When second client tries to access files in the cached directory tree

⚫ Bump into EXclusive lock at top level of the tree

⚫ Lock holder is asked to release the lock

⚫ Flushes top level of entries, obtaining EX locks on new subdirectories

⚫ Another client can now see and descend into next subdirectory level

⚫ Repeat as needed for second client to access subdirectory treee

⚫ No need to flush entire subtree at once to have global visibility

whamcloud.com11

Exclusive

Client 1 Cache

Contention and Global Visibility

git

linux

MDS

Cache only

MDS Flushed

EX Root

Client 1 has a cached

subdirectory tree starting
from entry 'linux'

with EXclusive lock on it

(e.g. after fetch kernel).

arch block

.. ...

drivers

acpi net

..
arm Makefile

..

Client 2

ls git/linux/drivers/net/Makefile

whamcloud.com12

Client 2

ls git/linux/drivers/net/Makefile

Contention and Global Visibility

git

linux

Cache only

MDS Flushed

EX Root

Lock Request

Client 2 requests access

to pathname in Client 1's

cached subdirectory tree

starting from topmost
uncached entry 'linux',
MDS passes request on

to Client 1.

arch block

.. ...

drivers

acpi net

..
arm Makefile

..

MDS

Exclusive

Client 1 Cache

whamcloud.com13

Exclusive

Client 1 Cache

Client 2

ls git/linux/drivers/net/Makefile

Contention and Global Visibility

git

linux

arch block

.. ...

drivers

Cache only

MDS Flushed

EX Root

Lock Request

Client 1 creates MDS

inodes for each entry in
'linux' directory and

requests EXclusive lock on
each one. 'linux'

directory is entirely Flushed

to MDS.

Create/write

acpi net

..
arm Makefile

..

MDS

whamcloud.com14

Exclusive

Client 1 Cache

Client 2

ls git/linux/drivers/net/Makefile

Contention and Global Visibility

git

linux

arch block

.. ...

drivers

Cache only

MDS Flushed

EX Root

Lock Request

Client 2 next requests

'drivers' entry in

subdirectory from MDS,

passed on to Client 1.
Other entries in 'linux'

remain in Client 1 cache

undisturbed.

Create/write

acpi net

..
arm Makefile

..

MDS

whamcloud.com15

Client 2

ls git/linux/drivers/net/Makefile

Contention and Global Visibility

git

linux

arch block

.. ...

drivers

acpi net

..
arm Makefile

..

Cache only

MDS Flushed

EX Root

Lock Request

Client 1 again creates

MDS inodes for each

subdirectory entry and

requests EX locks for
them, 'drivers' is now

Flushed to MDS.

Create/write

MDS

Exclusive

Client 1 Cache

whamcloud.com16

Client 2

ls git/linux/drivers/net/Makefile

Contention and Global Visibility

git

linux

arch block

.. ...

drivers

acpi net

..
arm Makefile

..

Cache only

MDS Flushed

EX Root

Lock Request

Client 2 and Client 1

repeat steps for last

level of directory tree
until 'Makefile' is

Flushed and accessible
to Client 2. Other parts of

tree not flushed.

Create/write

MDS

Exclusive

Client 1 Cache

whamcloud.com17

Main Usage Targets for Lustre WBC

• Client-side metadata writeback cache instead of server-side

• Pros: higher acceleration allowed by metadata locality

• Cons: more complex mechanisms to keep consistency

• Delayed and grouped metadata flush instead of immediate RPC to MDS

• Pros: many fewer MDS interactions for better performance

• Cons: mechanism needed for batched flush and space/inode reservation

• Cache in volatile memory instead of persistent storage

• Pros: quickest storage type

• Cons: need to flush frequently to reduce risk of data loss

• Keep strong POSIX semantics instead of loosening semantics

• Pros: transparent and standard behavior for applications on multiple clients

• Cons: complex LDLM lock protection to maintain consistency

whamcloud.com18

Flushing and Memory Control

• Data and metadata flush happens when:
• Access of the directory tree from remote clients

• Memory pressure on local host

• Periodic aging of cache

• Quick flush from client cache to MDTs
• Metadata flushing will use bulk RPC for batched flush

• Only flush or degrade part of the directory tree rather than entire tree

whamcloud.com19

Components in Lustre WBC

PCC on
Local FS
(future)

VFS

Page Cache

Call
backs

LDLM

Cache Policy of WBC

MDC

PCC interface of WBCInode Cache

Dentry Cache

MDS/OSS

LDLM Lock ReclaimData & Metadata Flush

whamcloud.com20

Assimilation of File Data in WBC

• WBC manages both cached metadata and data

• What is WBC-Assimilation of data?
• Move page cache from being managed by WBC to being managed by Lustre client

• Data is still in page cache of Lustre client, not flushed to OSS yet

• When to WBC-Assimilate data?
• Before flushing data to OSS, a WBC-cached file need to be WBC-Assimilated

• How to WBC-Assimilate data?
• Metadata of the file and its ancestors need to be flushed first

• File layout created on MDT

• Put all page cache of the file under the management of main Lustre

• Now file data could be flushed to storage servers too

whamcloud.com21

Features and Advantages of WBC

• WBC flushes metadata of file in batch
• > 1000 file updates in a single bulk RPC

• Batch operations of metadata can be used to delete a whole directory
• Accelerates “rm -rf” a lot

• WBC aggregates metadata updates within a short interval
• Only the final state of metadata will be flushed to MDS

• Multiple operations aggregated into a single RPC

• WBC can be integrated with Persistent Client Cache (PCC)

• Data will still be cached in PCC after WBC-Assimilation

• Keep more data local to client, more RAM for metadata caching

• Possible offline/disconnected operations on Lustre client in the future

whamcloud.com22

dir creation dir stat dir removal file creation file stat file removal
104

105

106

107

IO
P

S
 (

o
p
s/

se
c
)

 NFS Lustre MetaWBC Ext4 tmpfs

Evaluation: Single Node Metadata Performance

Single node mdtest metadata performance (16 processes @ 100K files and directories)

whamcloud.com23

1 2 4 8 16
106

107

IO
P

S
 (

o
p
s/

s)

Number of Nodes

 dir creation dir stat dir removal

 file creation file stat file removal

Evaluation: Multiple Node Metadata Performance

MetaWBC mdtest metadata performance scaling

whamcloud.com24

Evaluation: Real-world Workloads

•Compare various workloads to other file systems on a single node
• filebench default workloads (1 minute runtime)

• Common command line applications operating on the Linux kernel source code

Filebench workloads’ throughput Command line applications’ runtime (in seconds)

fileserver webserver varmail
104

105

106

I
O

P
S

 (
o

p
s
/s

)

Filebench

 NFS Lustre MetaWBC Ext4 tmpfs
App. NFS Lustre MetaWBC Ext4 tmpfs

cp -rf 64.00 48.00 5.10 1.24 0.75

find -uid 2.89 2.48 0.10 0.71 0.09

du -s 2.84 2.34 0.10 0.70 0.08

ls -lRU 3.40 1.57 0.28 0.93 0.29

grep -r 15.59 16.58 1.08 15.82 0.46

whamcloud.com25

Evaluation: Pathological Workload

•Investigate pathological workload for write-back caching
• mpiFileUtils dtar: Parallel extraction of eight Linux Kernel source code trees

• EX locks are granted when creating a directory or during de-rooting

• EX locks immediately revoked due to conflicting access from remote clients

• Constant flush-back of cached files and transition to write-through mode

Even under worst-case workloads for writeback caching,
WBC improves Lustre metadata performance

Time (in seconds) for mpiFileUtils dtar phases

Time phase Create tree Extract data Update attr Total

CephFS 87 180 59 326

Ceph_async 89 170 62 321

Lustre 13 76 28 197

MetaWBC 1 56 1 136

whamcloud.com26

Evaluation: Untar of WBC Against Other File Systems

0.7 1.3

315

82

94.8 4.8

308

81

10

0

50

100

150

200

250

300

350

tmpfs Ext4 NFS Lustre Lustre on WBC

Time Cost of Decompressing Linux Kernel Source Code Tarball

tar tar.gz

Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre clients: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8

whamcloud.com27

Metadata Performance of WBC Against Network FS

Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre clients: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8

1,941 3,837

370,981

11,039 6,518

767,049

4,991 5,671

505,199

2,197 6,608

456,030

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

NFS Lustre Lustre WBC

Metadata Performance of WBC Against Network File Systems

File creation File stat File read file removal

whamcloud.com28

Metadata Performance of WBC Against Local FS

577,230

972,485

676,166 688,726

129,114

995,912

622,071

208,345

128,765

702,681

485,581

164,939

370,981

767,049

505,199
456,030

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

File creation File stat File read file removal

Metadata Performance of WBC Against Local File Systems

tmpfs Ext4 (SSD) Ext4(NVMe) Lustre WBC

Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre clients: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8

whamcloud.com29

Summary

• Metadata Writeback Cache will accelerate metadata intensive workloads

• Batched RPC support and improved statahead coming in Lustre 2.16

• Complete WBC feature targeted for Lustre 2.17

Thank you!

	Slide 1
	Slide 2: Why (Metadata) Write Back Caching for Lustre?
	Slide 3: Current Data Cache/Acceleration Inside Lustre
	Slide 4: When Metadata is Nothing Special
	Slide 5: When Metadata is Unique
	Slide 6: When Metadata is Just the VFS
	Slide 7: General Idea of Lustre WBC
	Slide 8: Batching of Metadata Modifying Operations
	Slide 9: Batching of Read Operations
	Slide 10: Handling Contention in a Cached Directory Tree
	Slide 11: Contention and Global Visibility
	Slide 12: Contention and Global Visibility
	Slide 13: Contention and Global Visibility
	Slide 14: Contention and Global Visibility
	Slide 15: Contention and Global Visibility
	Slide 16: Contention and Global Visibility
	Slide 17: Main Usage Targets for Lustre WBC
	Slide 18: Flushing and Memory Control
	Slide 19: Components in Lustre WBC
	Slide 20: Assimilation of File Data in WBC
	Slide 21: Features and Advantages of WBC
	Slide 22: Evaluation: Single Node Metadata Performance
	Slide 23: Evaluation: Multiple Node Metadata Performance
	Slide 24: Evaluation: Real-world Workloads
	Slide 25: Evaluation: Pathological Workload
	Slide 26: Evaluation: Untar of WBC Against Other File Systems
	Slide 27: Metadata Performance of WBC Against Network FS
	Slide 28: Metadata Performance of WBC Against Local FS
	Slide 29: Summary
	Slide 30

