1T}
—~
'R
=]
x
Q
b
=~
=
a
-
g
a
=
=]
()

Vertex Specification
ertex Shading

Tessellation

gi
=
(=3
x-
8
S
>

Pixel Data

Geometry
Shading
Rasterization

Uniforms, Shader ~

Storage, Atomic |

Counters, etc.

Y
CoMPUTE @ @

SHADERS

The OpenGL® Graphics System:

A Specification
(Version 4.5 (Compatibility Profile) - October 24,
2016)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-4.5): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (© 2006-2016 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1
1.1.1 Formatting of the Compatibility Profile 1

1.1.2 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 2
1.2.1 Programmer’s View of OpenGL 2

1.2.2 Implementor’s View of OpenGL 2

123 OurView 3

1.2.4 Fixed-function Hardware and the Compatibility Profile . . 3

1.2.5 The Deprecation Model 3

1.3 Related APIs 4
1.3.1 OpenGL Shading Language 4

132 OpenGLES 4

1.3.3 OpenGL ES Shading Language 5

134 WebGL 5

1.3.5 Window System Bindings 6

136 OpenCL 7

1.4 FilingBugReports 7
2 OpenGL Fundamentals 8
2.1 ExecutionModelo 8
2.2 Command Syntax 10
2.2.1 Data Conversion For State-Setting Commands 12

2.2.2 Data Conversions For State Query Commands 14

2.3 Command Execution 15
231 Errors 16

2.3.2 Graphics ResetRecovery 19

233 FlushandFinish 20

2.3.4 Numeric Representation and Computation 21

CONTENTS

2.3.5 Fixed-Point Data Conversions
24 Rendering Commands
25 ContextState
2.5.1 Generic Context State Queries
2.6 Objects and the Object Model
2.6.1 Object Management
2.6.2 BufferObjects
2.6.3 ShaderObjects
2.6.4 Program Objects,
2.6.5 Program Pipeline Objects
2.6.6 TextureObjects
2.6.7 SamplerObjects
2.6.8 Renderbuffer Objects
2.6.9 Framebuffer Objects
2.6.10 Vertex Array Objects
2.6.11 Transform Feedback Objects
2.6.12 Query Objects
2.6.13 SyncObjects
2.6.14 Display Lists

3 Dataflow Model

4 Event Model

4.1 SyncObjectsandFences
4.1.1 Waiting for Sync Objects
4.1.2 Signaling
4.1.3 SyncObject Queries
4.2 Query Objects and Asynchronous Queries
42.1 Query Object Queries
43 Time QUeries v v v it e e e e

Shared Objects and Multiple Contexts

5.1 Object Deletion Behavior
5.1.1 Side Effects of Shared Context Destruction
5.1.2 Automatic Unbinding of Deleted Objects
5.1.3 Deleted Object and Object Name Lifetimes

5.2 Sync Objects and Multiple Contexts

5.3 Propagating Changes to Objects
5.3.1 Determining Completion of Changes to an object
5.32 Definitions o

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

ii

33

36
36
38
40
41
42
46
49

CONTENTS iii

533 Rules 55

6 Buffer Objects 57
6.1 Creating and Binding Buffer Objects 58
6.1.1 Binding Buffer Objects to Indexed Targets 60

6.2 Creating and Modifying Buffer Object Data Stores 63
6.2.1 Clearing Buffer Object Data Stores 69

6.3 Mapping and Unmapping BufferData 71
6.3.1 UnmappingBuffers. 76

6.3.2 Effects of Mapping Buffers on Other GL Commands . . . 77

6.4 Effects of Accessing Outside Buffer Bounds 77
6.5 Invalidating BufferData 77
6.6 Copying BetweenBuffers. 78
6.7 Buffer ObjectQueries 79
6.7.1 Indexed Buffer Object Limits and Binding Queries 81

6.8 Buffer ObjectState 83
7 Programs and Shaders 84
7.1 ShaderObjects 85
7.2 ShaderBinaries 88
7.3 ProgramObjects 89
7.3.1 ProgramInterfaces, ... 96

7.4 Program Pipeline Objects 115
7.4.1 Shader Interface Matching 119

7.4.2 Program Pipeline Object State 122

7.5 Program Binaries Lo 123
7.6 Uniform Variables 125
7.6.1 Loading Uniform Variables In The Default Uniform Block 132

7.6.2 UniformBlocks. 136

7.6.3 Uniform Buffer Object Bindings 139

7.7 Atomic Counter Buffers. 140
7.7.1 Atomic Counter Buffer Object Storage 141

7.7.2 Atomic Counter Buffer Bindings 141

7.8 Shader Buffer Variables and Shader Storage Blocks 142
7.9 Subroutine Uniform Variables 144
7.10 Samplers 148
701 Images o o 149
7.12 Shader Memory Access v it 149
7.12.1 Shader Memory Access Ordering 150
7.12.2 Shader Memory Access Synchronization 152

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

CONTENTS v

7.13 Shader, Program, and Program Pipeline Queries 157
7.14 Required State 166
8 Textures and Samplers 168
8.1 Texture Objects i 171
8.2 SamplerObjects 176
8.3 Sampler Object Queries 180
84 PixelRectangles. Lo 181
8.4.1 Pixel Storage Modes and Pixel Buffer Objects 181

8.4.2 ThelImaging Subset 183

8.4.3 Pixel TransferModes 184

8.4.4 Transfer of Pixel Rectangles 204

8.4.5 Pixel Transfer Operations 217

8.5 Texture Image Specification 227
8.5.1 Required Texture Formats 231

8.5.2 Encoding of Special Internal Formats 231

8.5.3 Texture Image Structure 236

8.6 Alternate Texture Image Specification Commands 244
8.6.1 Texture Copying Feedback Loops 251

8.7 Compressed Texture Images 251
8.8 Multisample Textures 259
8.9 BufferTextures 261
8.10 Texture Parameters 264
8.11 Texture Queries o i i it 268
8.11.1 ActiveTexture 268
8.11.2 Texture Parameter Queries 269
8.11.3 Texture Level Parameter Queries 270
8.11.4 Texture Image Queries 272

8.12 Depth Component Textures 279
8.13 Cube Map Texture Selection 279
8.13.1 Seamless Cube Map Filtering 280

8.14 Texture Minification 281
8.14.1 Scale Factor and Level of Detail 281
8.14.2 Coordinate Wrapping and Texel Selection 284
8.143 Mipmapping 289
8.14.4 Manual Mipmap Generation 291
8.14.5 Automatic Mipmap Generation 292

8.15 Texture Magnification 293
8.16 Combined Depth/Stencil Textures 293
8.17 Texture Completenesso v ... 293

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

CONTENTS v

8.17.1 Effects of Sampler Objects on Texture Completeness . . . 295
8.17.2 Effects of Completeness on Texture Application. 295
8.17.3 Effects of Completeness on Texture Image Specification . 295
8.18 Texture VIewS oL 295
8.19 Immutable-Format Texture Images 300
8.19.1 Behavior of Immutable-Format Texture Images 305
8.20 Invalidating Texture Image Data 306
8.21 Clearing Texture ImageData 307
8.22 Texture State and Proxy State 309
8.23 Texture ComparisonModes 312
8.23.1 Depth Texture Comparison Mode 312
8.24 sRGB Texture Color Conversion 314
8.25 Shared Exponent Texture Color Conversion 315
8.26 Texture Image Loadsand Stores 315
8.26.1 Image UnitQueries 324
9 Framebuffers and Framebuffer Objects 325
9.1 Framebuffer Overview 325
9.2 Binding and Managing Framebuffer Objects 327
9.2.1 Framebuffer Object Parameters 331
9.2.2 Attaching Images to Framebuffer Objects 332
9.2.3 Framebuffer Object Queries 333
9.2.4 Renderbuffer Objects 338
9.2.5 Required Renderbuffer Formats 342
9.2.6 Renderbuffer Object Queries 343
9.2.7 Attaching Renderbuffer Images to a Framebuffer 344
9.2.8 Attaching Texture Images to a Framebuffer 346
9.3 Feedback Loops Between Textures and the Framebuffer 351
9.3.1 Rendering Feedback Loops. 351
9.3.2 Texture Copying Feedback Loops 352
9.4 Framebuffer Completeness 353
9.4.1 Framebuffer Attachment Completeness 353
9.4.2 Whole Framebuffer Completeness 354
9.4.3 Required Framebuffer Formats 357

9.4.4 Effects of Framebuffer Completeness on Framebuffer Op-
EIatioNS v o e e e e e e e e 358

9.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values 358
9.5 Mapping between Pixel and Element in Attached Image 359
9.6 Conversion to Framebuffer-Attachable Image Components 360

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

CONTENTS vi

9.7 Conversionto RGBA Values 360
9.8 Layered Framebuffers 360
10 Vertex Specification and Drawing Commands 362
10.1 Primitive Types 366
10.1.1 Points 366
10.1.2 Line Strips o oo 367
10.1.3 LineLoops 367
10.1.4 Separate Lines 367
10.1.5 Polygons 367
10.1.6 Triangle Strips 368
10.1.7 TriangleFans 368
10.1.8 Separate Triangles 369
10.1.9 Quadrilateral (quad) strips 369
10.1.10 Separate Quadrilaterals 369
10.1.11 Lines with Adjacency 370
10.1.12 Line Strips with Adjacency 371
10.1.13 Triangles with Adjacency 371
10.1.14 Triangle Strips with Adjacency 372
10.1.15 Separate Patches 373
10.1.16 General Considerations For Polygon Primitives 374
10.1.17Polygon Edges 374

10.2 Current Vertex Attribute Values 375
10.2.1 Current Generic Attributes 375
10.2.2 Current Conventional Attributes 377
10.2.3 Vertex Attribute Queries 380
10.2.4 Required State 380

10.3 Vertex Arrays v o v vt i 381
10.3.1 Vertex Array Objects 381
10.3.2 Specifying Arrays for Generic Vertex Attributes 383
10.3.3 Specifying Arrays for Fixed-Function Attributes 390
10.3.4 Vertex Attribute Divisors 393
10.3.5 Transferring Array Elements 394
10.3.6 Primitive Restart 394
10.3.7 RobustBuffer Access. 396
10.3.8 Packed Vertex Data Formats 396
10.3.9 Vertex Arrays in Buffer Objects 397
10.3.10 Array Indices in Buffer Objects 398
10.3.11 Indirect Commands in Buffer Objects 398

10.4 Drawing Commands Using Vertex Arrays 399

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

CONTENTS vii
10.4.1 Interleaved Arrays 410

10.5 Vertex Array and Vertex Array Object Queries 412
10.6 Required State 415
10.7 Drawing Commands Using Beginand End 416
10.7.1 Transferring Vertices With Vertex Commands 416
10.7.2 Transferring Vertices With Vertex Attribute Zero 417
10.7.3 Bundling Attributes With Vertex Commands 417
10.7.4 Transferring Vertices With ArrayElement 418
10.7.5 Commands Allowed Between Beginand End 420

10.8 Rectangles 420
10.9 Conditional Rendering 421
11 Programmable Vertex Processing 423
11.1 Vertex Shaders 423
11.1.1 Vertex Attributes 423
11.1.2 Vertex Shader Variables 429
11.1.3 Shader Execution 435

11.2 Tessellation 448
11.2.1 Tessellation Control Shaders 449
11.2.2 Tessellation Primitive Generation 454
11.2.3 Tessellation Evaluation Shaders 463

113 Geometry Shaders 469
11.3.1 Geometry Shader Input Primitives 469
11.3.2 Geometry Shader Output Primitives 471
11.3.3 Geometry Shader Variables. 472
11.3.4 Geometry Shader Execution Environment 472

12 Fixed-Function Vertex Processing 479
12.1 Fixed-Function Vertex Transformations 479
12.1.1 Matrices v v v vt e 480
12.1.2 Normal Transformation. 486
12.1.3 Generating Texture Coordinates 487

12.2 Fixed-Function Vertex Lighting and Coloring 490
12.2.1 Lighting L 490
12.2.2 Lighting Parameter Specification 496
12.2.3 ColorMaterial 499
12.2.4 Lighting Parameter Queries 499
12.2.5 LightingState 501
12.2.6 Color Index Lighting 501

OpenGL 4.5 (Compatibility Profile) - October 24,

2016

CONTENTS

13 Fixed-Function Vertex Post-Processing

13.1 ClampingorMasking
13.2 Transform Feedback
13.2.1 Transform Feedback Objects
13.2.2 Transform Feedback Primitive Capture
13.2.3 Transform Feedback Draw Operations
13.3 Primitive Queries
13.4 Flatshading
13.5 Primitive Clipping
13.5.1 Color and Associated Data Clipping
13.5.2 Clip Plane Queries
13.6 Coordinate Transformations
13.6.1 Controlling the Viewport
13.7 Final Color Processing

14 Fixed-Function Primitive Assembly and Rasterization

14.1 Discarding Primitives Before Rasterization
142 Invariance oL
143 Antialiasingo
14.3.1 Multisampling
144 Points L
14.4.1 Basic Point Rasterization
14.4.2 Point Rasterization State
14.4.3 Point Multisample Rasterization
14.5 Line Segmentsot
14.5.1 Basic Line Segment Rasterization
14.5.2 Other Line Segment Features
14.5.3 Line Rasterization State
14.5.4 Line Multisample Rasterization
14.6 Polygons
14.6.1 Basic Polygon Rasterization
14.6.2 Stippling
14.6.3 Antialiasing
14.6.4 Options Controlling Polygon Rasterization
14.6.5 DepthOffset
14.6.6 Polygon Multisample Rasterization
14.6.7 Polygon Rasterization State
14.7 Current Raster Position
14.8 Bitmaps
14.9 Early Per-Fragment Tests

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

viii

503
504
504
505
507
512
514
514
516
520
520
521
521
525

CONTENTS ix

14.9.1 Pixel OwnershipTest 559
149.2 ScissorTest o 560
14.9.3 Multisample Fragment Operations 562
14.9.4 The Early Fragment Test Qualifier 563

15 Programmable Fragment Processing 564
15.1 Fragment Shader Variables 564
15.2 Shader Execution 566
15.2.1 Texture ACCESS v v v v vt i 566
15.2.2 ShaderInputs 566
1523 ShaderOutputs 569
15.2.4 Early Fragment Tests 573

16 Fixed-Function Fragment Processing 574
16.1 Texture Environments and Texture Functions 574
16.1.1 Texture Environment Queries 580

16.2 Texture Application 580
163 ColorSum 583
16.4 Fog e 583
17 Writing Fragments and Samples to the Framebuffer 586
17.1 Antialiasing Application 586
17.2 Multisample PointFade 587
17.3 Per-Fragment Operations 587
17.3.1 AlphaToCoverage 587
1732 AlphaTest 589
1733 Stencil Test 590
17.3.4 DepthBufferTest. 591
17.3.5 Occlusion Queries 592
1736 Blending 593
17.3.7 sRGB Conversion 600
17.3.8 Dithering 601
1739 Logical Operation 601
17.3.10 Additional Multisample Fragment Operations 603

17.4 Whole Framebuffer Operations 604
17.4.1 Selecting Buffers for Writing 604
17.4.2 Fine Control of Buffer Updates 609
17.4.3 Clearing the Buffers 611
17.4.4 Invalidating Framebuffer Contents 615
17.4.5 The Accumulation Buffer 616

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

CONTENTS

18

19

20

21

Drawing, Reading, and Copying Pixels

18.1 DrawingPixels
18.1.1 Final Conversion
18.1.2 Conversion to Fragments
18.1.3 Pixel Rectangle Multisample Rasterization
18.1.4 Writing to the Stencil or Depth/Stencil Buffers

18.2 Reading Pixels
18.2.1 Selecting Buffers for Reading
1822 ReadPixels
18.2.3 Obtaining Pixels from the Framebuffer
18.2.4 Conversion of RGBA values
18.2.5 Conversion of Depthvalues
18.2.6 Pixel Transfer Operations
1827 ConversiontoL L.
18.2.8 Final Conversion
18.2.9 Placement in Pixel Pack Buffer or Client Memory

183 Copying Pixels
18.3.1 Copying Pixel Rectangles
18.3.2 Blitting Pixel Rectangles
18.3.3 Copying Between Images

18.4 Pixel Draw and Read State

Compute Shaders
19.1 Compute Shader Variables

Debug Output

20.1 Debug Messages i
20.2 Debug Message Callback
20.3 Debug MessageLog,
20.4 Controlling Debug Messages
20.5 Externally Generated Messages
20.6 Debug Groups
20.7 DebugLabels
20.8 Asynchronous and Synchronous Debug Output
20.9 Debug Output Queries

Special Functions

21.1 Evaluators
21.1.1 EvaluatorQueries.

21.2 Selection

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

619
619
620
621
622
622
623
623
625
627
628
629
629
629
629
630
632
632
635
638
641

642
644

645
646
648
649
649
651
651
653
654
655

CONTENTS

22

23

21.3 Feedback
21.4 Display Lists

21.4.1 Commands Not Usable In Display Lists
21.5 Hints
21.6 Saving and Restoring State

Context State Queries
22.1 Simple Queries
22.2 Pointer, String, and Related Context Queries
22.3 Internal Format Queries
22.3.1 Supported Operation Queries
22.3.2 Other Internal Format Queries
22.4 Transform Feedback State Queries
22.5 Indexed Binding State Queries

State Tables

Invariance

A.1 Repeatability
A.2 Multi-pass Algorithms
A.3 Invariance Rules
A.4 Tessellation Invariance
A.5 Atomic Counter Invariance
A.6 What All This Means

Corollaries

Compressed Texture Image Formats

C.1 RGTC Compressed Texture Image Formats
C.2 BPTC Compressed Texture Image Formats
C.3 ETC Compressed Texture Image Formats

Profiles and the Deprecation Model
D.1 Core and Compeatibility Profiles
D.2 Deprecated and Removed Features
D.2.1 Deprecated But Still Supported Features
D.2.2 Removed Features

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

X1

669
671
675
677
678

682
682
684
687
688
691
698
699

701

790
790
791
791
794
796
796

798

801
801
802
802

CONTENTS

E.1
E.2
E.3
E4
E.5

F.1
F2
EF3
F4
E5
F6
E7

G.1
G.2
G3
G4
G.S5

H.1
H.2
H.3
HA4
H.5

I.1
1.2
I3

Version 4.2

New Features
DeprecationModel
Changed Tokens
Change Log for Released Specifications

Credits

Version 4.3

and Acknowledgements

Restructuring
New Features
DeprecationModel L.
Changed Tokens
Change Log for Released Specifications

Credits

Acknowledgementso

Version 4.4

New Features
DeprecationModel oo
Change Log for Released Specifications

Credits

Acknowledgementso

Version 4.5

New Features
Deprecation Model o,
Change Log for Released Specifications

Credits

Acknowledgements L

OpenGL Registry, Header Files, and ARB Extensions

OpenGL Registry
HeaderFiles
ARB and Khronos Extensions

I.3.1
1.3.2
1.3.3
1.34
1.3.5
1.3.6

Naming Conventions
Promoting Extensions to Core Features
Extension Summaries
Bindless Textures,
Compute Variable Group Size
Indirect Parameters

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Xii

811
811
812
812
813
815

818
818
819
820
820
821
828
830

831
831
832
832
843
844

846
846
847
847
858
859

CONTENTS

Index

1.3.7
1.3.8
1.3.9
1.3.10

xiii
Seamless Cubemap per Texture 886
Shader Draw Parameters 886
Shader Group Vote 886
Sparse Textures, 887
888

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

List of Figures

3.1

8.1
8.2
8.3
8.4

10.1
10.2

10.3
10.4
10.5
10.6
10.7
10.8

11.1
11.2
11.3
11.4

12.1
12.2
12.3
12.4

14.1
14.2
14.3

Block diagram of the GL pipeline. 34
Transfer of pixel rectangles. 204
Selecting a subimage fromanimage 209
A texture image and the coordinates used to accessit. 242
Example of the components returned for textureGather. 286
Vertex processing and primitive assembly. 362
Creation of a processed vertex from a transformed vertex and cur-

rentvalues. 364
Primitive assembly and processing. 364
Triangle strips, fans, and independent triangles. 368
Quadrilateral strips and independent quadrilaterals. 369
Lines with adjacency. 370
Triangles with adjacency. 371
Triangle strips with adjacency. 372
Domain parameterization for tessellation. 455
Inner triangle tessellation. 458
Inner quad tessellation. 461
Isoline tessellation. 463
Vertex transformation sequence. 479
Processing of RGBA colors. 490
Processing of colorindices. 490
ColorMaterial operation. 499
Rasterization. 526
Rasterization of non-antialiased wide points. 536
Rasterization of antialiased wide points. 536

X1V

LIST OF FIGURES XV

14.4
14.5
14.6
14.7
14.8

16.1

17.1

18.1
18.2

21.1
21.2

Visualization of Bresenham’s algorithm. 541
Rasterization of non-antialiased wide lines. 544
The region used in rasterizing an antialiased line segment. 545
Current raster position. 555
A bitmap and its associated parameters. 557
Multitexture pipeline., 582
Per-fragment operations. 587
Operation of ReadPixels. 623
Operation of CopyPixels. 633
Map Evaluation. 660
Feedback syntax., 672

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

List of Tables

1.1

2.1
2.2
23

4.1

6.1
6.2
6.3
6.4

6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9
7.10

8.1
8.2

OpenGL ES to OpenGL version relationship.

GL command suffixes
GL datatypes
Summary of GL errors

Initial properties of a sync object created with FenceSync.

Buffer object binding targets.
Buffer object parameters and their values.
Buffer objectstate.
Buffer object state set by MapBufferRange and MapNamedBuf-
ferRange.
Indexed buffer object limits and binding queries

CreateShader type values and the corresponding shader stages.
GetProgramResourceiv properties and supported interfaces . . .
OpenGL Shading Language type tokens
Query targets for default uniform block storage, in components.
Query targets for combined uniform block storage, in components.
GetProgramResourceiv properties used by GetActiveUniformsiv.
GetProgramResourceiv properties used by GetActiveUniform-
Blockiv.
GetProgramResourceiv properties used by GetActiveAtomic-
CounterBufferiv. 0 0oL,
Interfaces for active subroutines
Interfaces for active subroutine uniforms

PixelStore* parameters.
PixelTransfer parameters.

XVvi

86
106
113
126
127
130

LIST OF TABLES

8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

8.12
8.13
8.14
8.15
8.16
8.17
8.18

8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33

8.34

8.35

9.1

PixelMap parameters.
Color table names.
Pixel data formats accepted for the imaging queries.
Pixel data types accepted for the imaging queries.
Pixeldatatypes.
Pixel data formats. Lo
Swap Bytes bitordering.
Packed pixel formats. Lo Lo
UNSIGNED_BYTE formats. Bit numbers are indicated for each
COMPONENL. . . . v v v e v e e e e e e e e e e e e
UNSIGNED_SHORT formats
UNSIGNED_INT formats
FLOAT UNSIGNED_INTformats
Packed pixel field assignments.
Color table lookup.
Computation of filtered color components.
Conversion from RGBA, depth, and stencil pixel components to
internal components.
Sized internal color formats. L.
Sized internal luminance and intensity formats.
Sized internal depth and stencil formats.
Generic and specific compressed internal formats.
Valid texture farget parameters
Internal formats for buffer textures
Texture parameters and their values.
Texture return values.
Selection of cube map images.
Texel location wrap mode application.
Legal texture targets for TextureView.
Compatible internal formats for TextureView
Depth texture comparison functions.
sRGB texture internal formats. L.
Mapping of image load, store, and atomic texel coordinate compo-
nents totexel numbers.
Supported image unit formats, with equivalent format layout
qualifiers.
Texel sizes, compatibility classes, and pixel format/type combina-
tions for each image format.

Buffer selection for default framebuffer attachment queries

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

236

LIST OF TABLES

9.2
9.3

10.1
10.2

10.3
10.4
10.5
10.6

10.7
10.8

11.1
11.2

11.3

12.1
12.2

13.1
13.2

16.1

16.2
16.3
16.4
16.5
16.6

17.1
17.2
17.3
17.4
17.5
17.6

18.1

Framebuffer attachment points.
Layer numbers for cube map texture faces.

Triangles generated by triangle strips with adjacency.
Vertex array sizes (values per vertex) and data types for generic
vertex attributeso Lo
Fixed-function vertex array sizes and data types
Packed component layout for non-BGRA formats.
Packed component layout for BGRA format.
Packed component layout for UNSIGNED_INT_ 10F_11F_11F -
REVformat.
Indirect commands and corresponding indirect buffer targets. . . .
Variables that direct the execution of InterleavedArrays.

Generic attribute components accessed by attribute variables. . . .
Generic attributes and vector types used by column vectors of ma-
trix variables bound to generic attribute index
Scalar and vector vertex attribute types

Summary of lighting parameters.
Correspondence of lighting parameter symbols to names.

Transform feedbackmodes
Provoking vertex selection.

Correspondence of filtered texture components to texture base
COMPONENES. .+ . v v v v o e e e e e e e e e e e e e e e e
Texture functions REPLACE, MODULATE, and DECAL
Texture functions BLEND and ADD.
COMBINE texture functions.
Arguments for COMBINE_RGB functions.
Arguments for COMBINE_ALPHA functions.

RGB and alpha blend equations.
Blending functions.
Logical operations
Buffer selection for the default framebuffer
Buffer selection for a framebuffer object
DrawBuffers buffer selection for the default framebuffer

PixelStore parameters.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

373

425

497

626

LIST OF TABLES Xix

18.2 ReadPixels GL data types and reversed component conversion for-

mulas. 631
18.3 ReadPixelsindexmasks. 632
18.4 Effective ReadPixels format for DEPTH_STENCIL CopyPixels

OPeration. v v i e e e e e 635
18.5 Compatible internal formats for copying 641
20.1 Sources of debug output messages 646
20.2 Types of debug output messages 647
20.3 Severity levels of messages L. 647
20.4 Object namespace identifiers 653
21.1 Values specified by the targetrtoMapl. 659
21.2 Correspondence of feedback type to number of values per vertex. . 670
21.3 Hint targets and descriptions 678
21.4 Attribute groupso e e e e e e e 680
22.1 Contextprofilebits 686
22.2 Internal formattargets 688
23.1 State Variable Types 703
23.2 GL Internal State (inaccessible) 704
23.3 Current Values and Associated Data 705
23.4 Vertex Array Object State 706
23.5 Vertex Array Object State (cont.) 707
23.6 Vertex Array Object State (cont.) 708
23.7 Vertex Array Object State (cont.) 709
23.8 Vertex Array Data (not in Vertex Array objects) 710
23.9 Buffer ObjectState 711
23.10Transformation state 712
23.11Coloring 713
23.12Lighting 714
23.13Lighting (cont.) 715
23.14Rasterizationo e e e 716
23.15Rasterization (cont.) 717
23.16Multisampling 718
23.17Textures (state per texture unit) 719
23.18Textures (state per texture unit (cont.) 720
23.19Textures (state per texture object) 721
23.20Textures (state per texture object) (cont.) 722
23.21Textures (state per texture image) 723

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

LIST OF TABLES XX

23.22Textures (state per texture image) (cont.) 724
23.23Textures (state per sampler object) 725
23.24Texture Environment and Generation 726
23.25Texture Environment and Generation (cont.) 727
23.26Pixel Operations 728
23.27Pixel Operations (cont.) oo 729
23.28Framebuffer Control L. 730
23.29Framebuffer (state per target binding point) 731
23.30Framebuffer (state per framebuffer object) 732
23.31Framebuffer (state per attachment point) 733
23.32Renderbuffer (state per target and binding point) 734
23.33Renderbuffer (state per renderbuffer object) 735
23.34Pixels 736
23.35Pixels (cont.) 737
2336Pixels (cont.) 738
2337Pixels (cont.) 739
2338Pixels (cont.) 740
23.39Pixels (cont.) 741
2340Evaluators 742
23.41Shader Object State, 743
23.42Program Pipeline Object State 744
23.43Program Object State 745
23.44Program Object State (cont.) 746
23.45Program Object State (cont.) 747
23.46Program Object State (cont.) 748
23.47Program Object State (cont.) 749
23.48Program Object State (cont.) 750
23.49Program Object State (cont.) 751
23.50Program Object State (cont.) 752
23.51Program Interface State 753
23.52Program Object Resource State 754
23.53Program Object Resource State (cont.) 755
23.54Vertex and Geometry Shader State 756
23.55Query Object State 757
23.56Image State (state per image unit) 758
23.57 Atomic Counter Buffer Binding State 759
23.58Shader Storage Buffer Binding State 760
23.59Transform Feedback State 761
23.60Uniform Buffer Binding State 762
23.61Sync Object State 763

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

LIST OF TABLES XXi

23.62Hints 764
23.63Compute Dispatch State 765
23.64Implementation Dependent Values 766
23.65Implementation Dependent Values (cont.) 767
23.66Implementation Dependent Values (cont.) 768
23.67Implementation Dependent Values (cont.) 769
23.68Implementation Dependent Version and Extension Support 770
23.69Implementation Dependent Vertex Shader Limits 771
23.70Implementation Dependent Tessellation Shader Limits 772
23.71Implementation Dependent Tessellation Shader Limits (cont.) . . 773
23.72Implementation Dependent Geometry Shader Limits 774
23.73Implementation Dependent Fragment Shader Limits 775
23.74Implementation Dependent Compute Shader Limits 776
23.75Implementation Dependent Aggregate Shader Limits 777
23.76Implementation Dependent Aggregate Shader Limits (cont.) . . . 778
23.77Implementation Dependent Aggregate Shader Limits (cont.) . . . 779
23.78Implementation Dependent Aggregate Shader Limits (cont.) . . . 780
23.79Debug Output State 781
23.80Implementation Dependent Debug Output State 782
23.81Implementation Dependent Values (cont.)
1 These queries return the maximum no. of samples for all internal

formats required to support multisampled rendering. 783
23.82Implementation Dependent Values (cont.) 784
23.83Internal Format Dependent Values 785
23.84Implementation Dependent Transform Feedback Limits 786
23.85Framebuffer Dependent Values 787
23.86Framebuffer Dependent Values (cont.) 788
23.87Miscellaneous oL 789
C.1 Mapping of OpenGL RGTC formats to descriptions. 802
C.2 Mapping of OpenGL BPTC formats to descriptions. 802
C.3 Mapping of OpenGL ETC formats to descriptions. 803
E.1 Newtokennames 813
F1 Newtokennames 821

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 1

Introduction

This document, referred to as the “OpenGL Specification” or just “Specification”
hereafter, describes the OpenGL graphics system: what it is, how it acts, and what
is required to implement it. We assume that the reader has at least a rudimentary
understanding of computer graphics. This means familiarity with the essentials
of computer graphics algorithms and terminology as well as with modern GPUs
(Graphic Processing Units).

The canonical version of the Specification is available in the official OpenGL
Registry, located at URL

http://www.opengl.org/registry/

1.1 Formatting of the OpenGL Specification

Starting with version 4.3, the OpenGL Specification has undergone major restruc-
turing to focus on programmable shading, and to describe important concepts and
objects in the context of the entire API before describing details of their use in the
graphics pipeline.

1.1.1 Formatting of the Compatibility Profile

D

1.1.2 Formatting of Optional Features

8.4.2

http://www.opengl.org/registry/

1.2. WHAT IS THE OPENGL GRAPHICS SYSTEM? 2

8.4.2

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is an API (Application Programming Inter-
face) to graphics hardware. The API consists of a set of several hundred procedures
and functions that allow a programmer to specify the shader programs, objects, and
operations involved in producing high-quality graphical images, specifically color
images of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls control drawing geometric objects such as points, lines, and
polygons, but the way that some of this drawing occurs (such as when antialiasing
or multisampling is in use) relies on the existence of a framebuffer and its proper-
ties. Some commands explicitly manage the framebuffer.

1.2.1 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
shader programs or shaders, data used by shaders, and state controlling aspects of
OpenGL outside the scope of shaders. Typically the data represent geometry in two
or three dimensions and texture images, while the shaders control the geometric
processing, rasterization of geometry and the lighting and shading of fragments
generated by rasterization, resulting in rendering geometry into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
an OpenGL context and associate it with the window. Once a context is allocated,
OpenGL commands to define shaders, geometry, and textures are made, followed
by commands which draw geometry by transferring specified portions of the geom-
etry to the shaders. Drawing commands specify simple geometric objects such as
points, line segments, and polygons, which can be further manipulated by shaders.
There are also commands which directly control the framebuffer by reading and
writing pixels.

1.2.2 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that control the operation of
the GPU. Modern GPUs accelerate almost all OpenGL operations, storing data
and framebuffer images in GPU memory and executing shaders in dedicated GPU

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

1.2. WHAT IS THE OPENGL GRAPHICS SYSTEM? 3

processors. However, OpenGL may be implemented on less capable GPUs, or even
without a GPU, by moving some or all operations into the host CPU.

The implementor’s task is to provide a software library on the CPU which
implements the OpenGL API, while dividing the work for each OpenGL command
between the CPU and the graphics hardware as appropriate for the capabilities of
the GPU.

OpenGL contains a considerable amount of information including many types
of objects representing programmable shaders and the data they consume and
generate, as well as other context state controlling non-programmable aspects of
OpenGL. Most of these objects and state are available to the programmer, who can
set, manipulate, and query their values through OpenGL commands. Some of it,
however, is derived state visible only by the effect it has on how OpenGL oper-
ates. One of the main goals of this Specification is to describe OpenGL objects
and context state explicitly, to elucidate how they change in response to OpenGL
commands, and to indicate what their effects are.

1.2.3 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven fixed-function stages that are invoked by a set of specific drawing opera-
tions. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.2.4 Fixed-function Hardware and the Compatibility Profile

Older generations of graphics hardware were not programmable using shaders,
although they were configurable by setting state controlling specific details of their
operation. The compatibility profile of OpenGL continues to support the legacy
OpenGL commands developed for such fixed-function hardware, although they
are typically implemented by writing shaders which reproduce the operation of
such hardware. Fixed-function OpenGL commands and operations are described
as alternative interfaces following descriptions of the corresponding shader stages.

1.2.5 The Deprecation Model

Features marked as deprecated in one version of the Specification are expected to
be removed in a future version, allowing applications time to transition away from

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

1.3. RELATED APIS 4

use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix D.

1.3 Related APIs

Other APIs related to OpenGL are described below. Most of the specifications for
these APIs are available on the Khronos Group websites, although some vendor-
specific APIs are documented on that vendor’s developer website.

1.3.1 OpenGL Shading Language

The OpenGL Specification should be read together with a companion document
titled The OpenGL Shading Language. The latter document (referred to as the
OpenGL Shading Language Specification hereafter) defines the syntax and seman-
tics of the programming language used to write shaders (see chapter 7). Descrip-
tions of shaders later in this document may include references to concepts and
terms (such as shading language variable types) defined in the OpenGL Shading
Language Specification.

OpenGL 4.5 implementations are guaranteed to support version 4.50 of the
OpenGL Shading Language. All references to sections of that specification refer to
that version. The latest supported version of the shading language may be queried
as described in section 22.2.

profile of OpenGL 4.5 is also guaranteed to support all pre-
vious versions of the OpenGL Shading Language back to version The
#version strings for all supported versions of the OpenGL Shading Language
may be queried as described in section 22.2.

The OpenGL Shading Language Specification is available in the OpenGL Reg-
istry.

1.3.2 OpenGL ES

OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D
graphics on embedded systems such as mobile phones, game consoles, and ve-
hicles. It consists of well-defined subsets of OpenGL. Each version of OpenGL ES
implements a subset of a corresponding OpenGL version as shown in table 1.1.

OpenGL ES versions also include some additional functionality taken from
later OpenGL versions or specific to OpenGL ES. It is straightforward to port code
written for OpenGL ES to corresponding versions of OpenGL.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

1.3. RELATED APIS 5

OpenGL ES Version | OpenGL Version it subsets

OpenGL ES 1.1 OpenGL 1.5
OpenGL ES 2.0 OpenGL 2.0
OpenGL ES 3.0 OpenGL 3.3
OpenGL ES 3.1 OpenGL 4.3

Table 1.1: OpenGL ES to OpenGL version relationship.

OpenGL and OpenGL ES are developed in parallel within the Khronos Group,
which controls both standards.

OpenGL 4.3 and 4.5 include additional functionality initially defined in
OpenGL ES 3.0 and OpenGL ES 3.1, respectively, for increased compatibility be-
tween OpenGL and OpenGL ES implementations.

The OpenGL ES Specifications are available in the Khronos API Registry at
URL

http://www.khronos.org/registry/

1.3.3 OpenGL ES Shading Language

The Specification should also be read together with companion documents titled
The OpenGL ES Shading Language. Versions 1.00, 3.00, and 3.10 should be read.
These documents define versions of the OpenGL Shading Language designed for
implementations of OpenGL ES 2.0, 3.0, and 3.1 respectively, but also supported
by OpenGL implementations. References to the OpenGL Shading Language Spec-
ification hereafter include both OpenGL and OpenGL ES versions of the Shading
Language; references to specific sections are to those sections in version 4.50 of
the OpenGL Shading Language Specification.

OpenGL 4.5 implementations are guaranteed to support versions 1.00, 3.00,
and 3.10 of the OpenGL ES Shading Language.

The #version strings for all supported versions of the OpenGL Shading Lan-
guage may be queried as described in section 22.2.

The OpenGL ES Shading Language Specifications are available in the Khronos
API Registry.

1.3.4 WebGL

WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics
API based on OpenGL ES. Developers familiar with OpenGL ES will recognize

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

http://www.khronos.org/registry/

1.3. RELATED APIS 6

WebGL as a shader-based API using the OpenGL Shading Language, with con-
structs that are semantically similar to those of the underlying OpenGL ES API. It
stays very close to the OpenGL ES specification, with some concessions made for
what developers expect out of memory-managed languages such as JavaScript.

The WebGL Specification and related documentation are available in the
Khronos API Registry.

1.3.5 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

1.3.5.1 GLX - X Window System Bindings

OpenGL Graphics with the X Window System, referred to as the GLX Specification
hereafter, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is available.
The GLX Specification is available in the OpenGL Registry.

1.3.5.2 WGL - Microsoft Windows Bindings
The WGL API supports use of OpenGL with Microsoft Windows. WGL is docu-
mented in Microsoft’s MSDN system, although no full specification exists.

1.3.5.3 MacOS X Window System Bindings

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X window
system, including CGL, AGL, and NSOpenGLView. These APIs are documented
on Apple’s developer website.

1.3.54 EGL - Mobile and Embedded Device Bindings

The Khronos Native Platform Graphics Interface or “EGL Specification” describes
the EGL API for use of OpenGL ES on mobile and embedded devices. EGL im-
plementations supporting OpenGL may be available on some desktop platforms as
well. The EGL Specification is available in the Khronos API Registry.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

1.4. FILING BUG REPORTS 7

1.3.6 OpenCL

OpenCL is an open, royalty-free standard for cross-platform, general-purpose par-
allel programming of processors found in personal computers, servers, and mobile
devices, including GPUs. OpenCL defines interop methods to share OpenCL mem-
ory and image objects with corresponding OpenGL buffer and texture objects, and
to coordinate control of and transfer of data between OpenCL and OpenGL. This
allows applications to split processing of data between OpenCL and OpenGL; for
example, by using OpenCL to implement a physics model and then rendering and
interacting with the resulting dynamic geometry using OpenGL.
The OpenCL Specification is available in the Khronos API Registry.

1.4 Filing Bug Reports

Bug reports on the OpenGL and OpenGL Shading Language Specifications can be
filed in the Khronos Public Bugzilla, located at URL
http://www.khronos.org/bugzilla/
Please file bugs against Product: OpenGL, Component: Specification, and the
appropriate version of the specification. It is best to file bugs against the most re-
cently released versions, since older versions are usually not updated for bugfixes.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

http://www.khronos.org/bugzilla/

Chapter 2

OpenGL Fundamentals

This chapter introduces fundamental concepts including the OpenGL execution
model, API syntax, contexts and threads, numeric representation, context state and
state queries, and the different types of objects and shaders. It provides a frame-
work for interpreting more specific descriptions of commands and behavior in the
remainder of the Specification.

2.1 Execution Model

OpenGL (henceforth, “the GL”) is concerned only with processing data in GPU
memory, including rendering into a framebuffer and reading values stored in that
framebuffer. There is no support for other input or output devices. Programmers
must rely on other mechanisms to obtain user input.

The GL draws primitives processed by a variety of shader programs and fixed-
function processing units controlled by context state. Each primitive is a point,
line segment, patch, or polygon. Context state may be changed
independently; the setting of one piece of state does not affect the settings of others
(although state and shader all interact to determine what eventually ends up in the
framebuffer). State is set, primitives drawn, and other GL operations described by
sending commands in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of a line segment, or a corner of a polygon where two edges
meet. Data such as positional coordinates, colors, normals, texture coordinates, etc.
are associated with a vertex and each vertex is processed independently, in order,
and in the same way. The only exception to this rule is if the group of vertices
must be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping

2.1. EXECUTION MODEL 9

depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL state or the framebuffer must
be complete before any subsequent command can have any such effects.

Data binding occurs on call. This means that data passed to a GL command
are interpreted when that command is received. Even if the command requires a
pointer to data, those data are interpreted when the call is made, and any subsequent
changes to the data have no effect on the GL (unless the same pointer is used in a
subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects, although
shaders can be written to generate such objects. In other words, OpenGL provides
mechanisms to describe how complex geometric objects are to be rendered, rather
than mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer or in the same address space as the client. In this sense, the GL is net-
work transparent. A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state and objects. A client may choose to be
made current to any one of these contexts.

Issuing GL commands when a program is not current to a context results in
undefined behavior.

There are two classes of framebuffers: a window system-provided framebuffer
associated with a context when the context is made current, and application-created
framebuffers. The window system-provided framebuffer is referred to as the de-
fault framebuffer. Application-created framebuffers, referred to as framebuffer ob-
Jjects, may be created as desired, A context may be associated with two frame-
buffers, one for each of reading and drawing operations. The default framebuffer
and framebuffer objects are distinguished primarily by the interfaces for configur-
ing and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.2. COMMAND SYNTAX 10

trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.3.5.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can be associated with different default framebuffers, and some
context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

OpenGL is designed to be run on a range of platforms with varying capabilities,
memory, and performance. To accommodate this variety, we specify ideal behavior
instead of actual behavior for certain GL operations. In cases where deviation from
the ideal is allowed, we also specify the rules that an implementation must obey
if it is to approximate the ideal behavior usefully. This allowed variation in GL
behavior implies that two distinct GL implementations may not agree pixel for
pixel when presented with the same input, even when run on identical framebuffer
configurations.

Finally, command names, constants, and types are prefixed in the C language
binding to OpenGL (by gl, GL_, and GL, respectively), to reduce name clashes with
other packages. The prefixes are omitted in this document for clarity.

2.2 Command Syntax

The Specification describes OpenGL commands as functions or procedures using
ANSI C syntax. Languages such as C++ and Javascript which allow passing
of argument type information permit language bindings with simpler declarations
and fewer entry points.

Various groups of GL commands perform the same operation but differ in how
arguments are supplied to them. To conveniently accommodate this variation, we
adopt a notation for describing commands and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.2. COMMAND SYNTAX 11

command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

and
void GetFloatv(enum pname, float *data);
In general, a command declaration has the form

rtype Name{e1234}{c b s ii64 f d ub us ui ui64}{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. e indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments argl through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then V is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);
indicates the eight declarations

void Uniformli(int location, int value);

void Uniformlf(int location, f£loat value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, float v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, £loat v0, float vl,
float v3);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.2. COMMAND SYNTAX 12

Type Descriptor | Corresponding GL Type

b byte

S short
i int

i64 int64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

The types clampf and clampd are no longer used, replaced by float
and double respectively together with specification language requiring param-
eter clamping'.

2.2.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using

! These changes are backwards-compatible at the compilation and linking levels, and are being
propagated to man pages and header files as well.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.2. COMMAND SYNTAX 13

GL Type Description
Bit Width

boolean 8 Boolean

byte 8 Signed two’s complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed two’s complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed two’s complement binary inte-
ger

uint 32 Unsigned binary integer

fixed 32 Signed two’s complement 16.16
scaled integer

int64 64 Signed two’s complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr | ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 4.1)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be large enough to store any CPU ad-
dress. sync is defined as an anonymous struct pointer in the C language bindings
while intptr and sizeiptr are defined as integer types large enough to hold

a pointer.
OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.2. COMMAND SYNTAX 14

a different parameter type than the actual type of that state, data conversions are
performed as follows:

e When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

e When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer. If the resulting value is so large in magnitude
that it cannot be represented by the internal state variable, the internal state
value is undefined.

e When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point, with or without normalization as described for spe-
cific commands.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.2.2 Data Conversions For State Query Commands

Query commands (commands whose name begins with Get) return a value or val-
ues to which GL state has been set. Some of these commands exist in multiple
versions returning different data types. When a query command is issued that re-
turns data types different from the actual type of that state, data conversions are
performed as follows. If more than one step is applicable, all relevant steps are
applied in the following order:

e If a command returning boolean data is called, such as GetBooleanv, a
floating-point or integer value converts to FALSE if and only if it is zero.
Otherwise it converts to TRUE.

e If a command returning unsigned integer data is called, such as GetSam-
plerParameterluiv, negative values are clamped to zero.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 15

e If a command returning signed or unsigned integer data is called, such as
GetIntegerv or GetInteger64v, a boolean value of TRUE or FALSE is inter-
preted as one or zero, respectively. A floating-point value is rounded to the
nearest integer, unless the value is an RGBA color component,

a DepthRange value, or a depth buffer clear value. In these cases,
the query command converts the floating-point value to an integer according
to the INT entry of table 18.2; a value not in [—1, 1] converts to an undefined
value.

e If a command returning floating-point data is called, such as GetFloatv or
GetDoublev, a boolean value of TRUE or FALSE is interpreted as 1.0 or
0.0, respectively. An integer value is coerced to floating-point. Single- and
double-precision floating-point values are converted as necessary.

Following these steps, if a value is so large in magnitude that it cannot be
represented by the returned data type, then the nearest value representable using
that type is returned.

When querying bitmasks (such as SAMPLE_MASK_VALUE or STENCIL_-
WRITEMASK) with GetIntegerv, the mask value is treated as a signed integer, so
that mask values with the high bit set will not be clamped when returned as signed
integers.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f.

660

2.3 Command Execution

Most of the Specification discusses the behavior of a single context bound to a
single CPU thread. It is also possible for multiple contexts to share GL objects
and for each such context to be bound to a different thread. This section introduces
concepts related to GL command execution including error reporting, command
queue flushing, and synchronization between command streams. Using these tools
can increase performance and utilization of the GPU by separating loosely related
tasks into different contexts.

Methods to create, manage, and destroy CPU threads are defined by the host
CPU operating system and are not described in the Specification. Binding of GL

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 16

contexts to CPU threads is controlled through a window system binding layer such
as those described in section 1.3.5.

2.3.1 Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results
of GL operation are undefined only if an OUT_OF_MEMORY error has occurred. In
other cases, there are no side effects unless otherwise noted; the command which
generates the error is ignored so that it has no effect on GL state or framebuffer
contents. Except as otherwise noted, if the generating command returns a value, it
returns zero. If the generating command modifies values through a pointer argu-
ment, no change is made to these values.

These error semantics apply only to GL errors, not to system errors such as
memory access errors. This behavior is the current behavior; the action of the
GL in the presence of errors is subject to change, and extensions to OpenGL may
define behavior currently considered as an error.

Several error generation conditions are implicit in the description of every GL
command.

o If the GL context has been reset as a result of previous GL command, or if

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 17

the context is reset as a side effect of execution of a command, a CONTEXT_ -
LOST error is generated.

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, an
INVALID_ENUM error is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value or values pointed to are not
allowable for the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, an INVALID_VALUE error is generated.

o If memory is exhausted as a side effect of the execution of a command, an
OUT_OF_MEMORY error may be generated.

The Specification attempts to explicitly describe these implicit error conditions
(with the exception of CONTEXT_LOST? and OUT_OF_MEMORY" wherever they ap-
ply. However, they apply even if not explicitly described, unless a specific com-
mand describes different behavior. For example, certain commands use a sizeil
parameter to indicate the length of a string, and also use negative values of the pa-
rameter to indicate a null-terminated string. These commands do not generate an
INVALID_VALUE error, because they explicitly describe different behavior.

Otherwise, errors are generated only for conditions that are explicitly described
in the Specification.

When a command could potentially generate several different errors (for ex-
ample, when it is passed separate enum and numeric parameters which are both
out of range), the GL implementation may choose to generate any of the applicable
erTors.

When an error is generated, the GL may also generate a debug output message
describing its cause (see chapter 20). The message has source DEBUG_SOURCE_ —
API, fype DEBUG_TYPE_ERROR, and an implementation-dependent ID.

Most commands include a complete summary of errors at the end of their de-
scription, including even the implicit errors described above.

Such error summaries are set in a distinct style, like this sentence.

2 CONTEXT_LOST is not described because it can potentially be generated by almost all GL
commands, and occurs for reasons not directly related to the affected commands.

3 OUT_OF_MEMORY is not described because it can potentially be generated by any GL com-
mand, even those which do not explicitly allocate GPU memory.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION

18

Error

Description

Offending com-
mand ignored?

CONTEXT_LOST

Context has been lost and reset

Except as noted

underflow

by the driver for specific
commands
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes
INVALID_FRAMEBUFFER_OPERATION | Framebuffer object is not com- | Yes
plete
OUT_OF_MEMORY Not enough memory left to exe- | Unknown
cute command
STACK_OVERFLOW Command would cause a stack | Yes
overflow
STACK_UNDERFLOW Command would cause a stack | Yes

Table 2.3: Summary of GL errors

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 19

In some cases, however, errors may be generated for a single command for
reasons not directly related to that command. One such example is that deferred
processing for shader programs may result in link errors detected only when at-
tempting to draw primitives using vertex specification commands. In such cases,
errors generated by a command may be described elsewhere in the specification
than the command itself.

2.3.2 Graphics Reset Recovery

Certain events can result in a reset of the GL context. After such an event, it is
referred to as a lost context and is unusable for almost all purposes. Recovery re-
quires creating a new context and recreating all relevant state from the lost context.
The current status of the graphics reset state is returned by

enum GetGraphicsResetStatus(void);

The value returned indicates if the GL context has been in a reset state at any
point since the last call to GetGraphicsResetStatus:

NO_ERROR indicates that the GL context has not been in a reset state since
the last call.

e GUILTY_ CONTEXT_RESET indicates that a reset has been detected that is
attributable to the current GL context.

e INNOCENT_CONTEXT_ RESET indicates a reset has been detected that is not
attributable to the current GL context.

e UNKNOWN_CONTEXT_RESET indicates a detected graphics reset whose cause
is unknown.

If a reset status other than NO_ERROR is returned and subsequent calls return
NO_ERROR, the context reset was encountered and completed. If a reset status is
repeatedly returned, the context may be in the process of resetting.

Reset notification behavior is determined at context creation time, and may be
queried by calling GetIntegerv with pname RESET_NOTIFICATION_STRATEGY.

If the reset notification behavior is NO_RESET_NOTIFICATION, then the im-
plementation will never deliver notification of reset events, and GetGraphicsRe-
setStatus will always return NO_ERROR®.

“In this case, it is recommended that implementations should not allow loss of context state no
matter what events occur. However, this is only a recommendation, and cannot be relied upon by
applications.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 20

If the behavior is LOSE_CONTEXT_ON_RESET, a graphics reset will result in
the loss of all context state, requiring the recreation of all associated objects. In
this case GetGraphicsResetStatus may return any of the values described above.

If a graphics reset notification occurs in a context, a notification must also occur
in all other contexts which share objects with that context”.

After a graphics reset has occurred on a context, subsequent GL. commands
on that context (or any context which shares with that context) will generate a
CONTEXT_LOST error. Such commands will not have side effects (in particular,
they will not modify memory passed by pointer for query results), and may not
block indefinitely or cause termination of the application. Exceptions to this be-
havior include:

e GetError and GetGraphicsResetStatus behave normally following a
graphics reset, so that the application can determine a reset has occurred,
and when it is safe to destroy and re-create the context.

e Any commands which might cause a polling application to block indefinitely
will generate a CONTEXT_LOST error, but will also return a value indicating
completion to the application. Such commands include:

— GetSynciv with pname SYNC_STATUS ignores the other parameters
and returns SIGNALED in values.

— GetQueryObjectuiv with pname QUERY_RESULT_AVAILABLE ig-
nores the other parameters and returns TRUE in params.

2.3.3 Flush and Finish

Implementations may buffer multiple commands in a command queue before send-
ing them to the GL server for execution. This may happen in places such as the
network stack (for network transparent implementations), CPU code executing as
part of the GL client or the GL server, or internally to the GPU hardware. Coarse
control over command queues is available using the command

void Flush(void);

which causes all previously issued GL. commands to complete in finite time (al-
though such commands may still be executing when Flush returns).
The command

void Finish(void);

The values returned by GetGraphicsResetStatus in the different contexts may differ.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 21

forces all previously issued GL commands to complete. Finish does not return
until all effects from such commands on GL client and server state and the frame-
buffer are fully realized.

Finer control over command execution can be expressed using fence commands
and sync objects, as discussed in section 4.1.

2.3.4 Numeric Representation and Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations normally perform computations in floating-point, and must
meet the range and precision requirements defined under ”’Floating-Point Com-
putation” below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and sampling, and
per-fragment operations. Range and precision requirements during shader execu-
tion differ and are specified by the OpenGL Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

2.3.4.1 Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the details
of how operations on them are performed.

We require simply that numbers’ floating-point parts contain enough bits and
that their exponent fields are large enough so that individual results of floating-
point operations are accurate to about 1 part in 10°. The maximum representable
magnitude for all floating-point values must be at least 232, 2 -0 = 0 -z = 0 for
any non-infinite andnon-NaN z. 1 -z =z-1=2. 2 +0=042 = 2. 0° =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 8. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 22

denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

2.3.4.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S5), a 5-bit exponent (£), and a
10-bit mantissa (). The value V' of a 16-bit floating-point number is determined
by the following:

((—1)% % 0.0, E=0,M=0
(—1)% x 274 x JL E=0,M+#0
V=9 (D285 (1+45), 0<E<31
(—1)° x Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer IV, then

g {N mod 65536J
32768

7o \‘N mod 32768J
1024

M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

2.3.4.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number is
determined by the following:

(0.0, E=0,M=0

— M

271 % &, E=0,M+#0
V=920 (1+4), 0<E<31

Inf, E=31,M=0

NaN, E=31,M#0

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 23

If the floating-point number is interpreted as an unsigned 11-bit integer NV, then

N
EF=|—
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.3.4.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number is
determined by the following:

(0.0, E=0,M=0
- M
271 % 2, E=0,M+#0
V=928 (1+4]), 0<E<31
Inf, E=31,M=0
NaN, E=31,M=#0
If the floating-point number is interpreted as an unsigned 10-bit integer IV, then
N
E=|—
5
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 24

While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.3.4.5 Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed repre-
sentation with 16 bits to the right of the binary point (fraction bits).

2.3.4.6 General Requirements

Some calculations require division. In such cases (including implied divisions re-
quired by vector normalizations), a division by zero produces an unspecified result
but must not lead to GL interruption or termination.

2.3.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point inte-
ger representation. When the integer is one of the types defined in table 2.2, b is
the required bit width of that type. When the integer is a texture or renderbuffer
color or depth component (see section 8.5), b is the number of bits allocated to that
component in the internal format of the texture or renderbuffer. When the integer is
a framebuffer color or depth component (see section 9), b is the number of bits allo-
cated to that component in the framebuffer. For framebuffer and renderbuffer alpha
components, b must be at least 2 if the buffer does not contain an alpha component,
or if there is only one bit of alpha in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.3. COMMAND EXECUTION 25

2.3.5.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

C
f=g— 2.1)

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f is performed using

C

Only the range [—2°~1 4 1,20~ — 1] is used to represent signed fixed-point
values in the range [—1, 1]. For example, if b = 8, then the integer value —127 cor-
responds to —1.0 and the value 127 corresponds to 1.0. Note that while zero can be
exactly expressed in this representation, one value (—128 in the example) is outside
the representable range, and must be clamped before use. This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such
as vertex attribute values®, as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

2.3.5.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value ¢ is defined by first clamping f to the range [0, 1], then
computing

f" = convert_float_uint(f x (2° —1),b) (2.3)

where convert_float_uint(r,b) returns one of the two unsigned binary integer
values with exactly b bits which are closest to the floating-point value r (where
rounding to nearest is preferred).

® This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which —128 mapped to —1.0, 127 mapped to 1.0, and 0.0 was not
exactly representable.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.4. RENDERING COMMANDS 26

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ is performed by clamping f to the range [—1, 1], then
computing

f = convert_float_int(f x (2= —1),b) (2.4)

where convert_float_int(r,b) returns one of the two signed two’s-complement
binary integer values with exactly b bits which are closest to the floating-point
value r (where rounding to nearest is preferred).

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see
section 2.2.2) and returning integers’, as well as for specifying signed normalized
texture or framebuffer values using floating-point.

2.4 Rendering Commands

GL commands performing rendering into a framebuffer are sometimes treated spe-
cially by other GL operations such as conditional rendering (see section 10.9).
Such commands are called rendering commands, and include the drawing com-
mands *Draw™ (see section 10.4) and Begin / End (see section 10.7), as well as
these additional commands:

e Accum (see section 17.4.5)

e Bitmap (see section 14.8)

o BlitFramebuffer (see section 18.3.2)
e Clear (see section 17.4.3)

e ClearBuffer* (see section 17.4.3.1)
e CopyPixels (see section 18.3)

¢ DispatchCompute* (see section 19)
e DrawPixels (see section 18.1)

e EvalMeshl and EvalMesh2 (see section 21.1)

7 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which —1.0 mapped to —128, 1.0 mapped to 127, and 0.0 was not
exactly representable.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.5. CONTEXT STATE 27

2.5 Context State

Context state is state that belongs to the GL context as a whole, rather than to
instances of the different object types described in section 2.6. Context state con-
trols fixed-function stages of the GPU, such as clipping, primitive rasterization, and
framebuffer clears, and also specifies bindings of objects to the context specifying
which objects are used during command execution.

The Specification describes all visible context state variables and describes how
each one can be changed. State variables are grouped somewhat arbitrarily by their
function. Although we describe operations that the GL performs on the frame-
buffer, the framebuffer is not a part of GL state.

There are two types of context state. Server state resides in the GL server;
the majority of GL state falls into this category. Client state resides in the GL
client. Unless otherwise specified, all state is server state; client state is specifically
identified. Each instance of a context includes a complete set of server state; each
connection from a client to a server also includes a complete set of client state.

While an implementation of OpenGL may be hardware dependent, the Specifi-
cation is independent of any specific hardware on which it is implemented. We are
concerned with the state of graphics hardware only when it corresponds precisely
to GL state.

2.5.1 Generic Context State Queries

Context state queries are described in detail in chapter 22.

2.6 Objects and the Object Model

Many types of objects are defined in the remainder of the Specification. Applica-
tions may create, modify, query, and destroy many instances of each of these object
types, limited in most cases only by available graphics memory. Specific instances
of different object types are bound to a context. The set of bound objects define
the shaders which are invoked by GL drawing operations; specify the buffer data,
texture image, and framebuffer memory that is accessed by shaders and directly
by GL commands; and contain the state used by other operations such as fence
synchronization and timer queries.

Each object type corresponds to a distinct set of commands which manage ob-
jects of that type. However, there is an object model describing how most types

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 28

of objects are managed, described below. Exceptions to the object model for spe-
cific object types are described later in the Specification together with those object
types.

Following the description of the object model, each type of object is briefly
described below, together with forward references to full descriptions of that ob-
ject type in later chapters of the Specification. Objects are described in an order
corresponding to the structure of the remainder of the Specification.

2.6.1 Object Management
2.6.1.1 Name Spaces, Name Generation, and Object Creation

Each object type has a corresponding name space. Names of objects are repre-
sented by unsigned integers of type uint. The name zero is reserved by the GL;
for some object types, zero names a default object of that type, and in others zero
will never correspond to an actual instance of that object type.

Names of most types of objects are created by generating unused names us-
ing commands starting with Gen followed by the object type. For example, the
command GenBuffers returns one or more previously unused buffer object names.

Generated names are marked by the GL as used, for the purpose of name gener-
ation only. Object names marked in this fashion will not be returned by additional
calls to generate names of the same type until the names are marked unused again
by deleting them (see below).

Generated names do not initially correspond to an instance of an object. Ob-
jects with generated names are created by binding a generated name to the context.
For example, a buffer object is created by calling the command BindBuffer with
a name returned by GenBuffers, which allocates resources for the buffer object
and its state, and associate the name with that object. Sampler objects may also be
created by commands in addition to BindSampler, as described in section 8.2.

Objects may also be created directly by functions that return a new name or
names representing a freshly initialized object. Some functions return a single ob-
ject name directly whereas others are able to create a large number of new objects,
returning their names in an array. Examples of the former are CreateProgram
for program objects and FenceSync for fence sync objects. Examples of the latter
are CreateBuffers, CreateTextures and CreateVertexArrays for buffers, textures
and vertex arrays, respectively.

2.6.1.2 Name Deletion and Object Deletion

Objects are deleted by calling deletion commands specific to that object type. For
example, the command DeleteBuffers is passed an array of buffer object names

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 29

to delete. After an object is deleted it has no contents, and its name is once again
marked unused for the purpose of name generation. If names are deleted that do not
correspond to an object, but have been marked for the purpose of name generation,
such names are marked as unused again. If unused and unmarked names are deleted
they are silently ignored, as is the name zero.

If an object is deleted while it is currently in use by a GL context, its name
is immediately marked as unused, and some types of objects are automatically
unbound from binding points in the current context, as described in section 5.1.2.
However, the actual underlying object is not deleted until it is no longer in use.
This situation is discussed in more detail in section 5.1.3.

2.6.1.3 Shared Object State

It is possible for groups of contexts to share some server state. Enabling such shar-
ing between contexts is done through window system binding APIs such as those
described in section 1.3.5. These APIs are responsible for creation and manage-
ment of contexts, and are not discussed further here. More detailed discussion of
the behavior of shared objects is included in chapter 5. Except as defined below
for specific object types, all state in a context is specific to that context only.

2.6.2 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is desirable to store other types of frequently used
client data, such as vertex array and pixel data, in server memory for performance
reasons, even if the option to store it in client memory exists.

Buffer objects contain a data store holding a fixed-sized allocation of server
memory, and provide a mechanism to allocate, initialize, read from, and write to
such memory. Under certain circumstances, the data store of a buffer object may
be shared between the client and server and accessed simultaneously by both.

Buffer objects may be shared. They are described in detail in chapter 6.

2.6.3 Shader Objects

The source and/or binary code representing part or all of a shader program that is
executed by one of the programmable stages defined by the GL (such as a vertex
or fragment shader) is encapsulated in one or more shader objects.

Shader objects may be shared. They are described in detail in chapter 7.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 30

2.6.4 Program Objects

Shader objects that are to be used by one or more of the programmable stages of
the GL are linked together to form a program object. The shader programs that
are executed by these programmable stages are called executables. All information
necessary for defining each executable is encapsulated in a program object.
Program objects may be shared. They are described in detail in chapter 7.

2.6.5 Program Pipeline Objects

Program pipeline objects contain a separate program object binding point for each
programmable stage. They allow a primitive to be processed by independent pro-
grams in each programmable stage, instead of requiring a single program object
for each combination of shader operations. They allow greater flexibility when
combining different shaders in various ways, without requiring a program object
for each such combination.

Program pipeline objects are container objects including references to program
objects, and are not shared. They are described in detail in chapter 7.

2.6.6 Texture Objects

Texture objects or textures include a collection of fexture images built from arrays
of image elements. The image elements are referred to as fexels. There are many
types of texture objects varying by dimensionality and structure; the different tex-
ture types are described in detail in the introduction to chapter 8.

Texture objects also include state describing the image parameters of the tex-
ture images, and state describing how sampling is performed when a shader ac-
cesses a texture.

Shaders may sample a texture at a location indicated by specified texture co-
ordinates, with details of sampling determined by the sampler state of the texture.
The resulting texture samples are typically used to modify a fragment’s color, in
order to map an image onto a geometric primitive being drawn, but may be used
for any purpose in a shader.

Texture objects may be shared. They are described in detail in chapter 8.

2.6.7 Sampler Objects

Sampler objects contain the subset of texture object state controlling how sampling
is performed when a shader accesses a texture. Sampler and texture objects may be
bound together so that the sampler object state is used by shaders when sampling
the texture, overriding equivalent state in the texture object. Separating texture

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 31

image data from the method of sampling that data allows reuse of the same sampler
state with many different textures without needing to set the sampler state in each
texture.

Sampler objects may be shared. They are described in detail in chapter 8.

2.6.8 Renderbuffer Objects

Renderbuffer objects contain a single image in a format which can be rendered
to. Renderbuffer objects are attached to framebuffer objects (see below) when
performing off-screen rendering.

Renderbuffer objects may be shared. They are described in detail in chapter 9.

2.6.9 Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer, including a collection of
color, depth, and stencil buffers. Each such buffer is represented by a renderbuffer
object or texture object attached to the framebuffer object.

Framebuffer objects are container objects including references to renderbuffer
and/or texture objects, and are not shared®. They are described in detail in chap-
ter 9.

2.6.10 Vertex Array Objects

Vertex array objects represent a collection of sets of vertex attributes. Each set
is stored as an array in a buffer object data store, with each element of the array
having a specified format and component count. The attributes of the currently
bound vertex array object are used as inputs to the vertex shader when executing
drawing commands.

Vertex array objects are container objects including references to buffer objects,
and are not shared. They are described in detail in chapter 10.

2.6.11 Transform Feedback Objects

Transform feedback objects are used to capture attributes of the vertices of trans-
formed primitives passed to the transform feedback stage when transform feedback

8 Framebuffer objects created with the commands defined by the GL_EXT_-—

framebuffer_object extension are defined to be shared, while FBOs created with
commands defined by the OpenGL core or GL_ARB_ framebuffer_object extension are
defined to not be shared. Undefined behavior results when using FBOs created by EXT commands
through non-EXT interfaces, or vice-versa.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 32

mode is active. They include state required for transform feedback together with
references to buffer objects in which attributes are captured.

Transform feedback objects are container objects including references to buffer
objects, and are not shared. They are described in detail in section 13.2.1.

2.6.12 Query Objects

Query objects return information about the processing of a sequence of GL com-
mands, such as the number of primitives processed by drawing commands; the
number of primitives written to transform feedback buffers; the number of sam-
ples that pass the depth test during fragment processing; and the amount of time
required to process commands.

Query objects are not shared. They are described in detail in section 4.2.

2.6.13 Sync Objects

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects may be shared. They are described in detail in section 4.1.

2.6.14 Display Lists

A display list is an object representing a group of GL commands and their parame-
ters which have been stored in server memory for subsequent execution. This may
be desirable for performance reasons when the GL client and server are separated
by a network, or when the CPU to GPU interface is too slow to keep the GPU fully
fed. Most of the benefits of display lists can be more easily achieved in modern
graphics architectures by storing as much data as possible in GL objects in server
memory, and display lists have been deprecated.
Display lists may be shared. They are described in detail in chapter 21.4.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 3

Dataflow Model

Figure 3.1 shows a block diagram of the GL. Some commands specify geometric
objects to be drawn while others specify state controlling how objects are han-
dled by the various stages, or specify data contained in textures and buffer objects.
Most commands may be accumulated in a display list for processing by the GL
at a later time. Otherwise, commands are effectively sent through a processing
pipeline. Different stages of the pipeline use data contained in different types of
buffer objects. Some pipeline stages may use data in client memory instead of, or
in addition to data in buffer objects. Data in client memory are not shown in the
block diagram, but are described later in the specification as part of the description
of those pipeline stages.

The first stage assembles vertices to form geometric primitives such as points,
line segments, and polygons. In the next stage vertices may be transformed and lit,
followed by assembly into geometric primitives. Tessellation and geometry shaders
may then generate multiple primitives from a single input primitive. Optionally, the
results of these pipeline stages may be fed back into buffer objects using transform
feedback.

The final resulting primitives are clipped to a clip volume in preparation for the
next stage, rasterization. The rasterizer produces a series of framebuffer addresses
and values using a two-dimensional description of a point, line segment, or poly-
gon. Each fragment so produced is fed to the next stage that performs operations
on individual fragments before they finally alter the framebuffer. These operations
include conditional updates into the framebuffer based on incoming and previously
stored depth values (to effect depth buffering), blending of incoming fragment col-
ors with stored colors, as well as masking, stenciling, and other logical operations
on fragment values.

There is a way to bypass the vertex processing portion of the pipeline to send a

33

34

block of fragments directly to the individual fragment operations, eventually caus-
ing a block of pixels to be written to the framebuffer, and pixels may also be
read back from the framebuffer or copied from one portion of the framebuffer to
another. These transfers may include some type of decoding or encoding.

Some additional stages are not shown in figure 3.1. One such stage computes
vertices by evaluating polynomial functions of input values, providing an efficient
means for approximating curve and surface geometry rather than specifying each
vertex explicitly. Another operates on pixel data in the process of reading from or
writing to the framebuffer or texture images.

Finally, compute shaders which may read from and write to buffer objects may
be executed independently of the pipeline shown in figure 3.1.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

35

e —

noed |Pxid

A

| esewrame

suonesadQ |oxid

A

._lll

| suoessdouewberyred || Bupu@semna=q |

Japeys andwo)

Aiquiassy [9xid
A

uonedijddy woag

A

yojedsiq

A

uonediddy woag

-

>

A _ abejs a|qewwelbo.d _
Jopeys juswbely _
A _ abe3s uoiouNg paxiy _
_ uonezusisey _ puabay
A
Japeys A1pwoan _
A

-

Japeys *|ea3 uone||assaL _

| 4

*U9D AW UORR|DSSD L _

| 4

>

| 4

.

>
I

Figure 3.1. Block diagram of the GL pipeline.

J9]INd XOMIA

> feeesesseseeetcctttetttctttassasseneenecttttttnel

uonedijddy woag

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 4

Event Model

4.1 Sync Objects and Fences

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync(enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.

36

4.1. SYNC OBJECTS AND FENCES 37

Property Name Property Value
OBJECT_TYPE SYNC_FENCE
SYNC_CONDITION | condition
SYNC_STATUS UNSIGNALED
SYNC_FLAGS flags

Table 4.1: Initial properties of a sync object created with FenceSync.

condition must be SYNC_GPU_COMMANDS_COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until some time after the fence
command completes.

flags must be zero.

Each sync object contains a number of properties which determine the state of
the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 4.1.

Properties of a sync object may be queried with GetSynciv (see section 4.1.3).
The syNC_STATUS property will be changed to STGNALED when condition is sat-
isfied.

Errors

If FenceSync fails to create a sync object, zero will be returned and a GL
error is generated.

An INVALID_ENUM error is generated if condition is not SYNC_GPU_-
COMMANDS_COMPLETE.

An INVALID_VALUE error is generated if flags is not zero.

A sync object can be deleted by passing its name to the command
void DeleteSync(sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the
object is deleted immediately. Otherwise, sync is flagged for deletion and will be

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.1. SYNC OBJECTS AND FENCES 38

deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero.

Errors

An INVALID_VALUE error is generated if sync is neither zero nor the name
of a sync object.

4.1.1 Waiting for Sync Objects

The command

enum ClientWaitSync(sync sync, bitfield flags,
uint 64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds
for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 4.1.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WAIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.1. SYNC OBJECTS AND FENCES 39

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if flags contains any bits other than
SYNC_FLUSH_COMMANDS_BIT.

The command

void WaitSyne(sync sync, bitfield flags,
uint 64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block' until sync is signaled”.

sync has the same meaning as for ClientWaitSync.

timeout must currently be the special value TIMEOUT_IGNORED, and is not
used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with pname MAX_SERVER_WAIT_TIMEOUT. There is
currently no way to determine whether WaitSync unblocked because the timeout
expired or because the sync object being waited on was signaled.

flags must be zero.

If an error occurs, WaitSync generates a GL error as specified below, and does
not cause the GL server to block.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if timeout is not TIMEOUT_-—
IGNORED or flags is not zero”.

¢ flags and timeout are placeholders for anticipated future extensions of sync object capa-
bilities. They must have these reserved values in order that existing code calling WaitSync
operate properly in the presence of such extensions.

! The GL server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

2 WaitSync allows applications to continue to queue commands from the client in anticipation of
the sync being signaled, increasing client-server parallelism.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.1. SYNC OBJECTS AND FENCES

4.1.1.1 Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See section 5.2 for more information about blocking on a sync object in multi-
ple GL contexts.

4.1.2 Signaling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior?, if ClientWaitSync is called and all of the following are true:

e the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
e sync is unsignaled when ClientWaitSync is called,

e and the calls to ClientWaitSync and FenceSync were issued from the same
context,

then the GL will behave as if the equivalent of Flush were inserted immediately
after the creation of sync.

Additional constraints on the use of sync objects are discussed in chapter 5.

State must be maintained to indicate which sync object names are currently
in use. The state required for each sync object in use is an integer for the specific
type, an integer for the condition, and a bit indicating whether the object is signaled
or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

3 The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

40

4.1. SYNC OBJECTS AND FENCES 41

4.1.3 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv(sync sync, enum pname, sizei bufSize,
sizei *length, int *values);

The value or values being queried are returned in the parameters length and
values.

On success, GetSynciv replaces up to bufSize integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_—
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_ENUM error is generated if pname is not one of the values
described above.

An INVALID_VALUE error is generated if bufSize is negative.

The command
boolean IsSyne(sync sync);

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 4.1 and 5.2, but the underlying sync object will not be deleted
until it is no longer associated with any fence command and no longer blocking
any *WaitSync command.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 42

4.2 Query Objects and Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. Query types supported by the GL include

e Primitive queries with a farget of PRIMITIVES_GENERATED (see sec-
tion 13.3) return information on the number of primitives processed by
the GL. There may be at most the value of MAX_VERTEX_STREAMS active
queries of this type.

e Primitive queries with a farget of TRANSFORM_FEEDBACK_PRIMITIVES_—
WRITTEN (see section 13.3) return information on the number of primitives
written to one or more buffer objects. There may be at most the value of
MAX_VERTEX_STREAMS active queries of this type.

e Occlusion queries with a farget of SAMPLES_PASSED, ANY_SAMPLES_—
PASSED or ANY_SAMPLES_PASSED_CONSERVATIVE (see section 17.3.5)
count the number of fragments or samples that pass the depth test, or set a
boolean to true when any fragments or samples pass the depth test. There
may be at most one active query of this type.

e Time elapsed queries with a rarget of TIME_ELAPSED (see section 4.3)
record the amount of time needed to fully process a sequence of commands.
There may be at most one active query of this type.

e Timer queries with a farget of TIMESTAMP (see section 4.3) record the cur-
rent time of the GL. There may be at most one active query of this type.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 4.2.1 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, for the purposes of GenQueries only, but no object is associated with
them until the first time they are used by BeginQuery, BeginQueryIndexed, or
QueryCounter (see section 4.3).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 43

Errors

An INVALID_VALUE error is generated if # is negative.
Query objects may also be created with the command
void CreateQueries(enum target, sizei n, uint *ids);

CreateQueries returns n previously unused query object names in ids, each
representing a new query object with the specified rarget. target may be
one of SAMPLES_PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_-
CONSERVATIVE, TIME_ELAPSED, TIMESTAMP, PRIMITIVES_GENERATED, and
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN.

The initial state of the resulting query object is that the result is marked avail-
able (the value of QUERY_RESULT_AVAILABLE for the query object is TRUE) and
the result value (the value of QUERY_RESULT) is zero.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.
An INVALID_VALUE error is generated if # is negative.

Query objects are deleted by calling
void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section 5.1). Unused names in ids that have been marked as used for the
purposes of GenQueries are marked as unused again. Unused names in ids are
silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if 7 is negative.

Each type of query, other than timer queries of type TIMESTAMP, supported by
the GL has an active query object name for each of the possible active queries. If
an active query object name is non-zero, the GL is currently tracking the corre-
sponding information, and the query results will be written into that query object.
If an active query object name is zero, no such information is being tracked.

A query object may be created and made active with the command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 44

void BeginQueryIndexed(enum farget, uint index,
uint id);

target indicates the type of query to be performed. The valid values of rarget are
discussed in more detail in subsequent sections.

If id is an unused query object name, the name is marked as used and associated
with a new query object of the type specified by target. Otherwise id must be the
name of an existing query object of that type. Note that occlusion query objects
specified by either of the two targets ANY_SAMPLES_PASSED or ANY_SAMPLES_ -
PASSED_CONSERVATIVE may be reused for either target in future queries. Objects
specified with farget SAMPLES_PASSED may only be reused for that rarget.

index is the index of the query, and must be between zero and a farget-specific
maximum. The state of the query object named id, whether newly created or not,
is that the result is marked unavailable (the flag is FALSE), and the result value is
Zero.

The active query object name for target and index is set to id.

Errors

An INVALID_ENUM error is generated if farget is not SAMPLES_PASSED,
ANY SAMPLES PASSED, ANY SAMPLES -
PASSED_CONSERVATIVE, TIME_ELAPSED, PRIMITIVES_GENERATED oOr
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_SAMPLES_PASSED,

ANY SAMPLES PASSED_CONSERVATIVE, or TIME_ ELAPSED, and index is
not zero.

An INVALID_VALUE error is generated if farget is PRIMITIVES -
GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_OPERATION error is generated if id is any of:

® 7ero
e the name of an existing query object whose type does not match farget
e an active query object name for any farget and index

e the active query object for conditional rendering (see section 10.9).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 45

An INVALID_OPERATION error is generated if the active query object
name for farget and index is non-zero.

The command
void BeginQuery(enum target, uint id);
is equivalent to
BeginQuerylIndexed (target, 0, id);
The command
void EndQueryIndexed(enum farget, uint index);

marks the end of the sequence of commands to be tracked for the active query
specified by target and index. target and index have the same meaning as for Be-
ginQueryIndexed.

The corresponding active query object is updated to indicate that query results
are not available, and the active query object name for farget and index is reset to
zero. When the commands issued prior to EndQueryIndexed have completed and
a final query result is available, the query object active when EndQueryIndexed
was called is updated to contain the query result and to indicate that the query result
is available.

Errors

An INVALID_ENUM error is generated if farget is not SAMPLES_ -
PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE
TIME ELAPSED, PRIMITIVES GENERATED, or TRANSFORM FEEDBACK -
PRIMITIVES_WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_ SAMPLES_PASSED,

ANY_ SAMPLES_PASSED_CONSERVATIVE, or TIME_ELAPSED, and index is
not zero.

An INVALID_VALUE error is generated if farget is PRIMITIVES_ -
GENERATED or TRANSFORM_FEEDBACK PRIMITIVES WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_OPERATION error is generated if the active query object
name for target and index is zero.

The command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 46

void EndQuery(enum target);
is equivalent to
EndQuerylIndexed (target, O0);

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result is implementation-dependent
and may be determined as described in section 4.2.1. The initial state of a query
object depends on whether it was created with CreateQueries or BeginQuerylIn-
dexed, as described above.

If the query result overflows (exceeds the value 2™ — 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2’ — 1 and incrementing no further.

The necessary state for each possible active query farget and index is an un-
signed integer holding the active query object name (zero if no query object is ac-
tive), and any state necessary to keep the current results of an asynchronous query
in progress. Only a single type of occlusion query can be active at one time, so the
required state for occlusion queries is shared.

4.2.1 Query Object Queries

The command
boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.
Information about an active query object may be queried with the command

void GetQueryIndexediv(enum farget, uint index,
enum pname, int *params);

target and index specify the active query, and have the same meaning as for Begin-
QueryIndexed.

If pname is CURRENT_QUERY, the name of the currently active query object for
target and index, or zero if no query is active, will be placed in params. If target is
TIMESTAMP, zero is always returned.

If pname is QUERY_COUNTER_BITS, index is ignored and the implementation-
dependent number of bits used to hold the query result for farget will be placed in

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES

params. The number of query counter bits may be zero, in which case the counter
contains no useful information.

For primitive queries (PRIMITIVES_GENERATED and TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN) if the number of bits is non-zero, the
minimum number of bits allowed is 32.

For occlusion queries with target ANY_ SAMPLES_PASSED oOr ANY_ -
SAMPLES_PASSED_CONSERVATIVE, if the number of bits is non-zero, the min-
imum number of bits is 1. For occlusion queries with farget SAMPLES_PASSED, if
the number of bits is non-zero, the minimum number of bits allowed is 32.

For timer queries (farget TIME_ELAPSED and TIMESTAMP), if the number of
bits is non-zero, the minimum number of bits allowed is 30. This will allow at least
one second of timing.

Errors

An INVALID_ENUM error is generated if farget is not SAMPLES_-—
PASSED, ANY_ SAMPLES_PASSED, ANY_ SAMPLES_PASSED_CONSERVATIVE
TIMESTAMP, TIME_ELAPSED, PRIMITIVES_GENERATED, of TRANSFORM -
FEEDBACK_PRIMITIVES_WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_ -

SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE, TIMESTAMP,
or TIME_ELAPSED, and index is not zero.

An INVALID_VALUE error is generated if farget is PRIMITIVES_ -
GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_ENUM error is generated if pname is not CURRENT_QUERY
or QUERY_COUNTER_BITS.

The command
void GetQueryiv(enum farget, enum pname, int *params);
is equivalent to
GetQueryIndexediv (target, 0, pname, params) ;
The state of a query object may be queried with the commands

void GetQueryObjectiv(uint id, enum pname,
int *params);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

47

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 48

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

void GetQueryObjecti6dv(uint id, enum pname,
int 64 *params);

void GetQueryObjectui6dv(uint id, enum pname,
uint 64 *params);

void GetQueryBufferObjectiv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectuiv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjecti6dv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectui6dv(uint id, uint buffer,
enum pname, intptr offset);

id is the name of a query object.

For GetQueryBufferObject*, buffer is the name of a buffer object and offset
is an offset into buffer at which the queried value is written.

For GetQueryObject®, the queried value may be returned either in client
memory or in a buffer object. If zero is bound to the current query result buffer
binding point (see QUERY_RESULT in section 6.1), then params is treated as a
pointer into client memory at which the queried value is written. Otherwise,
params is treated as an offset into the query result buffer object at which the queried
value is written.

There may be an indeterminate delay before a query object’s result value is
available. If pname is QUERY_RESULT_AVAILABLE, FALSE is returned if such a
delay would be required; otherwise TRUE is returned. It must always be true that
if any query object returns a result available of TRUE, all queries of the same type
issued prior to that query must also return TRUE. Repeatedly querying QUERY_ —
RESULT_AVAILABLE for any given query object is guaranteed to return TRUE
eventually.

If pname is QUERY_TARGET, then the target of the query object is returned as
a single integer.

If pname is QUERY_RESULT, then the query object’s result value is returned as
a single integer. If the value is so large in magnitude that it cannot be represented
with the requested type, then the nearest value representable using the requested
type is returned. If the number of query counter bits for farget is zero, then the
result is returned as a single integer with the value zero. Querying QUERY_RESULT
for any given query object forces that query to complete within a finite amount of
time.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.3. TIME QUERIES 49

If pname is QUERY_RESULT_NO_WATT, then the query object’s result value is
returned as a single integer if the result is available at the time of the state query. If
the result is not available then the query return value is not written.

If multiple queries are issued using the same object name prior to calling these
query commands, the result and availability information returned will always be
from the last query issued. The results from any queries before the last one will be
lost if they are not retrieved before starting a new query on the same target and id.

Errors

An INVALID_OPERATION error is generated if id is not the name of a
query object, or if the query object named by id is currently active.

An INVALID OPERATION error is generated by GetQueryBufferOb-
ject* if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not QUERY RESULT,
QUERY_RESULT_AVAILABLE, QUERY_RESULT_NO_WATT, or
QUERY_TARGET.

An INVALID_OPERATION error is generated if the query writes to a buffer
object, and the specified buffer offset would cause data to be written beyond
the bounds of that buffer object.

An INVALID_VALUE error is generated by GetQueryBufferObject* if
offset is negative.

4.3 Time Queries

Query objects may also be used to track the amount of time needed to fully com-
plete a set of GL commands (a time elapsed query), or to determine the current
time of the GL (a timer query).

When BeginQuery and EndQuery are called with a target of TIME_ELAPSED,
the GL prepares to start and stop the timer used for time elapsed queries. The timer
is started or stopped when the effects from all previous commands on the GL client
and server state and the framebuffer have been fully realized. The BeginQuery and
EndQuery commands may return before the timer is actually started or stopped.
When the time elapsed query timer is finally stopped, the elapsed time (in nanosec-
onds) is written to the corresponding query object as the query result value, and the
query result for that object is marked as available.

A timer query object is created with the command

void QueryCounter(uint id, enum farget);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

4.3. TIME QUERIES 50

target must be TIMESTAMP. If id is an unused query object name, the name is
marked as used and associated with a new query object of type TIMESTAMP. Oth-
erwise id must be the name of an existing query object of that type.

Alternatively, TIMESTAMP query objects can be created by calling Create-
Queries with target set to TIMESTAMP.

When QueryCounter is called, the GL records the current time into the cor-
responding query object. The time is recorded after all previous commands on
the GL client and server state and the framebuffer have been fully realized. When
the time is recorded, the query result for that object is marked available. Timer
queries can be used within a BeginQuery / EndQuery block where the target is
TIME_ELAPSED, and it does not affect the result of that query object.

The current time of the GL may be queried by calling GetIntegerv or Get-
Integer64v with the symbolic constant TIMESTAMP. This will return the GL time
after all previous commands have reached the GL server but have not yet neces-
sarily executed. By using a combination of this synchronous get command and the
asynchronous timestamp query object target, applications can measure the latency
between when commands reach the GL server and when they are realized in the
framebuffer.

Errors

An INVALID_ENUM error is generated if target is not TIMESTAMP.
An INVALID_OPERATION error is generated if id is the name of an exist-
ing query object whose type is not TIMESTAMP.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 5

Shared Objects and Multiple
Contexts

This chapter describes special considerations for objects shared between multiple
OpenGL contexts, including deletion behavior and how changes to shared objects
are propagated between contexts.

Objects that may be shared between contexts include buffer objects,

program and shader objects, renderbuffer objects, sampler objects, sync ob-
jects, and texture objects (except for the texture objects named zero).

Some of these objects may contain views (alternate interpretations) of part or
all of the data store of another object. Examples are texture buffer objects, which
contain a view of a buffer object’s data store, and texture views, which contain a
view of another texture object’s data store. Views act as references on the object
whose data store is viewed.

Objects which contain references to other objects include framebuffer, program
pipeline, query, transform feedback, and vertex array objects. Such objects are
called container objects and are not shared.

Implementations may allow sharing between contexts implementing differ-
ent OpenGL versions or different profiles of the same OpenGL version (see ap-
pendix D). However, implementation-dependent behavior may result when aspects
and/or behaviors of such shared objects do not apply to, and/or are not described
by more than one version or profile.

51

5.1. OBJECT DELETION BEHAVIOR 52

5.1 Object Deletion Behavior

5.1.1 Side Effects of Shared Context Destruction

The share list is the group of all contexts which share objects. If a shared object
is not explicitly deleted, then destruction of any individual context has no effect
on that object unless it is the only remaining context in the share list. Once the
last context on the share list is destroyed, all shared objects, and all other resources
allocated for that context or share list, will be deleted and reclaimed by the imple-
mentation as soon as possible.

5.1.2 Automatic Unbinding of Deleted Objects

When a buffer, texture, or renderbuffer object is deleted, it is unbound from any
bind points it is bound to in the current context, and detached from any attachments
of container objects that are bound to the current context, as described for Delete-
Buffers, DeleteTextures, and DeleteRenderbuffers. If the object binding was
established with other related state (such as a buffer range in BindBufferRange or
selected level and layer information in FramebufferTexture or BindImageTex-
ture), all such related state are restored to default values by the automatic unbind.
Bind points in other contexts are not affected. Attachments to unbound container
objects, such as deletion of a buffer attached to a vertex array object which is not
bound to the context, are not affected and continue to act as references on the
deleted object, as described in the following section.

5.1.3 Deleted Object and Object Name Lifetimes

When a buffer, texture, sampler, renderbuffer, query, or sync object is deleted, its
name immediately becomes invalid (e.g. is marked unused), but the underlying
object will not be deleted until it is no longer in use.

A buffer, texture, sampler, or renderbuffer object is in use if any of the follow-
ing conditions are satisfied:

o the object is attached to any container object
e the object is bound to a context bind point in any context

e any other object contains a view of the data store of the object.

A sync object is in use while there is a corresponding fence command which
has not yet completed and signaled the sync object, or while there are any GL

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

5.2. SYNC OBJECTS AND MULTIPLE CONTEXTS 53

clients and/or servers blocked on the sync object as a result of ClientWaitSync or
WaitSync commands.

Query objects are in use so long as they are active, as described in section 4.2.

When a shader object or program object is deleted, it is flagged for deletion, but
its name remains valid until the underlying object can be deleted because it is no
longer in use. A shader object is in use while it is attached to any program object.
A program object is in use while it is attached to any program pipeline object or is
a current program in any context.

Caution should be taken when deleting an object while it is in use (as defined
above). Following its deletion, the object’s name may be

returned by Gen* or Create* commands. The underlying

object state and data for such a deleted, but still in use object may still be read
and written by the GL, but cannot be accessed by name. The underlying storage
backing a deleted object will not be reclaimed by the GL until all references to
the object from container object attachment points, context binding points, views,
fence commands, active queries, etc. are removed. Since the name is marked un-
used, binding the name will create a new object with the same name, and attaching
the name will generate an error.

5.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signaled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

5.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

e Pixels in the framebuffer.

e The contents of the data stores of buffer objects, renderbuffers, and textures.

State determines the configuration of the rendering pipeline, and the GL imple-
mentation does have to inspect it.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

5.3. PROPAGATING CHANGES TO OBJECTS 54

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

e State-setting commands, such as TexParameter.
e Data-setting commands, such as TexSubImage* or BufferSubData.

e Data-setting through rendering to renderbuffers or textures attached to a
framebuffer object.

e Data-setting through transform feedback operations followed by an End-
TransformFeedback command.

e Commands that affect both state and data, such as TexImage* and Buffer-
Data.

e Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

e Rendering commands that trigger shader invocations, where the shader per-
forms image or buffer variable stores or atomic operations, or built-in atomic
counter functions.

When T is a texture, the contents of 7 are construed to include the contents of
the data store of T, even if T’s data store was modified via a different view of the
data store.

5.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section 5.3 has completed. Completion of a command ' may
be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context. In cases where a feed-
back loop has been established (see sections 8.6.1, 8.14.2.1, and 9.3, as well as the

!The GL already specifies that a single context processes commands in the order they are received.
This means that a change to an object in a context at time ¢ must be completed by the time a command
issued in the same context at time ¢ + 1 uses the result of that change.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

5.3. PROPAGATING CHANGES TO OBJECTS 55

discussion of rule 1 below in section 5.3.3) the resulting contents of an object may
be undefined.

5.3.2 Definitions

In the remainder of this section, the following terminology is used:

e An object T'is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

e T is indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

e An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which T is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

5.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 [f the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with updates via GL commands. Once EndTransformFeedback has been issued,
any subsequent command in the same context that uses the results of the trans-
form feedback operation will see the results. If a feedback loop is setup between
rendering and transform feedback (see section 13.2.3), results will be undefined.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

5.3. PROPAGATING CHANGES TO OBJECTS 56

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee see-
ing changes made in another context to objects attached to C, such changes must be
completed in that other context (see section 5.3.1) prior to C being bound. Changes
made in another context but not determined to have completed as described in sec-
tion 5.3.1, or after C is bound in the current context, are not guaranteed to be
seen.

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.

Rule 4 [f the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context, or at least one attachment point of a currently bound container
object C, in order to guarantee that the new contents of T are visible in the current
context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached.

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 6

Buffer Objects

Buffer objects contain a data store holding a fixed-sized allocation of server mem-
ory. This chapter specifies commands to create, manage, and destroy buffer objects.
Specific types of buffer objects and their uses are briefly described together with
references to their full specification.

The command
void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Errors
An INVALID_VALUE error is generated if # is negative.

In addition to generating an unused name and then binding it to a target with
BindBuffer, a buffer object may also be created with the command

void CreateBuffers(sizei n, uint *buffers);

CreateBuffers returns n previously unused buffer names in buffers, each rep-
resenting a new buffer object initialized as if it had been bound to an unspecified
target.

57

6.1. CREATING AND BINDING BUFFER OBJECTS 58

Errors

An INVALID_VALUE error is generated if # is negative.
Buffer objects are deleted by calling
void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. If any portion of a buffer
object being deleted is mapped in the current context or any context current to
another thread, it is as though UnmapBuffer (see section 6.3.1) is executed in
each such context prior to deleting the data store of the buffer.

Unused names in buffers that have been marked as used for the purposes of
GenBuffers are marked as unused again. Unused names in buffers are silently
ignored, as is the value zero.

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsBuffer(uint buffer);
returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is

a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

6.1 Creating and Binding Buffer Objects

A buffer object is created by binding to a buffer target. The binding
is effected by calling

void BindBuffer(enum farget, uint buffer);

target must be one of the targets listed in table 6.1. If the buffer object named
buffer has not been previously bound,
the GL creates a new state vector, initialized with a zero-sized memory buffer and
comprising all the state and with the same initial values listed in table 6.2.

Buffer objects created by binding to any of the valid fargets are
formally equivalent, but the GL may make different choices about storage location
and layout based on the initial binding.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.1. CREATING AND BINDING BUFFER OBJECTS

59

Target name Purpose Described in
section(s)
ARRAY_BUFFER Vertex attributes 10.3.9
ATOMIC_COUNTER_BUFFER Atomic counter storage 7.7
COPY_READ_BUFFER Buffer copy source 6.6
COPY_WRITE_BUFFER Buffer copy destination 6.6
DISPATCH_INDIRECT_BUFFER | Indirect compute dispatch commands | 19
DRAW_INDIRECT_BUFFER Indirect command arguments 10.3.11
ELEMENT_ARRAY_BUFFER Vertex array indices 10.3.10
PIXEL_PACK_BUFFER Pixel read target 18.2, 22
PIXEL_UNPACK_BUFFER Texture data source 8.4
QUERY_BUFFER Query result buffer 4.2.1
SHADER_STORAGE_BUFFER Read-write storage for shaders 7.8
TEXTURE_BUFFER Texture data buffer 8.9
TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer 13.2
UNIFORM_BUFFER Uniform block storage 7.6.2
Table 6.1: Buffer object binding targets.
Name Type Initial Value | Legal Values
BUFFER_SIZE int64 0 any non-negative integer
BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY
BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE
BUFFER_ACCESS_FLAGS int 0 See section 6.3
BUFFER_IMMUTABLE_STORAGE | boolean FALSE TRUE, FALSE
BUFFER_MAPPED boolean FALSE TRUE, FALSE
BUFFER_MAP_POINTER void* NULL address
BUFFER_MAP_OFFSET int64 0 any non-negative integer
BUFFER_MAP_LENGTH int64 0 any non-negative integer
BUFFER_STORAGE_FLAGS int 0 See section 6.2

Table 6.2: Buffer object parameters and their values.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.1. CREATING AND BINDING BUFFER OBJECTS 60

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in section 5.1.

Initially, each buffer object target is bound to zero.

Errors

An INVALID_ENUM error is generated if zarget is not one of the targets
listed in table 6.1.

An INVALID_OPERATION error is generated by client attempts to modify
or query buffer object state for a target bound to zero, since there is no buffer
object corresponding to the name zero,

6.1.1 Binding Buffer Objects to Indexed Targets

Buffer objects may be created and bound to indexed targets by calling one of the
commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

target must be one of ATOMIC_COUNTER_BUFFER, SHADER_STORAGE_BUFFER,
TRANSFORM_FEEDBACK_BUFFER or UNIFORM _BUFFER. Additional language
specific to each target is included in sections referred to for each target in table 6.1.

Each rarget represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manip-
ulation functions, such as BindBuffer or MapBuffer. Both commands bind the
buffer object named by buffer to both the general binding point, and to the binding
point in the array given by index. If the binds are successful no change is made

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.1. CREATING AND BINDING BUFFER OBJECTS 61

to the state of the bound buffer object, and any previous bindings to the general
binding point or to the binding point in the array are broken.

If the buffer object named buffer has not been previously bound,

the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial
values listed in table 6.2.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from or written to
the buffer object while used as an indexed target. Both offset and size are in basic
machine units.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. The starting offset is zero, and the amount
of data that can be read from or written to the buffer is determined by the size of
the bound buffer at the time the binding is used.

Regardless of the size specified with BindBufferRange, the GL will never read
or write beyond the end of a bound buffer. In some cases this constraint may result
in visibly different behavior when a buffer overflow would otherwise result, such
as described for transform feedback operations in section 13.2.2.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of farget-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_VALUE error is generated by BindBufferRange if offset is
negative.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and size is less than or equal to zero.

An INVALID_ VALUE error is generated by BindBufferRange if buffer is
non-zero and offset or size do not respectively satisfy the constraints described
for those parameters for the specified target, as described in section 6.7.1.

The commands

void BindBuffersBase(enum rarget, uint first, sizei count,
const uint *buffers);

void BindBuffersRange(enum rarget, uint first,
sizei count, const uint *buffers, const
intptr *offsets, const sizeiptr *sizes);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.1. CREATING AND BINDING BUFFER OBJECTS 62

bind count existing buffer objects to bindings numbered first through first +
count — 1 in the array of buffer binding points corresponding to farget. If buffers
is not NULL, it specifies an array of count values, each of which must be zero or
the name of an existing buffer object. For BindBuffersRange, offsets and sizes
specify arrays of count values indicating the range of each buffer to bind. If buffers
is NULL, all bindings from first to first + count — 1 are reset to their unbound
(zero) state. In this case, the offsets and sizes associated with the binding points
are set to default values, ignoring offsets and sizes.
BindBuffersBase is equivalent (assuming no errors are generated) to:

for (i = 0; 1 < count; i++) {
if (buffers == NULL) {
BindBufferBase (target, first + i, 0);
} else {
BindBufferBase (target, first + i, buffers(i]);
}

}

except that the single general buffer binding corresponding to target is unmodified,
and that buffers will not be created if they do not exist.
BindBuffersRange is equivalent (assuming no errors are generated) to:

for (i = 0; i < count; i++) {
if (buffers == NULL) {
BindBufferRange (target, first + i, 0, 0, 0);
} else {

BindBufferRange (target, first + i, buffers[il,
of fsets[i], sizes[i]);

}

except that the single general buffer binding corresponding to target is unmodified,
and that buffers will not be created if they do not exist.

The values specified in buffers, offsets, and sizes will be checked separately for
each binding point. When values for a specific binding point are invalid, the state
for that binding point will be unchanged and an error will be generated. When
such an error occurs, state for other binding points will still be changed if their
corresponding values are valid.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 63

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_OPERATION error is generated if first + count is greater
than the number of target-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_OPERATION error is generated if any value in buffers is not
zero or the name of an existing buffer object.

An INVALID_VALUE error is generated by BindBuffersRange if any
value in offsets is less than zero (per binding).

An INVALID_VALUE error is generated by BindBuffersRange if any
value in sizes is less than or equal to zero (per binding).

An INVALID_VALUE error is generated by BindBuffersRange if any pair
of values in offsets and sizes does not respectively satisfy the constraints
described for those parameters for the specified target, as described in sec-
tion 6.7.1 (per binding).

6.2 Creating and Modifying Buffer Object Data Stores
The data store of a buffer object is created by calling one of

void BufferStorage(enum farget, sizeiptr size, const
void *data, bitfield flags);

void NamedBufferStorage(uint buffer, sizeiptr size,
const void *data, bitfield flags);

For BufferStorage, the buffer object is that bound to farget, which must be one
of the values listed in table 6.1. For NamedBufferStorage, buffer is the name of
the buffer object. size is the size of the data store in basic machine units, and flags
containing a bitfield describing the intended usage of the data store.

The data store of the buffer object is allocated as a result of these commands,
and cannot be de-allocated until the buffer is deleted with a call to DeleteBuffers.
Such a store may not be re-allocated through further calls to *BufferStorage or
BufferData.

data specifies the address in client memory of the data that should be used to
initialize the buffer object’s data store. If data is NULL, the data store of the buffer
object is created, but contains undefined data. Otherwise, data should point to an
array of at least size basic machine units.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 64

flags is the bitwise OR of flags describing the intended usage of the buffer
object’s data store by the application. Valid flags and their meanings are as follows:

DYNAMIC_STORAGE_BIT The contents of the data store may be updated after cre-
ation through calls to BufferSubData. If this bit is not set, the buffer content
may not be directly updated by the client. The data argument may be used
to specify the initial content of the buffer’s data store regardless of the pres-
ence of the DYNAMIC_STORAGE_BIT. Regardless of the presence of this bit,
buffers may always be updated with server-side calls such as CopyBuffer-
SubData and ClearBufferSubData.

MAP_READ_BIT The data store may be mapped by the client for read access and a
pointer in the client’s address space obtained that may be read from.

MAP_WRITE_BIT The data store may be mapped by the client for write access and
a pointer in the client’s address space obtained that may be written to.

MAP_PERSISTENT_BIT The client may request that the server read from or write
to the buffer while it is mapped. The client’s pointer to the data store remains
valid so long as the data store is mapped, even during execution of drawing
or dispatch commands.

MAP_COHERENT_BIT Shared access to buffers that are simultaneously mapped for
client access and are used by the server will be coherent, so long as that map-
ping is performed using MapBufferRange or MapNamedBufferRange.
That is, data written to the store by either the client or server will be visible
to any subsequently issued GL commands with no further action taken by
the application. In particular,

e If MAP_COHERENT_BIT is not set and the client performs a write fol-
lowed by a call to one of the FlushMapped*BufferRange commands
with a range including the written range, then in subsequent com-
mands the server will see the writes.

e If MAP_COHERENT_BIT is set and the client performs a write, then in
subsequent commands the server will see the writes.

e If MAP_COHERENT_BIT is not set and the server performs a write, the
application must call MemoryBarrier with the CLIENT_MAPPED_-
BUFFER_BARRIER_BIT set and then call FenceSync with SYNC_—
GPU_COMMANDS_COMPLETE (or Finish). Then the CPU will see the
writes after the sync is complete.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 65

Name Value for Value for
BufferData *BufferStorage
BUFFER_SIZE size size
BUFFER_USAGE usage DYNAMIC_DRAW
BUFFER_ACCESS READ_WRITE READ_WRITE
BUFFER_ACCESS_FLAGS 0 0
BUFFER_IMMUTABLE_STORAGE | FALSE TRUE
BUFFER_MAPPED FALSE FALSE
BUFFER_MAP_POINTER NULL NULL
BUFFER_MAP_OFFSET 0 0
BUFFER_MAP_LENGTH 0 0
BUFFER_STORAGE_FLAGS MAP_READ_BIT | flags
MAP_WRITE_BIT |
DYNAMIC_STORAGE_BIT

Table 6.3: Buffer object state after calling BufferData, BufferStorage, or Named-
BufferStorage.

e If MAP_COHERENT_BIT is set and the server does a write, the applica-
tion must call FenceSync with SYNC_GPU_COMMANDS_COMPLETE (or
Finish). Then the CPU will see the writes after the sync is complete.

CLIENT_STORAGE_BIT When all other criteria for the buffer storage allocation
are met, this bit may be used by an implementation to determine whether to
use storage that is local to the server or to the client to serve as the backing
store for the buffer.

If flags contains MAP_PERSISTENT_BIT, it must also contain at least one of
MAP_READ_BIT or MAP_WRITE_BIT.

It is an error to specify MAP_COHERENT_BIT without also specifying MAP_-
PERSISTENT_BIT.

BufferStorage and NamedBufferStorage delete any existing data store, and
set the values of the buffer object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 66

Errors

An INVALID_OPERATION error is generated by BufferStorage if zero is
bound to target.

An INVALID OPERATION error is generated by NamedBufferStorage if
buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if size is less than or equal to zero.

An INVALID_VALUE error is generated if flags has any bits set other than
those defined above.

An INVALID_VALUE error is generated if flags contains MAP_-
PERSISTENT_BIT but does not contain at least one of MAP_READ_BIT oOr
MAP_WRITE_BIT.

An INVALID_VALUE error is generated if flags contains MAP_-
COHERENT_BIT, but does not also contain MAP_ PERSISTENT_BIT.

An INVALID_OPERATION error is generated if the BUFFER -
IMMUTABLE_STORAGE flag of the buffer bound to farget is TRUE.

A mutable data store may be allocated for a buffer object with the commands

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

void NamedBufferData(uint buffer, sizeiptr size, const
void *data, enum usage);

For BufferData, the buffer object is that bound to target, which must be one
of the targets listed in table 6.1. For NamedBufferData, buffer is the name of the
buffer object.

size is the size of the data store in basic machine units, data points to the source
data in client memory, and usage indicates the expected application usage pattern
of the data store.

If data is non-NULL, then the source data is copied to the buffer object’s data
store. If data is NULL, then the contents of the buffer object’s data store are unde-
fined.

usage is specified as one of nine enumerated values. In the following descrip-
tions, a buffer’s data store is sourced when if is read from as a result of GL com-
mands which specify images, or invoke shaders accessing buffer data as a result of
drawing commands or compute shader dispatch.

The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and sourced at most a few times.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 67

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and sourced at most a few times

sTATIC_DRAW The data store contents will be specified once by the application,
and sourced many times.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and sourced many times.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and sourced many times.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_coprY The data store contents will be respecified repeatedly by reading
data from the GL, and sourced many times.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData and NamedBufferData delete any existing data store, and set the
values of the buffer object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising [V basic machine units be a multiple of N.

Calling *BufferData is equivalent to calling BufferStorage with rarget, size
and data as specified, and flags set to the logical OR of DYNAMIC_STORAGE_BIT,
MAP_READ_BIT and MAP_WRITE_BIT. The GL will use the value of the usage pa-
rameter to *BufferData as a hint to further determine the intended use of the buffer.
However, BufferStorage allocates immutable storage whereas *BufferData allo-
cates mutable storage. Thus, when a buffer’s data store is allocated through a call
to *BufferData, the buffer’s BUFFER_IMMUTABLE_STORAGE flag is set to FALSE.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 68

Errors

An INVALID_OPERATION error is generated by BufferData if zero is
bound to target.

An INVALID_ OPERATION error is generated by NamedBufferData if
buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if size is negative.

An INVALID_ENUM error is generated by BufferData if rarget is not one
of the targets listed in table 6.1.

An INVALID_OPERATION error is generated if the BUFFER_-
IMMUTABLE_STORAGE flag of the buffer object is TRUE.

An INVALID_ENUM error is generated if usage is not one of the nine us-
ages described above.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the commands

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

void NamedBufferSubData(uint buffer, intptr offset,
sizeiptr size, const void *data);

For BufferSubData, target specifies the target to which the buffer object is
bound, and must be one of the values listed in table 6.1. For NamedBufferSub-
Data, buffer is the name of the buffer object.

offset and size indicate the range of data in the buffer object that is to be re-
placed, in terms of basic machine units. data specifies a region of client memory
size basic machine units in length, containing the data that replace the specified
buffer range.

Errors

An INVALID_OPERATION error is generated by BufferSubData if zero is
bound to target.

An INVALID_OPERATION error is generated by NamedBufferSubData
if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated by BufferSubData if target is not
one of the targets listed in table 6.1.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the buffer object.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 69

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 6.3), unless it was mapped with MAP_PERSISTENT_BIT set in the Map-
BufferRange access flags.

An INVALID OPERATION error is generated if the BUFFER -
IMMUTABLE_STORAGE flag of the buffer object is TRUE and the value of
BUFFER_STORAGE_FLAGS for the buffer does not have the DYNAMIC -
STORAGE_BIT set.

6.2.1 Clearing Buffer Object Data Stores

To fill all or part of a buffer object’s data store with constant values, use the com-
mands

void ClearBufferSubData(enum farget, enum internalformat,
intptr offset, sizeiptr size, enum format, enum type,
const void *data);

void ClearNamedBufferSubData(uint buffer,
enum internalformat, intptr offset, sizeiptr size,
enum format, enum type, const void *data);

For ClearBufferSubData, the buffer object is that bound to target, which must
be one of the values listed in table 6.1. For ClearNamedBufferSubData, buffer is
the name of the buffer object.

internalformat must be set to one of the format tokens listed in table 8.24.
format and type specify the format and type of the source data and are interpreted
as described in section 8.4.4.

offset is the offset, measured in basic machine units, into the buffer object’s
data store from which to begin filling, and size is the size, also in basic machine
units, of the range to fill.

data is a pointer to an array of between one and four components containing
the data to be used as the source of the constant fill value. The elements of data
are converted by the GL into the format specified by internalformat in the manner
described in section 2.2.1, and then used to fill the specified range of the destination
buffer. If data is NULL, then the pointer is ignored and the sub-range of the buffer
is filled with zeros.

Errors

An INVALID_ENUM error is generated by ClearBufferSubData if rarget

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 70

is not one of the targets listed in table 6.1.

An INVALID_VALUE error is generated by ClearBufferSubData if zero
is bound to target.

An INVALID_OPERATION error is generated by ClearNamedBufferData
if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if internalformat is not one of the
format tokens listed in table 8.24.

An INVALID_VALUE error is generated if offset or size are not multiples
of the number of basic machine units for the internal format specified by infer-
nalformat. This value may be computed by multiplying the number of com-
ponents for internalformat from table 8.24 by the size of the base type from
that table.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the buffer object.

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 6.3), unless it was mapped with MAP_PERSISTENT_BIT set in the Map-
BufferRange access flags.

An INVALID_VALUE error is generated if fype is not one of the types in
table 8.7.

An INVALID_VALUE error is generated if format is not one of the formats
in table 8.8.

The commands
void ClearBufferData(enum farget, enum internalformat,
enum format, enum type, const void *data);
void ClearNamedBufferData(uint buffer,
enum internalformat, enum format, enum type, const
void *data);
are respectively equivalent to
ClearBufferSubData (target, internalformat, 0, size, format, type, data) ;
and

ClearNamedBufferSubData (bu f fer, internalformat, 0, size, format, type, data);

where size is the value of BUFFER_SIZE for the destination buffer object.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 71

6.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space with the commands

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield acesss);

void *MapNamedBufferRange(uint buffer, intptr offset,
sizeiptr length, bitfield access);

For MapBufferRange, the buffer object is that bound to farget, which must be
one of the values listed in table 6.1. For MapNamedBufferRange, buffer is the
name of the buffer object.

offset and length indicate the range of data in the buffer object that is to be
mapped, in terms of basic machine units. access is a bitfield containing flags which
describe the requested mapping. These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP PERSISTENT_BIT indicates that it is not an error for the GL to read
data from or write data to the buffer while it is mapped (see section 6.3.2).
If this bit is set, the value of BUFFER_STORAGE_FLAGS for the buffer being
mapped must include MAP_PERSISTENT_BIT.

e MAP_COHERENT_BIT indicates that the mapping should be performed co-
herently. That is, such a mapping follows the rules set forth in section 6.2.
If this bit is set, the value of BUFFER_STORAGE_FLAGS for the buffer being
mapped must include MAP_COHERENT_BTT.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 72

If no error occurs, the pointer values returned by Map*BufferRange must
reflect an allocation aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic
machine units. Subtracting offset basic machine units from the returned pointer
will always produce a multiple of the value of MIN_MAP_BUFFER_ALIGNMENT.

The returned pointer values may not be passed as parameter values to GL com-
mands. For example, they may not be used to specify array pointers, or to specify or
query pixel or texture image data; such actions produce undefined results, although
implementations may not check for such behavior for performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

e MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 73

Name Value
BUFFER_ACCESS Depends on access'
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 6.4: Buffer object state set by MapBufferRange and MapNamedBuffer-
Range.

! BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ BIT, MAP_-
WRITE_BIT, or MAP_READ_BIT|MAP_WRITE_ BIT.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt
to synchronize pending operations on the buffer prior to returning from
Map*BufferRange. No GL error is generated if pending operations which
source or modify the buffer overlap the mapped region, but the result of such
previous and any subsequent operations is undefined.

A successful Map*BufferRange sets buffer object state values as shown in
table 6.4.

Errors

If an error occurs, a NULL pointer is returned.

An INVALID_ENUM error is generated by MapBufferRange if target is
not one of the valid targets listed above.

An INVALID_OPERATION error is generated by MapBufferRange if zero
is bound to rarget.

An INVALID_OPERATION error is generated by MapNamedBuffer-
Range if buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if offset or length is negative, if
offset + length is greater than the value of BUFFER_STZE, or if access has
any bits set other than those defined above.

An INVALID_OPERATION error is generated for any of the following con-
ditions:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 74

length is zero.
e The buffer is already in a mapped state.
e Neither MAP_ READ_BIT nor MAP_WRITE_BIT is set.

e MAP READ BIT is set and any of MAP_INVALIDATE RANGE_BIT,
MAP_ INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_ BIT is
set.

e MAP FLUSH_EXPLICIT_BIT is set and MAP_ WRITE_BIT is not set.

e Any of MAP_READ_BIT, MAP_WRITE_BIT, MAP_PERSISTENT_BIT,
or MAP_ COHERENT_BIT are set, but the same bit is not set in the buffer’s
storage flags.

No error is generated if memory outside the mapped range is modified
or queried, but the result is undefined and system errors (possibly including
program termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space with the commands

void *MapBuffer(enum farget, enum access);
void *MapNamedBuffer(uint buffer, enum access);

These commands are respectively equivalent to
MapBufferRange (target, 0, length, flags);
and
MapNamedBufferRange (bu f fer, 0, length, flags);

where length is equal to the value of BUFFER_SIZE for the target buffer and
flagsisequal to

e MAP_READ_BIT, if access is READ_ONLY
e MAP_WRITE_BIT, if access is WRITE_ONLY

e MAP_READ_BIT | MAP_WRITE_BIT, if access is READ_WRITE.

The pointer value returned by MapBuffer and MapNamedBuffer must be
aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic machine units.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 75

Errors

An INVALID_ENUM error is generated if access is not READ_ONLY,
WRITE_ONLY, Oor READ_WRITE.

Other errors are generated as described above for MapBufferRange and
MapNamedBufferRange.

If a buffer object is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, mod-
ifications to the mapped range may be indicated with the commands

void FlushMappedBufferRange(enum rarget, intptr offset,
sizeiptr length);

void FlushMappedNamedBufferRange(uint buffer,
intptr offset, sizeiptr length);

For FlushMappedBufferRange, the buffer object is that bound to farget,
which must be one of the targets listed in table 6.1. For FlushMappedNamed-
BufferRange, buffer is the name of the buffer object.

offset and length indicate a modified subrange of the mapping, in basic machine
units. The specified subrange to flush is relative to the start of the currently mapped
range of the buffer object. FlushMapped*BufferRange may be called multiple
times to indicate distinct subranges of the mapping which require flushing.

If a buffer range is mapped with both MAP_PERSISTENT_BIT and MAP_-
FLUSH_EXPLICIT_BIT set, then FlushMapped*BufferRange may be called to
ensure that data written by the client into the flushed region becomes visible to the
server. Data written to a coherent store will always become visible to the server
after an unspecified period of time.

Errors

An INVALID_ENUM error is generated by FlushMappedBufferRange if
target is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by FlushMappedBuffer-
Range if zero is bound to farget.

An INVALID_OPERATION error is generated by FlushMappedNamed-
BufferRange if buffer is not the name of an existing buffer object.

An INVALID_OPERATION error is generated if the buffer object is not
mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 76

6.3.1 Unmapping Buffers

After the client has specified the contents of a mapped range of a buffer object, and
before the data in that range are dereferenced by any GL commands, the mapping
must be relinquished with one of the commands

boolean UnmapBuffer(enum rarget);
boolean UnmapNamedBuffer(uint buffer);

For UnmapBuffer, the buffer object is that bound to farget, which must be one
of the targets listed in table 6.1. For UnmapNamedBuffer, buffer is the name of
the buffer object.

Unmapping a mapped buffer object invalidates the pointer to its data store and
sets the object’s BUFFER_MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_—
FLAGS, BUFFER_MAP_OFFSET, and BUFFER_MAP_LENGTH state variables to the
initial values shown in table 6.3.

Unmap*Buffer returns TRUE unless data values in the buffer object’s data store
have become corrupted during the period that the buffer object was mapped. Such
corruption can be the result of a screen resolution change or other window system-
dependent event that causes system heaps such as those for high-performance
graphics memory to be discarded. GL implementations must guarantee that such
corruption can occur only during the periods that a buffer object’s data store is
mapped. If such corruption has occurred, Unmap*Buffer return FALSE, and the
contents of the data store become undefined.

Unmapping that occurs as a side effect of buffer deletion (see section 5.1.2) or
reinitialization by BufferData is not an error.

Buffer mappings are buffer object state, and are not affected by whether or not
a context owing a buffer object is current.

If an error is generated, FALSE is returned.

Errors

An INVALID_ ENUM error is generated by UnmapBuffer if rarger is not
one of the targets listed in table 6.1.

An INVALID_ OPERATION error is generated by UnmapBuffer if zero is
bound to target.

An INVALID_ OPERATION error is generated by UnmapNamedBuffer if
buffer is not the name of an existing buffer object.

An INVALID_OPERATION error is generated if the buffer object’s data
store is already in the unmapped state.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.4. EFFECTS OF ACCESSING OUTSIDE BUFFER BOUNDS 77

6.3.2 Effects of Mapping Buffers on Other GL Commands

Any GL command which attempts to read from, write to, or change the state of
a buffer object may generate an INVALID_OPERATION error if all or part of the
buffer object is mapped, unless it was allocated by a call to *BufferStorage with
the MAP_PERSISTENT_BIT included in flags. However, only commands which
explicitly describe this error are required to do so. If an error is not generated,
such commands will have undefined results and may result in GL interruption or
termination.

6.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error is generated. Any command which does not detect these attempts, and
performs such an invalid read or write, has undefined results, and may result in GL
interruption or termination.

Robust buffer access can be enabled by creating a context with robust access
enabled through the window system binding APIs. When enabled, any command
unable to generate a GL error as described above, such as buffer object accesses
from the active program, will not read or modify memory outside of the data store
of the buffer object and will not result in GL interruption or termination. Out-
of-bounds reads may return values from within the buffer object or zero values.
Out-of-bounds writes may modify values within the buffer object or be discarded.
Accesses made through resources attached to binding points are only protected
within the buffer object from which the binding point is declared. For example,
for an out-of-bounds access to a member variable of a uniform block, the access
protection is provided within the uniform buffer object, and not for the bound buffer
range for this uniform block.

6.5 Invalidating Buffer Data

All or part of the data store of a buffer object may be invalidated by calling

void InvalidateBufferSubData(uint buffer, intptr offset,
sizeiptr length);

with buffer set to the name of the buffer whose data store is being invalidated. offset
and length specify the range of the data in the buffer object that is to be invalidated.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.6. COPYING BETWEEN BUFFERS 78

Data in the specified range have undefined values after calling InvalidateBuffer-
SubData.

Errors

An INVALID_VALUE error is generated if buffer is zero or is not the name
of an existing buffer object.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length is greater than the value of BUFFER_STIZE for buffer.

An INVALID_OPERATION error is generated if buffer is currently mapped
by MapBuffer or if the invalidate range intersects the range currently mapped
by MapBufferRange, unless it was mapped with MAP_ PERSTISTENT_BIT set
in the MapBufferRange access flags.

The command
void InvalidateBufferData(uint buffer);

is equivalent to calling InvalidateBufferSubData with offset equal to zero and
length equal to the value of BUFFER_SIZE for buffer.

6.6 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object with the commands

void CopyBufferSubData(enum readTarget, enum writelarget,
intptr readOffset, intptr writeOffset, sizeiptr size);
void CopyNamedBufferSubData(uint readBuffer,
uint writeBuffer, intptr readOffset, intptr writeOffset,
sizeiptr size);

For CopyBufferSubData, readTarget and writeTarget are the targets to which
the source and destination buffers are bound, and each must be one of the targets
listed in table 6.1. For CopyNamedBufferSubData, readBuffer and writeBuffer
are the names of the source and destination buffers, respectively.

While any of these targets may be used, the COPY_READ_BUFFER and COPY_ -
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use.

writeOffset and size specify the range of data in the destination buffer object
that is to be replaced, in terms of basic machine units. readOffset and size specify

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.7. BUFFER OBJECT QUERIES 79

the range of data in the source buffer object that is to be copied to the corresponding
region of writeTarget.

Errors

An INVALID_OPERATION error is generated by CopyBufferSubData if
zero is bound to readTarget or writeTarget.

An INVALID_ENUM error is generated by CopyBufferSubData if read-
Target or writeTarget is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by CopyNamedBufferSub-
Data if readBuffer or writeBuffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if any of readOffset, writeOffset,
or size are negative, if readOffset + size exceeds the size of the source buffer
object, or if write Offset+size exceeds the size of the destination buffer object.

An INVALID VALUE error is generated if the source and destination are
the same buffer object, and the ranges [readOffset, readOffset + size) and
[writeOffset, writeOffset + size) overlap.

An INVALID_OPERATION error is generated if either the source or des-
tination buffer objects is mapped, unless they were mapped with MAP_—
PERSISTENT_BIT set in the Map*BufferRange access flags.

6.7 Buffer Object Queries

To query information about a buffer object, use the commands

void GetBufferParameteriv(enum target, enum pname,
int *data);

void GetBufferParameteri64v(enum target, enum pname,
int 64 *data);

void GetNamedBufferParameteriv(uint buffer,
enum pname, int *data);

void GetNamedBufferParameteri6dv(uint buffer,
enum pname, int64 *data);

For GetBufferParameter*, the buffer object is that bound to farget, which must
be one of the targets listed in table 6.1. For GetNamedBufferParameter®, buffer
is the name of the buffer object.

pname must be one of the buffer object parameters in table 6.2, other than
BUFFER_MAP_POINTER. The value of the specified parameter of the buffer object
bound to target is returned in data.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.7. BUFFER OBJECT QUERIES

Errors

An INVALID_ENUM error is generated by GetBufferParameter* if target
is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferParameter™ if
zero is bound to target.

An INVALID OPERATION error is generated by GetNamedBufferPa-
rameter™ if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not one of the buffer
object parameters other than BUFFER_MAP_POINTER.

To query the data store of a buffer object, use the commands

void GetBufferSubData(enum farget, intptr offset,
sizeiptr size, void *data);

void GetNamedBufferSubData(uint buffer, intptr offset,
sizeiptr size, void *data);

For GetBufferSubData, rarget specifies the target to which the source buffer ob-
ject is bound, and must be one of the values listed in table 6.1. For GetNamed-
BufferSubData, buffer specifies the name of the source buffer object.

offset and size indicate the range of data in the source buffer object that is to be
queried, in terms of basic machine units. data specifies a region of client memory,
size basic machine units in length, into which the data is to be retrieved.

Errors

An INVALID_ENUM error is generated by GetBufferSubData if target is
not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferSubData if
zero is bound to farget.

An INVALID OPERATION error is generated by GetNamedBufferSub-
Data if buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the source buffer
object.

An INVALID_OPERATION error is generated if the source buffer object is
currently mapped, unless it was mapped with MAP_ PERSISTENT_BIT set in
the Map*BufferRange access flags.

While part or all of the data store of a buffer object is mapped, the pointer to
the mapped range of the data store may be queried with the commands

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

80

6.7. BUFFER OBJECT QUERIES 81

void GetBufferPointerv(enum target, enum pname, const
void **params);

void GetNamedBufferPointerv(uint buffer, enum pname,
const void **params);

For GetBufferPointerv, the buffer object is that bound to target, which must
be one of the targets listed in table 6.1. For GetNamedBufferPointerv, buffer is
the name of the buffer object.

pname must be BUFFER_MAP_POINTER. The single buffer map pointer is re-
turned in params. A NULL pointer value is returned if the buffer object’s data store
is not currently mapped; or if the requesting context did not map the buffer ob-
ject’s data store, and the implementation is unable to support mappings on multiple
clients.

Errors

An INVALID_ENUM error is generated by GetBufferPointerv if rarget is
not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferPointerv if
zero is bound to farget.

An INVALID_OPERATION error is generated by GetNamedBufferPoint-
erv if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if prname is not BUFFER_MAP_-
POINTER.

6.7.1 Indexed Buffer Object Limits and Binding Queries

Several types of buffer bindings support an indexed array of binding points for
specific use by the GL, in addition to a single generic binding point for general
management of buffers of that type. Each type of binding is described in table 6.5
together with the token names used to refer to each buffer in the array of binding
points, the starting offset of the binding for each buffer in the array, any constraints
on the corresponding offset value passed to BindBufferRange (see section 6.1.1),
the size of the binding for each buffer in the array, any constraints on the corre-
sponding size value passed to BindBufferRange, and the size of the array (the
number of bind points supported).

To query which buffer objects are bound to an indexed array, call GetIntegeri_-
v with target set to the name of the array of binding points. index must be in the
range zero to the number of bind points supported minus one. The name of the
buffer object bound to index is returned in values. If no buffer object is bound for
index, zero is returned in values.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.7. BUFFER OBJECT QUERIES

82

Atomic counter array bindings (see sec. 7.7.2)

binding points
starting offset
offset restriction
binding size

size restriction
no. of bind points

ATOMIC_COUNTER_BUFFER_BINDING
ATOMIC_COUNTER_BUFFER_START

multiple of 4

ATOMIC_COUNTER_BUFFER_SIZE

none

value of MAX ATOMIC_COUNTER_BUFFER_-
BINDINGS

Shader storage array bindings (see sec. 7.8)

binding points
starting offset
offset restriction

binding size
size restriction
no. of bind points

SHADER_STORAGE_BUFFER_BINDING
SHADER_STORAGE_BUFFER_START

multiple of value of SHADER_STORAGE -
BUFFER_OFFSET_ALIGNMENT
SHADER_STORAGE_BUFFER_SIZE

none

value of MAX_ SHADER STORAGE_BUFFER_ -
BINDINGS

Transform feedback array

bindings (see sec. 13.2.2)

binding points
starting offset
offset restriction
binding size

size restriction
no. of bind points

TRANSFORM_FEEDBACK_BUFFER_BINDING
TRANSFORM_FEEDBACK_BUFFER_START
multiple of 4
TRANSFORM_FEEDBACK_BUFFER_SIZE
multiple of 4

value of MAX_ TRANSFORM_FEEDBACK_BUFFERS

Uniform buffer array bindings (see sec. 7.6.3)

binding points
starting offset
offset restriction

binding size
size restriction
no. of bind points

UNIFORM_BUFFER_BINDING
UNIFORM_BUFFER_START

multiple of value of UNIFORM_BUFFER_ -
OFFSET_ALIGNMENT

UNIFORM_BUFFER_SIZE

none

value of MAX_UNIFORM_BUFFER_BINDINGS

Table 6.5: Indexed buffer object limits and binding queries

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

6.8. BUFFER OBJECT STATE 83

To query the starting offset or size of the range of a buffer object binding in
an indexed array, call GetInteger64i_v with rarget set to respectively the starting
offset or binding size name from table 6.5 for that array. index must be in the range
zero to the number of bind points supported minus one. If the starting offset or
size was not specified when the buffer object was bound (e.g. if it was bound with
BindBufferBase), or if no buffer object is bound to the target array at index, zero
is returned .

Errors

An INVALID VALUE error is generated by GetIntegeri_v and GetInte-
ger64i_v if rarget is one of the array binding point names, starting offset
names, or binding size names from table 6.5 and index is greater than or equal
to the number of binding points for target as described in the same table.

6.8 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 6.1, and for each of the indexed buffer targets in sec-
tion 6.1.1. The state required for index buffer targets for atomic counters, shader
storage, transform feedback, and uniform buffer array bindings is summarized in
tables 23.57, 23.58, 23.59, and 23.60 respectively.

Additionally, each vertex array has an associated binding so there is a buffer
object binding for each of the

vertex attribute arrays. The initial values for all buffer object
bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, an boolean indicating whether or not buffer
storage is immutable, an unsigned integer storing the flags with which it was allo-
cated, a mapped boolean, two integers for the offset and size of the mapped region,
a pointer to the mapped buffer (NULL if unmapped), and the sized array of basic
machine units for the buffer data.

'A zero size is a sentinel value indicating that the actual binding range size is determined by the
size of the bound buffer at the time the binding is used.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 7

Programs and Shaders

This chapter specifies commands to create, manage, and destroy program and
shader objects. Commands and functionality applicable only to specific shader
stages (for example, vertex attributes used as inputs by vertex shaders) are de-
scribed together with those stages in chapters 10 and 15.

A shader specifies operations that are meant to occur on data as it moves
through different programmable stages of the OpenGL processing pipeline, start-
ing with vertices specified by the application and ending with fragments prior to
being written to the framebuffer. The programming language used for shaders is
described in the OpenGL Shading Language Specification.

To use a shader, shader source code is first loaded into a shader object and then
compiled. A shader object corresponds to a stage in the rendering pipeline referred
to as its shader stage or shader type.

Alternatively, pre-compiled shader binary code may be directly loaded into a
shader object. An implementation must support shader compilation (the boolean
value SHADER_COMPILER must be TRUE). If the integer value of NUM_SHADER_-
BINARY_FORMATS is greater than zero, then shader binary loading is supported.

One or more shader objects are attached to a program object. The program
object is then linked, which generates executable code from all the compiled shader
objects attached to the program. Alternatively, pre-compiled program binary code
may be directly loaded into a program object (see section 7.5).

When program objects are bound to a shader stage, they become the current
program object for that stage. When the current program object for a shader stage
includes a shader of that type, it is considered the active program object for that
stage.

The current program object for all stages may be set at once using a single
unified program object, or the current program object may be set for each stage

84

7.1. SHADER OBJECTS 85

individually using a separable program object where different separable program
objects may be current for other stages. The set of separable program objects
current for all stages are collected in a program pipeline object that must be bound
for use. When a linked program object is made active for one of the stages, the
corresponding executable code is used to perform processing for that stage.

Shader stages including vertex shaders, tessellation control shaders, tessella-
tion evaluation shaders, geometry shaders, fragment shaders, and compute shaders
can be created, compiled, and linked into program objects.

Vertex shaders describe the operations that occur on vertex attributes. Tessel-
lation control and evaluation shaders are used to control the operation of the tes-
sellator, and are described in section 11.2. Geometry shaders affect the processing
of primitives assembled from vertices (see section 11.3). Fragment shaders affect
the processing of fragments during rasterization (see section 15). A single program
object can contain all of these shaders, or any subset thereof.

Compute shaders perform general-purpose computation for dispatched arrays
of shader invocations (see section 19), but do not operate on primitives processed
by the other shader types.

Shaders can reference several types of variables as they execute. Uniforms
are per-program variables that are constant during program execution (see sec-
tion 7.6). Buffer variables (see section 7.8) are similar to uniforms, but are stored
in buffer object memory which may be written to, and is persistent across multiple
shader invocations. Subroutine uniform variables (see section 7.9) are similar to
uniforms but are context state, rather than program object state. Samplers (see sec-
tion 7.10) are a special form of uniform used for texturing (see chapter 8). Images
(see section 7.11) are a special form of uniform identifying a level of a texture to
be accessed using built-in shader functions as described in section 8.26. Output
variables hold the results of shader execution that are used later in the pipeline.
Each of these variable types is described in more detail below.

7.1 Shader Objects

The name space for shader objects is the unsigned integers, with zero reserved for
the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created and must be one of the values in table 7.1 indicating

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.1. SHADER OBJECTS 86

type Shader Stage

VERTEX_SHADER Vertex shader
TESS_CONTROL_SHADER Tessellation control shader
TESS_EVALUATION_SHADER | Tessellation evaluation shader

GEOMETRY_SHADER Geometry shader
FRAGMENT_SHADER Fragment shader
COMPUTE_SHADER Compute shader

Table 7.1: CreateShader rype values and the corresponding shader stages.

the corresponding shader stage. A non-zero name that can be used to reference the
shader object is returned.

Errors

An INVALID_ENUM error is generated and zero is returned if fype is not
one of the values in table 7.1.

The command

void ShaderSource(uint shader, sizei count, const
char * const *string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.1. SHADER OBJECTS 87

An INVALID_OPERATION error is generated if shader is the name of a
program object.
An INVALID_VALUE error is generated if count is negative.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status may be queried with GetShaderiv (see sec-
tion 7.13). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log may be queried with Get-
ShaderInfoL.og to obtain more information about the compilation attempt (see
section 7.13).

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

Resources allocated by the shader compiler may be released with the command
void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 7.13).

Shader objects can be deleted with the command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.2. SHADER BINARIES 88

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS may be
queried with GetShaderiv (see section 7.13). DeleteShader will silently ignore
the value zero.

Errors

An INVALID_VALUE error is generated if shader is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if shader is not zero and is
the name of a program object.

The command
boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

7.2 Shader Binaries
Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type, and may correspond to any of the shader stages in table 7.1.
binary points to length bytes of pre-compiled binary shader code in client memory,
and binaryformat denotes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL defines no specific binary formats,
but does provide a mechanism to obtain token values for such formats provided
by extensions. The number of shader binary formats supported can be obtained by
querying the value of NUM_SHADER_BINARY_FORMATS. The list of specific binary

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS &9

formats supported can be obtained by querying the value of SHADER_BINARY_—
FORMATS.

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary shaders, or load an executable binary that contains an op-
timized set of shaders stored in the same binary.

Errors

An INVALID_VALUE error is generated if count or length is negative.

An INVALID_ENUM error is generated if binaryformat is not a supported
format returned in SHADER_BINARY_ FORMATS.

An INVALID_VALUE error is generated if the data pointed to by binary
does not match the specified binaryformat.

An INVALID_VALUE error is generated if any of the handles in shaders is
not the name of either a program or shader object.

An INVALID_OPERATION error is generated if any of the handles in
shaders is the name of a program object.

An INVALID_OPERATION error is generated if more than one of the han-
dles in shaders refers to the same type of shader object.

Additional errors corresponding to specific binary formats may be gener-
ated as specified by the extensions defining those formats.

If ShaderBinary fails, the old state of shader objects for which the binary was
being loaded will not be restored.

Note that if shader binary interfaces are supported, then a GL implementation
may require that an optimized set of shader binaries that were compiled together be
specified to LinkProgram. Not specifying an optimized set may cause LinkPro-
gram to fail.

7.3 Program Objects
A program object is created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 90

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is already attached
to program.

To detach a shader object from a program object, use the command
void DetachShader(uint program, uint shader);

If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID OPERATION error is generated if shader is not attached to
program.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 91

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status may be
queried with GetProgramiv (see section 7.13). This status will be set to TRUE if a
valid executable is created, and FALSE otherwise.

Linking can fail for a variety of reasons as specified in the OpenGL Shading
Language Specification, as well as any of the following reasons:

e One or more of the shader objects attached to program are not compiled
successfully.

e More active uniform or active sampler variables are used in program than
allowed (see sections 7.6, 7.10, and 11.3.3).

e program contains objects to form a tessellation control shader (see sec-
tion 11.2.1), and

— the program is not separable and contains no objects to form a vertex
shader;

— the output patch vertex count is not specified in any compiled tessella-
tion control shader object; or

— the output patch vertex count is specified differently in multiple tessel-
lation control shader objects.

e program contains objects to form a tessellation evaluation shader (see sec-
tion 11.2.3), and

— the program is not separable and contains no objects to form a vertex
shader;

— the tessellation primitive mode is not specified in any compiled tessel-
lation evaluation shader object; or

— the tessellation primitive mode, spacing, vertex order, or point mode is
specified differently in multiple tessellation evaluation shader objects.

e program contains objects to form a geometry shader (see section 11.3), and

— the program is not separable and contains no objects to form a vertex
shader;

— the input primitive type, output primitive type, or maximum output ver-
tex count is not specified in any compiled geometry shader object; or

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 92

— the input primitive type, output primitive type, or maximum output ver-
tex count is specified differently in multiple geometry shader objects.

e program contains objects to form a compute shader (see section 19) and,
— program also contains objects to form any other type of shader.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

When program objects which have been linked successfully are used for ren-
dering operations, they may access GL state and interface with other stages of the
GL pipeline through active variables and active interface blocks. The GL provides
various commands allowing applications to enumerate and query properties of ac-
tive variables and interface blocks for a specified program. If one of these com-
mands is called with a program for which LinkProgram succeeded, the informa-
tion recorded when the program was linked is returned. If one of these commands is
called with a program for which LinkProgram failed, no error is generated unless
otherwise noted. Implementations may return information on variables and inter-
face blocks that would have been active had the program been linked successfully.
In cases where the link failed because the program required too many resources,
these commands may help applications determine why limits were exceeded. How-
ever, the information returned in this case is implementation-dependent and may be
incomplete. If one of these commands is called with a program for which LinkPro-
gram had never been called, no error is generated unless otherwise noted, and the
program object is considered to have no active variables or interface blocks.

Each program object has an information log that is overwritten as a result of a
link operation. This information log may be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 7.13).

If a program has been linked successfully by LinkProgram or loaded by Pro-
gramBinary (see section 7.5), it can be made part of the current rendering state
for all shader stages with the command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 93

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for each
shader stage present when the program was last linked successfully. If UsePro-
gram is called with program set to zero, then there is no current program object.
The command

The executable code for an individual shader stage is taken from the current
program for that stage. If there is a current program object established by Use-
Program, that program is considered current for all stages. Otherwise, if there is
a bound program pipeline object (see section 7.4), the program bound to the ap-
propriate stage of the pipeline object is considered current. If there is no current
program object or bound program pipeline object, no program is current for any
stage. The current program for a stage is considered active if it contains exe-
cutable code for that stage; otherwise, no program is considered active for that
stage. If there is no active program for the vertex or fragment shader stages,

If there is no active program for the tessellation control, tessellation
evaluation, or geometry shader stages, those stages are ignored. If there is no active
program for the compute shader stage, compute dispatches will generate an error.
The active program for the compute shader stage has no effect on the processing of
vertices, geometric primitives, and fragments, and the active program for all other
shader stages has no effect on compute dispatches.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully. The current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If LinkProgram or ProgramBinary successfully re-links a program object
that is active for any shader stage, then the newly generated executable code will
be installed as part of the current rendering state for all shader stages where the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 94

program is active. Additionally, the newly generated executable code is made part
of the state of any program pipeline for all stages where the program is attached.

If a program object that is active for any shader stage is re-linked unsuccess-
fully, the link status will be set to FALSE, but any existing executables and associ-
ated state will remain part of the current rendering state until a subsequent call to
UseProgram, UseProgramStages, or BindProgramPipeline removes them from
use. If such a program is attached to any program pipeline object, the existing exe-
cutables and associated state will remain part of the program pipeline object until a
subsequent call to UseProgramStages removes them from use. A program which
has not been linked successfully may not be made part of the current rendering state
by UseProgram or added to program pipeline objects by UseProgramStages until
it is re-linked successfully. If such a program was attached to a program pipeline
at the time of a failed link, its existing executable may still be made part of the
current rendering state indirectly by BindProgramPipeline.

To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

pname identifies which parameter to set for program. value holds the value
being set.

If pname is PROGRAM_SEPARABLE, value must be TRUE or FALSE, and indi-
cates whether program can be bound for individual pipeline stages using UsePro-
gramStages after it is next linked.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, value must be TRUE or
FALSE, and indicates whether a program binary is likely to be retrieved later, as
described for ProgramBinary in section 7.5.

State set with this command does not take effect until after the next time
LinkProgram or ProgramBinary is called successfully.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not PROGRAM -
SEPARABLE or PROGRAM_BINARY RETRIEVABLE_HINT.

An INVALID_VALUE error is generated if value is not TRUE or FALSE.

Program objects can be deleted with the command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 95

void DeleteProgram(uint program);

If program is not current for any GL context, is not the active program for any pro-
gram pipeline object, and is not the current program for any stage of any program
pipeline object, it is deleted immediately. Otherwise, program is flagged for dele-
tion and will be deleted after all of these conditions become true. When a program
object is deleted, all shader objects attached to it are detached. DeleteProgram
will silently ignore the value zero.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

The command
boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

uint CreateShaderProgramv(enum type, sizei count,
const char * const *strings);

creates a stand-alone program from an array of null-terminated source code strings
for a single shader type. CreateShaderProgramv is equivalent (assuming no er-
rors are generated) to:

const uint shader = CreateShader (type) ;

if (shader) {
ShaderSource (shader, count, strings, NULL);
CompileShader (shader) ;
const uint program = CreateProgram () ;

if (program) {
int compiled = FALSE;
GetShaderiv (shader, COMPILE_STATUS, &compiled);
ProgramParameteri (program, PROGRAM_SEPARABLE, TRUE) ;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 96

if (compiled) {
AttachShader (program, shader);
LinkProgram (program) ;
DetachShader (program, shader) ;
¥
append-shader-info-log-to-program-info-log
}
DeleteShader (shader) ;
return program;
} else {
return 0;
}

Because no shader is returned by CreateShaderProgramv and the shader that
is created is deleted in the course of the command sequence, the info log of the
shader object is copied to the program so the shader’s failed info log for the failed
compilation is accessible to the application.

If an error is generated, zero is returned.

Errors

An INVALID_ENUM error is generated if fype is not one of the values in
table 7.1.

An INVALID_VALUE error is generated if count is negative.

Other errors are generated if the supplied shader code fails to compile
and link, as described for the commands in the pseudocode sequence above,
but all such errors are generated without any side effects of executing those
commands.

7.3.1 Program Interfaces

When a program object is made part of the current rendering state, its executable
code may communicate with other GL pipeline stages or application code through
a variety of interfaces. When a program is linked, the GL builds a list of active
resources for each interface. Examples of active resources include variables, inter-
face blocks, and subroutines used by shader code. Resources referenced in shader
code are considered active unless the compiler and linker can conclusively deter-
mine that they have no observable effect on the results produced by the executable
code of the program. For example, variables might be considered inactive if they
are declared but not used in executable code, used only in a clause of an if state-
ment that would never be executed, used only in functions that are never called, or

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 97

used only in computations of temporary variables having no effect on any shader
output. In cases where the compiler or linker cannot make a conclusive determina-
tion, any resource referenced by shader code will be considered active. The set of
active resources for any interface is implementation-dependent because it depends
on various analysis and optimizations performed by the compiler and linker.

If a program is linked successfully, the GL will generate lists of active resources
based on the executable code produced by the link. If a program is not linked suc-
cessfully, the link may have failed for a number of reasons, including cases where
the program required more resources than supported by the implementation. Imple-
mentations are permitted, but not required, to record lists of resources that would
have been considered active had the program linked successfully. If an implemen-
tation does not record information for any given interface, the corresponding list of
active resources is considered empty. If a program has never been linked, all lists
of active resources are considered empty.

The GL provides a number of commands to query properties of the interfaces of
a program object. Each such command accepts a programlnterface token, identify-
ing a specific interface. The supported values for programlinterface are as follows:

e UNIFORM corresponds to the set of active uniform variables (see section 7.6)
used by program.

e UNIFORM_BLOCK corresponds to the set of active uniform blocks (see sec-
tion 7.6) used by program.

e ATOMIC_COUNTER_BUFFER corresponds to the set of active atomic counter
buffer binding points (see section 7.6) used by program.

e PROGRAM_INPUT corresponds to the set of active input variables used by the
first shader stage of program. If program includes multiple shader stages,
input variables from any shader stage other than the first will not be enumer-
ated.

e PROGRAM_OUTPUT corresponds to the set of active output variables (see sec-
tion 11.1.2.1) used by the last shader stage of program. If program includes
multiple shader stages, output variables from any shader stage other than the
last will not be enumerated.

® VERTEX_SUBROUTINE, TESS_CONTROIL_SUBROUTINE, TESS_-
EVALUATION_SUBROUTINE, GEOMETRY_SUBROUTINE, FRAGMENT_-
SUBROUTINE, and COMPUTE_SUBROUTINE correspond to the set of active

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 98

subroutines for the vertex, tessellation control, tessellation evaluation, ge-
ometry, fragment, and compute shader stages of program, respectively (see
section 7.9).

® VERTEX_SUBROUTINE_UNIFORM, TESS_CONTROL_SUBROUTINE_—
UNIFORM, TESS_EVALUATION_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_SUBROUTINE_UNIFORM,
and COMPUTE_SUBROUTINE_UNIFORM correspond to the set of active sub-
routine uniform variables used by the vertex, tessellation control, tessellation
evaluation, geometry, fragment, and compute shader stages of program, re-
spectively (see section 7.9).

e TRANSFORM_FEEDBACK_VARYING corresponds to the set of output vari-
ables in the last non-fragment stage of program that would be captured when
transform feedback is active (see section 13.2.3). The resources enumerated
by this query are listed as specified by the most recent call to Transform-
FeedbackVaryings before the last call to LinkProgram. When the resource
names an output array variable either a single element of the array or the
whole array is captured. If the variable name is specified with an array in-
dex syntax "name [x]", name is the name of the array resource and x is
the constant-integer index of the element captured. If the resource name is
an array and has no array index and square bracket, then the whole array is
captured.

e TRANSFORM_FEEDBACK_BUFFER corresponds to the set of active buffer
binding points to which output variables in the TRANSFORM_FEEDBACK_-
VARYING interface are written.

e BUFFER_VARIABLE corresponds to the set of active buffer variables used by
program (see section 7.8).

e SHADER_STORAGE_BLOCK corresponds to the set of active shader storage
blocks used by program (see section 7.8)

7.3.1.1 Naming Active Resources

When building a list of active variable or interface blocks, resources with ag-
gregate types (such as arrays or structures) may produce multiple entries in the
active resource list for the corresponding interface. Additionally, each active vari-
able, interface block, or subroutine in the list is assigned an associated name string
that can be used by applications to refer to the resource. For interfaces involving

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 99

variables, interface blocks, or subroutines, the entries of active resource lists are
generated as follows:

For an active variable declared as a single instance of a basic type, a single
entry will be generated, using the variable name from the shader source.

For an active variable declared as an array of basic types (e.g. not an array
of stuctures or an array of arrays), a single entry will be generated, with its
name string formed by concatenating the name of the array and the string
" [O] " A

For an active variable declared as a structure, a separate entry will be gener-
ated for each active structure member. The name of each entry is formed by
concatenating the name of the structure, the " . " character, and the name of
the structure member. If a structure member to enumerate is itself a structure
or array, these enumeration rules are applied recursively.

For an active variable declared as an array of an aggregate data type (struc-
tures or arrays), a separate entry will be generated for each active array el-
ement, unless noted immediately below. The name of each entry is formed
by concatenating the name of the array, the " [" character, an integer identi-
fying the element number, and the "] " character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active variable.

For an active shader storage block member declared as an array of an ag-
gregate type, an entry will be generated only for the first array element, re-
gardless of its type. Such block members are referred to as top-level arrays.
If the block member is an aggregate type, the enumeration rules are then
applied recursively.

For an active interface block not declared as an array of block instances, a
single entry will be generated, using the block name from the shader source.

For an active interface block declared as an array of arrays, a separate en-
try will be generated for each active instance. The name of each instance is
formed by concatenating the block name, the " [" character, an integer iden-
tifying the instance number, and the "] " character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active interface block.

For an active subroutine, a single entry will be generated, using the subrou-
tine name from the shader source.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 100

When an integer array element or block instance number is part of the name
string, it will be specified in decimal form without a "+" or "-" sign or any
extra leading zeroes. Additionally, the name string will not include white space
anywhere in the string.

The order of the active resource list is implementation-dependent for all
interfaces except for TRANSFORM_FEEDBACK_VARYING. If variables in the
TRANSFORM_FEEDBACK_VARYING interface were specified using the Transform-
FeedbackVaryings command, the active resource list will be arranged in the vari-
able order specified in the most recent call to TransformFeedbackVaryings be-
fore the last call to LinkProgram. If variables in the TRANSFORM_FEEDBACK_—
VARYING interface were specified using layout qualifiers in shader code, the or-
der of the active resource list is implementation-dependent.

For the ATOMIC_COUNTER_BUFFER interface, the list of active buffer binding
points is built by identifying each unique binding point associated with one or more
active atomic counter uniform variables. Active atomic counter buffers do not have
an associated name string.

For the UNIFORM, PROGRAM_INPUT, PROGRAM_OUTPUT, and TRANSFORM_-
FEEDBACK_VARY ING interfaces, the active resource list will include all active vari-
ables for the interface, including any active built-in variables.

For PROGRAM_INPUT and PROGRAM_OUTPUT interfaces for shaders that re-
cieve or produce patch primitves, the active resource list will include both per-
vertex and per-patch inputs and outputs.

For the TRANSFORM_FEEDBACK_BUFFER interface, the list of active buffer
binding points is built by identifying each unique binding point to which one or
more active output variables will be written in transform feedback mode. Active
transform feedback buffers do not have an associated name string.

For the TRANSFORM_FEEDBACK_VARYING interface, the active resource
list will include entries for the special variable names gl_NextBuffer,
gl_SkipComponentsl, gl_SkipComponents2, gl_SkipComponents3, and
gl_SkipComponents4 (see section 11.1.2.1). These variables are used to control
how output values are written to transform feedback buffers. When enumerating
the properties of such resources, these variables are considered to have a TYPE of
NONE and an ARRAY_SIZE of 0 (gl_NextBuffer), 1, 2, 3, and 4, respectively.

When a program is linked successfully, active variables in the UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT, or any of the subroutine uniform interfaces,
are assigned one or more signed integer locations. These locations can be used
by commands to assign values to uniforms and subroutine uniforms, to identify
generic vertex attributes associated with vertex shader inputs, or to identify frag-
ment color output numbers and indices associated with fragment shader outputs.
For such variables declared as arrays, separate locations will be assigned to each ac-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 101

tive array element and are not required to be sequential. The location for "a [1]"
may or may not be equal to the location for "a [0]" +1. Furthermore, since un-
used elements at the end of uniform arrays may be trimmed, the location of the
1 4+ 1’th array element may not be valid even if the location of the ¢’th element
is valid. As a direct consequence, the value of the location of "a[0]" +1 may
refer to a different uniform entirely. Applications that wish to set individual array
elements should query the locations of each element separately.

Not all active variables are assigned valid locations; the following variables
will have an effective location of -1:

e uniforms declared as atomic counters
e members of a uniform block
e built-in inputs, outputs, and uniforms (starting with g1_)

e inputs (except for vertex shader inputs) not declared with a location
layout qualifier

e outputs (except for fragment shader outputs) not declared with a 1ocation
layout qualifier

If a program has not been linked successfully, no locations will be assigned.
The command

void GetProgramlInterfaceiv(uint program,
enum programlnterface, enum pname, int *params);

queries a property of the interface programlinterface in program program, returning
its value in params. The property to return is specified by pname.

If pname is ACTIVE_RESOURCES, the value returned is the number of re-
sources in the active resource list for programlinterface. If the list of active re-
sources for programlnterface is empty, zero is returned.

If pname is MAX_NAME_ LENGTH, the value returned is the length of the longest
active name string for an active resource in programlinterface. This length includes
an extra character for the null terminator. If the list of active resources for pro-
gramlInterface is empty, zero is returned.

If pname is MAX_NUM_ACTIVE_VARIABLES, the value returned is the num-
ber of active variables belonging to the interface block or atomic counter buffer
resource in programlinterface with the most active variables. If the list of active
resources for programlnterface is empty, zero is returned.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 102

If pname is MAX_NUM_COMPATIBLE_SUBROUTINES, the value returned is the
number of compatible subroutines for the active subroutine uniform in program-
Interface with the most compatible subroutines. If the list of active resources for
programlinterface is empty, zero is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error 18
generated if pname is not ACTIVE_RESOURCES, MAX_NAME_LENGTH, MAX_ -
NUM_ACTIVE_VARIABLES, or MAX_NUM_COMPATIBLE_SUBROUTINES.

An INVALID_OPERATION error is generated if pname is MAX_ -
NAME_LENGTH and programlinterface is ATOMIC_COUNTER_BUFFER or
TRANSFORM_FEEDBACK_BUFFER, since active atomic counter and transform
feedback buffer resources are not assigned name strings.

An INVALID_OPERATION error is generated if pname is MAX_NUM_-
ACTIVE_VARIABLES and programlinterface is not ATOMIC_COUNTER_-—
BUFFER, SHADER STORAGE_BLOCK, TRANSFORM_FEEDBACK_BUFFER, Or
UNIFORM_BLOCK.

An INVALID_OPERATION error is generated if pname is MAX_ -
NUM_COMPATIBLE_SUBROUTINES and programlnterface is not VERTEX_ -
SUBROUTINE_-—

UNIFORM, TESS_CONTROL_SUBROUTINE_UNIFORM, TESS_EVALUATION_-
SUBROUTINE_UNIFORM, GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_—
SUBROUTINE_UNIFORM, or COMPUTE_SUBROUTINE_UNIFORM.

Each entry in the active resource list for an interface is assigned a unique un-
signed integer index in the range zero to N — 1, where NV is the number of entries
in the active resource list. The command

uint GetProgramResourcelndex(uint program,
enum programlinterface, const char *name);

returns the unsigned integer index assigned to a resource named name in the inter-
face type programlinterface of program object program.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 103

If name exactly matches the name string of one of the active resources for
programlInterface, the index of the matched resource is returned.

e For TRANSFORM_FEEDBACK_VARYING resources, name must match one of
the variables to be captured as specified by a previous call to Transform-
FeedbackVaryings, other than the special names gl_NextBuffer, gl_-
SkipComponentsl, gl_SkipComponents2, gl_SkipComponents3,
and g1_SkipComponents4 (see section 11.1.2.1). Otherwise, INVALID_—
INDEX is returned.

e For all other resource types, if name would exactly match the name string
of an active resource if " [0]" were appended to name, the index of the
matched resource is returned. Otherwise, name is considered not to be the
name of an active resource, and INVALID_ INDEX is returned. Note that if an
interface enumerates a single active resource list entry for an array variable
(e.g., "a[0]"), a name identifying any array element other than the first
(e.g., "al[l]")is not considered to match.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programlinterface is ATOMIC_—
COUNTER_BUFFER or TRANSFORM_FEEDBACK_BUFFER, since active atomic
counter and transform feedback buffer resources are not assigned name strings.

If name does not match a resource as described above, the value
INVALID_INDEX is returned, but no GL error is generated.

The command
void GetProgramResourceName(uint program,
enum programlnterface, uint index, sizei bufSize,

sizei *length, char *name);

returns the name string assigned to the single active resource with an index of index
in the interface programlinterface of program object program.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 104

The name string assigned to the active resource identified by index is returned
as a null-terminated string in name. The actual number of characters written into
name, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written
into name, including the null terminator, is specified by bufSize. If the length of
the name string (including the null terminator) is greater than bufSize, the first
bufSize — 1 characters of the name string will be written to name, followed by a
null terminator. If bufSize is zero, no error is generated but no characters will be
written to name. The length of the longest name string for programlnterface, in-
cluding a null terminator, may be queried by calling GetProgramInterfaceiv with
a pname of MAX_NAME_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programlinterface is ATOMIC_—
COUNTER_BUFFER or TRANSFORM_FEEDBACK_BUFFER, since active atomic
counter and transform feedback buffer resources are not assigned name strings.

An INVALID_VALUE error is generated if index is greater than or equal to
the number of entries in the active resource list for programlinterface.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetProgramResourceiv(uint program,
enum programlnterface, uint index, sizei propCount,
const enum *props, sizei bufSize, sizei *length,
int *params);

returns values for multiple properties of a single active resource with an index of
index in the interface programlinterface of program object program. Values for
propCount properties specified by the array props are returned.

The values associated with the properties of the active resource are written to
consecutive entries in params, in increasing order according to position in props. If
no error is generated, only the first bufSize integer values will be written to params;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS

105

any extra values will not be written. If length is not NULL, the actual number of
values written to params will be written to length.

Property

Supported Interfaces

ACTIVE_VARIABLES, BUFFER_—
BINDING, NUM_ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER, SHADER_ -
STORAGE_BLOCK, TRANSFORM_ -
FEEDBACK_BUFFER, UNIFORM_BLOCK

ARRAY_SIZE

BUFFER_VARIABLE, COMPUTE_ -
SUBROUTINE_UNIFORM, FRAGMENT_ -
SUBROUTINE_UNIFORM, GEOMETRY_ -
SUBROUTINE_UNIFORM, PROGRAM_ -

INPUT, PROGRAM_OUTPUT, TESS_-
CONTROL_SUBROUTINE_UNIFORM,
TESS_EVALUATION_SUBROUTINE_—
UNIFORM, TRANSFORM_FEEDBACK_ -
VARYING, UNIFORM, VERTEX_ -
SUBROUTINE_UNIFORM

ARRAY_STRIDE, BLOCK_INDEX, IS_-
ROW_MAJOR, MATRIX_STRIDE

BUFFER_VARIABLE, UNIFORM

ATOMIC_COUNTER_BUFFER_INDEX

UNIFORM

BUFFER_DATA_SIZE

ATOMIC_COUNTER_BUFFER, SHADER -
STORAGE_BLOCK, UNIFORM_BLOCK

NUM_COMPATIBLE_SUBROUTINES,
COMPATIBLE_SUBROUTINES

COMPUTE_SUBROUTINE_UNIFORM,
FRAGMENT_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM,
TESS_CONTROL_SUBROUTINE_-—
UNIFORM, TESS_EVALUATION_ -
SUBROUTINE_UNIFORM, VERTEX_ -
SUBROUTINE_UNIFORM

IS_PER_PATCH

PROGRAM_INPUT, PROGRAM_OUTPUT

LOCATION

COMPUTE_SUBROUTINE_UNIFORM,
FRAGMENT_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT,
TESS_CONTROL_SUBROUTINE_-—
UNIFORM, TESS_EVALUATION_ -
SUBROUTINE_UNIFORM, UNIFORM,
VERTEX_SUBROUTINE_UNIFORM

GetProgramResourceiv properties continued on next page

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS

106

GetProgramResourceiv properties continued from previous page

Property

|

Supported Interfaces

LOCATION_COMPONENT

PROGRAM_INPUT, PROGRAM_OUTPUT

LOCATION_INDEX

PROGRAM_OUTPUT

NAME_LENGTH

all but ATOMIC_COUNTER_BUFFER and
TRANSFORM_FEEDBACK_BUFFER

OFFSET

BUFFER_VARIABLE, TRANSFORM_ -
FEEDBACK_VARYING, UNIFORM

REFERENCED_BY_VERTEX_ -

SHADER, REFERENCED_BY_ TESS_—
CONTROL_SHADER, REFERENCED_ —
BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_ GEOMETRY_SHADER,
REFERENCED_BY_FRAGMENT_SHADER,
REFERENCED_BY_ COMPUTE_SHADER

ATOMIC_COUNTER_BUFFER, BUFFER_—

VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, SHADER_—
STORAGE_BLOCK, UNIFORM,

UNIFORM_BLOCK

TRANSFORM_FEEDBACK_BUFFER_-—
INDEX

TRANSFORM_FEEDBACK_VARYING

TRANSFORM_FEEDBACK_BUFFER_-—
STRIDE

TRANSFORM_FEEDBACK_BUFFER

TOP_LEVEL_ARRAY_SIZE,
LEVEL_ARRAY_ STRIDE

TOP_—-

BUFFER_VARIABLE

TYPE

BUFFER_VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, TRANSFORM_ -
FEEDBACK_VARYING, UNIFORM

Table 7.2: GetProgramResourceiv properties and supported in-

terfaces

For the property ACTIVE_VARIABLES, an array of active variable indices as-
sociated with an atomic counter buffer, active uniform block, shader storage block,
or transform feedback buffer is written to params. The number of values written to
params for an active resource is given by the value of the property NUM_ACTIVE_-

VARIABLES for the resource.

For the property ARRAY_SIZE, a single integer identifying the number of active
array elements of an active variable is written to params. The array size returned
is in units of the type associated with the property TYPE. For active variables not
corresponding to an array of basic types, the value one is written to params. If the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 107

variable is an array whose size is not declared or determined when the program is
linked, the value zero is written to params.

For the property ARRAY_STRIDE, a single integer identifying the stride be-
tween array elements in an active variable is written to params. For active variables
declared as an array of basic types, the value written is the difference, in basic ma-
chine units, between the offsets of consecutive elements in an array. For active
variables not declared as an array of basic types, zero is written to params. For
active variables not backed by a buffer object, -1 is written to params, regardless
of the variable type.

For the property ATOMIC_COUNTER_BUFFER_INDEX, a single integer identi-
fying the index of the active atomic counter buffer containing an active variable is
written to params. If the variable is not an atomic counter uniform, the value -1 is
written to params.

For the property BLOCK_INDEX, a single integer identifying the index of the
active interface block containing an active variable is written to params. The
index written for a member of an interface block declared as an array of block
instances is the index of the first block of the array. If the variable is not the
member of an interface block, the value -1 is written to params.

For the property BUFFER_BINDING, the index of the buffer binding point asso-
ciated with the active uniform block, atomic counter buffer, shader storage block,
or transform feedback buffer is written to params.

For the property BUFFER_DATA_SIZE, the implementation-dependent mini-
mum total buffer object size is written to params. This value is the size, in basic
machine units, required to hold all active variables associated with an active uni-
form block, shader storage block, or atomic counter buffer. If the final member of
an active shader storage block is an array with no declared size, the minimum buffer
size is computed assuming the array was declared as an array with one element.

For the property IS_PER_PATCH, a single integer identifying whether the input
or output is a per-patch attribute is written to params. If the active variable is a
per-patch attribute (declared with the patch qualifier), the value one is written to
params; otherwise, the value zero is written to params.

For the property 1S_ROW_MAJOR, a single integer identifying whether an active
variable is a row-major matrix is written to params. For active variables backed by
a buffer object, declared as a single matrix or array of matrices, and stored in row-
major order, one is written to params. For all other active variables, zero is written
to params.

For the property LOCATION, a single integer identifying the assigned location
for an active uniform, input, output, or subroutine uniform variable is written to
params. For input, output, or uniform variables with locations specified by a
layout qualifier, the specified location is used. For vertex shader input, frag-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 108

ment shader output, or uniform variables without a 1ayout qualifier, the location
assigned when a program is linked is written to params. For all other input and
output variables, the value -1 is written to params. For atomic counter uniforms
and uniforms in uniform blocks, the value -1 is written to params.

For the property LOCATION_COMPONENT, a single integer indicating the first
component of the location assigned to an active input or output variable is writ-
ten to params. For input and output variables with a component specified by a
layout qualifier, the specified component is written. For all other input and output
variables, the value zero is written.

For the property LOCATION_INDEX, a single integer identifying the fragment
color index of an active fragment shader output variable is written to params. If the
active variable is not an output for a fragment shader, the value -1 will be written
to params.

For the property MATRIX_STRIDE, a single integer identifying the stride be-
tween columns of a column-major matrix or rows of a row-major matrix is written
to params. For active variables declared a single matrix or array of matrices, the
value written is the difference, in basic machine units, between the offsets of con-
secutive columns or rows in each matrix. For active variables not declared as a
matrix or array of matrices, zero is written to params. For active variables not
backed by a buffer object, -1 is written to params, regardless of the variable type.

For the property NAME_LENGTH, a single integer identifying the length of the
name string associated with an active variable, interface block, or subroutine is
written to params. The name length includes a terminating null character.

For the property NUM_ACTIVE_VARIABLES, the number of active variables as-
sociated with an active uniform block, atomic counter buffer, shader storage block,
or transform feedback buffer is written to params.

For the property OFFSET, a single integer identifying the offset of an ac-
tive variable is written to params. For variables in the BUFFER_VARTIABLE and
UNIFORM interfaces that are backed by a buffer object, the value written is the
offset of that variable relative to the base of the buffer range holding its value.
For variables in the TRANSFORM_FEEDBACK_VARYING interface, the value writ-
ten is the offset in the transform feedback buffer storage assigned to each ver-
tex captured in transform feedback mode where the value of the variable will
be stored. Such offsets are specified via the xfb_offset layout qualifier
or assigned according to the variables position in the list of strings passed to
TransformFeedbackVaryings. Offsets are expressed in basic machine units.
For all variables not recorded in transform feedback mode, including the spe-
cial names g1_NextBuffer, gl_SkipComponentsl, gl_SkipComponents?2,
gl_SkipComponents3, and g1_SkipComponents4, -1 is written to params.

For the properties REFERENCED_BY VERTEX_ SHADER, REFERENCED_-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 109

BY_TESS_CONTROL_SHADER, REFERENCED_BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_ GEOMETRY_SHADER, REFERENCED_BY_ FRAGMENT_SHADER,
and REFERENCED_BY_COMPUTE_SHADER, a single integer is written to params,
identifying whether the active resource is referenced by the vertex, tessellation con-
trol, tessellation evaluation, geometry, fragment, or compute shaders, respectively,
in the program object. The value one is written to params if an active variable is
referenced by the corresponding shader, or if an active uniform block, shader stor-
age block, or atomic counter buffer contains at least one variable referenced by the
corresponding shader. Otherwise, the value zero is written to params.

For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
number of active array elements of the top-level shader storage block member con-
taining the active variable is written to params. If the top-level block member is
not declared as an array of an aggregate type, the value one is written to params.
If the top-level block member is an array of an aggregate type whose size is not
declared or determined when the program is linked, the value zero is written to
params.

For the property TOP_LEVEL_ARRAY_STRIDE, a single integer identifying the
stride between array elements of the top-level shader storage block member con-
taining the active variable is written to params. For top-level block members de-
clared as arrays of an aggregate type, the value written is the difference, in basic
machine units, between the offsets of the active variable for consecutive elements
in the top-level array. For top-level block members not declared as an array of an
aggregate type, zero is written to params.

For the property TRANSFORM_FEEDBACK_BUFFER_INDEX, a single integer
identifying the index of the active transform feedback buffer associated with an
active variable is written to params. For variables corresponding to the spe-
cial names g1_NextBuffer, gl_SkipComponentsl, gl_SkipComponents?2,
gl_SkipComponents3, and g1_SkipComponents4, -1 is written to params.

For the property TRANSFORM_FEEDBACK_BUFFER_STRIDE, a single integer
identifying the stride, in basic machine units, between consecutive vertices written
to the transform feedback buffer is written to params.

For the property TYPE, a single integer identifying the type of an active variable
is written to params. The integer returned is one of the values found in table 7.3.

Type Name Token Keyword ‘ Attrib‘ Xtb ‘ Buffeﬁ
FLOAT float (] ° (]
FLOAT_VEC2 vec2 o o
FLOAT_VEC3 vec3 ° °

(Continued on next page)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 110
OpenGL Shading Language Type Tokens (continued)
Type Name Token | Keyword | Attrib| Xfb | Buffer
FLOAT_VEC4 vecd ° ° °
DOUBLE double . . °
DOUBLE_VEC2 dvec?2 ° ° °
DOUBLE_VEC3 dvec3 ° ° °
DOUBLE_VEC4 dvec4d ° ° °
INT int ° ° °
INT_VEC2 ivec2 ° ° °
INT_VEC3 ivec3 . ° .
INT_VEC4 ivec4 . ° .
UNSIGNED_INT uint ° ° °
UNSIGNED_INT_VEC2 uvec?2 ° ° °
UNSIGNED_INT_VEC3 uvec3 [° °
UNSIGNED_INT_VEC4 uvecd ° ° °
BOOL bool]
BOOL_VEC2 bvec2 °
BOOL_VEC3 bvec3 (]
BOOL_VEC4 bvec4 (]
FLOAT_MAT2 mat2 ° ° °
FLOAT_MAT3 mat3 ° ° °
FLOAT_MATA4 mat4 ° ° °
FLOAT_MAT2x3 mat2x3 ° ° °
FLOAT_MAT2x4 mat2x4 ° ° °
FLOAT_MAT3x2 mat3x2 ° ° °
FLOAT_MAT3x4 mat3x4 ° ° °
FLOAT_MAT4x2 mat4x2 ° ° °
FLOAT_MAT4x3 mat4x3 . ° °
DOUBLE_MAT2 dmat2 [o °
DOUBLE_MAT3 dmat3 ° ° °
DOUBLE_MATA4 dmat4 ° o °
DOUBLE_MAT2x3 dmat2x3 . ° °
DOUBLE_MAT2x4 dmat2x4 ° ° °
DOUBLE_MAT3x2 dmat3x2 . ° °
DOUBLE_MAT3x4 dmat3x4 ° ° °
DOUBLE_MAT4x2 dmat4x2 ° ° °
DOUBLE_MAT4x3 dmat4x3 ° . °

(Continued on next page)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS

111

OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
SAMPLER_1D samplerlD

SAMPLER_2D sampler2D

SAMPLER_3D sampler3D

SAMPLER_CUBE samplerCube

SAMPLER_1D_SHADOW samplerlDShadow

SAMPLER_2D_SHADOW sampler2DShadow

SAMPLER_1D_ARRAY samplerlDArray

SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_CUBE_MAP_ARRAY samplerCubeArray

SAMPLER_1D_ARRAY_SHADOW

samplerlDArrayShadow

SAMPLER_2D_ARRAY_SHADOW

sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE

sampler2DMS

SAMPLER_2D_MULTISAMPLE_-—
ARRAY

sampler2DMSArray

SAMPLER_CUBE__SHADOW

samplerCubeShadow

SAMPLER_CUBE_MAP_ARRAY_ - samplerCube-
SHADOW ArrayShadow
SAMPLER_BUFFER samplerBuffer
SAMPLER_2D_RECT sampler2DRect

SAMPLER_2D_RECT_SHADOW

sampler2DRectShadow

INT_SAMPLER_1D isamplerlD
INT_SAMPLER_2D isampler2D
INT_SAMPLER_3D isampler3D
INT_SAMPLER_CUBE isamplerCube
INT_SAMPLER_1D_ARRAY isamplerlDArray
INT_SAMPLER_2D_ARRAY isampler2DArray

INT_SAMPLER_CUBE_MAP_ -
ARRAY

isamplerCubeArray

INT_SAMPLER_2D_ - isampler2DMS
MULTISAMPLE

INT_SAMPLER_2D_-— isampler2DMSArray
MULTISAMPLE_ARRAY

INT_SAMPLER_BUFFER isamplerBuffer
INT_SAMPLER_2D_RECT isampler2DRect
UNSIGNED_INT_SAMPLER_1D usamplerlD

(Continued on next page)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS

112

OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
UNSIGNED_INT_SAMPLER_2D usampler2D

UNSIGNED_INT_SAMPLER_3D usampler3D

UNSIGNED_INT_SAMPLER_-— usamplerCube

CUBE

UNSIGNED_INT_SAMPLER_ - usamplerlDArray

1D_ARRAY

UNSIGNED_INT_SAMPLER_-— usampler2DArray

2D_ARRAY

UNSIGNED_INT_SAMPLER_ -
CUBE_MAP_ARRAY

usamplerCubeArray

UNSIGNED_INT_SAMPLER_ - usampler2DMS
2D_MULTISAMPLE

UNSIGNED_INT_SAMPLER_ - usampler2DMSArray
2D_MULTISAMPLE_ARRAY
UNSIGNED_INT_SAMPLER_- usamplerBuffer
BUFFER

UNSIGNED_INT_SAMPLER_ - usampler2DRect
2D_RECT

IMAGE_1D imagelD
IMAGE_2D image2D
IMAGE_3D image3D
IMAGE_2D_RECT image2DRect
IMAGE_CUBE imageCube
IMAGE_BUFFER imageBuffer
IMAGE_1D_ARRAY imagelDArray
IMAGE_2D_ARRAY image2DArray
IMAGE_CUBE_MAP_ARRAY imageCubeArray
IMAGE_2D_MULTISAMPLE image2DMS
IMAGE_2D_MULTISAMPLE_ - image2DMSArray
ARRAY

INT_IMAGE_1D iimagelD
INT_IMAGE_2D iimage2D
INT_IMAGE_3D iimage3D
INT_IMAGE_2D_RECT iimage2DRect
INT_IMAGE_CUBE iimageCube

(Continued on next page)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS

113

OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
INT_IMAGE_BUFFER iimageBuffer
INT_IMAGE_1D_ARRAY iimagelDArray
INT_IMAGE_2D_ARRAY iimage2DArray
INT_IMAGE_CUBE_MAP_ARRAY | iimageCubeArray
INT_IMAGE_2D_MULTISAMPLE | iimage2DMS
INT_IMAGE_2D - iimage2DMSArray
MULTISAMPLE_ARRAY

UNSIGNED_INT_IMAGE_1D uimagelD
UNSIGNED_INT_IMAGE_2D uimage?2D
UNSIGNED_INT_IMAGE_3D uimage3D
UNSIGNED_INT_IMAGE_2D_- uimage2DRect
RECT

UNSIGNED_INT_IMAGE_CUBE uimageCube
UNSIGNED_INT_IMAGE_ - uimageBuffer
BUFFER

UNSIGNED_INT_IMAGE_1D_- uimagelDArray
ARRAY

UNSIGNED_INT_IMAGE_2D_- uimage2DArray
ARRAY

UNSIGNED_INT_IMAGE_- uimageCubeArray
CUBE_MAP_ARRAY

UNSIGNED_INT_IMAGE_2D_- uimage2DMS
MULTISAMPLE

UNSIGNED_INT_IMAGE_2D_-— uimage2DMSArray
MULTISAMPLE_ARRAY

UNSIGNED_INT_ATOMIC_- atomic_uint
COUNTER

Table 7.3: OpenGL Shading Language type tokens, and corre-
sponding shading language keywords declaring each such type.
Types whose “Attrib” column is marked may be declared as ver-
tex attributes (see section 11.1.1). Types whose “Xfb” column
is marked may be the types of variables returned by transform
feedback (see section 11.1.2.1). Types whose “Buffer” column is
marked may be declared as buffer variables (see section 7.8).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 114

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_VALUE error is generated if propCount is less than or equal
to zero, or if bufSize is negative.

An INVALID_ENUM error is generated if any value in props is not one of
the properties described above.

An INVALID_OPERATION error is generated if any value in props is not
allowed for programlnterface. The set of allowed programlinterface values for
each property can be found in table 7.2.

The commands

int GetProgramResourceLocation(uint program,
enum programlinterface, const char *name);

int GetProgramResourceLocationIndex(uint program,
enum programlinterface, const char *name);

return the location or the fragment color index, respectively, assigned to the
variable named name in interface programinterface of program object program.
For GetProgramResourceLocation, programlInterface must be one of UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT, VERTEX_SUBROUTINE_UNIFORM,
TESS_CONTROL_SUBROUTINE_UNIFORM, TESS_EVALUATION_SUBROUTINE_ -
UNIFORM, GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_SUBROUTINE_-
UNIFORM, or COMPUTE_SUBROUTINE_UNIFORM. For GetProgramResourcelLo-
cationIndex, programinterface must be PROGRAM_OUTPUT. The value -1 will be
returned by either command if an error occurs, if name does not identify an ac-
tive variable on programlinterface, or if name identifies an active variable that does
not have a valid location assigned, as described above. The locations returned by
these commands are the same locations returned when querying the LOCATION and
LOCATION_INDEX resource properties.

A string provided to GetProgramResourceLocation or GetProgramRe-
sourceLocationIndex is considered to match an active variable if

o the string exactly matches the name of the active variable;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 115

e if the string identifies the base name of an active array, where the string
would exactly match the name of the variable if the suffix " [0] " were ap-
pended to the string; or

o if the string identifies an active element of the array, where the string ends
with the concatenation of the " [" character, an integer (with no "+" sign,
extra leading zeroes, or whitespace) identifying an array element, and the
"1™ character, the integer is less than the number of active elements of the
array variable, and where the string would exactly match the enumerated
name of the array if the decimal integer were replaced with zero.

Any other string is considered not to identify an active variable. If the string
specifies an element of an array variable, GetProgramResourcelLocation and
GetProgramResourceLocationIndex return the location or fragment color index
assigned to that element. If it specifies the base name of an array, it identifies the
resources associated with the first element of the array.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces named above.

7.4 Program Pipeline Objects

Instead of packaging all shader stages into a single program object, shader types
might be contained in multiple program objects each consisting of part of the com-
plete pipeline. A program object may even contain only a single shader stage.
This facilitates greater flexibility when combining different shaders in various ways
without requiring a program object for each combination.

A program pipeline object contains bindings for each shader type associating
that shader type with a program object.

The command

void GenProgramPipelines(sizei n, uint *pipelines);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 116

returns n previously unused program pipeline object names in pipelines. These
names are marked as used, for the purposes of GenProgramPipelines only, but
they acquire state only when they are first bound.

Errors
An INVALID_VALUE error is generated if # is negative.
Program pipeline objects are deleted by calling

void DeleteProgramPipelines(sizei n, const
uint *pipelines);

pipelines contains n names of program pipeline objects to be deleted. Once a
program pipeline object is deleted, it has no contents and its name becomes un-
used. If an object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current. Unused names in
pipelines that have been marked as used for the purposes of GenProgramPipelines
are marked as unused again. Unused names in pipelines are silently ignored, as is
the value zero.

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsProgramPipeline(uint pipeline);

returns TRUE if pipeline is the name of a program pipeline object. If pipeline
is zero, or a non-zero value that is not the name of a program pipeline object,
IsProgramPipeline returns FALSE. No error is generated if pipeline is not a valid
program pipeline object name.

A program pipeline object is created by binding a name returned by GenPro-
gramPipelines with the command

void BindProgramPipeline(uint pipeline);

pipeline is the program pipeline object name. The resulting program pipeline
object is a new state vector, comprising all the state and with the same initial values
listed in table 23.42.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 117

BindProgramPipeline may also be used to bind an existing program pipeline
object. If the bind is successful, no change is made to the state of the bound
program pipeline object, and any previous binding is broken. If BindPro-
gramPipeline is called with pipeline set to zero, then there is no current program
pipeline object.

If no current program object has been established by UseProgram, the pro-
gram objects used for each shader stage and for uniform updates are taken from
the bound program pipeline object, if any. If there is a current program object
established by UseProgram, the bound program pipeline object has no effect on
rendering or uniform updates. When a bound program pipeline object is used for
rendering, individual shader executables are taken from its program objects as de-
scribed in the discussion of UseProgram in section 7.3).

Errors

An INVALID_OPERATION error is generated if pipeline is not zero or a
name returned from a previous call to GenProgramPipelines, or if such a
name has since been deleted with DeleteProgramPipelines.

Program pipeline objects may also be created with the command
void CreateProgramPipelines(sizei n, uint *pipelines);

CreateProgramPipelines returns n previously unused program pipeline names
in pipelines, each representing a new program pipeline object which is a state vec-
tor comprising all the state and with the same initial values listed in table 23.42.

Errors
An INVALID_VALUE error is generated if 7 is negative.

The executables in a program object associated with one or more shader stages
can be made part of the program pipeline state for those shader stages with the
command

void UseProgramStages(uint pipeline, bit field stages,
uint program);

where pipeline is the program pipeline object to be updated, stages is the bitwise

OR of accepted constants representing shader stages, and program identifies the
program from which the executables are taken.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 118

The bits set in stages indicate the program stages for which the pro-
gram object named by program becomes current. These stages may in-
clude compute, vertex, tessellation control, tessellation evaluation, geome-
try, or fragment, indicated respectively by COMPUTE_SHADER_BIT, VERTEX_ -
SHADER_BIT, TESS_CONTROL_SHADER BIT, TESS_EVALUATION_SHADER_ —
BIT, GEOMETRY_SHADER BIT, Oor FRAGMENT_SHADER_BIT. The constant ALL_-
SHADER_BITS indicates program is to be made current for all shader stages.

If program refers to a program object with a valid shader attached for an indi-
cated shader stage, this call installs the executable code for that stage in the indi-
cated program pipeline object state. If UseProgramsStages is called with program
set to zero or with a program object that contains no executable code for any stage
in stages, it is as if the pipeline object has no programmable stage configured for
that stage.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_VALUE error is generated if stages is not the special value
ALL_SHADER BITS, and has any bits set other than VERTEX_ SHADER_BIT,
COMPUTE_SHADER_BIT, TESS_-
CONTROL_SHADER_BIT, TESS_EVALUATION_SHADER_BIT, GEOMETRY_ -
SHADER_BIT, and FRAGMENT_SHADER_BIT.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
was linked without the PROGRAM SEPARABLE parameter set, or has not been
linked successfully. The corresponding shader stages in pipeline are not mod-
ified.

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

The command

void ActiveShaderProgram(uint pipeline, uint program);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 119

sets the linked program named by program to be the active program (see sec-
tion 7.6.1) used for uniform updates for the program pipeline object pipeline. If
program is zero, then it is as if there is no active program for pipeline.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
has not been linked successfully. The active program is not modified.

7.4.1 Shader Interface Matching

When multiple shader stages are active, the outputs of one stage form an interface
with the inputs of the next stage. At each such interface, shader inputs are matched
up against outputs from the previous stage:

e An output block is considered to match an input block in the subsequent
shader if the two blocks have the same block name, and the members of the
block match exactly in name, type, qualification, and declaration order.

e An output variable is considered to match an input variable in the subsequent
shader if:

— the two variables match in name, type, and qualification, and neither
has a 1ocation qualifier, or

— the two variables are declared with the same location and
component layout qualifiers and match in type and qualification.

For the purposes of interface matching, variables declared with a location
layout qualifier but without a component layout qualifier are considered to

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 120

have declared a component layout qualifier of zero. Variables or block mem-
bers declared as structures are considered to match in type if and only if structure
members match in name, type, qualification, and declaration order. Variables or
block members declared as arrays are considered to match in type only if both
declarations specify the same element type and array size. The rules for determin-
ing if variables or block members match in qualification are found in the OpenGL
Shading Language Specification.

Tessellation control shader per-vertex output variables and blocks and tessella-
tion control, tessellation evaluation, and geometry shader per-vertex input variables
and blocks are required to be declared as arrays, with each element representing
input or output values for a single vertex of a multi-vertex primitive. For the pur-
poses of interface matching, such variables and blocks are treated as though they
were not declared as arrays.

For program objects containing multiple shaders, LinkProgram will check
for mismatches on interfaces between shader stages in the program being linked
and generate a link error if a mismatch is detected. A link error is generated if
any statically referenced input variable or block does not have a matching out-
put. If either shader redeclares the built-in arrays

the array must have the same size in both
shaders.

With separable program objects, interfaces between shader stages may involve
the outputs from one program object and the inputs from a second program object.
For such interfaces, it is not possible to detect mismatches at link time, because the
programs are linked separately. When each such program is linked, all inputs or
outputs interfacing with another program stage are treated as active. The linker will
generate an executable that assumes the presence of a compatible program on the
other side of the interface. If a mismatch between programs occurs, no GL error is
generated, but some or all of the inputs on the interface will be undefined.

At an interface between program objects, the set of inputs and outputs are con-
sidered to match exactly if and only if:

e Every declared input block or variable must have a matching output, as de-
scribed above.

e There are no output blocks or user-defined output variables declared without
a matching input block or variable declaration.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 121

When the set of inputs and outputs on an interface between programs matches
exactly, all inputs are well-defined except when the corresponding outputs were
not written in the previous shader. However, any mismatch between inputs and
outputs results in all inputs being undefined except for cases noted below. Even
if an input has a corresponding output that matches exactly, mismatches on other
inputs or outputs may adversely affect the executable code generated to read or
write the matching variable.

The inputs and outputs on an interface between programs need not match ex-
actly when input and output location qualifiers (sections 4.4.1(“Input Layout Qual-
ifiers”) and 4.4.2(“Output Layout Qualifiers”) of the OpenGL Shading Language
Specification) are used. When using location qualifiers, any input with an input
location qualifier will be well-defined as long as the other program writes to a
matching output, as described above. The names of variables need not match when
matching by location.

Additionally, scalar and vector inputs with location layout qualifiers will
be well-defined if there is a corresponding output satisfying all of the following
conditions:

e the input and output match exactly in qualification, including in the
location layout qualifier;

e the output is a vector with the same basic component type and has more
components than the input; and

o the common component type of the input and output is int, uint, or float
(scalars, vectors, and matrices with double component type are excluded).

In this case, the components of the input will be taken from the first components
of the matching output, and the extra components of the output will be ignored.
To use any built-in input or output in the
in separable program objects, shader code must redeclare
prior to use. A separable program will fail to link if:

e it contains multiple shaders of a single type with different redeclarations of
e any shader uses a built-in block member not found in the redeclaration of
that block.

There is one exception to this rule described below.
As described above, an exact interface match requires matching built-in input
and output blocks. At an interface between two non-fragment shader stages, the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS

gl_PerVertex input and output blocks are considered to match if and only if the
block members match exactly in name, type, qualification, and declaration order.
At an interface involving the fragment shader stage, a g1_PerVertex output block
is considered to match a gl_PerFragment input block if all of the following
conditions apply:

e the gl_PervVertex block includes either gl_FrontColor or gl_-
BackColor if and only if the g1_PerFragment block includes g1_Color;

e the gl_PerVertex block includes either g1_FrontSecondaryColor or
gl_BackSecondaryColor if and only if the g1_PerFragment block in-
cludes g1_SecondaryColor;

e the gl_PerVertex block includes g1_FogFragCoord if and only if the
gl_PerFragment block also includes g1_FogFragCoord; and

e the size of gl_TexCoord[] in gl_PerVertex and gl_PerFragment is
identical.

At an interface between gl_PerVertex outputs and gl_PerFragment in-
puts, the presence or absence of any block members other than those listed imme-
diately above does not affect interface matching.

Built-in inputs or outputs not found in blocks do not affect interface match-
ing. Any such built-in inputs are well-defined unless they are derived from built-in
outputs not written by the previous shader stage.

7.4.2 Program Pipeline Object State

The state required to support program pipeline objects consists of a single binding
name of the current program pipeline object. This binding is initially zero indicat-
ing no program pipeline object is bound.

The state of each program pipeline object consists of:

e Unsigned integers holding the names of the active program and each of the
current vertex, tessellation control, tessellation evaluation, geometry, frag-
ment, and compute stage programs. Each integer is initially zero.

e A boolean holding the status of the last validation attempt, initially false.

e An array of type char containing the information log (see section 7.13),
initially empty.

e An integer holding the length of the information log.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

122

7.5. PROGRAM BINARIES 123

7.5 Program Binaries
The command

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum number
of bytes that may be written into binary is specified by bufSize. The actual num-
ber of bytes written into binary is returned in length and its format is returned in
binaryFormat. If length is NULL, then no length is returned.

The number of bytes in the program binary may be queried by calling GetPro-
gramiv with pname PROGRAM_BINARY_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully. In this case its program binary length is zero.

An INVALID_VALUE error is generated if bufSize is negative.

An INVALID_OPERATION error is generated if bufSize is less than the
number of bytes in the program binary.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful to avoid online compilation, while still using OpenGL
Shading Language source shaders as a portable initial format. binaryFormat and
binary must be those returned by a previous call to GetProgramBinary, and length
must be the length of the program binary as returned by GetProgramBinary or
GetProgramiv with pname PROGRAM_BINARY_LENGTH. Loading the program bi-
nary will fail, setting the LINK_STATUS of program to FALSE, if these conditions
are not met.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.5. PROGRAM BINARIES 124

Loading a program binary may also fail if the implementation determines that
there has been a change in hardware or software configuration from when the pro-
gram binary was produced such as having been compiled with an incompatible
or outdated version of the compiler. In this case the application should fall back
to providing the original OpenGL Shading Language source shaders, and perhaps
again retrieve the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,
as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfoLog, to provide details about warnings
Or errors.

A successful call to ProgramBinary will reset all uniform variables in the
default uniform block, all uniform block buffer bindings, and all shader storage
block buffer bindings to their initial values. The initial value is either the value
of the variable’s initializer as specified in the original shader source, or zero if no
initializer was present.

Additionally, all vertex shader input and fragment shader output assignments
and atomic counter binding, offset and stride assignments that were in effect when
the program was linked before saving are restored when ProgramBinary is called
successfully.

If ProgramBinary fails to load a binary, no error is generated, but any infor-
mation about a previous link or load of that program object is lost. Thus, a failed
load does not restore the old state of program. The failure does not alter other
program state not affected by linking such as the attached shaders, and the vertex
attribute and fragment data location bindings as set by BindAttribLocation and
BindFragDataLocation.

OpenGL defines no specific binary formats. Queries of values NUM_-
PROGRAM_BINARY FORMATS and PROGRAM_BINARY_ FORMATS return the num-
ber of program binary formats and the list of program binary format values sup-
ported by an implementation. The binaryFormat returned by GetProgramBinary
must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector.

If an implementation needs to recompile or otherwise modify program exe-
cutables based on GL state outside the program, GetProgramBinary is required
to save enough information to allow such recompilation.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 125

To indicate that a program binary is likely to be retrieved, ProgramParameteri
should be called with pname set to PROGRAM_BINARY RETRIEVABLE_HINT and
value set to TRUE. This setting will not be in effect until the next time LinkPro-
gram or ProgramBinary has been called successfully. Additionally, the appli-
cation may defer GetProgramBinary calls until after using the program with all
non-program state vectors that it is likely to encounter. Such deferral may allow
implementations to save additional information in the program binary that would
minimize recompilation in future uses of the program binary.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if binaryFormat is not a binary for-
mat present in the list of specific binary formats supported.

An INVALID_VALUE error is generated if length is negative.

7.6 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. A uniform is considered an active uniform if the compiler
and linker determine that the uniform will actually be accessed when the executable
code is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms, except for atomic counters, images, samplers, and subroutine
uniforms, can be grouped into uniform blocks.

Named uniform blocks, as described in the OpenGL Shading Language Speci-
fication, store uniform values in the data store of a buffer object corresponding to
the uniform block. Such blocks are assigned a uniform block index.

Uniforms that are declared outside of a named uniform block are part of the
default uniform block. The default uniform block has no name or uniform block
index. Uniforms in the default uniform block, except for subroutine uniforms, are
program object-specific state. They retain their values once loaded, and their values
are restored whenever a program object is used, as long as the program object has
not been re-linked.

Like uniforms, uniform blocks can be active or inactive. Active uniform blocks
are those that contain active uniforms after a program has been compiled and

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 126

Shader Stage pname for querying default uniform
block storage, in components

Vertex (see section 11.1.2) MAX_VERTEX_UNIFORM_COMPONENTS

Tessellation control (see section 11.2.1.1) MAX_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation (see section 11.2.3.1) | MAX_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry (see section 11.3.3) MAX_GEOMETRY_UNIFORM_COMPONENTS
Fragment (see section 15.1) MAX_FRAGMENT_UNIFORM_COMPONENTS
Compute (see section 19.1) MAX_COMPUTE_UNIFORM_COMPONENTS

Table 7.4: Query targets for default uniform block storage, in components.

linked. Uniform blocks declared in an array are considered active if any member
of the array would otherwise be considered active.

All members of a named uniform block declared with a shared or std140
layout qualifier are considered active, even if they are not referenced in any shader
in the program. The uniform block itself is also considered active, even if no
member of the block is referenced.

The implementation-dependent amount of storage available for uniform vari-
ables, except for subroutine uniforms and atomic counters, in the default uniform
block accessed by a shader for a particular shader stage may be queried by calling
GetlIntegerv with pname as specified in table 7.4 for that stage.

The implementation-dependent constants MAX_VERTEX_UNIFORM_VECTORS
and MAX_FRAGMENT_UNIFORM_VECTORS have values respectively equal to
the values of MAX_VERTEX_UNIFORM_COMPONENTS and MAX_FRAGMENT_-
UNIFORM_COMPONENTS divided by four.

The total amount of combined storage available for uniform variables in all
uniform blocks accessed by a shader for a particular shader stage can be queried
by calling GetIntegerv with pname as specified in table 7.5 for that stage.

These values represent the numbers of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a shader. For uni-
forms with boolean, integer, or floating-point components,

e A scalar uniform will consume no more than 1 component

e A vector uniform will consume no more than n components, where n is the
vector component count

e A matrix uniform will consume no more than 4 x min(r,c) components,
where 7 and c are the number of rows and columns in the matrix.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 127

Shader Stage pname for querying combined uniform
block storage, in components

Vertex MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS

Tessellation control MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation | MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry MAX_ COMBINED_GEOMETRY_UNIFORM_COMPONENTS
Fragment MAX_ COMBINED_FRAGMENT_UNIFORM_COMPONENTS
Compute MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS

Table 7.5: Query targets for combined uniform block storage, in components.

Scalar, vector, and matrix uniforms with double-precision components will
consume no more than twice the number of components of equivalent uniforms
with floating-point components.

Errors

A link error is generated if an attempt is made to utilize more than the
space available for uniform variables in a shader stage.

When a program is linked successfully, all active uniforms, except for atomic
counters, belonging to the program object’s default uniform block are initialized
as defined by the version of the OpenGL Shading Language used to compile the
program. A successful link will also generate a location for each active uniform in
the default uniform block which doesn’t already have an explicit location defined
in the shader. The generated locations will never take the location of a uniform
with an explicit location defined in the shader, even if that uniform is determined
to be inactive. The values of active uniforms in the default uniform block can be
changed using this location and the appropriate Uniform* or ProgramUniform®*
command (see section 7.6.1). These generated locations are invalidated and new
ones assigned after each successful re-link. The explicitly defined locations and the
generated locations must be in the range of zero to the value of MAX_UNIFORM_-—
LOCATIONS minus one.

Similarly, when a program is linked successfully, all active atomic counters
are assigned bindings, offsets (and strides for arrays of atomic counters) according
to layout rules described in section 7.6.2.2. Atomic counter uniform buffer objects
provide the storage for atomic counters, so the values of atomic counters may be
changed by modifying the contents of the buffer object using the commands in
sections 6.2, 6.2.1, 6.3, 6.5, and 6.6. Atomic counters are not assigned a location

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 128

and may not be modified using the Uniform* commands. The bindings, offsets,
and strides belonging to atomic counters of a program object are invalidated and
new ones assigned after each successful re-link.

Similarly, when a program is linked successfully, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object. Uniforms in a named uniform
block are not assigned a location and may not be modified using the Uniform*
commands. The offsets and strides of all active uniforms belonging to named uni-
form blocks of a program object are invalidated and new ones assigned after each
successful re-link.

To determine the set of active uniform variables used by a program, applica-
tions can query the properties and active resources of the UNIFORM interface of a
program.

Additionally, several dedicated commands are provided to query properties of
active uniforms. The command

int GetUniformLocation(uint program, const
char *name);

is equivalent to
GetProgramResourceLocation (program, UNIFORM, name) ;
The command

void GetActiveUniformName(uint program,
uint uniformilndex, sizei bufSize, sizei *length,
char *uniformName);

is equivalent to

GetProgramResourceName (program, UNIFORM, wuniformIndez,
bufSize, length, wuniformName) ;

The command

void GetUniformIndices(uint program,
sizei uniformCount, const char * const
*uniformNames, uint *uniformlndices);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 129

is equivalent (assuming no errors are generated) to:

for (int i = 0; 1 < wuniformCount; i++) {
uniformIndices [1] = GetProgramResourcelndex (program,
UNIFORM, uniformNames([1]) ;

}

The command

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

is equivalent (assuming no errors are generated) to:

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName (program, UNIFORM, index,
bufSize, length, name) ;
GetProgramResourceiv (program, UNIFORM, index,
1, &props([0], 1, NULL, size);
GetProgramResourceiv (program, UNIFORM, index,
1, &props([l], 1, NULL, (int x)type);

The command

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

is equivalent (assuming no errors are generated) to:

GLenum prop;
for (int i = 0; 1 < wniformCount; i++) {
GetProgramResourceiv (program, UNIFORM, wuniformIndices[i],
1, &prop, 1, NULL, ¶ms[i]);

}

where the value of prop is taken from table 7.6, based on the value of pname.
To determine the set of active uniform blocks used by a program, applications
can query the properties and active resources of the UNIFORM_BLOCK interface.
Additionally, several commands are provided to query properties of active uni-
form blocks. The command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 130

pname prop

UNIFORM_TYPE TYPE

UNIFORM_SIZE ARRAY_SIZE
UNIFORM_NAME_LENGTH NAME_LENGTH
UNIFORM_BLOCK_INDEX BLOCK_INDEX

UNIFORM_OFFSET OFFSET

UNIFORM_ARRAY_STRIDE ARRAY_STRIDE
UNIFORM_MATRIX_ STRIDE MATRIX_STRIDE
UNIFORM_IS_ROW_MAJOR IS_ROW_MAJOR
UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX | ATOMIC_COUNTER_BUFFER_INDEX

Table 7.6: GetProgramResourceiv properties used by GetActiveUniformsiv.

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

is equivalent to
GetProgramResourcelndex (program, UNIFORM_BLOCK, uniformBlockName) ;
The command

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei length,
char *uniformBlockName);

is equivalent to

GetProgramResourceName (program, UNIFORM_BLOCK,
uniformBlockIndex, bufSize, length, wuniformBlockName) ;

The command

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

is equivalent to

GLenum prop;
GetProgramResourceiv (program, UNIFORM_BLOCK,
uniformBlockIndexr, 1, &prop, maxSize, NULL, params);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 131

pname prop

UNIFORM_BLOCK_BINDING BUFFER_BINDING
UNIFORM_BLOCK_DATA_SIZE BUFFER_DATA_SIZE
UNIFORM_BLOCK_NAME_LENGTH NAME_LENGTH
UNIFORM_BLOCK_ACTIVE_UNIFORMS NUM_ACTIVE_VARIABLES
UNIFORM_BLOCK_ACTIVE_UNIFORM_ - | ACTIVE_VARIABLES

INDICES

UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_VERTEX_ SHADER
VERTEX_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_TESS_CONTROL_ -
TESS_CONTROL_SHADER SHADER
UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_TESS_-
TESS_EVALUATION_SHADER EVALUATION_SHADER
UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_ GEOMETRY_SHADER
GEOMETRY__SHADER

UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_FRAGMENT_SHADER
FRAGMENT_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_ COMPUTE_SHADER
COMPUTE_SHADER

Table 7.7: GetProgramResourceiv properties used by GetActiveUniform-
Blockiv.

where the value of prop is taken from table 7.7, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that
would be written to params.

To determine the set of active atomic counter buffer binding points used
by a program, applications can query the properties and active resources of the
ATOMIC_COUNTER_BUFFER interface of a program.

Additionally, the command

void GetActiveAtomicCounterBufferiv(uint program,
uint bufferindex, enum pname, int *params);

can be used to determine properties of active atomic counter buffer bindings used
by program and is equivalent to

GLenum prop;
GetProgramResourceiv (program, ATOMIC_COUNTER_BUFFER,
bufferinder, 1, &prop, maxSize, NULL, params) ;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES

132

pname

prop

ATOMIC_COUNTER_BUFFER_BINDING

BUFFER_BINDING

ATOMIC_COUNTER_BUFFER_DATA_ -
SIZE

BUFFER_DATA_SIZE

ATOMIC_COUNTER_BUFFER_ACTIVE_-—
ATOMIC_COUNTERS

NUM_ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER_ACTIVE_-
ATOMIC_COUNTER_INDICES

ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_VERTEX_SHADER

REFERENCED_BY_ VERTEX_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_TESS_CONTROL_—
SHADER

REFERENCED_BY_TESS_CONTROL_—
SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_TESS_-
EVALUATION_SHADER

REFERENCED_BY_TESS_ -
EVALUATION_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_GEOMETRY_SHADER

REFERENCED_BY_GEOMETRY_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_FRAGMENT_SHADER

REFERENCED_BY_ FRAGMENT_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_COMPUTE_SHADER

REFERENCED_BY_COMPUTE_SHADER

Table 7.8: GetProgramResourceiv properties used by GetActiveAtomicCoun-

terBufferiv.

where the value of prop is taken from table 7.8, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that

would be written to params.

7.6.1 Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables except for subroutine uniforms and
atomic counters, of the default uniform block of the active program object, use

the commands

void Uniform{1234}{ifd wi}(int location, T value);
void Uniform{1234}{ifd ui}v(int location, sizei count,

const T *value);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 133

void UniformMatrix{234}{fd}v(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } {fd } v(
int location, sizei count, boolean transpose, const
float *value);

If a non-zero program object is bound by UseProgram, it is the active pro-
gram object whose uniforms are updated by these commands. If no program ob-
ject is bound using UseProgram, the active program object of the current program
pipeline object set by ActiveShaderProgram is the active program object. If the
current program pipeline object has no active program or there is no current pro-
gram pipeline object, then there is no active program.

The given values are loaded into the default uniform block uniform variable
location identified by location and associated with a uniform variable.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform defined as a float, a floating-point vector, or an array of either
of these types.

The Uniform*d{v} commands will load count sets of one to four double-
precision floating-point values into a uniform defined as a double, a double vector,
or an array of either of these types.

The Uniform*i{v} commands will load count sets of one to four integer values
into a uniform defined as a sampler, an image, an integer, an integer vector, or an
array of any of these types. Only the Uniform1i{v} commands can be used to load
sampler and image values (see sections 7.10 and 7.11).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform defined as a unsigned integer, an unsigned integer
vector, or an array of either of these types.

The UniformMatrix{234}fv and UniformMatrix{234}dv commands will
load count 2 x 2, 3 x 3, or 4 x 4 matrices (corresponding to 2, 3, or 4 in the
command name) of single- or double-precision floating-point values, respectively,
into a uniform defined as a matrix or an array of matrices. If transpose is FALSE,
the matrix is specified in column major order, otherwise in row major order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv and UniformMa-
trix{2x3,3x2,2x4,4x2,3x4,4x3 }dv commands will load count 2 x 3,3 x 2,2 x 4,
4 x 2,3 x 4, or 4 x 3 matrices (corresponding to the numbers in the command
name) of single- or double-precision floating-point values, respectively, into a
uniform defined as a matrix or an array of matrices. The first number in the
command name is the number of columns; the second is the number of rows.
For example, UniformMatrix2x4fv is used to load a single-precision matrix
consisting of two columns and four rows. If transpose is FALSE, the matrix is

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 134

specified in column major order, otherwise in row major order.

When loading values for a uniform declared as a boolean, a boolean vector,
or an array of either of these types, any of the Uniform*i{v}, Uniform*ui{v},
and Uniform*f{v} commands can be used. Type conversion is done by the GL.
Boolean values are set to FALSE if the corresponding input value is O or 0.0f, and
set to TRUE otherwise. The Uniform* command used must match the size of the
uniform, as declared in the shader. For example, to load a uniform declared as a
bvec2, any of the Uniform2{if ui}* commands may be used.

For all other uniform types loadable with Uniform* commands, the command
used must match the size and type of the uniform, as declared in the shader, and
no type conversions are done. For example, to load a uniform declared as a vec4,
Uniform4f{v} must be used, and to load a uniform declared as a dmat 3, Unifor-
mMatrix3dv must be used.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through £ + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

Errors

An INVALID_VALUE error is generated if count is negative.

An INVALID_VALUE error is generated if Uniformli{v} is used to set a
sampler uniform to a value less than zero or greater than or equal to the value
of MAX_COMBINED TEXTURE_IMAGE_UNITS.

An INVALID_VALUE error is generated if Uniform1i{v} is used to set an
image uniform to a value less than zero or greater than or equal to the value of
MAX_IMAGE_UNITS.

An INVALID_OPERATION error is generated if any of the following con-
ditions occur:

o the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e the component type and count indicated in the name of the Uniform*
command used does not match the type of the uniform declared in
the shader, where a boolean uniform component type is considered
to match any of the Uniform*i{v}, Uniform*ui{v}, or Uniform*f{v}

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 135

commands.

e count is greater than one, and the uniform declared in the shader is not
an array variable,

e no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

e a sampler or image uniform is loaded with any of the Uniform* com-
mands other than Uniform1i{v}.

e there is no active program object in use.

To load values into the uniform variables of the default uniform block of a
program which may not necessarily be bound, use the commands

void ProgramUniform{1234}{ifd}(uint program,
int location, T value);
void ProgramUniform{1234}{ifd}v(uint program,
int location, sizei count, const T *value);
void ProgramUniform{1234}ui(uint program, int location,
T value);
void ProgramUniform{1234}uiv(uint program,
int location, sizei count, const T *value);
void ProgramUniformMatrix{234}{fd}v(uint program,
int location, sizei count, boolean transpose, const
T *value);
void ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3} {fd } v(
uint program, int location, sizei count,
boolean transpose, const T *value);

These commands operate identically to the corresponding commands above
without Program in the command name except, rather than updating the cur-
rently active program object, these Program commands update the program ob-
ject named by the initial program parameter. The remaining parameters following
the initial program parameter match the parameters for the corresponding non-
Program uniform command.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 136

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

In addition, all errors described for the corresponding Uniform* com-
mands apply.

7.6.2 Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of active
uniform blocks used by each shader stage. If the number of uniform blocks used
by any shader stage in the program exceeds its corresponding limit, the program
will fail to link. The limits for vertex, tessellation control, tessellation evaluation,
geometry, fragment, and compute shaders can be obtained by calling GetIntegerv
with pname values of MAX_VERTEX_UNIFORM_BLOCKS, MAX_TESS_CONTROL_-
UNIFORM BLOCKS, MAX TESS_EVALUATION_UNIFORM BLOCKS, MAX_ -
GEOMETRY_UNIFORM_BLOCKS, MAX_FRAGMENT_UNIFORM_BLOCKS, and MAX_-
COMPUTE_UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader stage of a program. If a
uniform block is used by multiple shader stages, each such use counts separately
against this combined limit. The combined uniform block use limit can be obtained
by calling GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

Finally, the total amount of buffer object storage available for any given uni-
form block is subject to an implementation-dependent limit. The maximum amount
of available space, in basic machine units, can be queried by calling GetIntegerv
with a pname of MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required
for a uniform block exceeds this limit, a program will fail to link.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names, types and layout qualifiers, and in the same
order. If a program contains multiple shaders with different declarations for the
same named uniform block, the program will fail to link.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 137

7.6.2.1 Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

e Members of type bool, int, uint, float, and double are respectively
extracted from a buffer object by reading a single uint, int, uint, float,
or double value at the specified offset.

e Vectors with NV elements with basic data types of bool, int, uint, float,
or double are extracted as N values in consecutive memory locations be-
ginning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

e Column-major matrices with C' columns and R rows (using the types
dmatCxR and mat C'x R for double-precision and floating-point components
respectively, or simply dmatC and matC respectively if C' = R) are treated
as an array of C' column vectors, each consisting of R double-precision or
floating-point components. The column vectors will be stored in order, with
column zero at the lowest offset. The difference in offsets between consecu-
tive columns of the matrix will be referred to as the column stride, and is con-
stant across the matrix. The column stride is an implementation-dependent
function of the matrix type, and may be determined after a program is linked
by querying the MATRIX_ STRIDE property using GetProgramResourceiv
(see section 7.3.1).

e Row-major matrices with C' columns and R rows (using the types dmat Cx R
and matCxR for double-precision and floating-point components respec-
tively, or simply dmatC and matC respectively if C = R) are treated as
an array of R row vectors, each consisting of C' double-precision or floating-
point components. The row vectors will be stored in order, with row zero at
the lowest offset. The difference in offsets between consecutive rows of the
matrix will be referred to as the row stride, and is constant across the matrix.
The row stride is an implementation-dependent function of the matrix type,
and may be determined after a program is linked by querying the MATRIX_-
STRIDE property using GetProgramResourceiv (see section 7.3.1).

e Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 138

UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

7.6.2.2 Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

When using the std140 storage layout, structures will be laid out in buffer
storage with their members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is V.

2. If the member is a two- or four-component vector with components consum-
ing IV basic machine units, the base alignment is 2N or 4NV, respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4N .

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 139

10.

. If the member is a column-major matrix with C' columns and R rows, the

matrix is stored identically to an array of C' column vectors with R compo-
nents each, according to rule (4).

. If the member is an array of .S column-major matrices with C' columns and

R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

. If the member is a row-major matrix with C' columns and R rows, the matrix

is stored identically to an array of R row vectors with C' components each,
according to rule (4).

. If the member is an array of S row-major matrices with C' columns and R

rows, the matrix is stored identically to a row of S x R row vectors with C'
components each, according to rule (4).

. If the member is a structure, the base alignment of the structure is /N, where

N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Shader storage blocks (see section 7.8) also support the std140 layout qual-
ifier, as well as a std430 qualifier not supported for uniform blocks. When using
the std430 storage layout, shader storage blocks will be laid out in buffer storage
identically to uniform and shader storage blocks using the std140 layout, except
that the base alignment and stride of arrays of scalars and vectors in rule 4 and of
structures in rule 9 are not rounded up a multiple of the base alignment of a vec4.

7.6.3 Uniform Buffer Object Bindings

The value of an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points may be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.7. ATOMIC COUNTER BUFFERS 140

Regions of buffer objects are bound as storage for uniform blocks by calling
BindBuffer* commands (see section 6) with target set to UNTFORM_BUFFER.

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. The binding is established when a program is linked or re-
linked, and the initial value of the binding is specified by a layout qualifier (if
present), or zero otherwise. The binding point can be assigned by calling

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution may be undefined or modified, as described in section 6.4. Shaders may
be executed to process the primitives and vertices specified by any command that
transfers vertices to the GL.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if uniformBlockindex is not an
active uniform block index of program, or if uniformBlockBinding is greater
than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS.

7.7 Atomic Counter Buffers

The values of atomic counters are backed by buffer object storage. The mecha-
nisms for accessing individual atomic counters in a buffer object and connecting to

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.7. ATOMIC COUNTER BUFFERS 141

an atomic counter are described in this section.

There is a set of implementation-dependent maximums for the number of active
atomic counter buffers referenced by each shader. If the number of atomic counter
buffer bindings referenced by any shader in the program exceeds the corresponding
limit, the program will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be obtained by
calling GetIntegerv with pname values of MAX_VERTEX_ATOMIC_COUNTER_-—
BUFFERS, MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS, MAX_-
TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS, MAX_ GEOMETRY_ATOMIC_-
COUNTER_BUFFERS, MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS, and MAX_-
COMPUTE_ATOMIC_COUNTER_BUFFERS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active atomic counter buffers used by each shader stage of a program.
If an atomic counter buffer is used by multiple shader stages, each such use counts
separately against this combined limit. The combined atomic counter buffer use
limit can be obtained by calling GetIntegerv with a pname of MAX_COMBINED_—
ATOMIC_COUNTER_BUFFERS.

7.7.1 Atomic Counter Buffer Object Storage

Atomic counters stored in buffer objects are represented in memory as follows:

e Members of type atomic_uint are extracted from a buffer object by read-
ing a single uint-typed value at the specified offset.

e Arrays of type atomic_uint are stored in memory by element order, with
array element member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

7.7.2 Atomic Counter Buffer Bindings

The value of an active atomic counter is extracted from or written to the data store
of a buffer object bound to one of an array of atomic counter buffer binding points.
The number of binding points may be queried by calling GetIntegerv with a pname
of MAX_ATOMIC_COUNTER_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for atomic counters by calling
one of the BindBuffer* commands (see section 6) with target set to ATOMIC_—
COUNTER_BUFFER.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS142

Each of a program’s active atomic counter buffer bindings has a corresponding
atomic counter buffer binding point. This binding point is established with the
layout qualifier in the shader text, either explicitly or implicitly, as described in
the OpenGL Shading Language Specification.

When executing shaders that access atomic counters, each active atomic
counter buffer must be populated with a buffer object with a size no smaller than the
minimum required size for that buffer (the value of BUFFER_DATA_SIZE returned
by GetProgramResourceiv). For binding points populated by BindBufferRange,
the size in question is the value of the size parameter. If any active atomic counter
buffer is not backed by a sufficiently large buffer object, the results of shader exe-
cution may be undefined or modified, as described in section 6.4.

7.8 Shader Buffer Variables and Shader Storage Blocks

Shaders can declare named buffer variables, as described in the OpenGL Shading
Language Specification. Sets of buffer variables are grouped into interface blocks
called shader storage blocks. The values of each buffer variable in a shader storage
block are read from or written to the data store of a buffer object bound to the
binding point associated with the block. The values of active buffer variables may
be changed by executing shaders that assign values to them or perform atomic
memory operations on them; by modifying the contents of the bound buffer object’s
data store with the commands in sections 6.2, 6.2.1, 6.3, 6.5, and 6.6; by binding
a new buffer object to the binding point associated with the block; or by changing
the binding point associated with the block.

Buffer variables in shader storage blocks are represented in memory in the
same way as uniforms stored in uniform blocks, as described in section 7.6.2.1.
When a program is linked successfully, each active buffer variable is assigned an
offset relative to the base of the buffer object binding associated with its shader
storage block. For buffer variables declared as arrays and matrices, strides between
array elements or matrix columns or rows will also be assigned. Offsets and strides
of buffer variables will be assigned in an implementation-dependent manner unless
the shader storage block is declared using the std140 or std430 storage layout
qualifiers. For std140 and std430 shader storage blocks, offsets will be assigned
using the method described in section 7.6.2.2. If a program is re-linked, existing
buffer variable offsets and strides are invalidated, and a new set of active variables,
offsets, and strides will be generated.

The total amount of buffer object storage that can be accessed in any shader
storage block is subject to an implementation-dependent limit. The maximum
amount of available space, in basic machine units, may be queried by calling

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS143

GetIntegerv with pname MAX_SHADER_STORAGE_BLOCK_SIZE. If the amount
of storage required for any shader storage block exceeds this limit, a program will
fail to link.

If the number of active shader storage blocks referenced by the
shaders in a program exceeds implementation-dependent limits, the pro-
gram will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be ob-
tained by calling GetIntegerv with pname values of MAX_VERTEX_SHADER_-
STORAGE_BLOCKS, MAX_TESS_CONTROL_SHADER STORAGE_BLOCKS, MAX_ -
TESS_EVALUATION_SHADER_STORAGE_BLOCKS, MAX_GEOMETRY_SHADER_-
STORAGE_BLOCKS, MAX_FRAGMENT SHADER STORAGE_BLOCKS, and MAX -
COMPUTE_SHADER_STORAGE_BLOCKS, respectively. Additionally, a program will
fail to link if the sum of the number of active shader storage blocks referenced by
each shader stage in a program exceeds the value of the implementation-dependent
limit MAX_COMBINED_SHADER_ STORAGE_BLOCKS. If a shader storage block in a
program is referenced by multiple shaders, each such reference counts separately
against this combined limit.

When a named shader storage block is declared by multiple shaders in a pro-
gram, it must be declared identically in each shader. The buffer variables within
the block must be declared with the same names, types, qualification, and decla-
ration order. If a program contains multiple shaders with different declarations for
the same named shader storage block, the program will fail to link.

Regions of buffer objects are bound as storage for shader storage blocks by
calling one of the BindBuffer* commands (see section 6) with target SHADER_ -
STORAGE_BUFFER.

Each of a program’s active shader storage blocks has a corresponding shader
storage buffer object binding point. When a program object is linked, the shader
storage buffer object binding point assigned to each of its active shader storage
blocks is reset to the value specified by the corresponding binding layout qual-
ifier, if present, or zero otherwise. After a program is linked, the command

void ShaderStorageBlockBinding(uint program,
uint storageBlockindex, uint storageBlockBinding);

changes the active shader storage block with an assigned index of storage-
BlockIndex in program object program. ShaderStorageBlockBinding specifies
that program will use the data store of the buffer object bound to the binding point
storageBlockBinding to read and write the values of the buffer variables in the
shader storage block identified by storageBlockIndex.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.9. SUBROUTINE UNIFORM VARIABLES 144

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ VALUE error is generated if storageBlocklndex is not an
active shader storage block index in program, or if storageBlockBinding is
greater than or equal to the value of MAX_ SHADER STORAGE_BUFFER_-
BINDINGS.

When executing shaders that access shader storage blocks, the binding point
corresponding to each active shader storage block must be populated with a buffer
object with a size no smaller than the minimum required size of the shader storage
block (the value of BUFFER_SIZE for the appropriate SHADER_STORAGE_BUFFER
resource). For binding points populated by BindBufferRange, the size in question
is the value of the size parameter or the size of the buffer minus the value of the
offset parameter, whichever is smaller. If any active shader storage block is not
backed by a sufficiently large buffer object, the results of shader execution may be
undefined or modified, as described in section 6.4.

7.9 Subroutine Uniform Variables

Subroutine uniform variables are similar to uniform variables, except they are con-
text state rather than program state, and apply only to a single program stage. Hav-
ing subroutine uniforms be context state allows them to have different values if the
program is used in multiple contexts simultaneously. There is a set of subroutine
uniforms for each shader stage.

A subroutine uniform may have an explicit location specified in the shader.
At link time, all active subroutine uniforms without an explicit location will be
assigned a unique location. The value of ACTIVE_SUBROUTINE_UNIFORM_-—
LOCATIONS for a program object is the largest specified or assigned location plus
one. An assigned location will never take the location of an explicitly specified
location, even if that subroutine uniform is inactive. Between the location zero and
the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS minus one there may
be unused locations, either because they were not assigned a subroutine uniform or
because the subroutine uniform was determined to be inactive by the linker. These
locations will be ignored when assigning the subroutine index as described below.

There is an implementation-dependent limit on the number of active subrou-
tine uniform locations in each shader stage; a program will fail to link if the num-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.9. SUBROUTINE UNIFORM VARIABLES 145

Interface Shader Type
VERTEX_SUBROUTINE VERTEX_SHADER
TESS_CONTROL_SUBROUTINE TESS_CONTROL_SHADER
TESS_EVALUATION_SUBROUTINE | TESS_EVALUATION_SHADER
GEOMETRY_SUBROUTINE GEOMETRY_SHADER
FRAGMENT_SUBROUTINE FRAGMENT__SHADER
COMPUTE_SUBROUTINE COMPUTE_SHADER

Table 7.9: Interfaces for active subroutines for a particular shader type in a pro-
gram.

ber of subroutine uniform locations required is greater than the value of MAX_ -
SUBROUTINE_UNIFORM_LOCATIONS or if an explicit subroutine uniform location
is outside this limit. For active subroutine uniforms declared as arrays, the declared
array elements are assigned consecutive locations.

Each function in a shader associated with a subroutine type is considered an
active subroutine, unless the compiler conclusively determines that the function
could never be assigned to an active subroutine uniform. The subroutine func-
tions can be assigned an explicit index in the shader between zero and the value
of MAX_SUBROUTINES minus one. At link time, all active subroutines without an
explicit index will be assigned an index between zero and the value of ACTIVE_ -
SUBROUTINES minus one. An assigned index will never take the same index of
an explicitly specified index in the shader, even if that subroutine is inactive. Be-
tween index zero and the vaue of ACTIVE_SUBROUTINES minus one there may
be unused indices either because they weren’t assigned an index by the linker or
because the subroutine was determined to be inactive by the linker. If there are no
explicitly defined subroutine indices in the shader the implementation must assign
indices between zero and the value of ACTIVE_SUBROUTINES minus one with no
index unused. It is recommended, but not required, that the application assigns a
range of tightly packed indices starting from zero to avoid indices between zero
and the value of ACTIVE_SUBROUTINES minus one being unused.

To determine the set of active subroutines and subroutines used by a partic-
ular shader stage of a program, applications can query the properties and active
resources of the interfaces for the shader type, as listed in tables 7.9 and 7.10.

Additionally, dedicated commands are provided to determine properties of ac-
tive subroutines and active subroutine uniforms. The commands

uint GetSubroutinelndex(uint program, enum shadertype,
const char *name);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.9. SUBROUTINE UNIFORM VARIABLES 146

Interface Shader Type
VERTEX_SUBROUTINE_UNIFORM VERTEX_SHADER
TESS_CONTROL_SUBROUTINE_UNIFORM TESS_CONTROL_SHADER
TESS_EVALUATION_SUBROUTINE_UNIFORM | TESS_EVALUATION_SHADER
GEOMETRY_SUBROUT INE_UNIFORM GEOMETRY_SHADER
FRAGMENT_SUBROUT INE_UNIFORM FRAGMENT_SHADER
COMPUTE_SUBROUTINE_UNIFORM COMPUTE_SHADER

Table 7.10: Interfaces for active subroutine uniforms for a particular shader type in
a program.

void GetActiveSubroutineName(uint program,
enum shadertype, uint index, sizei bufSize,
sizei *length, char *name);

are equivalent to
GetProgramResourcelndex (program, programiInterface, name) ;
and

GetProgramResourceName (program, programlinterface,
index, bufSize, length, name);

respectively, where programlinterface is taken from table 7.9 according to the value
of shadertype.
The commands

int GetSubroutineUniformLocation(uint program,
enum shadertype, const char *name);
void GetActiveSubroutineUniformName(uint program,
enum shadertype, uint index, sizei bufSize,
sizei *length, char *name);
void GetActiveSubroutineUniformiv(uint program,
enum shadertype, uint index, enum pname, int *values);

are equivalent to

GetProgramResourcelLocation (program, programlinterface, name) ;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.9. SUBROUTINE UNIFORM VARIABLES 147

GetProgramResourceName (program, programlinterface,
index, bufSize, length, name);

and

GetProgramResourceiv (program, programliInterface,
index, 1, &pname, maxSize, NULL, walues) ;

respectively, where programlnterface is taken from table 7.10 according to the
value of shadertype. For GetActiveSubroutineUniformiv, pname must be one of
NUM_COMPATIBLE_SUBROUTINES or COMPATIBLE_SUBROUTINES, and maxSize
is taken to specify a sufficiently large buffer to receive all values that would be
written to params.

The command

void UniformSubroutinesuiv(enum shadertype, sizei count,
const uint *indices);

will load all active subroutine uniforms for shader stage shadertype with subrou-
tine indices from indices, storing indices[i] into the uniform at location i. The
indices for any locations between zero and the value of ACTIVE_SUBROUTINE_—
UNIFORM_LOCATIONS minus one which are not used will be ignored.

Errors

An INVALID_ENUM error is generated if shadertype is not one of the val-
ues in table 7.1.

An INVALID_VALUE error is generated if count is negative, is not equal to
the value of ACTIVE_SUBROUTINE_UNIFORM LOCATIONS for the program
currently in use at shader stage shadertype, or if the uniform at location ¢
is used and the value in indices[i] is greater than or equal to the value of
ACTIVE_SUBROUTINES for the shader stage.

An INVALID_VALUE error is generated if the value of indices[i] for a used
uniform location specifies an unused subroutine index.

An INVALID_OPERATION error is generated if, for any subroutine index
being loaded to a particular uniform location, the function corresponding to the
subroutine index was not associated (as defined in section 6.1.2 of the OpenGL
Shading Language Specification) with the type of the subroutine variable at
that location.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.10. SAMPLERS 148

An INVALID_OPERATION error is generated if no program is active for
the shader stage identified by shadertype.

Each subroutine uniform must have at least one subroutine to assign to the uni-
form. A program will fail to link if any stage has one or more subroutine uniforms
that has no subroutine associated with the subroutine type of the uniform.

When the active program for a shader stage is re-linked or changed by a call
to UseProgram, BindProgramPipeline, or UseProgramStages, subroutine uni-
forms for that stage are reset to arbitrarily chosen default functions with compatible
subroutine types.

7.10 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to 7 selects texture
image unit number ¢. The value of ¢ may range from zero to the implementation-
dependent maximum supported number of texture image units minus one.

The type of the sampler identifies the target on the texture image unit, as shown
in table 7.3 for sampler~* types. The texture object bound to that texture image
unit’s target is then used for the texture lookup. For example, a variable of type
sampler2D selects target TEXTURE_2D on its texture image unit. Binding of tex-
ture objects to targets is done as usual with BindTexture. Selecting the texture
image unit to bind to is done as usual with ActiveTexture.

The location of a sampler is queried with GetUniformLocation, just like any
uniform variable. Sampler values must be set by calling Uniform1i{v}.

Errors

It is not allowed to have variables of different sampler types pointing to
the same texture image unit within a program object. This situation can only
be detected at the next rendering command issued which triggers shader invo-
cations, and an INVALID_OPERATION error will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.11. IMAGES 149

fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

Errors

If this cannot be determined at link time (for example, if the program ob-
ject only contains a vertex shader), then it will be determined at the next ren-
dering command issued which triggers shader invocations, and an INVALID_-
OPERATION error will then be generated.

7.11 Images

Images are special uniforms used in the OpenGL Shading Language to identify a
level of a texture to be read or written using built-in image load, store, or atomic
functions in the manner described in section 8.26. The value of an image uniform is
an integer specifying the image unit accessed. Image units are numbered beginning
at zero, and there is an implementation-dependent number of available image units
(the value of MAX_IMAGE_UNITS).

Note that image units used for image variables are independent of the texture
image units used for sampler variables; the number of units provided by the imple-
mentation may differ. Textures are bound independently and separately to image
and texture image units.

The type of an image variable must match the texture target of the image cur-
rently bound to the image unit; otherwise the result of a load, store, or atomic
operation is undefined (see section 4.1.7.2 of the OpenGL Shading Language Spec-
ification for more details).

The location of an image variable needs to be queried with GetUniformLo-
cation, just like any uniform variable. Image values must be set by calling Uni-
formli{v}.

Unlike samplers, there is no limit on the number of active image variables that
may be used by a program or by any particular shader. However, given that there
is an implementation-dependent limit on the number of unique image units, the
actual number of images that may be used by all shaders in a program is limited.

7.12 Shader Memory Access

As described in the OpenGL Shading Language Specification, shaders may per-
form random-access reads and writes to buffer object memory by reading from,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 150

assigning to, or performing atomic memory operation on shader buffer variables,
or to texture or buffer object memory by using built-in image load, store, and
atomic functions operating on shader image variables. The ability to perform such
random-access reads and writes in systems that may be highly pipelined results in
ordering and synchronization issues discussed in the sections below.

7.12.1 Shader Memory Access Ordering

The order in which texture or buffer object memory is read or written by shaders
is largely undefined. For some shader types (vertex, tessellation evaluation, and in
some cases, fragment), even the number of shader invocations that might perform
loads and stores is undefined.

In particular, the following rules apply:

e While a vertex or tessellation evaluation shader will be executed at least once
for each unique vertex specified by the application (vertex shaders) or gener-
ated by the tessellation primitive generator (tessellation evaluation shaders),
it may be executed more than once for implementation-dependent reasons.
Additionally, if the same vertex is specified multiple times in a collection
of primitives (e.g., repeating an index in DrawElements), the vertex shader
might be run only once.

e For each fragment generated by the GL, the number of fragment shader in-
vocations depends on a number of factors. If the fragment fails the pixel
ownership test (see section 14.9.1), scissor test (see section 14.9.2), oris dis-
carded by any of the multisample fragment operations (see section 14.9.3),
the fragment shader will not be executed

In addition, if early per-fragment tests are enabled (see section 14.9), the
fragment shader will not be executed if the fragment is discarded during the
early per-fragment tests.

When fragment shaders are executed, the number of invocations per frag-
ment is exactly one when the framebuffer has no multisample buffer (the
value of SAMPLE_BUFFERS is zero). Otherwise, the number of invocations
is in the range [1, N| where N is the number of samples covered by the frag-
ment; if the fragment shader specifies per-sample shading, it will be invoked
exactly N times.

o If a fragment shader is invoked to process fragments or samples not covered
by a primitive being rasterized to facilitate the approximation of derivatives

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 151

for texture lookups, then stores, atomics, and atomic counter updates have
no effect.

e The relative order of invocations of the same shader type are undefined. A
store issued by a shader when working on primitive B might complete prior
to a store for primitive A, even if primitive A is specified prior to primitive
B. This applies even to fragment shaders; while fragment shader outputs
are always written to the framebuffer in primitive order, stores executed by
fragment shader invocations are not.

e The relative order of invocations of different shader types is largely unde-
fined. However, when executing a shader whose inputs are generated from
a previous programmable stage, the shader invocations from the previous
stage are guaranteed to have executed far enough to generate final values
for all next-stage inputs. That implies shader completion for all stages ex-
cept geometry; geometry shaders are guaranteed only to have executed far
enough to emit all vertices used to generate the primitive being processed by
the fragment shader.

The above limitations on shader invocation order also make some forms of
synchronization between shader invocations within a single set of primitives unim-
plementable. For example, having one invocation poll memory written by another
invocation assumes that the other invocation has been launched and can complete
its writes. The only case where such a guarantee is made is when the inputs of
one shader invocation are generated from the outputs of a shader invocation in a
previous stage.

Stores issued to different memory locations within a single shader invocation
may not be visible to other invocations in the order they were performed. The built-
in function memoryBarrier may be used to provide stronger ordering of reads
and writes performed by a single invocation. Calling memoryBarrier guaran-
tees that any memory transactions issued by the shader invocation prior to the call
complete prior to the memory transactions issued after the call. Memory barriers
may be needed for algorithms that require multiple invocations to access the same
memory and require the operations to be performed in a partially-defined relative
order. For example, if one shader invocation does a series of writes, followed by a
memoryBarrier call, followed by another write, then another invocation that sees
the results of the final write will also see the previous writes. Without the memory
barrier, the final write may be visible before the previous writes.

The built-in atomic memory transaction and atomic counter functions may be
used to read and write a given memory address atomically. While built-in atomic
functions issued by multiple shader invocations are executed in undefined order

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 152

relative to each other, these functions perform both a read and a write of a memory
address and guarantee that no other memory transaction will write to the underlying
memory between the read and write. Atomics allow shaders to use shared global
addresses for mutual exclusion or as counters, among other uses.

7.12.2 Shader Memory Access Synchronization

Data written to textures or buffer objects by a shader invocation may eventually be
read by other shader invocations, sourced by other fixed pipeline stages, or read
back by the application. When data is written using API commands such as Tex-
SubImage* or BufferSubData, the GL implementation knows when and where
writes occur and can perform implicit synchronization to ensure that operations re-
quested before the update see the original data and that subsequent operations see
the modified data. Without logic to track the target address of each shader instruc-
tion performing a store, automatic synchronization of stores performed by a shader
invocation would require the GL implementation to make worst-case assumptions
at significant performance cost. To permit cases where textures or buffers may
be read or written in different pipeline stages without the overhead of automatic
synchronization, buffer object and texture stores performed by shaders are not au-
tomatically synchronized with other GL operations using the same memory.

Explicit synchronization is required to ensure that the effects of buffer and tex-
ture data stores performed by shaders will be visible to subsequent operations using
the same objects and will not overwrite data still to be read by previously requested
operations. Without manual synchronization, shader stores for a “new” primitive
may complete before processing of an “old” primitive completes. Additionally,
stores for an “old” primitive might not be completed before processing of a “new”
primitive starts. The command

void MemoryBarrier(bitfield barriers);

defines a barrier ordering the memory transactions issued prior to the command
relative to those issued after the barrier. For the purposes of this ordering, memory
transactions performed by shaders are considered to be issued by the rendering
command that triggered the execution of the shader. barriers is a bitfield indicating
the set of operations that are synchronized with shader stores; the bits used in
barriers are as follows:

e VERTEX_ATTRIB_ARRAY BARRIER_BIT: If set, vertex data sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The set of buffer objects affected by this bit is derived from the
buffer object bindings used

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.12.

SHADER MEMORY ACCESS 153

for arrays of generic vertex attributes (VERTEX_ -
ATTRIB_ARRAY BUFFER bindings).

ELEMENT_ARRAY_ BARRIER_BIT: If set, vertex array indices sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The buffer objects affected by this bit are derived from the
ELEMENT_ARRAY_BUFFER binding.

UNIFORM_BARRIER_BIT: Shader uniforms sourced from buffer objects af-
ter the barrier will reflect data written by shaders prior to the barrier.

TEXTURE_FETCH_BARRIER_BIT: Texture fetches from shaders, including
fetches from buffer object memory via buffer textures, after the barrier will
reflect data written by shaders prior to the barrier.

SHADER_IMAGE_ACCESS_BARRIER_BIT: Memory accesses using shader
built-in image load, store, and atomic functions issued after the barrier will
reflect data written by shaders prior to the barrier. Additionally, image stores
and atomics issued after the barrier will not execute until all memory ac-
cesses (e.g., loads, stores, texture fetches, vertex fetches) initiated prior to
the barrier complete.

COMMAND_BARRIER_BIT: Command data sourced from buffer objects by
Draw*Indirect and DispatchComputelndirect commands after the bar-
rier will reflect data written by shaders prior to the barrier. The buffer ob-
jects affected by this bit are derived from the DRAW_INDIRECT_BUFFER and
DISPATCH_INDIRECT_BUFFER bindings.

PIXEL_BUFFER_BARRIER BIT: Reads/writes of buffer objects via the
PIXEL_PACK_BUFFER and PIXEL_UNPACK_BUFFER bindings (ReadPix-
els, TexSubImage, ctc.) after the barrier will reflect data written by shaders
prior to the barrier. Additionally, buffer object writes issued after the barrier
will wait on the completion of all shader writes initiated prior to the barrier.

TEXTURE_UPDATE_BARRIER_BIT: Writes
to a texture via Tex(Sub)Image*, ClearTex*Image, CopyTex*, or Com-
pressedTex*, and reads via GetTexImage after the barrier will not execute
until all shader writes initiated prior to the barrier complete.

BUFFER_UPDATE_BARRIER_BIT: Reads and writes to buffer object mem-
ory after the barrier using the commands in sections 6.2, 6.2.1, 6.3, 6.6,
and 6.5 will reflect data written by shaders prior to the barrier. Additionally,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 154

writes via these commands issued after the barrier will wait on the comple-
tion of any shader writes to the same memory initiated prior to the barrier.

e CLIENT_MAPPED_ BUFFER_BARRIER_BIT: Access by the client to persis-
tent mapped regions of buffer objects will reflect data written by shaders
prior to the barrier. Note that this may cause additional synchronization op-
erations.

e QUERY_BUFFER_BARRIER_BIT: Writes of buffer objects via the QUERY_ -
BUFFER binding (see section 4.2.1) after the barrier will reflect data written
by shaders prior to the barrier. Additionally, buffer object writes issued after
the barrier will wait on the completion of all shader writes initiated prior to
the barrier.

e FRAMEBUFFER_BARRIER_BIT: Reads and writes via framebuffer object at-
tachments after the barrier will reflect data written by shaders prior to the
barrier. Additionally, framebuffer writes issued after the barrier will wait on
the completion of all shader writes issued prior to the barrier.

e TRANSFORM_FEEDBACK_BARRIER BIT: Writes via transform feedback
bindings after the barrier will reflect data written by shaders prior to the
barrier. Additionally, transform feedback writes issued after the barrier will
wait on the completion of all shader writes issued prior to the barrier.

e ATOMIC_COUNTER_BARRIER_BIT: Memory accesses using shader atomic
counter built-in functions issued after the barrier will reflect data written by
shaders prior to the barrier. Additionally, atomic counter function invoca-
tions after the barrier will not execute until all memory accesses (e.g., loads,
stores, texture fetches, vertex fetches) initiated prior to the barrier complete.

e SHADER_STORAGE_BARRIER BIT: Memory accesses using shader buffer
variables issued after the barrier will reflect data written by shaders prior to
the barrier. Additionally, assignments to and atomic operations performed
on shader buffer variables after the barrier will not execute until all memory
accesses initiated prior to the barrier complete.

If barriers is ALL_BARRIER_BITS, shader memory accesses will be synchro-
nized relative to all the operations described above.

Errors

An INVALID_VALUE error is generated if barriers is not the special value

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 155

ALL_BARRIER_BITS, and has any bits set other than those described above.

Implementations may cache buffer object and texture image memory that could
be written by shaders in multiple caches; for example, there may be separate caches
for texture, vertex fetching, and one or more caches for shader memory accesses.
Implementations are not required to keep these caches coherent with shader mem-
ory writes. Stores issued by one invocation may not be immediately observable
by other pipeline stages or other shader invocations because the value stored may
remain in a cache local to the processor executing the store, or because data over-
written by the store is still in a cache elsewhere in the system. When Memo-
ryBarrier is called, the GL flushes and/or invalidates any caches relevant to the
operations specified by the barriers parameter to ensure consistent ordering of op-
erations across the barrier.

To allow for independent shader invocations to communicate by reads and
writes to a common memory address, image variables in the OpenGL Shading
Language may be declared as coherent. Buffer object or texture image memory
accessed through such variables may be cached only if caches are automatically
updated due to stores issued by any other shader invocation. If the same address
is accessed using both coherent and non-coherent variables, the accesses using
variables declared as coherent will observe the results stored using coherent vari-
ables in other invocations. Using variables declared as coherent guarantees only
that the results of stores will be immediately visible to shader invocations using
similarly-declared variables; calling MemoryBarrier is required to ensure that the
stores are visible to other operations.

The following guidelines may be helpful in choosing when to use coherent
memory accesses and when to use barriers.

e Data that are read-only or constant may be accessed without using coher-
ent variables or calling MemoryBarrier. Updates to the read-only data via
commands such as BufferSubData will invalidate shader caches implicitly
as required.

e Data that are shared between shader invocations at a fine granularity (e.g.,
written by one invocation, consumed by another invocation) should use co-
herent variables to read and write the shared data.

e Data written by one shader invocation and consumed by other shader in-
vocations launched as a result of its execution (dependent invocations)
should use coherent variables in the producing shader invocation and call
memoryBarrier after the last write. The consuming shader invocation
should also use coherent variables.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 156

e Data written to image variables in one rendering pass and read by the shader
in a later pass need not use coherent variables or memoryBarrier. Calling
MemoryBarrier with the SHADER_IMAGE_ACCESS_BARRIER_BIT set in
barriers between passes is necessary.

e Data written by the shader in one rendering pass and read by another mech-
anism (e.g., vertex or index buffer pulling) in a later pass need not use co-
herent variables or memoryBarrier. Calling MemoryBarrier with the ap-
propriate bits set in barriers between passes is necessary.

The command
void MemoryBarrierByRegion(bitfield barriers);

behaves as described above for MemoryBarrier, with two differences:

First, it narrows the region under consideration so that only reads and writes of
prior fragment shaders that are invoked for a smaller region of the framebuffer will
be completed/reflected prior to subsequent reads and writes of following fragment
shaders. The size of the region is implementation-dependent and may be as small
as one framebuffer pixel.

Second, it only applies to memory transactions that may be read by or written
by a fragment shader. Therefore, only the barrier bits

e ATOMIC_COUNTER_BARRIER_BIT

e FRAMEBUFFER_BARRIER_BIT

e SHADER_IMAGE_ACCESS_BARRIER_BIT
e SHADER_STORAGE_BARRIER_BIT

e TEXTURE_FETCH_BARRIER_BIT

e UNIFORM_BARRIER_BIT

are supported.

When barriers is ALL_BARRIER_BITS, shader memory accesses will be syn-
chronized relative to all these barrier bits, but not to other barrier bits specific to
MemoryBarrier. This implies that reads and writes for scatter/gather-like algo-
rithms may or may not be completed/reflected after a MemoryBarrierByRegion
command. However, for uses such as deferred shading, where a linked list of vis-
ible surfaces with the head at a framebuffer address may be constructed, and the
entirety of the list is only dependent on previous executions at that framebuffer ad-
dress, MemoryBarrierByRegion may be significantly more efficient than Mem-
oryBarrier.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 157

Errors

An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER BITS, and has any bits set other than those described above.

7.13 Shader, Program, and Program Pipeline Queries
The command
void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, one of the values from table 7.1 corresponding to
the type of shader is returned.

If pname is DELETE_STATUS, TRUE is returned if the shader has been flagged
for deletion and FALSE is returned otherwise.

If pname is COMPILE_STATUS, TRUE is returned if the shader was last com-
piled successfully, and FALSE is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is no info log, zero is returned.

If pname is SHADER_SOURCE_LENGTH, the length of the concatenation of the
source strings making up the shader source, including a null terminator, is returned.
If no source has been defined, zero is returned.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_ENUM error is generated if pname is not SHADER_TYPE,
DELETE_STATUS, COMPILE_STATUS, INFO_LOG_LENGTH, or SHADER —
SOURCE_LENGTH.

The command

void GetProgramiv(uint program, enum pname,
int *params);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 158

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise.

If pname is LINK_STATUS, TRUE is returned if the program was last linked
successfully, and FALSE is returned otherwise.

If pname is VALIDATE_STATUS, TRUE is returned if the last call to Vali-
dateProgram (see section 11.1.3.12) with program was successful, and FALSE
is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is no info log, zero is returned.

If pname is ATTACHED_SHADERS, the number of objects attached is returned.

If pname is ACTIVE_ATTRIBUTES, the number of active attributes (see sec-
tion 7.3.1) in program is returned. If no active attributes exist, zero is returned.

If pname is ACTIVE_ATTRIBUTE_MAX_LENGTH, the length of the longest ac-
tive attribute name, including a null terminator, is returned. If no active attributes
exist, zero is returned.

If pname is ACTIVE_UNIFORMS, the number of active uniforms is returned. If
no active uniforms exist, zero is returned.

If pname is ACTIVE_UNIFORM_MAX_LENGTH, the length of the longest active
uniform name, including a null terminator, is returned. If no active uniforms exist,
zero is returned.

If pname is TRANSFORM_FEEDBACK_BUFFER_MODE, the buffer mode used
when transform feedback (see section 11.1.2.1) is active is returned. It can be
one of SEPARATE_ATTRIBS or INTERLEAVED_ATTRIBS.

If pname is TRANSFORM_FEEDBACK_VARYINGS, the number of output vari-
ables to capture in transform feedback mode for the program is returned.

If pname is TRANSFORM_FEEDBACK_VARYING_MAX_ LENGTH, the length of
the longest output variable name specified to be used for transform feedback, in-
cluding a null terminator, is returned. If no outputs are used for transform feedback,
zero is returned.

If pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform blocks for
program containing active uniforms is returned.

If pname is ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH, the length of the
longest active uniform block name, including the null terminator, is returned.

If pname is GEOMETRY_VERTICES_OUT, the maximum number of vertices the
geometry shader (see section 11.3) will output is returned.

If pname is GEOMETRY_INPUT_TYPE, the geometry shader input type,
which must be one of POINTS, LINES, LINES_ADJACENCY, TRIANGLES or
TRIANGLES_ADJACENCY, is returned.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 159

If pname is GEOMETRY_OUTPUT_TYPE, the geometry shader output type,
which must be one of POINTS, LINE_STRIP or TRIANGLE_STRIP, is returned.

If pname is GEOMETRY_SHADER_INVOCATIONS, the number of geometry
shader invocations per primitive will be returned.

If pname is TESS_CONTROL_OUTPUT_VERTICES, the number of vertices in
the tessellation control shader (see section 11.2.1) output patch is returned.

If pname is TESS_GEN_MODE, QUADS, TRIANGLES, or ISOLINES is returned,
depending on the primitive mode declaration in the tessellation evaluation shader
(see section 11.2.3).

If pname is
TESS_GEN_SPACING, EQUAL, FRACTIONAL_EVEN, or FRACTIONAL_ODD is re-
turned, depending on the spacing declaration in the tessellation evaluation shader.

If pname is TESS_GEN_VERTEX_ORDER, CCW or CW is returned, depending on
the vertex order declaration in the tessellation evaluation shader.

If pname is TESS_GEN_POINT_MODE, TRUE is returned if point mode is en-
abled in a tessellation evaluation shader declaration; FALSE is returned otherwise.

If pname is COMPUTE_WORK_GROUP_SIZE, an array of three integers contain-
ing the local work group size of the compute program (see chapter 19), as specified
by its input layout qualifier(s), is returned.

If pname is PROGRAM_SEPARABLE, TRUE is returned if the program has been
flagged for use as a separable program object that can be bound to individual shader
stages with UseProgramStages.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, the value of whether
the binary retrieval hint is enabled for program is returned.

If pname is ACTIVE_ATOMIC_COUNTER_BUFFERS, the number of active
atomic counter buffers used by program is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not one of the values
listed above.

An INVALID_OPERATION error is generated if GEOMETRY_VERTICES_-—
OUT, GEOMETRY_INPUT_TYPE, GEOMETRY_OUTPUT_TYPE, or GEOMETRY_—
SHADER_INVOCATIONS are queried for a program which has not been linked
successfully, or which does not contain objects to form a geometry shader.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 160

An INVALID_OPERATION error is generated if TESS_CONTROL_-—
OUTPUT_VERTICES is queried for a program which has not been linked suc-
cessfully, or which does not contain objects to form a tessellation control
shader.

An INVALID_OPERATION error is generated if TESS_GEN_MODE,
TESS_GEN_SPACING, TESS_GEN_VERTEX_ORDER, or TESS_GEN_POINT_-
MODE are queried for a program which has not been linked successfully, or
which does not contain objects to form a tessellation evaluation shader.

An INVALID_OPERATION error is generated if COMPUTE_WORK_-
GROUP_SIZE is queried for a program which has not been linked successfully,
or which does not contain objects to form a compute shader,

The command

void GetProgramPipelineiv(uint pipeline, enum pname,
int *params);

returns properties of the program pipeline object named pipeline in params. The
parameter value to return is specified by pname.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

If pname is ACTIVE_PROGRAM, the name of the active program object (used
for uniform updates) of pipeline is returned.

If pname is one of the shader stage type arguments in table 7.1, the name of the
program object current for the corresponding shader stage of pipeline is returned.

If pname is VALIDATE_STATUS, the validation status of pipeline, as deter-
mined by ValidateProgramPipeline (see section 11.1.3.12) is returned.

If pname is INFO_LOG_LENGTH, the length of the info log for pipeline, includ-
ing a null terminator, is returned. If there is no info log, zero is returned.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_ENUM error is generated if pname is not ACTIVE_PROGRAM,
INFO_LOG_LENGTH, VALIDATE_STATUS, or one of the fype arguments in
table 7.1.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 161

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizel *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders
are attached, count is set to zero. If count is NULL then it is ignored. The max-
imum number of shader names that may be written into shaders is specified by
maxCount. The number of objects attached to program may be queried by calling
GetProgramiv with ATTACHED_SHADERS.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if maxCount is negative.

A string that contains information about the last compilation attempt on a
shader object, last link or validation attempt on a program object, or last valida-
tion attempt on a program pipeline object, called the info log, can be obtained with
the commands

void GetShaderInfoLog(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramlnfolog(uint program, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramPipelinelnfolog(uint pipeline,
sizei bufSize, sizei *length, char *infolLog);

These commands return an info log string for the corresponding type of object
in infoLog. This string will be null-terminated. The actual number of characters
written into infoLog, excluding the null terminator, is returned in length. If length
is NULL, then no length is returned. The maximum number of characters that may
be written into infoLog, including the null terminator, is specified by bufSize. The
number of characters in the info log for a shader object, program object, or program
pipeline object may be queried respectively with GetShaderiv, GetProgramiv, or
GetProgramPipelineiv with pname INFO_LOG_LENGTH.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 162

If shader is a shader object, GetShaderInfol.og will return either an empty
string or information about the last compilation attempt for that object.

If program is a program object, GetProgramInfoLog will return either an
empty string or information about the last link attempt or last validation attempt
(see section 11.1.3.12) for that object.

If pipeline is a program pipeline object, GetProgramPipelineInfoLog will
return either an empty string or information about the last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if pipeline is not the name of an
existing program pipeline object.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.
The string source will be null-terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is a
concatenation of the strings passed to the GL using ShaderSource. The length of
this concatenation is given by SHADER_SOURCE_LENGTH, which may be queried
with GetShaderiv.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 163

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderPrecisionFormat(enum shadertype,
enum precisiontype, int *range, int *precision);

returns the range and precision for different numeric formats supported by the
shader compiler. shadertype must be VERTEX_SHADER or FRAGMENT_SHADER.
precisiontype must be one of LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT, LOW_-
INT,MEDIUM_INT or HIGH_INT. range points to an array of two integers in which
encodings of the format’s numeric range are returned. If min and max are the
smallest and largest values representable in the format, then the values returned are
defined to be

range[0] = [loga(|min])]
range[1] = |logs(jmaz])]
precision points to an integer in which the number of bits of precision of the for-

mat is returned. If the smallest representable value greater than 1 is 1 + ¢, then
*precision will contain | —loga(€) |, and every value in the range

[_2r¢znge[0] ’ 2'r’ange[1]]

can be represented to at least one part in 2*P"¢¢s" For example, an IEEE single-
precision floating-point format would return range[0] = 127, range[l] = 127,
and *preciston = 23, while a 32-bit two’s-complement integer format would re-
turn range[0] = 31, range[l] = 30, and xprecision = 0.

The minimum required precision and range for formats corresponding to the
different values of precisiontype are described in section 4.7(*Precision and Preci-
sion Qualifiers”) of the OpenGL Shading Language Specification.

Errors

An INVALID_ENUM error is generated if shadertype is not VERTEX -

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 164

SHADER or FRAGMENT__SHADER.

The commands

void GetUniformfv(uint program, int location,
float *params);

void GetUniformdv(uint program, int location,
double *params);

void GetUniformiv(uint program, int location,
int *params);

void GetUniformuiv(uint program, int location,
uint *params);

void GetnUniformfv(uint program, int location,
sizei bufSize, £loat *params);

void GetnUniformdv(uint program, int location,
sizei bufSize, double *params);

void GetnUniformiv(uint program, int location,
sizei bufSize, int *params);

void GetnUniformuiv(uint program, int location,
sizei bufSize, uint *params);

return the value or values of the uniform at location /ocation of the default uniform
block for program object program in the array params. The type of the uniform at
location determines the number of values returned.

In order to query the values of an array of uniforms, a GetUniform* command
needs to be issued for each array element. If the uniform queried is a matrix, the
values of the matrix are returned in column major order.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully, or if location is not a valid location for program.

An INVALID_OPERATION error is generated by GetnUniform* if the
buffer size required to store the requested data is greater than bufSize.

The command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 165

void GetUniformSubroutineuiv(enum shadertype,
int location, uint *params);

returns the value of the subroutine uniform at location location for shader stage
shadertype of the current program. If location represents an unused location, the
value INVALID_INDEX is returned and no error is generated.

Errors

An INVALID_ENUM error is generated if shadertype is not one of the val-
ues in table 7.1.

An INVALID_VALUE error is generated if location is greater than or equal
to the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader
currently in use at shader stage shadertype.

An INVALID_OPERATION error is generated if no program is active.

The command

void GetProgramStageiv(uint program, enum shadertype,
enum pname, int *values);

returns properties of the program object program specific to the programmable
stage corresponding to shadertype in values. The parameter value to return is
specified by pname. If pname is ACTIVE_SUBROUTINE_UNIFORMS, the number
of active subroutine variables in the stage is returned. If pname is ACTIVE_-
SUBROUTINE_UNIFORM_LOCATIONS, the number of active subroutine variable
locations in the stage is returned. If pname is ACTIVE_SUBROUTINES, the number
of active subroutines in the stage is returned. If pname is ACTIVE_SUBROUTINE_—
UNIFORM_MAX_LENGTH or ACTIVE_SUBROUTINE_MAX_ LENGTH, the length of
the longest subroutine uniform or subroutine name, respectively, for the stage is
returned. The returned name length includes space for a null terminator. If there
is no shader of type shadertype in program, the values returned will be consistent
with a shader with no subroutines or subroutine uniforms.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if shadertype is not one of the val-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.14. REQUIRED STATE 166

ues in table 7.1.

7.14 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.

e An integer holding the value of SHADER_TYPE.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An array of type char containing the concatenated shader string, initially
empty.

e An integer holding the length of the concatenated shader string.

The state required per program object consists of:

e An unsigned integer indicating the program object name.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last link attempt, initially FALSE.

e A boolean holding the status of the last validation attempt, initially FALSE.
e An integer holding the number of attached shader objects.

o A list of unsigned integers to keep track of the names of the shader objects
attached.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An integer holding the number of active uniforms.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

7.14.

REQUIRED STATE 167

For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

An array holding the values of each active uniform.
An integer holding the number of active attributes.

For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

A boolean holding the hint to the retrievability of the program binary, ini-
tially FALSE.

Additional state required to support vertex shaders consists of:

A bit indicating whether or not program point size mode (section 14.4.1) is
enabled, initially disabled.

Additional state required to support transform feedback consists of:

An integer holding the transform feedback mode, initially INTERLEAVED_—
ATTRIBS.

An integer holding the number of outputs to be captured, initially zero.

An integer holding the length of the longest output name being captured,
initially zero.

For each output being captured, two integers holding its size and type, and
an array of type char holding its name.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

This list of program object state is not complete. Tables 23.43-23.53 describe
additional program object state specific to program binaries, geometry shaders,
tessellation control and evaluation shaders, shader subroutines, and uniform blocks.

Table 23.54 describes state related to vertex and geometry shaders that is not
program object state.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 8

Textures and Samplers

Texturing maps a portion of one or more specified images onto

This mapping is accomplished in shaders by
sampling the color of an image at the location indicated by specified (s, ¢, r) texture
coordinates.

Texture lookups are typically used to modify a fragment’s RGBA color but may be
used for any purpose in a shader.

This chapter first describes how pixel rectangles, texture images, and texture
and sampler object parameters are specified and queried, in sections 8.1-8.11. The
remainder of the chapter in sections 8.12-8.26 describe how texture sampling is
performed in shaders.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 8.19-8.21. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.

shader is responsible for interpreting the re-
sult of a texture lookup as the correct data type, otherwise the result is undefined.

Each of the supported types of texture is a collection of fexture images built
from one-, two-, or three-dimensional arrays of texels (see section 2.6.6). One-,
two-, and three-dimensional textures consist respectively of one-, two-, or three-
dimensional texture images. One- and two-dimensional array textures are arrays
of one- or two-dimensional images. Each image consists of one or more layers.

168

169

Two-dimensional multisample and two-dimensional multisample array textures are
special two-dimensional and two-dimensional array textures, respectively, contain-
ing multiple samples in each texel. Cube maps are special two-dimensional array
textures with six layers that represent the faces of a cube. When accessing a cube
map, the texture coordinates are projected onto one of the six faces of the cube. A
cube map array is a collection of cube map layers stored as a two-dimensional array
texture. When accessing a cube map array, the texture coordinates s, ¢, and r are
applied similarly as cube maps while the last texture coordinate ¢ is used as the in-
dex of one of the cube map slices. Rectangle textures are special two-dimensional
textures consisting of only a single image and accessed using unnormalized coor-
dinates. Buffer textures are special one-dimensional textures whose texture images
are stored in separate buffer objects.

Implementations must support texturing using multiple images. For fixed-
function fragment processsing, each fragment or vertex carries multiple sets of
texture coordinates (s, ¢, r, q) which are used to index separate images to produce
color values which are collectively used to modify the resulting transformed vertex
or fragment color. Texturing is specified only for RGBA mode; its use in color
index mode is undefined.

The following subsections (up to and including section 8.14) specify the GL
operation with a single texture. Multiple texture images may be sampled and com-
bined by shaders as described in section 11.1.3.5. For fixed-function fragment
processing, section 16.2 specifies the details of how multiple texture units interact.

The GL provides two ways to specify the details of how texturing of a primi-
tive 1s effected. The first is referred to as fixed-function fragment shading, or simply
fixed-function, and is described in this section. The second is texture access from
programmable shaders, as described in section 11.1.3.5. The specification of the
image to be texture mapped and the means by which the image is filtered when
applied to the primitive are common to both methods and are discussed in this sec-
tion. The fixed-function method for determining what RGBA value is produced is
also described in this section. If a fragment shader is active, the method for deter-
mining the RGBA value is specified by an application-supplied fragment shader as
described in the OpenGL Shading Language Specification.

When no fragment shader is active, and when cube map texturing is not en-
abled, the coordinates used for texturing are (s/q,t/q,r/q), derived from the orig-
inal texture coordinates (s, ¢, r,). If the ¢ texture coordinate is less than or equal to
zero, the coordinates used for texturing are undefined. Otherwise, when cube map
texturing is enabled, texture coordinates are treated as described in section 8.13
When a fragment shader is active, the (s, t,r,q) coordinates are available to the
fragment shader.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

170

The coordinates used for texturing in a fragment shader are defined by the
OpenGL Shading Language Specification.
The command

void ActiveTexture(enum fexture);

specifies the active texture unit selector. The selector may be queried by calling
Getlntegerv with pname set to ACTIVE_TEXTURE.

Each texture unit contains up to two distinct sub-units: a texture coordinate
processing unit consisting of a texture matrix stack and texture coordinate gener-
ation state, and a texture image unit consisting of all the texture state defined in
section 8.22. In implementations with a different number of supported texture co-
ordinate sets and texture image units, some texture units may consist of only one
of the two sub-units.

The active texture unit selector selects the texture image unit accessed by com-
mands involving texture image processing (see chapter 8). Such commands include
all variants of TexEnv (except for those controlling point sprite coordinate replace-
ment), TexParameter, TexImage, BindTexture, Enable/Disable for any texture
target (e.g., TEXTURE_2D), and queries of all such state.

Errors

An INVALID_OPERATION error is generated by any such command if the
texture image unit number corresponding to the current value of ACTIVE_—
TEXTURE is greater than or equal to the value of the implementation-dependent
constant MAX_COMBINED_TEXTURE_IMAGE_UNITS.

The active texture unit selector also specifies the texture coordinate set accessed
by commands involving texture coordinate processing (see section 12.1.1).

Errors

An INVALID_ENUM error is generated if an invalid fexture is specified.
texture is a symbolic constant of the form TEXTUREs, indicating that texture
unit ¢ is to be modified. Each TEXTURE: adheres to TEXTURE? = TEXTUREO
+ ¢, where ¢ is in the range zero to k — 1, and k is the larger of the values of
MAX TEXTURE COORDS and MAX_COMBINED_TEXTURE_IMAGE_UNITS.

For backwards compatibility, the implementation-dependent constant
MAX_TEXTURE_UNITS specifies the number of conventional texture units sup-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.1. TEXTURE OBJECTS 171

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTUREO.

8.1 Texture Objects

Textures in GL are represented by named objects. The name space for tex-
ture objects is the unsigned integers, with zero reserved by the GL to represent
the default texture object. The default texture object is bound to each of the
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_—
2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_MULTISAMPLE, and TEXTURE_-
2D_MULTISAMPLE_ARRAY targets during context initialization.

A new texture object is created by binding an unused name to one of these
texture targets. The command

void GenTextures(sizei n, uint *fextures);

returns n previously unused texture names in fextures. These names are marked as
used, for the purposes of GenTextures only, but they acquire texture state and a
dimensionality only when they are first bound, just as if they were unused.

Errors
An INVALID_VALUE error is generated if # is negative.
The binding is effected by calling
void BindTexture(enum target, uint texture);

with target set to the desired texture target and fexture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 8.22. The new texture object bound to farget
is, and remains a texture of the dimensionality and type specified by farger until it
is deleted.

BindTexture may also be used to bind an existing texture object to any of these
targets. If the bind is successful no change is made to the state of the bound texture
object, and any previous binding to target is broken.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.1. TEXTURE OBJECTS 172

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object.

Errors

An INVALID_ENUM error is generated if farget is not one of the texture
targets described in the introduction to section 8.1.

An INVALID_OPERATION error is generated if an attempt is made to bind
a texture object of different dimensionality than the specified rarget.

The command

void BindTextures(uint first, sizei count, const
uint *textures);

binds count existing texture objects to texture image units numbered first through
first + count — 1. If textures is not NULL, it specifies an array of count values,
each of which must be zero or the name of an existing texture object. When an
entry in fextures is the name of an existing texture object, that object is bound to
the target, in the corresponding texture unit, that was specified when the object was
created. When an entry in fextures is zero, each of the targets enumerated at the
beginning of this section is reset to its default texture for the corresponding texture
image unit. If textures is NULL, each target of each affected texture image unit from
first to first 4+ count — 1 is reset to its default texture.
BindTextures is equivalent (assuming no errors are generated to):

for (i = 0; 1 < count; i++) {
uint texture;
if (tertures == NULL) {
texture = 0;
} else {
texture = textures[i];

}

ActiveTexture (TEXTUREO + first + 1i);

if (texture != 0) {
enum target = /% target of textures[i] =/;
BindTexture (target, textures[i]) ;

} else {

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.1. TEXTURE OBJECTS 173

for (target in all supported targets) {
BindTexture (target, 0);

}

except that the active texture selector retains its original value upon completion of
the command, and that textures will not be created if they do not exist.

The values specified in textures will be checked separately for each texture
image unit. When a value for a specific texture image unit is invalid, the state for
that texture image unit will be unchanged and an error will be generated. However,
state for other texture image units will still be changed if their corresponding values
are valid.

Errors

An INVALID_OPERATION error is generated if first + count is greater
than the number of texture image units supported by the implementation.

An INVALID_OPERATION error is generated if any value in textures is not
zero or the name of an existing texture object (per binding).

The command
void BindTextureUnit(uint unit, uint texture);

binds an existing texture object to the texture unit numbered unit. texture must
be zero or the name of an existing texture object. When fexture is the name of
an existing texture object, that object is bound to the target, in the corresponding
texture unit, that was specified when the object was created. When fexture is zero,
each of the targets enumerated at the beginning of this section is reset to its default
texture for the corresponding texture image unit.

Errors

An INVALID_OPERATION error is generated by BindTextureUnit if fex-
ture is not zero or the name of an existing texture object.

Texture objects may also be created with the command

void CreateTextures(enum farget, sizei n, uint *fextures);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.1. TEXTURE OBJECTS 174

CreateTextures returns n previously unused texture names in textures, each
representing a new texture object that is a state vector comprising all the state and
with the same initial values listed in section 8.22. The new texture objects are and
remain textures of the dimensionality and type specified by farget until they are
deleted.

Errors
An INVALID_VALUE error is generated if # is negative.
Texture objects are deleted by calling
void DeleteTextures(sizei n, const uint *fextures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 9.2.8
for details.

Unused names in fextures that have been marked as used for the purposes of
GenTextures are marked as unused again. Unused names in textures are silently
ignored, as is the name zero.

Errors
An INVALID_VALUE error is generated if # is negative.
The command
boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If fexture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.1. TEXTURE OBJECTS 175

returns TRUE if all of the n texture objects named in fextures are resident, or if the
implementation does not distinguish a working set. If at least one of the texture ob-
jects named in fextures is not resident, then FALSE is returned, and the residence of
each texture object is returned in residences. Otherwise the contents of residences
are not changed.

AreTexturesResident indicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object.

If an error is generated, FALSE is returned.

The residence status of a single bound texture object can also be queried by
calling GetTexParameteriv or GetTexParameterfv with target set to the target to
which the texture object is bound, and pname set to TEXTURE_RESIDENT.

The command

void PrioritizeTextures(sizei n, uint *fextures, const
float *priorities);

sets the priorities of the n texture objects named in fextures to the values in priori-
ties. Each priority value is clamped to the range [0, 1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calling TexParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfv with rarget set to the target to
which the texture object is bound, pname set to TEXTURE_PRIORITY, and param
or params specifying the new priority value (which is clamped to the range [0, 1]
before being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.2. SAMPLER OBJECTS 176

The texture object name space, including the initial one-, two-, and three- di-
mensional, one- and two-dimensional array, rectangle, buffer, cube map, cube map
array, two-dimensional multisample, and two-dimensional multisample array tex-
ture objects, is shared among all texture units. A texture object may be bound to
more than one texture unit simultaneously. After a texture object is bound, any
GL operations on that target object affect any other texture units to which the same
texture object is bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

8.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described
in section 8.22. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category
represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the sampling state of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a sampler unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter*, GetSamplerParameter*, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 23.23.

Errors
An INVALID_VALUE error is generated if count is negative.
Sampler objects may also be created with the command

void CreateSamplers(sizei n, uint *samplers);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.2. SAMPLER OBJECTS 177

CreateSamplers returns n previously unused sampler names in samplers, each
representing a new sampler object which is a state vector comprising all the state
and with the same initial values listed in table 23.23".

Errors
An INVALID_VALUE error is generated if » is negative.

When a sampler object is bound to a texture unit, its state supersedes that of
the texture object bound to that texture unit. If the sampler name zero is bound to
a texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler object binding is effected with the command

void BindSampler(uint unit, uint sampler);

with unit set to the zero-based index of the texture unit to which to bind the sampler
and sampler set to the name of a sampler object returned from a previous call to
GenSamplers.

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

If state is present in a sampler object bound to a texture unit that would have
been rejected by a call to TexParameter* for the texture bound to that unit, the
behavior of the implementation is as if the texture were incomplete. For example, if
TEXTURE_WRAP_S or TEXTURE_WRAP_T is set to REPEAT, MIRRORED_REPEAT,
or MIRROR_CLAMP_TO_EDGE on the sampler object bound to a texture unit and
the texture bound to that unit is a rectangle texture, the texture will be considered
incomplete.

Sampler object state which does not affect sampling for the type of texture
bound to a texture unit, such as TEXTURE_WRAP_R for a rectangle texture, does
not affect completeness.

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding the sampler object named zero to that unit), the modified
state is again replaced with the sampler state associated with the texture object
bound to that texture unit.

"Note that unlike texture objects, the initial sampler object state for TEXTURE_MIN_FILTER
and TEXTURE_WRAP_ * are fixed, rather than dependent on the type of texture image.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.2. SAMPLER OBJECTS

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to
the value of MAX_COMBINED_TEXTURE_IMAGE_UNITS.

An INVALID_OPERATION error is generated if sampler is not zero or a
name returned from a previous call to GenSamplers, or if such a name has
since been deleted with DeleteSamplers.

The command

void BindSamplers(uint first, sizei count, const
uint *samplers);

binds count existing sampler objects to texture image units numbered first through
first 4+ count — 1. If samplers is not NULL, it specifies an array of count values,
each of which must be zero or the name of an existing sampler object. If samplers
is NULL, each affected texture image unit from first through first + count — 1 will
be reset to have no bound sampler object.

BindSamplers is equivalent (assuming no errors are generated to):

for (i = 0; i < count; i++) {
if (samplers == NULL) {
BindSampler (first + 1, 0);
} else {

BindSampler (first + i, samplers[i]);
}
}

The values specified in samplers will be checked separately for each texture
image unit. When a value for a specific texture image unit is invalid, the state for
that texture image unit will be unchanged and an error will be generated. However,
state for other texture image units will still be changed if their corresponding values
are valid.

Errors

An INVALID_OPERATION error is generated if first + count is greater
than the number of texture image units supported by the implementation.

An INVALID_OPERATION error is generated if any value in samplers is
not zero or the name of an existing sampler object (per binding).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

178

8.2. SAMPLER OBJECTS 179

The parameters represented by a sampler object are a subset of those described
in section 8.10. Each parameter of a sampler object is set by calling

void SamplerParameter{if}(uint sampler, enum pname,
T param);

void SamplerParameter{if}v(uint sampler, enum pname,
const T *param);

void SamplerParameterI{i wi}v(uint sampler, enum pname,
const T *params);

sampler is the name of a sampler object previously reserved by a call to GenSam-
plers. pname is the name of a parameter to modify and param is the new value of
that parameter. pname must be one of the sampler state names in table 23.23.
Texture state listed in tables 23.21- 23.22 but not listed here and in the sampler
state in table 23.23 is not part of the sampler state, and remains in the texture object.
Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

e If the values for TEXTURE_BORDER_COLOR are specified with SamplerPa-
rameterliv or SamplerParameterluiv, they are unmodified and stored with
an internal data type of integer. If specified with SamplerParameteriv, they
are converted to floating-point using equation 2.2. Otherwise, the values are
unmodified and stored as floating-point.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 23.23.

An INVALID_ENUM error is generated if SamplerParameter{if} is called
for a non-scalar parameter (pname TEXTURE_BORDER_COLOR Or TEXTURE_ -
SWIZZLE_RGBA).

If the value of param is not an acceptable value for the parameter specified

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.3. SAMPLER OBJECT QUERIES 180

in pname, an error is generated as specified in the description of TexParame-
ter™.

Sampler objects are deleted by calling
void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to one or more texture units is deleted, it is as though BindSampler is called
once for each texture unit to which the sampler is bound, with unit set to the texture
unit and sampler set to zero. Unused names in samplers that have been marked as
used for the purposes of GenSamplers are marked as unused again. Unused names
in samplers are silently ignored, as is the reserved name zero.

Errors
An INVALID_VALUE error is generated if count is negative.
The command
boolean IsSampler(uint sampler);

may be called to determine whether sampler is the name of a sampler object. Is-
Sampler will return TRUE if sampler is the name of a sampler object previously
returned from a call to GenSamplers and FALSE otherwise. Zero is not the name
of a sampler object.

8.3 Sampler Object Queries
The current values of the parameters of a sampler object may be queried by calling

void GetSamplerParameter{if}v(uint sampler,
enum pname, T *params);

void GetSamplerParameterlI{i ui}v(uint sampler,
enum pname, T *params);

sampler is the name of the sampler object from which to retrieve parameters.
pname is the name of the parameter to be queried, and must be one of the sam-
pler state names in table 23.23. params is the address of an array into which the
current value of the parameter will be placed.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 181

Querying TEXTURE_BORDER_COLOR with GetSamplerParameterliv or Get-
SamplerParameterluiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 23.23.

8.4 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL us-
ing TexImage*D 8.5

18.1) Some of the parameters and operations gov-
erning the operation of these commands are shared by

ReadPixels (used to obtain

pixel values from the framebuffer); the discussion of ReadPixels,
however, is deferred until chapter 9 after the framebuffer has been discussed in de-
tail. Nevertheless, we note in this section when parameters and state pertaining to
these commands also pertain to ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with

8.4.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D, Com-
pressed TexImage*D, Compressed TexSubImage*D, and ReadPix-
els 14.6.2 14.8) when one of these
commands is issued.

21.4). Pixel storage modes
are set with

void PixelStore{if}(enum pname, T param);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 182

Parameter Name Type Initial Value \ Valid Range ‘
UNPACK_SWAP_BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP_PIXELS integer 0 [0, 00)
UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT integer 0 [0, 00)
UNPACK_SKIP_IMAGES integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_WIDTH | integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_HEIGHT | integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_DEPTH integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_SIZE integer 0 [0, 00)

Table 8.1: PixelStore* parameters pertaining to one or more of

TexImage*D, TexSubImage*D, Compressed-
TexImage*D and Compressed TexSubImage*D.

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Tables 8.1 and 18.1 summarize the pixel storage parameters, their
types, their initial values, and their allowable ranges.

Errors

An INVALID_ENUM error is generated if pname is not one of the paramater
names in table 8.1 or 18.1.

An INVALID_VALUE error is generated if param is outside the given range
for the corresponding pname in table 8.1 or 18.1.

Data conversions are performed as specified in section 2.2.1.

In addition to storing pixel data in client memory, pixel data may also be
stored in buffer objects (described in section 6). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_—
PACK_BUFFER targets respectively.

Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-
age specification commands such as source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 183

the designated buffer object.

8.4.2 The Imaging Subset

Some pixel transfer operations are only made available in GL implementations
which incorporate the optional imaging subset. The imaging subset includes both
new commands, and new enumerants allowed as parameters to existing commands.
If the subset is supported, all of these calls and enumerants must be implemented
as described later in this section.

The individual operations available only in the imaging subset are described in
section 8.4.3. Imaging subset operations include:

e Color tables, including all commands and enumerants described in sub-
sections Color Table Specification, Alternate Color Table Specification
Commands, Color Table State and Proxy State, Color Table Lookup,
Post Convolution Color Table Lookup, and Post Color Matrix Color Ta-
ble Lookup, as well as the query commands described in section 8.4.3.4.

e Convolution, including all commands and enumerants described in sub-
sections Convolution Filter Specification, Alternate Convolution Filter
Specification Commands, and Convolution, as well as the query com-
mands described in section 8.4.3.8.

e Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation, as
well as the simple query commands described in section 8.4.3.11.

e Histogram and minmax, including all commands and enumerants de-
scribed in subsections Histogram Table Specification, Histogram State
and Proxy State, Histogram, Minmax Table Specification, and Min-
max, as well as the query commands described in section 8.4.3.13 and sec-
tion 8.4.3.16.

The imaging subset is supported only if the EXTENSIONS string includes
the substring ”GL_ARB_imaging” Querying EXTENSIONS is described in sec-
tion 22.2.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 184

\ Parameter Name \ Type \ Initial Value \ Valid Range \
MAP_COLOR boolean FALSE TRUE/FALSE
MAP_STENCIL boolean FALSE TRUE/FALSE
INDEX_SHIFT integer 0 (—00,00)
INDEX_OFFSET integer 0 (—00, 00)
z_SCALE float 1.0 (—00,00)
DEPTH_SCALE float 1.0 (—00,00)
x_BIAS float 0.0 (—00,0)
DEPTH_BIAS float 0.0 (—00,00)
POST_CONVOLUTION_x_SCALE float 1.0 (—00,)
POST_CONVOLUTION_z_BIAS float 0.0 (—00,)
POST_COLOR_MATRIX_ z_SCALE | float 1.0 (—00,00)
POST_COLOR_MATRIX_z_BIAS float 0.0 (—00,00)

Table 8.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

8.4.3 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels (section 18.1), ReadPix-
els (section 18.2), and CopyPixels (section 18.3) at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if}(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is the

value to set it to. Table 8.2 summarizes the pixel transfer parameters that are set

with PixelTransfer, their types, their initial values, and their allowable ranges.
Data conversions are performed as specified in section 2.2.1.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 185

Map Name H Address Value Init. Size | Init. Value
PIXEL_MAP_I_TO_I color idx color idx 1 0.0
PIXEL_MAP_S_TO_S | stencil idx | stencil idx 1 0
PIXEL_MAP_I_TO_R || coloridx R 1 0.0
PIXEL_MAP_I_TO_G color idx G 1 0.0
PIXEL_MAP_I_TO_B || coloridx B 1 0.0
PIXEL_MAP_I_TO_A || coloridx A 1 0.0
PIXEL_MAP_R_TO_R R R 1 0.0
PIXEL_MAP_G_TO_G G G 1 0.0
PIXEL_MAP_B_TO_B B B 1 0.0
PIXEL_MAP_A_TO_A A A 1 0.0

Table 8.3: PixelMap parameters.

The pixel map lookup tables are set with

void PixelMap{ui us f}v(enum map, sizei size, const
T *values);

map is a symbolic map name, indicating the map to set, size indicates the size of
the map, and values refers to an array of size map values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions of PixelMap is called. A table entry is converted to
the appropriate type when it is specified. An entry giving a color component value
is converted as described in equation 2.1 and then clamped to the range [0, 1]. An
entry giving a color index value is converted from an unsigned short integer or un-
signed integer to floating-point. An entry giving a stencil index is converted from
single-precision floating-point to an integer by rounding to nearest. The various
tables and their initial sizes and entries are summarized in table 8.3.

The maximum allowable size of each table is specified by the implementation-
dependent value of MAX_PIXEL_MAP_TABLE, but must be at least 32 (a single
maximum applies to all tables).

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_—
UNPACK_BUFFER_BINDING), values is an offset into the pixel unpack buffer; oth-
erwise, values is a pointer to client memory. All pixel storage and pixel transfer

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 186

modes are ignored when specifying a pixel map. n machine units are read where
n is the size of the pixel map times the size of a f1oat, uint, or ushort datum
in basic machine units, depending on the respective PixelMap version.

8.4.3.1 Pixel Map Queries

The commands

void GetPixelMap{ui us f}v(enum map, T *data);
void GetnPixelMap{ui us f}v(enum map, sizei bufSize,
T data);

return all values in the pixel map map in data. map must be a map name from
table 8.3. Get*PixelMapuiv and Get*PixelMapusv convert floating-point pixel
map values to integers according to the UNSIGNED_INT and UNSIGNED_SHORT
entries, respectively, of table 18.2.

GetnPixelMap* do not write more than bufSize bytes into data.

If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_—
PACK_BUFFER_BINDING), data is an offset into the pixel pack buffer; otherwise,
data is a pointer to client memory. All pixel storage and pixel transfer modes are
ignored when returning a pixel map. n machine units are written where n is the size
of the pixel map times the size of FLOAT, UNSIGNED_INT, or UNSIGNED_SHORT
respectively in basic machine units.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 187

8.4.3.2 Color Table Specification

Color lookup tables are specified with

void ColorTable(enum rarget, enum internalformat,
sizei width, enum format, enum type, const
void *data);

target must be one of the regular color table names listed in table 8.4 to define
the table. A proxy table name is a special case discussed later in this section.
width, format, type, and data specify an image in memory with the same mean-
ing and allowed values as the corresponding arguments to DrawPixels (see sec-
tion 18.1), with height taken to be 1. The maximum allowable width of a table
is implementation-dependent, but must be at least 32. The formats COLOR_-
INDEX, DEPTH_COMPONENT, DEPTH_STENCIL, and STENCIL_INDEX and the
type BITMAP are not allowed.

The specified image is taken from memory and processed just as if DrawPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the four COLOR_TABLE_SCALE param-
eters and biased by the four COLOR_TABLE_BIAS parameters. These parameters
are set by calling ColorTableParameterfv as described below. If fragment color
clamping is enabled or internalformat is fixed-point, components are clamped to
[0, 1]. Otherwise, components are not modified.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 8.5). internalformat must
be one of the formats in table 8.18 or tables 8.19- 8.21, with the exception of the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 188

Table Name || Type |

COLOR_TABLE regular
POST_CONVOLUTION_COLOR_TABLE
POST_COLOR_MATRIX_COLOR_TABLE
PROXY_COLOR_TABLE proxy
PROXY_POST_CONVOLUTION_COLOR_TABLE
PROXY_POST_COLOR_MATRIX COLOR_TABLE

Table 8.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

RED, RG, DEPTH_COMPONENT, and DEPTH_STENCIL base and sized internal for-
mats in those tables, all sized internal formats with non-fixed internal data types
(see section 8), and sized internal format RGB9_ES5.

The color lookup table is redefined to have width entries, each with the speci-
fied internal format. The table is formed with indices 0 through width — 1. Table
location 7 is specified by the ith image pixel, counting from zero.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if}v(enum target, enum pname,
const T *params);

target must be a regular color table name. pname is one of COLOR_TABLE_SCALE
or COLOR_TABLE_BIAS. params points to an array of four values: red, green, blue,
and alpha, in that order.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 189

Data conversions are performed as specified in section 2.2.1.

A GL implementation may vary its allocation of internal component resolution
based on any ColorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

8.4.3.3 Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.
The command

void CopyColorTable(enum target, enum internalformat,
int x, inty, sizei width);

defines a color table in exactly the manner of ColorTable, except that table data
are taken from the framebuffer, rather than from client memory. farget must be a
regular color table name. x, y, and width correspond precisely to the corresponding
arguments of CopyPixels (refer to section 18.3); they specify the image’s width
and the lower left (z,y) coordinates of the framebuffer region to be copied. The
image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixels with argument type set to COLOR and height set to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, begin-
ning with scaling by COLOR_TABLE_SCALE. Parameters farget, internalformat and
width are specified using the same values, with the same meanings, as the corre-
sponding arguments of ColorTable. format is taken to be RGBA.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES

Two additional commands,

void ColorSubTable(enum rarget, sizei start, sizei count,
enum format, enum type, const void *data);

void CopyColorSubTable(enum target, sizei start, int x,
inty, sizei count);

respecify only a portion of an existing color table. No change is made to the inter-
nalformat or width parameters of the specified color table, nor is any change made
to table entries outside the specified portion. target must be a regular color table
name.

ColorSubTable arguments format, type, and data match the corresponding ar-
guments to ColorTable, meaning that they are specified using the same values,
and have the same meanings. Likewise, CopyColorSubTable arguments x, y, and
count match the x, y, and width arguments of CopyColorTable. Both of the Color-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled by the internalformat of
the table, not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSubTable spec-
ify a subregion of the color table starting at index start and ending at index
start + count — 1. Counting from zero, the nth pixel group is assigned to the
table entry with index count + n.

8.4.3.4 Color Table Query

The current contents of a color table are queried with the commands

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

190

8.4. PIXEL RECTANGLES 191

| format Name
RED

GREEN
BLUE

Table 8.5: Pixel data format parameter values accepted for the color table, convolu-
tion filter, histogram table, and minmax table query commands. These commands
accept only a subset of the formats accepted by GetTexImage, but the specifica-
tion and interpretation of pixels in those formats is identical to that described for
the same formats in table 8.8.

void GetColorTable(enum target, enum format, enum type,
void *table);

void GetnColorTable(enum target, enum format, enum type,
sizei bufSize, void *table);

target must be one of the regular color table names listed in table 8.4. format
must be a pixel format from table 8.5 and fype must be a data type from table 8.6.
The one-dimensional color table image is returned to pixel pack buffer or client
memory starting at table. No pixel transfer operations are performed on this image,
but pixel storage modes that are applicable to ReadPixels are performed. Color
components that are requested in the specified format, but which are not included in
the internal format of the color lookup table, are returned as zero. The assignments
of internal color components to the components requested by format are described
in table 8.26.

Errors

An INVALID_ENUM error is generated if farget is not one of the regular
color table names from table 8.4.
An INVALID_ENUM error is generated if format is not one of the pixel

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 192

] type Name

UNSIGNED_BYTE

BYTE

UNSIGNED_SHORT

SHORT

UNSIGNED_INT

INT

UNSIGNED_BYTE_3_3_2
UNSIGNED_BYTE_2_3_3_REV
UNSIGNED_SHORT_5_6_5
UNSIGNED_SHORT_5_6_5_REV
UNSIGNED_SHORT_4_4_4_4
UNSIGNED_SHORT 4_4_4_ 4 REV
UNSIGNED_SHORT_5_5_5_1
UNSIGNED_SHORT_1_5_5_5_REV
UNSIGNED_INT_8_8_8_8
UNSIGNED_INT_8_8_8_8_REV

UNSIGNED_INT_10_10_10_2
UNSIGNED_INT_2_10_10_10_REV

Table 8.6: Pixel data type parameter values accepted for the color table, convolu-
tion filter, histogram table, and minmax table query commands. These commands
accept only a subset of the types accepted by GetTexImage, but the specification
and interpretation of pixels in those types is identical to that described for the same
types in table 8.7.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 193

The command

void GetColorTableParameter{if}v(enum rarget,
enum pname, T params);

is used for integer and floating-point query.

target must be one of the regular or proxy color table names listed in ta-
ble 8.4. pname is one of COLOR_TABLE_SCALE, COLOR_TABLE_BIAS, COLOR_—
TABLE_FORMAT, COLOR_TABLE_WIDTH, COLOR_TABLE_RED_SIZE, COLOR_-
TABLE_GREEN_SIZE, COLOR_TABLE_BLUE_SIZE, COLOR_TABLE_ALPHA -
SIZE, COLOR_TABLE_LUMINANCE_SIZE, or COLOR_TABLE_INTENSITY_ SIZE.
The value of the specified parameter is returned in params.

8.4.3.5 Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format
RGBA, with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they include
scale and bias parameters. When ColorTable is executed with rarget specified as

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 194

one of the proxy color table names listed in table 8.4, the proxy state values of the
table are recomputed and updated. If the table is too large, no error is generated, but
the proxy format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with zarget set to the corresponding
regular table name (COLOR_TABLE is the regular name corresponding to PROXY_ -
COLOR_TABLE, for example), the proxy state values are set exactly as though the
regular table were being specified. Calling ColorTable with a proxy target has no
effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and cannot be queried using GetColorTable.

8.4.3.6 Convolution Filter Specification
A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D(enum farget, enum internalformat,
sizei width, sizei height, enum format, enum type,
const void *data);

target must be CONVOLUTION_2D. width, height, format, type, and data specify an
image in memory with the same meaning and allowed values as the correspond-
ing parameters to DrawPixels. The formats COLOR_INDEX, DEPTH_COMPONENT,
DEPTH_STENCIL, and STENCIL_INDEX and the type BITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The
R, G, B, and A components of each pixel are then scaled by the four two-
dimensional CONVOLUTION_FILTER_SCALE parameters and biased by the four
two-dimensional CONVOLUTION_FILTER_BIAS parameters. These parameters
are set by calling ConvolutionParameterfv as described below. No clamping
takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 8.5). internalformat accepts
the same values as the corresponding argument of ColorTable.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating-point, rather than integer format. They form a two-
dimensional image indexed with coordinates 7, j such that ¢ increases from left to
right, starting at zero, and j increases from bottom to top, also starting at zero.
Image location i, j is specified by the Nth pixel, counting from zero, where

N =14 j xwidth

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 195

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if}v(enum rarget, enum pname,
const T *params);

with target CONVOLUTION_2D. pname is one of CONVOLUTION_FILTER_SCALE
or CONVOLUTION_FILTER_BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

Data conversions are performed as specified in section 2.2.1.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D(enum target, enum internalformat,
sizei width, enum format, enum type, const
void *data);

target must be CONVOLUTION_1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional coun-
terparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if ConvolutionFilter2D
were called with a height of 1, except that it is scaled and biased by the one-
dimensional CONVOLUTION_FILTER_SCALE and CONVOLUTION_FILTER_BIAS
parameters. These parameters are specified exactly as the two-dimensional param-
eters, except that ConvolutionParameterfv is called with target CONVOLUTION_-
1D.

The image is formed with coordinates ¢ such that 7 increases from left to right,
starting at zero. Image location ¢ is specified by the ith pixel, counting from zero.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 196

Special facilities are provided for the definition of two-dimensional sepa-
rable filters — filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
const void *row, const void *column);

target must be SEPARABLE_2D. internalformat specifies the formats of the table
entries of the two one-dimensional images that will be retained. row points to a
width pixel wide image of the specified format and type. column points to a height
pixel high image, also of the specified format and type.

The two images are extracted from memory and processed as if Convolu-
tionFilter1D were called separately for each, except that each image is scaled
and biased by the two-dimensional separable CONVOLUTION_FILTER_SCALE and
CONVOLUTION_FILTER_BIAS parameters. These parameters are specified ex-
actly as the one-dimensional and two-dimensional parameters, except that Con-
volutionParameteriv is called with target SEPARABLE_2D.

8.4.3.7 Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.
The command

void CopyConvolutionFilter2D(enum target,
enumn internalformat, int x, inty, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner of ConvolutionFilter2D,
except that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION_2D. x, y, width, and height correspond precisely
to the corresponding arguments of CopyPixels (refer to section 18.3); they specity
the image’s width and height, and the lower left (x,y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES

if these arguments were passed to CopyPixels with argument fype set to COLOR,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter2D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters farget, in-
ternalformat, width, and height are specified using the same values, with the same
meanings, as the corresponding arguments of ConvolutionFilter2D. format is
taken to be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int x, inty, sizei width);

defines a one-dimensional filter in exactly the manner of ConvolutionFilter1D, ex-
cept that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION_1D. x, y, and width correspond precisely to
the corresponding arguments of CopyPixels (see section 18.3); they specify the
image’s width and the lower left (x,y) coordinates of the framebuffer region to
be copied. The image is taken from the framebuffer exactly as if these arguments
were passed to CopyPixels with argument rype set to COLOR and height set to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter1D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters farget, in-
ternalformat, and width are specified using the same values, with the same mean-
ings, as the corresponding arguments of ConvolutionFilter2D. format is taken to
be RGBA.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

197

8.4. PIXEL RECTANGLES 198

8.4.3.8 Convolution Query

The contents of a convolution filter image are queried with the commands

void GetConvolutionFilter(enum target, enum format,
enumn type, void *image);

void GetnConvolutionFilter(enum target, enum format,
enum type, sizei bufSize, void *image);

target must be CONVOLUTION_1D or CONVOLUTION_2D. format must be a pixel
format from table 8.5 and fype must be a data type from table 8.6. The one- or
two-dimensional image is returned to pixel pack buffer or client memory starting
at image. Pixel processing and component mapping are identical to those of Get-
TexImage.

The contents of a separable filter image are queried with the commands

void GetSeparableFilter(enum rarget, enum format,
enum type, void *row, void *column, void *span);
void GetnSeparableFilter(enum farget, enum format,
enum type, sizei rowBufSize, void *row,
sizei columnBufSize, void *column, void *span);

target must be SEPARABLE_2D. format must be a pixel format from table 8.5 and
type must be a data type from table 8.6. The row and column images are returned
to pixel pack buffer or client memory starting at row and column respectively. span
is unused. Pixel processing and component mapping are identical to those of Get-
TexImage.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 199

The commands

void GetConvolutionParameter{if}v(enum rarget,
enum pname, T *params);

are used for integer and floating-point query. farget must be CONVOLUTION_1D,
CONVOLUTION_2D, or SEPARABLE_2D. pname is one of CONVOLUTION_-
BORDER_COLOR, CONVOLUTION_BORDER_MODE, CONVOLUTION_-—
FILTER_SCALE, CONVOLUTION_FILTER_BIAS, CONVOLUTION_FORMAT,
CONVOLUTION_WIDTH, CONVOLUTION_HEIGHT, MAX_CONVOLUTION_WIDTH,
or MAX_CONVOLUTION_HEIGHT. The value of the specified parameter is returned
in params.

8.4.3.9 Convolution Filter State

The required state for convolution filters includes a one-dimensional filter image,
two one-dimensional filter images, for the separable filter, and a two-dimensional
filter image. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.

Each initial convolution filter is null (zero width and height, internal format
RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

8.4.3.10 Color Matrix Specification

Setting the matrix mode to COLOR causes the matrix operations described in sec-
tion 12.1.1 to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 200

8.4.3.11 Color Matrix Query

The scale and bias variables are queried using GetFloatv with pname set to the
appropriate variable name. The top matrix on the color matrix stack is returned
by GetFloatv called with pname set to COLOR_MATRIX or TRANSPOSE_COLOR_—
MATRIX. The depth of the color matrix stack, and the maximum depth of the color
matrix stack, are queried with GetIntegerv, setting pname to COLOR_MATRIX_—
STACK_DEPTH and MAX_COLOR_MATRIX_STACK_DEPTH respectively.

8.4.3.12 Histogram Table Specification
The histogram table is specified with

void Histogram(enum target, sizei width,
enum internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be specified. rarget value
PROXY_HISTOGRAM is a special case discussed later in this section. width speci-
fies the number of entries in the histogram table, and internalformat specifies the
format of each table entry. The maximum allowable width of the histogram table
is implementation-dependent, but must be at least 32. sink specifies whether pixel
groups will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

The specified histogram table is redefined to have width entries, each with the
specified internal format. The entries are indexed O through width — 1. Each
component in each entry is set to zero. The values in the previous histogram table,
if any, are lost.

A GL implementation may vary its allocation of internal component resolution
based on any Histogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 201

8.4.3.13 Histogram Query

The contents of the histogram table are queried with the commands

void GetHistogram(enum target, boolean reset,
enum format, enum type, void *values);
void GetnHistogram(enum farget, boolean reset,
enum format, enum type, sizei bufSize, void *values);

target must be HISTOGRAM. format must be a pixel format from table 8.5 and type
must be a data type from table 8.6. The one-dimensional histogram table image is
returned to pixel pack buffer or client memory starting at values. Pixel processing
and component mapping are identical to those of GetTexImage, except that instead
of applying the Final Conversion pixel storage mode, component values are simply
clamped to the range of the target data type.

If reset is TRUE, then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified if reset is FALSE.

The command

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. farget must be
HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with zero
entries.

The commands

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 202

void GetHistogramParameter{if}v(enum rarget,
enum pname, T *params);

are used for integer and floating-point query. farget must be HISTOGRAM or
PROXY_HISTOGRAM. pname is one of HISTOGRAM _FORMAT, HISTOGRAM_WIDTH,
HISTOGRAM_RED_SIZE, HISTOGRAM_GREEN_SIZE, HISTOGRAM_BLUE_SIZE,
HISTOGRAM ALPHA_SIZE, or HISTOGRAM LUMINANCE_SIZE. pname may be
HISTOGRAM_SINK only for farget HISTOGRAM. The value of the specified param-
eter is returned in params.

8.4.3.14 Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
format RGBA, with zero-sized components). The initial value of the flag is FALSE.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. When Histogram is executed with target set to PROXY_HISTOGRAM, the
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are
set to zero. If the histogram table would be accomodated by Histogram called
with target set to HISTOGRAM, the proxy state values are set exactly as though
the actual histogram table were being specified. Calling Histogram with target
PROXY_HTISTOGRAM has no effect on the actual histogram table.

There is no image associated with PROXY_HISTOGRAM. It cannot be used as a
histogram, and its image cannot be queried using GetHistogram.

8.4.3.15 Minmax Table Specification
The minmax table is specified with

void Minmax(enum farget, enum internalformat,
boolean sink);

target must be MINMAX. internalformat specifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUE) or passed on to final conversion (FALSE).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 203

internalformat accepts the same values as the corresponding argument of Col-
orTable, with the exception of the values 1, 2, 3, and 4, as well as the INTENSITY
base and sized internal formats. The resulting table always has 2 entries, each with
values corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum
table entry set to the minimum representable value. Internal format is set to RGBA
and the initial value of the flag is FALSE.

8.4.3.16 Minmax Query

The contents of the minmax table are queried with the commands

void GetMinmax(enum farget, boolean reset, enum format,
enumn type, void *values);

void GetnMinmax(enum target, boolean reset,
enum format, enum type, sizei bufSize, void *values);

target must be MINMAX. format must be a pixel format from table 8.5 and type must
be a data type from table 8.6. A one-dimensional image of width 2 is returned
to pixel pack buffer or client memory starting at values. Pixel processing and
component mapping are identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified if reset is FALSE.

The command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 204

void ResetMinmax(enum target);

resets all minimum and maximum values of farget to to their maximum and mini-
mum representable values, respectively, target must be MINMAX.
The commands

void GetMinmaxParameter{if}v(enum rarget, enum pname,
T *params);

are used for integer and floating-point query. farget must be MINMAX. pname 1s
MINMAX_FORMAT or MINMAX_SINK. The value of the specified parameter is re-
turned in params.

8.4.4 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 8.1. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.

width and height are the width and height, respectively, of the pixel rectangle
to be transferred.

data refers to the data to be drawn. These data are represented with one of
several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 8.7.

Not all combinations of format and type are valid.

Errors

An INVALID_OPERATION error is generated if format is one of the
INTEGER component formats defined in table 8.8 and type is one of the
floating-point types defined in table 8.7.

An INVALID_ENUM error is generated if type is BITMAP and format is not
COLOR_INDEX Or STENCIL_INDEX.

Some additional constraints on the combinations of format and type values
that are accepted are discussed below. Additional restrictions may be imposed by
specific commands.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 205

byte, short, int, o r float pixel
data stream (index or component)

convert
to float
convert
L to RGB
scale shift
and bias and offset

index to index

look up

color table
lookup

color table
» scale and bias lookup

post ! color table histogram
convolution 1 lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion @"-1)
RGBA pixel |—> color index pixel |—>
data out data out

Figure 8.1. Transfer of pixel rectangles to the GL. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes may
be enabledOpenGL 45 {Compatibility Profile) ««October 2432016 depth and

stencil pixel paths are not shown.

8.4. PIXEL RECTANGLES 206
type Parameter Corresponding Special Floating-
Token Name GL Data Type | Interpretation Point
UNSIGNED_BYTE ubyte No No
BYTE byte No No
UNSIGNED_SHORT ushort No No
SHORT short No No
UNSIGNED_INT uint No No
INT int No No
HALF_FLOAT half No Yes
FLOAT float No Yes
UNSIGNED_BYTE_3_3_2 ubyte Yes No
UNSIGNED_BYTE_2_3_3_REV ubyte Yes No
UNSIGNED_SHORT_5_6_5 ushort Yes No
UNSIGNED_SHORT_5_6_5_REV ushort Yes No
UNSIGNED_SHORT_4_4_4_4 ushort Yes No
UNSIGNED_SHORT_4_4_4_4_REV ushort Yes No
UNSIGNED_SHORT_5_5_5_1 ushort Yes No
UNSIGNED_SHORT_1_5_5_5_REV ushort Yes No
UNSIGNED_INT_8_8_8_8 uint Yes No
UNSIGNED_INT_8_8_8_8_REV uint Yes No
UNSIGNED_INT_10_10_10_2 uint Yes No
UNSIGNED_INT_2_10_10_10_REV uint Yes No
UNSIGNED_INT_24_8 uint Yes No
UNSIGNED_INT_10F_11F_11F_REV uint Yes Yes
UNSIGNED_INT_5_9_9_9 REV uint Yes Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes No

Table 8.7: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described in section 8.4.4.2. Floating-point types are incompatible with INTEGER

formats as described above.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 207

8.4.4.1 Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating-point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 8.8 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer.

Errors

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and unpacking the pixel data according to the process described
below would access memory beyond the size of the pixel unpack buffer’s
memory size.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and data is not evenly divisible by the number of basic machine
units needed to store in memory the corresponding GL data type from table 8.7
for the fype parameter (or not evenly divisible by 4 for type FLOAT 32_-
UNSIGNED_INT_24_8_ REV, which does not have a corresponding GL data

type).

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 8.9. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is zero, then the
number of groups in a row is width; otherwise the number of groups is the value of
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES

208

| Format Name

| Element Meaning and Order |

Target Buffer

STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Index Depth and Stencil
RED R Color
GREEN G Color
BLUE B Color
|apra A [Color |
RG R,G Color
RGB R,G,B Color
RGBA R,G,B, A Color
BGR B,G,R Color
BGRA B,G, R, A Color

RED_INTEGER iR Color
GREEN_INTEGER iG Color
BLUE_INTEGER iB Color

RG_INTEGER iR, i1G Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, iG, iB, iA Color
BGR_INTEGER iB, iG, iR Color
BGRA_INTEGER iB, iG, iR, 1A Color

Table 8.8: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Unless specified as an index, formats
yield components. Components are floating-point unless prefixed with the letter
’1’, which indicates they are integer.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 209

Element Size ‘ Default Bit Ordering ‘ Modified Bit Ordering ‘

8 bit [7.0] [7.0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 8.9: Bit ordering modification of elements when UNPACK_SWAP_BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit O is the least significant.

of the first row, then the first element of the Nth row is indicated by

p+ Nk (8.1)

where NN is the row number (counting from zero) and k is defined as

z >
k—{z[an o 8.2)

where n is the number of elements in a group, [is the number of groups in the row,
a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL ubytes, of
an element. If the number of bits per element is not 1, 2, 4, or 8 times the number
of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 8.2.

8.4.4.2 Special Interpretations

A type matching one of the types in table 8.10 is a special case in which all the
components of each group are packed into a single unsigned byte, unsigned short,
or unsigned int, depending on the type. If type is FLOAT_32_UNSIGNED_INT_ -
24_8_REV, the components of each group are contained within two 32-bit words;
the first word contains the float component, and the second word contains a packed
24-bit unused field, followed by an 8-bit index. The number of components per

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 210

ROW LENGTH

SKI P_PI XELS

SKI P_ROWS

Figure 8.2. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK_ and by PACK__ for ReadPixels.

packed pixel is fixed by the type, and must match the number of components per
group indicated by the format parameter, as listed in table 8.10.

Errors

An INVALID_OPERATION error is generated by any command processing
pixel rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 8.11- 8.14. Each bitfield is interpreted as
an unsigned integer value.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive components occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 211
type Parameter GL Data | Number of | Matching
Token Name Type Components | Pixel Formats
UNSIGNED_BYTE_3_3_2 ubyte 3 RGB, RGB_INTEGER
UNSIGNED_BYTE_2_3_3_REV ubyte 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5 ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5_REV ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_4_4_4_4_REV ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA, BGRA, RGBA_-
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_8_8_8_8 uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_-—
INTEGER
UNSIGNED_INT_8_8_8_8_REV uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_10_10_10_2 uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL
UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB
UNSIGNED_INT_5_9_9 9_REV uint 4 RGB
FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 8.10: Packed pixel formats.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 212

UNSIGNED_BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 8.11: UNSIGNED_BYTE formats. Bit numbers are indicated for each compo-
nent.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 213
UNSIGNED_SHORT_5_6_5:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd
UNSIGNED_SHORT_5_6_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3rd 2nd 1st Component
UNSIGNED_SHORT_4_4_4_4:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th
UNSIGNED_SHORT_4_4_4_4_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4th 3rd 2nd 1st Component
UNSIGNED_SHORT_5_5_5_1:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th ‘
UNSIGNED_SHORT_1_5_5_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ 4th ‘ 3rd 2nd 1st Component

Table 8.12: UNSIGNED_SHORT formats

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES

UNSIGNED_INT_8_8_8_8:

214

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 3rd 4th
UNSIGNED_INT_8_8_8_8_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

4th 2nd 1st Component
UNSIGNED_INT_10_10_10_2:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 3rd ‘ 4th ‘
UNSIGNED_INT_2_10_10_10_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
’ 4th ‘ 3rd 2nd 1st Component
UNSIGNED_INT_24_8:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 2nd
UNSIGNED_INT_10F_11F_11F_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

3rd

1st Component

UNSIGNED_INT_5_9_9_9_ REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 131211109 8 7 6 5 4 3 2 1 0

4th 3rd

2nd

1st Component

Table 8.13: UNSIGNED_INT formats

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 215

FLOAT_32_UNSIGNED_INT_24_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211109 8 7 6 5 4 3 2 1 0

’ 1st Component ‘

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

’ Unused 2nd ‘

Table 8.14: FLOAT_UNSIGNED_INT formats

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 216
Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha
DEPTH_STENCIL depth stencil

Table 8.15: Packed pixel field assignments.

The assignment of components to fields in the packed pixel is as described in
table 8.15.

Byte swapping, if enabled, is performed before the components are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies
3 packed components as shown in table 8.13. The 1st, 2nd, and 3rd components
are called frcq (11 bits), fgreen (11 bits), and fy,e (10 bits) respectively.

freda and fg,cen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.3.4.3. fpe is treated as an unsigned 10-bit floating-point value and con-
verted to a floating-point blue component as described in section 2.3.4.4.
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in table 8.13. The 1st, 2nd, 3rd, and 4th components
are called pred, Pgreens Polue, and pesp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point™ section below in this case) as follows:

red = pred2pmpiBiN
green = pgreen2pezPiBiN
blue = pblue2pﬁzpiBiN

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 217

8.4.4.3 Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and
indices, such as DEPTH_STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value. For unsigned
or signed normalized fixed-point elements, equations 2.1 or 2.2, respectively, are
used.

8.4.4.4 Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE_ATPHA. If
the format is LUMINANCE, then each group of one element is converted to a group
of R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

8.4.4.5 Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to one for integer components or 1.0 for floating-point com-
ponents. If any of R, G, or B is missing from the group, each missing element is
added and assigned a value of O for integer components or 0.0 for floating-point
components.

8.4.4.6 Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels (see
chapter 18), and during the specification of texture images (either from memory
or from the framebuffer), they are described separately in section 8.4.5. After
the operations described in that section are completed, groups are processed as
described in the following sections.

8.4.5 Pixel Transfer Operations

The GL defines six kinds of pixel groups:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 218

1. Floating-point RGBA component: Each group comprises four color compo-
nents in floating-point format: red, green, blue, and alpha.

2. Integer RGBA component: Each group comprises four color components in
integer format: red, green, blue, and alpha.

3. Depth component: Each group comprises a single depth component.
4. Color index: Each group comprises a single color index.
5. Stencil index: Each group comprises a single stencil index.

6. Depth/stencil: Each group comprises a single depth component and a single
stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of certain
kinds; if an operation is not applicable to a given group, it is skipped. None of the
operations defined in this section affect integer RGBA component pixel groups.

This step applies only to RGBA component and depth component groups, and
to the depth components in depth/stencil groups. Each component is multiplied
by an appropriate signed scale factor: RED_SCALE for an R component, GREEN_ -
scaLE for a G component, BLUE_SCALE for a B component, and ALPHA_SCALE
for an A component, or DEPTH_SCALE for a depth component. Then the result
is added to the appropriate signed bias: RED_BIAS, GREEN_BIAS, BLUE_BIAS,
ALPHA_BTIAS, or DEPTH_BIAS.

8.4.5.1 Arithmetic on Indices

This step applies only to color index and stencil index groups, and to the stencil
indices in depth/stencil groups. If the index is a floating-point value, it is converted
to fixed-point, with an unspecified number of bits to the right of the binary point
and at least [logy(MAX_PIXEL_MAP_TABLE)] bits to the left of the binary point.
Indices that are already integers remain so; any fraction bits in the resulting fixed-
point value are zero.

The fixed-point index is then shifted by |INDEX_ SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled.
Then, the signed integer offset INDEX_OFFSET is added to the index.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 219

8.4.5.2 RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if MAP_COLOR
is FALSE. First, each component is clamped to the range [0,1]. There is a ta-
ble associated with each of the R, G, B, and A component elements: PIXEL_—
MAP_R_TO_RforR, PIXEL_MAP_G_TO_G for G, PIXEL_MAP_B_TO_B for B, and
PIXEL_MAP_A_TO_A for A. Each element is multiplied by an integer one less than
the size of the corresponding table, and, for each element, an address is found by
rounding this value to the nearest integer. For each element, the addressed value in
the corresponding table replaces the element.

8.4.5.3 Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

e The groups will be rasterized, and the GL is in RGBA mode, or
e The groups will be loaded as an image into texture memory, or

e The groups will be returned to client memory with a format other than
COLOR_INDEX.

If RGBA component groups are required, then the integer part of the index is
used to reference 4 tables of color components: PIXEL_MAP_TI_TO_R, PIXEL_—
MAP_I_TO_G,PIXEL_MAP_I_ TO_B,and PIXEL_MAP_I_TO_A. Each of these ta-
bles must have 2" entries for some integer value of n (n may be different for each
table). For each table, the index is first rounded to the nearest integer; the result
is ANDed with 2™ — 1, and the resulting value used as an address into the table.
The indexed value becomes an R, G, B, or A value, as appropriate. The group of
four elements so obtained replaces the index, changing the group’s type to RGBA
component.

If RGBA component groups are not required, and if MAP_COLOR is enabled,
then the index is looked up in the PIXEL,_MAP_TI_TO_T table (otherwise, the index
is not looked up). Again, the table must have 2" entries for some integer n. The
index is first rounded to the nearest integer; the result is ANDed with 2™ — 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 220

Base Internal Format | R | G | B | A |

ALPHA A
LUMINANCE Ly | Ly | Ly
LUMINANCE_ALPHA | Ly | Ly | Ly | Ay
INTENSITY L | I | I | I
RGB R, | G | By
RGBA Rt Gt Bt At

Table 8.16: Color table lookup. Ry, Gy, By, Ay, Ly, and I, are color table values
that are assigned to pixel components R, G, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

8.4.5.4 Stencil Index Lookup

This step applies only to stencil index groups, and to the stencil indices in
depth/stencil groups. If MAP_STENCIL is enabled, then the index is looked up
in the PTXET,_MAP_S_TO_S table (otherwise, the index is not looked up). The ta-
ble must have 2" entries for some integer n. The integer index is ANDed with
2" — 1, and the resulting value used as an address into the table. The integer value
in the table replaces the index.

8.4.5.5 Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLOR_TABLE is enabled. If a zero-width table is enabled, no lookup is
performed.

The internal format of the table determines which components of the group
will be replaced (see table 8.16). The components to be replaced are converted
to indices by clamping to [0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

8.4.5.6 Convolution

This step applies only to RGBA component groups. If CONVOLUTION_1D
is enabled, the one-dimensional convolution filter is applied only to the one-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 221

| Base Filter Format | R | G | B | A |
ALPHA R, G, By Agx Ay
LUMINANCE Rox Ly | Gox Ly | Box Ly | Ag
LUMINANCE_ALPHA | Rg*x Ly | Ggx Ly | Bsx Ly | Ag* Ay
INTENSITY Rex1lp | Goxlp | Bsx 1y | Agx Iy
RGB Rsx Ry | Gox Gy | Bgx By | A
RGBA Ryx Ry | Gox Gy | Bo*x By | Agx Ay

Table 8.17: Computation of filtered color components depending on filter image
format. C' x F' indicates the convolution of image component C' with filter F'.

dimensional texture images passed to TexImagelD, TexSubImagelD, Copy-
TexImagelD, and CopyTexSubImagelD. If CONVOLUTION_2D is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed to DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubIm-
age2D, CopyTexImage2D, CopyTexSubIlmage2D, and CopyTexSubImage3D.
If SEPARABLE_2D is enabled, and CONVOLUTION_2D is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations below as Rs, G, B, and Ag.
Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denoted as Ry, G, By, A f» Ly, and I in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending
on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in table 8.17.

The convolution operation is defined differently for each of the three convolu-
tion filters. The variables W, and H refer to the dimensions of the convolution
filter. The variables W and H refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, where C refers to the filtered
result, Cy refers to the one- or two-dimensional convolution filter, and C,.,,, and
Creotumn refer to the two one-dimensional filters comprising the two-dimensional
separable filter. C’ depends on the source image color Cy and the convolution
border mode as described below. C)., the filtered output image, depends on all
of these variables and is described separately for each border mode. The pixel
indexing nomenclature is decribed in section 8.4.3.5.

One-dimensional filter:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 222

We—1
Cli'| =) Clli" +n]* Cyln]
n=0
Two-dimensional filter:
Wi—1Hp—1

Ccli', i = Z Z Cili' +n,j +m|x C¢ln,m]

n=0 m=0

Two-dimensional separable filter:

Wi—1Hp—1
Cli', i1 =Y > Cli"+n,5 +m] * Crow[n] * Ceotumn[m]

n=0 m=0

If W of a one-dimensional filter is zero, then C[i] is always set to zero. Like-
wise, if either Wy or Hy of a two-dimensional filter is zero, then C[4, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if}(enum rarget, enum pname,
T param);

where target is the name of the filter, pname is CONVOLUTION_BORDER_MODE, and
param is one of REDUCE, CONSTANT_BORDER or REPLICATE_BORDER.

8.4.5.7 Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE are
reduced by Wy — 1 and Hy — 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mode REDUCE are zero through W — W, in width, and zero
through H, — Hy in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific example is TexImagelD and Tex-
Image2D, which specify constraints for image dimensions. Even if TexImagelD
or TexImage2D is called with a NULL pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 223

When the border mode is REDUCE, Cg equals the source image color Cs and
C, equals the filtered result C.
For the remaining border modes, define

o[
- |2

The coordinates (C,, C},) define the center of the convolution filter.

8.4.5.8 Border Mode CONSTANT_BORDER

If the convolution border mode is CONSTANT_BORDER, the output image has the
same dimensions as the source image. The result of the convolution is the same as
if the source image were surrounded by pixels with the same color as the current
convolution border color. Whenever the convolution filter extends beyond one of
the edges of the source image, the constant-color border pixels are used as input
to the filter. The current convolution border color is set by calling Convolution-
Parameterfv or ConvolutionParameteriv with pname set to CONVOLUTION_—
BORDER_COLOR and params containing four values that comprise the RGBA color
to be used as the image border. Integer color components are interpreted linearly
such that the largest positive integer maps to 1.0, and the smallest negative inte-
ger maps to -1.0. Floating-point color components are not clamped when they are
specified.
For a one-dimensional filter, the result color is defined by

CTM - C[l - Cw]

where C[i'] is computed using the following equation for C".[i']:

. Csli'], 0<d <W,
111 S ’ — S
Gl = { C., otherwise

and C.. is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Cr[i»j] - C[i - vaj - Ch]

where C[i, j'] is computed using the following equation for C’[', 7']:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 224

Cl[i/ j/}: Cs[i/7j/}7 O§Z/<WS70§]/<HS
se Ce, otherwise

8.4.5.9 Border Mode REPLICATE_BORDER

The convolution border mode REPLICATE_BORDER also produces an output im-
age with the same dimensions as the source image. The behavior of this mode is
identical to that of the CONSTANT_BORDER mode except for the treatment of pixel
locations where the convolution filter extends beyond the edge of the source im-
age. For these locations, it is as if the outermost one-pixel border of the source
image was replicated. Conceptually, each pixel in the leftmost one-pixel column
of the source image is replicated), times to provide additional image data along
the left edge, each pixel in the rightmost one-pixel column is replicated C',, times
to provide additional image data along the right edge, and each pixel value in the
top and bottom one-pixel rows is replicated to create C}, rows of image data along
the top and bottom edges. The pixel value at each corner is also replicated in order
to provide data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by

C,[i] = Cli — Cy)

where C[i'] is computed using the following equation for C”.[i']:

CLli"] = Cg[clamp(i’, W;)]
and the clamping function clamp(val, max) is defined as
0, val <0

clamp(val, mazx) = ¢ wal, 0 <wal < max
max — 1, wval > mazx

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Crli, j] = Cli = Cuw, j — Ci]
where C[i’, j'] is computed using the following equation for C’[', 7']:

CLli',j'] = Cs[clamp(i’, W), clamp(j’, Hy)]

If a convolution operation is performed, each component of the resulting image
is scaled by the corresponding Pixel Transfer parameters: POST_CONVOLUTION_ -
RED_SCALE for an R component, POST_CONVOLUTION_GREEN_SCALE for a G

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 225

component, POST_CONVOLUTION_BLUE_SCALE for a B component, and POST_—
CONVOLUTION_ALPHA_SCALE for an A component. The result is added to the
corresponding bias: POST_CONVOLUTION_RED_BIAS, POST_CONVOLUTION_—
GREEN_BIAS, POST_CONVOLUTION_BLUE_BIAS, or POST_CONVOLUTION_-—
ALPHA_BIAS.

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border mode is REDUCE, and the border color is
(0,0,0,0).

8.4.5.10 Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color table
lookup is enabled or disabled by calling Enable or Disable with target POST_—
CONVOLUTION_COLOR_TABLE. The post convolution table is defined by calling
ColorTable with a target argument of POST_CONVOLUTION_COLOR_TABLE. In
all other respects, operation is identical to color table lookup, as defined earlier in
section 8.4.5.5.

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

8.4.5.11 Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-
plied by an appropriate signed scale factor: POST_COLOR_MATRIX_RED_SCALE
for an R component, POST_COLOR_MATRIX_GREEN_SCALE for a G compo-
nent, POST_COLOR_MATRIX BLUE_SCALE for a B component, and POST -
COLOR_MATRIX_ALPHA_SCALE for an A component. The result is added
to a signed bias: POST_COLOR_MATRIX_RED_BIAS, POST_COLOR_MATRIX_ -
GREEN_BIAS, POST_COLOR_MATRIX_BLUE_BIAS, or POST_COLOR_MATRIX_ -
ALPHA_ BIAS. The resulting components replace each component of the original
group.

That is, if M, is the color matrix, a subscript of s represents the scale term for
a component, and a subscript of b represents the bias term, then the components

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 226

R

G

B

A

are transformed to

R R, 0 0 O R Ry
€4 0 Gg¢ 0 0 G Gy
Bl=lo o B o|M|B|"|B
Al 0 0 0 A A Ay

8.4.5.12 Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix color table
lookup is enabled or disabled by calling Enable or Disable with target POST_—
COLOR_MATRIX_COLOR_TABLE. The post color matrix table is defined by calling
ColorTable with a target argument of POST_COLOR_MATRIX_COLOR_TABLE. In
all other respects, operation is identical to color table lookup, as defined in sec-
tion 8.4.5.5.

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

8.4.5.13 Histogram

This step applies only to RGBA component groups. Histogram operation is en-
abled or disabled by calling Enable or Disable with farget HISTOGRAM.

If the width of the table is non-zero, then indices R;, G;, B;, and A; are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each component to [0, 1], multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of the HI STOGRAM table includes red or luminance, the red or
luminance component of histogram entry R; is incremented by one. If the format
of the HISTOGRAM table includes green, the green component of histogram entry
G; is incremented by one. The blue and alpha components of histogram entries
B; and A; are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter is FALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 227

are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

8.4.5.14 Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by calling Enable or Disable with farget MINMAX.

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating-point,
with at least the same representable range as a floating-point number used to rep-
resent colors (section 2.3.4). There are no semantics defined for the treatment of
group component values that are outside the representable range.

If the Minmax sink parameter is FALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

8.5 Texture Image Specification
The command
void TexImage3D(enum farget, int level, int internalformat,
sizei width, sizeil height, sizei depth, int border,

enum format, enum type, const void *data);

is used to specify a three-dimensional texture image. target must be one of
TEXTURE_3D for a three-dimensional texture, TEXTURE_2D_ARRAY for a two-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 228

dimensional array texture, or TEXTURE_CUBE_MAP_ARRAY for a cube map ar-
ray texture. Additionally, farget may be either PROXY_TEXTURE_3D for a three-
dimensional proxy texture, PROXY_TEXTURE_2D_ARRAY for a two-dimensional
proxy array texture, or PROXY_TEXTURE_CUBE_MAP_ARRAY for a cube map array
texture, as discussed in section 8.22. format, type, and data specify the format of
the image data, the type of those data, and a reference to the image data in the cur-
rently bound pixel unpack buffer or client memory, as described in section 8.4.4.

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 8.4.4. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_ —
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 8.4.4.

The selected groups are transferred to the GL as described in section 8.4.4
and then clamped to the representable range of the internal format. If the inter-
nalformat of the texture is signed or unsigned integer, components are clamped
to [-27~1, 2771 — 1] or [0,2" — 1], respectively, where n is the number of bits
per component. For color component groups, if the internalformat of the texture
is signed or unsigned normalized fixed-point, components are clamped to [—1, 1]
or [0, 1], respectively. For depth component groups, the depth value is clamped
to [0, 1]. Otherwise, values are not modified. Stencil index values are masked by
2™ — 1, where n is the number of stencil bits in the internal format resolution (see
below). If the base internal format is DEPTH_STENCIL and format is not DEPTH_—
STENCIL, then the values of the stencil index texture components are undefined.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 8.18 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the internal format
symbolic constants listed in table 8.18, as one of the sized internal format symbolic
constants listed in tables 8.19- 8.21, as one of the generic compressed internal

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 229

| Base Internal Format | RGBA, Depth, and Stencil Values | Internal Components |

DEPTH_COMPONENT
DEPTH_STENCIL

Depth
Depth,Stencil

RED R R

RG R,G R.G

RGB R,G,B R,G,B
RGBA R,G,BA R,G,B,A
STENCIL_INDEX Stencil S

Table 8.18: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture, table, or filter components. See section 16.1 for a description of the
texture components R, G, B, A, L, I, D, and S.

format symbolic constants listed in table 8.22, or as one of the specific compressed
internal format symbolic constants (if listed in table 8.22). internalformat may (for
backwards compatibility with the 1.0 version of the GL) also take on the integer
values 1, 2, 3, and 4, which are equivalent to symbolic constants LUMINANCE,
LUMINANCE_ATLPHA, RGB, and RGBA respectively.

Textures with a base internal format of DEPTH_COMPONENT, DEPTH -
STENCIL, or STENCIL_INDEX are supported by texture image specification
commands only if target is TEXTURE_1D, TEXTURE_2D, TEXTURE_2D_-
MULTISAMPLE, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_-—
2D_MULTISAMPLE_ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, PROXY_TEXTURE_1D, PROXY_TEXTURE_-
2D, PROXY_TEXTURE_2D_MULTISAMPLE, PROXY_TEXTURE_1D_ARRAY,
PROXY_TEXTURE_2D_ARRAY, PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY,
PROXY_TEXTURE_RECTANGLE, PROXY_TEXTURE_CUBE_MAP, Or PROXY_-
TEXTURE_CUBE_MAP_ARRAY.

An INVALID_OPERATION error is generated if these formats are used in con-
junction with any other target.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_—
STENCIL require either depth component data or depth/stencil component data.
Textures with other base internal formats require RGBA component data.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 230

Textures with integer internal formats 8.19- 8.20) require integer
data.

In addition to the specific compressed internal formats listed in table 8.22, the
GL provides a mechanism to query token values for specific compressed internal
formats, suitable for general-purpose” usage. Formats with restrictions that need to
be specifically understood prior to use will not be returned by this query. The num-
ber of specific compressed internal formats is obtained by querying the value of
NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed internal
formats is obtained by querying COMPRESSED_TEXTURE_FORMATS with GetInte-
gerv, returning an array containing that number of values.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support internalformat is replaced by the corre-
sponding base internal format and the texture image will not be compressed by the
GL.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing, referred to as the effective internal format. The effective internal format
chosen may change depending only on the values of format and type, and affects
format compatibility for commands such as TextureView (see section 8.18) and
CopyImageSubData (see section 18.3.3). If a sized internal format is specified,
the mapping of the R, G, B, A, depth, and stencil values to texture components is
equivalent to the mapping of the corresponding base internal format’s components,
as specified in table 8.18; the type (unsigned int, float, etc.) is assigned the same
type specified by internalformat; and the memory allocation per texture component
is assigned by the GL to match the allocations listed in tables 8.19- 8.21 as closely
as possible. (The definition of closely is left up to the implementation. However,
a non-zero number of bits must be allocated for each component whose desired
allocation in tables 8.19- 8.21 is non-zero, and zero bits must be allocated for all
other components).

% These queries have been deprecated in OpenGL 4.2, because the vagueness of the term “general-
purpose” makes it possible for implementations to choose to return no formats from the query.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 231

8.5.1 Required Texture Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
any texture type will allocate at least the internal component sizes, and exactly the
component types shown for that format in the corresponding table:

e Color formats which are checked in the “Req. tex.” column of table 8.19.
o All of the specific compressed texture formats in table 8.22.

e Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.21.

8.5.2 Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.3.4.3 and 2.3.4.4.

If internalformat is RGB9_ES5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

red. = max (0, min(sharedexpmqz, red))
green, = max (0, min(sharedexpmqz, green))
blue, = max (0, min(sharedexpmqz, blue))
where

2V -1)

2Emaz -B .
oN

sharedexpmar =

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and F,, . is the maximum allowed biased exponent value (31).
The largest clamped component, max., is determined:

maz. = max(red., green., blue.)

A preliminary shared exponent exp,, is computed:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 232

exp, = max(—B — 1, |logy(maz.)]) + 1+ B

A refined shared exponent exp; is computed:

_ max, 1
mars = Sepp—B-N + 5

0 < max, < 2N

expp,
erps = _oN

expp +1, maws

Finally, three integer values in the range 0 to 2 — 1 are computed:

red, 1
reds = _—2%},5_3_]\, + 5_
| _greene 1
greeng = | Jeen BN 13|
blue. 1
blues - _26.’Ep3—B—N + 5_

The resulting reds, greens, blueg, and exps are stored in the red, green, blue,

and shared bits respectively of the texture image.

REV with format RGB is allowed to store the components “as is” if the implementa-
tion can determine the current pixel transfer state acts as an identity transform on

the components.

Sized
Internal
Format

Base
Internal
Format

Bits/component
S are shared bits
R| G| B| A]S

CR

Req.
rend.

Req.
tex.

R8 RED 8 v v v

R8_SNORM RED s8 v v

R16 RED 16 v v v

R16_SNORM RED s16 v v
Sized internal color formats continued on next page

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 233
Sized internal color formats continued from previous page

Sized Base Bits/component CR | Req. | Req.
Internal Internal S are shared bits rend. | tex.
Format Format R ‘ G ‘ B ‘ A ‘ S

RGS8 RG 8 8 v v v
RG8_SNORM RG s8 s8 v v
RG16 RG 16 16 v v v
RG16_SNORM RG s16 | sl16 v v
R3_G3_B2 RGB 3 3 2 v v
RGB4 RGB 4 4 v v
RGB5 RGB 5 5 5 v v
RGB565 RGB 5 6 5 v v v
RGBS RGB 8 8 8 v v
RGB8_SNORM RGB s8 s8 s8 v v
RGB10 RGB 10 10 10 v v
RGB12 RGB 12 12 12 v v
RGB16 RGB 16 16 16 v v
RGB16_SNORM RGB s16 | s16 | s16 v v
RGBA2 RGBA 2 2 2 2 v v
RGBA4 RGBA 4 4 4 4 v v v
RGB5_A1 RGBA 5 5 5 1 v v v
RGBAS RGBA 8 8 8 8 v v v
RGBAS_SNORM RGBA s8 s8 s8 s8 v v
RGB10_A2 RGBA 10 10 10 2 v v v
RGB10_A2UI RGBA uilO | wil0 | wil0 | wi2 v v v
RGBA12 RGBA 12 12 12 12 v v
RGBAL6 RGBA 16 16 16 16 v v v
RGBA16_SNORM RGBA s16 | s16 | s16 | sl16 v v
SRGBS8 RGB 8 8 8 v v
SRGBS_ALPHAS RGBA 8 8 8 8 v v v
R16F RED f16 v v v
RG16F RG fl16 | fl16 v v v
RGB16F RGB fi6 | fl16 | fl16 v v
RGBA16F RGBA fl6 | f16 | fl16 | fl16 v v v
R32F RED 32 v v v
RG32F RG f32 | 32 v v v
RGB32F RGB f32 | 32 | 132 v v

Sized internal color formats continued on next page

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 234
Sized internal color formats continued from previous page

Sized Base Bits/component CR | Req. | Req.
Internal Internal S are shared bits rend. | tex.
Format Format R ‘ G ‘ B ‘ A ‘ S

RGBA32F RGBA 32 | 32 | 132 | 32 v v v
R11F_G11F_B10F | RGB f11 f11 f10 v v v
RGBI_E5 RGB 9 9 9 v
R8I RED 8 v v v
R8UI RED ui8 v v v
R16T RED i16 v v v
R16UI RED uil6 v v v
R321 RED 132 v v v
R32UI RED ui32 v v v
RG8I RG i8 i8 v v v
RG8UI RG ui8 | ui8 v v v
RG161I RG 116 116 v v v
RG16UI RG uil6 | uil6 v v v
RG321I RG i32 | i32 v v v
RG32UI RG ui32 | ui32 v v v
RGBSI RGB i8 i8 i8 v v
RGB8UI RGB ui8 | ui8 | uid v v
RGB161I RGB 116 | 116 | il6 v v
RGB16UI RGB uil6 | uil6 | uil6 v v
RGB321I RGB 132 | 132 132 v v
RGB32UI RGB ui32 | ui32 | ui32 v v
RGBASI RGBA i8 i8 i8 i8 v v v
RGBASUI RGBA ui8 | ui8 | ui8 | ui8 v v v
RGBA161I RGBA il6 | i16 | i16 | il6 v v v
RGBA16UI RGBA uil6 | uwil6 | vil6 | uil6 v v v
RGBA321 RGBA 132 | 132 | 132 | 132 v v v
RGBA32UI RGBA ui32 | w32 | wi32 | ui32 v v v

Table 8.19: Correspondence of sized internal color formats to base
internal formats, internal data type, and desired component reso-
lutions for each sized internal format. The component resolution
prefix indicates the internal data type: fis floating-point, i is signed
integer, ui is unsigned integer, s is signed normalized fixed-point,
and no prefix is unsigned normalized fixed-point. The “CR”, “Req.
tex.”, and “Req. rend.” columns are described in sections 9.4,

8.5.1, and 9.2.5, respectively.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION

Sized
Internal Format

Base
Internal Format

bits

bits

bits

Table 8.20: Correspondence of sized internal luminance and in-
tensity formats to base internal formats, internal data type, and
desired component resolutions for each sized internal format. The
component resolution prefix indicates the internal data type: fis
floating-point, i is signed integer, ui is unsigned integer, and no
prefix is fixed-point.

235

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 8.18. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImagelD (see below) parameter (except target), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 236

Sized Base Internal D S Req.
Internal Format Format bits | bits | format
DEPTH_COMPONENT16 | DEPTH_COMPONENT | 16 v
DEPTH_COMPONENT24 | DEPTH_COMPONENT | 24 v

DEPTH_COMPONENT32 DEPTH_COMPONENT 32

DEPTH_COMPONENT32F | DEPTH_COMPONENT | {32 v
DEPTH24_STENCILS DEPTH_STENCIL 24 | ui8 v
DEPTH32F_STENCILS DEPTH_STENCIL 32 | ui8 v
STENCIL_INDEX1 STENCIL_INDEX uil
STENCIL_INDEX4 STENCIL_INDEX uid
STENCIL_INDEXS8 STENCIL_INDEX ui8 v
STENCIL_INDEX16 STENCIL_INDEX uil6

Table 8.21: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and desired component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: fis floating-point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point. The “Req. format” column is described in section 8.5.1.

image format may not be affected by the data parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 8.22.

8.5.3 Texture Image Structure

The texture image itself (referred to by data) is a sequence of groups of values.
The first group is the lower left back corner of the texture image. Subsequent
groups fill out rows of width width from left to right; height rows are stacked from
bottom to top forming a single two-dimensional image slice; and depth slices are
stacked from back to front. When the final R, G, B, and A components have been
computed for a group, they are assigned to components of a texel as described by
table 8.18. Counting from zero, each resulting nth texel is assigned internal integer
coordinates (i, j, k), where

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 237
Compressed Internal Base Internal Type Border
Format Format Type

COMPRESSED_RED RED Generic | unorm
COMPRESSED_RG RG Generic | unorm
COMPRESSED_RGB RGB Generic | unorm
COMPRESSED_RGBA RGBA Generic | unorm
COMPRESSED_SRGB RGB Generic | unorm
COMPRESSED_SRGB_ALPHA RGBA Generic | unorm
COMPRESSED_RED_RGTC1 RED Specific | unorm
COMPRESSED_SIGNED_RED_RGTC1 RED Specific | snorm
COMPRESSED_RG_RGTC2 RG Specific | unorm
COMPRESSED_SIGNED_RG_RGTC2 RG Specific | snorm
COMPRESSED_RGBA_BPTC_UNORM RGBA Specific | unorm
COMPRESSED_SRGB_ALPHA_BPTC_- RGBA Specific | unorm
UNORM

COMPRESSED_RGB_BPTC_SIGNED_-— RGB Specific | float
FLOAT

COMPRESSED_RGB_BPTC_UNSIGNED_- | RGB Specific | float
FLOAT

COMPRESSED_RGB8_ETC2 RGB Specific | unorm
COMPRESSED_SRGB8_ETC2 RGB Specific | unorm
COMPRESSED_RGBS8_PUNCHTHROUGH_— | RGB Specific | unorm
ALPHAl ETC2

COMPRESSED_SRGB8_ - RGB Specific | unorm
PUNCHTHROUGH_ALPHAl_ETC2

COMPRESSED_RGBA8_ETC2_EAC RGBA Specific | unorm
COMPRESSED_SRGB8_ALPHA8_ETC2_- | RGBA Specific | unorm
EAC

COMPRESSED_R11_EAC RED Specific | unorm
COMPRESSED_SIGNED_R11_EAC RED Specific | snorm
COMPRESSED_RG11_EAC RG Specific | unorm
COMPRESSED_SIGNED_RG11_EAC RG Specific | snorm

Table 8.22: Generic and specific compressed internal formats. Specific formats are

described in E%Pen iX 4% '{E%;ﬁggl{ﬁgefig‘ fg(’)’ﬁqlee)lc_l 8%%%%%}11?2’15%\){ 6border colors

are clamped, as described in sec

8.5. TEXTURE IMAGE SPECIFICATION 238

n
k=\|—77 -5 | moddepth | —dy
<Lu'/fd//1 X h(fig]h/,J mod aep 1) dy

and wy, hy, and dp are the specified border width, height, and depth. wy and Ay are
the specified border value; dy is the specified border value if target is TEXTURE_ -
3D, or zero if target is TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY.
Thus the last two-dimensional image slice of the three-dimensional image is in-
dexed with the highest value of k.

When target is TEXTURE_CUBE_MAP_ARRAY, specifying a cube map array tex-
ture, k refers to a layer-face. The layer is given by

laer—E
Yy A

face =k mod 6.

and the face is given by

The face number corresponds to the cube map faces as shown in table 9.3.

If the internal data type of the texture image is signed or unsigned normalized
fixed-point, each color component is converted using equation 2.4 or 2.3, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed in section 8.14.3. The main texture image has a level of
detail number of zero. level must be zero or more.

border is a border width; the maximum border width b, is 1. The significance
of borders is described below. border affects the dimensions of the texture image:
let

W = Ws — 2wy
hy = hs — 2hy (8.3)
di = ds — 2dy

where wyg, hg, and d are the specified image width, height, and depth, and wy, hy,
and d; are the dimensions of the texture image internal to the border.

An image with zero width, height, or depth indicates the null texture. If
the null texture is specified for the level-of-detail specified by texture parameter
TEXTURE_BASE_LEVEL (see section 8.10), it is as if texturing were disabled.

The maximum allowable size, in any relevant dimension, of a texture image
is an implementation-dependent function of the texture target, the level-of-detail,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 239

and the internal format of the image. For most texture types, it must satisfy the
relationship

maxsize > 2Ftevel (8.4)

for images of level-of-detail (level) 0 through k, where
k is a texture target-dependent maximum level of detail. The maximum
size may be zero for any images where level > k.

The maximum allowable width, height, or depth of a texture image for a three-
dimensional texture is determined by equation 8.4, where k is logs of the value of
MAX_3D_TEXTURE_SIZE.

In a similar fashion, the maximum allowable width, and the maximum allow-
able height for two-dimensional texture types, of a texture image for a one- or
two-dimensional, one- or two-dimensional array, two-dimensional multisample, or
two-dimensional multisample array texture is determined by equation 8.4, where k
is logo of the value of MAX_TEXTURE_SIZE.

The maximum allowable width and height of a cube map or cube map array
texture image must be the same, and is determined by equation 8.4, where & is logo
of the value of MAX_CUBE_MAP_TEXTURE_SIZE.

The maximum number of layers for one- and two-dimensional array textures
(height or depth, respectively), and the maximum number of layer-faces for cube
map array textures (depth), must be at least the value of MAX_ARRAY TEXTURE_-—
LAYERS for all levels.

The maximum allowable width and height of a rectangle texture image must
each be at least the value of the implementation-dependent constant MAX_-
RECTANGLE_TEXTURE_SIZE.

As described in section 8.17, these implementation-dependent limits may be
configured to reject textures at level one or greater unless a mipmap complete set
of texture images consistent with the specified sizes can be supported.

Errors

An INVALID_ENUM error is generated if target is not one of the valid tar-
gets listed for each TexImage*D command.

An INVALID_VALUE error is generated if level is negative.

An INVALID_VALUE error is generated if width, height, or depth (if each
argument is present) exceed the corresponding farget-dependent maximum
size, as described above.

An INVALID_VALUE error is generated if wy, h;, or d; are negative.

An INVALID_VALUE error is generated by TexImage3D if rarget is

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 240

TEXTURE_CUBE_MAP_ARRAY Oor PROXY_TEXTURE_CUBE_MAP_ARRAY, and
width and height are not equal, or if depth is not a multiple of six, indicating
6N layer-faces in the cube map array.
An INVALID_VALUE error is generated by TexImage2D if target is one of
the cube map face targets from table 8.27, and width and height are not equal.
An INVALID_VALUE error is generated by TexImage2D if rarget is
TEXTURE_RECTANGLE and /evel is non-zero.

An INVALID_VALUE error is generated if infernalformat is not one of the
valid values described above.

An INVALID_OPERATION error is generated if the internal format is in-
teger and format is not one of the integer formats listed in table 8.8, or if the
internal format is not integer and format is an integer format.

An INVALID_OPERATION error is generated by TexImage3D if internal-
format is one of the EAC, ETC2, or RGTC compressed formats and either
border is non-zero, or target is not TEXTURE_2D_ARRAY.

An INVALID_OPERATION error is generated by TexImage2D if internal-
format is one of the EAC, ETC2, or RGTC compressed formats and either
border is non-zero, or farget is not TEXTURE_ 2D or one of the cube map face
targets from table 8.27.

An INVALID_ENUM error is generated by CompressedTexImagelD if in-
ternalformat is one of the specific compressed formats. OpenGL defines no
specific one-dimensional compressed formats, but such formats may be pro-
vided by extensions.

An INVALID_OPERATION error is generated if one of the base internal
format and format is DEPTH_COMPONENT or DEPTH_STENCIL, and the other
is neither of these values.

An INVALID_OPERATION error is generated if format is STENCIL_-
INDEX and the base internal format is not STENCIL_INDEX.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and storing texture data would access memory beyond the end of
the pixel unpack buffer.

The command

void TexImage2D(enum farget, int level, int internalformat,
sizei width, sizei height, int border, enum format,
enum type, const void *data);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 241

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, TEXTURE_1D_ARRAY for a one-
dimensional array texture, TEXTURE_RECTANGLE for a rectangle texture, or one
of the cube map face targets from table 8.27 for a cube map texture. Addi-
tionally, target may be either PROXY_TEXTURE_2D for a two-dimensional proxy
texture, PROXY_TEXTURE_1D_ARRAY for a one-dimensional proxy array tex-
ture, PROXY_TEXTURE_RECTANGLE for a rectangle proxy texture, or PROXY_-
TEXTURE_CUBE_MAP for a cube map proxy texture in the special case discussed
in section 8.22. The other parameters match the corresponding parameters of Tex-
Image3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that

e The border depth, dj, is zero, and the depth of the image is always one
regardless of the value of border.

e The border height, hy, is zero if farget is TEXTURE_1D_ARRAY, and border
otherwise.

e Convolution will be performed on the image (possibly changing its width
and height) if SEPARABLE_2D or CONVOLUTION_2D is enabled.

e UNPACK_SKIP_IMAGES is ignored.

A two-dimensional or rectangle texture consists of a single two-dimensional
texture image. A cube map texture is a set of six two-dimensional texture images.
The six cube map texture face targets from table 8.27 form a single cube map tex-
ture. These targets each update the corresponding cube map face two-dimensional
texture image. Note that the cube map face targets are used when specifying, up-
dating, or querying one of a cube map’s six two-dimensional images, but when
enabling cube map texturing or binding to a cube map texture object (that is when
the cube map is accessed as a whole as opposed to a particular two-dimensional
image), the TEXTURE_CUBE_MAP target is specified.

Finally, the command

void TexImagelD(enum target, int level,
int internalformat, sizei width, int border,
enumn format, enum type, const void *data);

is used to specify a one-dimensional texture image. target must be either

TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 8.22.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 242

For the purposes of decoding the texture image, TexImagelD is equivalent to
calling TexImage2D with corresponding arguments and height of 1, except that

e The border height and depth (h; and d;) are always zero, regardless of the
value of border.

e Convolution will be performed on the image (possibly changing its width)
only if CONVOLUTION_1D is enabled.

The image indicated to the GL by the image pointer is decoded and copied
into the GL’s internal memory. This copying effectively places the decoded image
inside a border of the maximum allowable width b; whether or not a border has
been specified (see figure 8.3). If no border, or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the fexture
image. A three-dimensional texture image has width, height, and depth wys, hs, and
ds as defined in section 8.5.3. A two-dimensional texture image has depth dg = 1,
with height h and width wy as above. A rectangle texture image must have zero
border width, so w, and hg equal the specified width and height, respectively, while
ds = 1. A one-dimensional texture image has depth d; = 1, height h; = 1, and
width wg as above.

An element (3, j, k) of the texture image is called a fexel (for a two-dimensional
texture or one-dimensional array texture, k is irrelevant; for a one-dimensional
texture, j and k are both irrelevant). The texture value used in texturing a fragment
is determined by that fragment’s associated (s.,7) coordinates in fixed-function
fragment shading, or by sampling the texture in a shader, but may not correspond
to any actual texel. See figure 8.3. If target is TEXTURE_CUBE_MAP_ARRAY, the
texture value is determined by (s, ¢, 7, ¢) coordinates where s, ¢, and r are defined to
be the same as for TEXTURE_CUBE_MAP and q is defined as the index of a specific
cube map in the cube map array.

If the data argument of TexImagelD, TexImage2D, or TexImage3D is NULL,
and the pixel unpack buffer object is zero, a one-, two-, or three-dimensional tex-
ture image is created with the specified farget, level, internalformat, border, width,
height, and depth, but with unspecified image contents. In this case no pixel values
are accessed in client memory, and no pixel processing is performed. Errors are
generated, however, exactly as though the data pointer were valid. Otherwise if

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 243

1.0

-1.0 u 9.0

0.0 S 1.0

Figure 8.3. A texture image and the coordinates used to access it. This is a two-
dimensional texture with width 8 and height 4. A one-dimensional texture would
consist of a single horizontal strip. « and /3, values used in blending adjacent texels
to obtain a texture value are also shown.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 244

the pixel unpack buffer object is non-zero, the data argument is treated normally
to refer to the beginning of the pixel unpack buffer object’s data.

8.6 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D(enum farget, int level,
enum internalformat, int x, inty, sizei width,
sizei height, int border);

defines a two-dimensional texture image in exactly the manner of TexImage2D,
except that the image data are taken from the framebuffer rather than from client
memory. target must be one of TEXTURE_2D, TEXTURE_1D_ARRAY, TEXTURE_ -
RECTANGLE, or one of the cube map face targets from table 8.27. x, y, width,
and height correspond precisely to the corresponding arguments to ReadPixels
(refer to section 18.2); they specify the image’s width and height, and the lower
left (x,y) coordinates of the framebuffer region to be copied. The image is taken
from the framebuffer exactly as if these arguments were passed to CopyPixels
(see section 18.3) with argument fype set to COLOR, DEPTH, DEPTH_STENCIL, Or
STENCIL_INDEX, depending on internalformat, stopping after

RGBA data is taken from the current color buffer, while depth
component and stencil index data are taken from the depth and stencil buffers, re-
spectively.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, A, or depth values, and masking of the stencil
index values from the resulting pixel groups. Parameters level, internalformat,
and border are specified using the same values, with the same meanings, as the
corresponding arguments of

The constraints on width, height, and border are exactly those for the corre-
sponding arguments of TexImage2D.

Errors

An INVALID_ENUM error is generated if farget is not TEXTURE_2D,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 245

TEXTURE_1D_ARRAY, TEXTURE_RECTANGLE, or one of the cube map face
targets from table 8.27.

An INVALID_ENUM error is generated if an invalid value is specified for
internalformat.

An INVALID_VALUE error is generated if the target parameter to Copy-
TexImage2D is one of the six cube map two-dimensional image targets, and
width and height are not equal.

An INVALID_OPERATION error is generated under any of the following
conditions:

if depth component data is required and no depth buffer is present
if stencil index data is required and no stencil buffer is present

if integer RGBA data is required and the format of the current color
buffer is not integer

if floating- or fixed-point RGBA data is required and the format of the
current color buffer is integer

if the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for
the framebuffer attachment corresponding to the read buffer (see sec-
tion 18.2.1) is LINEAR (see section 9.2.3) and internalformat is one of
the sSRGB formats in table 8.32

if the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for
the framebuffer attachment corresponding to the read buffer is SRGB
and internalformat is not one of the SRGB formats in table 8.32.

An INVALID_VALUE error is generated if width or height is negative.

The command

void CopyTexImagelD(enum farget, int level,

enum infernalformat, int x, inty, sizei width,
int border);

defines a one-dimensional texture image in exactly the manner of TexImagelD,
except that the image data are taken from the framebuffer, rather than from client
memory. Currently, farget must be TEXTURE_1D. For the purposes of decoding
the texture image, CopyTexImagelD is equivalent to calling CopyTexImage2D
with corresponding arguments and height of 1, except that the height of the image

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS

is always 1, regardless of the value of border. level, internalformat and border
are specified using the same values, with the same meanings, as the corresponding
arguments of
The constraints on width and border are exactly those of the corresponding
arguments of TexImagelD.
To respecify only a rectangular subregion of the texture image of a texture
object, use the commands

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, const
void *data);

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum fype, const void *data);

void TexSublmagelD(enum target, int level, int xoffset,
sizei width, enum format, enum type, const
void *data);

void CopyTexSublmage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, int x, inty,
sizei width, sizei height);

void CopyTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, int x, inty, sizei width,
sizei height);

void CopyTexSublmagelD(enum farget, int level,
int xoffset, int x, int y, sizei width);

void TextureSublmage3D(uint fexture, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format, enum type,
const void *pixels);

void TextureSublmage2D(uint fexture, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, enum type, const void *pixels);

void TextureSublmagelD(uint fexture, int level,
int xoffset, sizei width, enum format, enum type, const
void *pixels);

void CopyTextureSubImage3D(uint fexture, int level,
int xoffset, int yoffset, int zoffset, int x, inty,
sizei width, sizei height);

void CopyTextureSubImage2D(uint fexture, int level,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

246

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 247

Command Names Valid targets or effective rexture targets
TexSubImagelD, TEXTURE_1D

CopyTexSubImagelD,

TextureSubImagelD,

CopyTextureSubImagelD

TexSubImage2D, TEXTURE_ 2D,

CopyTexSubImage2D, TEXTURE_1D_ARRAY,

TEXTURE_RECTANGLE or one of the
cube map face targets from table 8.27
TextureSubImage2D, TEXTURE_ 2D,
CopyTextureSublmage2D | TEXTURE_1D_ARRAY Or
TEXTURE_RECTANGLE
TexSubImage3D, TEXTURE_3D,
CopyTexSubImage3D, TEXTURE_2D_ARRAY Or
TEXTURE_CUBE_MAP_ARRAY

TextureSubImage3D, TEXTURE_ 3D,
CopyTextureSublmage3D | TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP_ARRAY Or
TEXTURE_CUBE_MAP

Table 8.23: Valid texture target parameters or effective texture targets for texture
subimage commands.

int xoffset, int yoffset, int x, inty, sizei width,
sizei height);

void CopyTextureSublmagelD(uint fexture, int level,
int xoffset, int x, inty, sizei width);

For *TexSubImage*, the texture object is that bound to target, For *Texture-
SubImage*, texture is the name of the texture object. target or the effective target
of texture (the value of TEXTURE_TARGET; see section 8.11.2) must match each
command as shown in table 8.23.

No change is made to the internalformat, width, height, depth, or border pa-
rameters of the specified texture image, nor is any change made to texel values
outside the specified subregion.

The level parameter of each command specifies the level of the texture image
that is modified.

TexSubImage*D and TextureSubImage*D arguments width, height, depth,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 248

format, type, and data match the corresponding arguments to the corresponding’
TexImage*D command (where those arguments exist), meaning that they accept
the same values, and have the same meanings. The exception is that a NULL data
pointer does not represent unspecified image contents.

CopyTex*SubImage3D and CopyTex*Sublmage2D arguments x, y, width,
and height match the corresponding arguments to CopyTexImage2D. Copy-
Tex*SubImagelD arguments x, y, and width match the corresponding arguments
to CopyTexImagelD.

Each of these commands interprets and processes pixel groups in exactly the
manner of its TexImage counterpart, except that the assignment of R, G, B, A,
depth, and stencil index pixel group values to the texture components is controlled
by the internalformat of the texture image, not by an argument to the command.
The same constraints and errors apply to the format argument of these commands
and the internalformat of the texture image being respecified as apply to the format
and internalformat arguments of their TexImage counterparts.

Arguments xoffset, yoffset, and zoffset of Tex*SubImage3D and Copy-
Tex*SubImage3D specify the lower left back texel coordinates of a width-wide
by height-high by depth-deep rectangular subregion of the texture image. For cube
map array textures, zoffset is the first layer-face to update, and depth is the num-
ber of layer-faces to update. For TextureSubImage3D and CopyTextureSubIm-
age3D only, fexture may be a cube map texture. In this case, zoffset is interpreted
as specifying the cube map face for the corresponding layer in table 9.3 and depth
is the number of successive faces to update.

The depth argument associated with CopyTex*SubImage3D is always 1, be-
cause framebuffer memory is two-dimensional - only a portion of a single (s, t)
slice of a three-dimensional texture is replaced by these commands.

The subregion must lie within the bounds of the texture image. If ws, hs, and
ds are the specified width, height, and depth of the texture image

(as described in
section 8.5.3); x, y, and z are the specified xoffset, yoffset, and zoffset values; and
w, h, and d are the specified width, height, and depth values; then it is an error if
any of the relationships in equations 8.5-8.7 are satisfied.

T < , T+ w > ws (8.5)
y <) y+h>h (8.6)
z < , z+d > ds (8.7)

3 For example, both TexSubImage2D and TextureSubImage2D correspond to TexImage2D for
purposes of this paragraph.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 249

8.3
Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, 7, k], where

i =+ (n mod w)

i (2] o)
k:z+qwth modd)

Arguments xoffset and yoffset of Tex*Sublmage2D and Copy-
Tex*SubImage2D specify the lower left texel coordinates of a width-wide
by height-high rectangular subregion of the texture image.

The subregion must lie within the bounds of the texture image, as described
above for TexSubImage3D. It is an error if any of the relationships in equa-
tions 8.5-8.6 are satisfied.

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i =+ (n mod w)
n

j:y+(LEJ mod h)

The xoffset argument of Tex*SubImagelD and CopyTex*SubImagelD spec-
ifies the left texel coordinate of a width-wide subregion of the texture image.

The subregion must lie within the bounds of the texture image, as described
above for TexSubImage3D. It is an error if any of the relationships in equation 8.5
are satisfied.

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i], where

i =+ (nmod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modified
in this manner, it may not be possible to preserve the contents of some of the
texels outside the region being modified. To avoid these complications, the GL
does not support arbitrary modifications to texture images with compressed internal
formats. Calling any of the Tex*SubImage* or CopyTex*SubImage* commands

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 250

will generate an INVALID_OPERATION error if xoffset, yoffset, or zoffset is not
equal to In addition, the contents of any texel outside the
region modified by such a call are undefined. These restrictions may be relaxed for
specific compressed internal formats whose images are easily modified.

If the internal format of the texture image being modified is one of the spe-
cific compressed formats described in table 8.22, the texture is stored using the
corresponding compressed texture image encoding (see appendix C). Since such
images are easily edited along 4 x 4 texel boundaries, the limitations on subimage
location and size are relaxed for Tex*SubImage2D, Tex*SubImage3D, Copy-
Tex*SubImage2D, and CopyTex*SubIlmage3D. These commands will generate
an INVALID_OPERATION error if one of the following conditions occurs:

e width is not a multiple of four, width + zoffset is not equal to the value of
TEXTURE_WIDTH, and either xoffset or yoffset is non-zero.

e height is not a multiple of four, height 4 yoffset is not equal to the value of
TEXTURE_HEIGHT, and either xoffset or yoffset is non-zero.

e xoffset or yoffset is not a multiple of four.

The contents of any 4 x 4 block of texels of such a compressed texture im-
age that does not intersect the area being modified are preserved during valid
Tex*SubImage* and Copy*TexSubImage* calls.

Errors

An INVALID_ENUM error is generated by *TexSubIlmage* if target does
not match the command, as shown in table 8.23.

An INVALID_OPERATION error is generated by *TextureSubImage™* if
texture is not the name of an existing texture object.

An INVALID_ OPERATION error is generated by *TextureSubImage* if
the effective target of texture does not match the command, as shown in ta-
ble 8.23.

An INVALID_OPERATION error is generated by:

o *TexSubImage3D if rarget is TEXTURE_CUBE_MAP_ARRAY; and,

o *TextureSubImage3D if the effective farget is TEXTURE_CUBE_MAP
or TEXTURE_CUBE_MAP_ARRAY

and the texture object is not cube complete (for TEXTURE_CUBE_MAP or cube
array complete (for TEXTURE_CUBE_MAP_ARRAY).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 251

An INVALID_VALUE error is generated if level is negative or greater than
the logo of the maximum texture width, height, or depth.

An INVALID_VALUE error is generated if the effective targer is
TEXTURE_RECTANGLE and level is not zero.

An INVALID_VALUE error is generated if the specified subregion does not
lie within the bounds of the texture image, as described above.

An INVALID_FRAMEBUFFER_OPERATION error is generated by Copy-
TexImage*D, CopyTexSubImage*D and CopyTextureSubImage*D if the
object bound to READ_FRAMEBUFFER_BINDING is not framebuffer complete
(see section 9.4.2)

An INVALID_OPERATION error is generated by CopyTexImage*D,
CopyTexSubImage*D and CopyTextureSubImage*D if

e the read buffer is NONE, or
e the value of READ_ FRAMEBUFFER_BINDING is non-zero, and

— the read buffer selects an attachment that has no image attached,
or

— the effective value of SAMPLE_BUFFERS for the read framebuffer
(see section 9.2.3.1) is one.

8.6.1 Texture Copying Feedback Loops

Calling any of the CopyTex*Sublmage* or CopyTexImage* commands will re-
sult in undefined behavior if the destination texture image level is also bound to to
the selected read buffer (see section 18.2.1) of the read framebuffer. This situation
is discussed in more detail in the description of feedback loops in section 9.3.2.

8.7 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, including the formats defined in appendix C
as well as any additional formats defined by extensions.

The commands

void CompressedTexImagelD(enum target, int level,

enum internalformat, sizei width, int border,
sizei imageSize, const void *data);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 252

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, const void *data);

void CompressedTexImage3D(enum target, int level,
enumn internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, const
void *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. The farget, level, inter-
nalformat, width, height, depth, and border parameters have the same meaning
as in TexImagelD, TexImage2D, and TexImage3D, except that compressed rect-
angle texture formats are not supported. data refers to compressed image data
stored in the specific compressed image format corresponding to internalformat.
If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and the
compressed data is read from the buffer relative to this offset; otherwise, data is
a pointer to client memory and the compressed data is read from client memory
relative to the pointer.

The compressed image will be decoded according to the specification defining
the internalformat token. Compressed texture images are treated as an array of
imageSize ubytes relative to data.

If the compressed image is not encoded according to the defined image format,
the results of the call are undefined.

If the compressed data are arranged into fixed-size blocks of texels, the pixel
storage modes can be used to select a sub-rectangle from a larger containing rect-
angle. These pixel storage modes operate in the same way as they do for Tex-
Image*D and as described in section 8.4.4. In the remainder of this section, de-
note by blocksize, by, by, and by the values of pixel storage modes UNPACK_—
COMPRESSED_BLOCK_SIZE, UNPACK_COMPRESSED_BLOCK_WIDTH, UNPACK_-
COMPRESSED_BLOCK_HEIGHT, and UNPACK_COMPRESSED_BLOCK_DEPTH re-
spectively. blocksize is the compressed block size in bytes; b, by, and by are
the compressed block width, height, and depth in pixels.

By default the pixel storage modes UNPACK_ROW_LENGTH, UNPACK_SKIP_-
ROWS, UNPACK_SKIP_PIXELS, UNPACK_IMAGE_HEIGHT and UNPACK_SKIP_-
IMAGES are ignored for compressed images. To enable UNPACK_SKIP_PIXELS
and UNPACK_ROW_LENGTH, blocksize and b,, must both be non-zero. To also
enable UNPACK_SKIP_ROWS and UNPACK_IMAGE_HEIGHT, by, must be non-zero.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 253

And to also enable UNPACK_SKIP_IMAGES, by must be non-zero. All parameters
must be consistent with the compressed format to produce the desired results.

Errors

An INVALID_ENUM error is generated if the farget parameter to any of the
CompressedTexImagenD commands is TEXTURE_RECTANGLE or PROXY_ —
TEXTURE_RECTANGLE.

An INVALID_ENUM error is generated if internalformat is not a supported
specific compressed internal format from table 8.22. In particular, this error
will be generated for any of the generic compressed internal formats.

An INVALID_VALUE error is generated if width, height, depth, or image-
Size is negative.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
jectis bound and data+imageSize is greater than the size of the pixel buffer.

An INVALID_VALUE error is generated if the imageSize parameter is not
consistent with the format, dimensions, and contents of the compressed image.

An INVALID_OPERATION error is generated if any of the following con-
ditions is violated when selecting a sub-rectangle from a compressed image:

e the value of UNPACK_SKIP_PIXELS must be a multiple of b,,;

e the value of UNPACK_SKIP_ROWS must be a multiple of b5, for Com-
pressedTexImage2D and Compressed TexImage3D;

e the value of UNPACK_SKIP_ IMAGES must be a multiple of b; for Com-
pressed TexImage3D.

An INVALID_VALUE error is generated if imageSize does not match the
following requirements when pixel storage modes are active:

o For CompressedTexImagelD the imageSize parameter must be equal
to

blocksize x [wzdth-‘

buw

o For CompressedTexImage2D the imageSize parameter must be equal
to

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 254

blocksize x [wzdth-‘ X [hezght-‘

buw b,

e For CompressedTexImage3D the imageSize parameter must be equal
to

blocksize x [deth-‘ . [h‘”ght-‘ 9 {depth—‘

bn, bq

w

Based on the definition of unpacking from section 8.4.4 for uncompressed im-
ages, unpacking compressed images can be defined where:

e 1, the number of elements in a group, is 1.
e s, the size of an element, is blocksize.
e [, the number of groups in a row, is

row_length

b —‘ , row.length >0
width—‘

buw

l p—
otherwise

where row_length is the value of UNPACK_ROW_LENGTH.
e q, the value of UNPACK_ALIGNMENT, is ignored.

e k =n x [asis defined for uncompressed images.

Before obtaining the first compressed image block from memory, the data
pointer is advanced by
UNPACK_SKIP PIXELS UNPACK_SKIP ROWS <k

Do X n -+ b

elements. Then {%dthw blocks are obtained from contiguous blocks in memory

(without advancing the pointer), after which the pointer is advanced by k elements.

[h%ihﬂ sets of {%1 blocks are obtained this way. For three-dimensional com-

pressed images the pointer is advanced by MFACKSFEIAES times the number
of elements in one two-dimensional image before obtaining the first group from

memory. Then after height rows are obtained the pointer skips over the remaining

[UNPACK*HZA,LGEJ{EIGHq rows, if UNPACK_IMAGE_HEIGHT is positive, before starting

the next two-dimensional image.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 255

Specific compressed internal formats may impose additional format-specific
restrictions. For example, a format might be supported only for two-dimensional
textures, or might not allow non-zero border values. Any such restrictions will be
documented in the extension specification defining the compressed internal format.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTexImagelD, CompressedTex-
Image2D, or CompressedTexImage3D will not generate an error if the following
restrictions are satisfied:

e data points to a compressed texture image returned by GetCompressed Tex-
Image (section 8.11).

o target, level, and internalformat match the target, level and format parame-
ters provided to the GetCompressed TexImage call returning data.

e width, height, depth, internalformat, and imageSize match the values
of TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH,
TEXTURE_INTERNAIL_FORMAT, and TEXTURE_COMPRESSED_-
IMAGE_SIZE for image level level in effect at the time of the GetCom-
pressedTexImage call returning data.

This guarantee applies not just to images returned by GetCompressedTexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

If internalformat is one of the specific compressed formats described in ta-
ble 8.22, the compressed image data is stored using the corresponding texture im-
age encoding (see appendix C). The corresponding compression algorithms sup-
port only two-dimensional images without borders, though three-dimensional im-
ages can be compressed as multiple slices of compressed two-dimensional BPTC
images.

Errors

An INVALID_OPERATION error is generated if any format-specific re-
strictions imposed by specific compressed internal formats are violated by the
compressed image specification calls or parameters.

An INVALID_ENUM error is generated by Compressed TexImagelD if in-
ternalformat is one of the specific compressed formats. OpenGL defines no
specific one-dimensional compressed formats, but such formats may be pro-
vided by extensions.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 256

An INVALID_OPERATION error is generated by CompressedTexIm-
age2D if internalformat is one of the EAC, ETC2, or RGTC formats and either
border is non-zero, or target is TEXTURE_RECTANGLE.

An INVALID_OPERATION error is generated by CompressedTexIm-
age3D if internalformat is one of the EAC, ETC2, or RGTC formats and either
border is non-zero, or target is not TEXTURE_2D_ARRAY.

An INVALID OPERATION error is generated by CompressedTexIm-
age2D and CompressedTexImage3D if internalformat is one of the BPTC
formats and border is non-zero.

If the data argument of Compressed TexImagelD, Compressed TexImage2D,
or CompressedTexImage3D is NULL, and the pixel unpack buffer object is zero,
a texture image with unspecified image contents is created, just as when a NULL
pointer is passed to TexImagelD, TexImage2D, or TexImage3D.

To respecify only a rectangular subregion of the texture image of a texture
object, with incoming data stored in a specific compressed image format, use the
commands

void CompressedTexSublmagelD(enum farget, int level,
int xoffset, sizei width, enum format, sizei imageSize,
const void *data);

void CompressedTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, const void *data);

void CompressedTexSublmage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

void CompressedTextureSubImagelD(uint fexture,
int level, int xoffset, sizei width, enum format,
sizei imageSize, const void *data);

void CompressedTextureSubImage2D(uint texture,
int level, int xoffset, int yoffset, sizei width,
sizei height, enum format, sizei imageSize, const
void *data);

void CompressedTextureSubImage3D(uint texture,
int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

The target, texture, level, xoffset, yoffset, zoffset, width, height, and depth pa-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 257

rameters have the same meaning as in the corresponding commands from sec-
tion 8.6 without the Compressed prefix (where those parameters are present). data
points to compressed image data stored in the compressed image format corre-
sponding to format.

The image pointed to by data and the imageSize parameter are interpreted
as though they were provided to CompressedTexImagelD, CompressedTexIm-
age2D, and Compressed TexImage3D.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTex*Image* will not generate an
error if the following restrictions are satisfied:

e data points to a compressed texture image returned by GetCompressedTex-
Image (section 8.11).

o target, level, and format match the rarget, level and format parameters pro-
vided to the GetCompressedTexImage call returning data.

o width, height, depth, format, and imageSize match the values of TEXTURE_—
WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, TEXTURE_INTERNAI,_ -
FORMAT, and TEXTURE_COMPRESSED_IMAGE_SIZE for image level level
in effect at the time of the GetCompressedTexImage call returning data.

o width, height, depth, and format match the values of TEXTURE_WIDTH,
TEXTURE_HEIGHT, TEXTURE_DEPTH, and TEXTURE_INTERNAL_FORMAT
currently in effect for image level level.

o xoffset, yoffset, and zoffset are all

This guarantee applies not just to images returned by GetCompressed TexIm-
age, but also to any other properly encoded compressed texture image of the same
size.

If the internal format of the image being modified is one of the specific com-
pressed formats described in table 8.22, the texture is stored using the correspond-
ing texture image encoding (see appendix C).

Since these specific compressed formats are easily edited along 4 x 4 texel
boundaries, the limitations on subimage location and size are relaxed for Com-
pressedTex*SubImage2D and Compressed Tex*SubImage3D.

The contents of any 4 x 4 block of texels of a compressed texture image in
these specific compressed formats that do not intersect the area being modified are
preserved during CompressedTex*SubImage* calls.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 258

Errors

An INVALID_ENUM error is generated by Compressed TexSubImage*D
if target is TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE.

An INVALID_OPERATION error is generated by CompressedTexture-
SubImage*D if texture is not the name of an existing texture object.

An INVALID OPERATION error is generated by CompressedTexture-
SubImage*D if the effective farget is TEXTURE_RECTANGLE.

An INVALID_ENUM error is generated if format is one of the generic com-
pressed internal formats.

An INVALID_OPERATION error is generated if format does not match the
internal format of the texture image being modified, since these commands do
not provide for image format conversion.

An INVALID_VALUE error is generated if width, height, depth, or image-
Size is negative.

An INVALID_VALUE error is generated if imageSize is not consistent with
the format, dimensions, and contents of the compressed image (too little or
too much data).

An INVALID_OPERATION error is generated if any format-specific re-
strictions are violated, as with CompressedTex*Image commands. Any such
restrictions will be documented in the specification defining the compressed
internal format.

An INVALID_OPERATION error is generated if xoffset, yoffset, or zoffset
are not equal to or if width, height, and depth do not match
the corresponding dimensions of the texture level. The contents of any texel
outside the region modified by the call are undefined. These restrictions may
be relaxed for specific compressed internal formats whose images are easily
modified.

An INVALID ENUM error is generated by CompressedTex*SubImagelD
if the internal format of the texture is one of the specific compressed formats.

An INVALID_OPERATION error
is generated by CompressedTex*SubImage2D if the internal format of the
texture is one of the EAC, ETC2, or RGTC formats and border is non-zero.

An INVALID_OPERATION error is generated by Com-
pressedTex*SubImage3D if the internal format of the texture is one of the
EAC, ETC2, or RGTC formats and either border is non-zero, or the effective
target for the texture is not TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP or
TEXTURE_CUBE_MAP_ARRAY.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.8. MULTISAMPLE TEXTURES 259

An INVALID_OPERATION error is generated if the internal format of the
texture is one of the BPTC formats and border is non-zero.

An INVALID_OPERATION error is generated if any of the following con-
ditions occurs:

e width is not a multiple of four, and width + zoffset is not equal to the
value of TEXTURE_WIDTH.

e height is not a multiple of four, and height + yoffset is not equal to the
value of TEXTURE_HETGHT.

e xoffset or yoffset is not a multiple of four.

8.8 Multisample Textures

In addition to the texture types described in previous sections, two additional types
of textures are supported. A multisample texture is similar to a two-dimensional
or two-dimensional array texture, except it contains multiple samples per texel.
Multisample textures do not have multiple image levels.

The commands

void TexImage2DMultisample(enum target, sizei samples,
enum internalformat, sizei width, sizei height,
boolean fixedsamplelocations);

void TexImage3DMultisample(enum target, sizei samples,
enum internalformat, sizei width, sizei height,
sizei depth, boolean fixedsamplelocations);

establish the data storage, format, dimensions, and number of samples of a
multisample texture’s image. For TexImage2DMultisample, rarger must be
TEXTURE_2D_MULTISAMPLE or PROXY_TEXTURE_2D_MULTISAMPLE and for
TexImage3DMultisample target must be TEXTURE_2D_MULTISAMPLE_ARRAY
Oor PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY. width and height are the dimen-
sions in texels of the texture.

samples represents a request for a desired minimum number of samples.
Since different implementations may support different sample counts for multi-
sampled textures, the actual number of samples allocated for the texture image is
implementation-dependent. However, the resulting value for TEXTURE_SAMPLES
is guaranteed to be greater than or equal to samples and no more than the next
larger sample count supported by the implementation.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.8. MULTISAMPLE TEXTURES 260

If fixedsamplelocations is TRUE, the image will use identical sample locations
and the same number of samples for all texels in the image, and the sample loca-
tions will not depend on the internal format or size of the image.

Upon success, TexImage*Multisample deletes any existing image for zar-
get and the contents of texels are undefined. TEXTURE_WIDTH, TEXTURE_—
HEIGHT, TEXTURE_SAMPLES, TEXTURE_INTERNAL FORMAT and TEXTURE_-
FIXED_SAMPLE_LOCATIONS are set to width, height, the actual number of sam-
ples allocated, internalformat, and fixedsamplelocations respectively.

When a multisample texture is accessed in a shader, the access takes one vec-
tor of integers describing which texel to fetch and an integer corresponding to the
sample numbers described in section 14.3.1 determining which sample within the
texel to fetch. No standard sampling instructions are allowed on the multisample
texture targets, and no filtering is performed by the fetch. Fetching a sample num-
ber less than zero, or greater than or equal to the number of samples in the texture,
produces undefined results.

Errors

An INVALID_ENUM error is generated if farget is not an accepted multi-
sample target as described above.

An INVALID_VALUE error is generated if width, height, or depth is nega-
tive.

An INVALID_VALUE error is generated if samples is zero.

An INVALID_VALUE error is generated if width or height is greater than
the value of MAX_TEXTURE_SIZE.

An INVALID_VALUE error is generated by TexImage3DMultisample if
depth is greater than the value of MAX_ARRAY_TEXTURE_LAYERS.

An INVALID_ENUM error is generated if internalformat is not color-
renderable, depth-renderable, or stencil-renderable (as defined in section 9.4).

An INVALID_OPERATION error is generated if samples is greater than the
maximum number of samples supported for this target and internalformat.
The maximum number of samples supported can be determined by calling
GetInternalformativ with a pname of SAMPLES (see section 22.3).

An INVALID_OPERATION error is generated if the value of TEXTURE_-—
IMMUTABLE_FORMAT for the texture currently bound to farget on the active
texture unit is TRUE.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.9. BUFFER TEXTURES 261

8.9 Buffer Textures

In addition to one-, two-, and three-dimensional, one- and two-dimensional array,
and cube map textures described in previous sections, one additional type of texture
is supported. A buffer texture is similar to a one-dimensional texture. However,
unlike other texture types, the texture image is not stored as part of the texture.
Instead, a buffer object is attached to a buffer texture and the texture image is taken
from that buffer object’s data store. When the contents of a buffer object’s data
store are modified, those changes are reflected in the contents of any buffer texture
to which the buffer object is attached. Buffer textures do not have multiple image
levels; only a single data store is available.
The commands

void TexBufferRange(enum rarget, enum internalformat,
uint buffer, intptr offset, sizeiptr size);

void TextureBufferRange(uint texture, enum internalformat,
uint buffer, intptr offset, sizeiptr size);

attach the range of the storage for the buffer object named buffer for size basic
machine units, starting at offset (also in basic machine units) to a buffer texture.

For TexBufferRange, the buffer texture is that currently bound to farget. For
TextureBufferRange, texture is the name of the buffer texture. rfarget or the effec-
tive target of texture must be TEXTURE_BUFFER.

If buffer is zero, then any buffer object attached to the buffer texture is detached,
the values offset and size are ignored and the state for offset and size for the buffer
texture are reset to zero. internalformat specifies the storage format for the texture
image found in the range of the attached buffer object, and must be one of the sized
internal formats found in table 8.24.

Errors

An INVALID_OPERATION error is generated by TextureBufferRange if
texture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the effective farger is not
TEXTURE_BUFFER.

An INVALID_ENUM error is generated if internalformat is not one of the
sized internal formats in table 8.24.

An INVALID_OPERATION error is generated if buffer is non-zero and is
not the name of a buffer object.

An INVALID_VALUE error is generated if offset is negative, if size is less

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.9. BUFFER TEXTURES 262

than or equal to zero, or if offset + size is greater than the value of BUFFER_-
SIZE for the buffer bound to target.

An INVALID_VALUE error is generated if offset is not an integer multiple
of the value of TEXTURE_BUFFER_OFFSET_ALIGNMENT.

The commands
void TexBuffer(enum target, enum internalformat,
uint buffer);
void TextureBuffer(uint fexture, enum internalformat,
uint buffer);
are respectively equivalent to
TexBufferRange (target, internalformat, buffer, 0, size);
and

TextureBufferRange (texture, internal format, buffer, 0, size);

where size is the value of BUFFER_STZE for buffer.

When a range of the storage of a buffer object is attached to a buffer texture, the
range of the buffer’s data store is taken as the texture’s texture image. The number
of texels in the buffer texture’s texture image is given by

size
components x sizeof (base_type) |

where components and base_type are the element count and base type for
elements, as specified in table 8.24.

The number of texels in the texture image is then clamped to an
implementation-dependent limit, the value of MAX_TEXTURE_BUFFER_SIZE.
When a buffer texture is accessed in a shader, the results of a texel fetch are un-
defined if the specified texel coordinate is negative, or greater than or equal to the
clamped number of texels in the texture image.

When a buffer texture is accessed in a shader, an integer is provided to indicate
the texel coordinate being accessed. If no buffer object is bound to the buffer tex-
ture, the results of the texel access are undefined. Otherwise, the attached buffer
object’s data store is interpreted as an array of elements of the GL data type cor-
responding to internalformat. Each texel consists of one to four elements that are
mapped to texture components (R, G, B, and A). Element m of the texel numbered
n is taken from element n x components + m of the attached buffer object’s data

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.9. BUFFER TEXTURES

263

store. Elements and texels are both numbered starting with zero. For texture for-
mats with signed or unsigned normalized fixed-point components, the extracted
values are converted to floating-point using equations 2.2 or 2.1, respectively. The
components of the texture are then converted to a (R, G, B, A) vector according
to table 8.24, and returned to the shader as a four-component result vector with
components of the appropriate data type for the texture’s internal format. The base
data type, component count, normalized component information, and mapping of
data store elements to texture components is specified in table 8.24.

Sized Internal Format | Base Type | Components | Norm Component

01]2]3
RS ubyte 1 Yes R|0 |0 |1
R16 ushort 1 Yes R|O0 |0 |1
R16F half 1 No R|O0O |0 |1
R32F float 1 No R0 |0 |1
R8I byte 1 No R|O |01
R161I short 1 No R|0 |0 |1
R321I int 1 No R|O0 |0 |1
R8UI ubyte 1 No R0 |0 |1
R16UI ushort 1 No R|O0 |0 |1
R32UT uint 1 No R|O0O |0 |1
RGS8 ubyte 2 Yes R|G|O0 |1
RG16 ushort 2 Yes R|G|O0 |1
RG16F half 2 No R|G|O0 |1
RG32F float 2 No R|G|O0 |1
RGS8I byte 2 No R|G|O |1
RG16T short 2 No R|G|O0 |1
RG321 int 2 No R|G|O0 |1
RG8UI ubyte 2 No R|G|O0 |1
RG16UI ushort 2 No R|G|O0 |1
RG32U1I uint 2 No R|G|O0 |1
RGB32F float 3 No R|G|B |1
RGB321 int 3 No R|G|B |1
RGB32UI uint 3 No R|G|B|1
RGBAS ubyte 4 Yes R|G|B|A
RGBA16 ushort 4 Yes R|G|B|A
RGBA16F half 4 No R|G|B|A

(Continued on next page)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.10. TEXTURE PARAMETERS

Internal formats for buffer textures (continued)
Sized Internal Format | Base Type | Components | Norm Component
01]2]3
RGBA32F float 4 No R|G|B|A
RGBASI byte 4 No R|G|B|A
RGBA161 short 4 No R|G|B|A
RGBA321 int 4 No R|G|B|A
RGBASUI ubyte 4 No R|G|B|A
RGBA16UI ushort 4 No R|G|B|A
RGBA32UI uint 4 No R|G|B|A

Table 8.24: Internal formats for buffer textures. For each format,
the data type of each element is indicated in the “Base Type” col-
umn and the element count is in the “Components” column. The
“Norm” column indicates whether components should be treated
as normalized floating-point values. The “Component 0, 1, 2, and
3” columns indicate the mapping of each element of a texel to tex-
ture components.

In addition to attaching buffer objects to textures, buffer objects can be bound
to the buffer object target named TEXTURE_BUFFER, in order to specify, modify, or
read the buffer object’s data store. The buffer object bound to TEXTURE_BUFFER
has no effect on rendering. A buffer object is bound to TEXTURE_BUFFER by
calling BindBuffer with target set to TEXTURE_BUFFER, as described in section 6.

8.10 Texture Parameters

Texture parameters control how the texture image of a texture object is treated
when specified or changed, and when applied to a fragment. Each parameter is set
with the commands

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname, const
T *params);
void TexParameterl{i ui}v(enum farget, enumpname, const
T *params);
void TextureParameter{if}(uint texture, enum pname,
T param);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

264

8.10. TEXTURE PARAMETERS 265

void TextureParameter{if}v(uint texture, enum pname,
const T *params);

void TextureParameterI{i ui}v(uint rexture, enum pname
const T *params);

For TexParameter#*, the texture object is that bound to farget. For TexturePa-
rameter®, rexture is the name of the texture object. farget or the effective target
of texture must be one of TEXTURE_ 1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_ -
1D_ARRAY, TEXTURE_2D_ARRAY. TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D MULTISAMPLE, or TEXTURE_2D_-
MULTISAMPLE_ARRAY.

pname is a symbolic constant indicating the parameter to be set; the possible
constants and corresponding parameters are summarized in table 8.25. In the scalar
forms of the command, param is a value to which to set a single-valued parameter;
in the vector forms, params is an array of parameters whose type depends on the
parameter being set.

Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

o [f the value for TEXTURE_PRIORITY is specified with TexParameteri or
TexParameteriv, it is treated as a signed normalized fixed-point value and
converted to floating-point using equation 2.2, followed by clamping the
value to lie in [0, 1].

o If the values for TEXTURE_BORDER_COLOR are specified with TexParame-
terliv or TexParameterluiv, they are unmodified and stored with an internal
data type of integer. If specified with TexParameteriv, they are converted to
floating-point using equation 2.2. Otherwise, the values are unmodified and
stored as floating-point.

If pname is TEXTURE_SWIZZLE_RGBA, params is an array of four
enums which respectively set the TEXTURE_SWIZZLE_R, TEXTURE_SWIZZLE_G,
TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A parameters simultaneously.

Name Type Legal Values

DEPTH_STENCIL_TEXTURE_MODE enum DEPTH_COMPONENT, STENCIL_ -
INDEX

Texture parameters continued on next page

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.10. TEXTURE PARAMETERS

266

Texture parameters continued from previous page

Name

Type

| Legal Values

TEXTURE_BASE_LEVEL

int

any non-negative integer

TEXTURE_BORDER_COLOR

4 floats,
ints, or uints

any 4 values

TEXTURE_COMPARE_MODE enum NONE, COMPARE_REF_TO_-
TEXTURE
TEXTURE_COMPARE_FUNC enum LEQUAL, GEQUAL, LESS,
GREATER, EQUAL, NOTEQUAL,
ALWAYS, NEVER
TEXTURE_LOD_BIAS float any value
TEXTURE_MAG_FILTER enum NEAREST, LINEAR
TEXTURE_MAX_LEVEL int any non-negative integer
TEXTURE_MAX_LOD float any value
TEXTURE_MIN_FILTER enum NEAREST, LINEAR,
NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,
TEXTURE_MIN_LOD float any value

TEXTURE_SWIZZLE_R enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_G enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_B enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_A enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_RGBA 4 enums RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_WRAP_S enum CLAMP, CLAMP_TO_EDGE,
REPEAT,

CLAMP_TO_BORDER,
MIRRORED_REPEAT,
MIRROR_CLAMP_TO_EDGE

Texture parameters continued on next page

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.10. TEXTURE PARAMETERS 267

Texture parameters continued from previous page

Name \ Type Legal Values

TEXTURE_WRAP_T enum CLAMP, CLAMP_TO_EDGE,

REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT,

MIRROR_CLAMP_TO_EDGE

TEXTURE_WRAP_R enum CLAMP, CLAMP_TO_EDGE,

REPEAT,
CLAMP_TO_BORDER,
MIRRORED_ REPEAT,

MIRROR_CLAMP_TO_EDGE

Table 8.25: Texture parameters and their values.

In the remainder of chapter 8, denote by lodmin, l0dmaz, levelpgse, and
level g, the values of the texture parameters TEXTURE_MIN_LOD, TEXTURE_-
MAX_LOD, TEXTURE_BASE_LEVEL, and TEXTURE_MAX_LEVEL respectively. If
the texture was created with TextureView, then the TEXTURE_BASE_LEVEL and
TEXTURE_MAX_LEVEL parameters are interpreted relative to the view and not rel-
ative to the original data store.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

If the value of texture parameter GENERATE_MIPMAP is TRUE, specifying or
changing texture images may have side effects, which are discussed in the Auto-
matic Mipmap Generation discussion of section 8.14.

Errors

An INVALID_ENUM error is generated if the effective farget is not one of
the valid targets listed above.

An INVALID_ENUM error is generated if pname is not one of the parameter
names in table 8.25.

An INVALID_OPERATION error is generated by TextureParameter* if
texture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the type of the parameter speci-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 268

fied by pname is enum, and the value(s) specified by param or params are not
among the legal values shown in table 8.25.

An INVALID_VALUE error is generated if pname is TEXTURE_BASE_-—
LEVEL or TEXTURE_MAX_LEVEL, and param or params is negative.

An INVALID_ENUM error is generated if Tex*Parameter{if} is called
for a non-scalar parameter (pname TEXTURE_BORDER_COLOR Or TEXTURE_ -
SWIZZLE_RGBA).

An INVALID_ENUM error is generated if the effective targer is either
TEXTURE_2D_MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY, and
pname is any sampler state from table 23.23.

An INVALID_ OPERATION error is generated if the effective target
iS TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_MULTISAMPLE_ARRAY oOr
TEXTURE_RECTANGLE, and pname TEXTURE_BASE_LEVEL is set to a value
other than zero.

An INVALID_ENUM error is generated if the effective farget is TEXTURE_ -
RECTANGLE and either of pnames TEXTURE_WRAP_S or TEXTURE_WRAP_T is
set to either MTRROR_CLAMP_TO_EDGE, MTRRORED_REPEAT Or REPEAT.

An INVALID_ENUM error is generated if the effective farget is TEXTURE_—
RECTANGLE and pname TEXTURE_MIN_FILTER is set to a value other than
NEAREST or LINEAR (no mipmap filtering is permitted).

8.11 Texture Queries

8.11.1 Active Texture

Queries of most texture state variables are qualified by the value of ACTIVE_-
TEXTURE to determine which server texture state vector is queried.

23.3,23.4, 23.10, 23.17

23.24 23.66 those state variables which are qualified by ACTIVE_-
TEXTURE during state queries.
Errors

An INVALID_OPERATION error is generated by queries of texture state
variables corresponding to texture coordinate processing units (namely, Tex-
Gen state and enables, and matrices) if the value of ACTIVE_TEXTURE iS
greater than or equal to the value of MAX_TEXTURE_COORDS.

An INVALID_OPERATION error is generated by all other texture state

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 269

queries if the value of ACTIVE_TEXTURE is greater than or equal to the value
of MAX COMBINED TEXTURE_IMAGE_UNITS.

8.11.2 Texture Parameter Queries
Parameters of a texture object may be queried with the commands

void GetTexParameter{if}v(enum target, enum pname,
T *params);
void GetTexParameterI{i ui}v(enum target, enum pname,
T *params);
void GetTextureParameter{if}v(uint fexture, enum pname,
T *data);
void GetTextureParameterI{i ui}v(uint texture,
enum pname, T *data);

For GetTexParameter*, the texture object is that bound to farget. For Get-
TextureParameter®, texture is the name of the texture object.

The value of texture parameter pname for the texture is returned in params.

target or the effective target of fexture must be one of TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP, TEXTURE_CUBE_MAP_ARRAY,
TEXTURE_2D_MULTISAMPLE, or TEXTURE_2D_MULTISAMPLE_ARRAY, indicat-
ing the currently bound one-, two-, or three-dimensional, one- or two-dimensional
array, rectangle, cube map, cube map array, two-dimensional multisample, or
two-dimensional multisample array texture object.

pname must be one of TMAGE_FORMAT_COMPATIBILITY_TYPE, TEXTURE_-
IMMUTABLE_FORMAT, TEXTURE_IMMUTABLE_LEVELS, TEXTURE_TARGET,
TEXTURE_VIEW_MIN_LEVEL, TEXTURE_VIEW_NUM_LEVELS, TEXTURE_-
VIEW_MIN_LAYER, TEXTURE_VIEW_NUM_LAYERS, or one
of the symbolic values in table 8.25.

Querying pname TEXTURE_BORDER_COLOR with GetTex*Parameterliv or
GetTex*ParameterIuiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Querying pname TEXTURE_TARGET returns the effective target of the texture
object. For GetTexParameter®, this is the target parameter. For GetTexturePa-
rameter®, it is the target to which the texture was initially bound when it was
created, or the value of the target parameter to the call to CreateTextures which
created the texture.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 270

Errors

An INVALID OPERATION error is generated by GetTextureParameter™
if texture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the effective farget is not one of
the texture targets described above.

An INVALID_ ENUM error is generated if pname is not one of the texture
parameters described above.

8.11.3 Texture Level Parameter Queries

Parameters of a specified level-of-detail of a texture object may be queried with the
commands

void GetTexLevelParameter{if}v(enum rarget, int level,
enum pname, T *params);

void GetTextureLevelParameter{if}v(uint texture,
int level, enum pname, T *params);

For GetTexLevelParameter*, the texture object is that bound to target. For
GetTextureLevelParameter®, texture is the name of the texture object.

The value of texture parameter pname for level-of-detail level of the texture is
returned in params. pname must be one of the symbolic values in tables 23.21-
23.22.

The effective target of the texture object must be one of TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER,
TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_MULTISAMPLE_ARRAY, PROXY_-
TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D, PROXY_TEXTURE_-—
1D_ARRAY, PROXY_TEXTURE_2D_ARRAY, PROXY_TEXTURE_CUBE_MAP_-
ARRAY, PROXY_TEXTURE_RECTANGLE, PROXY_TEXTURE_CUBE_MAP, PROXY_-
TEXTURE_2D_MULTISAMPLE, or PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY,
indicating the one-, two-, or three-dimensional texture, one- or two-dimensional
array texture, cube map array texture, rectangle texture, buffer texture, two-
dimensional multisample texture, two-dimensional multisample array texture;
or the one-, two-, three-dimensional, one- or two-dimensional array, cube map
array, rectangle, cube map, two-dimensional multisample, or two-dimensional
multisample array proxy state vector.

For GetTexLevelParameter* only, farget may also be one of the cube map
face targets from table 8.27, indicating one of the six distinct two-dimensional

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 271

images making up the cube map texture object. Note that TEXTURE_CUBE_MAP is
not a valid farget parameter for GetTexLevelParameter®.

For GetTextureLevelParameter* only, fexture may also be a cube map texture
object. In this case the query is always performed for face zero (the TEXTURE_ -
CUBE_MAP_POSITIVE_X face), since there is no way to specify another face.

level determines which level-of-detail’s state is returned. The maximum value
of level depends on the texture farget:

e For targets TEXTURE_CUBE_MAP and TEXTURE_CUBE_MAP_ARRAY, the
maximum value is log, of the value of MAX_CUBE_MAP_TEXTURE_SIZE.

e For target TEXTURE_ 3D, the maximum value is log, of the value of MAX_-
3D_TEXTURE_SIZE.

e For targets TEXTURE_BUFFER, TEXTURE_RECTANGLE, TEXTURE_2D_-
MULTISAMPLE, and TEXTURE_2D_MULTISAMPLE_ARRAY, which do not
support mipmaps, the maximum value is zero.

e For all other texture fargets supported by GetTex*LevelParameter®, the
maximum value is log, of the value of MAX_TEXTURE_SIZE.

For texture images with uncompressed internal formats, queries of
pname TEXTURE_RED_TYPE, TEXTURE_GREEN_TYPE, TEXTURE_BLUE_-
TYPE, TEXTURE_ALPHA_ TYPE,

and TEXTURE_DEPTH_TYPE return the data type used to store
the component. Types NONE, SIGNED_NORMALIZED, UNSIGNED_NORMALIZED,
FLOAT, INT, and UNSIGNED_INT respectively indicate missing, signed nor-
malized fixed-point, unsigned normalized fixed-point, floating-point, signed
unnormalized integer, and unsigned unnormalized integer components. Queries
of pname TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_BLUE_-
SIZE, TEXTURE_ALPHA_SIZE,

TEXTURE_DEPTH SIZE, TEXTURE_STENCIL_SIZE, and
TEXTURE_SHARED_SIZE return the actual resolutions of the stored texture image
components, not the resolutions specified when the image was defined.

For texture images with compressed internal formats, the types returned spec-
ify how components are interpreted after decompression, while the resolutions re-
turned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 272

Querying pname TEXTURE_COMPRESSED_IMAGE_SIZE returns the size (in
ubytes) of the compressed texture image that would be returned by GetCom-
pressedTexImage (section 8.11). farget must be a compressed texture target.

Queries of pname TEXTURE_SAMPLES and TEXTURE_FIXED_SAMPLE_-
LOCATIONS on multisample textures return the number of samples and whether
texture sample fixed locations are enabled respectively. For non-multisample tex-
tures, the default values in tables 23.21- 23.22 are returned.

Queries of pname TEXTURE_INTERNAIL_-
FORMAT, TEXTURE_WIDTH, TEXTURE_HEIGHT, and TEXTURE_DEPTH return the

internal format, width, height, and depth, respectively, as specified
when the texture image was created.

Errors

An INVALID_OPERATION error is generated by GetTextureLevelPa-
rameter™ if texture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the effective texture target is not
one of the targets described above as valid for the corresponding command.

An INVALID_ENUM error is generated if pname is not one of the symbolic
values in tables 23.21- 23.22.

An INVALID_VALUE error is generated if level is negative or larger than
the maximum allowable level-of-detail for the effective texture target as de-
scribed above.

An INVALID_OPERATION error is generated if pname is TEXTURE_-
COMPRESSED_IMAGE_SIZE and the effective texture target is a proxy target,
or has an uncompressed internal format.

8.11.4 Texture Image Queries

Texture images may be obtained from a texture object with the commands

void GetTexImage(enum target, int level, enum format,
enum type, void *pixels);

void GetTextureImage(uint fexture, int level, enum format,
enum type, sizei bufSize, void *pixels);

void GetnTexImage(enum target, int level, enum format,
enum type, sizei bufSize, void *pixels);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 273

For Get*TexImage, rarget specifies the target to which the texture object is bound.
target must be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_-
1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY Oor TEXTURE_-
RECTANGLE, indicating a one-, two- or three-dimensional, one- or two-dimensional
array, cube map array or rectangle texture, respectively, or one of the targets from
table 8.27, indicates the corresponding face of a cube map texture.

For GetTextureImage, texture is the name of the texture object. In addition to
the types of textures accepted by the Get*TexImage commands, GetTextureIm-
age also accepts cube map texture objects (with effective target TEXTURE_CUBE_ —
MAP).

level is a level-of-detail number, format is a pixel format from table 8.8, and
type is a pixel type from table 8.7.

If present, bufSize is the size of the buffer to receive the retrieved pixel data.

GetnTexImage and GetTexturelmage do not write more than bufSize bytes
into pixels.

These commands obtain component groups from a texture image with the in-
dicated level-of-detail. If format is a color format then the components are as-
signed among R, G, B, and A according to table 8.26, starting with the first group
in the first row, and continuing by obtaining groups in order from each row and
proceeding from the first row to the last, and from the first image to the last for
three-dimensional textures. One- and two-dimensional array and cube map array
textures are treated as two-, three-, and three-dimensional images, respectively,
where the layers are treated as rows or images. Cube map textures are treated as
three-dimensional images with a depth of 6, where the cube map faces are ordered
as image layers as shown in table 9.3.

If format is DEPTH_COMPONENT, DEPTH_STENCIL, or STENCIL_INDEX, then
each depth component and/or stencil index is assigned with the same ordering of
rows and images.

These groups are then packed and placed in client or pixel buffer object mem-
ory. If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_—
PACK_BUFFER_BINDING), pixels is an offset into the pixel pack buffer; otherwise,
pixels is a pointer to client memory.

storage modes that are applicable to ReadPixels are applied,
as described in table 18.1 and section 18.2.9.

For three-dimensional, two-dimensional array, cube map array, and cube map
textures pixel storage operations are applied as if the image were two-dimensional,
except that the additional pixel storage state values PACK_IMAGE_HEIGHT and
PACK_SKIP_IMAGES are applied. The correspondence of texels to memory loca-
tions is as defined for TexImage3D in section 8.5.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 274

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders).

Errors

An INVALID_OPERATION error is generated by GetTextureImage if rex-
ture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the effective rarget is
not one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_-—
ARRAY, TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY, TEXTURE_—
RECTANGLE, one of the targets from table 8.27 (for GetTexImage and Getn-
TexImage only), or TEXTURE_CUBE_MAP (for GetTextureImage only).

An INVALID OPERATION error is generated by GetTextureImage if the
effective farget is TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, and
the texture object is not cube complete or cube array complete, respectively.

An INVALID_VALUE error is generated if level is negative or larger than
the maximum allowable level.

An INVALID_VALUE error is generated if level is non-zero and the effec-
tive target is TEXTURE_RECTANGLE.

An INVALID_OPERATION error is generated if any of the following mis-
matches between format and the internal format of the texture image exist:

e format is a color format (one of the formats in table 8.8 whose target is
the color buffer) and the base internal format of the texture image is not
a color format.

e format is DEPTH_COMPONENT and the base internal format is not
DEPTH_COMPONENT or DEPTH_STENCIL.

e formatis DEPTH_STENCIL and the base internal format is not DEPTH_ -
STENCIL.

e format is STENCIL_INDEX and the base internal format is not
STENCIIL_INDEX or DEPTH_STENCIL.

e format is one of the integer formats in table 8.8 and the internal format
of the texture image is not integer, or format is not one of the integer
formats in table 8.8 and the internal format is integer.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 275

‘ Base Internal Format ‘ R ‘ G ‘ B ‘ A ‘

RED R, | O 0 1

RG Rl Gz 0 1

RGB (or 3) R |G, | B; | 1
RGBA (or 4) R; Gz B; Al

Table 8.26: Texture, table and filter return values. R;, G;, 3;, A;, L;, and I, are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

An INVALID_OPERATION error is generated if a pixel pack buffer object
is bound and packing the texture image into the buffer’s memory would exceed
the size of the buffer.

An INVALID_ OPERATION error is generated if a pixel pack buffer object
is bound and pixels is not evenly divisible by the number of basic machine
units needed to store in memory the GL data type corresponding to type (see
table 8.7).

An INVALID_OPERATION error is generated by GetTextureImage and
GetnTexImage if the buffer size required to store the requested data is greater
than bufSize.

Sub-regions of a texture image may be obtained from a texture object with the
command

void GetTextureSubImage(uint texture, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format, enumn type,
sizei bufSize, void *pixels);

texture is the name of the texture object, and must not be a buffer or multi-
sample texture. The effective target is the value of TEXTURE_TARGET for texture.
level, format, type and pixels have the same meaning as for GetTexImage. bufSize
is the size of the buffer to receive the retrieved pixel data.

For cube map textures, the behavior is as though GetTexturelmage were
called, but only texels from the requested cube map faces (selected by zoffset and

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES

depth, as described below) were returned.

xoffset, yoffset and zoffset indicate the position of the subregion to return. width,
height and depth indicate the size of the region to return. These parameters have
the same meaning as for TexSubImage3D, though for one- and two-dimensional
textures there are extra restrictions, described in the errors section below.

For one-dimensional array textures, yoffset is interpreted as the first layer to
access and height is the number of layers to access. For two-dimensional array
textures, zoffset is interpreted as the first layer to access and depth is the number
of layers to access. Cube map textures are treated as an array of six slices in the z-
dimension, where the value of zoffset is interpreted as specifying the cube map face
for the corresponding layer in table 9.3 and depth is the number of faces to access.
For cube map array textures, zoffset is the first layer-face to access, and depth is the
number of layer-faces to access. Each layer-face is translated into an array layer
and a cube map face as described for layer-face numbers in section 8.5.3.

Component groups from the specified sub-region are packed and placed
into memory as described for GetTextureImage, starting with the texel at
(xoffset, yoffset, zoffset).

Errors

An INVALID_VALUE error is generated if fexture is not the name of an
existing texture object.

An INVALID_OPERATION error is generated if texture is the name of a
buffer or multisample texture.

An INVALID_OPERATION error is generated if the effective farget is
TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, and the texture object
is not cube complete or cube array complete, respectively.

An INVALID_VALUE error is generated if xoffset, yoffset or zoffset are
negative.

An INVALID_VALUE error is generated if xoffset + width is greater than
the texture’s width, yoffset + height is greater than the texture’s height, or
zoffset + depth is greater than the texture’s depth.

An INVALID_VALUE error is generated if the effective targer is
TEXTURE_ 1D and either yoffset is not zero, or height is not one.

An INVALID_VALUE error is generated if
the effective farget is TEXTURE_1D, TEXTURE_1D_ARRAY, TEXTURE_2D oOr
TEXTURE_RECTANGLE, and either zoffset is not zero, or depth is not one.

An INVALID_OPERATION error is generated if the buffer size required to
store the requested data is greater than bufSize.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

276

8.11. TEXTURE QUERIES 277

Texture images stored in compressed form may be obtained with the commands

void GetCompressedTexImage(enum farget, int level,
void *pixels);

void GetCompressedTextureImage(uint texture, int level,
sizei bufSize, void *pixels);

void GetnCompressedTexImage(enum target, int level,
sizei bufSize, void *pixels);

For Get*CompressedTexImage, the texture object is that which is bound to
target. For GetCompressedTexturelmage, fexture is the name of the texture ob-
ject, and the effective rarget is the value of TEXTURE_TARGET for fexture.

target, level, bufSize, and pixels are interpreted in the same manner as the cor-
responding parameters of GetTexImage, GetTextureImage, and GetnTexImage.

When called, GetCompressedTexImage writes n ubytes of compressed
image data to the pixel pack buffer or client memory pointed to by pix-
els, while GetCompressedTextureImage and GetnCompressedTexImage write
min{n, bufSize} ubytes. n is the value of TEXTURE_COMPRESSED_IMAGE_—
S1ZE for the texture image The compressed image data is formatted according to
the definition of the texture’s internal format.

By default the pixel storage modes PACK_ROW_LENGTH, PACK_SKIP_ROWS,
PACK_SKIP_PIXELS, PACK_IMAGE_HEIGHT and PACK_SKIP_IMAGES are ig-
nored for compressed images. To enable PACK_SKIP_PIXELS and PACK_-
ROW_LENGTH, the values of PACK_COMPRESSED_BLOCK_SIZE and PACK_-
COMPRESSED_BLOCK_WIDTH must both be non-zero. To also enable PACK_ -
SKIP_ROWS and PACK_IMAGE_HEIGHT, the value of PACK_COMPRESSED_-
BLOCK_HEIGHT must be non-zero. And to also enable PACK_SKIP_IMAGES,
the value of PACK_COMPRESSED_BLOCK_DEPTH must be non-zero. All param-
eters must be consistent with the compressed format to produce the desired results.
When the pixel storage modes are active, the correspondence of texels to memory
locations is as defined for Compressed TexImage3D in section 8.7.

Errors

An INVALID_OPERATION error is generated by GetCompressedTex-
turelmage if fexture is not the name of an existing texture object.

An INVALID_OPERATION error is generated by GetCompressedTex-
turelmage if the effective target is TEXTURE_CUBE_MAP or TEXTURE_-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.11. TEXTURE QUERIES 278

CUBE_MAP_ARRAY, and the texture object is not cube complete or cube array
complete, respectively.

An INVALID_VALUE error is generated if level is negative, or greater than
the maximum allowable level.

An INVALID_OPERATION error is generated if the texture image is stored
with an uncompressed internal format.

An INVALID_OPERATION error is generated if a pixel pack buffer object
is bound and packing the texture image into the buffer’s memory would exceed
the size of the buffer.

An INVALID_OPERATION error is generated by GetCompressedTex-
turelmage and GetnCompressed TexImage if the buffer size required to store
the requested data is greater than bufSize.

If the compressed data are arranged into fixed-size blocks of texels, the com-
mand

void GetCompressedTextureSublmage(uint texture,
int level, int xoffset, int yoffset, int zoffset,
sizel width, sizei height, sizei depth, sizei bufSize,
void *pixels);

can be used to obtain a sub-region of a compressed texture image instead of the
whole image. fexture is the name of the texture object, and must not be a buffer
or multisample texture. The effective rarget is the value of TEXTURE_TARGET for
texture. level and pixels have the same meaning as the corresponding arguments of
CompressedTexSubImage3D. bufSize indicates the size of the buffer to receive
the retrieved pixel data.

For cube map textures, the behavior is as though GetCompressedTexImage
were called once for each requested face (selected by zoffset and depth, as de-
scribed below) with target corresponding to the requested texture cube map face as
indicated by table 9.3. pixels is offset appropriately for each successive image.

xoffset, yoffset and zoffset indicate the position of the subregion to return. width,
height and depth indicate the size of the region to return. These arguments have
the same meaning as for CompressedTexSubImage3D, though there are extra
restrictions, described in the errors section below.

The mapping between the xoffset, yoffset, zoffset, width, height, and depth pa-
rameters and the faces, layers, and layer-faces for cube map, array, and cube map
array textures is the same as for GetTextureSubImage.

The xoffset, yoffset, zoffset offsets and width, height and depth sizes must
be multiples of the values of PACK_COMPRESSED_BLOCK WIDTH, PACK_-—

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.12. DEPTH COMPONENT TEXTURES 279

COMPRESSED_BLOCK_HEIGHT, and PACK_COMPRESSED_BLOCK_DEPTH respec-
tively, unless an offset is zero and the corresponding size is the same as the texture
size in that dimension.

Pixel storage modes are treated as for GetCompressedTexSubImage. The
texel at (xoffset, yoffset, zoffset) will be stored at the location indicated by pixels
and the current pixel packing parameters.

Errors

In addition to the same errors generated by GetTextureSubImage with
corresponding parameters:

An INVALID_VALUE error is generated if xoffset, yoffset or zoffset is not a
multiple of the compressed block width, height or depth respectively.

An INVALID_VALUE error is generated if width, height or depth is not a
multiple of the compressed block width, height or depth respectively, unless
the offset is zero and the size equals the texture image size.

An INVALID_OPERATION error is generated if the texture compression
format is not based on fixed-size blocks.

8.12 Depth Component Textures

Depth textures and the depth components of depth/stencil textures can be treated
as RED textures during texture filtering and
application (see section 8.23). The initial state for depth and depth/stencil textures

treats them as RED textures.

8.13 Cube Map Texture Selection

When a cube map texture is sampled, the (s t r) texture coordinates are treated
as a direction vector (rx Ty 7“2) emanating from the center of a cube. The ¢
coordinate is ignored. At texture application time, the interpolated per-fragment
direction vector selects one of the cube map face’s two-dimensional images based
on the largest magnitude coordinate direction (the major axis direction). If two
or more coordinates have the identical magnitude, the implementation may define
the rule to disambiguate this situation. The rule must be deterministic and depend
only on (rw Ty rz). The target column in table 8.27 explains how the major axis
direction maps to the two-dimensional image of a particular cube map target.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.13. CUBE MAP TEXTURE SELECTION 280

Major Axis Direction | Target \ Se \ te \ o \
+7ry TEXTURE_CUBE_MAP_POSITIVE_X | —T, | —Ty | 7%
—Ty TEXTURE_CUBE_MAP_NEGATIVE_X | 1, —Ty | Tz
+7y TEXTURE_CUBE_MAP_POSITIVE_Y | 7y T, Ty
—Ty TEXTURE_CUBE_MAP_NEGATIVE_Y | 7y —T, | Ty
+r, TEXTURE_CUBE_MAP_POSITIVE_ Z | 7y —Ty | T2
—r, TEXTURE_CUBE_MAP_NEGATIVE_Z | =Ty | —Ty | T

Table 8.27: Selection of cube map images based on major axis direction of texture
coordinates.

Using the s, t., and m, determined by the major axis direction as specified in
table 8.27, an updated (s t) is calculated as follows:

1/ s, >
§=— +1
2<’ma|

1 te >
t=— +1
2<|ma

8.13.1 Seamless Cube Map Filtering

Seamless cube map filtering is enabled or disabled by calling Enable or Disable
with target TEXTURE_CUBE_MAP_SEAMLESS.

When seamless cube map filtering is disabled, the new (5 t) is used to find a
texture value in the determined face’s two-dimensional image using the rules given
in sections 8.14 through 8.15.

When seamless cube map filtering is enabled, the rules for texel selection in
sections 8.14 through 8.15 are modified so that texture wrap modes are ignored.
Instead,

e If NEAREST filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_EDGE.

e If LINEAR filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_BORDER. Then,

— If a texture sample location would lie in the texture border in either u

or v, instead select the corresponding texel from the appropriate neigh-
boring face.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 281

— If a texture sample location would lie in the texture border in both u
and v (in one of the corners of the cube), there is no unique neighbor-
ing face from which to extract one texel. The recommended method to
generate this texel is to average the values of the three available sam-
ples. However, implementations are free to construct this fourth texel
in another way, so long as, when the three available samples have the
same value, this texel also has that value.

The required state is one bit indicating whether seamless cube map filtering is
enabled or disabled. Initially, it is disabled.

8.14 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

8.14.1 Scale Factor and Level of Detail

The choice is governed by a scale factor p(x,y) and the level-of-detail parameter
Az, y), defined as

)‘base(lia y) = 1Og2 [p(a:, y)] (8.8)
lodmaz, N > loda
)\,7 lodpin < N < lodmaz
AN lodmsn, N < lodmn (8.10)

undefined, lodmin > lodmaz

biastezopj 18 the value of TEXTURE_LOD_BIAS for the bound texture object (as
described in section 8.10).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 282

16.1 biasshader 18 the value of
the optional bias parameter in the texture lookup functions available to fragment
shaders. If the texture access is performed in a fragment shader without a provided
bias, or outside a fragment shader, then biasgpqder 1S zero. The sum of these values
is clamped to the range [—biasSmaz, biaSmaz] Where bias,q, is the value of the
implementation defined constant MAX_TEXTURE_LOD_BIAS.

Different implementations have chosen to perform clamping on intermediate
and final terms in computing)\’ differently. Care should be taken that intermediate
terms do not exceed the implementation-dependent range as different results may
otherwise occur.

If A(x,y) is less than or equal to the constant ¢ (see section 8.15) the texture is
said to be magnified; if it is greater, the texture is minified. Sampling of minified
textures is described in the remainder of this section, while sampling of magnified
textures is described in section 8.15.

The initial values of lod,,;, and lod,,, are chosen so as to never clamp the
normal range of .

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (x, y) that lie within a primitive; define ¢(z,y) and r(z, y)
analogously. Let

(2,9) s(z,y) + Ou, rectangle texture
u(z,y) = .
Y wy X s(xz,y) + 6y, otherwise

(2.9) t(z,y) + oy, rectangle texture (8.11)
v(z,y) = .
Y ht x t(x,y) + d,, otherwise

w(z,y) =di X r(2,y) + 0w

where wy, ht, and d; are as defined in section 8.5.3 for the texture image whose
level is levelp,se. For a one-dimensional or one-dimensional array texture, define
v(z,y) = 0 and w(x,y) = 0; for a two-dimensional, two-dimensional array, rect-
angle, cube map, or cube map array texture, define w(x,y) = 0.

(6u, 0y, 6yy) are the texel offsets specified in the OpenGL Shading Language
texture lookup functions that support offsets. If the texture function used does not
support offsets, all three shader offsets are
taken to be zero.

If the value of any non-ignored component of the offset vector operand is
outside implementation-dependent limits, the results of the texture lookup are
undefined. For all instructions except textureGather, the limits are the val-
ues of MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET. For

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 283

the textureGather instruction, the limits are the values of MIN_PROGRAM_-
TEXTURE_GATHER_OFFSET and MAX_PROGRAM_TEXTURE_GATHER_OFFSET.

For a polygon, or for a point sprite with texture coordinate replacement en-
abled, pis given at a fragment with window coordinates (z, y) by

N ou\? n ov\? . ow\ > ou\? n v\ > n ow\

= max — — — — - -

P Ox Ox ox)’ oy oy Oy
(8.12)

where Ju/Ox indicates the derivative of u with respect to window z, and similarly

for the other derivatives.
For a line, the formula is

2 2
= (e 22y (e 2 (B 22 o
(8.13)
where Az = x9 — x1 and Ay = yo — y1 with (z1,y;1) and (z2,y2) being the
segment’s window coordinate endpoints and [= \/Ax2 + Ay?2.

For a point, point sprite without texture coordinate replacement enabled, pixel

rectangle, or bitmap, p = 1.

While it is generally agreed that equations 8.12 and 8.13 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal p with a function f(z,y) subject to these
conditions:

1. f(z,y) is continuous and monotonically increasing in each of |Ou/dz|,

, and |Ow/0y|
2. Let

{ oul| |Ou }

My = Mmax)=

x| |0y
{ ov| [ov }

m, = max =

x| |0y

w_max{'

Then max{m,, my, My} < f(z,y) < my + my + my,.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 284

8.14.2 Coordinate Wrapping and Texel Selection

After generating u(z, y), v(z,y), and w(z, y), they may be clamped and wrapped
before sampling the texture, depending on the corresponding texture wrap modes.

The value assigned to TEXTURE_MIN_FILTER is used to determine how the
texture value for a fragment is selected.

When the value of TEXTURE_MIN_FILTER is NEAREST, the texel in the texture
image of level levelpyse that is nearest (in Manhattan distance) to (u/,v’, w') is
obtained. Let (i, j, k) be integers such that

and the value returned by wrap() is defined in table 8.28. For a three-dimensional
texture, the texel at location (i,7,k) becomes the texture value. For two-
dimensional, two-dimensional array, rectangle, or cube map textures, k is irrele-
vant, and the texel at location (4, j) becomes the texture value. For one-dimensional
texture or one-dimensional array textures, j and k are irrelevant, and the texel at
location ¢ becomes the texture value.

For one- and two-dimensional array textures, the texel is obtained from image
layer [, where

I = {clamp(RN E(t),0,hy — 1), for one-dimensional array textures ,

clamp(RNE(r),0,d; — 1), for two-dimensional array textures

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 285

and RN E() is the round-to-nearest-even operation defined by IEEE arithmetic.

| Wrap mode | Result of wrap(coord)

CLAMP_TO_EDGE clamp(coord, 0, size — 1)

CLAMP_TO_BORDER clamp(coord, —1, size)
REPEAT coord mod size
MIRRORED_REPEAT (size — 1) — mirror(coord mod (2 x size)) — size)

MIRROR_CLAMP_TO_EDGE | clamp(mirror(coord),0, size — 1)

Table 8.28: Texel location wrap mode application. mirror(a) returns a if a > 0,
and — (1 + a) otherwise. The values of mode and size are TEXTURE_WRAP_S and
wy, TEXTURE_WRAP_T and h;, and TEXTURE_WRAP_R and d; when wrapping ¢, 7,
or k coordinates, respectively.

If the selected (4, j, k), (4, 7), or i location refers to a border texel that satisfies
any of the conditions

1 < *bs 1> wy + bS
j < —bg / >]’l[, + bs
k < —bs k > d; + b

then the border values defined by TEXTURE_BORDER_COLOR are used in place
of the non-existent texel. If the texture contains color components, the values of
TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table 8.18. The internal data type of the
border values must be consistent with the type returned by the texture as described
in chapter 8, or the result is undefined. If border values are out-of-range with
respect to the texture’s internal format, the result is undefined. If the texture
contains depth components, the first component of TEXTURE_BORDER_COLOR is
interpreted as a depth value.

When the value of TEXTURE_MIN_FILTER iS LINEAR, a 2 X 2 X 2 cube of
texels in the texture image of level levelp,s. is selected. Let

* Implementations may instead round the texture layer using the nearly equivalent computation
lvalue + .

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 286

io = wrap(lu' — 2)
jo = wrap([v/ ~ 3)

ko = wrap(l’ —)

1
i1 = wrap(|u’ — iJ +1)

. 1
j1 = wrap(|v — §j +1)

1
k1 = wrap(|w' — §J +1)

a= frac(u' — 5)

B = frac(v' — %)

et

where frac(z) denotes the fractional part of x.
For a three-dimensional texture, the texture value 7 is found as

= (1—a)(1 = B)(1 =)Tigjoko + (1 = B)(L = ¥)Tirjoko
+ (1 — @) B(L =) Tigjrko + @B =)Ty jiko
+ (1 —a)(l—)'YTlojokl +a(l— 6)77i1j0k1
+ (1 — @) BYTigjiky + OBV Tirjika

(8.14)

where 7;;;, is the texel at location (4, j, k) in the three-dimensional texture image.
For a two-dimensional, two-dimensional array, rectangle, or cube map texture,

7 =(1—a)(1 = B)Tipjo + (1 — B)Tirjo
+(1- Oz)ﬁﬂ'ojl + aﬂTiljl

where 7;; is the texel at location (3, j) in the two-dimensional texture image. For
two-dimensional array textures, all texels are obtained from layer [, where

1
[= clamp({7’ + QJ ,0,dy — 1).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 287

0

t=00"%""1 2 3 4 5 6 7
s=0.0 s=1.0

Figure 8.4. An example of an 8 x 8 texture image and the components returned for
textureGather. The vector (X, Y, Z, W) is returned, where each component is
taken from the post-swizzle R component of the corresponding texel.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 288

The textureGather and textureGatherOf fset built-in shader functions
return a vector derived from sampling a 2 x 2 block of texels in the texture im-
age of level levely,se. The rules for the LINEAR minification filter are applied to
identify the four selected texels. Each texel is then converted to a texture source
color (Rs, Gs, Bs, As) according to table 16.1 and then swizzled as described in
section 16.1. A four-component vector is then assembled by taking a single com-
ponent from the swizzled texture source colors of the four texels, in the order 7,
Tivj1» Tirjo» and 7y, (see figure 8.4). The selected component is identified by
the optional comp argument, where the values zero, one, two, and three identify
the R, G, Bs, or A; component, respectively. If comp is omitted, it is treated as
identifying the R; component. Incomplete textures (see section 8.17) are consid-
ered to return a texture source color of (0.0,0.0,0.0, 1.0) in floating-point format
for all four source texels.

The textureGatherOffsets functions operate identically to
textureGather, except that the array of two-component integer vectors offsets is
used to determine the location of the four texels to sample. Each of the four texels is
obtained by applying the corresponding offset in the four-element array offsets as a
(u, v) coordinate offset to the coordinates coord, identifying the four-texel LINEAR
footprint, and then selecting the texel 7;;, of that footprint. The specified values
in offsets must be constant. A limited range of offset values are supported; the
minimum and maximum offset values are implementation-dependent and given by
the values of MIN_PROGRAM_TEXTURE_GATHER_OFFSET and MAX_PROGRAM_-
TEXTURE_GATHER_OFFSET, respectively. Note that offset does not apply to the
layer coordinate for array textures.

And for a one-dimensional or one-dimensional array texture,

7=01-a)71, +am,

where 7; is the texel at location ¢ in the one-dimensional texture. For one-
dimensional array textures, both texels are obtained from layer [, where

1
I = clamp(Lt + 2J ,0,hy — 1).

For any texel in the equation above that refers to a border texel outside the
defined range of the image, the texel value is taken from the texture border color as
with NEAREST filtering.

8.14.2.1 Rendering Feedback Loops

If all of the following conditions are satisfied, then the value of the selected 7;;,
Tij, Of T; in the above equations is undefined instead of referring to the value of the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 289

texel at location (4, j, k), (4,7), or (i) respectively. This situation is discussed in
more detail in the description of feedback loops in section 9.3.1.

e The current DRAW_FRAMEBUFFER_BINDING names a framebuffer object F.

e The texture is attached to one of the attachment points, A, of framebuffer
object F.

e The value of TEXTURE_MIN_FILTER is NEAREST or LINEAR, and the value
of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A
is equal to levelp,se

Or

The value of TEXTURE_MIN FILTER 1S NEAREST MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, or LINEAR_ -
MIPMAP_LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_-
TEXTURE_LEVEL for attachment point A is within the inclusive range from
levelpgse 1O q.

8.14.3 Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_ -
MIPMAP_LINEAR, LINEAR MIPMAP_NEAREST, and LINEAR MIPMAP_ LINEAR
each require the use of a mipmap. Rectangle textures do not support mipmapping
(it is an error to specify a minification filter that requires mipmapping). A mipmap
is an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the texture image of level levelyyse

has dimensions w; X hy X dy, then there are |logy(maxsize)| + 1 levels
in the mipmap, where

Wy, for 1D and 1D array textures
maxsize = max(wg, hy), for 2D, 2D array, cube map, and cube map array textures

max(wy, he,dy), for 3D textures

Numbering the levels such that level levely,s. is the Oth level, the ith array has
dimensions

max(1, M‘ZJ) x max(1, UZJ) x max(1, HZJ)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 290

where

1, for 1D and 1D array textures
heg=1< .)
2", otherwise

2!, for 3D textures
dqg = :
1, otherwise

until the last array is reached with dimension 1 x 1 x 1.

Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-
TexImage2D, TexImagelD, or CopyTexImagelD or by functions that are defined
in terms of these functions. The array being set is indicated with the level-of-detail
argument level. Level-of-detail numbers proceed from levely,s. for the original
texture image through the maximum level p, with each unit increase indicating
an array of half the dimensions of the previous one (rounded down to the next
integer if fractional) as already described. For immutable-format textures (see sec-
tion 8.19), levely,se is clamped to the range [0, levelimmur — 1], levelyqy is then
clamped to the range [levelpgse, levelimmyr — 1], and p is one less than levelimaut,
where leveljmyt 1S the levels parameter passed to TexStorage* for the texture
object (the value of TEXTURE_IMMUTABLE_LEVELS; see section 8.19). Other-
wise p = [logy(maxsize)| + levelpyse, and all arrays from levelpyse through
g = min{p, level,,q, } must be defined, as discussed in section 8.17.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Since this discussion
pertains to minification, we are concerned only with values of A where A > 0.

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_-
NEAREST, the dth mipmap array is selected, where

levelpase, A< %
d=q [levelpgse + A+ 31— 1, A > L levelpgse + A< g+ 1 (815)
q, A > %,levelba56+)\>q+%

The rules for NEAREST or LINEAR filtering are then applied to the selected
array. Specifically, the coordinate (u, v, w) is computed as in equation 8.11, with

> Implementations may instead use the nearly equivalent computation d = |levelpgse + A + %J
in this case.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 291

ws, hg, and dg equal to the width, height, and depth of the texture image whose
level is d.

For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR_MIPMAP_-
LINEAR, the level d and dy mipmap arrays are selected, where

dl _ q, levelbase +A > q (8 16)
|levelpgse + A], otherwise '
level A >
d2 _ q, eve batse +A=2q (817)
di + 1, otherwise

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values 71 and 72. Specifically,
for level dy, the coordinate (u, v, w) is computed as in equation 8.11, with wg, hs,
and d; equal to the width, height, and depth of the texture image whose level is d;.
For level ds the coordinate (u',v’,w') is computed as in equation 8.11, with ws,
hs, and dg equal to the width, height, and depth of the texture image whose level is
ds.

The final texture value is then found as

7 = [1 — frac(\)]m + frac(\) 7.

8.14.4 Manual Mipmap Generation

Mipmaps can be generated manually for a texture object with the commands

void GenerateMipmap(enum target);
void GenerateTextureMipmap(uint fexture);

For GenerateMipmap, the texture object is that bound to target. For Gener-
ateTextureMipmap, texture is the name of the texture object.

target or the effective target of fexture must be one of TEXTURE_-
1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP, or TEXTURE_CUBE_MAP_ARRAY.

If target or the effective target of fexture is TEXTURE_CUBE_MAP oOr
TEXTURE_CUBE_MAP_ARRAY, then the texture object must be cube complete or
cube array complete respectively, as defined in section 8.17.

Mipmap generation replaces texture image levels levelp,se + 1 through g with
images derived from the levely,s. image, regardless of their previous contents. All
other mipmap levels, including levely,s., are left unchanged by this computation.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 292

The internal formats and border widths of the derived mipmap texture images
all match those of the levelp,s. image, and the dimensions of the derived images,
follow the requirements described in section 8.17.

The contents of the derived images are computed by repeated, filtered reduc-
tion of the levely,s. image. For one- and two-dimensional array and cube map
array textures, each layer is filtered independently. No particular filter algorithm is
required, though a box filter is recommended as the default filter. In some imple-
mentations, filter quality may be affected by hints (section 21.5).

Errors

An INVALID_ENUM error is generated by GenerateMipmap if zarget is
not one of the valid targets listed above.

An INVALID_OPERATION error is gener-
ated by GenerateTextureMipmap if zexture is not the name of an existing
texture object.

An INVALTID_OPERATION error is
generated by GenerateTextureMipmap if the effective target is not one of
the valid targets listed above.

An INVALID_OPERATION error is generated by
GenerateTextureMipmap if the effective target is TEXTURE_CUBE_MAP or
TEXTURE_CUBE_MAP_ARRAY, and the texture object is not cube complete or
cube array complete, respectively.

8.14.5 Automatic Mipmap Generation

If the value of texture parameter GENERATE_MIPMAP is TRUE, and a change is
made to the interior or border texels of the levely,s. texture image of a mipmap
by one of the texture image specification operations defined in sections 8.5
through 8.7, then a® mipmap complete set of mipmap texture images (as defined
in section 8.17) will be computed (if the image being changed is one face of a
cube map texture, only mipmaps for that face will be computed). Image lev-
els levelpgse + 1 through p are replaced with images derived from the modified
levely,se iMmage, as described above for Manual Mipmap Generation. All other
mipmap images, including the levelp,s. image, are left unchanged by this com-
putation. For images in the range levelp,s. + 1 through ¢, inclusive, automatic
and manual mipmap generation generate the same derived images, given identical
levelp,se images.

® Automatic mipmap generation is not performed for changes resulting from rendering operations
targeting a texture image bound as a color buffer of a framebuffer object.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.15. TEXTURE MAGNIFICATION 293

8.15 Texture Magnification

When A indicates magnification, the value assigned to TEXTURE_MAG_FILTER
determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER and LINEAR behaves exactly as LINEAR for
TEXTURE_MIN_FILTER as described in section 8.14, including the texture coordi-
nate wrap modes specified in table 8.28. The level-of-detail levelp, . texture image
is always used for magnification.

8.16 Combined Depth/Stencil Textures

If the texture image has a base internal format of DEPTH_STENCIL, then the stencil
index texture component is ignored by default. The texture value 7 does not include
a stencil index component, but includes only the depth component.

In order to access the stencil index texture component the DEPTH_STENCIL_-
TEXTURE_MODE texture parameter should be set to STENCIL_INDEX. When this
mode is set the depth component is ignored and the texture value includes only the
stencil index component. The stencil index value is treated as an unsigned inte-
ger texture and returns an unsigned integer value when sampled. When sampling
the stencil index only NEAREST filtering is supported. The DEPTH_STENCIL_-
TEXTURE_MODE is ignored for non depth/stencil textures.

8.17 Texture Completeness

A texture is said to be complete if all the texture images and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on texture dimensionality and type.
For one-, two-, and three-dimensional and one- and two-dimensional array tex-
tures, a texture is mipmap complete if all of the following conditions hold true:

e The set of mipmap images levelp,s. through ¢ (where ¢ is defined in sec-
tion 8.14.3) were each specified with the same internal format.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.17. TEXTURE COMPLETENESS 294

e The dimensions of the images follow the sequence described in sec-
tion 8.14.3.

o levelpyse < levelman

Image levels k where k < levelp,se Or k > q are insignificant to the definition of
completeness.

A cube map texture is mipmap complete if each of the six texture images,
considered individually, is mipmap complete. Additionally, a cube map texture is
cube complete if the following conditions all hold true:

e The levely,se texture images of each of the six cube map faces have identical,
positive, and square dimensions.

e The levely,s. images were each specified with the same internal format.

A cube map array texture is cube array complete if it is complete when treated
as a two-dimensional array and cube complete for every cube map slice within the
array texture.

Using the preceding definitions, a texture is complete unless any of the follow-
ing conditions hold true:

e Any dimension of the levely,s. image is not positive. For a rectangle or
multisample texture, levelp,s is always zero.

e The texture is a cube map texture, and is not cube complete.
o The texture is a cube map array texture, and is not cube array complete.

e The minification filter requires a mipmap (is neither NEAREST nor LINEAR),
and the texture is not mipmap complete.

e Any of
— The internal format of the texture is integer 8.19- 8.20

— The internal format is STENCIL_INDEX.

— The internal format is DEPTH_STENCIL, and the value of DEPTH -
STENCIL_TEXTURE_MODE for the texture iS STENCIL_INDEX.

and either the magnification filter is not NEAREST, or the minification filter
is neither NEAREST nor NEAREST_MIPMAP_NEAREST.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.18. TEXTURE VIEWS

8.17.1 Effects of Sampler Objects on Texture Completeness

If a sampler object and a texture object are simultaneously bound to the same tex-
ture unit, then the sampling state for that unit is taken from the sampler object (see
section 8.2). This can have an effect on the effective completeness of the texture. In
particular, if the texture is not mipmap complete and the sampler object specifies a
TEXTURE_MIN_FILTER requiring mipmaps, the texture will be considered incom-
plete for the purposes of that texture unit. However, if the sampler object does not
require mipmaps, the texture object will be considered complete. This means that
a texture can be considered both complete and incomplete simultaneously if it is
bound to two or more texture units along with sampler objects with different states.

8.17.2 Effects of Completeness on Texture Application

Texture lookup and texture fetch operations performed in shaders are affected
by completeness of the texture being sampled as described in sections 11.1.3.5
and 15.2.1.

8.17.3 Effects of Completeness on Texture Image Specification

The implementation-dependent maximum sizes for texture images depend on the
texture level. In particular, an implementation may allow a texture image of level
one or greater to be created only if a mipmap complete set of images consistent with
the requested image can be supported with default values of TEXTURE_BASE_ -
LEVEL and TEXTURE_MAX_LEVEL (see table 23.19). As a result, implementations
may permit a texture image at level zero that will never be mipmap complete and
can only be used with non-mipmapped minification filters.

8.18 Texture Views

A texture can be created which references the data store of another texture and
interprets the data with a different format, and/or selects a subset of the levels
and/or layers of the other texture. The data store for such a texture is shared with
the data store of the original texture. Updating the shared data store using the
original texture affects texture values read using the new texture, and vice versa. A
texture data store remains in existence until all textures that reference it are deleted.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

295

8.18. TEXTURE VIEWS 296

The command

void TextureView(uint fexture, enum target,
uint origtexture, enum internalformat, uint minlevel,
uint numlevels, uint minlayer, uint numlayers);

initializes the texture named fexture to the target specified by target. texture’s data
store is inherited from the texture named origtexture, but elements of the data store
are interpreted according to the internal format specified by internalformat. Ad-
ditionally, if origtexture is an array or has multiple mipmap levels, the parameters
minlayer, numlayers, minlevel, and numlevels control which of those slices and
levels are considered part of the texture.

The minlevel and minlayer parameters are relative to the view of origtexture. If
numlayers or numlevels extend beyond origtexture, they are clamped to the maxi-
mum extent of the original texture.

If the command is successful, the texture parameters in texture are updated as
follows:

e TEXTURE_IMMUTABLE_FORMAT is set to TRUE.

e TEXTURE_IMMUTABLE_LEVELS is set to the value of TEXTURE_-
IMMUTABLE_LEVELS for origtexture.

e TEXTURE_VIEW_MIN_LEVEL is set to minlevel plus the value of
TEXTURE_VIEW_MIN_LEVEL for origtexture.

e TEXTURE_VIEW _MIN_LAYER is set to minlayer plus the value of
TEXTURE_VIEW_MIN_LAYER for origtexture.

e TEXTURE_VIEW_NUM_LEVELS is set to the lesser of numlevels and the value
of TEXTURE_VIEW_NUM_LEVELS for origtexture minus minlevel.

e TEXTURE_VIEW_NUM_LAYERS is set to the lesser of numlayers and the value
of TEXTURE_VIEW_NUM_LAYERS for origtexture minus minlayer.

The new texture’s target must be compatible with the target of origtexture, as
defined by table 8.29.

Numerous constraints on numlayers and the texture dimensions depend on tar-
get and the target of origtexture. These constraints are summarized below in the
errors section.

When origtexture’s target is TEXTURE_CUBE_MAP, the layer parameters are
interpreted in the same order as if it were a TEXTURE_CUBE_MAP_ARRAY with 6
layer-faces.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.18. TEXTURE VIEWS

297

Original target

Valid new targets

TEXTURE_1D

TEXTURE_1D, TEXTURE_1D_ARRAY

TEXTURE_2D

TEXTURE_2D, TEXTURE_2D_ARRAY

TEXTURE_3D

TEXTURE_3D

TEXTURE_CUBE_MAP

TEXTURE_CUBE_MAP,
TEXTURE_2D_ARRAY,
MAP_ARRAY

TEXTURE_2D,
TEXTURE_CUBE_ -

TEXTURE_RECTANGLE

TEXTURE_RECTANGLE

TEXTURE_BUFFER

none

TEXTURE_1D_ARRAY

TEXTURE_1D_ARRAY, TEXTURE_1D

TEXTURE_2D_ARRAY

TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP,
MAP_ARRAY

TEXTURE_2D,
TEXTURE_CUBE_ -

TEXTURE_CUBE_MAP_ARRAY

TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_-
ARRAY, TEXTURE_2D, TEXTURE_CUBE_MAP

TEXTURE_2D_MULTISAMPLE

TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_-

MULTISAMPLE_ARRAY

TEXTURE_2D_MULTISAMPLE_ARRAY

TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_-—

MULTISAMPLE_ARRAY

Table 8.29: Legal texture targets for TextureView.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.18. TEXTURE VIEWS 298

Class Internal formats

VIEW_CLASS_128_BITS RGBA32F, RGBA32UI, RGBA321I

VIEW_CLASS_96_BITS RGB32F, RGB32UI, RGB321

VIEW_CLASS_64_BITS RGBA16F, RG32F, RGBA16UI, RG32UI, RGBA16I, RG32I,
RGBA16, RGBAL6_SNORM

VIEW_CLASS_48_BITS RGB16, RGB16_SNORM, RGB16F, RGB16UI, RGB161

VIEW_CLASS_32_BITS RG16F, R11F_G11F_B10F, R32F, RGB10_A2UI, RGBASUI,

RG16UI, R32UI, RGBASI, RG16I, R32I, RGB10_A2, RGBAS,
RG16, RGBAS_SNORM, RG16_SNORM, SRGBS_ALPHAS, RGB9_ES5

ALPHA_BPTC_UNORM

VIEW_CLASS_24_BITS RGB8, RGB8_SNORM, SRGB8, RGBSUI, RGBSI

VIEW_CLASS_16_BITS R16F, RG8UI, R16UI, RG8I, R16I, RG8, R16, RG8_SNORM,
R16_SNORM

VIEW_CLASS_8_BITS R8UI, R8I, R8, R8_SNORM

VIEW_CLASS_RGTC1_RED COMPRESSED_RED_RGTC1, COMPRESSED_SIGNED_RED_RGTC1

VIEW_CLASS_RGTC2_RG COMPRESSED_RG_RGTC2, COMPRESSED_SIGNED_RG_RGTC2

VIEW_CLASS_BPTC_UNORM | COMPRESSED_RGBA_BPTC_UNORWN, COMPRESSED_SRGB_ -

VIEW_CLASS_BPTC_FLOAT | COMPRESSED_RGB_BPTC_SIGNED_FLOAT,
RGB_BPTC_UNSIGNED_FLOAT

COMPRESSED_ —

Table 8.30: Compatible internal formats for TextureView. Formats in the same
row may be cast to each other.

The two textures’ internal formats must be compatible according to table 8.30
if the internal format exists in that table. The internal formats must be identical if
not in that table. If the internal formats are the same but are a base internal format,
the implementation’s effective internal format (see the end of section 8.5) for each
texture must be the same.

If the internal format does not exactly match the internal format of the original
texture, the contents of the memory are reinterpreted in the same manner as for
image bindings described in section 8.26.

Texture commands that take a level or layer parameter, such as TexSubIm-
age2D, interpret that parameter to be relative to the view of the texture. i.e. the
mipmap level of the data store that would be updated via TexSubImage2D would
be the sum of level and the value of TEXTURE_VIEW_MIN_LEVEL.

Errors

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.18. TEXTURE VIEWS 299

An INVALID_VALUE error is generated if fexture is zero.

An INVALID_OPERATION error is generated if fexture is not a valid name
returned by GenTextures, or if texture has already been bound and given a
target.

An INVALID_VALUE error is generated if origtexture is not the name of a
texture.

An INVALID_OPERATION error is generated if the value of TEXTURE_ -
IMMUTABLE_FORMAT for origtexture is not TRUE.

An INVALID_OPERATION error is generated if target is not compatible
with the target of origtexture, as defined by table 8.29.

An INVALID_OPERATION error is generated if the internal format of orig-
texture exists in table 8.30 and is not compatible with infernalformat, as de-
scribed in that table.

An INVALID_OPERATION error is generated if the internal format of orig-
texture does not exist in table 8.30, and is not identical to internalformat.

An INVALID_VALUE error is generated if minlevel or minlayer are larger
than the greatest level or layer, respectively, of origtexture.

An INVALID_VALUE error is generated if target is TEXTURE_CUBE_MAP
and the clamped numlayers is not 6.

An INVALID_VALUE error is generated if target is TEXTURE_CUBE_-
MAP_ARRAY and the clamped numlayers is not a multiple of 6.

An INVALID_VALUE error is generated if target is TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, TEXTURE_RECTANGLE, or TEXTURE_2D_-
MULTISAMPLE and numlayers does not equal 1.

An INVALID_OPERATION error is generated if farget is TEXTURE_-
CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, and the width and height of orig-
texture’s levels are not equal.

An INVALID_OPERATION error is generated if any dimension of origrex-
ture is larger than the maximum supported corresponding dimension of the
new target. For example, if origtexture has a TEXTURE_2D_ARRAY target and
target is TEXTURE_CUBE_MAP, its width must be no greater than the value of
MAX_CUBE_MAP_TEXTURE_SIZE.

An INVALID_OPERATION error is generated if the computed values of
TEXTURE_VIEW_NUM_LEVELS or TEXTURE_VIEW_NUM_LAYERS for texture,
as described above, are less than or equal to zero.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 300

8.19 Immutable-Format Texture Images

An alternative set of commands is provided for specifying the properties of all
levels of a texture at once. Once a texture is specified with such a command, the
format and dimensions of all levels becomes immutable, unless it is a proxy texture
(since otherwise it would no longer be possible to use the proxy). The contents of
the images and the parameters can still be modified. Such a texture is referred
to as an immutable-format texture. The immutability status of a texture can be
determined by calling GetTexParameter with pname TEXTURE_IMMUTABLE_-
FORMAT.

Each of the commands below is described by pseudocode which indicates the
effect on the dimensions and format of the texture. For each command the follow-
ing apply in addition to the pseudocode:

o If executing the pseudocode would result in any other error, the error is gen-
erated and the command will have no effect.

e Any existing levels that are not replaced are reset to their initial state.

e The pixel unpack buffer should be considered to be zero; i.e., the image
contents are unspecified.

e Since no pixel data are provided, the format and type values used in the
pseudocode are irrelevant; they can be considered to be any values that are
legal to use with internalformat.

e If the command is successful, TEXTURE_IMMUTABLE_FORMAT becomes
TRUE. TEXTURE_IMMUTABLE_LEVELS and TEXTURE_VIEW_NUM_LEVELS
become levels. If the texture target is TEXTURE_1D_ARRAY then
TEXTURE_VIEW_NUM_LAYERS becomes height. If the texture target is
TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY, or TEXTURE_2D_-
MULTISAMPLE_ARRAY then TEXTURE_VIEW_NUM_LAYERS becomes depth.
If the texture target is TEXTURE_CUBE_MAP, then TEXTURE_VIEW_NUM_-—
LAYERS becomes 6. For any other texture target, TEXTURE_VIEW_NUM_-
LAYERS becomes 1.

The TexStorage* commands specify properties of the texture object bound to
the farget parameter of each command.

The TextureStorage* commands behave similarly to the equivalent TexStor-
age* commands, but specify properties of the texture object named by the fexture
parameter of each command. The effective target of texture must be compatible
with the target parameter of the equivalent TexStorage* command.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 301

For each command, the following errors are generated in addition to the errors
described specific to that command:

Errors

An INVALID_ OPERATION error is generated by TexStorage* if zero is
bound to target.

An INVALID_OPERATION error is generated by TextureStorage* if rex-
ture is not the name of an existing texture object.

An INVALID_VALUE error is generated if width, height, depth or levels
are less than 1, for commands with the corresponding parameters.

An INVALID_ENUM error is generated if internalformat is one of the un-
sized base internal formats listed in table 8.18.

The commands

void TexStoragelD(enum target, sizei levels,
enum internalformat, sizei width);

void TextureStoragelD(uint texture, sizei levels,
enum internalformat, sizei width);

specify all the levels of a one-dimensional texture (or for TexStoragelD, proxy) at
the same time. TexStoragelD is described by the pseudocode below:

for (1 = 0; i < levels; i++) {
TexImagelD (target, i, internalformat, width, 0,
format, type, NULL) ;
width = max(1, L%dthj),

Errors

In addition to the generic errors described at the start of this section,
An INVALID_ENUM error is generated by TexStoragelD if rarget is not
TEXTURE_1D or PROXY_TEXTURE_1D.

An INVALID_ENUM error is generated by TextureStoragelD if rarget is
not TEXTURE_1D.

An INVALID_OPERATION error is generated if levels is greater than
[logsy (width)| + 1.

The commands

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 302

void TexStorage2D(enum target, sizei levels,
enum internalformat, sizei width, sizei height);
void TextureStorage2D(uint texture, sizei levels,
enum internalformat, sizei width, sizei height);

specify all the levels of a two-dimensional, cube map, one-dimensional array or
rectangle texture (or for TexStorage2D, proxy) at the same time. TexStorage2D
is described by the target-dependent pseudocode below:

targets TEXTURE_2D, PROXY_TEXTURE_2D, TEXTURE_RECTANGLE, PROXY_ -
TEXTURE_RECTANGLE, or PROXY_TEXTURE_CUBE_MAP:

for (1 = 0; i < levels; i++) {
TexImage?2D (target, i, internalformat, width, height, 0,
format, type, NULL);
width = max(1, L%dthj),

height
6129)

4

height = max(1, L

}

target TEXTURE_CUBE_MAP:

for (i = 0; 1 < levels; i++) {
for face in (each target in table 8.27) {
TexImage2D (face, 1, internalformat, width, height, O,
format, type, NULL);

}

width = max(1, L%dthj),
height = max(1, L%J),

}

targets TEXTURE_1D_ARRAY or PROXY_TEXTURE_1D_ARRAY:

for (1 = 0; i < levels; i++) {
TexImage?2D (target, i, internalformat, width, height, 0,
format, type, NULL);
width = max(1, L%dthj),

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 303

Errors

In addition to the generic errors described at the start of this section,

An INVALID_ENUM error is generated by TexStorage2D if rarget is not
one of those listed above.

An INVALID_OPERATION error is generated by TextureStorage2D if the
effective target is not one of those listed above.

An INVALID_OPERATION error is generated if any of the following con-
ditions hold:

e The effective farget is TEXTURE_1D_ARRAY Or PROXY_ TEXTURE_—
1D_ARRAY, and levels is greater than |log,(width)| + 1

o The effective target is not TEXTURE_1D_ARRAY of PROXY_TEXTURE_ -
1D_ARRAY, and levels is greater than |log,(max(width, height))| + 1

The commands

void TexStorage3D(enum target, sizei levels,
enum internalformat, sizei width, sizei height,
sizei depth);

void TextureStorage3D(uint ftexture, sizei levels,
enumn internalformat, sizei width, sizei height,
sizei depth);

specify all the levels of a three-dimensional, two-dimensional array texture, or cube
map array texture (or for TexStorage3D, proxy). TexStorage3D is described by
the target-dependent pseudocode below:

targets TEXTURE_3D Oor PROXY_TEXTURE_3D:

for (1 = 0; 1 < levels; i++) {
TexImage3D (target, i, internalformat, width, height, depth,
format, type, NULL);
width = max(1, | 24t |);

height = max(1, Lheizght)

depth = max(1, Ldegthj);

4

}

targets TEXTURE_2D_ARRAY, PROXY_TEXTURE_2D_ARRAY, TEXTURE_CUBE_ -
MAP_ARRAY Or PROXY_TEXTURE_CUBE_MAP_ARRAY:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

0,

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 304

for (i = 0; 1 < levels; i++) {
TexImage3D (target, i, internalformat, width, height, depth, 0,
format, type, NULL);
width = max(1, L%dthj),

height = max(1, Lhegghtj);

Errors

In addition to the generic errors described at the start of this section,

An INVALID_ENUM error is generated by TexStorage3D if target is not
one of those listed above.

An INVALID_OPERATION error is generated by TextureStorage3D if the
effective target is not one of those listed above.

An INVALID_OPERATION error is generated if any of the following con-
ditions hold:

e The effective target is TEXTURE_3D or PROXY_TEXTURE_ 3D and levels
is greater than |log, (max(width, height, depth)))| + 1

e The effective target is TEXTURE_2D_ARRAY, PROXY_TEXTURE_2D_-
ARRAY, TEXTURE_CUBE_MAP_ARRAY Or PROXY_ TEXTURE_CUBE_-—
MAP_ARRAY and levels is greater than |logy (max(width, height)) | +1

The commands

void TexStorage2DMultisample(enum target, sizei samples,
enumn internalformat, sizei width, sizei height,
boolean fixedsamplelocations);

void TextureStorage2DMultisample(uint texture,
sizei samples, enum internalformat, sizei width,
sizei height, boolean fixedsamplelocations);

specify a
two-dimensional multisample texture (or for TexStorage2DMultisample, proxy).
For TexStorage2DMultisample, rarget must be TEXTURE_2D_MULTISAMPLE Or
PROXY_ TEXTURE_2D_MULTISAMPLE.

Calling TexStorage2DMultisample is
equivalent to calling TexImage2DMultisample with the equivalently named pa-
rameters set to the same values, except that the resulting texture has immutable
format.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 305

Errors

In addition to the generic errors described at the start of this section,

An INVALID_ENUM error is generated by TexStorage2DMultisample
if target is not TEXTURE_2D_MULTISAMPLE oOr PROXY_TEXTURE_2D_-—
MULTISAMPLE.

An INVALID_OPERATION
error is generated by TextureStorage2DMultisample if the effective rarger
is not TEXTURE_2D_MULTISAMPLE.

The commands

void TexStorage3DMultisample(enum target, sizei samples,
enum internalformat, sizei width, sizei height,
sizei depth, boolean fixedsamplelocations);
void TextureStorage3DMultisample(uint fexture,
sizei samples, enum internalformat, sizei width,
sizei height, sizei depth,
boolean fixedsamplelocations);

specify a two-dimensional
multisample array texture (or, for TexStorage3DMultisample, proxy). For TexS-
torage3DMultisample, target must be TEXTURE_2D_MULTISAMPLE_ARRAY Or
PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY.

Calling TexStorage3DMultisample is equivalent to calling TexIm-
age3DMultisample with the equivalently named parameters set to the same
values, except that the resulting texture has immutable format.

Errors

In addition to the generic errors described at the start of this section,

An INVALID_ENUM error is generated by TexStorage3DMultisample
if target is not TEXTURE_2D_MULTISAMPLE_ARRAY or PROXY_TEXTURE_-
2D_MULTISAMPLE_ARRAY.

An INVALID_ -
OPERATION error is generated by TextureStorage3DMultisample if farget
is not TEXTURE_2D_MULTISAMPLE_ARRAY.

8.19.1 Behavior of Immutable-Format Texture Images

After a successful call to any Tex*Storage* command with a non-proxy target, no
further changes to the dimensions or format of the texture object may be made.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.20. INVALIDATING TEXTURE IMAGE DATA 306

Other commands may only alter the texel values and texture parameters.

Errors

An INVALID_OPERATION error is generated by any of the commands
CompressedTexImage*, CopyTexImage*, TexImage*, and TexStorage*
with the same texture, even if it does not affect the dimensions or format:

8.20 Invalidating Texture Image Data

All or part of a texture image may be invalidated, effectively leaving those texels
undefined, by calling

void InvalidateTexSubImage(uint texture, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth);

with texture and level indicating which texture image is being invalidated. After
this command, data in that subregion have undefined values.

Arguments xoffset, yoffset, and zoffset specify the lower left back texel coordi-
nates of a width-wide by height-high by depth-deep rectangular subregion of the
texture image to invalidate, and are interpreted as described for TexSubImage3D
in section 8.6. The subregion must lie within the bounds

of the texture image, as described in that section.

Cube map textures are treated as an array of six slices in the z-dimension,
where a value of zoffset is interpreted as specifying the cube map face for the
corresponding layer in table 9.3.

For texture types that don’t have certain dimensions, InvalidateTexSubImage
treats those dimensions as having a size of 1. For example, to invalidate a portion
of a two-dimensional texture, use zoffset equal to zero and depth equal to one.

Errors

An INVALID_VALUE error is generated if level is negative or greater than
logs of the maximum texture width, height, or depth.

An INVALID_ OPERATION error is generated if the specified subregion
does not lie within the bounds of the texture image, as described for Tex-
SubImage3D in section 8.6.

An INVALID_VALUE error is generated if fexture is zero or is not the name
of a texture. It is not possible to invalidate a portion of a default texture.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.21. CLEARING TEXTURE IMAGE DATA 307

An INVALID_VALUE error is generated if the effective target of texture
1S TEXTURE_RECTANGLE, TEXTURE_BUFFER, TEXTURE_2D_MULTISAMPLE,
or TEXTURE_2D_MULTISAMPLE_ARRAY, and level is not zero.

An INVALID_VALUE error is generated if width, height, or depth is nega-
tive.

The command
void InvalidateTexImage(uint texture, int level);

is equivalent to calling InvalidateTexSubIlmage with xoffset, yoffset, and zoffset
equal to and width, height, and depth equal to the dimensions of the texture
image (or zero and one for dimensions the texture doesn’t have).

8.21 Clearing Texture Image Data
All or part of a texture image may be filled with a constant value with the command

void ClearTexSublmage(uint texture, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format, enumn type,
const void *data);

with texture and level indicating which texture image is being cleared. It is an error
if texture is zero or not the name of a texture object, if texture is a buffer texture, or
if the texture image has a compressed internal format.

Arguments xoffset, yoffset, and zoffset specify the lower left back texel coordi-
nates of a width-wide by height-high by depth-deep rectangular subregion of the
texture image, and are interpreted as described for TexSubImage3D in section 8.6.
The subregion must lie within the bounds of the tex-
ture image, as described in that section.

For one-dimensional array textures, yoffset is interpreted as the first layer to
be cleared and height is the number of layers to clear. For two-dimensional array
textures, zoffset is interpreted as the first layer to be cleared and depth is the number
of layers to clear. Cube map textures are treated as an array of six slices in the z-
dimension, where the value of zoffset is interpreted as specifying the cube map face
for the corresponding layer in table 9.3 and depth is the number of faces to clear.
For cube map array textures, zoffset is the first layer-face to clear, and depth is the
number of layer-faces to clear. Each layer-face is translated into an array layer and
a cube map face as described for layer-face numbers in section 8.5.3.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.21. CLEARING TEXTURE IMAGE DATA 308

For texture types that do not have certain dimensions, ClearTexSubImage
treats those dimensions as having a size of 1. For example, to clear a portion
of a two-dimensional texture, use zoffset equal to zero and depth equal to one.

Sformat and type specify the format and type of the source data and are inter-
preted as they are for TexImage3D, as described in section 8.4.4. Textures with a
base internal format of DEPTH_COMPONENT, STENCIL_INDEX, DEPTH_STENCIL
require depth component, stencil, or depth/stencil component data respectively.
Textures with other base internal formats require RGBA formats. Textures with in-
teger internal formats (see table 8.19) require integer data.

data is a pointer to an array of between one and four components of texel
data that will be used as the source for the constant fill value. The elements of
data are converted by the GL into the internalformat of the texture image (that
was specified when the level was defined by any of the TexImage, TexStorage
or CopyTexImage commands) in the manner described in section 8.4.4, and then
used to fill the specified range of the destination texture level. If data is NULL, then
the pointer is ignored and the sub-range of the texture image is filled with zeros. If
texture is a multisample texture, all the samples in a texel are cleared to the value
specified by data.

Errors

An INVALID_OPERATION error is generated if fexture is zero or not the
name of a texture object.

An INVALID_OPERATION error is generated if texture is a buffer texture.

An INVALID_OPERATION error is generated if fexture has a compressed
internal format.

An INVALID_OPERATION error is generated if the base internal format is
DEPTH_COMPONENT and format is not DEPTH_COMPONENT.

An INVALID_OPERATION error is generated if the base internal format is
DEPTH_STENCIL and format is not DEPTH_STENCIL.

An INVALID_OPERATION error is generated if the base internal format is
STENCIL_INDEX and format is not STENCIL_INDEX.

An INVALID_OPERATION error is generated if the base internal format is
RGBA and the format is DEPTH_COMPONENT, STENCIL_INDEX, or DEPTH_-
STENCIL.

An INVALID_OPERATION error is generated if the internal format is inte-
ger and format does not specify integer data.

An INVALID_OPERATION error is generated if the internal format is not
integer and format does specify integer data.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.22. TEXTURE STATE AND PROXY STATE 309

An INVALID_OPERATION error is generated if the specified subregion
does not lie within the bounds of the texture image, as described for Tex-
SubImage3D in section 8.6.

The command

void ClearTexImage(uint texture, int level, enum format,
enum type, const void *data);

is equivalent to calling ClearTexSubImage with xoffset, yoffset, and zoffset equal
to and width, height, and depth equal to the dimensions of the texture image
(or zero and one for dimensions the texture doesn’t have).

Errors

In addition to the errors generated by ClearTexSubImage:

An INVALID_OPERATION error is generated if the texture image identi-
fied by level has not previously been defined by a TexImage* or TexStorage*
command.

8.22 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there
are the multiple sets of texture images (a single image for the rectangle texture
target; one set of mipmap images each for the one-, two-, and three-dimensional
and one- and two-dimensional array texture targets; and six sets of mipmap images
each for the cube map and cube map array texture targets) and their number. Each
array has associated with it a width, height (two- and three-dimensional, rectangle,
one-dimensional array, cube map, and cube map array only), and depth (three-
dimensional, two-dimensional array, and cube map array only),
an integer describing the internal format of the image, integer values describing
the resolutions of each of the red, green, blue, alpha, depth,
and stencil components of the image, integer values describing the type (unsigned
normalized, integer, floating-point, etc.) of each of the components, a boolean
describing whether the image is compressed or not, an integer size of a compressed
image, and an integer containing the name of a buffer object bound as the data store
of the image.
Each initial texture image is null. It has zero width, height, and depth,
internal format 1, or for buffer textures, component sizes

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.22. TEXTURE STATE AND PROXY STATE 310

set to zero and component types set to NONE, the compressed flag set to FALSE, a
zero compressed size, and the bound buffer object name is zero.

Multisample textures also contain an integer identifying the number of samples
in each texel, and a boolean indicating whether identical sample locations and the
same number of samples will be used for all texels in the image.

Buffer textures also contain two pointer sized integers containing the offset and
range of the buffer object’s data store.

Next, there are the five sets of texture properties, corresponding to the one-,
two-, three-dimensional, cube map and cube map array texture targets. Each set
consists of the selected minification and magnification filters, the wrap modes for s,
t (two- and three-dimensional and cube map only), and r (three-dimensional only),
the TEXTURE_BORDER_COLOR, two floating-point numbers describing the mini-
mum and maximum level of detail, two integers describing the base and maximum
mipmap image levels, a boolean flag indicating whether the texture is resident, a
boolean indicating whether automatic mipmap generation should be performed, the
priority associated with each set of properties, a boolean flag indicating whether
the format and dimensions of the texture are immutable, three integers describing
the depth texture mode, compare mode, and compare function, an integer describ-
ing the depth stencil texture mode, and four integers describing the red, green, blue,
and alpha swizzle modes (see section 15.2.1). The value of the resident flag is de-
termined by the GL and may change as a result of other GL operations. The flag
may only be queried, not set, by applications (see section 8.1).

In the initial state, the value assigned to TEXTURE_MIN_FILTER is
NEAREST_MIPMAP_LINEAR (except for rectangle textures, where the initial
value is LINEAR), and the value for TEXTURE_MAG_FILTER is LINEAR. s,
t, and r wrap modes are all set to REPEAT (except for rectangle textures,
where the initial value is CLAMP_TO_EDGE). The values of TEXTURE_MIN_-
LoD and TEXTURE_MAX_ LOD are -1000 and 1000 respectively. The values
of TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL are 0 and 1000 respec-
tively. The value of TEXTURE PRIORITY is 1.0. The value of TEXTURE_-
BORDER_COLOR is (0,0,0,0). The value of GENERATE_MIPMAP is FALSE. The
value of TEXTURE_IMMUTABLE_FORMAT is FALSE. The values of DEpTH
TEXTURE_MODE, TEXTURE_COMPARE_MODE, and TEXTURE_COMPARE_FUNC are
LUMINANCE, NONE, and LEQUAL respectively. The initial value of TEXTURE -
RESTDENT is determined by the GL. The value of DEPTH_STENCIL_-
TEXTURE_MODE is DEPTH_COMPONENT. The values of TEXTURE_SWIZZLE_-—
R, TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_-—
A are RED, GREEN, BLUE, and ALPHA, respectively. The values of TEXTURE_—
IMMUTABLE_LEVELS, TEXTURE_VIEW_MIN_LEVEL, TEXTURE_VIEW_NUM_ -
LEVELS, TEXTURE_VIEW_MIN_LAYER, TEXTURE_VIEW_NUM_LAYERS are each

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.22. TEXTURE STATE AND PROXY STATE 311

zero.

In addition to texture images for the non-proxy texture targets described above,
partially instantiated texture images are maintained for one-, two-, and three-
dimensional, rectangle, one- and two-dimensional array, and cube map array tex-
tures. Additionally, a single proxy image is maintained for the cube map texture.
Each proxy image includes width, height, depth, number of samples,
and internal format state values, as well as state for the red, green, blue, alpha,

depth, and stencil component resolutions and types. Proxy images
do not include image data or texture parameters. When TexImage3D is executed
with rarget specified as PROXY_TEXTURE_3D, the three-dimensional proxy state
values of the specified level-of-detail are recomputed and updated. If the image
would not be supported by TexImage3D called with target set to TEXTURE_3D,
no error is generated, but the proxy width, height, depth, number of
samples, and component resolutions are set to zero, and the component types are
set to NONE. If the image would be supported by such a call to TexImage3D, the
proxy state values are set exactly as though the actual image were being specified.
No pixel data are transferred or processed in either case.

Proxy images for one- and two-dimensional textures, one- and two-
dimensional array textures, and cube map array textures are operated on in the
same way when TexImagelD is executed with target specified as PROXY_—
TEXTURE_1D, TexImage2D is executed with target specified as PROXY_-
TEXTURE_2D, PROXY_TEXTURE_1D_ARRAY, or PROXY_ TEXTURE_RECTANGLE,
or TexImage3D is executed with target specified as PROXY_TEXTURE_2D_ARRAY
or PROXY_TEXTURE_CUBE_MAP_ARRAY.

Proxy images for two-dimensional multisample and two-dimensional mul-
tisample array textures are operated on in the same way when TexIm-
age2DMultisample is called with farget specified as PROXY_TEXTURE_2D_-
MULTISAMPLE, or TexImage3DMultisample is called with target specified as
PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY. However, if samples is not sup-
ported, then no error is generated.

The cube map proxy images are operated on in the same manner when Tex-
Image2D is executed with the target field specified as PROXY_TEXTURE_CUBE_—
MAP, with the addition that determining that a given cube map texture is supported
with PROXY_TEXTURE_CUBE_MAP indicates that all six of the cube map two-
dimensional images are supported. Likewise, if the specified PROXY_TEXTURE_-
CUBE_MAP is not supported, none of the six cube map two-dimensional images are
supported.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.23. TEXTURE COMPARISON MODES 312

Errors

An INVALID_ENUM error is generated by BindTexture, GetTexImage,
GetTexParameteriv, and GetTexParameterfv when called with a proxy tex-
ture farget. There is no image or non-level-related state associated with proxy
textures, therefore they may not be used as textures.

8.23 Texture Comparison Modes

Texture values can also be computed according to a specified comparison function.
Texture parameter TEXTURE_COMPARE_MODE specifies the comparison operands,
and parameter TEXTURE_COMPARE_FUNC specifies the comparison function. The
format of the resulting texture sample is determined by the value of DEPTH_ -
TEXTURE_MODE.

8.23.1 Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH_COMPONENT oOr
DEPTH_STENCIL, then DEPTH_ TEXTURE_MODE, TEXTURE_COMPARE_MODE and
TEXTURE_COMPARE_FUNC control the output of the texture unit as described be-
low. Otherwise, the texture unit operates in the normal manner and texture com-
parison is bypassed.

Let D; be the depth texture value and S; be the stencil index component. If
there is no stencil component, the value of S; is undefined. Let D, be the refer-
ence value, defined as follows:

e For fixed-function, non-cubemap texture lookups, D,..s is the interpolated r
texture coordinate.

e For fixed-function, cubemap texture lookups, D, r is the interpolated g tex-
ture coordinate.

e For texture lookups generated by an OpenGL Shading Language lookup
function, D, is the reference value for depth comparisons provided by the
lookup function.

If the texture’s internal format indicates a fixed-point depth texture, then Dy
and D,y are clamped to the range [0, 1]; otherwise no clamping is performed.
Then the effective texture value is computed as follows:

e If the base internal format is STENCIL_INDEX, then r» = S;.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.23. TEXTURE COMPARISON MODES 313

e If the base internal format is DEPTH_STENCIL and the value of DEPTH_-
STENCIL_TEXTURE_MODE iS STENCIL_INDEX, then r = S;.

e Otherwise, if the value of TEXTURE_COMPARE_MODE iS NONE, then » = Dy.

e Otherwise, if the value of TEXTURE_COMPARE_MODE iS COMPARE_REF_ -
TO_TEXTURE, then r depends on the texture comparison function as shown
in table 8.31.

Texture Comparison Function ‘ Computed result r

1.0, Dref < Dy
LEQUAL r =
0.0, Dyes > Dy
1.0, D >D
GEQUAL r= el =Tt
0.0, Dyes < Dy
1.0, D D
LESS r= » re] <
0.0, Dref > Dy
1.0, Dref > Dy
GREATER r=
0.0, Dyes < Dy
1.0, D =D
EQUAL r= S t
0.0, Dref 7& Dy
1.0, D D
NOTEQUAL r= » Drep 7 Dy
0.0, Dyes = Dy
ALWAYS r=1.0
NEVER r=20.0

Table 8.31: Depth texture comparison functions.

The resulting r is assigned to

If the value of TEXTURE_MAG_FILTER 1S not NEAREST, or the value of
TEXTURE_MIN_FILTER is not NEAREST or NEAREST_MIPMAP_NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
reference value. The details of this are implementation-dependent, but r should
be a value in the range [0, 1] which is proportional to the number of comparison
passes or failures.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.24. SRGB TEXTURE COLOR CONVERSION

Internal Format

SRGB

SRGB8

SRGB_ALPHA

SRGB8_ALPHAS

COMPRESSED_SRGB

COMPRESSED_SRGB8_ETC2

COMPRESSED_SRGB_ALPHA

COMPRESSED_SRGB8_ALPHAS_ETC2_EAC

COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHAl_ETC2

COMPRESSED_SRGB_ALPHA_ BPTC_UNORM

Table 8.32: sSRGB texture internal formats.

8.24 sRGB Texture Color Conversion

314

If the currently bound texture’s internal format is one of the SRGB formats in ta-
ble 8.32, the red, green, and blue components are converted from an sSRGB color
space to a linear color space as part of filtering described in sections 8.14 and 8.15.
Any alpha component is left unchanged. Ideally, implementations should perform
this color conversion on each sample prior to filtering but implementations are al-
lowed to perform this conversion after filtering (though this post-filtering approach

is inferior to converting from sRGB prior to filtering).

The conversion from an SRGB encoded component ¢, to a linear component ¢;

is as follows.

S v s ¢s < 0.04045
(es0055) 20 oS 0.04045

Assume c; is the sSRGB component in the range [0, 1].

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

(8.18)

8.25. SHARED EXPONENT TEXTURE COLOR CONVERSION 315

8.25 Shared Exponent Texture Color Conversion

If the currently bound texture’s internal format is RGB9_E5, the red, green, blue,
and shared bits are converted to color components (prior to filtering) using shared
exponent decoding. The component reds, greens, blues, and exp, values (see
section 8.5.2) are treated as unsigned integers and are converted to floating-point
red, green, and blue as follows:

red = redg2¢%Ps—B—N

green = greeng26*Ps~B=N

blue = blue 26%Ps—B—N

8.26 Texture Image Loads and Stores

The contents of a texture may be made available for shaders to read and write by
binding the texture to one of a collection of image units. The GL implementation
provides an array of image units numbered beginning with zero, with the total num-
ber of image units provided determined by the implementation-dependent value of
MAX_IMAGE_UNITS. Unlike texture image units, image units do not have a sep-
arate binding point for each texture target; each image unit may have only one
texture bound at a time.

A texture may be bound to an image unit for use by image loads and stores
with the command

void BindImageTexture(uint unit, uint texture, int level,
boolean layered, int layer, enum access, enum format);

where unit identifies the image unit, texture is the name of the texture, and level
selects a single level of the texture. If fexture is zero, any texture currently bound
to image unit unit is unbound.

If the texture identified by texture is a one-dimensional array, two-dimensional
array, three-dimensional, cube map, cube map array, or two-dimensional multi-
sample array texture, it is possible to bind either the entire texture level or a single
layer or face of the texture level. If layered is TRUE, the entire level is bound. If
layered is FALSE, only the single layer identified by layer will be bound. When
layered is FALSE, the single bound layer is treated as a different texture target for
image accesses:

e one-dimensional array texture layers are treated as one-dimensional textures;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 316

e two-dimensional array, three-dimensional, cube map, and cube map array
texture layers are treated as two-dimensional textures; and

e two-dimensional multisample array textures are treated as two-dimensional
multisample textures.

For cube map textures where layered is FALSE, the face is taken by mapping
the layer number to a face according to table 9.3. For cube map array textures
where layered is FALSE, the selected layer number is mapped to a texture layer
and cube face using the following equations and mapping face to a face according
to table 9.3.

layer = Vayeg‘””ig J

face = layerorig — (layer x 6)

If the texture identified by fexture does not have multiple layers or faces, the
entire texture level is bound, regardless of the values specified for layered and
layer.

format specifies the format that the elements of the image will be treated as
when doing formatted stores, as described later in this section. This is referred to
as the image unit format.

access specifies whether the texture bound to the image will be treated as
READ_ONLY, WRITE_ONLY, or READ_WRITE. If a shader reads from an image unit
with a texture bound as WRITE_ONLY, or writes to an image unit with a texture
bound as READ_ONLY, the results of that shader operation are undefined and may
lead to application termination.

If a texture object bound to one or more image units is deleted by DeleteTex-
tures, it is detached from each such image unit, as though BindImageTexture
were called with unit identifying the image unit and fexture set to zero.

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to
the value of MAX_IMAGE_UNITS, if level or layer is negative, or if texture is
not the name of an existing texture object.

An INVALID_VALUE error is generated if format is not one of the formats
listed in table 8.34.

The command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 317

void BindImageTextures(uint first, sizei count, const
uint *fextures);

binds count existing texture objects to image units numbered first through first +
count — 1. If textures is not NULL, it specifies an array of count values, each of
which must be zero or the name of an existing texture object. If fextures is NULL,
each affected image unit from first through first 4+ count — 1 will be reset to have
no bound texture object.

When binding a non-zero texture object to an image unit, the image unit level,
layered, layer, and access parameters are set to zero, TRUE, zero, and READ_ -
WRITE, respectively. The image unit format parameter is taken from the internal
format of the texture image at level zero of the texture object identified by fex-
tures. For cube map textures, the internal format of the TEXTURE_CUBE_MAP_ -
POSITIVE_X image of level zero is used. For multisample, multisample array,
buffer, and rectangle textures, the internal format of the single texture level is used.

When unbinding a texture object from an image unit, the image unit parameters
level, layered, layer, and format will be reset to their default values of zero, FALSE,
0, and RS, respectively.

BindImageTextures is equivalent (assuming no errors are generated) to:

for (i = 0; 1 < count; i++) {
if (textures == NULL || textures[i] = 0) {
BindImageTexture (first + i, 0, 0, FALSE, O,
READ_ONLY, R8);

} else {
BindImageTexture (first + i, textures[i], 0, TRUE, O,
READ_WRITE, lookupInternalFormat (textures[i]));

}

where lookupInternalFormat returns the internal format of the specified
texture object.

The values specified in fextures will be checked separately for each image unit.
When a value for a specific image unit is invalid, the state for that image unit will
be unchanged and an error will be generated. However, state for other image units
will still be changed if their corresponding values are valid.

Errors

An INVALID_OPERATION error is generated if first + count is greater

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 318

Texture target ‘ i Face / layer

—
=

TEXTURE_1D

TEXTURE_2D

TEXTURE_3D
TEXTURE_RECTANGLE
TEXTURE_CUBE_MAP
TEXTURE_BUFFER
TEXTURE_1D_ARRAY
TEXTURE_2D_ARRAY
TEXTURE_CUBE_MAP_ARRAY
TEXTURE_2D_MULTISAMPLE
TEXTURE_2D_MULTISAMPLE_ARRAY

Z -

<< <<

1
N | N [«

“ <<
1

P DA DA D | D R R R
1
1
1

Table 8.33: Mapping of image load, store, and atomic texel coordinate components
to texel numbers.

than the number of image units supported by the implementation.

An INVALID_OPERATION error is generated if any value in textures is not
zero or the name of an existing texture object (per binding).

An INVALID_OPERATION error is generated if the internal format of the
level zero texture image of any texture in fextures is not found in table 8.34
(per binding).

An INVALID_OPERATION error is generated if the width, height, or depth
of the level zero texture image of any texture in fextures is zero (per binding).

When a shader accesses the texture bound to an image unit using a built-in
image load, store, or atomic function, it identifies a single texel by providing a
one-, two-, or three-dimensional coordinate. Multisample texture accesses also
specify a sample number. A coordinate vector is mapped to an individual texel
Ti, Tij» OF T;j} according to the target of the texture bound to the image unit using
table 8.33. As noted above, single-layer bindings of array or cube map textures are
considered to use a texture target corresponding to the bound layer, rather than that
of the full texture.

If the texture target has layers or cube map faces, the layer or face number is
taken from the layer argument of BindImageTexture if the texture is bound with
layered set to FALSE, or from the coordinate identified by table 8.33 otherwise. For
cube map and cube map array textures with layered set to TRUE, the coordinate is
mapped to a layer and face in the same manner as described for the /ayer argument
of BindImageTexture.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 319

If the individual texel identified for an image load, store, or atomic operation
doesn’t exist, the access is treated as invalid. Invalid image loads will return zero.
Invalid image stores will have no effect. Invalid image atomics will not update
any texture bound to the image unit and will return zero. An access is considered
invalid if:

e no texture is bound to the selected image unit;

e the texture bound to the selected image unit is incomplete;

o the texture level bound to the image unit is less than the base level or greater
than the maximum level of the texture;

o the internal format of the texture bound to the image unit is not found in
table 8.34;

e the internal format of the texture bound to the image unit is incompatible
with the specified format, as described below;

o the texture bound to the image unit has layers, and the selected layer or cube
map face doesn’t exist;

o the selected texel 7;, 75, or 755, doesn’t exist;

e the image has more samples than the implementation-dependent value of
MAX_IMAGE_SAMPLES.

Additionally, there are a number of cases where image load, store, or atomic
operations are considered to involve a format mismatch. In such cases, undefined
values will be returned by image loads and atomic operations and undefined values
will be written by stores and atomic operations. A format mismatch will occur if:

o the type of image variable used to access the image unit does not match the
target of a texture bound to the image unit with layered set to TRUE;

o the type of image variable used to access the image unit does not match the
target corresponding to a single layer of a multi-layer texture target bound to
the image unit with layered set to FALSE;

o the type of image variable used to access the image unit has a component data
type (floating-point, signed integer, unsigned integer) incompatible with the
format of the image unit;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 320

e the format 1ayout qualifier for an image variable used for an image load or
atomic operation does not match the format of the image unit, according to
table 8.34; or

e the image variable used for an image store has a format layout qualifier,
and that qualifier does not match the format of the image unit, according to
table 8.34.

For textures with multiple samples per texel, the sample selected for an image
load, store, or atomic is undefined if the sample coordinate is negative or greater
than or equal to the number of samples in the texture.

If a shader performs an image load, store, or atomic operation using an image
variable declared as an array, and if the index used to select an individual element is
negative or greater than or equal to the size of the array, the results of the operation
are undefined but may not lead to termination.

Accesses to textures bound to image units do format conversions based on
the format argument specified when the image is bound. Loads always return a
value as a vec4, ivecd, or uvec4, and stores always take the source data as a
vecd, ivecd, or uvec4. Data are converted to/from the specified format accord-
ing to the process described for a TexImage2D or GetTexImage command with
format and type as RGBA and FLOAT for vec4 data, as RGBA_INTEGER and INT for
ivec4 data, or as RGBA_INTEGER and UNSIGNED_INT for uvec4 data, respec-
tively. Unused components are filled in with (0,0, 0, 1) (where 0 and 1 are either
floating-point or integer values, depending on the format).

Any image variable used for shader loads or atomic memory operations must
be declared with a format 1ayout qualifier matching the format of its associated
image unit, as enumerated in table 8.34. Otherwise, the access is considered to
involve a format mismatch, as described above. Image variables used exclusively
for image stores need not include a format layout qualifier, but any declared
qualifier must match the image unit format to avoid a format mismatch.

‘ Image Unit Format ‘ Format Qualifer ‘

RGBA32F rgba32f
RGBA1G6F rgbal6f
RG32F rg32f
RG1loF rglef

R11F_G11F_B10F

rl1l1f _gllf blOf

R32F

r32f

(Continued on next page)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES

Supported image unit formats (continued)

Image Unit Format

Format Qualifer

R16F rl6f
RGBA32UI rgba32ui
RGBA16UI rgbal6ui
RGB10_A2UI rgbl0_az2ui
RGBABUI rgba8ui
RG32UI rg32ui
RG16UI rgleui
RG8UI rg8ui
R32UI r32ui
R16UI rléui
R8UI r8ui
RGBA321 rgba32i
RGBA16I rgbal6i
RGBASI rgba8i
RG321I rg321i
RG1l6I rgle6i
RG8TI rg8i
R321 r321i
R16I rleoi

R8I r8i
RGBA16 rgbal6
RGB10_A2 rgbl0_a2
RGBAS8 rgbas
RG16 rglé6

RGS8 rg8

R16 rlé6

R8 r8

RGBA16_SNORM

rgbal6_snorm

RGBA8__SNORM

rgba8_snorm

RG16_SNORM rgl6_snorm
RG8_SNORM rg8_snorm
R16_SNORM rl6_snorm
R8__SNORM r8_snorm

Table 8.34:

Supported image unit formats, with equivalent format

layout qualifiers.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

321

8.26. TEXTURE IMAGE LOADS AND STORES 322

When a texture is bound to an image unit, the format parameter for the image
unit need not exactly match the texture internal format as long as the formats are
considered compatible. A pair of formats is considered to match in size if the cor-
responding entries in the Size column of table 8.35 are identical. A pair of formats
is considered to match by class if the corresponding entries in the Class column
of table 8.35 are identical. For textures allocated by the GL, an image unit format
is compatible with a texture internal format if they match by size. For textures
allocated outside the GL, format compatibility is determined by matching by size
or by class, in an implementation-dependent manner. The matching criterion used
for a given texture may be determined by calling GetTexParameter with pname
set to IMAGE_FORMAT_COMPATIBILITY_TYPE, with return values of IMAGE_-
FORMAT_COMPATIBILITY BY SIZE and IMAGE_FORMAT COMPATIBILITY -
BY_CLASS, specifying matches by size and class, respectively.

When the format associated with an image unit does not exactly match the in-
ternal format of a compatible texture bound to the image unit, image loads, stores,
and atomic operations re-interpret the memory holding the components of an ac-
cessed texel according to the format of the image unit. The re-interpretation for
image loads and the read portion of image atomics is performed as though data
were copied from the texel of the bound texture to a similar texel represented in
the format of the image unit. Similarly, the re-interpretation for image stores and
the write portion of image atomics is performed as though data were copied from
a texel represented in the format of the image unit to the texel in the bound texture.
In both cases, this copy operation would be performed by:

o reading the texel from the source format to scratch memory according to the
process described for GetTexImage (see section 8.11), using default pixel
storage modes and format and type parameters corresponding to the source
format in table 8.35; and

o writing the texel from scratch memory to the destination format according to
the process described for TexSubImage3D (see section 8.6), using default
pixel storage modes and format and type parameters corresponding to the
destination format in table 8.35.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 323
] Image Format ‘ Size ‘ Class ‘ Pixel format ‘ Pixel type
RGBA32F 128 | 4x32 | RGBA FLOAT
RGBA16F 64 4x16 | RGBA HALF_FLOAT
RG32F 64 2x32 | RG FLOAT
RG16F 32 2x16 | RG HALF_FLOAT
R11F_G11F_B10F | 32 (a) RGB UNSIGNED_INT_10F_11F_11F_REV
R32F 32 1x32 | RED FLOAT
R16F 16 1x16 | RED HALF_FLOAT
RGBA32UI 128 | 4x32 | RGBA_INTEGER | UNSIGNED_INT
RGBA16UI 64 4x16 | RGBA_INTEGER | UNSIGNED_SHORT
RGB10_A2UI 32 (b) RGBA_INTEGER | UNSIGNED_INT_2_10_10_10_REV
RGBASUI 32 4x8 RGBA_INTEGER | UNSIGNED_BYTE
RG32UI 64 2x32 | RG_INTEGER UNSIGNED_INT
RG16UI 32 2x16 | RG_INTEGER UNSIGNED_SHORT
RG8UI 16 2x8 RG_INTEGER UNSIGNED_BYTE
R32UI 32 1x32 | RED_INTEGER UNSIGNED_INT
R16UI 16 1x16 | RED_INTEGER UNSIGNED_SHORT
R8UI 8 1x8 RED_INTEGER UNSIGNED_BYTE
RGBA32I 128 | 4x32 | RGBA_INTEGER | INT
RGBA161I 64 4x16 | RGBA_INTEGER | SHORT
RGBASI 32 4x8 RGBA_INTEGER | BYTE
RG321I 64 2x32 | RG_INTEGER INT
RG161 32 2x16 | RG_INTEGER SHORT
RGS8I 16 2x8 RG_INTEGER BYTE
R321 32 1x32 | RED_INTEGER INT
R161 16 1x16 | RED_INTEGER SHORT
R8I 8 1x8 RED_INTEGER BYTE
RGBAl6 64 4x16 | RGBA UNSIGNED_SHORT
RGB10_A2 32 (b) RGBA UNSIGNED_INT_2_10_10_10_REV
RGBAS 32 4x8 RGBA UNSIGNED_BYTE
RG16 32 2x16 | RG UNSIGNED_SHORT
RGS8 16 2x8 RG UNSIGNED_BYTE
R16 16 1x16 | RED UNSIGNED_SHORT
R8 8 1x8 RED UNSIGNED_BYTE
RGBA16_SNORM 64 4x16 | RGBA SHORT
RGBAS_SNORM 32 4x8 RGBA BYTE
RG16_SNORM 32 2x16 | RG SHORT
(Continued on next page)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES

324

Texel sizes, compatibility classes ... (continued)

Image Format | Size | Class | Pixel format | Pixel type
RG8_SNORM 16 2x8 RG BYTE
R16_SNORM 16 1x16 | RED SHORT
R8_SNORM 8 1x8 RED BYTE

packed formats.

Table 8.35: Texel sizes, compatibility classes, and pixel for-
mat/type combinations for each image format. Class (a) is for
11/11/10 packed floating-point formats; class (b) is for 10/10/10/2

Implementations may support a limited combined number of image units,
shader storage blocks (see section 7.8), and active fragment shader outputs (see
section 17.4.1). A link error is generated if the sum of the number of active image
uniforms used in all shaders, the number of active shader storage blocks, and the
number of active fragment shader outputs exceeds the implementation-dependent
value of MAX_COMBINED_SHADER_OUTPUT_RESOURCES.

8.26.1 Image Unit Queries

The state required for each image unit is summarized in table 23.56 and may be
queried using the indexed query commands in that table. The initial values of
image unit state are described above for BindlmageTexture.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 9

Framebuffers and Framebuffer
Objects

As described in chapter 1 and section 2.1, the GL renders into (and reads values
from) a framebuffer.

Initially, the GL uses the window system-provided default framebuffer. The
storage, dimensions, allocation, and format of the images attached to this frame-
buffer are managed entirely by the window system. Consequently, the state of the
default framebuffer, including its images, can not be changed by the GL, nor can
the default framebuffer be deleted by the GL.

This chapter begins with an overview of the structure and contents of the frame-
buffer in section 9.1, followed by describing the commands used to create, destroy,
and modify the state and attachments of application-created framebuffer objects
which may be used instead of the default framebuffer.

9.1 Framebuffer Overview

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
For purposes of this discussion, each pixel in the framebuffer is simply a set of
some number of bits. The number of bits per pixel may vary depending on the GL
implementation, the type of framebuffer selected, and parameters specified when
the framebuffer was created. Creation and management of the default framebuffer
is outside the scope of this specification, while creation and management of frame-
buffer objects is described in detail in section 9.2.

Corresponding bits from each pixel in the framebuffer are grouped together into
a bitplane; each bitplane contains a single bit from each pixel. These bitplanes are
grouped into several logical buffers. These are the color, depth, and

325

9.1. FRAMEBUFFER OVERVIEW 326

stencil buffers. The color buffer actually consists of a number of buffers, and these
color buffers serve related but slightly different purposes depending on whether the
GL is bound to the default framebuffer or a framebuffer object.

For the default framebuffer, the color buffers are the front left buffer, the front
right buffer, the back left buffer,

Typically the contents of the front buffers are displayed on a color
monitor while the contents of the back buffers are invisible. (Monoscopic contexts
display only the front left buffer; stereoscopic contexts display both the front left
and the front right buffers.)

All color buffers must have the same number of bitplanes, although an implemen-
tation or context may choose not to provide right buffers,
at all. Further, an implementation or context may choose not to provide
depth or stencil buffers. If no default framebuffer is associated with
the GL context, the framebuffer is incomplete except when a framebuffer object is
bound (see sections 9.2 and 9.4).

Framebuffer objects are not visible, and do not have any of the color buffers
present in the default framebuffer. Instead, the buffers of an framebuffer object are
specified by attaching individual textures or renderbuffers (see section 9) to a set
of attachment points. A framebuffer object has an array of color buffer attachment
points, numbered zero through n, a depth buffer attachment point, and a stencil
buffer attachment point. In order to be used for rendering, a framebuffer object
must be complete, as described in section 9.4. Not all attachments of a framebuffer
object need to be populated.

Each pixel in a color buffer consists of

up to four color components. The four color components are named R, G,
B, and A, in that order; color buffers are not required to have all four color com-
ponents. R, G, B, and A components may be represented as signed or unsigned
normalized fixed-point, floating-point, or signed or unsigned integer values; all
components must have the same representation. Each pixel in a depth buffer con-
sists of a single unsigned integer value in the format described in section 13.6.1 or
a floating-point value. Each pixel in a stencil buffer consists of a single unsigned
integer value.

The number of bitplanes in the color, depth, and stencil buffers
is dependent on the currently bound framebuffer. For the default framebuffer, the
number of bitplanes is fixed. For framebuffer objects, the number of bitplanes
in a given logical buffer may change if the image attached to the corresponding
attachment point changes.

The GL has two active framebuffers; the draw framebuffer is the destination

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 327

for rendering operations, and the read framebuffer is the source for readback op-
erations. The same framebuffer may be used for both drawing and reading. Sec-
tion 9.2 describes the mechanism for controlling framebuffer usage.

The default framebuffer is initially used as the draw and read framebuffer !,
and the initial state of all provided bitplanes is undefined. The format and encod-
ing of buffers in the draw and read framebuffers may be queried as described in
section 9.2.3.

9.2 Binding and Managing Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer in a similar manner to
the way texture objects encapsulate the state of a texture. In particular, a frame-
buffer object encapsulates state necessary to describe a collection of color, depth,
and stencil logical buffers (other types of buffers are not allowed). For each logical
buffer, a framebuffer-attachable image can be attached to the framebuffer to store
the rendered output for that logical buffer. Examples of framebuffer-attachable im-
ages include texture images and renderbuffer images. Renderbuffers are described
further in section 9.2.4

By allowing the images of a renderbuffer to be attached to a framebuffer, the
GL provides a mechanism to support off-screen rendering. Further, by allowing the
images of a texture to be attached to a framebuffer, the GL provides a mechanism
to support render to texture.

The default framebuffer for rendering and readback operations is provided by
the window system. In addition, named framebuffer objects can be created and
operated upon. The name space for framebuffer objects is the unsigned integers,
with zero reserved by the GL for the default framebuffer.

A framebuffer object is created by binding a name returned by GenFrame-
buffers (see below) to DRAW_FRAMEBUFFER or READ_FRAMEBUFFER. The bind-
ing is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to the desired framebuffer target and framebuffer set to the frame-
buffer object name. The resulting framebuffer object is a new state vector, com-
prising all the state and with the same initial values listed in table 23.30, as well
as one set of the state values listed in table 23.31 for each attachment point of the

"The window system binding API may allow associating a GL context with two separate “default
framebuffers” provided by the window system as the draw and read framebuffers, but if so, both
default framebuffers are referred to by the name zero at their respective binding points.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 328

framebuffer, with the same initial values. There are the value of MAX_COLOR_-
ATTACHMENTS color attachment points, plus one each for the depth and stencil
attachment points.

BindFramebuffer may also be used to bind an existing framebuffer object
to DRAW_FRAMEBUFFER and/or READ_FRAMEBUFFER. If the bind is successful no
change is made to the state of the newly bound framebuffer object, and any previous
binding to target is broken.

If a framebuffer object is bound to DRAW_FRAMEBUFFER oOr READ_-
FRAMEBUFFER, it becomes the target for rendering or readback operations, respec-
tively, until it is deleted or another framebuffer object is bound to the correspond-
ing bind point. Calling BindFramebuffer with target set to FRAMEBUFFER binds
framebufer to both the draw and read targets.

Errors

An INVALID_ENUM error is generated if farget is not DRAW -
FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated if framebuffer is not zero or
a name returned from a previous call to GenFramebuffers, or if such a name
has since been deleted with DeleteFramebuffers.

While a framebuffer object is bound, GL operations on the target to which it is
bound affect the images attached to the bound framebuffer object, and queries of
the target to which it is bound return state from the bound object. Queries of the
values specified in tables 23.85 and 23.30 are derived from the framebuffer object
bound to DRAW_FRAMEBUFFER, with the exception of those marked as properties
of the read framebuffer, which are derived from the framebuffer object bound to
READ_FRAMEBUFFER.

Framebuffer objects may also be created with the command

void CreateFramebuffers(sizei n, uint *framebuffers);

CreateFramebuffers returns n previously unused framebuffer names in frame-
buffers, each representing a new framebuffer object which is a state vector, com-
prising all the state and with the same initial values listed in table 23.30, as well
as one set of the state values listed in table 23.31 for each attachment point of the
framebuffer, with the same initial values.

Errors

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 329

An INVALID_VALUE error is generated if n is negative.

The initial state of DRAW_FRAMEBUFFER and READ_FRAMEBUFFER refers to
the default framebuffer. In order that access to the default framebuffer is not lost,
it is treated as a framebuffer object with the name of zero. The default framebuffer
is therefore rendered to and read from while zero is bound to the corresponding
targets. On some implementations, the properties of the default framebuffer can
change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Framebuffer objects (those with a non-zero name) differ from the default
framebuffer in a few important ways. First and foremost, unlike the default frame-
buffer, framebuffer objects have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer-attachable images can be attached to and de-
tached from these attachment points, which are described further in section 9.2.2.
Also, the size and format of the images attached to framebuffer objects are con-
trolled entirely within the GL interface, and are not affected by window system
events, such as pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created-
framebuffer object,

e The pixel ownership test always succeeds. In other words, framebuffer ob-
jects own all of their pixels.

e There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back, front, left, or right color bitplanes.

e The only color buffer bitplanes are the ones defined by the frame-
buffer attachment points named COLOR_ATTACHMENTO through COLOR_-
ATTACHMENTnN. Each COLOR_ATTACHMENT: adheres to COLOR_-
ATTACHMENT; = COLOR_ATTACHMENTO + i°.

e The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH_ATTACHMENT.

e The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL_ATTACHMENT.

2 The header files define tokens COLOR_ATTACHMENT; for i in the range [0, 31]. Most imple-
mentations support fewer than 32 color attachments, and it is an INVALID_OPERATION error
to pass an unsupported attachment name to a command accepting color attachment names.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 330

o If the attachment sizes are not all identical, the results of rendering are
defined only within the largest area that can fit in all of the attachments.
This area is defined as the intersection of rectangles having a lower left of
(0,0) and an upper right of (width, height) for each attachment. Contents
of attachments outside this area are undefined after execution of a rendering
command (as defined in section 2.4).

If there are no attachments, rendering will be limited to a rectangle having a
lower left of (0,0) and an upper right of (width, height), where width and
height are the framebuffer object’s default width and height.

o If the number of layers of each attachment are not all identical, rendering
will be limited to the smallest number of layers of any attachment. If there
are no attachments, the number of layers will be taken from the framebuffer
object’s default layer count.

The command
void GenFramebuffers(sizei n, uint *framebuffers);

returns n previously unused framebuffer object names in framebuffers. These
names are marked as used, for the purposes of GenFramebuffers only, but they
acquire state and type only when they are first bound.

Errors

An INVALID_VALUE error is generated if 7 is negative.
Framebuffer objects are deleted by calling

void DeleteFramebuffers(sizei n, const
uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a frame-
buffer object is deleted, it has no attachments, and its name is again unused.
If a framebuffer that is currently bound to one or more of the targets DRAW_-
FRAMEBUFFER or READ_FRAMEBUFFER is deleted, it is as though BindFrame-
buffer had been executed with the corresponding target and framebuffer zero. Un-
used names in framebuffers that have been marked as used for the purposes of
GenFramebuffers are marked as unused again. Unused names in framebuffers are
silently ignored, as is the value zero.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 331

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsFramebuffer(uint framebuffer);

returns TRUE if framebuffer is the name of an framebuffer object. If framebuffer is
zero, or if framebuffer is a non-zero value that is not the name of an framebuffer
object, IsFramebuffer returns FALSE.

The names bound to the draw and read framebuffer bindings may be queried by
calling GetIntegerv with pnames DRAW_FRAMEBUFFER_BINDING and READ_-—
FRAMEBUFFER_BINDING, respectively. FRAMEBUFFER_BINDING is equivalent to
DRAW_FRAMEBUFFER_BINDING.

9.2.1 Framebuffer Object Parameters

Parameters of a framebuffer object are set using the commands

void FramebufferParameteri(enum target, enum pname,
int param);

void NamedFramebufferParameteri(uint framebuffer,
enum pname, int param);

For FramebufferParameteri, the framebuffer object is that bound to target,
which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For NamedFramebuffer-
Parameteri, framebuffer is the name of the framebuffer object.

pname specifies the parameter of the framebuffer object to set.

When a framebuffer has one or more attachments, the width, height, layer count
(see section 9.8), sample count, and sample location pattern of the framebuffer are
derived from the properties of the framebuffer attachments. When the framebuffer
has no attachments, these properties are taken from framebuffer parameters. When
pname is FRAMEBUFFER_DEFAULT_WIDTH, FRAMEBUFFER_DEFAULT_HEIGHT,
FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_DEFAULT_SAMPLES,
or FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS, param specifies the
width, height, layer count, sample count, or sample location pattern, respectively,
used when the framebuffer has no attachments.

When a framebuffer has no attachments, it is considered layered (see sec-
tion 9.8) if and only if the value of FRAMEBUFFER_DEFAULT_LAYERS is non-zero.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 332

It is considered to have sample buffers if and only if the value of FRAMEBUFFER_—
DEFAULT_SAMPLES is non-zero. The number of samples in the framebuffer is de-
rived from the value of FRAMEBUFFER_DEFAULT_SAMPLES in an implementation-
dependent manner similar to that described for the command RenderbufferStor-
ageMultisample (see section 9.2.4). If the framebuffer has sample buffers and
the value of FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS is non-zero,
it is considered to have a fixed sample location pattern as described for TexIm-
age2DMultisample (see section 8.8).

Errors

An INVALID_ENUM error is generated by FramebufferParameteri if rar-
get is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, Oor FRAMEBUFFER.

An INVALID_OPERATION error is generated if the default framebuffer is
bound to target.

An INVALID_OPERATION error is generated by NamedFramebufferPa-
rameteri if framebuffer is not the name of an existing framebuffer object.

An INVALID_ENUM error is generated if prname is not FRAMEBUFFER -
DEFAULT WIDTH, FRAMEBUFFER DEFAULT HEIGHT,
FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER _DEFAULT_SAMPLES, Or
FRAMEBUFFER_DEFAULT FIXED SAMPLE_LOCATIONS.

An INVALID_VALUE error is generated if pname is FRAMEBUFFER_-—
DEFAULT WIDTH, FRAMEBUFFER DEFAULT HEIGHT, FRAMEBUFFER -
DEFAULT_LAYERS, or FRAMEBUFFER_DEFAULT_SAMPLES, and param is ei-
ther negative or greater than the value of the corresponding implementation-
dependent limit MAX_FRAMEBUFFER_WIDTH, MAX_ FRAMEBUFFER_HEIGHT,
MAX_FRAMEBUFFER_LAYERS, or MAX_ FRAMEBUFFER SAMPLES, respec-
tively.

9.2.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer
objects. In contrast, the image attachments of the default framebuffer may not be
changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer
objects, potentially avoiding some data copies, and possibly decreasing memory
consumption.

For each logical buffer, a framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 333

indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 23.31.
There are several types of framebuffer-attachable images:

e The image of a renderbuffer object, which is always two-dimensional.

e A single level of a one-dimensional texture, which is treated as a two-
dimensional image with a height of one.

e A single level of a two-dimensional, two-dimensional multisample, or rect-
angle texture.

e A single face of a cube map texture level, which is treated as a two-
dimensional image.

e A single layer of a one- or two-dimensional array texture, two-dimensional
multisample array texture, or three-dimensional texture, which is treated as
a two-dimensional image.

e A single layer-face of a cube map array texture, which is treated as a two-
dimensional image.

Additionally, an entire level of a three-dimensional, cube map, cube map array,
or one- or two-dimensional array texture can be attached to an attachment point.
Such attachments are treated as an array of two-dimensional images, arranged in
layers, and the corresponding attachment point is considered to be layered (also
see section 9.8).

9.2.3 Framebuffer Object Queries

Parameters of a framebuffer object may be queried with the commands

void GetFramebufferParameteriv(enum farget, enum pname,
int *params);

void GetNamedFramebufferParameteriv(uint framebuffer,
enum pname, int *params);

For GetFramebufferParameteriv, the framebuffer object is that bound to
target, which must be must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, Or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For Get-
NamedFramebufferParameteriv, framebuffer may be zero, indicating the default
draw framebuffer, or the name of the framebuffer object.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 334

pname may be one of FRAMEBUFFER_DEFAULT_WIDTH, FRAMEBUFFER_-—
DEFAULT_HEIGHT, FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_-
DEFAULT_SAMPLES, or FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_-
LOCATIONS, indicating one of the corresponding parameters set with Frame-
bufferParameteri (see section 9.2.1). These values may only be queried from a
framebuffer object, not from a default framebuffer.

pname may also be one of DOUBLEBUFFER, IMPLEMENTATION_COLOR_-
READ_FORMAT, IMPLEMENTATION_COLOR_READ_TYPE, SAMPLES, SAMPLE_-
BUFFERS, or STEREO, indicating the corresponding framebuffer-dependent state
from table 23.85. Values of framebuffer-dependent state are identical to those that
would be obtained were the framebuffer object bound and queried using the simple
state queries in that table. These values may be queried from either a framebuffer
object or a default framebuffer. The values of SAMPLES and SAMPLE_BUFFERS
are determined as described in section 9.2.3.1.

The value of parameter pname for the framebuffer object is returned in params.

Errors

An INVALID_ENUM error is generated by GetNamedFramebufferPa-
rameteriv if targer is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, Or
FRAMEBUFFER.

An INVALID_OPERATION error is generated by GetNamedFrame-
bufferParameteriv if framebuffer is not zero or the name of an existing frame-
buffer object.

An INVALID_ENUM error is generated if pname is not one of the valid
values listed above.

An INVALID_OPERATION error is generated by GetFramebufferParam-
eteriv if the default framebuffer is bound to target and pname is not one of the
accepted values from table 23.85, other than SAMPLE_POSITION.

An INVALID_OPERATION error is generated by GetNamedFrame-
bufferParameteriv if framebuffer is zero, and pname is not one of the valid
values from table 23.85, other than SAMPLE_POSITION.

Attachments of a framebuffer object or buffers of a default framebuffer may be
queried with the commands

void GetFramebufferAttachmentParameteriv(enum target,
enum attachment, enum pname, int *params);

void GetNamedFramebufferAttachmentParameteriv(
uint framebuffer, enum attachment, enum pname,
int *params);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 335

attachment ‘ Buffer Queried

FRONT Front Left Color
FRONT_LEFT Front Left Color
FRONT_RIGHT | Front Right Color
BACK Back Left Color
BACK_LEFT Back Left Color
BACK_RIGHT | Back Right Color
_auxi | Auxiliary buffer i |
DEPTH Depth buffer
STENCIL Stencil buffer

Table 9.1: Valid attachment parameters when a default framebuffer is queried with
Get*FramebufferAttachmentParameteriv, and the buffers they select.

For GetFramebufferAttachmentParameteriv, the framebuffer object is that
bound to target, which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, Or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For Get-
NamedFramebufferAttachmentParameteriv, framebuffer is zero or the name of
a framebuffer object. If framebuffer is zero, then the default draw framebuffer is
queried.

If a default framebuffer is queried, then attachment must be one of the values
listed in table 9.1, selecting a single color, depth or stencil buffer as shown in that
table.

Otherwise, attachment must be one of the framebuffer object attachment points
listed in table 9.2. If attachment is DEPTH_STENCIL_ATTACHMENT, the same ob-
ject must be bound to both the depth and stencil attachment points of the frame-
buffer object, and information about that object is returned.

Upon successful return from Get*FramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then params will contain
one of NONE, FRAMEBUFFER_DEFAULT, TEXTURE, or RENDERBUFFER, identifying
the type of object which contains the attached image. Other values accepted for
pname depend on the type of object, as described below.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, then ei-
ther no framebuffer is bound to farget; or the default framebuffer is bound, attach-
ment is DEPTH or STENCIL, and the number of depth or stencil bits, respectively, is
zero. In this case querying pname FRAMEBUFFER_ATTACHMENT_OBJECT_NAME
will return zero, and all other queries will generate an INVALID_OPERATION error.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 336

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is not NONE,
these queries apply to all other framebuffer types:

e If pname is FRAMEBUFFER_ATTACHMENT_RED_SIZE, FRAMEBUFFER_—

ATTACHMENT_GREEN_SIZE, FRAMEBUFFER_ATTACHMENT_BLUE_-—
SIZE, FRAMEBUFFER_ATTACHMENT_ALPHA_ SIZE, FRAMEBUFFER_-
ATTACHMENT_DEPTH_SIZE, or FRAMEBUFFER_ATTACHMENT_ -

STENCIL_SIZE, then params will contain the number of bits in the
corresponding red, green, blue, alpha, depth, or stencil component of
the specified attachment. 1If the requested component is not present in
attachment, or if no data storage or texture image has been specified for the
attachment, then params will contain zero.

e If pname is FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE, then params
will contain the format of components of the specified attachment,
one of FLOAT, INT, UNSIGNED_INT, SIGNED_NORMALIZED, Or
UNSIGNED_NORMALIZED for floating-point, signed integer, unsigned
integer, signed normalized fixed-point, or unsigned normalized fixed-point
components respectively. If
no data storage or texture image has been specified for the attachment, then
params will contain NONE. This query cannot be performed for a combined
depth+stencil attachment, since it does not have a single format.

e If pname is FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, then params
will contain the encoding of components of the specified attachment, one
of LINEAR or SRGB for linear or sSRGB-encoded components, respectively.
Only color buffer components may be SRGB-encoded; such components are
treated as described in sections 17.3.6 and 17.3.7. For the default frame-
buffer, color encoding is determined by the implementation. For frame-
buffer objects, components are SRGB-encoded if the internal format of a
color attachment is one of the color-renderable SRGB formats described in
section 8.24. If attachment is not a color attachment, or no data storage or
texture image has been specified for the attachment, then params will contain
the value LINEAR.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is
RENDERBUFFER, then

o If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE, then

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 337

o If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will
contain the name of the texture object which contains the attached image.

e If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

e If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE and
the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is the name of a
cube map texture object, then params will contain the cube map face of
the cubemap texture object which contains the attached image. Otherwise
params will contain zero.

o If pname is FRAMEBUFFER_ATTACHMENT_LAYERED, then params will con-
tain TRUE if an entire level of a three-dimensional texture, cube map texture,
or one- or two-dimensional array texture is attached. Otherwise, params will
contain FALSE.

e If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER; the value
of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is the name of a three-
dimensional texture, or a one- or two-dimensional array texture object; and
the value of FRAMEBUFFER_ATTACHMENT_LAYERED is FALSE, then params
will contain the texture layer which contains the attached image. Otherwise
params will contain zero.

Errors

An INVALID_ENUM error is generated by GetFramebufferAttachment-
Parameteriv if farget is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, Or
FRAMEBUFFER.

An INVALID OPERATION error is generated by GetNamedFrame-
bufferAttachmentParameteriv if framebuffer is not zero or the name of an
existing framebuffer object.

An INVALID_ENUM error is generated by any combinations of framebuffer
type and pname not described above.

An INVALID_OPERATION er-
ror is generated if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE
is NONE and pname is not FRAMEBUFFER_ATTACHMENT OBJECT_NAME or
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

An INVALID_ENUM error is generated if the default framebuffer is queried

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 338

and attachment is not one the values specified in table 9.1.

An INVALID_OPERATION error is generated if a framebuffer object is
bound to farget and attachment is COLOR_ATTACHMENTm where m is greater
than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if a framebuffer object is queried,
attachment 1s not one of the attachments in table 9.2, and attachment is not
COLOR_ATTACHMENTm where m is greater than or equal to the value of MAX_ -
COLOR_ATTACHMENTS.

An INVALID_OPERATION error is generated if attachment is DEPTH -
STENCIL_ATTACHMENT and different objects are bound to the depth and sten-
cil attachment points of the framebuffer object.

9.2.3.1 Multisample Queries

The values of SAMPLE_BUFFERS and SAMPLES control whether and how multi-
sampling is performed (see section 14.3.1). They are framebuffer-dependent con-
stants derived from the attachments of a framebuffer object or the buffers of a
default framebuffer, and may be determined either by calling GetFramebuffer-
Parameteriv and GetNamedFramebufferParameteriv for a specific framebuffer
(see section 9.2.3), or by calling GetIntegerv with pname set to SAMPLE_BUFFERS
or SAMPLES.

If a framebuffer object is not framebuffer complete, as defined in section 9.4.2,
then the values of SAMPLE_BUFFERS and SAMPLES are undefined.

Otherwise, the value of SAMPLES is equal to the value of RENDERBUFFER_-
SAMPLES or TEXTURE_SAMPLES (depending on the type of the attached images),
which must all have the same value. The value of SAMPLE_BUFFERS is one if
SAMPLES is non-zero, and zero otherwise.

9.2.4 Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable in-
ternal format. The commands described below allocate and delete a renderbuffer’s
image, and attach a renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero
reserved by the GL. A renderbuffer object is created by binding a name returned
by GenRenderbuffers (see below) to RENDERBUFFER. The binding is effected by
calling

void BindRenderbuffer(enum target, uint renderbuffer);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 339

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name. If renderbuffer is not zero, then the resulting renderbuffer object is a new
state vector, initialized with a zero-sized memory buffer, and comprising all the
state and with the same initial values listed in table 23.33. Any previous binding to
target is broken.

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

While a renderbuffer object is bound, GL operations on the target to which it
is bound affect the bound renderbuffer object, and queries of the target to which a
renderbuffer object is bound return state from the bound object.

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to farget is broken
and the rarget binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate GL errors, as described in section 9.2.3.

The current RENDERBUFFER binding can be determined by calling GetInte-
gerv with pname RENDERBUFFER_BINDING.

Errors

An INVALID_ENUM error is generated if farget is not RENDERBUFFER.

An INVALID_ OPERATION error is generated if renderbuffer is not zero or
a name returned from a previous call to GenRenderbuffers, or if such a name
has since been deleted with DeleteRenderbuffers.

New renderbuffers may also be created with the command
void CreateRenderbuffers(sizei n, uint *renderbuffers);

CreateRenderbuffers returns » previously unused renderbuffer names in ren-
derbuffers, each representing a new renderbuffer object which is a state vector
comprising all the state and with the initial values listed in table 23.33. The
state of each renderbuffer object is as if a name returned from GenRenderbuffers
had been bound to the RENDERBUFFER target, except that any existing binding to
RENDERBUFFER is not affected.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS

Errors

An INVALID_VALUE error is generated if # is negative.
The command
void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
acquire renderbuffer state only when they are first bound.

Errors

An INVALID_VALUE error is generated if n is negative.
Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const
uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After
a renderbuffer object is deleted, it has no contents, and its name is again unused. If
a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
BindRenderbuffer had been executed with the farget RENDERBUFFER and name
of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object (see section 9.2.7).
Unused names in renderbuffers that have been marked as used for the purposes of
GenRenderbuffers are marked as unused again. Unused names in renderbuffers
are silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if # is negative.
The command
boolean IsRenderbuffer(uint renderbuffer);

returns TRUE if renderbuffer is the name of a renderbuffer object. If renderbuffer
is zero, or if renderbuffer is a non-zero value that is not the name of a renderbuffer
object, IsRenderbuffer returns FALSE.

The data storage, format, dimensions, and number of samples of a renderbuffer
object’s image are established with the commands

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

340

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 341

void RenderbufferStorageMultisample(enum target,
sizei samples, enum internalformat, sizei width,
sizei height);

void NamedRenderbufferStorageMultisample(
uint renderbuffer, sizei samples, enum internalformat,
sizei width, sizei height);

For RenderbufferStorageMultisample, the renderbuffer object is that bound
to target, which must be RENDERBUFFER. For NamedRenderbufferStorageMul-
tisample, renderbuffer is the name of the renderbuffer object.

internalformat must be color-renderable, depth-renderable, or stencil-
renderable (as defined in section 9.4). width and height are the dimensions in
pixels of the renderbuffer.

Upon success, *RenderbufferStorageMultisample deletes any existing data
store for the renderbuffer image, and the contents of the data store are undefined.
RENDERBUFFER_WIDTH is set to width, RENDERBUFFER_HEIGHT is set to height,
and RENDERBUFFER_INTERNAL_FORMAT is set to internalformat.

If samples is zero, then RENDERBUFFER_SAMPLES is set to zero. Otherwise
samples represents a request for a desired minimum number of samples. Since
different implementations may support different sample counts for multisampled
rendering, the actual number of samples allocated for the renderbuffer image is
implementation-dependent. However, the resulting value for RENDERBUFFER_ -
SAMPLES is guaranteed to be greater than or equal to samples and no more than the
next larger sample count supported by the implementation.

A GL implementation may vary its allocation of internal component resolution
based on any *RenderbufferStorageMultisample parameter (except target and
renderbuffer), but the allocation and chosen internal format must not be a function
of any other state and cannot be changed once they are established.

Errors

An INVALID_ENUM error is generated by RenderbufferStorageMulti-
sample if farget is not RENDERBUFFER.

An INVALID_OPERATION error is generated by NamedRenderbuffer-
StorageMultisample if renderbuffer is not the name of an existing render-
buffer object.

An INVALID_VALUE error is generated if samples, width, or height is neg-
ative.

An INVALID_OPERATION error is generated if samples is greater than the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 342

maximum number of samples supported for internalformat (see GetInternal-
formativ in section 22.3).

An INVALID_ENUM error is generated if internalformat is not one of the
color-renderable, depth-renderable, or stencil-renderable formats defined in
section 9.4.

An INVALID_VALUE error is generated if either width or height is greater
than the value of MAX_RENDERBUFFER_SIZE.

The commands

void RenderbufferStorage(enum farget, enum internalformat,
sizei width, sizei height);

void NamedRenderbufferStorage(uint renderbuffer,
enum internalformat, sizei width, sizei height);

are equivalent to
RenderbufferStorageMultisample (target, 0, internal format, width, height) ;
and
NamedRenderbufferStorageMultisample (renderbuf fer, 0, internal format, width, height) ;

respectively.

9.2.5 Required Renderbuffer Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
a renderbuffer will allocate at least the internal component sizes, and exactly the
component types shown for that format in the corresponding table:

e Color formats which are checked in the “Req. rend.” column of table 8.19.

e Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.21.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 343

The required color formats for renderbuffers are a subset of the required for-
mats for textures (see section 8.5.1).

Implementations must support creation of renderbuffers in these required for-
mats with up to the value of MAX_ SAMPLES multisamples, with the exception
that the signed and unsigned integer formats are required only to support creation
of renderbuffers with up to the value of MAX_INTEGER_SAMPLES multisamples,
which must be at least one.

9.2.6 Renderbuffer Object Queries

Parameters of a renderbuffer object may be queried with the commands

void GetRenderbufferParameteriv(enum target, enum pname,
int *params);

void GetNamedRenderbufferParameteriv(uint renderbuffer,
enum pname, int *params);

For GetRenderbufferParameteriv, the renderbuffer object is that bound to
target, which must be RENDERBUFFER. For GetNamedRenderbufferParame-
teriv, renderbuffer is the name of the renderbuffer object.

The value of renderbuffer parameter pname for the renderbuffer object is re-
turned in params. pname must be one of the symbolic values in table 23.33.

If pname is RENDERBUFFER_WIDTH, RENDERBUFFER_HEIGHT,
RENDERBUFFER_INTERNAL_FORMAT, oOr RENDERBUFFER_SAMPLES, then
params will contain the width in pixels, height in pixels, internal format, or
number of samples, respectively, of the image of the renderbuffer object.

If pname is RENDERBUFFER_RED_SIZE, RENDERBUFFER_GREEN_-
SIZE, RENDERBUFFER_BLUE_SIZE, RENDERBUFFER_ALPHA_SIZE,
RENDERBUFFER_DEPTH_SIZE, or RENDERBUFFER_STENCIL_SIZE, then
params will contain the actual resolutions (not the resolutions specified when the
image was defined) for the red, green, blue, alpha, depth, or stencil components,
respectively, of the image of the renderbuffer object.

Errors

An INVALID ENUM error is generated by GetRenderbufferParameteriv
if target is not RENDERBUFFER.

An INVALID OPERATION error is generated by GetRenderbufferPa-
rameteriv if the renderbuffer currently bound to farget is zero.

An INVALID_OPERATION error is generated by GetNamedRender-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 344

bufferParameteriv if renderbuffer is not the name of an existing renderbuffer
object.

An INVALID_ENUM error is generated if prname is not one of the render-
buffer state names in table 23.33.

9.2.7 Attaching Renderbuffer Images to a Framebuffer

A renderbuffer object can be attached as one of the logical buffers of a framebuffer
object with the commmands

void FramebufferRenderbuffer(enum target,
enumn attachment, enum renderbuffertarget,
uint renderbuffer);
void NamedFramebufferRenderbuffer(uint framebuffer,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

For FramebufferRenderbuffer the framebuffer object is that bound to target,
which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

For NamedFramebufferRenderbuffer, framebuffer is the name of the frame-
buffer object.

attachment must be set to one of the attachment points of the framebuffer listed
in table 9.2.

renderbuffertarget must be RENDERBUFFER and renderbuffer is zero or the
name of a renderbuffer object of type renderbuffertarget to be attached to the
framebuffer. If renderbuffer is zero, then the value of renderbuffertarget is ignored.

If renderbuffer is not zero and if *FramebufferRenderbuffer is suc-
cessful, then the renderbuffer named renderbuffer will be used as the logi-
cal buffer identified by attachment of the framebuffer object. The value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_ -
NAME is set to renderbuffer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 23.31. No change is
made to the state of the renderbuffer object and any previous attachment to the at-
tachment logical buffer of the framebuffer object is broken. If the attachment is not
successful, then no change is made to the state of either the renderbuffer object or
the framebuffer object.

Calling *FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer object currently

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 345

bound to target. All state values of the attachment point specified by attachment in
the framebuffer object are set to their default values listed in table 23.31.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to be
set to renderbuffer, which should have base internal format DEPTH_STENCIL.

If a renderbuffer object is deleted while its image is attached to one or more at-
tachment points in a currently bound framebuffer object, then it is as if Framebuf-
ferRenderbuffer had been called, with a renderbuffer of zero, for each attachment
point to which this image was attached in that framebuffer object. In other words,
the renderbuffer image is first detached from all attachment points in that frame-
buffer object. Note that the renderbuffer image is specifically not detached from
any non-bound framebuffer objects. Detaching the image from any non-bound
framebuffer objects is the responsibility of the application.

Name of attachment \

COLOR_ATTACHMENT (see caption)
DEPTH_ATTACHMENT
STENCIL_ATTACHMENT
DEPTH_STENCIL_ATTACHMENT

Table 9.2: Framebuffer attachment points. ¢ in COLOR_ATTACHMENT{ may range
from zero to the value of MAX_COLOR_ATTACHMENTS minus one.

Errors

An INVALID_ENUM error is generated by FramebufferRenderbuffer if
target is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, orf FRAMEBUFFER.

An INVALID_OPERATION error is generated by FramebufferRender-
buffer if zero is bound to farget.

An INVALID_OPERATION error is generated by NamedFramebuffer-
Renderbuffer if framebuffer is not the name of an existing framebuffer object.

An INVALID_OPERATION error is generated if attachment is COLOR_—
ATTACHMENTm where m is greater than or equal to the value of MAX_COLOR_—
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.2, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if renderbuffertarget is not

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 346

RENDERBUFFER.
An INVALID_ OPERATION error is generated if renderbuffer is not zero or
the name of an existing renderbuffer object of type renderbuffertarget.

9.2.8 Attaching Texture Images to a Framebuffer

The GL supports copying the rendered contents of the framebuffer into the images
of a texture object through the use of the routines CopyTexImage* and CopyTex-
SubImage*. Additionally, the GL supports rendering directly into the images of a
texture object.

To render directly into a texture image, a specified level of a texture object can
be attached as one of the logical buffers of a framebuffer object with the commands

void FramebufferTexture(enum target, enum attachment,
uint texture, int level);

void NamedFramebufferTexture(uint framebuffer,
enum attachment, uint texture, int level);

For FramebufferTexture, the framebuffer object is that bound to target,
which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER Or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For NamedFramebuffer-
Texture, framebuffer is the name of the framebuffer object.

attachment must be one of the attachment points of the framebuffer listed in
table 9.2.

If texture is non-zero, the specified mipmap level of the texture object named
texture is attached to the framebuffer attachment point named by attachment.

If texture is the name of a three-dimensional texture, cube map array texture,
cube map texture, one- or two-dimensional array texture, or two-dimensional mul-
tisample array texture, the texture level attached to the framebuffer attachment
point is an array of images, and the framebuffer attachment is considered layered.

Errors

An INVALID_ENUM error is generated by FramebufferTexture if rarget
iS not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, Oor FRAMEBUFFER.

An INVALID_OPERATION error is generated by FramebufferTexture if
zero is bound to target.

An INVALID OPERATION error is generated by NamedFramebuffer-
Texture if framebuffer is not the name of an existing framebuffer object.

An INVALID_OPERATION error is generated if attachment is COLOR_-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 347

ATTACHMENTm where m is greater than or equal to the value of MAX_COLOR_ -
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.2, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_VALUE error is generated if fexture is not zero and is not the
name of a texture object, or if level is not a supported texture level for rexture.

An INVALID_OPERATION error is generated if texture is the name of a
buffer texture.

Additionally, a specified image from a texture object can be attached as one of
the logical buffers of a framebuffer object with the commands

void FramebufferTexturelD(enum target, enum attachment,
enum fextarget, uint texture, int level);

void FramebufferTexture2D(enum target, enum attachment,
enum fextarget, uint texture, int level);

void FramebufferTexture3D(enum target, enum attachment,
enum fextarget, uint texture, int level, int layer);

target specifies the target to which the framebuffer object is bound, and must be
DRAW_FRAMEBUFFER, READ FRAMEBUFFER, Or FRAMEBUFFER. FRAMEBUFFER is
equivalent to DRAW_FRAMEBUFFER.

attachment must be one of the attachment points of the framebuffer listed in
table 9.2.

If texture is not zero, then fexture must either name an existing texture object
with an target of fextarget, or texture must name an existing cube map texture and
textarget must be one of the cube map face targets from table 8.27.

level specifies the mipmap level of the texture image to be attached to the
framebuffer.

If textarget is TEXTURE_RECTANGLE or TEXTURE_2D_MULTISAMPLE, then
level must be zero. If textarget is TEXTURE_ 3D, then /evel must be greater than or
equal to zero and less than or equal to logy of the value of MAX_3D_TEXTURE_—
S1zE. If textarget is one of the cube map face targets from table 8.27, then level
must be greater than or equal to zero and less than or equal to [ogs of the value
of MAX_CUBE_MAP_TEXTURE_SIZE. For all other values of textarget, level must
be greater than or equal to zero and no larger than [ogs of the value of MAX_-
TEXTURE_SIZE.

layer specifies the layer of a two-dimensional image within a three-dimensional
texture.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 348

Errors

An INVALID_ENUM error is generated if target is not DRAW_-—
FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated if attachment is COLOR_-—
ATTACHMENTm where m is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.2, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_OPERATION error is generated if zero is bound to farget.

An INVALID_VALUE error is generated if fexture is not zero and level is
not a supported texture level for fextarget, as described above.

An INVALID_VALUE error is generated if fexture is not zero and layer is
larger than the value of MAX_3D_TEXTURE_SIZE minus one.

An INVALID_ OPERATION error is generated for FramebufferTexturelD
if texture is not zero and fextarget is not TEXTURE_1D.

An INVALID_ OPERATION error is generated for FramebufferTexture2D
if texture is not zero and textarget is not one of TEXTURE_2D, TEXTURE_2D_ -
MULTISAMPLE, TEXTURE_RECTANGLE, or one of the cube map face targets
from table 8.27.

An INVALID_OPERATION error is generated for FramebufferTexture3D
if texture is not zero and fextarget is not TEXTURE_ 3D.

An INVALID_OPERATION error is generated if texture is not zero, and
does not name an existing texture object of type matching textarget, as de-
scribed above.

An INVALID_OPERATION error is generated if texture is the name of a
buffer texture.

A single layer of a three-dimensional or array texture object can be attached as
one of the logical buffers of a framebuffer object with the commands

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level, int layer);
void NamedFramebufferTextureLayer(uint framebuffer,
enum attachment, uint texture, int level, int layer);

These commands operate identically to the equivalent FramebufferTexture
and NamedFramebufferTexture commands, respectively, except for the addi-
tional layer argument which selects a layer of the texture object to attach.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 349

layer specifies the layer of a one- or two-dimensional image within texture,
except for cube map and cube map array textures. For cube map textures, layer
is translated into a cube map face as described in table 9.3. For cube map array
textures, layer is translated into an array layer and a cube map face as described for
layer-face numbers in section 8.5.3.

If texture is a three-dimensional texture, then /evel must be greater than or equal
to zero and less than or equal to [ogsy of the value of MAX_3D_TEXTURE_SIZE. If
texture is a two-dimensional array texture, then level must be greater than or equal
to zero and no larger than [ogs of the value of MAX_TEXTURE_SIZE. If fexture is
a two-dimensional multisample array texture, then level must be zero.

Errors

In addition to the corresponding errors for FramebufferTexture and
NamedFramebufferTexture when called with the same parameters (other
than layer):

An INVALID_VALUE error is generated if zexture is a three-dimensional
texture, and layer is larger than the value of MAX_3D_TEXTURE_SIZE minus
one.

An INVALID_VALUE error is generated if fexture is an array texture, and
layer is larger than the value of MAX_ARRAY TEXTURE_LAYERS minus one.

An INVALID_VALUE error is generated if fexture is a cube map array tex-

ture, and
layer

6
is larger than the value of MAX_CUBE_MAP_TEXTURE_SIZE minus one (see
section 9.8).

An INVALID_VALUE error is generated if fexture is non-zero and layer is
negative.

An INVALID_OPERATION error is generated if texture is non-zero and is
not the name of a three-dimensional, two-dimensional multisample array, one-
or two-dimensional array, or cube map array texture.

An INVALID_ VALUE error is generated if fexture is not zero and level is
not a supported texture level for fexture, as described above.

If texture is non-zero and the command does not result in an error, the frame-
buffer attachment state corresponding to attachment is updated as in the other
FramebufferTexture* commands, except that the value of FRAMEBUFFER_-
ATTACHMENT_TEXTURE_LAYER is set to layer.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 350

9.2.8.1 Effects of Attaching a Texture Image

The remaining comments in this section apply to all forms of *FramebufferTex-
ture®.

If texture is zero, any image or array of images attached to the attachment point
named by attachment is detached. Any additional parameters (level, textarget,
and/or layer) are ignored when texture is zero. All state values of the attachment
point specified by attachment are set to their default values listed in table 23.31.

If texture is not zero, and if *FramebufferTexture* is successful, then the
specified texture image will be used as the logical buffer identified by attachment
of the framebuffer object currently bound to target. State values of the specified
attachment point are set as follows:

e The value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is set to
TEXTURE.

e The value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is set to texture.
e The value of FRAMEBUFFER_ATTACHMENT_ TEXTURE_LEVEL is set to level.

o If *FramebufferTexture2D is called and fexture is a cube map texture, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE is
set to textarget; otherwise it is set to the default value (NONE).

o If *FramebufferTextureLayer or *FramebufferTexture3D is called, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER is set to layer;
otherwise it is set to zero.

o If *FramebufferTexture* is called and texture is the name of a three-
dimensional, cube map, two-dimensional multisample array, or one- or
two-dimensional array texture, the value of FRAMEBUFFER_ATTACHMENT_—
LAYERED is set to TRUE; otherwise it is set to FALSE.

All other state values of the attachment point specified by attachment are set
to their default values listed in table 23.31. No change is made to the state of the
texture object, and any previous attachment to the attachment logical buffer of the
framebuffer object bound to framebuffer rarger is broken. If the attachment is not
successful, then no change is made to the state of either the texture object or the
framebuffer object.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to texture. texture must have base internal format DEPTH_STENCIL, or the
depth and stencil framebuffer attachments will be incomplete (see section 9.4.1).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.3. FEEDBACK LOOPS BETWEEN TEXTURES AND THE FRAMEBUFFER351

If a texture object is deleted while its image is attached to one or more at-
tachment points in a currently bound framebuffer object, then it is as if *Frame-
bufferTexture* had been called, with a texture of zero, for each attachment point
to which this image was attached in that framebuffer object. In other words, the
texture image is first detached from all attachment points in that framebuffer ob-
ject. Note that the texture image is specifically not detached from any non-bound
framebuffer objects. Detaching the texture image from any non-bound framebuffer
objects is the responsibility of the application.

9.3 Feedback Loops Between Textures and the Frame-
buffer

A feedback loop may exist when a texture object is used as both the source and
destination of a GL operation. When a feedback loop exists, undefined behavior
results. This section describes rendering feedback loops (see section 8.14.2.1) and
texture copying feedback loops (see section 8.6.1) in more detail.

9.3.1 Rendering Feedback Loops

The mechanisms for attaching textures to a framebuffer object do not prevent a
one- or two-dimensional texture level, a face of a cube map texture level, or a
layer of a two-dimensional array or three-dimensional texture from being attached
to the draw framebuffer while the same texture is bound to a texture unit. While
this condition holds, texturing operations accessing that image will produce unde-
fined results, as described at the end of section 8.14. Conditions resulting in such
undefined behavior are defined in more detail below. Such undefined texturing op-
erations are likely to leave the final results of fragment
processing operations undefined, and should be avoided.
Special precautions need to be taken to avoid attaching a texture image to the
currently bound draw framebuffer object while the texture object is currently
Doing so could lead to the creation of a rendering feed-
back loop between the writing of pixels by GL rendering operations and the simul-
taneous reading of those same pixels when used as texels in the currently bound
texture. In this scenario, the framebuffer will be considered framebuffer complete
(see section 9.4), but the values of fragments rendered while in this state will be
undefined. The values of texture samples may be undefined as well, as described
under “Rendering Feedback Loops” in section 8.14.2.1
Specifically, the values of rendered fragments are undefined if any
shader stage fetches texels and the same texels are written via

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.3. FEEDBACK LOOPS BETWEEN TEXTURES AND THE FRAMEBUFFER352

fragment shader outputs, even if the reads and
writes are not in the same draw call, unless any of the following exceptions apply:

e The reads and writes are from/to disjoint sets of texels (after accounting for
texture filtering rules).

e There is only a single read and write of each texel, and the read is in
the fragment shader invocation that writes the same texel (e.g. using
texelFetch2D (sampler, ivec2 (gl_FragCoord.xy), 0);).

o If a texel has been written, then in order to safely read the result a texel fetch
must be in a subsequent draw call separated by the command

void TextureBarrier(void);

TextureBarrier will guarantee that writes have completed and caches have
been invalidated before subsequent draw calls are executed.

9.3.2 Texture Copying Feedback Loops

Similarly to rendering feedback loops, it is possible for a texture image to be at-
tached to the currently bound read framebuffer object while the same texture im-
age is the destination of a CopyTexImage* operation, as described under “Texture
Copying Feedback Loops” in section 8.6.1. While this condition holds, a texture
copying feedback loop between the writing of texels by the copying operation and
the reading of those same texels when used as pixels in the read framebuffer may
exist. In this scenario, the values of texels written by the copying operation will be
undefined (in the same fashion that overlapping copies via BlitFramebuffer are
undefined).

Specifically, the values of copied texels are undefined if all of the following
conditions are true:

e an image from texture object T is attached to the currently bound read frame-
buffer object at attachment point A

o the selected read buffer (see section 18.2.1) is attachment point A
e Tis bound to the texture target of a CopyTexImage* operation

o the level argument of the copying operation selects the same image that is
attached to A

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 353

9.4 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL.

The default framebuffer is always complete if it exists; however, if no default
framebuffer exists (no window system-provided drawable is associated with the
GL context), it is deemed to be incomplete.

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined
below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation-dependent restrictions.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached.

e An internal format is color-renderable if it is RED, RG, RGB, RGBA,
or one of the sized internal formats from table 8.19 whose “CR” (color-
renderable) column is checked in that table No other formats, including com-
pressed internal formats, are color-renderable.

e An internal format is depth-renderable if it is DEPTH_COMPONENT Or one
of the formats from table 8.21 whose base internal format is DEPTH_-—
COMPONENT or DEPTH_STENCIL. No other formats are depth-renderable.

e An internal format is stencil-renderable if it is STENCIL_INDEX, DEPTH_-
STENCIL, or one of the formats from table 8.21 whose base internal for-
mat is STENCIL_INDEX or DEPTH_STENCIL. No other formats are stencil-
renderable.

9.4.1 Framebuffer Attachment Completeness

If the value of FRAMEBUFFER_ATTACHMENT_ OBJECT_TYPE for the framebuffer
attachment point attachment is not NONE, then it is said that a framebuffer-
attachable image, named image, is attached to the framebuffer at the attachment
point. image is identified by the state in attachment as described in section 9.2.2.

The framebuffer attachment point atfrachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for
attachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 354

e image is a component of an existing object with the name specified by
the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, and of the type
specified by the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

e The width and height of image are greater than zero and less than or equal
to the values of the implementation-dependent limits MAX_FRAMEBUFFER_—
WIDTH and MAX_FRAMEBUFFER_HEIGHT, respectively.

e If image is a three-dimensional, one- or two-dimensional array, or cube map
array texture and the attachment is not layered, the selected layer is less than
the depth or layer count of the texture.

e If image is a three-dimensional, one- or two-dimensional array, or cube map
array texture and the attachment is layered, the depth or layer count of the
texture is less than or equal to the value of the implementation-dependent
limit MAX_FRAMEBUFFER_LAYERS.

o If image has multiple samples, its sample count is less than or equal to
the value of the implementation-dependent limit MAX_FRAMEBUFFER_—
SAMPLES.

e If image is not an immutable-format texture, the selected level number is in
the range [levelpgse, q], where levely,s. and g are as defined in section 8.14.3.

e If image is not an immutable-format texture and the selected level is not
levelpqse, the texture must be mipmap complete; if image is part of a cube-
map texture, the texture must also be mipmap cube complete.

o If attachment is COLOR_ATTACHMENT:, then image must have a color-
renderable internal format.

o If attachment is DEPTH_ATTACHMENT, then image must have a depth-
renderable internal format.

o If attachment is STENCIL_ATTACHMENT, then image must have a stencil-
renderable internal format.

9.4.2 Whole Framebuffer Completeness

Each rule below is followed by an error token enclosed in { brackets }. The mean-
ing of these errors is explained below and under “Effects of Framebuffer Com-
pleteness on Framebuffer Operations” in section 9.4.4.

The framebuffer object bound to target is said to be framebuffer complete if all
the following conditions are true:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 355

if the default framebuffer is bound to target, the default framebuffer exists.

{ FRAMEBUFFER_UNDEFINED }

All framebuffer attachment points are framebuffer attachment complete.

{ FRAMEBUFFER_INCOMPLETE_ATTACHMENT }

There is at least one image attached to the framebuffer, or the value of
the framebuffer’s FRAMEBUFFER_DEFAULT_WIDTH and FRAMEBUFFER_—
DEFAULT_HEIGHT parameters are both non-zero.

{ FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT }

The combination of internal formats of the attached images does not violate
an implementation-dependent set of restrictions.

{ FRAMEBUFFER_UNSUPPORTED }

The value of RENDERBUFFER_SAMPLES is the same for all attached render-
buffers; the value of TEXTURE_SAMPLES is the same for all attached tex-
tures; and, if the attached images are a mix of renderbuffers and textures,
the value of RENDERBUFFER_SAMPLES matches the value of TEXTURE_ -
SAMPLES.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

The value of TEXTURE_FIXED_SAMPLE_LOCATIONS is the same for all
attached textures; and, if the attached images are a mix of renderbuffers
and textures, the value of TEXTURE_FIXED_SAMPLE_LOCATIONS must be
TRUE for all attached textures.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

If any framebuffer attachment is layered, all populated attachments must be
layered. Additionally, all populated color attachments must be from textures
of the same target (three-dimensional, one- or two-dimensional array, cube
map, or cube map array textures).

{ FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS }

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS

The token in brackets after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus (see below) that is gen-
erated when that clause is violated. If more than one clause is violated, it is
implementation-dependent which value will be returned by CheckFramebuffer-
Status.

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete:

e Binding to a different framebuffer with BindFramebuffer.

e Attaching an image to the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

e Detaching an image from the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

e Changing the internal format of a texture image that is attached to the frame-
buffer by calling TexImage*, TexStorage*, CopyTexImage*, or Com-
pressed TexImage*.

e Changing the internal format of a renderbuffer that is attached to the frame-
buffer by calling RenderbufferStorage*.

e Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-
ing an image that is attached to a currently bound framebuffer object.

e Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
those described in section 1.3.5.

Although the GL defines a wide variety of internal formats for framebuffer-
attachable images, such as texture images and renderbuffer images, some imple-
mentations may not support rendering to particular combinations of internal for-
mats. If the combination of formats of the images attached to a framebuffer object
are not supported by the implementation, then the framebuffer is not complete un-
der the clause labeled FRAMEBUFFER_UNSUPPORTED.

Implementations are required to support certain combinations of framebuffer
internal formats as described under “Required Framebuffer Formats” in sec-
tion 9.4.3.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the
set of attached images is modified, it is strongly advised, though not required, that
an application check to see if the framebuffer is complete prior to rendering.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

356

9.4. FRAMEBUFFER COMPLETENESS 357

The status of a framebuffer object or default framebuffer may be queried with
the commands

enum CheckFramebufferStatus(enum rarget);
enum CheckNamedFramebufferStatus(uint framebuffer,
enum target);

For CheckFramebufferStatus, the framebuffer object is that bound to target.
For CheckNamedFramebufferStatus, framebuffer is the name of the framebuffer
object.

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, oOr
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

If framebuffer is zero, then the status of the default read or draw framebuffer
(as determined by target) is returned.

A value is returned that identifies whether or not the framebuffer object or
default framebuffer is complete when treated as a read or draw framebuffer (as de-
termined by farget). If the framebuffer object is complete, then FRAMEBUFFER_ -
COMPLETE is returned. Otherwise, the value returned is one of the error codes
defined at the start of section 9.4.2 identifying one of the rules of framebuffer com-
pleteness that is violated.

If CheckFramebufferStatus generates an error, zero is returned.

Errors

An INVALID_ENUM error is generated if tfarget is not DRAW_-—
FRAMEBUFFER, READ_FRAMEBUFFER, Oor FRAMEBUFFER.

An INVALID OPERATION error is generated by CheckNamedFrame-
bufferStatus if framebuffer is not the name of an existing framebuffer object.

9.4.3 Required Framebuffer Formats

Implementations must support framebuffer objects with up to the value of MAX_—
COLOR_ATTACHMENTS color attachments, a depth attachment, and a stencil at-
tachment. Each color attachment may be in any of the color-renderable formats
described in section 9.4 (although implementations are not required to support cre-
ation of attachments in all color-renderable formats). The depth attachment may
be in any of the required depth or combined depth+stencil formats described in
sections 8.5.1 and 9.2.5, and the stencil attachment may be in any of the required
stencil or combined depth+stencil formats. However, when both depth and stencil
attachments are present, implementations are only required to support framebuffer
objects where both attachments refer to the same image.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 358

There must be at least one default framebuffer format allowing creation of a
default framebuffer supporting front-buffered rendering.

9.4.4 Effects of Framebuffer Completeness on Framebuffer Opera-
tions

Errors

An INVALID_FRAMEBUFFER_OPERATION error is generated by attempts
to render to or read from a framebuffer which is not framebuffer complete.
This error is generated regardless of whether fragments are actually read from
or written to the framebuffer. For example, it is generated when a rendering
command is called and the framebuffer is incomplete, even if RASTERIZER -
DISCARD is enabled.

An INVALID_ FRAMEBUFFER_OPERATION error is generated by render-
ing commands (see section 2.4), and commands that read from the
framebuffer such as ReadPixels, CopyTexImage*, and CopyTexSubImage™*
if called while the framebuffer is not framebuffer complete.

9.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 23.85 may change when a
change is made to the current read or draw framebuffer binding, to the state
of a currently bound framebuffer object, or to an image attached to that frame-
buffer object. Most such state is dependent on the draw framebuffer (the
value DRAW_FRAMEBUFFER_BINDING), but IMPLEMENTATION_COLOR_READ_-
TYPE and IMPLEMENTATION_COLOR_READ_FORMAT are dependent on the read
framebuffer (the value of READ_ FRAMEBUFFER_BINDING).

The values of the state variables listed in table 23.85 may change when a
change is made to DRAW_FRAMEBUFFER_BINDING, to the state of the currently
bound draw framebuffer object, or to an image attached to that framebuffer object.

When DRAW_FRAMEBUFFER_BINDING is zero, the values of the state variables
listed in table 23.85 are implementation-defined.

When DRAW_FRAMEBUFFER_BINDING is non-zero, if the currently bound
draw framebuffer object is not framebuffer complete, then the values of the state
variables listed in table 23.85 are undefined.

When DRAW_FRAMEBUFFER_BINDING is non-zero and the currently bound
draw framebuffer object is framebuffer complete, then the values of the state vari-
ables listed in table 23.85 are completely determined by DRAW_FRAMEBUFFER_ -
BINDING, the state of the currently bound draw framebuffer object, and the state of

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.5. MAPPING BETWEEN PIXEL AND ELEMENT IN ATTACHED IMAGE359

the images attached to that framebuffer object. The values of RED_BITS, GREEN -
BITS, BLUE_BITS, and ALPHA_BITS are defined only if all color attachments of
the draw framebuffer have identical formats, in which case the color component
depths of color attachment zero are returned. The values returned for DEPTH_BITS
and STENCIL_BITS are the depth or stencil component depth of the corresponding
attachment of the draw framebuffer, respectively.

The actual sizes of the color, depth, or stencil bit planes can be obtained by
querying an attachment point using Get*FramebufferAttachmentParameteriv,
or querying the object attached to that point. If the value of FRAMEBUFFER_—
ATTACHMENT_OBJECT_TYPE at a particular attachment point is RENDERBUFFER,
the sizes may be determined by calling GetRenderbufferParameteriv as de-
scribed in section 9.2.6. If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_-
TYPE at a particular attachment point is TEXTURE, the sizes may be determined by
calling GetTexParameter, as described in section 8.11.

9.5 Mapping between Pixel and Element in Attached Im-
age

When DRAW_FRAMEBUFFER_BINDING is non-zero, an operation that writes to the
framebuffer modifies the image attached to the selected logical buffer, and an oper-
ation that reads from the framebuffer reads from the image attached to the selected
logical buffer.

If the attached image is a renderbuffer image, then the window coordinates
(Zw, Y) correspond to the value in the renderbuffer image at the same coordinates.

If the attached image is a texture image, then the window coordinates (., y)
correspond to the texel (7, j, k) from figure 8.3 as follows:

i = (2 — b)

/ - (f/u' - /))
k = (layer — b)

where b is the texture image’s border width and layer is the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER for the selected logical buffer.
For a two-dimensional texture, k and layer are irrelevant; for a one-dimensional
texture, j, k, and layer are irrelevant.

(Zw, Yw) corresponds to a border texel if z,, Yw, or layer is less than the
border width, or if x, Y, or layer is greater than or equal to the border width
plushe width, height, or depth, respectively, of the texture image.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.6. CONVERSION TO FRAMEBUFFER-ATTACHABLE IMAGE COMPONENTS360

9.6 Conversion to Framebuffer-Attachable Image Com-
ponents

When an enabled color value is written to the framebuffer while the draw frame-
buffer binding is non-zero, for each draw buffer the R, G, B, and A values are
converted to internal components as described in table 8.18, according to the ta-
ble row corresponding to the internal format of the framebuffer-attachable image
attached to the selected logical buffer, and the resulting internal components are
written to the image attached to logical buffer. The masking operations described
in section 17.4.2 are also effective.

9.7 Conversion to RGBA Values

When a color value is read while the read framebuffer binding is non-zero, or is
used as the source of a logical operation or for blending while the draw frame-
buffer binding is non-zero, components of that color taken from the framebuffer-
attachable image attached to the selected logical buffer are first converted to R,
G, B, and A values according to table 16.1 and the internal format of the attached
image.

9.8 Layered Framebuffers

A framebuffer is considered to be layered if it is complete and all of its populated
attachments are layered. When rendering to a layered framebuffer, each fragment
generated by the GL is assigned a layer number. The layer number for a fragment
is zero if

e geometry shaders are disabled, or

e the current geometry shader does not statically assign a value to the built-in
output variable g1_Layer.

Otherwise, the layer for each point, line, or triangle emitted by the geometry
shader is taken from the g1_Layer output of one of the vertices of the primitive.
The vertex used is implementation-dependent. To get defined results, all vertices
of each primitive emitted should set the same value for g1_Layer. Since the
EndPrimitive built-in function starts a new output primitive, defined results can

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

9.8. LAYERED FRAMEBUFFERS 361

Layer Number | Cube Map Face

TEXTURE_CUBE_MAP_POSITIVE_X
TEXTURE_CUBE_MAP_NEGATIVE_X
TEXTURE_CUBE_MAP_POSITIVE_Y
TEXTURE_CUBE_MAP_NEGATIVE_Y
TEXTURE_CUBE_MAP_POSITIVE_Z
TEXTURE_CUBE_MAP_NEGATIVE_Z

N KRN —=O

Table 9.3: Layer numbers for cube map texture faces. The layers are numbered in
the same sequence as the cube map face token values.

be achieved if EndPrimitive is called between two vertices emitted with differ-
ent layer numbers. A layer number written by a geometry shader has no effect if
the framebuffer is not layered.

When fragments are written to a layered framebuffer, the fragment’s layer num-
ber selects an image from the array of images at each attachment point to use for
the stencil test (see section 17.3.3), depth buffer test (see section 17.3.4), and for
blending and color buffer writes (see section 17.3.6). If the fragment’s layer num-
ber is negative, or greater than or equal to the minimum number of layers of any
attachment, the effects of the fragment on the framebuffer contents are undefined.

When the Clear or ClearBuffer* commands described in section 17.4.3 are
used to clear a layered framebuffer attachment, all layers of the attachment are
cleared.

When commands such as ReadPixels read from a layered
framebuffer, the image at layer zero of the selected attachment is always used to
obtain pixel values.

When cube map texture levels are attached to a layered framebuffer, there are
six layers, numbered zero through five. Each layer number corresponds to a cube
map face, as shown in table 9.3.

When cube map array texture levels are attached to a layered framebuffer, the
layer number corresponds to a layer-face. The layer-face can be translated into an
array layer and a cube map face by

VayerJ
array_layer =

6
face = layer mod 6

The face number corresponds to the cube map faces as shown in table 9.3.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 10

Vertex Specification and Drawing
Commands

Most geometric primitives are drawn by specifying a series of generic attribute
sets corresponding to vertices of a primitive using DrawArrays or one of the other
drawing commands defined in section 10.4. Points, lines, polygons, and a variety
of related geometric primitives (see section 10.1) can be drawn in this way.

10.7
The process of specifying attributes of a vertex and passing them to
a shader is referred to as transferring a vertex to the
GL.

Vertex Shader Processing and Vertex State

Each vertex is specified with one or more generic vertex attributes. Each at-
tribute is specified with one, two, three, or four scalar values.

Generic vertex attributes can be accessed from within vertex shaders (see sec-
tion 11.1) and used to compute values for consumption by later processing stages.

Before vertex shader execution, the state required by a vertex is its generic
vertex attributes. Vertex shader execution processes vertices producing a homoge-
neous vertex position and any outputs explicitly written by the vertex shader.

Figure 10.1 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it is
clipped to a clip volume. This may modify the primitive by altering vertex coordi-

362

363

Coordinates
Point, . .
. ’ Point culling,
Vertex Shaded Line Se_gment, or Line Segment o
Shadgr Vertices lelar_u_:_jle or Triangle Rasterization
Execution (Primitive) cliopin
Assembly pping
> > —-
Varying
Outputs
Generic Primitive type
Vertex (from DrawArrays or
Attributes

DrawElements mode)

Figure 10.1. Vertex processing and primitive assembly.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

364

nates and vertex shader outputs. In the case of line and polygon primitives, clipping
may insert new vertices into the primitive. The vertices defining a primitive to be
rasterized have output variables associated with them.

Fixed-Function Vertex Processing and Vertex State

When fixed-function vertex processing is performed, each vertex is specified
with two, three, or four scalar vertex coordinates. In addition, a current normal,
multiple current texture coordinate sets, multiple current generic vertex attributes,
current color, current secondary color, and current fog coordinate may be used in
processing each vertex.

Normals are used by the GL in lighting calculations; the current normal is a
three-dimensional vector that may be set by sending three coordinates that specify
it.

Texture coordinates determine how a texture image is mapped onto a primitive
in fixed-function fragment processing. Multiple sets of texture coordinates may
be used to specify how multiple texture images are mapped onto a primitive. The
number of texture units supported is implementation-dependent but must be at least
two. The number of texture units supported may be queried with the state MAX_—
TEXTURE_UNITS.

Primary and secondary colors are associated with each vertex (see sec-
tion 16.3). These associated colors are either based on the current color and current
secondary color or produced by lighting, depending on whether or not lighting is
enabled. Texture and fog coordinates are similarly associated with each vertex.
Multiple sets of texture coordinates may be associated with a vertex. Figure 10.2
summarizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.

Current values are part of GL state. Vertices and normals are transformed, col-
ors may be affected or replaced by lighting, and texture coordinates are transformed
and possibly affected by a texture coordinate generation function. The processing
indicated for each current value is applied for each vertex that is sent to the GL.
The details of fixed-function vertex processing are discussed later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 10.1.17), the current material properties (see section 12.2.2), the current fog
coordinate, the multiple generic vertex attribute sets, and the multiple current tex-
ture coordinate sets. Because color assignment is done vertex-by-vertex, a pro-
cessed vertex comprises the vertex’s coordinates, its edge flag, its fog coordinate,
its assigned colors, and its multiple texture coordinate sets.

Figure 10.3 shows the sequence of operations that builds a primitive (point,
line segment, or polygon) from a sequence of vertices using using fixed-functin

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

365

Vertex
Coordinates In

Y

vertex / normal Transformed
L transformation L)
Coordinates
Current
Normal >
! Processed
> Vertex
Out
Current lighting Q< | gl Associated
Colors & G T Data
Materials T (Colors, Edge Flag)
Fog and Texture
Coordinates)
Current
Edge Flag &
Fog Coord 0—0{
Current
Texture J— texgen | texture
matrix 0
Coord Set 0 T
| {
Current
Texture texgen Qe texture
matrix 1
Coord Set 1 _| T
| {
Current
Texture texgen B texture
matrix 2
Coord Set 2 _| T
0{
Current
Texture texgen [Q—| texture
matrix 3
Coord Set 3 _| T
Figure 10.2.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 366

Point culling;
Line Segment
Coordinates Point, . or POlygon —
1 Line Segment, or o Clipping
P\lr/oc?ssed Polygon Rasterization
Ertices associated > (Primitive) - —
Data Assembly Color
Processing
A
Begin/End
State
Figure 10.3.

10.1 Primitive Types

A sequence of vertices is passed to the GL using DrawArrays or one of the other
drawing commands defined in section 10.4. There is no limit to the number of
vertices that may be specified, other than the size of the vertex arrays. The mode
parameter of these commands determines the type of primitives to be drawn using
the vertices. Primitive types and the corresponding mode parameters are summa-
rized below, together with any additional state required when assembling primitives
from multiple vertices.

10.1.1 Points

A series of individual points are specified with mode POINTS. Each vertex defines
a separate point. No state is required for points, since each point is independent of
any previous and following points.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 367

10.1.2 Line Strips

A series of one or more connected line segments are specified with mode LINE_ -
STRIP. In this case, the first vertex specifies the first segment’s start point while
the second vertex specifies the first segment’s endpoint and the second segment’s
start point. In general, the 7th vertex (for 7 > 1) specifies the beginning of the ith
segment and the end of the ¢ — 1st. The last vertex specifies the end of the last
segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

10.1.3 Line Loops

A line loop is specified with mode LINE_LOOP. Loops are the same as line strips
except that a final segment is added from the final specified vertex to the first vertex.
The required state consists of the processed first vertex, in addition to the state
required for line strips.

10.1.4 Separate Lines

Individual line segments, each defined by a pair of vertices, are specified with mode
LINES. The first two vertices passed define the first segment, with subsequent pairs
of vertices each defining one more segment. If the number of vertices passed is
odd, then the last vertex is ignored. The state required is the same as for line strips
but it is used differently: a processed vertex holding the first vertex of the current
segment, and a boolean flag indicating whether the current vertex is odd or even (a
segment start or end).

10.1.5 Polygons

A polygon is described by specifying its boundary as a series of line segments
with mode POLYGON. The bounding line segments are specified in the same way as
line loops. A polygon described with fewer than three vertices does not generate a
primitive.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 368

NN

1 3

(@) (b) ()

Figure 10.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

10.1.6 Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and is spec-
ified with mode TRIANGLE_STRIP. In this case, the first three vertices define the
first triangle (and their order is significant). Each subsequent vertex defines a new
triangle using that point along with two vertices from the previous triangle. If fewer
than three vertices are specified, no primitive is produced. See figure 10.4.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
When a series of vertices are transferred to the GL, the pointer is initialized to point
to vertex A. Each successive vertex toggles the pointer. Therefore, the first vertex
is stored as vertex A, the second stored as vertex B, the third stored as vertex A,
and so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

10.1.7 Triangle Fans

A triangle fan is specified with mode TRIANGLE_FAN, and is the same as a triangle
strip with one exception: each vertex after the first always replaces vertex B of the
two stored vertices.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 369

2 :4 :h > 6 >
A A A A
- Y Yy _ | - \j
1 3 5 1 4 5 8
(@) (b)

Figure 10.5. (a) A quad strip. (b) Independent quads. The numbers give the se-
quencing of the vertices passed to the GL.

10.1.8 Separate Triangles

Separate triangles are specified with mode TRIANGLES. In this case, the 3 + 1st,
37 + 2nd, and 3¢ 4 3rd vertices (in that order) determine a triangle for each ¢ =
0,1,...,n — 1, where there are 3n + k vertices drawn. k is either 0, 1, or 2; if k
is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
31 and vertex B is vertex 37 + 1. Otherwise, separate triangles are the same as a
triangle strip.

10.1.9 Quadrilateral (quad) strips

Quad strips generate a series of edge-sharing quadrilaterals, and are specified with
mode QUAD_STRIP. If the m vertices passed are labelled are vy, . . ., v,,, where v;
is the jth specified vertex, then quad ¢ has vertices (in order) vg;, V2,41, V243, and
voi+o With i = 0,..., [m/2]. The state required is thus three processed vertices,
to store the last two vertices of the previous quad along with the third vertex (the
first new vertex) of the current quad, a flag to indicate when the first quad has been
completed, and a one-bit counter to count members of a vertex pair. See figure 10.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices passed is odd, the final vertex is ignored.

10.1.10 Separate Quadrilaterals

Separate quads are specified with mode QUADS, and are just like quad strips except
that each group of four vertices, the 45 + 1st, the 45 + 2nd, the 45 + 3rd, and the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 370

@ ---O—0O @

@ ---O—D - ®

O ---O—O—O—O O

(b)

Figure 10.6. Lines with adjacency (a) and line strips with adjacency (b). The ver-
tices connected with solid lines belong to the main primitives; the vertices connected
by dashed lines are the adjacent vertices that may be used in a geometry shader.

17 + 4th, generate a single quad, for j = 0,1,..., n — 1. The total number of
vertices passed is 4n + k, where 0 < k < 3; if k is not zero, the final k vertices are
ignored. Separate quads are generated by calling Begin with the argument value

QUADS.

10.1.11 Lines with Adjacency

Lines with adjacency are specified with mode LINES_ADJACENCY, and are inde-
pendent line segments where each endpoint has a corresponding adjacent vertex
that can be accessed by a geometry shader (section 11.3). If a geometry shader is
not active, the adjacent vertices are ignored.

A line segment is drawn from the 47 + 2nd vertex to the 47 4 3rd vertex for each
1 =20,1,...,n — 1, where there are 4n + k vertices passed. k is either O, 1, 2, or
3; if k is not zero, the final k vertices are ignored. For line segment %, the 44 4 1st
and 41 + 4th vertices are considered adjacent to the 4¢ + 2nd and 4¢ + 3rd vertices,
respectively (see figure 10.6).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 371

Figure 10.7. Triangles with adjacency. The vertices connected with solid lines
belong to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

10.1.12 Line Strips with Adjacency

Line strips with adjacency are specified with mode LINE_STRIP_ADJACENCY and
are similar to line strips, except that each line segment has a pair of adjacent ver-
tices that can be accessed by a geometry shader. If a geometry shader is not active,
the adjacent vertices are ignored.

A line segment is drawn from the ¢ 4+ 2nd vertex to the 7 + 3rd vertex for each
t=20,1,...,n — 1, where there are n + 3 vertices passed. If there are fewer than
four vertices, all vertices are ignored. For line segment ¢, the ¢ 4 1st and ¢ + 4th
vertex are considered adjacent to the ¢ 4+ 2nd and 7 + 3rd vertices, respectively (see
figure 10.6).

10.1.13 Triangles with Adjacency

Triangles with adjacency are specified with mode TRIANGLES_ADJACENCY, and
are similar to separate triangles except that each triangle edge has an adjacent ver-
tex that can be accessed by a geometry shader. If a geometry shader is not active,
the adjacent vertices are ignored.

The 67 + 1st, 67 + 3rd, and 6¢ + 5th vertices (in that order) determine a triangle
for each ¢ = 0,1,...,n — 1, where there are 6n + k vertices passed. k is either
0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are ignored. For triangle i,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 372

Figure 10.8. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

the 7 4+ 2nd, ¢ + 4th, and 7 + 6th vertices are considered adjacent to edges from the
¢ + 1st to the ¢ 4+ 3rd, from the ¢ 4 3rd to the ¢ 4 5th, and from the ¢ + 5th to the
1 + 1st vertices, respectively (see figure 10.7).

10.1.14 Triangle Strips with Adjacency

Triangle strips with adjacency are specified with mode TRIANGLE_STRIP_—
ADJACENCY, and are similar to triangle strips except that each triangle edge has
an adjacent vertex that can be accessed by a geometry shader. If a geometry shader
is not active, the adjacent vertices are ignored.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices passed. k is either O or 1; if & is 1, the final vertex is ignored. If

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 373

Primitive Vertices Adjacent Vertices
Primitive Ist | 2nd | 3rd | 122 | 23 | 3/1
only 4 =0,n=1) 1 3 5 2 6 4
first (¢ = 0) 1 3 5 2 7 4
middle (¢ odd) 2043 | 2¢0+1 | 264+5 | 2¢0—1 | 2i+4 | 2047
middle (¢ even) 2041 | 20 4+3 | 26+5 | 2¢0—1|2i+7 | 2044
last(t=mn—1,70dd) | 2¢0+3 | 20+1|20+5|20—1|20+4]|2i+6
last(t=mn—1,7even) | 20+1 | 20+3 | 20+5 | 20—1 | 20 4+6 | 21 +4

Table 10.1: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the Ist, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0,n = 1), the first triangle of several (i = 0,n > 0), “odd” middle
triangles (i = 1,3,5...), “even” middle triangles (i = 2,4,6,...), and special
cases for the last triangle, when ¢ is either even or odd. For the purposes of this
table, the first vertex passed is numbered 1 and the first triangle is numbered 0.

there are fewer than 6 vertices, the entire primitive is ignored. Table 10.1 describes
the vertices and order used to draw each triangle, and which vertices are considered
adjacent to each edge of the triangle (see figure 10.8).

10.1.15 Separate Patches

Separate patches are specified with mode PATCHES. A patch is an ordered collec-
tion of vertices used for primitive tessellation (section 11.2). The vertices compris-
ing a patch have no implied geometric ordering. The vertices of a patch are used by
tessellation shaders and the fixed-function tessellator to generate new point, line,
or triangle primitives.

Each patch in the series has a fixed number of vertices, which is specified by
calling

void PatchParameteri(enum pname, int value);

with prname set to PATCH_VERTICES.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 374

Errors

An INVALID_ENUM error is generated if pname is not PATCH_VERTICES.

An INVALID_VALUE error is generated if value is less than or equal to
zero, or greater than the implementation-dependent maximum patch size (the
value of MAX_PATCH_VERTICES). The patch size is initially three vertices.

If the number of vertices in a patch is given by v, the vi + 1st through vi 4 vth
vertices (in that order) determine a patch for each 7 = 0,1,...n — 1, where there
are vn + k vertices. k is in the range [0, v — 1]; if k is not zero, the final k vertices
are ignored.

10.1.16 General Considerations For Polygon Primitives

Depending on the current state of the GL, a polygon primitive generated from a
drawing command with mode POLYGON, QUADS, QUAD_STRIP, TRIANGLE_FAN,
TRIANGLE_STRIP, TRIANGLES, TRIANGLES_ADJACENCY, or TRIANGLE_-
STRIP_ADJACENCY may be rendered in one of several ways, such as outlining
its border or filling its interior. The order of vertices in such a primitive is signif-
icant in lighting (see section 12.2.1.1), polygon rasterization (see section 14.6.1)
and fragment shading (see section 15.2.2).

Only convex polygons are guaranteed to be drawn correctly by the GL. If a
specified polygon is nonconvex when projected onto the window, then the rendered
polygon need only lie within the convex hull of the projected vertices defining its
boundary.

10.1.17 Polygon Edges

Each edge of each polygon primitive generated is flagged as either boundary or
non-boundary. These classifications are used during polygon rasterization; some
modes affect the interpretation of polygon boundary edges (see section 14.6.4).
By default, all edges are boundary edges, but the flagging of polygons, separate
triangles, or separate quadrilaterals may be altered by calling

void EdgeFlag(boolean flag);
void EdgeFlagv(const boolean *flag);

to change the value of a flag bit. If flag is zero, then the flag bit is set to FALSE; if
flag is non-zero, then the flag bit is set to TRUE.

When a primitive of type POLYGON, TRIANGLES, or QUADS is drawn, each
vertex transferred begins an edge. If the edge flag bit is TRUE, then each specified

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.2. CURRENT VERTEX ATTRIBUTE VALUES

vertex begins an edge that is flagged as boundary. If the bit is FALSE, then induced
edges are flagged as non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

10.2 Current Vertex Attribute Values

The commands in this section are used to specify current attribute values. These
values are used by drawing commands to define the attributes transferred for a
vertex when a vertex array defining a required attribute is not enabled, as described
in section 10.3.

Current attribute values also define the values transferred when specifying ver-
tices between Begin and End, as described in section 10.7.

10.2.1 Current Generic Attributes

Vertex shaders (see section 11.1) access an array of 4-component generic vertex
attributes. The first slot of this array is numbered zero, and the size of the array is
specified by the value of the implementation-dependent constant MAX_VERTEX_ -
ATTRIBS.

The current values of a generic shader attribute declared as a floating-point
scalar, vector, or matrix may be changed at any time by issuing one of the com-
mands

void VertexAttrib{1234}{sfd}(uint index, T values);
void VertexAttrib{123}{sfd}v(uint index, const
T *values);
void VertexAttrib4{bsifd ub us ui}v(uint index, const
T *values);
void VertexAttrib4Nub(uint index, ubyte x, ubytey,
ubyte z, ubyte w);
void VertexAttrib4N{bsi ub us ui}v(uint index, const
T *values);
void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, const
T *values);
void VertexAttribl4{b s ub us}v(uint index, const
T *values);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

375

10.2. CURRENT VERTEX ATTRIBUTE VALUES 376

void VertexAttribL{1234}d(uint index, const T values);
void VertexAttribL.{1234}dv(uint index, const T *values);
void VertexAttribP{1234}ui (uint index, enum

type, boolean normalized, uint value) ;
void VertexAttribP{1234}uiv (uint index, enum

type, boolean normalized, const uint *value) ;

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [—1, 1] range as described in equations 2.1 and 2.2, re-
spectively.

The VertexAttribI* commands specify signed or unsigned fixed-point values
that are stored as signed or unsigned integers, respectively. Such values are referred
to as pure integers.

The VertexAttribL* commands specify double-precision values that will be
stored as double-precision values.

The VertexAttribP* commands specify up to four attribute component values
packed into a single natural type type as described in section 10.3.8. fype must be
INT_2_10_10_10_REV, UNSIGNED_INT_2_10_10_10_REV, or UNSIGNED_-—
INT_10F_11F_11F_REV, specifying signed, unsigned, or unsigned floating-point
data, respectively. The first one (), two (z,y), three (x,y, z), or four (x,y, z, w)
components of the packed data are consumed by VertexAttribPlui, VertexAt-
tribP2ui, VertexAttribP3ui, and VertexAttribP4ui, respectively. If normalized
is TRUE, signed or unsigned components are converted to floating-point by normal-
izing to [—1, 1] or [0, 1] respectively. If normalized is FALSE, signed and unsigned
components are directly cast to floating-point. For floating-point formats, normal-
ized is ignored. The number of components specified must be no greater than the
number of components in the packed type. For VertexAttribP*uiv, value contains
the address of a single uint containing the packed attribute components.

All other VertexAttrib* commands specify values that are converted directly
to the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.2. CURRENT VERTEX ATTRIBUTE VALUES

in increasing slot numbers.

When values for a vertex shader attribute variable are sourced from a current
generic attribute value, the attribute must be specified by a command compatible
with the data type of the variable. The values loaded into a shader attribute variable
bound to generic attribute index are undefined if the current value for attribute index
was not specified by

o VertexAttrib[1234]* or VertexAttribP*, for single-precision floating-point
scalar, vector, and matrix types

o VertexAttribI[1234]i or VertexAttribI[1234]iv, for signed integer scalar
and vector types

o VertexAttribI[1234]ui or VertexAttribI[1234]uiv, for unsigned integer
scalar and vector types

o VertexAttribL*, for double-precision floating-point scalar and vector types.

Setting generic vertex attribute zero specifies a vertex, as described in sec-
tion 10.7.2. Setting any other generic vertex attribute updates the current values of
the attribute. There are no current values for vertex attribute zero.

There is no aliasing among generic attributes and conventional attributes. In
other words, an application can set all MAX_VERTEX_ATTRIBS generic attributes
and all conventional attributes without fear any attribute overwriting the value of
another attribute.

Errors

An INVALID_VALUE error is generated for all VertexAttrib* commands
if index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_ENUM error is generated by VertexAttribP4ui and Vertex-
AttribP4uiv if type is UNSIGNED_INT_10F_11F_11F_REV.

10.2.2 Current Conventional Attributes

When using fixed-function vertex processing, or a vertex shader using conventional
vertex attributes, current values for these attributes are defined by the commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(const T *coords);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

377

10.2. CURRENT VERTEX ATTRIBUTE VALUES 378

specify the current homogeneous texture coordinates, named s, ¢, r, and q.
Texture coordinates may be stored as packed components within a larger natu-
ral type. Such data may be specified using

void TexCoordP{1234}ui (enum type,uint coords) ;
void TexCoordP{1234}uiv (enum fype, const uint
*coords) ;

This command specifies up to four components as described above, packed
into a single natural type as described in section 10.3.8. The type parameter
must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, speci-
fying signed or unsigned data, respectively. The first one (x), two (z,y), three
(x,y, z), or four (x,y, z,w) components of the packed data are consumed by Tex-
CoordP1lui*, TexCoordP2ui*, TexCoordP3ui*, and TexCoordP4ui*, respec-
tively. For TexCoordP*uiv, coords contains the address of a single uint con-
taining the packed texture coordinate components.

The TexCoord*1* family of commands set the s coordinate to the provided
single argument while setting ¢ and 7 to 0 and ¢ to 1. Similarly, TexCoord*2* sets
s and ¢ to the specified values, r to 0 and ¢ to 1; TexCoord*3* sets s, ¢, and r, with
q set to 1, and TexCoord*4* sets all four texture coordinates.

Implementations must support at least two sets of texture coordinates. The
commands

void MultiTexCoord{1234}{sifd} (enum texture, T coords) ;
void MultiTexCoord{1234}{sifd}v (enum fexture, const T
xcoords) ;
void MultiTexCoordP{1234}ui (enum texture, enum
type, uint coords) ;
void MultiTexCoordP{1234}uiv (enum texture, enum
type, const uint *coords) ;

take the coordinate set to be modified as the texture parameter. texture is one of the
tokens TEXTURE4, indicating that texture coordinate set ¢ is to be modified. ¢ must
be in the range zero to the value of MAX_TEXTURE_COORDS minus one.

The TexCoord* commands are exactly equivalent to the corresponding Mul-
tiTexCoord* commands with texture set to TEXTUREQ.

Specifying an invalid texture coordinate set for the fexture argument of Multi-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.2. CURRENT VERTEX ATTRIBUTE VALUES 379

void Normal3{bsifd}v(const T *coords);

Byte, short, or integer values passed to Normal are converted to floating-point
values as described in equation 2.2 for the corresponding (signed) type.

Normals may be stored as packed components within a larger natural type.
Such data may be specified using

void NormalP3ui (enum fype, uint normal) ;
void NormalP3uiv (enum type, uint *normal) ;

This specifies a three component normal, packed into the first three (z,y, z)
components of the natural type as described in section 10.3.8. type must be INT_—
2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying signed or
unsigned data, respectively. Individual signed or unsigned components are con-
verted to floating-point values according to equations 2.1 or 2.2, respectively. For
NormalP3uiv, normal contains the address of a single uint containing the packed
normal components.

The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd}v(const T *coord);

There are several ways to set the current color and secondary color. The GL
stores a current single-valued color index, as well as a current four-valued RGBA
color and secondary color. Either the index or the color and secondary color are
significant depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T components);
void Color{34}{bsifd ubusui}v(const T *components);
void SecondaryColor3{bsifd ubusui}(T components);
void SecondaryColor3{bsifd ubusui}v(const

T *components);

The Color command has two major variants: Color3 and Color4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section 12.2.)

The secondary color has only the three value versions. Secondary A is always
set to 1.0.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.2. CURRENT VERTEX ATTRIBUTE VALUES 380

Versions of the Color and SecondaryColor commands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 12.2 on colors and color-
ing). Values outside [0, 1] are not clamped.

RGBA colors may be stored as packed components within a larger natural type.
Such data may be specified using

void ColorP{34}ui (enum type, uint coords) ;

void ColorP{34}uiv (enum fype, const uint *coords) ;

void SecondaryColorP3ui (enum type, uint coords) ;

void SecondaryColorP3uiv (enum type, const uint
*coords) ;

The ColorP* commands set the primary color similarly to Color*, above. The
SecondaryColorP* commands set the secondary color similarly to Secondary-
Color*. type must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_-
10_REV, specifying signed or unsigned data, respectively. Colors are packed into
a single natural type as described in section 10.3.8. The first three (z, y, z) or four
(x,y,z,w) components of the packed data are consumed by *ColorP3ui* and
ColorP4ui, respectively. Individual signed or unsigned components are con-
verted to floating-point values according to equations 2.1 or 2.2, respectively. For
ColorP*uiv and SecondaryColorP*uiv, coords contains the address of a single
uint containing the packed color components.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(const T *index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

10.2.3 Vertex Attribute Queries

Current generic vertex attribute values may be queried using the GetVertexAttrib*
commands as described in section 10.5.

10.2.4 Required State

The state required to support vertex specification consists of four floating-point
numbers per texture coordinate set to store the current texture coordinates s, t,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 381

r, and ¢, three floating-point numbers to store the three coordinates of the current
normal, one floating-point number to store the current fog coordinate, four floating-
point values to store the current RGBA color, four floating-point values to store
the current RGBA secondary color, one floating-point value to store the current
color index, and the value of MAX_ VERTEX ATTRIBS minus one four-component
vectors to store generic vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coor-
dinates or generic attribute zero. The initial texture coordinates are (s,t,r,q) =
(0,0,0,1) for each texture coordinate set. The initial current normal has coor-
dinates (0,0,1). The initial fog coordinate is zero. The initial RGBA color is
(R,G,B,A) = (1,1,1,1) and the initial RGBA secondary color is (0,0,0,1).
The initial color index is 1.

The initial values for all generic vertex attributes are (0.0, 0.0, 0.0, 1.0).

10.3 Vertex Arrays

Vertex data may also be placed into arrays that are stored in the client’s address
space (described here) or in the server’s address space (described in section 10.3.9).
Blocks of data in these arrays may then be used to specify multiple geometric
primitives through the execution of a single GL command.

All of the state required to represent the vertex arrays is stored in a vertex array
object.

10.3.1 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The name space for vertex array objects is the unsigned integers, with zero
reserved by the GL to represent the default vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 382

Errors
An INVALID_VALUE error is generated if # is negative.
Vertex array objects are deleted by calling
void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero

Unused names in arrays that have
been marked as used for the purposes of GenVertexArrays are marked as unused
again. Unused names in arrays are silently ignored, as is the value zero.

Errors
An INVALID_VALUE error is generated if 7 is negative.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state and with the same initial values listed in
23.4-23.7

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 22).

Errors

An INVALID_OPERATION error is generated if array is not zero or a name
returned from a previous call to GenVertexArrays, or if such a name has since
been deleted with DeleteVertexArrays.

Vertex array objects may also be created with the command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS

void CreateVertexArrays(sizei n, uint *arrays);

CreateVertexArrays returns n previously unused vertex array object names in
arrays, each representing a state vector comprising all the state and with the same
initial values listed in 23.4-23.7

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsVertexArray(uint array);

returns TRUE if array is the name of a vertex array object. If array is zero, or a
non-zero value that is not the name of a vertex array object, IsVertexArray returns
FALSE. No error is generated if array is not a valid vertex array object name.

To bind a buffer object to the element array buffer bind point of a vertex array
object, use the command

void VertexArrayElementBuffer(uint vaobj, uint buffer);

vaobj is the name of the
vertex array object, and buffer is zero or the name of the buffer object. If buffer is
zero, any existing element array buffer binding to vaobj is removed.

Errors

An INVALID_OPERATION error is generated if vaobj is not the name of
an existing vertex array object.

An INVALID_OPERATION error is generated if buffer is not zero or the
name of an existing buffer object.

10.3.2 Specifying Arrays for Generic Vertex Attributes

To specify the organization of arrays storing generic vertex attributes of a vertex
array object, use the commands
The commands

void VertexAttribFormat(uint attribindex, int size,
enum type, boolean normalized, uint relativeoffset);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

383

10.3. VERTEX ARRAYS 384

void VertexAttribIFormat(uint attribindex, int size,
enum type, uint relativeoffset);
void VertexAttribLFormat(uint attribindex, int size,
enum tfype, uint relativeoffset);
void VertexArrayAttribFormat(uint vaobj,
uint attribindex, int size, enum type,
boolean normalized, uint relativeoffset);
void VertexArrayAttribIFormat(uint vaobj,
uint attribindex, int size, enum type, uint relativeoffset);
void VertexArrayAttribLFormat(uint vaobj,
uint attribindex, int size, enum type, uint relativeoffset);

For VertexAttrib*Format, the vertex array object is that bound to VERTEX_—
ARRAY_BINDING. For VertexArrayAttrib*Format, vaobj is

the name of the vertex array object.

attribindex identifies the generic vertex attribute array. size indicates the num-
ber of values per vertex that are stored in the array, as well as their component
ordering. type specifies the data type of the values stored in the array.

Table 10.2 indicates the allowable values for size and type. A type of BYTE,
UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, FLOAT,
HALF_FLOAT, or DOUBLE indicates the corresponding GL data type shown in
table 8.7. A type of FIXED indicates the data type fixed. A type of
INT_2_10_10_10_REVOr UNSIGNED_INT_2_10_10_10_REV indicates respec-
tively, four signed or unsigned elements packed into a single uint. A type
of UNSIGNED_INT_10F_11F_11F REV indicates two unsigned 11-bit floating-
point elements and one unsigned 10-bit floating-point element packed into a sin-
gle uint. Encoding of the unsigned 11- and 10-bit floating-point values is de-
scribed in sections 2.3.4.3 and 2.3.4.4, respectively. The types INT_2_10_10_-
10_REV, UNSIGNED_INT_2_10_10_10_REV and UNSIGNED_INT_10F_11F_ -
11F_REV all correspond to the term packed in table 10.2. The components are
packed as shown in table 8.13. packed is not a GL type, but indicates commands
accepting multiple components packed into a single uint.

The “Integer Handling” column in 10.2 10.3 indicates how integer
and fixed-point data types are handled. “cast” means that they are converted to
floating-point directly. “normalize” means that they are converted to floating-point
by normalizing to [0, 1] (for unsigned types) or [—1, 1] (for signed types), as de-
scribed in equations 2.1 and 2.2, respectively. “integer” means that they remain as
integer values. “flag” means that either “cast” or “normalized” applies, depending
on whether the normalized flag to the command is TRUE or FALSE, respectively.

The normalized flag is ignored for floating-point data types, including fixed,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 385
sizes and
Component Integer
Command Ordering Handling | types
VertexAttribFormat 1,2,3,4,BGRA | flag byte, ubyte, short,
ushort, int, uint,
fixed, float, half,
double, packed
VertexAttribIFormat 1,2,3,4 integer byte, ubyte, short,
ushort, int, uint
VertexAttribLFormat 1,2,3,4 n/a double

Table 10.2: Vertex array sizes (values per vertex) and data types for generic vertex
attributes. See the body text for a full description of each column.

float, half, double, and any packed types that have floating-point compo-

nents.

If size is BGRA, vertex array values are always normalized, irrespective of the

“normalize” table entry.

If type is UNSIGNED_INT_10F_11F_11F_REV, vertex array values are never
normalized, irrespective of the “normalize” table entry.
relativeoffset is a byte offset of the first element relative to the start of the vertex
buffer binding this attribute fetches from.

Errors

An INVALID_OPERATION error is generated by VertexArrayAt-

trib*Format if vaobj is not

the name of an existing vertex array object.

An INVALID_VALUE error is generated if attribindex is greater than or
equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_VALUE error is generated if size is not one of the values
shown in table 10.2 for the corresponding command.

An INVALID_ENUM error is generated if fype is not one of the parameter
token names from table 8.7 corresponding to one of the allowed GL data types
for that command as shown in table 10.2.

An INVALID_ENUM error is generated by VertexAttribIFormat and Ver-
texAttribLFormat if fype is UNSIGNED_INT_10F_11F_11F_REV.

An INVALID_OPERATION error is generated under any of the following

conditions:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 386

size is BGRA and type is not UNSIGNED_BYTE, INT_2_10_10_10_REV
or UNSIGNED_INT_2_10_10_10_REV;

e fype is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_-
REV, and size is neither 4 nor BGRA;

type is UNSIGNED_INT_10F_11F_11F_ REV and size is not 3;

size 1S BGRA and normalized i1s FALSE.

An INVALID_VALUE error is generated if relativeoffset is larger than the
value of MAX_VERTEX_ATTRIB_RELATIVE_OFFSET.

The source of data for a generic vertex attribute may be determined by attaching
a buffer object to a vertex array object with the commands

void BindVertexBuffer(uint bindingindex, uint buffer,
intptr offset, sizei stride);

void VertexArrayVertexBuffer(uint vaobj,
uint bindingindex, uint buffer, intptr offset,
sizei stride);

For BindVertexBuffer, the vertex array object is the currently bound vertex
array object. For VertexArrayVertexBuffer, vaobj is

the name of the vertex array object.

buffer is either zero or

If buffer is zero, any buffer object bound to bindingindex is detached.

If buffer is not the name of an existing buffer object, the GL first creates a new
state vector, initialized with a zero-sized memory buffer and comprising all the
state and with the same initial values listed in table 6.2, just as for BindBuffer.
buffer is then attached to the specified bindingindex of the vertex array object.

When sourcing vertex data from the buffer object, offset specifies the offset in
basic machine units of the first element in the vertex buffer. Pointers to the ¢th and
(i 4+ 1)st elements of the array differ by stride basic machine units, the pointer to
the (7 + 1)st element being greater.

If the operation is successful no change is made to the state of the newly bound
buffer object, and any previous binding to bindingindex is broken.

Errors

An INVALID_OPERATION error is generated by VertexArrayVer-
texBuffer if vaobj is not the name of an existing vertex array object.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 387

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_VALUE error is generated if stride or offset is negative, or if
stride is greater than the value of MAX_VERTEX_ATTRIB_STRIDE.

The source of data for multiple vertex attributes may be determined by attach-
ing multiple existing buffer objects to a vertex array object with the commands

void BindVertexBuffers(uint first, sizei count, const
uint *buffers, const intptr *offsets, const
sizeil *strides);

void VertexArrayVertexBuffers(uint vaobj, uint first,
sizei count, const uint *buffers, const
intptr *offsets, const sizei *strides);

For BindVertexBuffers, the vertex array object is the currently bound vertex

array object. For VertexArrayVertexBuffers, vaobj is
the name of the vertex array object.

count existing buffer objects are bound to vertex buffer binding points num-
bered first through first 4+ count — 1. If buffers is not NULL, it specifies an array
of count values, each of which must be zero or the name of an existing buffer ob-
ject. offsets and strides specify arrays of count values indicating the offset of the
first element and stride between elements in each buffer, respectively. If buffers is
NULL, each affected vertex buffer binding point from first through first+count—1
will be reset to have no bound buffer object. In this case, the offsets and strides
associated with the binding points are set to default values, ignoring offsets and
strides.

BindVertexBuffers is equivalent (assuming no errors are generated) to:

for (1 = 0; i < count; i++) {
if (buffers == NULL) {
Bind VertexBuffer (first + i, 0, 0, 16);
} else {

Bind VertexBuffer (first + i, buffers(i]l, offsets[i],
strides[1]) ;

}

except that buffers will not be created if they do not exist.
VertexArray VertexBuffers is equivalent to the pseudocode above, but replac-
ing Bind VertexBuffer(args) with VertexArrayVertexBuffers(vaobj, args).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 388

The values specified in buffers, offsets, and strides will be checked separately
for each vertex buffer binding point. When a value for a specific vertex buffer
binding point is invalid, the state for that binding point will be unchanged and an
error will be generated. However, state for other vertex buffer binding points will
still be changed if their corresponding values are valid.

Errors

An INVALID_OPERATION error is generated by VertexArrayVer-
texBuffers if vaobj is not the name of an existing vertex array object.

An INVALID_OPERATION error is generated if first + count is greater
than the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_OPERATION error is generated if any value in buffers is not
zero or the name of an existing buffer object (per binding).

An INVALID_VALUE error is generated if any value in offisets or strides is
negative, or if any value in strides is greater than the value of MAX_VERTEX_ -
ATTRIB_STRIDE (per binding).

The association between a vertex attribute and the vertex buffer binding used
by that attribute is set by the command

void VertexAttribBinding(uint attribindex,
uint bindingindex);

void VertexArrayAttribBinding(uint vaobj, uint attribindex,
uint bindingindex);

For VertexAttribBinding, the vertex array object is the currently bound vertex
array object. For VertexArrayAttribBinding, vaobj is
the name of the vertex array object.

Errors

An INVALID_OPERATION error is generated by VertexArrayAttrib-
Binding if vaobj is not the name of an existing vertex array object.

An INVALID_VALUE error is generated if attribindex is greater than or
equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. When size is BGRA, it indicates four values. The values

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 389

within each array element are stored sequentially in memory. However, if size is
BGRA, the first, second, third, and fourth values of each array element are taken
from the third, second, first, and fourth values in memory respectively.

The commands

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

void VertexAttribLPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

control vertex attribute state, a vertex buffer binding, and the mapping between
a vertex attribute and a vertex buffer binding. They are equivalent (assuming no
errors are generated) to:

VertexAttrib*Format (index, size, type, {normalized, }, 0);
VertexAttribBinding (index, index) ;
if (stride '= 0) {
effectiveStride = stride;
} else {
compute ef fectiveStride based on size and type;
}

VERTEX_ATTRIB_ARRAY STRIDE [index] = stride;
// This sets VERTEX_BINDING_STRIDE to effectiveStride
VERTEX_ATTRIB_ARRAY_POINTER [index] = pointer;
Bind VertexBuffer (:index, buffer bound to ARRAY_BUFFER,
(char =*)pointer — (char =*)NULL, effectiveStride);

If stride is specified as zero, then array elements are stored sequentially.

Errors

An INVALID_VALUE error is generated if stride is greater than the value
of MAX_VERTEX_ATTRIB_STRIDE.
An INVALID_OPERATION error is generated if
no buffer is bound to ARRAY_BUFFER, and pointer is not
NULL.
In addition, any of the errors defined by VertexAttrib*Format and Ver-
texAttribBinding may be generated if the parameters passed to those com-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS

mands in the equivalent code above would generate those errors.

An individual generic vertex attribute array in a vertex array object is enabled
with the commands

void EnableVertexAttribArray(uint index);
void EnableVertexArrayAttrib(uint vaobj, uint index);

and is disabled with the commands

void DisableVertexAttribArray(uint index);
void DisableVertexArrayAttrib(uint vaobj, uint index);

index identifies the generic vertex attribute array to enable or disable. For En-
ableVertexAttribArray and DisableVertexAttribArray, the vertex array object
is the currently bound vertex array object. For Enable VertexArrayAttrib and Dis-
ableVertexArrayAttrib, vaobj is
the name of the vertex array object.

Errors

An INVALID_OPERATION error is generated by EnableVertexArrayAt-
trib and DisableVertexArrayAttrib if vaobj is not the name of an
existing vertex array object.

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_ VERTEX_ ATTRIBS.

10.3.3 Specifying Arrays for Fixed-Function Attributes

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

390

10.3. VERTEX ARRAYS 391

void EdgeFlagPointer(sizei stride, const void *pointer);

void FogCoordPointer(enum type, sizei stride, const
void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
const wvoid *pointer);

specify the location and organization of arrays to store vertex coordinates, normals,
colors, secondary colors, color indices, edge flags, fog coordinates, and the value
of MAX_TEXTURE_COORDS multiple texture coordinate sets, respectively.

size, type, stride, and pointer have the same meaning as in VertexAt-
trib*Pointer , and table 10.3 indicates the allowable values of size and type for
these commands in the same fashion as table 10.2. type UNSIGNED_INT_10F_-
11F_11F_REV is not permitted for any of these commands.

Because edge flags are always type boolean, EdgeFlagPointer has no type
argument.

Because normals are always specified with three values, NormalPointer has
no size argument. Likewise, because color indices and edge flags are always spec-
ified with a single value, IndexPointer and EdgeFlagPointer also have no size
argument.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with array set to VERTEX_ARRAY, NORMAI_ARRAY, COLOR_ARRAY,
SECONDARY_COLOR_ARRAY, INDEX_ARRAY, EDGE_FLAG_ARRAY, FOG_-—
COORD_ARRAY, or TEXTURE_COORD_ARRAY, for the vertex, normal, color,
secondary color, color index, edge flag, fog coordinate, or texture coordinate array,
respectively.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 392

sizes and
Component | Integer
Command Ordering | Handling | types

Table 10.3: Fixed-function vertex array sizes (values per vertex) and data types.
Columns are interpreted in the same fashion as table 10.2.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 393

Errors

An INVALID_VALUE error is generated if array is not one of the values
listed above describing a fixed-function attribute array.

The command
void ClientActiveTexture(enum fexture);

is used to select the vertex array client state parameters to be modified by the Tex-
CoordPointer command and the array affected by EnableClientState and Dis-
ableClientState with parameter TEXTURE_COORD_ARRAY. This command sets the
client state variable CLIENT_ACTIVE_TEXTURE. Each texture coordinate set has
a client state vector which is selected when this command is invoked. This state
vector includes the vertex array state. This call also selects the texture coordinate
set state used for queries of client state.

Errors

An INVALID_ENUM error is generated if fexture is not one of the tokens
TEXTURE4, where ¢ is in the range zero to the value of MAX_TEXTURE_COORDS
(the implementation-dependent number of texture coordinate sets) minus one.

10.3.4 Vertex Attribute Divisors

Each generic vertex attribute has a corresponding divisor which modifies the rate
at which attributes advance, which is useful when rendering multiple instances of
primitives in a single draw call. If the divisor is zero, the corresponding attributes
advance once per vertex. Otherwise, attributes advance once per divisor instances
of the set(s) of vertices being rendered. A generic attribute is referred to as in-
stanced if its corresponding divisor value is non-zero.

The divisor value for attributes taken from a vertex array object is set with the
commands

void VertexBindingDivisor(uint bindingindex,
uint divisor);

void VertexArrayBindingDivisor(uint vaobj,
uint bindingindex, uint divisor);

For VertexBindingDivisor, the vertex array object is the currently bound ver-
tex array object. For VertexArrayBindingDivisor, vaobj is zero, indicating the

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 394

the name of the vertex array object. These com-
mands set the divisor for the buffer bound to the specified bindingindex of the
vertex array object to divisor.

Errors

An INVALID_OPERATION error is generated by VertexArrayBindingDi-
visor if vaobj is not the name of an existing vertex array object.

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

The command
void VertexAttribDivisor(uint index, uint divisor);
is equivalent to (assuming no errors are generated):

VertexAttribBinding (index, index) ;
VertexBindingDivisor (index, divisor) ;

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

10.3.5 Transferring Array Elements

When an vertex is transferred to the GL by DrawArrays, DrawElements, or the
other Draw* commands described below, each generic attribute is expanded to four
components. If size is one then the component of the attribute is specified by the
array; the y, z, and w components are implicitly set to 0, 0, and 1, respectively. If
size is two then the x and y components of the attribute are specified by the array;
the z and w components are implicitly set to O and 1, respectively. If size is three
then x, y, and z are specified, and w is implicitly set to 1. If size is four then all
components are specified.

10.3.6 Primitive Restart

Primitive restart is enabled or disabled by calling one of the commands

void Enable(enum farget);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 395

and
void Disable(enum rarget);

with target PRIMITIVE_RESTART. The command
void PrimitiveRestartIndex(uint index);

specifies a vertex array element that is treated specially when primitive
restart is enabled. This value is called the primitive restart index.

When one of the *DrawElements* commands transfers a set of generic at-
tribute array elements to the GL, if the index within the vertex arrays correspond-
ing to that set is equal to the primitive restart index, then the GL does not process
those elements as a vertex. Instead, it is as if the drawing command ended with
the immediately preceding transfer, and another drawing command is immediately
started with the same parameters, but only transferring the immediately following
element through the end of the originally specified elements.

When one of the *BaseVertex drawing commands specified in section 10.4 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

10.7.4

Primitive restart can also be enabled or disabled with a target of PRIMITIVE_—
RESTART_FIXED_INDEX. In this case, the primitive restart index is equal to
2N _ 1, where N is 8, 16 or 32 if the type is UNSIGNED_BYTE, UNSIGNED_-
SHORT, or UNSIGNED_INT, respectively, and the index value specified by Primi-
tiveRestartIndex is ignored.

If both PRIMITIVE_RESTART and PRIMITIVE_RESTART_FIXED_INDEX are
enabled, the index value determined by PRIMITIVE_RESTART_FIXED_INDEX is
used.

Note that primitive restart is not performed for array elements transferred by
any drawing command not taking a type parameter, including
all of the *Draw* commands other than *DrawElements™.

Implementations are not required to support primitive restart for separate
patch primitives (primitive type PATCHES). Support can be queried by calling
GetBooleanv with pname PRIMITIVE_RESTART_FOR_PATCHES_SUPPORTED.
A value of FALSE indicates that primitive restart is treated as disabled when draw-
ing patches, no matter the value of the enables. A value of TRUE indicates that
primitive restart behaves normally for patches.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 396

10.3.7 Robust Buffer Access

Robust buffer access is enabled by creating a context with robust access enabled
through the window system binding APIs. When enabled, indices within the el-
ement array (see section 10.3.10) that reference vertex data that lies outside the
enabled attribute’s vertex buffer object result in reading zero. It is not possible to
read vertex data from outside the enabled vertex buffer objects or from another GL
context, and these accesses do not result in abnormal program termination.

10.3.8 Packed Vertex Data Formats

Vertex data formats UNSIGNED_INT_2_10_10_10_REV and INT_2_10_10_-
10_REV describe packed, 4 component formats stored in a single 32-bit word.

For UNSIGNED_INT_2_10_10_10_REV, the first (), second (y), and third (2)
components are represented as 10-bit unsigned integer values and the fourth (w)
component is represented as a 2-bit unsigned integer value.

For INT_2_10_10_10_REV, the z, y and z components are represented as 10-
bit signed two’s complement integer values and the w component is represented as
a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Tables 10.4 and 10.5 describe how these components are laid out in a 32-bit
word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

] : ; :

Table 10.4: Packed component layout for non-BGRA formats. Bit numbers are
indicated for each component.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

(v] : y :

Table 10.5: Packed component layout for BGRA format. Bit numbers are indicated
for each component.

Vertex data format UNSIGNED_INT_10F_11F_11F_REV describes a packed,
3-component format that is stored in a single 32-bit word. The first (z), and sec-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 397

ond (y) components are represented as 11-bit unsigned floating-point values, and
the third (z) component is represented as a 10-bit unsigned floating-point value.
Table 10.6 describes how these components are laid out in a 32-bit word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

’ z y X

Table 10.6: Packed component layout for UNSIGNED_INT_10F_11F_11F_REV
format. Bit numbers are indicated for each component.

10.3.9 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options described in section 10.3. GL implementations are expected
to (at minimum) be optimized for data with all components represented as floats,
as well as for color data with components represented as either floats or unsigned
bytes.

A buffer object binding point is added to the client state associated with each
vertex array type and index. The commands that specify the locations and orga-
nizations of vertex arrays copy the buffer object name that is bound to ARRAY_—
BUFFER to the binding point corresponding to the vertex array type or index being
specified. For example, the VertexAttribPointer command copies the value of
ARRAY_BUFFER_BINDING (the queriable name of the buffer binding correspond-
ing to the target ARRAY_BUFFER) to the client state variable VERTEX_ATTRIB_-
ARRAY_BUFFER_BINDING for the specified index.

The drawing commands using vertex arrays described in section 10.4 and sec-
tion 10.7 operate as previously defined, except that data for enabled vertex and
attrib arrays are sourced from buffers if the array’s buffer binding is non-zero.

When an array is sourced from a buffer object for a vertex attribute, the
bindingindex set with VertexAttribBinding for that attribute indicates which ver-
tex buffer binding is used. The sum of the relativeoffset set for the attribute
with VertexAttrib*Format and the offset set for the vertex buffer with Bind Ver-
texBuffer is used as the offset in basic machine units of the first element in that
buffer’s data store.

When a generic attribute array is sourced from client memory, the vertex at-
tribute binding state is ignored. Instead, the pointer, size, type, and stride parame-
ters set with VertexAttrib*Pointer for that attribute indicate the location in client
memory of attribute values and their size, type, and stride, respectively.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.3. VERTEX ARRAYS 398

It is acceptable for vertex or attribute arrays to be sourced from any combina-
tion of client memory and various buffer objects during a single rendering opera-
tion.

10.3.10 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format
options that are supported for client-side index arrays. Initially zero is bound
to ELEMENT_ARRAY_BUFFER, indicating that DrawElements, DrawRangeEle-
ments, and DrawElementsInstanced are to source their indices from arrays
passed as their indices parameters, and that MultiDrawElements is to source its
indices from the array of pointers to arrays passed in as its indices parameter.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with farget set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 6.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,

DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from that buffer object, wusing their indices parameters as off-
sets into the buffer object in the same fashion as described in section 10.3.9.
DrawElementsBaseVertex, DrawRangeElementsBaseVertex, and DrawEle-
mentsInstancedBaseVertex also source their indices from that buffer object,
adding the basevertex offset to the appropriate vertex index as a final step before in-
dexing into the vertex buffer; this does not affect the calculation of the base pointer
for the index array. Finally, MultiDrawElements and MultiDrawElementsBa-
seVertex also source their indices from that buffer object, using its indices param-
eter as a pointer to an array of pointers that represent offsets into the buffer object.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

10.3.11 Indirect Commands in Buffer Objects

Arguments to the indirect commands DrawArraysIndirect, DrawElementsIndi-
rect, MultiDrawArraysIndirect, and MultiDrawElementsIndirect (see sec-
tion 10.4), and to DispatchComputelndirect (see section 19) may be sourced
from the buffer object currently bound to the corresponding indirect buffer rar-
get (see table 10.7), using the command’s indirect parameter as an offset into the
buffer object in the same fashion as described in section 10.3.9. Buffer objects are

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 399

Indirect Command Name Indirect Buffer target

DrawArraysIndirect DRAW_INDIRECT_BUFFER
DrawElementsIndirect DRAW_INDIRECT_BUFFER
MultiDrawArraysIndirect DRAW_INDIRECT_BUFFER

MultiDrawElementsIndirect | DRAW_INDIRECT_BUFFER
DispatchComputelndirect DISPATCH_INDIRECT_BUFFER

Table 10.7: Indirect commands and corresponding indirect buffer targets.

created and/or bound to a farget as described in section 6.1. Initially zero is bound
to each target.

Arguments are stored in buffer objects as structures (for *Draw*Indirect) or
arrays (for DispatchComputelndirect) of tightly packed 32-bit integers.

10.4 Drawing Commands Using Vertex Arrays
The command

void DrawArraysOnelnstance(enum mode, int first,
sizel count, int instance, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices. Elements first through first + count — 1
of each enabled non-instanced array are transferred to the GL. If count is zero, no
elements are transferred.

mode specifies what kind of primitives are constructed, and must be one of the
primitive types defined in section 10.1.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element index that is transferred to the GL,
for all vertices, is given by

instance .
—— | + baseinstance
divisor

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 400

If an array corresponding to an attribute required by a vertex shader is not
enabled, then the corresponding element is taken from the current attribute state
(see section 10.2).

If an array is enabled, the corresponding current vertex attribute value is unaf-
fected by the execution of DrawArraysOnelnstance.

The index of any element transferred to the GL by DrawArraysOnelnstance
is referred to as its vertex ID, and may be read by a vertex shader as g1_vertexID.
The vertex ID of the ith element transferred is first + i.

The value of instance may be read by a vertex shader as g1_InstancelD, as
described in section 11.1.3.9.

Errors

An INVALID_ENUM error is generated if mode is not one of the primitive
types defined in section 10.1.

Specifying first < 0 results in undefined behavior. Generating an
INVALID_VALUE error is recommended in this case.

An INVALID_VALUE error is generated if count is negative.

The command
void DrawArrays(enum mode, int first, sizei count);
is equivalent to
DrawArraysOnelnstance (mode, first, count, 0, 0);
The command

void DrawArraysInstancedBaselnstance(enum mode,
int first, sizei count, sizei instancecount,
uint baseinstance);

behaves identically to DrawArrays except that instancecount instances of the
range of elements are executed and the value of instance advances for each it-
eration. Those attributes that have non-zero values for divisor, as specified by
VertexAttribDivisor, advance once every divisor instances. Additionally, the first
element within those instanced vertex attributes is specified in baseinstance.

DrawArraysInstancedBaselnstance is equivalent (assuming no errors are
generated) to:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 401

if (mode, count, or instancecount is invalid)
generate appropriate error
else {
for (1 = 0; 1 < instancecount; i++) {
DrawArraysOnelnstance (mode, first, count, i,
baseinstance) ;

}

The command

void DrawArraysInstanced(enum mode, int first,
sizeil count, sizei instancecount);

is equivalent to

DrawArraysInstancedBaselnstance (mode, first, count, instancecount,

The command

void DrawArraysIndirect(enum mode, const
void *indirect);

is equivalent to

typedef struct {
uint count;
uint instanceCount;
uint first;
uint baselInstance;
} DrawArraysIndirectCommand;

DrawArraysIndirectCommand xcmd =
(DrawArraysIndirectCommand =*)indirect;

DrawArraysInstancedBaselnstance (mode, cmd->first, cmd->count,
cmd->instanceCount, cmd->baselnstance);

Unlike DrawArraysInstanced, first is unsigned
and cannot cause an error.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 402

Errors

An INVALID_OPERATION error is generated if the command would
source data beyond the end of the buffer object.

An INVALID_VALUE error is generated if indirect is not a multiple of the
size, in basic machine units, of uint.

All elements of DrawArraysIndirectCommand are tightly packed 32-bit
values.
The command

void MultiDrawArrays(enum mode, const int *first,
const sizei *count, sizei drawcount);

behaves identically to DrawArrays except that drawcount separate ranges of el-
ements are specified instead, all elements are treated as though they are not in-
stanced, and the value of instance remains zero. It is equivalent (assuming no
errors are generated) to:

if (mode or drawcount is invalid)
generate appropriate error
else {
for (i = 0; 1 < drawcount; i++) {
if (count[i] > 0)
DrawArraysOnelnstance (mode, first[i], count[i],
0, 0);

}

The command

void MultiDrawArraysIndirect(enum mode, const
void *indirect, sizeli drawcount, sizei stride);

behaves identically to DrawArraysIndirect except that indirect is treated as an
array of drawcount DrawArraysIndirectCommand structures. indirect contains
the offset of the first element of the array within the buffer currently bound to the
DRAW_INDIRECT buffer binding. stride specifies the distance, in basic machine
units, between the elements of the array. If stride is zero, the array elements are
treated as tightly packed.

It is equivalent (assuming no errors are generated) to:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 403

if (mode is invalid)
generate appropriate error

else {
const ubyte xptr = (const ubyte =*)indirect;
for (i = 0; i < drawcount; i++) {
DrawArraysIndirect (mode, (DrawArraysIndirectCommandx)ptr);
if (stride == 0) {
ptr += sizeof (DrawArraysIndirectCommand) ;
} else {

ptr += stride;

}

Errors

In addition to errors that would be generated by DrawArraysIndirect:

An INVALID_VALUE error is generated if stride is neither zero nor a mul-
tiple of four.

An INVALID_VALUE error is generated if drawcount is not positive.

The command

void DrawElementsOnelnstance(enum mode, sizei count,
enum type, const void *indices, int instance,
int basevertex, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices to the GL.

The index of any element transferred to the GL by DrawElementsOneln-
stance is referred to as its vertex ID, and may be read by a vertex shader as g1_—
VertexID.

vertex ID of the ¢th ele-
ment transferred is the sum of basevertex and the value stored in the currently
bound element array buffer at offset indices + ¢. If the vertex ID is larger than the
maximum value representable by type, it should behave as if the calculation were
upconverted to 32-bit unsigned integers (with wrapping on overflow conditions).
Behavior of DrawElementsOnelnstance is undefined if the vertex ID is negative
for any element, and should be handled as described in section 6.4.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 404

type must be one of UNSIGNED_BYTE, UNSIGNED_SHORT, Or UNSIGNED_-
INT, indicating that the index values are of GL type ubyte, ushort, or uint
respectively. mode specifies what kind of primitives are constructed, and must be
one of the primitive types defined in section 10.1.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element index that is transferred to the GL,
for all vertices, is given by

instance
divisor

J + baseinstance

If an array corresponding to an attribute required by a vertex shader is not
enabled, then the corresponding element is taken from the current attribute state
(see section 10.2).

GL implementations do not restrict index values; any value representable in a
uint may be used. However, for compatibility with OpenGL ES implementations,
the maximum representable index vaue may be queried by calling GetInteger64v
with pname MAX_ELEMENT_INDEX, and will return 232 — 1.

If an array is enabled, the corresponding current vertex attribute value is unaf-
fected by the execution of DrawElementsOnelnstance.

The value of instance may be read by a vertex shader as g1_InstanceID, as
described in section 11.1.3.9.

Errors

An INVALID_ENUM error is generated if mode is not one of the primitive
types defined in section 10.1.

An INVALID_ENUM error is generated if fype is not UNSIGNED_BYTE,
UNSIGNED_ SHORT, Or UNSIGNED INT.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOnelnstance with instance, basevertex and
baseinstance set to zero; the effect of calling

DrawElements (mode, count, type, indices) ;

is equivalent to

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 405

if (mode, count or type is invalid)
generate appropriate error
else
DrawElementsOnelnstance (mode, count, type, indices,
0, 0, 0);

The command

void DrawElementsInstancedBaselnstance(enum mode,
sizei count, enumtype, const void *indices,
sizel instancecount, uint baseinstance);

behaves identically to DrawElements except that instancecount instances of the
set of elements are executed and the value of instance advances between each set.
Instanced attributes are advanced as they do during execution of DrawArraysIn-
stancedBaselnstance, and baseinstance has the same effect. It is equivalent (as-
suming no errors are generated) to:

if (mode, count, type, or instancecount is invalid)
generate appropriate error
else {
for (int i = 0; 1 < instancecount; i++) {
DrawElementsOnelnstance (mode, count, type, indices,
i, 0, baseinstance) ;

}

The command

void DrawElementsInstanced(enum mode, sizei count,
enum type, const void *ndices, sizei instancecount);

behaves identically to DrawElementsInstancedBaselnstance except that basein-
stance is zero. It is equivalent to

DrawElementsInstancedBaselnstance (mode, count, type, indices,
instancecount, 0, 0);

The command

void MultiDrawElements(enum mode, const

sizei *count, enumtype, const void * const *indices,
sizei drawcount);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS

behaves identically to DrawElementsInstanced except that drawcount separate
sets of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instance remains zero. It is equivalent (assuming
no errors are generated) to:

if (mode, drawcount, or type is invalid)
generate appropriate error
else {
for (int i1 = 0; i < drawcount; i++)
DrawElementsOnelnstance (mode, count[i], type,
indices[1]1, 0, 0, 0);

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enumtype, const
void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.
Implementations denote recommended maximum amounts of vertex and in-
dex data, which may be queried by calling GetIntegerv with pnames MAX_—
ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end — start + 1 is
greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

Errors

An INVALID_VALUE error is generated if end < start.

Invalid mode, count, or type parameters generate the same errors as would
the corresponding call to DrawElements.

It is an error for index values (other than the primitive restart index,
when primitive restart is enabled) to lie outside the range [start, end], but
implementations are not required to check for this. Such indices will cause
implementation-dependent behavior.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 407

The commands

void DrawElementsBaseVertex(enum mode, sizei count,
enum fype, const void *indices, int basevertex);

void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);

void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enumtype, const void *indices,
sizel instancecount, int basevertex);

void DrawElementsInstancedBaseVertexBaseIlnstance(
enum mode, sizei count, enumtype, const
void *indices, sizel instancecount, int basevertex,
uint baseinstance);

are equivalent to the commands with the same base name (without the BaseVertex
suffix), except that the basevertex value passed to DrawElementsOnelnstance is
the basevertex value of these commands, instead of zero.

For DrawRangeElementsBaseVertex, the values taken from indices for each
element transferred must be in the range [start, end], prior to adding the basev-
ertex offset. Index values lying outside this range are treated in the same way as
DrawRangeElements.

The command

void DrawElementsIndirect(enum mode, enum type, const
void *indirect);

is equivalent to

typedef struct {
uint count;
uint instanceCount;
uint firstIndex;
int baseVertex;
uint baselInstance;
} DrawElementsIndirectCommand;

if (no element array buffer is bound) {
generate appropriate error
} else {
DrawElementsIndirectCommand *cmd =

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 408

(DrawElementsIndirectCommand =*)indirect;

DrawElementsInstancedBaseVertexBaselnstance (mode,
cmd->count, type,
cmd->firstIndex x size-of-type,
cmd->instanceCount, cmd->baseVertex,
cmd->baselInstance) ;

Errors

An INVALID_OPERATION error is generated if no element array buffer is
bound.

An INVALID_OPERATION error is generated if the command would
source data beyond the end of the buffer object.

An INVALID_VALUE error is generated if indirect is not a multiple of the
size, in basic machine units, of uint.

All elements of DrawElement sIndirectCommand are tightly packed.
The command

void MultiDrawElementsIndirect(enum mode, enum type,
const void *indirect, sizei drawcount, sizei stride);

behaves identically to DrawElementsIndirect except that indirect is treated as an
array of drawcount DrawElementsIndirectCommand structures. indirect con-
tains the offset of the first element of the array within the buffer currently bound
to the DRAW_INDIRECT buffer binding. stride specifies the distance, in basic ma-
chine units, between the elements of the array. If stride is zero, the array elements
are treated as tightly packed.

It is equivalent (assuming no errors are generated) to:

if (mode or type is invalid)
generate appropriate error
else {
const ubyte *ptr = (const ubyte =x)indirect;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 409

for (i = 0; i < drawcount; i++) {
DrawElementsIndirect (mode, type,
(DrawElementsIndirectCommandx)ptr) ;

if (stride == 0) {
ptr += sizeof (DrawElementsIndirectCommand) ;
} else {

ptr += stride;

}

Errors

In addition to errors that would be generated by DrawElementsIndirect:
An INVALID_VALUE error is generated if stride is neither zero nor a mul-
tiple of four.

An INVALID_VALUE error is generated if drawcount is not positive.

The command

void MultiDrawElementsBaseVertex(enum mode, const
sizei *count, enumtype, const void * const *indices,
sizel drawcount, const int *basevertex);

behaves identically to DrawElementsBaseVertex, except that drawcount separate
lists of elements are specified instead. It is equivalent (assuming no errors are
generated) to:

if (mode or drawcount is invalid)
generate appropriate error
else {
for (int 1 = 0; 1 < drawcount; i++)
if (count[i] > 0)
DrawElementsBaseVertex (mode, count[i], type,
indices[1], basevertex[1i]) ;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 410

10.4.1 Interleaved Arrays

The command

void InterleavedArrays(enum format, sizei stride, const
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 configurations.
format must be one of the formats in table 10.8.
The effect of

InterleavedArrays (format, stride, pointer) ;
is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error
else {
set e, €c,en, St, Scy Sustey Pey Pns Pv, @and s as a function
of table 10.8 and the value of format.
if (stride '= 0)
effectiveStride
else
effectiveStride = s;
DisableClientState (EDGE_FLAG_ARRAY) ;
DisableClientState (INDEX_ARRAY) ;
DisableClientState (SECONDARY_COLOR_ARRAY) ;
DisableClientState (FOG_COORD_ARRAY) ;
if (e) {
EnableClientState (TEXTURE_COORD_ARRAY) ;
TexCoordPointer (s;, FLOAT, effectiveStride, pointer);

stride;

} else
DisableClientState (TEXTURE_COORD_ARRAY) ;
if (e) {

EnableClientState (COLOR_ARRAY) ;
ColorPointer (s., t., effectiveStride, pointer + p.) ;

} else
DisableClientState (COLOR_ARRAY) ;
if (ep) {

EnableClientState (NORMAL_ARRAY) ;
NormalPointer (FLOAT, effectiveStride, pointer + p,) ;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS

411

’ format \ et \ € \ en \ St \ Se \ Sy \ te
V2F False | False | False 2
V3F False | False | False 3
C4UB_V2F False | True | False 4 | 2 | UNSIGNED_BYTE
C4UB_V3F False | True | False 4 | 3 | UNSIGNED_BYTE
C3F_V3F False | True | False 313 FLOAT
N3F_V3F False | False | True 3
C4F_N3F_V3F False | True | True 4 | 3 FLOAT
T2F_V3F True | False | False | 2 3
T4F_VAF True | False | False | 4 4
T2F_C4UB_V3F True | True | False | 2 | 4 | 3 | UNSIGNED_BYTE
T2F_C3F_V3F True | True | False | 2 | 3 3 FLOAT
T2F_N3F_V3F True | False | True | 2 3
T2F_CAF_N3F_V3F | True | True | True | 2 | 4 | 3 FLOAT
T4F_CAF_N3F_V4F | True | True | True | 4 | 4 | 4 FLOAT
’ Jormat ‘ Pc ‘ Pn ‘ Po ‘ S ‘
V2F 0 2f
V3F 0 3f
C4UB_V2F 0 c c+2f
C4UB_V3F 0 c c+3f
C3F_V3F 0 3f 6f
N3F_V3F 0 3f 6f
C4F_N3F_V3F 0 | 4f 7f 10f
T2F_V3F 2f 5f
T4F_VAF 4f 8f
T2F_C4UB_V3F 2f c+2f | c+5f
T2F_C3F_V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F_CA4F_N3F_V3F | 2f | 6f 9f 12f
T4F_CAF_N3F_V4AF | 4f | 8f | 11f 15f

Table 10.8: Variables

that direct the execution of InterleavedArrays.

fis

sizeof (float). cis 4 times sizeof (ubyte), rounded up to the nearest
multiple of f. All pointer arithmetic is performed in units of sizeof (ubyte).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.5. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 412

Errors

An INVALID_ENUM error is generated if format is not one of the formats

in table 10.8.
An INVALID_VALUE error is generated if stride is negative.

10.5 Vertex Array and Vertex Array Object Queries
To query parameters of a vertex array object, use the command

void GetVertexArrayiv(uint vaobj, enum pname,
int *param);

vaobj is the name of the
vertex array object. The value of parameter pname of vaobj is returned in param.

pnaﬂu?numtbeELEMENT_ARRAY_BUFFER_BINDING.

Errors

An INVALID_OPERATION error is generated if vaobj is not the

name of an existing vertex array object.
An INVALID_ENUM error is generated if pname is not ELEMENT_ARRAY -

BUFFER_BINDING.

To query parameters of an attribute of a vertex array object, use the commands

void GetVertexArraylndexediv(uint vaobj, uint index,

enum pname, int *param);
void GetVertexArrayIndexed64iv(uint vaobj, uint index,
enum pname, int64 *param);

vaobj is the name of the
vertex array object. The value of parameter pname for attribute index of vaobj is

returned in param.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.5. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 413

For GetVertexArrayIndexediv, pname must be one of VERTEX_ATTRIB_-
ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_SIZE, VERTEX_ATTRIB_—
ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY_TYPE, VERTEX_ATTRIB_ARRAY_ -
NORMALIZED, VERTEX_ATTRIB_ARRAY_TINTEGER, VERTEX_ATTRIB_ARRAY_-
LONG, VERTEX_ATTRIB_ARRAY_DIVISOR, Orf VERTEX_ATTRIB_RELATIVE_-
OFFSET.

For GetVertexArrayIndexed64iv, pname must be VERTEX_BINDING_-—
OFFSET.

Errors

An INVALID_OPERATION error is generated if vaobj is not the
name of an existing vertex array object.

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_ENUM error is generated if pname is not one of the valid
values listed above for the corresponding command.

Queries of vertex array state variables are qualified by the value of VERTEX_-
ARRAY_BINDING to determine which vertex array object is queried. 234
23.7 define the set of state stored in a vertex array object.

To query parameters of an attribute of the currently bound vertex array object,
or current attribute values, use the commands

void GetVertexAttribdv(uint index, enum pname,
double *params);

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

void GetVertexAttribliv(uint index, enum pname,
int *params);

void GetVertexAttribluiv(uint index, enum pname,
uint *params);

void GetVertexAttribLdv(uint index, enum pname,
double *params);

The value of parameter pname for the attribute numbered index of the currently
bound vertex array object is returned in params.

pname must be one of VERTEX_ATTRIB_ARRAY_-
BUFFER_BINDING, VERTEX_ATTRIB_ARRAY ENABLED, VERTEX_ATTRIB_-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.5. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 414

ARRAY_SIZE, VERTEX_ATTRIB_ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY -
TYPE, VERTEX_ATTRIB_ARRAY NORMALIZED, VERTEX_ATTRIB_-—
ARRAY_INTEGER, VERTEX_ATTRIB_ARRAY_LONG, VERTEX_ATTRIB_ARRAY -
DIVISOR, VERTEX_ATTRIB_BINDING, VERTEX ATTRIB_RELATIVE_OFFSET,
or CURRENT_VERTEX_ATTRIB. Note that all the queries except CURRENT_-
VERTEX_ATTRIB return values stored in the currently bound vertex array object
(the value of VERTEX_ARRAY_BINDING).

Queries of VERTEX_ATTRIB_ARRAY BUFFER_BINDING and VERTEX_-
ATTRIB_ARRAY_DIVISOR map the requested attribute index to a binding index
via the VERTEX_ATTRIB_BINDING state, and then return the value of VERTEX_—
BINDING_BUFFER or VERTEX_BINDING_DIVISOR, respectively.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex
attribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type, normalized flag, and unconverted integer flag are set by the
commands VertexAttribPointer and VertexAttribIPointer. The normalized flag
is always set to FALSE by VertexAttribIPointer. The unconverted integer flag is
always set to FALSE by VertexAttribPointer and TRUE by VertexAttribIPointer.

The query CURRENT_VERTEX_ATTRIB returns the current value for the
generic attribute index. GetVertexAttribdv and GetVertexAttribfv read and re-
turn the current attribute values as four floating-point values; GetVertexAttribiv
reads them as floating-point values and converts them to four integer values;
GetVertexAttribliv reads and returns them as four signed integers; GetVertex-
Attribluiv reads and returns them as four unsigned integers; and GetVertexAttri-
bLdv reads and returns them as four double-precision floating-point values. The
results of the query are undefined if the current attribute values are read using one
data type but were specified using a different one.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_OPERATION error is generated if no vertex array object is
bound (see section 10.3.1).
An INVALID_ENUM error is generated if pname is not one of the values

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.6. REQUIRED STATE 415

listed above.

The command

void GetVertexAttribPointerv(uint index, enum pname,
const void **pointer);

obtains the pointer named pname for the vertex attribute numbered index and places
the information in the array pointer. pname must be VERTEX_ATTRIB_ARRAY_—
POINTER. The value returned is queried from the currently bound vertex array
object.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_ OPERATION error is generated if no vertex array object is
bound (see section 10.3.1).

Finally, the buffer bound to ELEMENT_ARRAY_BUFFER may be queried by call-
ing GetIntegerv with pname ELEMENT_ARRAY_BUFFER_BINDING.

10.6 Required State

Let the number of supported generic vertex attributes (the value of MAX_VERTEX_ —
ATTRIBS) be n.

Let the number of supported generic vertex attribute
bindings (the value of MAX_VERTEX_ATTRIB_BINDINGS be k.

Then the state required to implement vertex arrays consists of 7+m+n boolean
values, 7+m+n memory pointers, 7+m-+n integer stride values, 6 +m+n sym-
bolic constants representing array types, 3 +m+n integers representing values per
element, n boolean
values indicating normalization, 7 boolean values indicating whether the attribute
values are pure integers, n boolean values indicating whether the attribute values
are double precision, three in-
tegers for the current array buffer, current element array buffer, and current vertex
array bindings, n unsigned integer vertex attribute binding indices, n unsigned in-
teger relative offsets, k integers representing vertex attribute divisors, k£ unsigned
integer vertex buffer bindings, k& 64-bit integer vertex binding offsets, k& integer
vertex binding strides, an unsigned integer representing the primitive restart index,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.7. DRAWING COMMANDS USING BEGIN AND END 416

and two booleans representing the enable state of primitive restart and primitive
restart with a fixed index.

In the initial state, the boolean values are each FALSE, the memory pointers are
each NULL, the strides are each zero, the array types are each FLOAT, the integers
representing values per element are each four, the normalized and pure integer flags
are each FALSE, the divisors are each zero, the client active texture unit selector
is TEXTUREO, the binding indices are ¢ for each attribute ¢, the relative offsets are
each zero, the vertex binding offsets are each zero, the vertex binding strides are
each 16, the restart index is zero, and the restart enables are both FALSE.

10.7 Drawing Commands Using Begin and End

In addition to the drawing commands described in section 10.4, vertices defining
a sequence of primitives may be transferred to the GL by enclosing commands
defining attributes of those vertices between the two commands

void Begin(enum mode);
void End(void);

mode specifies the primitive type being defined and must be one of the primitive
types defined in section 10.1. There is no limit on the number of vertices that may
be specified between a Begin and an End.

The state required for Begin and End consists of a sixteen-valued integer indi-
cating either one of the possible Begin / End modes, or that no Begin / End mode
is being processed.

Errors

An INVALID_ENUM error is generated by Begin if mode is not one of the
primitive types defined in section 10.1.

An INVALID FRAMEBUFFER_OPERATION error is generated by Begin if
the framebuffer object bound to DRAW_FRAMEBUFFER_BINDING is not frame-
buffer complete (see section 9.4.2).

10.7.1 Transferring Vertices With Vertex Commands

A single vertex is specified between Begin and End by giving its coordinates in
two, three, or four dimensions. This is done using one of several versions of the
Vertex command:

void Vertex{234}{sifd}(T coords);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.7. DRAWING COMMANDS USING BEGIN AND END

void Vertex{234}{sifd}v(const T coords);

Vertex coordinates may be stored as packed components within a larger natural
type. Such data may be specified using

void VertexP{234}ui (enum fype,uint coords) ;
void VertexP{234}uiv (enum type, const uint *coords) ;

These commands specify up to four coordinates as described above, packed
into a single natural type as described in section 10.3.8. The fype parameter
must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, speci-
fying signed or unsigned data respectively. The first two (x,y), three (x,y, 2),
or four (x,y, z,w) components of the packed data are consumed by VertexP2ui,
VertexP3ui, and VertexP4ui, respectively. For VertexP*uiv, coords contains the
address of a single uint containing the packed coordinate components.

A call to any Vertex command specifies four coordinates: x, y, z, and w. The
x coordinate is the first coordinate, y is second, z is third, and w is fourth. A call
to Vertex*2* sets the and y coordinates; the z coordinate is implicitly set to zero
and the w coordinate to one. Vertex*3* sets x, y, and z to the provided values
and w to one. Vertex*4* sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space.

Calling any of the Vertex commands above outside of a Begin / End pair
results in undefined behavior.

10.7.2 Transferring Vertices With Vertex Attribute Zero

Setting generic vertex attribute zero using the VertexAttrib commands in sec-
tion 10.2 also specifies a vertex and the value of its four coordinates; Vertex2*,
Vertex3*, are Vertex4* commands are completely equivalent to the corresponding
VertexAttrib* command with an index of zero.

10.7.3 Bundling Attributes With Vertex Commands

When one of the Vertex commands is called, values of generic attributes re-
quired by the vertex shader, or values of fixed-function attributes required by fixed-
function vertex processing, are taken from the current values defined by the com-
mands in section 10.2. When polygon edge flags are required, they are taken from
the current edge flag defined by EdgeFlag (see section 10.1.17).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

417

10.7. DRAWING COMMANDS USING BEGIN AND END 418

10.7.4 Transferring Vertices With ArrayElement

Vertices may also be transferred between Begin and End with attribute values spec-
ified in vertex arrays (see section 10.3). The command

void ArrayElement(int i);

transfers the ith element of every enabled, non-instanced array, and the first
element of every enabled, instanced array to the GL. The effect of ArrayElement
is the same as the effect of the command sequence

if (normal array enabled)
Normal3[type]v (normal array element i) ;
if (color array enabled)
Color[size][type]v (color array element i) ;
if (secondary color array enabled)
SecondaryColor3[type]v (secondary color array element i) ;
if (fog coordinate array enabled)
FogCoord[type]v (fog coordinate array element i) ;
for (j = 0; j < textureUnits; j++) {
if (texture coordinate set j array enabled)
MultiTexCoord[size][type]v (TEXTUREO + j, texcoord(7,
}
if (color index array enabled)
Index[type]v (color index array element i) ;
if (edge flag array enabled)
EdgeFlagv (edge flag array element 1) ;
for (j = 1; j < genericAttributes; j++) {
if (generic vertex attribute j array enabled) {
if (vertex attrib array divisor 3 > 0)

k = 0;
else
k = 1;

VertexAttrib[size][typelv (], genattrib(j, k));
}
}
if (generic vertex attribute array 0 enabled) {
if (vertex attrib array divisor 0 > 0)

k = 0;
else
k = 1i;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

i));

10.7. DRAWING COMMANDS USING BEGIN AND END 419

VertexAttrib[size][type]lv (0, genattrib (0, k));
} else if (vertex array enabled) {
Vertex[size][type]v (vertex array element 1) ;

}

genattrib (attrib, 1) represents the ith element of the vertex array for
generic attribute attrib, and texcoord (coord, 1) represents the ith element
of the vertex array for texture coordinate set coord. textureUnits and genericAt-
tributes give the number of texture coordinate sets and generic vertex attributes
supported by the implementation, respectively. “[size]” and “[type]” correspond
to the size and type of the corresponding array. For generic vertex attributes, it is
assumed that a complete set of vertex attribute commands exists, even though not
all such commands are provided by the GL.

When an array contains packed data, the pseudocode above will use the packed
equivalent with the type of that data. For example, when a generic vertex attribute
array contains packed data, the VertexAttribP[size]Juiv command will be called
instead of VertexAttrib[size][type]v.

Similarly, when a generic vertex attribute array contains pure integer data,
VertexAttribl[size][type]v will be called; when an array contains fixed-point
data, attribute values are specified in the signed two’s complement 16.16 fixed-
point £ixed format; when an array contains double-precision data, VertexAt-
trib[size][type]v or VertexAttribL[size][type]v will be called, if the data was
specified with VertexAttribPointer or VertexAttribLPointer, respectively; and
when a generic attribute array normalization flag is set, and the array data type is
not FLOAT, HALF_FLOAT, or DOUBLE, VertexAttrib[size]N[type]v will be called.

If ArrayElement is called while primitive restart is enabled (see section 10.3.6
and i is equal to the primitive restart index, then no vertex data is dereferenced, and
no current vertex state is modified. Instead, it is as if End were called, followed by
a call to Begin where mode is the same as the mode used by the previous Begin.

Changes made to array data between the execution of Begin and the corre-
sponding execution of End may affect calls to ArrayElement that are made within
the same Begin / End block in non-sequential ways. That is, a call to ArrayEle-
ment that precedes a change to array data may access the changed data, and a call
that follows a change to array data may access original data.

Specifying ¢ < 0 results in undefined behavior. Generating an INVALID_-
VALUE error is recommended in this case.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.8. RECTANGLES 420

10.7.5 Commands Allowed Between Begin and End

The only GL commands that are allowed within any Begin / End pairs are the
commands for specifying vertex coordinates, vertex colors, normal coordinates,
texture coordinates, generic vertex attributes, and fog coordinates (Vertex, Color,
SecondaryColor, Index, Normal, TexCoord and MultiTexCoord, VertexAttrib,
FogCoord), the ArrayElement command (see section 10.3), the EvalCoord and
EvalPoint commands (see section 21.1), commands for specifying lighting mate-
rial parameters (Material commands; see section 12.2.2), display list invocation
commands (CallList and CallLists; see section 21.4), and the EdgeFlag com-
mand.

Execution of the commands EnableClientState, DisableClientState, Push-
ClientAttrib, PopClientAttrib, ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryCol-
orPointer, VertexPointer, VertexAttribPointer, ClientActiveTexture, Inter-
leavedArrays, and PixelStore is not allowed within any Begin / End pair, but
an error may or may not be generated if such execution occurs. If an error is not
generated, GL operation is undefined. These commands are described in sections
10.3, 8.4.1, and chapter 22.

10.8 Rectangles
There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}(T xI, Tyl, Tx2, Ty2);
void Rect{sifd}v(const T vI[2], const Tv2[2]);

Each command takes either four arguments organized as two consecutive pairs of
(x,y) coordinates, or two pointers to arrays each of which contains an x value
followed by a y value. The effect of the Rect command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.9. CONDITIONAL RENDERING 421

10.9 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES_PASSED)
of the query is zero, or if the result (ANY_SAMPLES_PASSED or ANY_SAMPLES_—
PASSED_CONSERVATIVE) is FALSE, all rendering commands described in sec-
tion 2.4 are discarded and have no effect when issued between BeginConditional-
Render and the corresponding EndConditionalRender.

The effect of commands setting current vertex state, such as Ver-
texAttrib, are undefined. If the result (SAMPLES PASSED) of the query is
non-zero, or if the result (ANY_SAMPLES_PASSED or ANY_SAMPLES_PASSED_-—
CONSERVATIVE) is TRUE, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id.

If mode is QUERY_WAIT, the GL waits for the results of the query to be avail-
able and then uses the results to determine if subsquent rendering commands are
discarded.

If mode is QUERY_NO_WAIT, the GL may choose to unconditionally execute
the subsequent rendering commands without waiting for the query to complete.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

10.9. CONDITIONAL RENDERING 422

If mode is QUERY_BY_REGION_WAIT, the GL will also wait for occlusion
query results and discard rendering commands if the result of the occlusion query is
zero. If the query result is non-zero, subsequent rendering commands are executed,
but the GL may discard the results of the commands for any region of the frame-
buffer that did not contribute to the sample count in the specified occlusion query.
Any such discarding is done in an implementation-dependent manner, but the ren-
dering command results may not be discarded for any samples that contributed to
the occlusion query sample count.

If mode is QUERY_BY_REGION_NO_WAIT, the GL operates as in QUERY_BY_-
REGION_WATIT, but may choose to unconditionally execute the subsequent render-
ing commands without waiting for the query to complete.

If mode is QUERY_WAIT_INVERTED, QUERY_NO_WATIT_INVERTED, QUERY_-
BY_REGION_WAIT INVERTED, Or QUERY BY REGION_NO_WAIT INVERTED
then the condition used to determine whether or not to render subsequent drawing
commands is negated with respect to QUERY_WAIT, QUERY_NO_WAIT, QUERY_—
BY_REGION_WAIT, or QUERY_BY_REGION_NO_WAIT, respectively.

If mode is QUERY_NO_WAIT_INVERTED or QUERY_BY REGION_NO_WAIT -
INVERTED, the GL may choose to unconditionally execute subsequent rendering
commands without waiting for the query to complete.

Errors

An INVALID_OPERATION error is generated by BeginConditionalRen-
der if called while conditional rendering is in progress.

An INVALID_VALUE error is generated by BeginConditionalRender if
id is not the name of an existing query object.

An INVALID_OPERATION error is generated by BeginConditional-
Render if id is the name of a query object with a target other than
SAMPLES_PASSED, ANY SAMPLES_ PASSED, or ANY SAMPLES PASSED_ -
CONSERVATIVE; or if id is the name of a query currently in progress.

An INVALID_ENUM error is generated by BeginConditionalRender
if mode is not QUERY_WAIT, QUERY NO_WAIT, QUERY BY REGION_-—
WAIT, QUERY_BY REGION_NO_WAIT, QUERY WAIT_ INVERTED, QUERY_ -
NO_WAIT_INVERTED, QUERY_BY REGION_WAIT_INVERTED, or QUERY_-—
BY REGION_NO_WAIT_ TINVERTED.

An INVALID_OPERATION error is generated by EndConditionalRender
if called while conditional rendering is not in progress.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 11

Programmable Vertex Processing

When the program object currently in use for the vertex stage (see section 7.3)
includes a vertex shader, its shader is considered active and is used to process
vertices transferred to the GL (see section 11.1). Vertices may be further processed
by tessellation and geometry shaders (see sections 11.2 and 11.3). The resulting
transformed vertices are then processed as described in chapter 13.

If the current vertex stage program object has no vertex shader, or no program
object is current for the vertex stage,

12

11.1 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their associ-
ated data. When the program object currently in use for the vertex stage includes a
vertex shader, its vertex shader is considered active and is used to process vertices.

Vertex attributes are per-vertex values available to vertex shaders, and are spec-
ified as described in section 10.2.

11.1.1 Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to generic
vertex attributes transferred by drawing commands. This binding can be specified
by the application before the program is linked, or automatically assigned by the
GL when the program is linked.

423

11.1. VERTEX SHADERS 424

Data type component Components
layout qualifier | used

scalar 0 or unspecified | x

scalar 1 Y

scalar 2 z

scalar 3 w

two-component vector | O or unspecified
two-component vector | 1 Y, 2)
two-component vector | 2 zZ,w)

(2, y)
(
(
three-component vector | O or unspecified | (z,y, 2)
(
(

three-component vector | 1 Y, Z,w)
four-component vector | O or unspecified x,Y, 2, W)

Table 11.1: Generic attribute components accessed by attribute variables.

When an attribute variable declared using one of the scalar or vector data types
enumerated in table 11.3 is bound to a generic attribute index ¢, its value(s) are
taken from the components of generic attribute 7. The generic attribute components
used depend on the type of the variable and value of the component layout
qualifier (if any) specified in the variable declaration, as identified in table 11.1.
An attribute variable declared using a combination of data type and component
layout qualifier not listed in this table is not supported and will result in shader
compilation errors.

When an attribute variable declared using a matrix type is bound to a generic
attribute index i, its values are taken from consecutive generic attributes beginning
with generic attribute ¢. Such matrices are treated as an array of column vectors
with values taken from the generic attributes identified in table 11.2. Individual col-
umn vectors are taken from generic attribute components according to table 11.1,
using the vector type from table 11.2.

When an attribute variable declared using an array type is bound to generic
attribute index ¢, the active array elements are assigned to consecutive generic at-
tributes beginning with generic attribute <. The number of attributes and compo-
nents assigned to each element are determined according to the data type of array
elements and component layout qualifier (if any) specified in the declaration of
the array, as described above.

For the 64-bit double precision types listed in table 11.3, no default attribute
values are provided if the values of the vertex attribute variable are specified with
fewer components than required for the attribute variable. For example, the fourth

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 425

Data type Column vector type Generic

layout qualifier attributes used
mat2, dmat?2 two-component vector | 7,7+ 1
mat2x3, dmat2x3 | three-component vector | 7,7 + 1
mat2x4, dmat2x4 | four-component vector | i,7+ 1
mat3x2, dmat3x2 | two-component vector i+ 1,7+2
mat3, dmat3 three-component vector | 2,7+ 1,7 + 2
mat3x4, dmnat3x4 | four-component vector | ¢,7+ 1,7+ 2
mat4x2, dmat4x2 | two-component vector | 4,2+ 1,7+ 2,7+ 3
mat4x3, dnat4x3 | three-component vector | ¢,¢+ 1,4+ 2,7+ 3
mat4, dmat4 four-component vector | i, ¢+ 1,44+ 2,7+ 3

Table 11.2: Generic attributes and vector types used by column vectors of matrix
variables bound to generic attribute index z.

Data type | Command

int VertexAttribI1i
ivec2 VertexA ttribI2i
ivec3 VertexA ttribI3i
ivecd VertexA ttribldi
uint VertexAttribI1ui
uvec?2 VertexAttribI2ui
uvec3 VertexAttribI3ui
uvecd VertexAttribI4ui
float VertexAttribl*
vec2 VertexAttrib2*
vec3 VertexAttrib3*
vecd VertexA ttrib4*
double VertexAttribL1d
dvec?2 VertexAttribL2d
dvec3 VertexAttribL.3d
dveci4 VertexAttribL4d

Table 11.3: Scalar and vector vertex attribute types and VertexAttrib* commands
used to set the values of the corresponding generic attribute.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 426

component of a variable of type dvec4 will be undefined if specified using Ver-
texAttribL3dyv, or using a vertex array specified with VertexAttribLPointer and
a size of three.

The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index, but the new
binding becomes effective only when the program is next linked. name must be
a null-terminated string. BindAttribLocation has no effect until the program is
linked. In particular, it doesn’t modify the bindings of active attribute variables in
a program that has already been linked.

When a program is linked, any active attributes without a binding specified
either through BindAttribLocation or explicitly set within the shader text will au-
tomatically be bound to vertex attributes by the GL. Such bindings may be queried
using the command GetAttribLocation. LinkProgram will fail if the assigned
binding of an active attribute variable would cause the GL to reference a non-
existent generic attribute (one greater than or equal to the value of MAX_VERTEX_—
ATTRIBS). LinkProgram will fail if the attribute bindings specified either by
BindAttribLocation or explicitly set within the shader text do not leave enough
space to assign a location for an active matrix attribute or an active attribute array,
both of which require multiple contiguous generic attributes. If an active attribute
has a binding explicitly set within the shader text and a different binding assigned
by BindAttribLocation, the assignment in the shader text is used.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name
to an index, including a name that is never used as an at-
tribute in any vertex shader object. Assigned bindings for attribute variables that
do not exist or are not active are ignored.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 427

Errors

An INVALID_VALUE error is generated if program is not the name of ei-

ther a program or shader object.
An INVALID_OPERATION error is generated if program is the name of a

shader object.
An INVALID_VALUE error is generated if index is greater than or equal to

the value of MAX_VERTEX_ATTRIBS.
An INVALID_OPERATION error is generated if name
with the reserved "gl_" prefix.

To determine the set of active vertex attribute variables used by a program,
applications can query the properties and active resources of the PROGRAM_INPUT
interface of a program including a vertex shader.

Additionally, the command

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,

char *name);

can be used to determine properties of the active input variable assigned the index
index in program object program. If no error occurs, the command is equivalent
(assuming no errors are generated) to:

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName (program, PROGRAM_INPUT,

index, bufSize, length, name) ;
GetProgramResourceiv (program, PROGRAM_INPUT,

index, 1, &props[0], 1, NULL, size);
GetProgramResourceiv (program, PROGRAM_INPUT,

index, 1, s&props[1l], 1, NULL, (int =)type);

For GetActiveAttrib, all active vertex shader input variables are enumerated,
including the special built-in inputs g1_vVertexID and gl_InstanceID.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-

ther a program or shader object.
An INVALID_OPERATION error is generated if program is the name of a

shader object.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 428

An INVALID_VALUE error is generated if index is not the index of an
active input variable in program.

An INVALID_VALUE error is generated for all values of index if program
does not include a vertex shader, as it has no active vertex attributes.

An INVALID_VALUE error is generated if bufSize is negative.

The command
int GetAttribLocation(uint program, const char *name);

can be used to determine the location assigned to the active input variable named
name in program object program.

Errors

If program has been linked successfully but contains no vertex shader, no
error is generated but -1 will be returned.

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated and -1 is returned if program
has not been linked successfully.

Otherwise, the command is equivalent to
GetProgramResourceLocation (program, PROGRAM_INPUT, name) ;

There is an implementation-dependent limit on the number of active attribute
variables in a vertex shader. A program with more
than the value of MAX_VERTEX_ATTRIBS active attribute variables may fail to
link, unless device-dependent optimizations are able to make the program fit within
available hardware resources. For the purposes of this test, attribute variables of
the type dvec3, dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and
dmat4 may count as consuming twice as many attributes as equivalent single-
precision types. While these types use the same number of generic attributes
as their single-precision equivalents, implementations are permitted to consume
two single-precision vectors of internal storage for each three- or four-component
double-precision vector.

The values of generic attributes sent to generic attribute index ¢ are part of
current If a new program object has

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 429

been made active, then these values will be tracked by the GL in such a way that
the same values will be observed by attributes in the new program object that are
also bound to index i.

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing.

11.1.2 Vertex Shader Variables

Vertex shaders can access uniforms belonging to the current program object. Lim-
its on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Vertex shaders also have access to samplers to perform texturing operations, as
described in section 7.10.

11.1.2.1 Output Variables

A vertex shader may define one or more output variables or outputs (see the
OpenGL Shading Language Specification).

The OpenGL Shading Language Specification also defines a set of built-in out-
puts that vertex shaders can write to (see section 7.1(“Built-In Variables”) of the
OpenGL Shading Language Specification). These output variables are used as
the mechanism to communicate values to the next active stage in the vertex pro-
cessing pipeline: either the tessellation control shader, the tessellation evaluation
shader, the geometry shader, or the fixed-function vertex processing stages leading
to rasterization.

If the output variables are passed directly to the vertex processing stages lead-
ing to rasterization, the values of all outputs are expected to be interpolated across
the primitive being rendered, unless flatshaded. Otherwise the values of all out-
puts are collected by the primitive assembly stage and passed on to the subsequent
pipeline stage once enough data for one primitive has been collected.

The number of components (individual scalar numeric values) of output vari-
ables that can be written by the vertex shader, whether or not a tessellation con-
trol, tessellation evaluation, or geometry shader is active, is given by the value

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 430

of the implementation-dependent constant MAX_VERTEX_OUTPUT_COMPONENTS.
For the purposes of counting input and output components consumed by a shader,
variables declared as vectors, matrices, and arrays will all consume multiple com-
ponents. Each component of variables declared as double-precision floating-point
scalars, vectors, or matrices may be counted as consuming two components.

When a program is linked, all components of any outputs written by a vertex
shader will count against this limit. A program whose vertex shader writes more
than the value of MAX_VERTEX_OUTPUT_COMPONENTS components worth of out-
puts may fail to link, unless device-dependent optimizations are able to make the
program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as ver-
tex shader outputs or fragment shader inputs. This limit is given by the value
of the implementation-dependent constant MAX_VARYING_COMPONENTS. The
implementation-dependent constant MAX_VARYING_VECTORS has a value equal to
the value of MAX_VARYING_COMPONENTS divided by four. Each output variable
component used as either a vertex shader output or fragment shader input counts
against this limit, except for the components of g1_Position. A program con-
taining only a vertex and fragment shader that accesses more than this limit’s worth
of components of outputs may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Each program object can specify a set of output variables from one shader to be
recorded in transform feedback mode (see section 13.2). The variables that can be
recorded are those emitted by the first active shader, in order, from the following
list:

e geometry shader
e tessellation evaluation shader
e tessellation control shader

e vertex shader

The set of variables to record can be specified in shader text using the xfb_-
buffer, xfb_offset, or xfb_stride layout qualifiers. When recording out-
put variables of each vertex in transform feedback mode, a fixed amount of mem-
ory is reserved in the buffer bound to each transform feedback buffer binding
point. Each output variable recorded is associated with a binding point, speci-
fied by the xfb_buffer layout qualifier. Each output variable is written to its

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 431

associated transform feedback binding point at an offset specified by the xfb_-
offset layout qualifier, in basic machine units, relative to the base of the mem-
ory reserved for its vertex. The amount of memory reserved in each transform
feedback binding point for a single vertex can be specified using the xfb_stride
layout qualifier. If no xfb_stride qualifier is specified for a binding point,
the stride is derived by identifying the variable associated with the binding point
having the largest offset, and then adding the offset and the size of the variable,
in basic machine units. If any variable associated with the binding point contains
double-precision floating-point components, the derived stride is aligned to the
next multiple of eight basic machine units. If a binding point has no xfb_stride
qualifier and no associated output variables, its stride is zero.

When no xfb_buffer, xfb_offset, or xfb_stride layout qualifiers are
specified, the set of variables to record is specified with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char * const *varyings,
enum bufferMode) ;

program specifies the program object. count specifies the number of output vari-
ables used for transform feedback. varyings is an array of count zero-terminated
strings specifying the names of the outputs to use for transform feedback. The
variables specified in varyings can be either built-in (beginning with "gl1_") or
user-defined variables. Each variable can either be a basic type or an array of ba-
sic types. Structure, array of array and array of structure types cannot be captured
directly. Base-level members of aggregates can be captured by specifying the fully
qualified path identifying the member, using the same rules with which active re-
source lists are enumerated for program interfaces as described in section 7.3.1.1,
with one exception. To allow capturing whole arrays or individual elements of an
array, there are additional rules for array variables. To capture a single element, the
name of the output array is specified with a constant-integer index "name [x]"
where name is the name of the array variable and x is the constant-integer index of
the array element. To capture the whole of the output array, name is specified with-
out the array index or square brackets. Output variables are written out in the order
they appear in the array varyings. bufferMode is either INTERLEAVED_ATTRIBS
or SEPARATE_ATTRIBS, and identifies the mode used to capture the outputs when
transform feedback is active.

The variables in varyings are assigned binding points and offsets sequentially,
as though each were specified using the xfb_buffer and xfb_offset layout
qualifiers. The strides associated with each binding point are derived by adding
the offset and size of the last variable associated with that binding point. The

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 432

first variable in varyings is assigned a binding point and offset of zero. When
bufferMode is INTERLEAVED_ATTRIBS, each subsequent variable is assigned to
the same binding point as the previous variable and an offset equal to the sum of
the offset and size of the previous variable. When bufferMode is SEPARATE_—
ATTRIBS, each subsequent variable is assigned to the binding point following the
binding point of the previous variable with an offset of zero.

Several special identifiers are supported when bufferMode is INTERLEAVED_ —
ATTRIBS. These identifiers do not identify output variables captured in transform
feedback mode, but can be used to modify the binding point and offsets assigned
to subsequent variables. If a string in varyings is gl_NextBuffer, the next vari-
able in varyings will be assigned to the next binding point, with an offset of zero.
If a string in varyings is g1_SkipComponentsl, gl_SkipComponents2, gl_—
SkipComponents3, or gl_SkipComponents4, the variable is treated as specify-
ing a one- to four-component floating-point output variable with undefined values.
No data will be recorded for such strings, but the offset assigned to the next variable
in varyings and the stride of the assigned binding point will be affected.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if count is negative.

An INVALID_ENUM error is generated if bufferMode is not SEPARATE_ -
ATTRIBS or INTERLEAVED ATTRIBS.

An INVALID_VALUE error is generated if bufferMode is SEPARATE -
ATTRIBS and count is greater than the value of the implementation-dependent
limit MAX_TRANSFORM _FEEDBACK_SEPARATE_ATTRIBS.

An INVALID_OPERATION error is generated if any pointer in varyings
identifies the special names gl_NextBuffer,
gl_SkipComponentsl, gl_SkipComponents2, gl_SkipComponentsa3,
or gl_SkipComponents4 and bufferMode is not INTERLEAVED_ATTRIBS,
or if the number of gl_NextBuffer pointers in varyings is greater than or
equal to the value of MAX_TRANSFORM FEEDBACK_BUFFERS.

The state set by TransformFeedbackVaryings or using transform feedback
layout qualifiers has no effect on the execution of the program until program is
subsequently linked. When LinkProgram is called, the program is linked so that
the values of the specified outputs for the vertices of each primitive generated by

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 433

the GL are written to one or more buffer objects. If the set of output variables to
record in transform feedback mode is specified by TransformFeedback Varyings,
a program will fail to link if:

e the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex, tessellation control, tessellation evaluation, or
geometry shader;

e any variable name specified in the varyings array is not one of gl_-
NextBuffer, gl_SkipComponentsl, gl_SkipComponents2, gl_-
SkipComponents3, or gl_SkipComponentsd4, and is not declared as a
built-in or user-defined output variable in the shader stage whose outputs
can be recorded;

e any two entries in the varyings array specify the same output variable or
include the same elements from an array variable (different elements from
the same array are permitted);

o the total number of components to capture in any output in varyings is greater
than the value of MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS
and the buffer mode is SEPARATE_ATTRIBS;

e the total number of components to capture is greater than the value of
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS; or

o the set of outputs to capture to any single binding point includes outputs from
more than one vertex stream.

If the set of output variables to record in transform feedback mode is specified
using layout qualifiers, a program will fail to link if:

e any pair of variables associated with the same binding point overlap in mem-
ory (where the offset of the first variable is less than or equal to the offset of
the second, but the sum of the offset and size of the first variable is greater
than the offset of the second);

e any binding point has a stride declared using the xfb_stride layout qual-
ifier and the sum of the offset and size of any variable associated with that
binding point exceeds the value of this stride;

e any variable containing double-precision floating-point components

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 434

— has an xfb_offset layout qualifier that is not a multiple of eight;
or

— is associated with a binding point with an xfb_stride layout qual-
ifier that is not a multiple of eight;

e the sum of the offset and size of any variable exceeds the maximum
stride supported by the implementation (four times the value of MAX_ -
TRANSFORM _FEEDBACK INTERLEAVED_COMPONENTS); Or

e the xfb_stride layout qualifier for any binding point exceeds the maxi-
mum stride supported by the implementation.

For transform feedback purposes, each component of outputs declared as
double-precision floating-point scalars, vectors, or matrices is considered to con-
sume eight basic machine units, and each component of any other type is consid-
ered to consume four basic machine units.

To determine the set of output variables in a linked program object that will
be captured in transform feedback mode and the binding points to which those
variables are written, applications can query the properties and active resources
of the TRANSFORM_FEEDBACK_VARYING and TRANSFORM_FEEDBACK_BUFFER
interfaces.

If the shader used to record output variables for transform feedback varyings
uses the xfb_buffer, xfb_offset, or xfb_stride layout qualifiers, the val-
ues specified by TransformFeedbackVaryings are ignored, and the set of vari-
ables captured for transform feedback is instead derived from the specified Layout
qualifiers.

Additionally, the command

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

can be used to enumerate properties of a single output variable captured in trans-
form feedback mode, and is equivalent (assuming no errors are generated) to:

const enum props[] = { ARRAY_SIZE, TYPE };

GetProgramResourceName (program, TRANSFORM_FEEDBACK_VARYING,
index, bufSize, length, name) ;

GetProgramResourceiv (program, TRANSFORM_FEEDBACK_VARYING,
index, 1, &props[0], 1, NULL, size);

GetProgramResourceiv (program, TRANSFORM_FEEDBACK_VARYING,
index, 1, &props[l], 1, NULL, (int =x)type);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 435

Special output names (e.g., gl_NextBuffer, gl_SkipComponentsl)
passed to TransformFeedbackVaryings in the varyings array are counted as out-
puts to be recorded for the purposes of determining the value of TRANSFORM_—
FEEDBACK_VARYINGS and for determining the variable selected by index in Get-
TransformFeedbackVarying. If index identifies g1_NextBuffer, the values
zero and NONE will be written to size and type, respectively. If index is of the form
gl_SkipComponentsn, the value NONE will be written to fype and the number of
components n will be written to size.

GetTransformFeedbackVarying may be used to query any transform feed-
back output variable, not just those specified with TransformFeedbackVarying.

11.1.3 Shader Execution

If there is an active program object present for the vertex, tessellation control,
tessellation evaluation, or geometry shader stages, the executable code for these
active programs is used to process incoming vertex
12
The following sequence of operations is performed:

e Vertices are processed by the vertex shader (see section 11.1) and assembled
into primitives as described in sections 10.1 through 10.3.

e If the current program contains a tessellation control shader, each indi-
vidual patch primitive is processed by the tessellation control shader (sec-
tion 11.2.1). Otherwise, primitives are passed through unmodified. If active,
the tessellation control shader consumes its input patch and produces a new
patch primitive, which is passed to subsequent pipeline stages.

e If the current program contains a tessellation evaluation shader, each indi-
vidual patch primitive is processed by the tessellation primitive generator
(section 11.2.2) and tessellation evaluation shader (see section 11.2.3). Oth-
erwise, primitives are passed through unmodified. When a tessellation eval-
uation shader is active, the tessellation primitive generator produces a new
collection of point, line, or triangle primitives to be passed to subsequent
pipeline stages. The vertices of these primitives are processed by the tes-
sellation evaluation shader. The patch primitive passed to the tessellation
primitive generator is consumed by this process.

o [f the current program contains a geometry shader, each individual primitive
is processed by the geometry shader (section 11.3). Otherwise, primitives
are passed through unmodified. If active, the geometry shader consumes its

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 436

input patch primitive. However, each geometry shader invocation may emit
new vertices, which are arranged into primitives and passed to subsequent
pipeline stages.

Following shader execution, the fixed-function operations described in chap-
ter 13 are applied.

Special considerations for vertex shader execution are described in the follow-
ing sections.

11.1.3.1 Shader Only Texturing

This section describes texture functionality that is accessible through shaders
(of all types). Also refer to chapter 8 and to section 8.9(“Texture Functions”) of
the OpenGL Shading Language Specification.

11.1.3.2 Texel Fetches

The OpenGL Shading Language texelFetch builtins provide the ability to ex-
tract a single texel from a specified texture image. Texel fetches cannot access cube
maps.

The integer coordinates (i, j, k) passed to texelFetch are used to point-
sample the texture image. The level of detail accessed is computed by adding the
specified level-of-detail parameter lod to the base level of the texture, levelpqge.

Texel fetch proceeds similarly to the steps described for texture access in sec-
tion 11.1.3.5, with the exception that none of the operations controlled by sampler
object state are performed, including:

e level of detail clamping;
e texture wrap mode application;

o filtering (however, a mipmapped minification filter is required to access any
level of detail other than the base level);

e depth comparison.
The steps that are performed are:

e validation of texel coordinates as described below, including the computed
level-of-detail, (i, j, k), the specified level for array textures, and texture
completeness;

e sRGB conversion of fetched values as described in section 8.24;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 437

e conversion to base color Cy;

e component swizzling.

The results of texelFetch builtins are undefined if any of the following
conditions hold:

o the computed level of detail is less than the texture’s base level (levelp,se) or
greater than the maximum defined level, ¢ (see section 8.14.3)

e the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

o the layer specified for array textures is negative, or greater than or equal to
the number of layers in the array texture

e the texel coordinates (i, j, k) refer to a texel outside the defined extents of
the computed level of detail, where any of

and wg, hg, and dg refer to the width, height, and depth of
the image, as defined in section 8.5.3.

o the texture being accessed is not complete, as defined in section 8.17

e the texture being accessed is not bound.

In all the above cases, if the context was created with robust buffer access
enabled (see section 10.3.7), the result of the texture fetch is zero, or a texture
source color of (0,0,0, 1) in the case of a texel fetch from an incomplete texture.
If robust buffer access is not enabled, the result of the texture fetch is undefined in
each case.

11.1.3.3 Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 438

Multisample textures are not filtered when samples are fetched, and filter state is
ignored.

The results of a multisample texel fetch are undefined if any of the following
conditions hold:

e the texel coordinates (i, j, k) refer to a texel outside the extents of the multi-
sample texture image, where any of

1<0 1> Wy
J<0 J = hs
k<0 k> ds

and the size parameters ws, hg, and dg refer to the width, height, and depth
of the image

o the specified sample number does not exist (is negative, or greater than or
equal to the number of samples in the texture).

Additionally, these fetches may only be performed on a multisample texture
sampler. No other sample or fetch commands may be performed on a multisample
texture sampler.

11.1.3.4 Texture Queries

The texturesSize functions provide the ability to query the size of a texture im-
age. The level-of-detail value lod passed in as an argument to the texture size
functions is added to the levely,s. Of the texture to determine a texture image level.
The dimensions of that image level are then returned.
If the computed texture image level is outside the range [levely,se, g, the results
are undefined. When querying the size of an array texture, both the dimensions and
the layer count are returned.

The textureQueryLevels functions provide the ability to query the num-
ber of accessible mipmap levels in a texture object associated with a sampler uni-
form. If the sampler is associated with an immutable-format texture object (see
section 8.19), the value returned will be:

min{levelymmut — 1, levelngs } — levelpgse + 1.

Otherwise, the value returned will be an implementation-dependent value between
zero and g — levelp,se + 1, where ¢ is defined in section 8.14.3. The value returned
in that case must satisfy the following constraints:

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 439

e if all levels of the texture have zero size, zero must be returned
o if the texture is complete, a non-zero value must be returned

o if the texture is complete and is accessed with a minification filter requiring
mipmaps, ¢ — levelp,se + 1 must be returned.

11.1.3.5 Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum number
of texture image units available to shaders are the values of the implementation-
dependent constants

e MAX_VERTEX_TEXTURE_IMAGE_UNITS (for vertex shaders),

e MAX_ TESS_CONTROL_TEXTURE_IMAGE_UNITS (for tessellation control
shaders),

e MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS (for tessellation eval-
uation shaders),

e MAX_ GEOMETRY_TEXTURE_IMAGE_UNITS (for geometry shaders),
e MAX_ TEXTURE_IMAGE_UNITS (for fragment shaders), and

e MAX COMPUTE_TEXTURE_IMAGE_UNITS (for compute shaders).

combined cannot use more than the value of MAX_ COMBINED -
TEXTURE_IMAGE_UNITS texture image units. If more than one pipeline stage
accesses the same texture image unit, each such access counts separately against
the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a shader, the filtered texture value 7 is
computed in the manner described in sections 8.14 and 8.15, and converted to a
texture base color Cj, as shown in table 16.1, followed by application of the texture
swizzle as described in section 16.1 to compute the texture source color C's and A,.

The resulting four-component vector (Rg, G, Bs, As) is returned to the shader.
Texture lookup functions (see section 8.9(“Texture Functions”) of the OpenGL
Shading Language Specification) may return floating-point, signed, or unsigned
integer values depending on the function and the internal format of the texture.

In shaders other than fragment shaders, it is not possible to perform automatic
level-of-detail calculations using partial derivatives of the texture coordinates with

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 440

respect to window coordinates as described in section 8.14. Hence, there is no au-
tomatic selection of an image array level. Minification or magnification of a texture
map is controlled by a level-of-detail value optionally passed as an argument in the
texture lookup functions. If the texture lookup function supplies an explicit level-
of-detail value [, then the pre-bias level-of-detail value \pgse(z,y) = [(replacing
equation 8.8). If the texture lookup function does not supply an explicit level-of-
detail value, then A\pgse(x,y) = 0. The scale factor p(x,y) and its approximation
function f(x,y) (see equation 8.12) are ignored.

Texture lookups involving textures with depth component data generate a tex-
ture base color (U, either using depth data directly or by performing a comparison
with the D,.; value used to perform the lookup, as described in section 8.23.1,
and expanding the resulting value R, to a color C;, = (Ry, 0,0, 1). In either case,
swizzling of Cj, is then performed as described above, but only the first compo-
nent C,[0] is returned to the shader. The comparison operation is requested in the
shader by using any of the shadow sampler types (samplerxShadow), and in the
texture using the TEXTURE_COMPARE_MODE parameter. These requests must be
consistent; the results of a texture lookup are undefined if any of the following
conditions are true:

e The sampler used in a texture lookup function is not one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, and the texture object’s base internal format is not DEPTH_-
COMPONENT or DEPTH_STENCIL

e The sampler used in a texture lookup function is one of the shadow sampler
types, the texture object’s base internal format is DEPTH_STENCIL, and the
DEPTH_STENCIL_TEXTURE_MODE is not DEPTH_COMPONENT.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL and the value of DEPTH_STENCIL_TEXTURE_MODE is
not STENCIL_INDEX.

Texture lookups involving texture objects with an internal format of DEPTH_—
STENCIL can read the stencil value as described in section 8.23 by setting
the DEPTH_STENCIL_TEXTURE_MODE to STENCIL_INDEX. Textures with a

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 441

STENCIL_INDEX base internal format may also be used to read stencil data. The
stencil value is read as an integer and assigned to R;. An unsigned integer sampler
should be used to lookup the stencil component, otherwise the results are unde-
fined.

If a sampler is used in a shader and the sampler’s associated texture is not
complete, as defined in section 8.17, (0.0,0.0,0.0,1.0), in floating-point, will be
returned for a non-shadow sampler and O for a shadow sampler. In this case, if
the sampler is declared in the shader as a signed or unsigned integer sampler type,
undefined values are returned as specified in section 9.9(“Texture Functions”) of
the OpenGL Shading Language Specification when the texture format and sampler
type are unsupported combinations.

11.1.3.6 Atomic Counter Access

Shaders have the ability to set and get atomic counters. The maximum num-
ber of atomic counters available to shaders are the values of the implementation-
dependent constants

e MAX_VERTEX_ATOMIC_COUNTERS (for vertex shaders),

e MAX_TESS_CONTROL_ATOMIC_COUNTERS (for tessellation control
shaders),

e MAX_TESS_EVALUATION_ATOMIC_COUNTERS (for tessellation evaluation
shaders),

e MAX GEOMETRY_ATOMIC_COUNTERS (for geometry shaders),
e MAX_FRAGMENT_ATOMIC_COUNTERS (for fragment shaders), and

e MAX_COMPUTE_ATOMIC_COUNTERS (for compute shaders).

All active shaders combined cannot use more than the value of MAX -
COMBINED_ATOMIC_COUNTERS atomic counters. If more than one pipeline stage
accesses the same atomic counter, each such access counts separately against the
MAX_COMBINED_ATOMIC_COUNTERS limit.

11.1.3.7 Image Access

Shaders have the ability to read and write to textures using image uniforms. The
maximum number of image uniforms available to individual shader stages are the
values of the implementation-dependent constants

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 442

e MAX_VERTEX_IMAGE_UNIFORMS (for vertex shaders),
e MAX_TESS_CONTROL_IMAGE_UNIFORMS (for tessellation control shaders),

e MAX_TESS_EVALUATION_IMAGE_UNIFORMS (for tessellation evaluation
shaders),

e MAX_GEOMETRY_IMAGE_UNIFORMS (for geometry shaders),
e MAX_ FRAGMENT_IMAGE_UNIFORMS (for fragment shaders), and

e MAX_ COMPUTE_IMAGE_UNIFORMS (for compute shaders).

All active shaders combined cannot use more than the value of MAX_ -
COMBINED_IMAGE_UNIFORMS image uniforms. If more than one shader stage
accesses the same image uniform, each such access counts separately against the
MAX_COMBINED_IMAGE_UNIFORMS limit.
11.1.3.8 Shader Storage Buffer Access

Shaders have the ability to read and write to buffer memory via buffer variables in
shader storage blocks. The maximum number of shader storage blocks available to
shaders are the values of the implementation-dependent constants

e MAX_VERTEX_SHADER_STORAGE_BLOCKS (for vertex shaders)

e MAX_ TESS_CONTROL_SHADER_STORAGE_BLOCKS (for tessellation control
shaders)

e MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS (for tessellation
evaluation shaders)

e MAX_GEOMETRY_SHADER_STORAGE_BLOCKS (for geometry shaders)
e MAX_ FRAGMENT_SHADER_STORAGE_BLOCKS (for fragment shaders)

e MAX_ COMPUTE_SHADER_STORAGE_BLOCKS (for compute shaders)

All active shaders combined cannot use more than the value of MAX -
COMBINED_SHADER_STORAGE_BLOCKS shader storage blocks. If more than one
pipeline stage accesses the same shader storage block, each such access counts
separately against this combined limit.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 443

11.1.3.9 Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables g1_vertexID and gl_InstanceID.

gl_vertexID holds the integer index ¢ explicitly passed to ArrayElement to
specify the vertex, or implicitly passed by DrawArrays or one of the other drawing
commands defined in section 10.4. The value of g1_Vertex1D is defined if and
only if:

e the vertex comes from a vertex array command that specifies a complete
primitive (a vertex array drawing command other than ArrayElement).

e all enabled vertex arrays have non-zero buffer object bindings, and

e the vertex does not come from a display list, even if the display list was
compiled using one of the vertex array commands described above with data
sourced from buffer objects.

gl_InstancelID holds the integer instance number of the current primitive in
an instanced draw call (see section 10.4).

Section 7.1(“Built-In Variables”) of the OpenGL Shading Language Specifica-
tion also describes these variables.

11.1.3.10 Shader Outputs

A vertex shader can write to built-in as well as user-defined output variables. These
values are expected to be interpolated across the primitive it outputs, unless they
are specified to be flat shaded. Refer to section 13.4 and sections 4.3.6(“Output
Variables”), 4.5(“Interpolation Qualifiers”), and 7.1(“Built-In Variables™) of the
OpenGL Shading Language Specification for more detail.

The built-in outputs gl_FrontColor,
gl_BackColor, gl_FrontSecondaryColor, and gl_BackSecondaryColor
hold the front and back colors for the primary and secondary colors for the current
vertex.

The built-in output g1_TexCoord[] is an array and holds the set of texture
coordinates for the current vertex.

The built-in output g1_FogFragCoord is used as the ¢ value described in
section 16.4.

The built-in output g1_Position is intended to hold the homogeneous vertex
position. Writing g1_Position is optional.

The built-in output variables g1 Clipvertex,gl_ClipDistance and gl_-
CullDistance respectively hold the vertex coordinate, and the clip distance and

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 444

cull distance used in the clipping stage, as described in section 13.5. If clipping is
enabled, only one of g1_ClipVertex and gl_ClipDistance should be written.

The built-in output g1_PointSize, if written, holds the size of the point to be
rasterized, measured in pixels.

11.1.3.11 Position Invariance

If a vertex shader uses the built-in function ftransform to generate a vertex posi-
tion, then this generally guarantees that the transformed position will be the same
whether using this vertex shader or the fixed-function pipeline. This allows for cor-
rect multi-pass rendering algorithms, where some passes use fixed-function vertex
transformation and other passes use a vertex shader. If a vertex shader does not use
ftransform to generate a position, transformed positions are not guaranteed to
match, even if the sequence of instructions used to compute the position match the
sequence of transformations described in section 12.1.

11.1.3.12 Validation

It is not always possible to determine at link time if a program object can execute
successfully, given that LinkProgram can not know the state of the remainder
of the pipeline. Therefore validation is done when the first rendering command
which triggers shader invocations is issued, to determine if the set of active program
objects can be executed.

Errors

An INVALID OPERATION error is generated by any command that trans-
fers vertices to the GL or launches compute work if the current set of active
program objects cannot be executed, for reasons including:

e A program object is active for at least one, but not all of the shader stages
that were present when the program was linked.

e One program object is active for at least two shader stages and a second
program is active for a shader stage between two stages for which the first
program was active. The active compute shader is ignored for the purposes
of this test.

e There is an active program for tessellation control, tessellation evaluation, or
geometry stages with corresponding executable shader, but there is no active
program with executable vertex shader.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1.

VERTEX SHADERS 445

There is no current program object specified by UseProgram, there is a cur-
rent program pipeline object, and the current program for any shader stage
has been relinked since being applied to the pipeline object via UsePro-
gramStages with the PROGRAM_SEPARABLE parameter set to FALSE.

There is no current program object specified by UseProgram, there is a
current program pipeline object, and that object is empty (no executable code
is installed for any stage).

Any two active samplers in the set of active program objects are of different
types, but refer to the same texture image unit.

Any active sampler in the current program object refers to a texture image
unit where fixed-function fragment processing accesses a texture target that
does not match the sampler type.

The sum of the number of active samplers in the program and the number of
texture image units enabled for fixed-function fragment processing exceeds
the combined limit on the total number of texture image units allowed.

The sum of the number of active atomic counters, atomic counter buffers,
image uniforms, shader output resources, shader storage blocks, texture im-
age units, and uniform blocks used by the current program objects exceeds
the corresponding combined limit (the value of MAX_COMBINED_ATOMIC_-—
COUNTERS, MAX_COMBINED_ATOMIC_COUNTER_BUFFERS, MAX_-—
COMBINED_IMAGE_UNIFORMS, MAX_COMBINED_SHADER_OUTPUT_-
RESOURCES, MAX_COMBINED_SHADER_STORAGE_BLOCKS, MAX_ -
COMBINED_TEXTURE_IMAGE_UNITS, and MAX_COMBINED_UNIFORM_-
BLOCKS, respectively).

Fixed-function fragment processing operations will be performed if the pro-

gram object in use has no fragment shader.

The INVALID_OPERATION error generated by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 446

validation. This status may be queried with GetProgramiv (see section 7.13).
If validation succeeded this status will be set to TRUE, otherwise it will be set
to FALSE. If validation succeeded, no INVALID_OPERATION validation error is
generated if program is made current via UseProgram, given the current state. If
validation failed, such errors are generated under the current state.

ValidateProgram will check for all the conditions described in this section,
and may check for other conditions as well. For example, it could give a hint on
how to optimize some piece of shader code. The information log of program is
overwritten with information on the results of the validation, which could be an
empty string. The results written to the information log are typically only use-
ful during application development; an application should not expect different GL
implementations to produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

Separable program objects may have validation failures that cannot be detected
without the complete program pipeline. Mismatched interfaces, improper usage
of program objects together, and the same state-dependent failures can result in
validation errors for such program objects. As a development aid, use the command

void ValidateProgramPipeline(uint pipeline);

to validate the program pipeline object pipeline against the current GL state. Each
program pipeline object has a boolean status, VALIDATE_STATUS, that is modified
as a result of validation. This status may be queried with GetProgramPipelineiv
(see section 7.13). If validation succeeded, no INVALID_OPERATION validation
error is generated if pipeline is bound and no program is made current via UsePro-
gram, given the current state. If validation failed, such errors are generated under
the current state.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.1. VERTEX SHADERS 447

previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

11.1.3.13 Undefined Behavior

When using array, vector or matrix variables in a shader, it is possible to access
a variable with an index computed at run time that is outside the declared extent
of the variable. Such out-of-bounds accesses have undefined behavior, and system
errors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

Robust buffer access can be enabled by creating a context with robust access
enabled through the window system binding APIs. When enabled, out-of-bounds
accesses will be bounded within the working memory of the active program, cannot
access memory owned by other GL contexts, and will not result in abnormal pro-
gram termination. Out-of-bounds access to local and global variables cannot read
values from other program invocations. An out-of-bounds read may return another
value from the active program’s working memory or zero. An out-of-bounds write
may overwrite a value from the active program’s working memory or be discarded.

Out-of-bounds accesses to resources backed by buffer objects cannot read or
modify data outside of the buffer object. For resources bound to buffer ranges, ac-
cess is restricted within the buffer object from which the buffer range was created,
and not within the buffer range itself.

Out-of-bounds reads may return any of the following values:

e Values from anywhere within the buffer object.

e Zero values, or (0,0,0, x) vectors for vector reads where x is a valid value
represented in the type of the vector components and may be any of

— Zero, one, or the maximum representable positive integer value, for
signed or unsigned integer components.

— 0.0 or 1.0, for floating-point components.

Out-of-bounds writes may modify values within the buffer object or be dis-
carded.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 448

Out-of-bounds accesses to arrays of resources, such as an array of textures, can
only access the data of bound resources. Reads from unbound resources return
zero and writes are discarded. It is not possible to access data owned by other GL
contexts.

Applications that require defined behavior for out-of-bounds accesses should
range check all computed indices before dereferencing the array, vector or matrix.

11.2 Tessellation

Tessellation is a process that reads a patch primitive and generates new primitives
used by subsequent pipeline stages. The generated primitives are formed by sub-
dividing a single triangle or quad primitive according to fixed or shader-computed
levels of detail and transforming each of the vertices produced during this subdivi-
sion.

Tessellation functionality is controlled by two types of tessellation shaders: tes-
sellation control shaders and tessellation evaluation shaders. Tessellation is con-
sidered active if and only if there is an active tessellation control or tessellation
evaluation program object.

The tessellation control shader is used to read an input patch provided by the
application, and emit an output patch. The tessellation control shader is run once
for each vertex in the output patch and computes the attributes of that vertex. Addi-
tionally, the tessellation control shader may compute additional per-patch attributes
of the output patch. The most important per-patch outputs are the tessellation lev-
els, which are used to control the number of subdivisions performed by the tessella-
tion primitive generator. The tessellation control shader may also write additional
per-patch attributes for use by the tessellation evaluation shader. If no tessellation
control shader is active, the patch provided is passed through to the tessellation
primitive generator stage unmodified.

If a tessellation evaluation shader is active, the tessellation primitive generator
subdivides a triangle or quad primitive into a collection of points, lines, or triangles
according to the tessellation levels of the patch and the set of 1ayout declarations
specified in the tessellation evaluation shader text. The tessellation levels used to
control subdivision are normally written by the tessellation control shader. If no
tessellation control shader is active, default tessellation levels are instead used.

When a tessellation evaluation shader is active, it is run on each vertex gener-
ated by the tessellation primitive generator to compute the final position and other
attributes of the vertex. The tessellation evaluation shader can read the relative
location of the vertex in the subdivided output primitive, given by an (u,v) or
(u,v,w) coordinate, as well as the position and attributes of any or all of the ver-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 449

tices in the input patch.

Tessellation operates only on patch primitives. Patch primitives are not sup-
ported by pipeline stages below the tessellation evaluation shader.

A non-separable program object or program pipeline object that includes a
tessellation shader of any kind must also include a vertex shader.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if tessellation is active and the primitive mode is not
PATCHES.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the primitive mode is PATCHES and there is no active
tessellation evaluation program.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has a tessellation shader but
no vertex shader.

11.2.1 Tessellation Control Shaders

The tessellation control shader consumes an input patch provided by the applica-
tion and emits a new output patch. The input patch is an array of vertices with at-
tributes corresponding to output variables written by the vertex shader. The output
patch consists of an array of vertices with attributes corresponding to per-vertex
output variables written by the tessellation control shader and a set of per-patch
attributes corresponding to per-patch output variables written by the tessellation
control shader. Tessellation control output variables are per-vertex by default, but
may be declared as per-patch using the patch qualifier.

The number of vertices in the output patch is fixed when the program is linked,
and is specified in tessellation control shader source code using the output layout
qualifier vertices, as described in the OpenGL Shading Language Specifica-
tion. A program will fail to link if the output patch vertex count is not specified
by any tessellation control shader object attached to the program, if it is speci-
fied differently by multiple tessellation control shader objects, if it is less than or
equal to zero, or if it is greater than the implementation-dependent maximum patch
size. The output patch vertex count may be queried by calling GetProgramiv with
pname TESS_CONTROL_OUTPUT_VERTICES.

Tessellation control shaders are created as described in section 7.1, using a type
of TESS_CONTROL_SHADER. When a new input patch is received, the tessellation
control shader is run once for each vertex in the output patch. The tessellation con-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 450

trol shader invocations collectively specify the per-vertex and per-patch attributes
of the output patch. The per-vertex attributes are obtained from the per-vertex out-
put variables written by each invocation. Each tessellation control shader invoca-
tion may only write to per-vertex output variables corresponding to its own output
patch vertex. The output patch vertex number corresponding to a given tessellation
control shader invocation is given by the built-in variable g1_InvocationID. Per-
patch attributes are taken from the per-patch output variables, which may be writ-
ten by any tessellation control shader invocation. While tessellation control shader
invocations may read any per-vertex and per-patch output variable and write any
per-patch output variable, reading or writing output variables also written by other
invocations has ordering hazards discussed below.

11.2.1.1 Tessellation Control Shader Variables

Tessellation control shaders can access uniforms belonging to the current program
object. Limits on uniform storage and methods for manipulating uniforms are
described in section 7.6.

Tessellation control shaders also have access to samplers to perform texturing
operations, as described in section 7.10.

Tessellation control shaders can access the transformed attributes of all vertices
for their input primitive using input variables. A vertex shader writing to output
variables generates the values of these input variables. Values for any inputs that
are not written by a vertex shader are undefined.

Additionally, tessellation control shaders can write to one or more output vari-
ables including per-vertex attributes for the vertices of the output patch and per-
patch attributes of the patch. Tessellation control shaders can also write to a set
of built-in per-vertex and per-patch outputs defined in the OpenGL Shading Lan-
guage. The per-vertex and per-patch attributes of the output patch are used by the
tessellation primitive generator (section 11.2.2) and may be read by a tessellation
evaluation shader (section 11.2.3).

11.2.1.2 Tessellation Control Shader Execution Environment

If there is an active program for the tessellation control stage, the executable ver-
sion of the program’s tessellation control shader is used to process patches result-
ing from the primitive assembly stage. When tessellation control shader execu-
tion completes, the input patch is consumed. A new patch is assembled from the
per-vertex and per-patch output variables written by the shader and is passed to
subsequent pipeline stages.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 451

There are several special considerations for tessellation control shader execu-
tion described in the following sections.

11.2.1.2.1 Texture Access Section 11.1.3.1 describes texture lookup function-
ality accessible to a vertex shader. The texel fetch and texture size query function-
ality described there also applies to tessellation control shaders.

11.2.1.2.2 Tessellation Control Shader Inputs Section 7.1(“Built-In Vari-
ables”) of the OpenGL Shading Language Specification describes the built-in
variable array gl_in available as input to a tessellation control shader. gl_-
in receives values from equivalent built-in output variables written by the vertex
shader (section 11.1.3). Each array element of g1_in is a structure holding val-
ues for a specific vertex of the input patch. The length of g1_in is equal to the
implementation-dependent maximum patch size (g1_MaxPatchVertices). Be-
havior is undefined if g1_1in is indexed with a vertex index greater than or equal to
the current patch size. The members of each element of the g1_in array are g1_—

Position, gl_PointSize, gl_CullDistance,

Tessellation control shaders have available several other built-in input variables
not replicated per-vertex and not contained in g1_in, including:

e The variable gl_PatchVerticesIn holds the number of vertices in the
input patch being processed by the tessellation control shader.

e The variable g1_PrimitiveID is filled with the number of primitives pro-
cessed
is num-
bered zero, and the primitive ID counter is incremented after every individual
point, line, or triangle primitive is processed. Restarting a primitive topology
using the primitive restart index has no effect on the primitive ID counter.

e The variable g1_InvocationID holds an invocation number for the cur-
rent tessellation control shader invocation. Tessellation control shaders are
invoked once per output patch vertex, and invocations are numbered begin-
ning with zero.

Similarly to the built-in inputs, each user-defined input variable has a value
for each vertex and thus needs to be declared as an array, or inside an input block

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 452

declared as an array. Declaring an array size is optional. If no size is specified,
it will be taken from the implementation-dependent maximum patch size (g1_-
MaxPatchVertices). If a size is specified, it must match the maximum patch
size; otherwise, a compile or link error will occur. Since the array size may be
larger than the number of vertices found in the input patch, behavior is undefined
if a per-vertex input variable is accessed using an index greater than or equal to the
number of vertices in the input patch.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of input variables
that can be read by the tessellation control shader, given by the value of the
implementation-dependent constant MAX_TESS_CONTROL_INPUT_COMPONENTS.

When a program is linked, all components of any input variable read by a tes-
sellation control shader will count against this limit. A program whose tessellation
control shader exceeds this limit may fail to link, unless device-dependent opti-
mizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.1.2.3 Tessellation Control Shader Outputs Section 7.1(“Built-In Vari-
ables”) of the OpenGL Shading Language Specification describes the built-in vari-
able array g1_out available as an output for a tessellation control shader. g1_out
passes values to equivalent built-in input variables read by subsequent shader stages
or to subsequent fixed functionality vertex processing pipeline stages. Each array
element of g1_out is a structure holding values for a specific vertex of the output
patch. The length of g1_out is equal to the output patch size specified in the tes-
sellation control shader output 1ayout declaration. The members of each element
of the g1_out array are gl_Position, gl_PointSize,

and behave identically to equivalently named vertex shader
outputs (section 11.1.3).

Tessellation control shaders additionally have two built-in per-patch output ar-
rays, gl_TessLevelOuter and gl_TessLevelInner. These arrays are not
replicated for each output patch vertex and are not members of gl_out. gl_-
TessLevelOuter is an array of four floating-point values specifying the approxi-
mate number of segments that the tessellation primitive generator should use when
subdividing each outer edge of the primitive it subdivides. g1_TessLevellInner
is an array of two floating-point values specifying the approximate number of seg-
ments used to produce a regularly-subdivided primitive interior. The values writ-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 453

tento gl_TessLevelOuter and gl_TessLevelInner need not be integers, and
their interpretation depends on the type of primitive the tessellation primitive gener-
ator will subdivide and other tessellation parameters, as discussed in the following
section.

A tessellation control shader may also declare user-defined per-vertex output
variables. User-defined per-vertex output variables are declared with the qualifier
out and have a value for each vertex in the output patch. Such variables must be
declared as arrays or inside output blocks declared as arrays. Declaring an array
size is optional. If no size is specified, it will be taken from the output patch
size declared in the shader. If a size is specified, it must match the maximum
patch size; otherwise, a compile or link error will occur. The OpenGL Shading
Language doesn’t support multi-dimensional arrays; therefore, user-defined per-
vertex tessellation control shader outputs with multiple elements per vertex must
be declared as array members of an output block that is itself declared as an array.

While per-vertex output variables are declared as arrays indexed by vertex
number, each tessellation control shader invocation may write only to those out-
puts corresponding to its output patch vertex. Tessellation control shaders must
use the input variable g1_InvocationID as the vertex number index when writ-
ing to per-vertex output variables.

Additionally, a tessellation control shader may declare per-patch output vari-
ables using the qualifier patch out. Unlike per-vertex outputs, per-patch outputs
do not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch outputs declared as arrays have multiple values for the output
patch; similarly declared per-vertex outputs would indicate a single value for each
vertex in the output patch. User-defined per-patch outputs are not used by the tes-
sellation primitive generator, but may be read by tessellation evaluation shaders.

There are several limits on the number of components of output variables that
can be written by the tessellation control shader. The number of components
of active per-vertex output variables may not exceed the value of MAX_TESS_—
CONTROL_OUTPUT_COMPONENTS. The number of components of active per-patch
output variables may not exceed the value of MAX_TESS_PATCH_COMPONENTS.
The built-in outputs g1_TessLevelOuter and gl_TessLevelInner are not
counted against the per-patch limit. The total number of components of active per-
vertex and per-patch outputs is derived by multiplying the per-vertex output com-
ponent count by the output patch size and then adding the per-patch output compo-
nent count. The total component count may not exceed MAX_TESS_CONTROL_ -
TOTAL_OUTPUT_COMPONENTS.

When a program is linked, all components of any output variable written by a
tessellation control shader will count against this limit. A program exceeding any
of these limits may fail to link, unless device-dependent optimizations are able to

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 454

make the program fit within available hardware resources.
Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.1.2.4 Tessellation Control Shader Execution Order For tessellation
control shaders with a declared output patch size greater than one, the shader is
invoked more than once for each input patch. The order of execution of one tessel-
lation control shader invocation relative to the other invocations for the same input
patch is largely undefined. The built-in function barrier provides some control
over relative execution order. When a tessellation control shader calls the barrier
function, its execution pauses until all other invocations have also called the same
function. Output variable assignments performed by any invocation executed prior
to calling barrier will be visible to any other invocation after the call tobarrier
returns. Shader output values read in one invocation but written by another may
be undefined without proper use of barrier; full rules are found in the OpenGL
Shading Language Specification.

The barrier function may only be called inside the main entry point of the
tessellation control shader and may not be called in code containing potentially di-
vergent flow of control. In particular, barrier may not be called inside a switch
statement, in either sub-statement of an if statement, inside a do, for, or while
loop, or at any point after a return statement in the function main.

11.2.2 Tessellation Primitive Generation

If a tessellation evaluation shader is present, the tessellation primitive generator
consumes the input patch and produces a new set of basic primitives (points, lines,
or triangles). These primitives are produced by subdividing a geometric primitive
(rectangle or triangle) according to the per-patch tessellation levels written by the
tessellation control shader, if present, or taken from default patch parameter val-
ues. This subdivision is performed in an implementation-dependent manner. If no
tessellation evaluation shader is present, the tessellation primitive generator passes
incoming primitives through without modification.

The type of subdivision performed by the tessellation primitive generator is
specified by an input layout declaration in the tessellation evaluation shader us-
ing one of the identifiers triangles, quads, and isolines. For triangles,
the primitive generator subdivides a triangle primitive into smaller triangles. For
quads, the primitive generator subdivides a rectangle primitive into smaller tri-
angles. For isolines, the primitive generator subdivides a rectangle primitive
into a collection of line segments arranged in strips stretching horizontally across

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 455

the rectangle. Each vertex produced by the primitive generator has an associated
(u,v,w) or (u, v) position in a normalized parameter space, with parameter values
in the range [0, 1], as illustrated in figure 11.1. For triangles, the vertex position
is a barycentric coordinate (u, v, w), where u + v + w = 1, and indicates the rela-
tive influence of the three vertices of the triangle on the position of the vertex. For
quads and isolines, the position is a (u,v) coordinate indicating the relative
horizontal and vertical position of the vertex relative to the subdivided rectangle.
The subdivision process is explained in more detail in subsequent sections.

When no tessellation control shader is present, the tessellation levels are taken
from default patch tessellation levels. These default levels are set by calling

void PatchParameterfv(enum pname, const
float *values);

If pname is PATCH_DEFAULT_OUTER_LEVEL, values specifies an array of four
floating-point values corresponding to the four outer tessellation levels for each
subsequent patch. If pname is PATCH_DEFAULT_INNER_LEVEL, values specifies
an array of two floating-point values corresponding to the two inner tessellation
levels.

A patch is discarded by the tessellation primitive generator if any relevant outer
tessellation level is less than or equal to zero. Patches will also be discarded if
any relevant outer tessellation level corresponds to a floating-point NaN (not a
number) in implementations supporting NaN. When patches are discarded, no new
primitives will be generated and the tessellation evaluation program will not be run.
For quads, all four outer levels are relevant. For triangles and isolines, only
the first three or two outer levels, respectively, are relevant. Negative inner levels
will not cause a patch to be discarded; they will be clamped as described below.

Each of the tessellation levels is used to determine the number and spacing
of segments used to subdivide a corresponding edge. The method used to derive
the number and spacing of segments is specified by an input layout declaration
in the tessellation evaluation shader using one of the identifiers equal_spacing,
fractional_even_spacing, or fractional_odd_spacing. If no spacing is
specified in the tessellation evaluation shader, equal_spacing will be used.

If equal_spacing is used, the floating-point tessellation level is first clamped
to the range [1, max|, where max is the implementation-dependent maximum tes-
sellation level (the value of MAX_TESS_GEN_LEVEL). The result is rounded up to
the nearest integer n, and the corresponding edge is divided into n segments of
equal length in (u, v) space.

If fractional_even_spacing is used, the tessellation level is first clamped
to the range [2,max] and then rounded up to the nearest even integer n. If

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 456

(0,1) oL3 (1,1) (0,1,0)
ILO
oLo IL1 oL2 oLo oL2
ILO
(0,0) oL1 (1,0) (0,0,1) oL1 (1,0,0)
Quads Triangles
(0,1) (1,1)
A (no edge)
oLo!
v
(0,0) oLl (1,0)
Isolines
Figure 11.1. Domain parameterization for tessellation generator primitive modes
(triangles, quads, or isolines). The coordinates illustrate the value of gl_-
TessCoord at the corners of the domain. The labels on the edges indicate the
inner (ILO and IL1) and outer (OLO through OL3) tessellation level values used to
control the number of subdivisions along each edge of the domain.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 457

fractional_odd_spacing is used, the tessellation level is clamped to the range
[1, max — 1] and then rounded up to the nearest odd integer n. If n is one, the edge
will not be subdivided. Otherwise, the corresponding edge will be divided into
n — 2 segments of equal length, and two additional segments of equal length that
are typically shorter than the other segments. The length of the two additional seg-
ments relative to the others will decrease monotonically with the value of n — f,
where f is the clamped floating-point tessellation level. When n — f is zero, the
additional segments will have equal length to the other segments. As n — f ap-
proaches 2.0, the relative length of the additional segments approaches zero. The
two additional segments should be placed symmetrically on opposite sides of the
subdivided edge. The relative location of these two segments is undefined, but
must be identical for any pair of subdivided edges with identical values of f.

When the tessellation primitive generator produces triangles (in the
triangles or quads modes), the orientation of all triangles can be specified by
an input layout declaration in the tessellation evaluation shader using the identi-
fiers cw and ccw. If the order is cw, the vertices of all generated triangles will have
a clockwise ordering in (u, v) or (u, v, w) space, as illustrated in figure 11.1. If the
order is ccw, the vertices will be specified in counter-clockwise order. If no layout
is specified, ccw will be used.

For all primitive modes, the tessellation primitive generator is capable of gen-
erating points instead of lines or triangles. If an input 1ayout declaration in the
tessellation evaluation shader specifies the identifier point_mode, the primitive
generator will generate one point for each distinct vertex produced by tessellation.
Otherwise, the primitive generator will produce a collection of line segments or
triangles according to the primitive mode. When tessellating triangles or quads in
point mode with fractional odd spacing, the tessellation primitive generator may
produce “interior” vertices that are positioned on the edge of the patch if an inner
tessellation level is less than or equal to one. Such vertices are considered distinct
from vertices produced by subdividing the outer edge of the patch, even if there are
pairs of vertices with identical coordinates.

The points, lines, or triangles produced by the tessellation primitive generator
are passed to subsequent pipeline stages in an implementation-dependent order.

Errors

An INVALID_ENUM error is generated if pname is not PATCH_DEFAULT_—
OUTER_LEVEL or PATCH_DEFAULT_INNER_LEVEL.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 458

11.2.2.1 Triangle Tessellation

If the tessellation primitive mode is triangles, an equilateral triangle is subdi-
vided into a collection of triangles covering the area of the original triangle. First,
the original triangle is subdivided into a collection of concentric equilateral trian-
gles. The edges of each of these triangles are subdivided, and the area between
each triangle pair is filled by triangles produced by joining the vertices on the sub-
divided edges. The number of concentric triangles and the number of subdivisions
along each triangle except the outermost is derived from the first inner tessellation
level. The edges of the outermost triangle are subdivided independently, using the
first, second, and third outer tessellation levels to control the number of subdivi-
sions of the u = 0 (left), v = 0 (bottom), and w = 0 (right) edges, respectively.
The second inner tessellation level and the fourth outer tessellation level have no
effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are ex-
actly one after clamping and rounding, only a single triangle with (u, v, w) co-
ordinates of (0,0,1), (1,0,0), and (0, 1,0) is generated. If the inner tessellation
level is one and any of the outer tessellation levels is greater than one, the inner
tessellation level is treated as though it were originally specified as 1 4 € and will
result in a two- or three-segment subdivision depending on the tessellation spac-
ing. When used with fractional odd spacing, the three-segment subdivision may
produce “inner” vertices positioned on the edge of the triangle.

If any tessellation level is greater than one, tessellation begins by producing a
set of concentric inner triangles and subdividing their edges. First, the three outer
edges are temporarily subdivided using the clamped and rounded first inner tes-
sellation level and the specified tessellation spacing, generating n segments. For
the outermost inner triangle, the inner triangle is degenerate — a single point at the
center of the triangle — if n is two. Otherwise, for each corner of the outer trian-
gle, an inner triangle corner is produced at the intersection of two lines extended
perpendicular to the corner’s two adjacent edges running through the vertex of the
subdivided outer edge nearest that corner. If n is three, the edges of the inner trian-
gle are not subdivided and it is the final triangle in the set of concentric triangles.
Otherwise, each edge of the inner triangle is divided into n — 2 segments, with
the n — 1 vertices of this subdivision produced by intersecting the inner edge with
lines perpendicular to the edge running through the n — 1 innermost vertices of the
subdivision of the outer edge. Once the outermost inner triangle is subdivided, the
previous subdivision process repeats itself, using the generated triangle as an outer
triangle. This subdivision process is illustrated in figure 11.2.

Once all the concentric triangles are produced and their edges are subdivided,
the area between each pair of adjacent inner triangles is filled completely with a

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 459

(0,1,0)

(0,1,0)

(0,0,1) (1,0,0)

(0,0,1) (1,0,0)

Figure 11.2. Inner triangle tessellation with inner tessellation levels of (a) five and
(b) four, respectively (not to scale). Solid black circles depict vertices along the
edges of the concentric triangles. The edges of inner triangles are subdivided by
intersecting the edge with segments perpendicular to the edge passing through each
inner vertex of the subdivided outer edge. Dotted lines depict edges connecting
corresponding vertices on the inner and outer triangle edges.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 460

set of non-overlapping triangles. In this subdivision, two of the three vertices of
each triangle are taken from adjacent vertices on a subdivided edge of one triangle;
the third is one of the vertices on the corresponding edge of the other triangle.
If the innermost triangle is degenerate (i.e., a point), the triangle containing it is
subdivided into six triangles by connecting each of the six vertices on that triangle
with the center point. If the innermost triangle is not degenerate, that triangle is
added to the set of generated triangles as-is.

After the area corresponding to any inner triangles is filled, the primitive gener-
ator generates triangles to cover area between the outermost triangles and the out-
ermost inner triangles. To do this, the temporary subdivision of the outer triangle
edges above is discarded. Instead, the u = 0, v = 0, and w = 0 edges are subdi-
vided according to the first, second, and third outer tessellation levels, respectively,
and the tessellation spacing. The original subdivision of the first inner triangle is
retained. The area between the outer and first inner triangles is completely filled by
non-overlapping triangles as described above. If the first (and only) inner triangle
is degenerate, a set of triangles is produced by connecting each vertex on the outer
triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is as-
signed a barycentric (u, v, w) coordinate based on its location relative to the three
vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u, v, w) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will
be covered by multiple triangles. The order in which the generated triangles are
passed to subsequent pipeline stages and the order of the vertices in those triangles
are both implementation-dependent. However, when depicted in a manner similar
to figure 11.2, the order of the vertices in the generated triangles will be either all
clockwise or all counter-clockwise, according to the vertex order 1ayout declara-
tion.

11.2.2.2 Quad Tessellation

If the tessellation primitive mode is quads, a rectangle is subdivided into a col-
lection of triangles covering the area of the original rectangle. First, the original
rectangle is subdivided into a regular mesh of rectangles, where the number of
rectangles along the v = 0 and v = 1 (vertical) and v = 0 and v = 1 (horizon-
tal) edges are derived from the first and second inner tessellation levels, respec-
tively. All rectangles, except those adjacent to one of the outer rectangle edges,
are decomposed into triangle pairs. The outermost rectangle edges are subdivided
independently, using the first, second, third, and fourth outer tessellation levels to

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 461

control the number of subdivisions of the u = 0 (left), v = 0 (bottom), u = 1
(right), and v = 1 (top) edges, respectively. The area between the inner rectangles
of the mesh and the outer rectangle edges is filled by triangles produced by joining
the vertices on the subdivided outer edges to the vertices on the edges of the inner
rectangle mesh.

If both clamped inner tessellation levels and all four clamped outer tessella-
tion levels are exactly one, only a single triangle pair covering the outer rectangle
is generated. Otherwise, if either clamped inner tessellation level is one, that tes-
sellation level is treated as though it were originally specified as 1 + €, and will
result in a two- or three-segment subdivision depending on the tessellation spac-
ing. When used with fractional odd spacing, the three-segment subdivision may
produce “inner” vertices positioned on the edge of the rectangle.

If any tessellation level is greater than one, tessellation begins by subdividing
the v = 0 and u = 1 edges of the outer rectangle into m segments using the
clamped and rounded first inner tessellation level and the tessellation spacing. The
v = 0 and v = 1 edges are subdivided into n segments using the second inner
tessellation level. Each vertex on the v = 0 and v = 0 edges is joined with the
corresponding vertex on the v = 1 and v = 1 edges to produce a set of vertical
and horizontal lines that divide the rectangle into a grid of smaller rectangles. The
primitive generator emits a pair of non-overlapping triangles covering each such
rectangle not adjacent to an edge of the outer rectangle. The boundary of the re-
gion covered by these triangles forms an inner rectangle, the edges of which are
subdivided by the grid vertices that lie on the edge. If either m or n is two, the
inner rectangle is degenerate, and one or both of the rectangle’s “edges” consist of
a single point. This subdivision is illustrated in figure 11.3.

After the area corresponding to the inner rectangle is filled, the primitive gen-
erator must produce triangles to cover area between the inner and outer rectangles.
To do this, the subdivision of the outer rectangle edges above is discarded. In-
stead, the u = 0, v = 0, u = 1, and v = 1 edges are subdivided according to the
first, second, third, and fourth outer tessellation levels, respectively, and the tes-
sellation spacing. The original subdivision of the inner rectangle is retained. The
area between the outer and inner rectangles is completely filled by non-overlapping
triangles. Two of the three vertices of each triangle are adjacent vertices on a sub-
divided edge of one rectangle; the third is one of the vertices on the corresponding
edge of the other triangles. If either edge of the innermost rectangle is degenerate,
the area near the corresponding outer edge is filled by connecting each vertex on
the outer edge with the single vertex making up the inner “edge”.

The algorithm used to subdivide the rectangular domain in (u,v) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 462

(0,1) (1,1)
. *® . *® ®
| S . . A ‘
o ° o ° o
(0,0) (1,0)
(a)
(0,1) (1,1)
. *® . *® . ® ® ®
| S o - .
®------- ® - ------]
®------- g * A * * ® - *
o o ¢ ¢ ¢ ¢ ¢ o
(0,0) (1,0)
(b)
Figure 11.3. Inner quad tessellation with inner tessellation levels of (a) (4,2) and
(b) (7, 4), respectively. Gray regions on the bottom figure depict the 10 inner rectan-
gles, each of which will be subdivided into two triangles. Solid black circles depict
vertices on the boundary of the outer and inner rectangles, where the inner rectangle
on the top figure is degenerate (a single line segment). Dotted lines depict the hor-
izontal and vertical edges connecting corresponding vertices on the inner and outer
rectangle edges.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 463

be covered by multiple triangles. The order in which the generated triangles are
passed to subsequent pipeline stages and the order of the vertices in those triangles
are both implementation-dependent. However, when depicted in a manner similar
to figure 11.3, the order of the vertices in the generated triangles will be either all
clockwise or all counter-clockwise, according to the vertex order 1ayout declara-
tion.

11.2.2.3 Isoline Tessellation

If the tessellation primitive mode is isolines, a set of independent horizontal line
segments is drawn. The segments are arranged into connected strips called isolines,
where the vertices of each isoline have a constant v coordinate and u coordinates
covering the full range [0, 1]. The number of isolines generated is derived from the
first outer tessellation level; the number of segments in each isoline is derived from
the second outer tessellation level. Both inner tessellation levels and the third and
fourth outer tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle.
The v = 0 and u = 1 edges of the rectangle are subdivided according to the
first outer tessellation level. For the purposes of this subdivision, the tessellation
spacing is ignored and treated as equal_spacing. Anisoline is drawn connecting
each vertex on the © = 0 rectangle edge with the corresponding vertex onthe u = 1
rectangle edge, except that no line is drawn between (0, 1) and (1, 1). If the number
of isolines on the subdivided v = 0 and v = 1 edges is n, this process will result
in n equally spaced lines with constant v coordinates of 0, %, %, e ”T_l

Each of the n isolines is then subdivided according to the second outer tessella-
tion level and the tessellation spacing, resulting in m line segments. Each segment
of each line is emitted by the tessellation primitive generator, as illustrated in fig-
ure 11.4.

The order in which the generated line segments are passed to subsequent
pipeline stages and the order of the vertices in each generated line segment are
both implementation-dependent.

11.2.3 Tessellation Evaluation Shaders

If active, the tessellation evaluation shader takes the (u,v) or (u,v,w) location
of each vertex in the primitive subdivided by the tessellation primitive generator,
and generates a vertex with a position and associated attributes. The tessellation
evaluation shader can read any of the vertices of its input patch, which is the output
patch produced by the tessellation control shader (if present) or provided by the
application and transformed by the vertex shader (if no control shader is used).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 464

(0,1) (1,1)
©) ©)
(4 @ ® L J

(0,0) (1,0)

(a)

(0,1) (1,1)
©) @)
@ @ @ ® @ @ ®
[@ @ ® @ @ @
[@ @ ® @ @ L
[® @ ® @ ® L

(0,0) (1,0)

(b)

Figure 11.4. Isoline tessellation with the first two outer tessellation levels of (a)

(1,3) and (b) (4,6), respectively. Line segments connecting the vertices marked

with solid black circles are emitted by the primitive generator. Vertices marked

with empty circles correspond to (u,v) coordinates of (0, 1) and (1, 1), where no
line segments are generated.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 465

21.1

Tessellation
evaluation shaders are created as described in section 7.1, using a type of TESS_—
EVALUATION_SHADER.

Each invocation of the tessellation evaluation shader writes the attributes of
exactly one vertex. The number of vertices evaluated per patch depends on the
tessellation level values computed by the tessellation control shaders (if present)
or specified as patch parameters. Tessellation evaluation shader invocations run
independently, and no invocation can access the variables belonging to another
invocation. All invocations are capable of accessing all the vertices of their corre-
sponding input patch.

If a tessellation control shader is present, the number of the vertices in the
input patch is fixed and is equal to the tessellation control shader output patch size
parameter in effect when the program was last linked. If no tessellation control
shader is present, the input patch is provided by the application and can have a
variable number of vertices, as specified by PatchParameteri.

11.2.3.1 Tessellation Evaluation Shader Variables

Tessellation evaluation shaders can access uniforms belonging to the current pro-
gram object. Limits on uniform storage and methods for manipulating uniforms
are described in section 7.6.

Tessellation evaluation shaders also have access to samplers to perform textur-
ing operations, as described in section 7.10.

Tessellation evaluation shaders can access the transformed attributes of all ver-
tices for their input primitive using input variables. If active, a tessellation control
shader writing to output variables generates the values of these input variables. If
no tessellation control shader is active, input variables will be obtained from vertex
shader outputs. Values for any input variables that are not written by a vertex or
tessellation control shader are undefined.

Additionally, tessellation evaluation shaders can write to one or more output
variables that will be passed to subsequent programmable shader stages or fixed
functionality vertex pipeline stages.

11.2.3.2 Tessellation Evaluation Shader Execution Environment

If there is an active program for the tessellation evaluation stage, the executable
version of the program’s tessellation evaluation shader is used to process vertices
produced by the tessellation primitive generator. During this processing, the shader

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 466

may access the input patch processed by the primitive generator. When tessellation
evaluation shader execution completes, a new vertex is assembled from the output
variables written by the shader and is passed to subsequent pipeline stages.

There are several special considerations for tessellation evaluation shader exe-
cution described in the following sections.

11.2.3.2.1 Texture Access Section 11.1.3.1 describes texture lookup function-
ality accessible to a vertex shader. The texel fetch and texture size query function-
ality described there also applies to tessellation evaluation shaders.

11.2.3.3 Tessellation Evaluation Shader Inputs

Section 7.1(*“Built-In Variables”) of the OpenGL Shading Language Specification
describes the built-in variable array g1_in available as input to a tessellation evalu-
ation shader. g1_in receives values from equivalent built-in output variables writ-
ten by a previous shader (section 11.1.3). If a tessellation control shader is active,
the values of g1_in will be taken from tessellation control shader outputs. Other-
wise, they will be taken from vertex shader outputs. Each array element of g1_in
is a structure holding values for a specific vertex of the input patch. The length
of gl_in is equal to the implementation-dependent maximum patch size (g1_-
MaxPatchVertices). Behavioris undefined if g1_in is indexed with a vertex in-
dex greater than or equal to the current patch size. The members of each element of
the g1_in array are gl_Position, gl_PointSize,

Tessellation evaluation shaders have available several other built-in input vari-
ables not replicated per-vertex and not contained in g1_in, including:

e The variables gl_PatchVerticesIn and gl_PrimitiveID are filled
with the number of the vertices in the input patch and a primitive number,
respectively. They behave exactly as the identically named inputs for tessel-
lation control shaders.

e The variable g1_TessCoord is a three-component floating-point vector
consisting of the (u,v,w) coordinate of the vertex being processed by the
tessellation evaluation shader. The values of u, v, and w are in the range
[0, 1], and vary linearly across the primitive being subdivided. For tessella-
tion primitive modes of quads or isolines, the w value is always zero.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 467

The (u,v,w) coordinates are generated by the tessellation primitive gen-
erator in a manner dependent on the primitive mode, as described in sec-
tion 11.2.2. gl_TessCoord is not an array; it specifies the location of the
vertex being processed by the tessellation evaluation shader, not of any ver-
tex in the input patch.

e The variables gl_TessLevelOuter and gl_TessLevelInner are ar-
rays holding outer and inner tessellation levels of the patch, as used by
the tessellation primitive generator. If a tessellation control shader is ac-
tive, the tessellation levels will be taken from the corresponding outputs of
the tessellation control shader. Otherwise, the default levels provided as
patch parameters are used. Tessellation level values loaded in these vari-
ables will be prior to the clamping and rounding operations performed by
the primitive generator as described in section 11.2.2. For triangular tes-
sellation, gl_TessLevelOuter[3] and gl_TessLevelInner[1] will
be undefined. For isoline tessellation, gl_TessLevelOuter[2], gl_-
TessLevelOuter[3], and both values in gl_TessLevelInner are un-
defined.

A tessellation evaluation shader may also declare user-defined per-vertex input
variables. User-defined per-vertex input variables are declared with the qualifier
in and have a value for each vertex in the input patch. User-defined per-vertex
input variables have a value for each vertex and thus need to be declared as arrays
or inside input blocks declared as arrays. Declaring an array size is optional. If
no size is specified, it will be taken from the implementation-dependent maximum
patch size (g1_MaxPatchVertices). If a size is specified, it must match the
maximum patch size; otherwise, a compile or link error will occur. Since the array
size may be larger than the number of vertices found in the input patch, behavior is
undefined if a per-vertex input variable is accessed using an index greater than or
equal to the number of vertices in the input patch.

Additionally, a tessellation evaluation shader may declare per-patch input vari-
ables using the qualifier patch in. Unlike per-vertex inputs, per-patch inputs do
not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch inputs declared as arrays have multiple values for the input
patch; similarly declared per-vertex inputs would indicate a single value for each
vertex in the output patch. User-defined per-patch input variables are filled with
corresponding per-patch output values written by the tessellation control shader. If
no tessellation control shader is active, all such variables are undefined.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of per-vertex and

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.2. TESSELLATION 468

per-patch input variables that can be read by the tessellation evaluation shader,
given by the values of the implementation-dependent constants MAX_TESS_-
EVALUATION_INPUT_COMPONENTS and MAX_TESS_PATCH_COMPONENTS, re-
spectively. The built-in inputs g1_TessLevelOuter and gl_TessLevellInner
are not counted against the per-patch limit.

When a program is linked, all components of any input variable read by a tes-
sellation evaluation shader will count against this limit. A program whose tessella-
tion evaluation shader exceeds this limit may fail to link, unless device-dependent
optimizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.3.4 Tessellation Evaluation Shader Outputs

Tessellation evaluation shaders have a number of built-in output variables used
to pass values to equivalent built-in input variables read by subsequent shader
stages or to subsequent fixed functionality vertex processing pipeline stages.
These variables are g1_Position, gl_PointSize,

and all behave identically to equivalently named vertex
shader outputs (see section 11.1.3). A tessellation evaluation shader may also de-
clare user-defined per-vertex output variables.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of output variables
that can be written by the tessellation evaluation shader, given by the values
of the implementation-dependent constant MAX_TESS_EVALUATION_OUTPUT_—
COMPONENTS.

When a program is linked, all components of any output variable written by
a tessellation evaluation shader will count against this limit. A program whose
tessellation evaluation shader exceeds this limit may fail to link, unless device-
dependent optimizations are able to make the program fit within available hardware
resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 469

11.3 Geometry Shaders

After vertices are processed, they are arranged into primitives, as described in sec-
tion 10.1. This section describes optional geometry shaders, an additional pipeline
stage defining operations to further process those primitives. Geometry shaders op-
erate on a single primitive at a time and emit one or more output primitives, all of
the same type, which are then processed like an equivalent OpenGL primitive spec-
ified by the application. The original primitive is discarded after geometry shader
execution. The inputs available to a geometry shader are the transformed attributes
of all the vertices that belong to the primitive. Additional adjacency primitives are
available which also make the transformed attributes of neighboring vertices avail-
able to the shader. The results of the shader are a new set of transformed vertices,
arranged into primitives by the shader.

The geometry shader pipeline stage is inserted after primitive assembly, prior
to transform feedback (section 13.2).

Geometry shaders are created as described in section 7.1 using a fype of
GEOMETRY_SHADER. They are attached to and used in program objects as described
in section 7.3. When the program object currently in use includes a geometry
shader, its geometry shader is considered active, and is used to process primitives.
If the program object has no geometry this
stage is bypassed.

A non-separable program object or program pipeline object that includes a
geometry shader must also include a vertex shader.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has a geometry shader but
no vertex shader.

11.3.1 Geometry Shader Input Primitives

A geometry shader can operate on one of five input primitive types. Depending on
the input primitive type, one to six input vertices are available when the shader is
executed. Each input primitive type supports a subset of the primitives provided by
the GL.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 470

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if a geometry shader is active and the primitive mode
parameter is incompatible with the input primitive type of the geometry shader
of the active geometry program object, as discussed below. If a tessellation
evaluation shader is not active, the mode parameter passed to drawing com-
mands is used for purposes of this error check. Otherwise, the type of primitive
emitted by that shader is used.

A geometry shader that accesses more input vertices than are available for a
given input primitive type can be successfully compiled, because the input prim-
itive type is not part of the shader object. However, a program object containing
a shader object that accesses more input vertices than are available for the input
primitive type of the program object will not link.

The input primitive type is specified in the geometry shader source code using
an input layout qualifier, as described in the OpenGL Shading Language Speci-
fication. A program will fail to link if the input primitive type is not specified by
any geometry shader object attached to the program, or if it is specified differently
by multiple geometry shader objects. The input primitive type may be queried
by calling GetProgramiv with pname GEOMETRY_INPUT_TYPE. The supported
types and the corresponding OpenGL Shading Language input layout qualifier
keywords are:

Points (points)

Geometry shaders that operate on points are valid only for the POINTS primi-
tive type. There is only a single vertex available for each geometry shader invoca-
tion.

Lines (1ines)

Geometry shaders that operate on line segments are valid only for the LINES,
LINE_STRIP, and LINE_LOOP primitive types. There are two vertices available
for each geometry shader invocation. The first vertex refers to the vertex at the
beginning of the line segment and the second vertex refers to the vertex at the end
of the line segment. See also section 11.3.4.

Lines with Adjacency (1ines_adjacency)

Geometry shaders that operate on line segments with adjacent vertices are valid
only for the LINES_ADJACENCY and LINE_STRIP_ADJACENCY primitive types.
There are four vertices available for each program invocation. The second vertex
refers to attributes of the vertex at the beginning of the line segment and the third

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 471

vertex refers to the vertex at the end of the line segment. The first and fourth
vertices refer to the vertices adjacent to the beginning and end of the line segment,
respectively.

Triangles (triangles)

Geometry shaders that operate on triangles are valid for the TRIANGLES,
TRIANGLE_STRIP and TRIANGLE_FAN primitive types. There are three vertices
available for each program invocation. The first, second and third vertices refer to
attributes of the first, second and third vertex of the triangle, respectively.

Triangles with Adjacency (t riangles_adjacency)

Geometry shaders that operate on triangles with adjacent vertices are valid
for the TRIANGLES_ADJACENCY and TRIANGLE_STRIP_ADJACENCY primitive
types. There are six vertices available for each program invocation. The first, third
and fifth vertices refer to attributes of the first, second and third vertex of the tri-
angle, respectively. The second, fourth and sixth vertices refer to attributes of the
vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

11.3.2 Geometry Shader Output Primitives

A geometry shader can generate primitives of one of three types. The supported
output primitive types are points (POINTS), line strips (LINE_STRIP), and triangle
strips (TRIANGLE_STRIP). The vertices output by the geometry shader are assem-
bled into points, lines, or triangles based on the output primitive type in the manner
described in section 10.7. The resulting primitives are then further processed as de-
scribed in section 11.3.4. If the number of vertices emitted by the geometry shader
is not sufficient to produce a single primitive, nothing is drawn. The number of
vertices output by the geometry shader is limited to a maximum count specified in
the shader.

The output primitive type and maximum output vertex count are specified in
the geometry shader source code using an output layout qualifier, as described
in section 4.4.2.2(“Geometry Outputs”) of the OpenGL Shading Language Speci-
fication. A program will fail to link if either the output primitive type or maximum
output vertex count are not specified by any geometry shader object attached to the
program, or if they are specified differently by multiple geometry shader objects.
The output primitive type and maximum output vertex count of a linked program
may be queried by calling GetProgramiv with pnames GEOMETRY_OUTPUT_TYPE
and GEOMETRY_VERTICES_OUT, respectively.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 472

11.3.3 Geometry Shader Variables

Geometry shaders can access uniforms belonging to the current program object.
Limits on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Geometry shaders also have access to samplers to perform texturing operations,
as described in section 7.10.

Geometry shaders can access the transformed attributes of all vertices for their
input primitive type using input variables. A vertex or tessellation shader writing to
output variables generates the values of these input variables. Values for any inputs
that are not written by a shader are undefined. Additionally, a geometry shader
has access to a built-in input that holds the ID of the current primitive. This ID is
generated by the primitive assembly stage preceding the geometry shader.

Additionally, geometry shaders can write to one or more output variables for
each vertex they output. These values are optionally flatshaded (using the OpenGL
Shading Language qualifier f1at) and clipped, then the clipped values interpo-
lated across the primitive (if not flatshaded). The results of these interpolations are
available to

11.3.4 Geometry Shader Execution Environment

If there is an active program for the geometry stage, the executable version of
the program’s geometry shader is used to process primitives resulting from the
primitive assembly stage.

There are several special considerations for geometry shader execution de-
scribed in the following sections.

11.3.4.1 Texture Access

Section 11.1.3.1 describes texture lookup functionality accessible to a vertex
shader. The texel fetch and texture size query functionality described there also
applies to geometry shaders.

11.3.4.2 Instanced Geometry Shaders

For each input primitive received by the geometry shader pipeline stage, the ge-
ometry shader may be run once or multiple times. The number of times a geom-
etry shader should be executed for each input primitive may be specified using a

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 473

layout qualifier in a geometry shader of a linked program. If the invocation count
is not specified in any layout qualifier, the invocation count will be one.

Each separate geometry shader invocation is assigned a unique invocation num-
ber. For a geometry shader with N invocations, each input primitive spawns
N invocations, numbered O through N — 1. The built-in input variable g1_-
InvocationID may be used by a geometry shader invocation to determine its
invocation number.

When executing instanced geometry shaders, the output primitives generated
from each input primitive are passed to subsequent pipeline stages using the shader
invocation number to order the output. The first primitives received by the subse-
quent pipeline stages are those emitted by the shader invocation numbered zero,
followed by those from the shader invocation numbered one, and so forth. Addi-
tionally, all output primitives generated from a given input primitive are passed to
subsequent pipeline stages before any output primitives generated from subsequent
input primitives.

11.3.4.3 Geometry Shader Vertex Streams

Geometry shaders may emit primitives to multiple independent vertex streams.
Each vertex emitted by the geometry shader is directed at one of the vertex streams.
As vertices are received on each stream, they are arranged into primitives of the
type specified by the geometry shader output primitive type. The shading language
built-in functions EndPrimitive and EndStreamPrimitive may be used to
end the primitive being assembled on a given vertex stream and start a new empty
primitive of the same type. If an implementation supports /N vertex streams, the
individual streams are numbered O through N — 1. There is no requirement on the
order of the streams to which vertices are emitted, and the number of vertices emit-
ted to each stream may be completely independent, subject only to implementation-
dependent output limits.

The primitives emitted to all vertex streams are passed to the transform feed-
back stage to be captured and written to buffer objects in the manner specified
by the transform feedback state. The primitives emitted to all streams but stream
zero are discarded after transform feedback. Primitives emitted to stream zero are
passed to subsequent pipeline stages for clipping, rasterization, and subsequent
fragment processing.

Geometry shaders that emit vertices to multiple vertex streams are currently
limited to using only the points output primitive type. A program will fail to
link if it includes a geometry shader that calls the EmitStreamVertex built-in
function and has any other output primitive type parameter.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 474

11.3.4.4 Geometry Shader Inputs

Section 7.1(*Built-In Variables”) of the OpenGL Shading Language Specification
describes the built-in variable array gl_in[] available as input to a geometry
shader. g1_in[] receives values from equivalent built-in output variables written
by the vertex or tessellation shader (the upstream shader), and each array element
of g1_in[] is a structure holding values for a specific vertex of the input primitive.
The length of g1_in[] is determined by the geometry shader input primitive type
(see section 11.3.1). The members of each element of the g1_in[] array are:

e Structure member gl_ClipDistance[] holds the per-vertex array of clip
distances, as written by the upstream shader to the built-in output variable
gl_ClipDistancel[].

e Structure member g1_CullDistance[] holds the per-vertex array of cull
distances, as written by the upstream shader to the built-in output variable
gl_CullDistance[].

e Structure member g1_ClipVertex holds the per-vertex position in clip co-
ordinates, as written by the upstream shader to the built-in output variable
gl_ClipVertex.

e Structure members gl_FrontColor, gl_BackColor, gl_ -
FrontSecondaryColor and gl_BackSecondaryColor hold the
per-vertex front and back colors of the primary and secondary colors,
as written by the upstream shader to the corresponding built-in output
variables.

e Structure member gl_FogFragCoord holds the per-vertex fog coordinate,
as written by the upstream shader to the built-in output variable gl_-
FogFragCoord.

e Structure member g1_TexCoord[] holds the per-vertex array of texture co-
ordinates written by the upstream shader to the built-in output variable g1_ -

TexCoord[].

e Structure member gl_PointSize holds the per-vertex point size written
by the upstream shader to the built-in output variable g1_PointSize. If
the upstream shader does not write g1_PointSize, the value of g1_-
PointSize is undefined, regardless of the value of the enable PROGRAM_—
POINT_SIZE.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 475

e Structure member gl_Position holds the per-vertex position written by
the upstream shader to the built-in output variable g1_Position. Note that
writing to gl_Position from either the upstream or geometry shader is
optional (also see section 7.1(“Built-In Variables”) of the OpenGL Shading
Language Specification).

Geometry shaders also have available the built-in input variable gl_-
PrimitiveIDIn, which is not an array and has no vertex shader equivalent. It
is filled with the number of primitives processed

is numbered zero, and the primitive ID counter is incremented
after every individual point, line, or triangle primitive is processed. For triangles
drawn in point or line mode, the primitive ID counter is incremented only once,
even though multiple points or lines may eventually be drawn. Restarting a prim-
itive topology using the primitive restart index has no effect on the primitive 1D
counter.

Similarly to the built-in inputs, each user-defined input has a value for each
vertex and thus needs to be declared as an array or inside an input block declared
as an array. Declaring an array size is optional. If no size is specified, it will be
inferred by the linker from the input primitive type. If a size is specified, it must
match the number of vertices for the input primitive type; otherwise, a link error
will occur. The OpenGL Shading Language doesn’t support multi-dimensional
arrays; therefore, user-defined geometry shader inputs corresponding to upstream
shader outputs declared as arrays must be declared as array members of an input
block that is itself declared as an array. See section 4.3.6(“Output Variables”) and
chapter 7 of the OpenGL Shading Language Specification for more information.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of input variables
that can be read by the geometry shader, given by the value of the implementation-
dependent constant MAX_GEOMETRY_INPUT_COMPONENTS.

When a program is linked, all components of any input read by a geometry
shader will count against this limit. A program whose geometry shader exceeds
this limit may fail to link, unless device-dependent optimizations are able to make
the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 476

11.3.4.5 Geometry Shader Outputs

A geometry shader is limited in the number of vertices it may emit per invocation.
The maximum number of vertices a geometry shader can possibly emit is specified
in the geometry shader source and may be queried after linking by calling Get-
Programiv with pname GEOMETRY_VERTICES_OUT. If a single invocation of a
geometry shader emits more vertices than this value, the emitted vertices may have
no effect.

There are two implementation-dependent limits on the value of GEOMETRY_ -
VERTICES_OUT; it may not exceed the value of MAX_ GEOMETRY_ OUTPUT_-
VERTICES, and the product of the total number of vertices and the sum of all
components of all active output variables may not exceed the value of MAX_ -
GEOMETRY_TOTAL_OUTPUT_COMPONENTS. LinkProgram will fail if it deter-
mines that the total component limit would be violated.

A geometry shader can write to built-in as well as user-defined output variables.
These values are expected to be interpolated across the primitive it outputs, unless
they are specified to be flat shaded. To enable seamlessly inserting or removing a
geometry shader from a program object, the rules, names and types of the built-in
and user-defined output variables are the same as for the vertex shader. Refer to
section 11.1.2.1, and to sections 4.3(“Storage Qualifiers”) and 7.1(“Built-In Vari-
ables”) of the OpenGL Shading Language Specification for more detail.

After a geometry shader emits a vertex, all output variables are undefined, as
described in section 8.15(“Geometry Shader Functions”) of the OpenGL Shading
Language Specification.

The built-in outputs gl_FrontColor,
gl_BackColor, gl_FrontSecondaryColor, and gl_BackSecondaryColor
hold the front and back colors for the primary and secondary colors for the current
vertex.

The built-in output g1_TexCoord[] is an array and holds the set of texture
coordinates for the current vertex.

The built-in output g1_FogFragCoord is used as the c value, as described in
section 16.4.

The built-in output g1_Position is intended to hold the homogeneous vertex
position. Writing g1_Position is optional.

The built-in output g1_ClipVertex holds the vertex coordinate used in the
clipping stage, as described in section 13.5.

The built-in outputs gl_ClipDistance and gl_CullDistance hold the
clip distance and cull distance, respectively, used in the clipping stage, as described
in section 13.5.

The built-in output g1_PointsSize, if written, holds the size of the point to be

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 4717

rasterized, measured in pixels.

The built-in output g1_PrimitiveID holds the primitive ID counter read by
the fragment shader, replacing the value of g1_PrimitiveID generated by draw-
ing commands when no geometry shader is active. The geometry shader must
write to g1l_PrimitiveID for the provoking vertex (see section 13.4) of a prim-
itive being generated, or the primitive ID counter read by the fragment shader for
that primitive is undefined.

The built-in output g1_TLayer is used in layered rendering, and discussed fur-
ther in the next section.

The built-in output g1_viewportIndex is used to direct rendering to one of
several viewports and is discussed further in the next section.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of output variables that
can be written by the geometry shader, given by the value of the implementation-
dependent constant MAX_GEOMETRY_OUTPUT_COMPONENTS.

When a program is linked, all components of any output variable written by a
geometry shader will count against this limit. A program whose geometry shader
exceeds this limit may fail to link, unless device-dependent optimizations are able
to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.3.4.6 Layer and Viewport Selection

Geometry shaders can be used to render to one of several different layers of cube
map textures, three-dimensional textures, or one- or two-dimensional texture ar-
rays. This functionality allows an application to bind an entire complex texture
to a framebuffer object, and render primitives to arbitrary layers computed at run
time. For example, it can be used to project and render a scene onto all six faces
of a cubemap texture in one pass. The layer to render to is specified by writing
to the built-in output variable g1_Layer. Layered rendering requires the use of
framebuffer objects (see section 9.8).

Geometry shaders may also select the destination viewport for each output
primitive. The destination viewport for a primitive may be selected in the geom-
etry shader by writing to the built-in output variable g1_viewportIndex. This
functionality allows a geometry shader to direct its output to a different viewport
for each primitive, or to draw multiple versions of a primitive into several different
viewports.

The specific vertex of a primitive that is used to select the rendering layer or
viewport index is implementation-dependent and thus portable applications will

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 478

assign the same layer and viewport index for all vertices in a primitive. The
vertex conventions followed for g1_Layer and g1_ViewportIndex may be de-
termined by calling GetIntegerv with pnames LAYER_PROVOKING_VERTEX and
VIEWPORT_INDEX_PROVOKING_VERTEX, respectively. For either query, if the
value returned is PROVOKING_VERTEX, then vertex selection follows the con-
vention specified by ProvokingVertex (see section 13.4). If the value returned
is FIRST_VERTEX_CONVENTION, selection is always taken from the first vertex
of a primitive. If the value returned is LAST_VERTEX_CONVENTION, the selec-
tion is always taken from the last vertex of a primitive. If the value returned is
UNDEF INED_VERTEX, the selection is not guaranteed to be taken from any specific
vertex in the primitive. The vertex considered the provoking vertex for particular
primitive types is given in table 13.2.

11.3.4.7 Primitive Type Mismatches and Drawing Commands

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL, and no fragments will be rendered, if a mismatch exists
between the type of primitive being drawn and the input primitive type of a ge-
ometry shader. A mismatch exists under any of the following conditions:

o the input primitive type of the current geometry shader is POINTS and mode
1s not POINTS;

e the input primitive type of the current geometry shader is LINES and mode
is not LINES, LINE_STRIP, or LINE_LOOP;

e the input primitive type of the current geometry shader is TRIANGLES and
mode is not TRIANGLES, TRIANGLE_STRIP or TRIANGLE_FAN;

e the input primitive type of the current geometry shader is LINES_-
ADJACENCY and mode is not LINES_ADJACENCY or LINE_STRIP_-
ADJACENCY; of,

e the input primitive type of the current geometry shader is TRIANGLES_ -
ADJACENCY and mode is not TRIANGLES_ADJACENCY or TRIANGLE_-—
STRIP_ADJACENCY.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 12

Fixed-Function Vertex Processing

When programmable vertex processing (see chapter 11) is not being performed, the
fixed-function operations described in this chapter are performed instead. Vertices
are first transformed as described in section 12.1, followed by lighting and coloring
described described in section 12.2. The resulting transformed vertices are then
processed as described in chapter 13.

12.1 Fixed-Function Vertex Transformations

Vertices, normals, and texture coordinates are transformed before their coordinates
are used to produce an image in the framebuffer. We begin with a description of
how vertex coordinates are transformed and how this transformation is controlled.

Figure 12.1 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are transferred to the GL are termed object
coordinates. The model-view matrix is applied to these coordinates to yield eye
coordinates. Then another matrix, called the projection matrix, is applied to eye
coordinates to yield clip coordinates.

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting of z, y, z, and w coordinates (in that order). The model-view and pro-
jection matrices are thus 4 x 4.

If a vertex in object coordinates is given by and the model-view matrix

479

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 480

Normalized

Object Model-View Eye Projection Perspective Device

Coordinates Division Coordinates

Coordinates Matrix Coordinates Matrix

Viewport Window

Transformation Coordinates

Figure 12.1. Vertex transformation sequence.

is M, then the vertex’s eye coordinates are found as

Te Lo
Ye | _ay | %o
Z(‘, ZU
We Wo

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are

T Te
Ye | _ P Ye
Ze Ze
We We

12.1.1 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE, MODELVIEW, COLOR, Or
PROJECTION as the argument value. TEXTURE is described later in section 12.1.1,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 481

and COLOR is described in section 8.4.3. If the current matrix mode is MODELVIEW,
then matrix operations apply to the model-view matrix; if PROJECTION, then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix{fd}(const T m/[I6]);
void MultMatrix{fd}(const T m[16]);

LoadMatrix takes a pointer to a 4 x 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

ar as ag a3

az ae¢ aip aiq

az ar ai; as

a4 ag a2 A
(This differs from the standard row-major C ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to. Mult-
Matrix takes the same type argument as LoadMatrix, but multiplies the current
matrix by the one pointed to and replaces the current matrix with the product. If C'
is the current matrix and M is the matrix pointed to by MultMatrix’s argument,
then the resulting current matrix, C’, is

C'=C- M.
The commands

void LoadTransposeMatrix{fd}(const T m/[I6]);
void MultTransposeMatrix{fd}(const T m[16]);

take pointers to 4 x 4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as

ayp a2 az a4
as ag ar ag
ag aip a1 ai2
aiz ai4 ais aie

The effect of

LoadTransposeMatrix[fd] (m) ;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 482

is the same as the effect of
LoadMatrix[fd] (m™) ;
The effect of
MultTransposeMatrix[fd] (m) ;
is the same as the effect of
MultMatrix[fd] (m”) ;
The command
void Loadldentity(void);

effectively calls LoadMatrix with the identity matrix:
1 0 00
01 00
0010

1

There are a variety of other commands that manipulate matrices. Rotate,
Translate, Scale, Frustum, and Ortho manipulate the current matrix. Each com-
putes a matrix and then invokes MultMatrix with this matrix. In the case of

void Rotate{fd}(T 6, Tx, Ty, Tz);

0 gives an angle of rotation in degrees; the coordinates of a vector v are given by
v = (z y 2)T. The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0
0
0 0 0 1
Letu=v/||v|] = (2 ¢ Z’)T. If
0 —Zl y/
S=\|2 0 -2
-y 0

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 483

then
R =uu’ + cosf(I — uu’) +sin6S.

The arguments to
void Translate{fd}(Tx, Ty, Tz);

give the coordinates of a translation vector as (x y z)”. The resulting matrix is a
translation by the specified vector:

1 0 0 «
010 y
00 1 z
0 0 0 1

void Scale{fd}(Tx, Ty, Tz);

produces a general scaling along the z-, y-, and z- axes. The corresponding matrix
is

z 000
0y 0 0
00 2 0
000 1

For

void Frustum(double !/, double r, double b, doublet,
double n, doublef);

the coordinates (I b —n)T and (rt — n)? specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at (0 0 0)7). f gives the distance
from the eye to the far clipping plane. The corresponding matrix is

—

2n r+l
SR
N
n n
0 0 ~Fn " F-n
0 0 —1 0

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 484

void Ortho(double l, double r, double b, doublet,
double n, doublef);

describes a matrix that produces parallel projection. (I b —n)T and (r t —n)7
specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively. f gives the distance from the eye

to the far clipping plane. The corresponding matrix is

2 +1
Vo2 i
0 02 BE
n
0 0 -5 =
0 0 0 1

For each texture coordinate set, a 4 x 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

mp ms Mg M3 s
ma Mg Mg Mi4 t
mg my mir mas | ||’
myg Mg Mi12 Mie q

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode to TEXTURE
causes the already described matrix operations to apply to the texture matrix.

The active texture unit selector (see section 8) specifies the texture coordi-
nate set accessed by commands involving texture coordinate processing. Such
commands include those accessing the current matrix stack (if MATRIX_MODE is
TEXTURE), TexEnv commands controlling point sprite coordinate replacement (see
section 14.4), TexGen (section 12.1.3), Enable/Disable (if any texture coordinate
generation enum is selected), as well as queries of the current texture coordinates
and current raster texture coordinates.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 485

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at least 2. Texture matrix stacks for all
texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the matrix that
was the second entry in the stack. The pushing or popping takes place on the stack
corresponding to the current matrix mode. Popping a matrix off a stack with only
one entry generates a STACK_UNDERFLOW error; pushing a matrix onto a full stack
generates a STACK_OVERFLOW error.

When the current matrix mode is TEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of a four-valued in-
teger indicating the current matrix mode, one stack of at least two 4 x 4 matrices
for each of COLOR, PROJECTION, and each texture coordinate set, TEXTURE; and
a stack of at least 32 4 x 4 matrices for MODELVIEW. Each matrix stack has an
associated stack pointer. Initially, there is only one matrix on each stack, and all
matrices are set to the identity. The initial matrix mode is MODELVIEW.

12.1.1.1 Matrix Queries

Matrices may be queried and returned in transposed form by calling Get-
Booleanv, GetIntegerv, GetFloatv, and GetDoublev with pname set to
one of TRANSPOSE_MODELVIEW_MATRIX, TRANSPOSE_PROJECTION_MATRIX,
TRANSPOSE_TEXTURE_MATRIX, or TRANSPOSE_COLOR_MATRIX. The effect of

GetFloatv (TRANSPOSE_MODELVIEW_MATRIX, M) ;

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 486

is the same as the effect of the command sequence

GetFloatv (MODELVIEW _MATRIX, M) ;
T

m = m y
Similar conversions occur when querying TRANSPOSE_PROJECTION_-
MATRIX, TRANSPOSE_TEXTURE_MATRIX, and TRANSPOSE_COLOR_MATRIX.

12.1.2 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by calling Enable and
Disable with target RESCALE_NORMAL or NORMALIZE, respectively. This requires
two bits of state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M, then the normal is transformed to eye coordi-
nates by:

(0 g nd)= (e my me @) M

where, if Y are the associated vertex coordinates, then
z

w

0, w =0,
x
q= 7(7% " nz>) (12.1)
o - , w#0

Implementations may choose instead to transform (nl Ny nz) to eye coor-
dinates using

(nx’ ny' nz’):(na; ny nz)']\Lf1

where M, is the upper leftmost 3x3 matrix taken from M.
Rescale multiplies the transformed normals by a scale factor

(nx” ny// nz”):f(n:c/ ny/ nz/)

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 487

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is computed
as (m;; denotes the matrix element in row 7 and column j of M ~1, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)

B 1
Vmzi2 4 map? + mas?
Note that if the normals sent to GL were unit length and the model-view matrix

uniformly scales space, then rescale makes the transformed normals unit length.
Alternatively, an implementation may choose f as

1
2 2 2
\/an + ny/ + nzl

recomputing f for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.
After rescaling, the final transformed normal used in lighting, 7, is computed

f=

as

ng=m (nz” ny"” nz”)
If normalization is disabled, then m = 1. Otherwise
1
\/nx,,z by o,

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrix M. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

m =

12.1.3 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGen{ifd}(enum coord, enum pname, T param);
void TexGen{ifd}v(enum coord, enum pname, const
T *params);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 488

controls texture coordinate generation. coord must be one of the constants S, T, R,
or Q, indicating that the pertinent coordinate is the s, ¢, r, or ¢ coordinate, respec-
tively.

In the first form of the command, param specifies a single-valued texture gen-
eration parameter; in the second form, params is a pointer to an array of values that
specify texture generation parameters.

pname must be one of TEXTURE_GEN_MODE, OBJECT_PLANE, or EYE_PLANE.
If pname is TEXTURE_GEN_MODE, then either params points to or param is an inte-
ger that is one of OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, REFLECTION_-
MAP, or NORMAL_MAP.

Data conversions are performed as specified in section 2.2.1.

If TEXTURE_GEN_MODE indicates OBJECT_LINEAR, then the generation func-
tion for the coordinate indicated by coord is

g = P1%o + P2Yo + P320 + PaWo.

Zo» Yo, 20, and w, are the object coordinates of the vertex. py, ..., py are specified
by calling TexGen with prname set to OBJECT_PLANE in which case params points
to an array containing pq, ..., p4. There is a distinct group of plane equation co-
efficients for each texture coordinate; coord indicates the coordinate to which the
specified coefficients pertain.

If TEXTURE_GEN_MODE indicates EYE_LINEAR, then the function is

g = DPiTe + PhYe + Phze + Phwe

where
(P Py s ph)=(m p2 ps pa)M'

Te, Yer Ze, and we are the eye coordinates of the vertex. pi,...,ps4 are set by
calling TexGen with pname set to EYE_PLANE in correspondence with setting the
coefficients in the OBJECT_PLANE case. M is the model-view matrix in effect
when p1, ..., p4 are specified. Computed texture coordinates may be inaccurate or
undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen with
TEXTURE_GEN_MODE indicating SPHERE_MAP can simulate the reflected image
of a spherical environment on a polygon. SPHERE_MAP texture coordinates are
generated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) by u. Denote the current normal, after transformation to eye

. T . .
coordinates, by n¢. Letr = (rx Ty rz) , the reflection vector, be given by

r=u-—2n¢ (npu),

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.1. FIXED-FUNCTION VERTEX TRANSFORMATIONS 489

and let m = 2\/ r2 + 1"5 + (r + 1)2. Then the value assigned to an s coordinate

(the first TexGen argument value is S) is s = 7= + %; the value assigned to a ¢
coordinate is t = %;L + %

If TEXTURE_GEN_MODE indicates REFLECTION_MAP, compute the reflection
vector r as described for the SPHERE_MAP mode. Then the value assigned to an s
coordinate is s = r,; the value assigned to a ¢ coordinate is ¢ = r,; and the value
assigned to an r coordinate is r = r,.

If TEXTURE_GEN_MODE indicates NORMAL_MAP, compute the normal vector
ny as described in section 12.1.2. Then the value assigned to an s coordinate is
s =mnyg.; the value assigned to a ¢ coordinate is t = n o and the value assigned
to an 7 coordinate is r = ny_ (the values ny ,n fy and ny , are the components of

ng.)

A texture coordinate generation function is enabled or disabled by calling En-
able and Disable with target TEXTURE_GEN_S, TEXTURE_GEN_T, TEXTURE_—
GEN_R, or TEXTURE_GEN_ O (each indicates the corresponding texture coordinate).
When enabled, the specified texture coordinate is computed according to the cur-
rent EYE_LINEAR, OBJECT_LINEAR or SPHERE_MAP specification, depending on
the current setting of TEXTURE_GEN_MODE for that coordinate. When disabled,
subsequent vertices will take the indicated texture coordinate from the current tex-
ture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each of EYE_LINEAR and OBJECT_LINEAR. The initial state has
the texture generation function disabled for all texture coordinates. The initial val-
ues of p; for s are all 0 except p; which is one; for ¢ all the p; are zero except pa,

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 490

which is 1. The values of p; for and q are all 0. These values of p; apply for both
the EYE_ LINEAR and OBJECT_LINEAR versions. Initially all texture generation
modes are EYE_LINEAR.

12.1.3.1 Texture Coordinate Generation Queries

The command

void GetTexGen{ifd}v(enum coord, enum pname,
T *params);

returns information about pname for coord in params. coord must be one of S,
T, R, Oor Q. EYE_LINEAR coefficients are returned in the eye coordinates that were
computed when the plane was specified; OBJECT_LINEAR coefficients are returned
in object coordinates.

The same errors generated by TexGen* for invalid light and pname parameters
are generated by GetTexGen*.

12.2 Fixed-Function Vertex Lighting and Coloring

Figures 12.2 and 12.3 diagram the processing of RGBA colors and color indices
before rasterization. Incoming colors arrive in one of several formats. R, G, B, and
A components specified with unsigned and signed integer versions of the Color
command are converted to floating-point as described in equations 2.1 and 2.2, re-
spectively. As a result of limited precision, some converted values will not be rep-
resented exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color (pri-
mary color) and current secondary color are used in further processing. After light-
ing, RGBA colors may be clamped to the range [0, 1] as described in section 13.1.
A color index is converted to fixed-point and then its integer portion is masked (see
section 13.1). After clamping or masking, a primitive may be flatshaded, indicating
that all vertices of the primitive are to have the same colors. Finally, if a primitive
is clipped, then colors (and texture coordinates) must be computed at the vertices
introduced or modified by clipping.

12.2.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING

491

0 2k—1] Convert to
[0.0,1.0] Current
RGBA O-P Clamp to
[~2K 2k-1]—p Convert to - Color >O [0'0'_1'0]
’ [-1.0,1.0]
float
—— (Cle/Te S S — i
Clipping
Convertto | _ ______
fixed—point Primitive I
' : Clipping
Figure 12.2.
[0,2N-1] —p Corfllvert to 1 Current
oat Color — Mask to
float -1 Index Lighting O [0.0, 2"-1]
| Color -
Clipping
Convertto | ______ Flatshade?
fixed—point N
P Primitive
v Clipping
Figure 12.3.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 492

of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in section 12.2.6.)

Lighting is turned on or off by calling Enable or Disable with rarget
LIGHTING. If lighting is off, the current color and current secondary color are
assigned to the vertex primary and secondary color, respectively. If lighting is on,
colors computed from the current lighting parameters are assigned to the vertex
primary and secondary colors.

12.2.1.1 Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(x, y, 2z, and w) that specify a position in object coordinates (w may be zero,
indicating a point at infinity in the direction given by z, y, and 2). A direction
parameter consists of three floating-point coordinates (x, y, and z) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in table 12.1. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There are n light sources, indexed by i = 0, ..., n—1. (nis an implementation-
dependent maximum that must be at least 8.) Note that the default values for d;;
and s.; differ for ¢ = 0 and ¢ > 0.

Before specifying the way that lighting computes colors, we introduce oper-
ators and notation that simplify the expressions involved. If ¢; and cy are col-
ors without alpha where ¢; = (r1,g1,b1) and ca = (72, g2, b2), then define
¢y * cg = (ry17r2, 9192, b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. If d; and d» are directions, then define

d1 © dQ — ma,x{dl . dg, 0}

(Directions are taken to have three coordinates.) If P; and P» are (homogeneous,
with four coordinates) points then let PTP; be the unit vector that points from Py
to P5. Note that if P, has a zero w coordinate and P has non-zero w coordinate,
then PPy is the unit vector corresponding to the direction specified by the x, v,
and z coordinates of Po; if P has a zero w coordinate and P9 has a non-zero w
coordinate then PP is the unit vector that is the negative of that corresponding

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 493
Parameter H Type ‘ Default Value ‘ Description
Material Parameters
acm color (0.2,0.2,0.2,1.0) | ambient color of material
den color (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color (0.0,0.0,0.0,1.0) | specular color of material
€cm color (0.0,0.0,0.0,1.0) | emissive color of material
Srm, real 0.0 specular exponent (range:
[0.0,128.0])
Gm real 0.0 ambient color index
dm, real 1.0 diffuse color index
Sm real 1.0 specular color index
Light Source Parameters
ac; color (0.0,0.0,0.0,1.0) | ambient intensity of light 4
d;i(i =0) color | (1.0,1.0,1.0,1.0) | diffuse intensity of light O
dg;i(i > 0) color | (0.0,0.0,0.0,1.0) | diffuse intensity of light
sqi(i = 0) color | (1.0,1.0,1.0,1.0) | specular intensity of light 0
sei(1 > 0) color | (0.0,0.0,0.0,1.0) | specular intensity of light 4
P position | (0.0,0.0,1.0,0.0) | position of light
Sdli direction | (0.0,0.0,—1.0) | direction of spotlight for light
Syl real 0.0 spotlight exponent for light ¢
(range: 0.0, 128.0])
Crli real 180.0 spotlight cutoff angle for light ¢
(range: [0.0,90.0], 180.0)
koi real 1.0 constant attenuation factor for
light i (range: [0.0, 00))
ki real 0.0 linear attenuation factor for
light i (range: [0.0, 00))
ko; real 0.0 quadratic attenuation factor for
light i (range: [0.0, 00))
Lighting Model Parameters
Acs color | (0.2,0.2,0.2,1.0) | ambient color of scene
Ubs boolean FALSE viewer assumed to be at
(0,0,0) in eye -coordinates
(TRUE) or (0,0, 00) (FALSE)
Ces enum SINGLE_COLOR | controls computation of colors
tps boolean FALSE use two-sided lighting mode

Table 12.1: Summary of lighting parameters. The range of individual color com-
ponents is (—00, +00).

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 494

to the direction specified by P;. If both P; and P have zero w coordinates, then
ITP; is the unit vector obtained by normalizing the direction corresponding to
P, - P;.

If d is an arbitrary direction, then let d be the unit vector in d’s direction. Let
||IP1P2|| be the distance between Py and Po. Finally, let V be the point corre-
sponding to the vertex being lit, and n be the corresponding normal. Let P, be the
eyepoint ((0, 0,0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color c,; and a secondary
color c,e.. The values of ¢,; and cs.. depend on the light model color control, c.
If ccs = SINGLE_COLOR, then the equations to compute c; and Cge. are

Cpri €em
+ acm * acs
n—1
+ Z((Ltti)(SpOti) [Acm * ag;
i=0 + (Il ® Wpli)dc’nb * de;
+ (fl)(n ® fli)srmsc'm * SCli]
Csec (070707 1)

If c.s = SEPARATE_SPECULAR_COLOR, then

Cori = €cm

+ Ay * Acs
n—1

+ Z(ath)(époh) [acm * acli
i=0 + (n ® V?pli)dcm * dcli}
n—1

Csec — Z(@tt7)(3[)0t7)(f1)(n ® fli>srm Sem * Seli
i=0

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 495

where
[n o VB # 0, (12.2)
! 0, otherwise,
ﬁpli -+ We, Ups = TRUE,
h; = ? . (12.3)
VB, + (0 0 1)°, wvy, =FALSE,
1 5, if Ppy’sw # 0,
att, koi + kil VPl + kail [V (12.4)
1.0, otherwise.
BV © 8as)*", oty # 180.0, PV © 8 > cos(e),
spot; = 0.0, Crli 7 180-0,szc © 8 < cos(c,(12.5)

1.0, Crli = 180.0.

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with dp,.
A is always associated with the primary color c,,;; the alpha component of ¢ is
always 1.

Results of lighting are undefined if the w, coordinate (w in eye coordinates) of
V is zero.

Lighting may operate in two-sided mode ({,s = TRUE), in which a front color
is computed with one set of material parameters (the front material) and a back
color is computed with a second set of material parameters (the back material).
This second computation replaces n with —n. If {,s = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

Additionally, vertex and geometry shaders can operate in two-sided color
mode. When a vertex or geometry shader is active, front and back colors
can be computed by the shader and written to the gl_FrontColor, gl_-
BackColor, gl_FrontSecondaryColor and gl_BackSecondaryColor out-
puts. If VERTEX_PROGRAM_TWO_SIDE is enabled, the GL chooses between front
and back colors, as described below. Otherwise, the front color output is always

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 496

selected. Two-sided color mode is enabled and disabled by calling Enable or Dis-
able with target VERTEX_PROGRAM_TWO_SIDE.

The selection between back and front colors depends on the primitive of which
the vertex being lit is a part. If the primitive is a point or a line segment, the front
color is always selected. If it is a polygon, then the selection is performed based on
the sign of the (clipped or unclipped) polygon’s area a computed in window coor-
dinates, as described in equation 14.8 of section 14.6.1. If the sign of a (including
the possible reversal of this sign as indicated by the last call to FrontFace) is posi-
tive, the color of each vertex of the polygon becomes the front color computed for
that vertex; otherwise the back color is selected.

12.2.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see table 12.1). Sets of lighting
parameters are specified with

void Material{if}(enum face, enum pname, T param);
void Material{if}v(enum face, enumpname, const

T *params);
void Light{if}(enum light, enum pname, T param);
void Light{if}v(enum light, enum pname, const

T *params);
void LightModel{if}(enum pname, T param);
void LightModel{if}v(enum pname, const T *params);

pname is a parameter name from table 12.2 indicating which parameter is to be set.
In the vector versions of the commands, params is a pointer to a group of values to
which to set the indicated parameter. The number of values pointed to depends on
the parameter being set. In the non-vector versions, param is a value to which to
set a single-valued parameter.

For Material, face must be one of FRONT, BACK, or FRONT_AND_BACK, indi-
cating that the property name of the front or back material, or both, respectively,
should be set. In the case of Light, /ight is a symbolic constant of the form LIGHT,
indicating that light 7 is to have the specified parameter set.

Table 12.2 gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified with Material and Light are converted to floating-point values (if
specified as integers) as described in equation 2.2.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 497

Parameter H Name Number of values
Material Parameters (IMaterial)
aem AMBIENT 4
dem DIFFUSE 4
acm, dem AMBIENT_AND_DIFFUSE 4
Sem SPECULAR 4
€ecm EMISSION 4
Srm. SHININESS 1
Ay Ay Sy COLOR_INDEXES 3
Light Source Parameters (Light)
ag; AMBIENT 4
d.; DIFFUSE 4
Scli SPECULAR 4
Py POSITION 4
Sdli SPOT_DIRECTION 3
Srli SPOT_EXPONENT 1
Crli SPOT_CUTOFF 1
ko CONSTANT_ATTENUATION 1
k1 LINEAR_ATTENUATION 1
ko QUADRATIC_ATTENUATION 1
Lighting Model Parameters (LightModel)
acs LIGHT_MODEL_AMBIENT 4
Vbs LIGHT_MODEL_LOCAL_VIEWER 1
ths LIGHT_MODEL_TWO_SIDE 1
Ces LIGHT_MODEIL_COLOR_CONTROL 1

Table 12.2: Correspondence of lighting parameter symbols to names. AMBIENT_—
AND_DIFFUSE is used to set a.,, and d.,, to the same value.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 498

Material properties can be changed inside a Begin / End pair by calling Ma-
terial. However, when a vertex shader is active such property changes are not
guaranteed to update material parameters, defined in table 12.2, until the following
End command.

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That is, if IM,, is the upper left 3x3
matrix taken from the current model-view matrix M, then the spotlight direction

dy
dy
d,
is transformed to
d’. dy
d;/ =M, |dy
d., d,

Errors

An INVALID_ENUM error is generated by Material* if face is not FRONT,
BACK, Or FRONT_AND_BACK.

An INVALID_ENUM error is generated by Light* if light is not one of
LIGHT4, where ¢ is in the range zero to the value of MAX_LIGHTS minus one
and LIGHTi = LIGHTO + 1.

An INVALID_ENUM error is generated if pname is not an accepted param-
eter name for the corresponding commands from table 12.2.

An INVALID_VALUE error is generated if a specified lighting parameter
value lies outside the allowable range for that parameter (see table 12.1; the
symbol “oco” indicates the maximum representable magnitude for the indicated
type.)

An INVALID_ENUM error is generated by the scalar commands Mate-
rial{if}, Light{if}, and LightModel{if} if param is a non-scalar parameter
(e.g. if the number of values for that parameter, as shown in table 12.2, is
greater than 1).

An individual light is enabled or disabled by calling Enable or Disable with
target LIGHTi, where ¢ is in the range zero to the value of MAX_LIGHTS minus one.
If light ¢ is disabled, the ith term in the lighting equation is effectively removed
from the summation.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 499

12.2.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so
that they continuously track its component values. This behavior is enabled and
disabled by calling Enable or Disable with farget COLOR_MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is FRONT, BACK, or FRONT_AND_BACK, indicating whether the front ma-
terial, back material, or both are affected by the current color.

mode is one of EMISSION, AMBIENT, DIFFUSE, SPECULAR, Oof AMBIENT_ -
AND_DIFFUSE and specifies which material property or properties track the current
color. If mode is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value
of ecm» Aem, dem OF Sem, respectively, will track the current color. If mode is
AMBIENT_AND_DIFFUSE, both a.,, and d.,, track the current color.

The replacements made to material properties are permanent; the replaced val-
ues remain until changed by either sending a new color or by setting a new mate-
rial value when ColorMaterial is not currently enabled to override that particular
value. When COLOR_MATERIAL is enabled, the indicated parameter or parameters
always track the current color. For instance, calling

ColorMaterial (FRONT, AMBIENT)

while COLOR_MATERIAL is enabled sets the front material a.,, to the value of the
current color.

Material properties can be changed inside a Begin / End pair indirectly by
enabling ColorMaterial mode and making Color calls. However, when a ver-
tex shader is active such property changes are not guaranteed to update material
parameters, defined in table 12.2, until the following End command.

12.2.4 Lighting Parameter Queries
The command
void GetLight{if}v(enum light, enum pname, T *params);

returns information about light parameter pname for light in params. POSITION
and SPOT_DIRECTION return values in eye coordinates; these are the coordinates
that were computed when the position or direction was specified.

The same errors generated by Light* for invalid light and pname parameters
are generated by GetLight*.

The command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING

500

Current

Color*() ========== -

Color

Material*(FRONT AMBIENT) =============asfazznn-

Material*(FRONT DIFFUSE) ===========s=ssfunuuan

Material*(FRONT,SPECULAR) =============p======

Material*(FRONT,EMISSION) ~ ============sassszzn=

FRONT_AND_BACK.

’Ko’ Front Emission

To subsequent vertex operations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Color

Up while ColorMaterial face is

.Ko’ Front Ambient Ly To lighting equations

FRONT or FRONT_AND_BACK,

and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,

and ColorMaterial is enabled.

Color

Up while ColorMaterial face is

Down otherwise.

’Ko> Front Diffuse g lighting equations

FRONT or FRONT_AND_BACK,

and ColorMaterial mode is SPECULAR, and ColorMaterial is

enabled. Down otherwise.

Color

Up while ColorMaterial face is

.KO’ Front Specular |y To lighting equations

FRONT or FRONT_AND_BACK,

and ColorMaterial mode is EMISSION, and ColorMaterial is

enabled. Down otherwise.

Color

= State values flow continuously along this path

" To lighting equations

"""" = State values flow along this path only when a command is issued

Figure 12.4. ColorMaterial operation. Material properties are continuously up-
dated from the current color while ColorMaterial is enabled and has the appro-
priate mode. Only the front material properties are included in this figure. The
back material properties are treated identically, except that face must be BACK or

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 501

void GetMaterial{if}v(enum face, enum pname, T *params);

returns information about material property pname for face in params. face must
be either FRONT or BACK, indicating the front or back material, respectively.

The same errors generated by Material* for invalid light and pname parame-
ters are generated by GetMaterial*.

12.2.5 Lighting State

The state required for lighting consists of all of the lighting parameters (front and
back material parameters, lighting model parameters, and at least 8 sets of light pa-
rameters), a bit indicating whether a back color distinct from the front color should
be computed, at least 8 bits to indicate which lights are enabled, a five-valued vari-
able indicating the current ColorMaterial mode, a bit indicating whether or not
COLOR_MATERIAL is enabled, and a single bit to indicate whether lighting is en-
abled or disabled. In the initial state, all lighting parameters have their default val-
ues. Back color evaluation does not take place, ColorMaterial is FRONT_AND_ -
BACK and AMBIENT_AND_DIFFUSE, and both lighting and COLOR_MATERIAL are
disabled.

12.2.6 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of light ¢ (d.; and s,
respectively) determine color index diffuse and specular light intensities, dj; and
sy; from

di; = (:30)R(der;) + ((59)G(de;) + (11)B(des)

and
Sl = (SO)R(S(JZ) + (59)G(Scl2) + (~11)B(Scli)-

R(x) indicates the R component of the color x and similarly for G(x) and B(x).
Next, let

n
s = Z(atti)(SPOti)(Sli)(fi)(n ® hy)*rm
i=0
where att; and spot; are given by equations 12.4 and 12.5, respectively, and f; and

h; are given by equations 12.2 and 12.3, respectively. Let s’ = min{s, 1}. Finally,
let

n

d =3 (att;)(spot;)(di) (n © VBy;).

=0

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

12.2. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 502

Then color index lighting produces a value ¢, given by
c=am+d(1—5)(dn —an) + 8 (sm — am).

The final color index is
/ .
¢ =min{c, s, }-

The values a,,, d,, and s,,, are material properties described in tables 12.1 and 12.2.
Any ambient light intensities are incorporated into a,,. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation of ;s and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The values a,y,, d,,, and s, are set with Material using a pname of COLOR_-
INDEXES. Their initial values are 0, 1, and 1, respectively. The additional state
consists of three floating-point values. These values have no effect on RGBA light-

ing.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

Chapter 13

Fixed-Function Vertex
Post-Processing

After programmable vertex processing, the following fixed-
function operations are applied to vertices of the resulting primitives:

13.1

Transform feedback (see section 13.2).

e Primitive queries (see section 13.3).

e Flatshading (see section 13.4).

e Primitive clipping, including client-defined half-spaces (see section 13.5).
e Shader output clipping (see section 13.5.1).

e Perspective division on clip coordinates (see section 13.6).

e Viewport mapping, including depth range scaling (see section 13.6.1).

e Front face determination for polygon primitives (see section 14.6.1).

° attribute clipping (see
section 13.5.1).

13.7

Next, rasterization is performed on primitives as described in chapter 14.

503

13.1. CLAMPING OR MASKING 504

13.1 Clamping or Masking

When the GL is in RGBA mode and vertex color clamping is enabled, all com-
ponents of both primary and secondary colors are clamped to the range [0, 1] af-
ter lighting. If color clamping is disabled, the primary and secondary colors are
unmodified. Vertex color clamping is controlled by calling ClampColor, as de-
scribed in section 18.1.1, with a target of CLAMP_VERTEX_COLOR.

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) with 2" — 1, where n is the number of
bits in a color in the color index buffer (buffers are discussed in chapter 9).

The state required for vertex color clamping is a three-valued integer, initially
set to TRUE.

13.2 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
passed to the transform feedback stage are written out to one or more buffer objects.
The vertices are fed back after vertex color clamping, but before flatshading and
clipping. The transformed vertices may be optionally discarded after being stored
into one or more buffer objects, or they can be passed on down to the clipping stage
for further processing. The set of attributes captured is determined when a program
is linked.

The data captured in transform feedback mode depends on the active programs
on each of the shader stages. If a program is active for the geometry shader stage,
transform feedback captures the vertices of each primitive emitted by the geometry
shader. Otherwise, if a program is active for the tessellation evaluation shader
stage, transform feedback captures each primitive produced by the tessellation
primitive generator, whose vertices are processed by the tessellation evaluation
shader. Otherwise, transform feedback captures each primitive processed by the
vertex shader.

If separable program objects are in use, the set of attributes captured is taken
from the program object active on the last shader stage processing the primitives
captured by transform feedback. The set of attributes to capture in transform feed-
back mode for any other program active on a previous shader stage is ignored.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 505

13.2.1 Transform Feedback Objects

The set of buffer objects used to capture vertex output variables and related state are
stored in a transform feedback object. The set of attributes captured in transform
feedback mode is determined using the state of the active program object. The
name space for transform feedback objects is the unsigned integers. The name
zero designates the default transform feedback object.

The command

void GenTransformFeedbacks(sizei n, uint *ids);

returns n previously unused transform feedback object names in ids. These names
are marked as used, for the purposes of GenTransformFeedbacks only, but they
acquire transform feedback state only when they are first bound.

Errors
An INVALID_VALUE error is generated if # is negative.
Transform feedback objects are deleted by calling

void DeleteTransformFeedbacks(sizei n, const
uint *ds);

ids contains n names of transform feedback objects to be deleted. After a trans-
form feedback object is deleted it has no contents, and its name is again unused.
Unused names in ids that have been marked as used for the purposes of GenTrans-
formFeedbacks are marked as unused again. Unused names in ids are silently
ignored, as is the value zero. The default transform feedback object cannot be
deleted.

Errors

An INVALID_VALUE error is generated if » is negative.
An INVALID_OPERATION error is generated if the transform feedback
operation for any object named by ids is currently active.

The command

boolean IsTransformFeedback(uint id);

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 506

returns TRUE if id is the name of a transform feedback object. If id is zero, or
a non-zero value that is not the name of a transform feedback object, IsTrans-
formFeedback returns FALSE. No error is generated if id is not a valid transform
feedback object name.

A transform feedback object is created by binding a name returned by Gen-
TransformFeedbacks with the command

void BindTransformFeedback(enum farget, uint id);

target must be TRANSFORM_FEEDBACK and id is the transform feedback object
name. The resulting transform feedback object is a new state vector, comprising
all the state and with the same initial values listed in table 23.59. Additionally, the
new object is bound to the GL state vector and is used for subsequent transform
feedback operations.

BindTransformFeedback can also be used to bind an existing transform feed-
back object to the GL state for subsequent use. If the bind is successful, no change
is made to the state of the newly bound transform feedback object and any previous
binding to target is broken.

While a transform feedback buffer object is bound, GL operations on the target
to which it is bound affect the bound transform feedback object, and queries of the
target to which a transform feedback object is bound return state from the bound
object. When buffer objects are bound for transform feedback, they are attached to
the currently bound transform feedback object. Buffer objects are used for trans-
form feedback only if they are attached to the currently bound transform feedback
object.

In the initial state, a default transform feedback object is bound and treated as
a transform feedback object with a name of zero. That object is bound any time
BindTransformFeedback is called with id of zero.

Errors

An INVALID_ENUM error is generated if farget is not TRANSFORM -
FEEDBACK.

An INVALID_OPERATION error is generated if the transform feedback
operation is active on the currently bound transform feedback object, and that
operation is not paused (as described below).

An INVALID_OPERATION error is generated if id is not zero or a name
returned from a previous call to GenTransformFeedbacks, or if such a name
has since been deleted with DeleteTransformFeedbacks.

New transform feedback objects may also be created with the command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 507

void CreateTransformFeedbacks(sizei n, uint *ids);

CreateTransformFeedbacks returns n previously unused transform feedback
object names in ids, each representing a new state vector, comprising the state and
with all the same initial values listed in table 23.59.

Errors

An INVALID_VALUE error is generated if 7 is negative.

13.2.2 Transform Feedback Primitive Capture

Transform feedback for the currently bound transform feedback object is started
(made active) and finished (made inactive) with the commands

void BeginTransformFeedback(enum primitiveMode);
and
void EndTransformFeedback(void);

respectively. primitiveMode must be TRIANGLES, LINES, or POINTS, and speci-
fies the output type of primitives that will be recorded into the buffer objects bound
for transform feedback (see below). primitiveMode restricts the primitive types
that may be rendered while transform feedback is active, as shown in table 13.1.

EndTransformFeedback first performs an implicit ResumeTransformFeed-
back (see below) if transform feedback is paused.

BeginTransformFeedback and EndTransformFeedback calls must be
paired. Transform feedback is initially inactive.

Transform feedback mode captures the values of output variables written by
the vertex shader (or, if active, tesellation or geometry shader).

Errors

An INVALID ENUM error is generated by BeginTransformFeedback if
primitiveMode is not TRIANGLES, LINES, or POINTS.

An INVALID OPERATION error is generated by BeginTransformFeed-
back if transform feedback is active for the current transform feedback object.

An INVALID OPERATION error is generated by EndTransformFeed-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK

back if transform feedback is inactive.

Transform feedback operations for the currently bound transform feedback ob-
ject may be paused and resumed by calling

void PauseTransformFeedback(void);
and
void ResumeTransformFeedback(void);

respectively. When transform feedback operations are paused, transform feedback
is still considered active and changing most transform feedback state related to the
object results in an error. However, a new transform feedback object may be bound
while transform feedback is paused.

When transform feedback is active and not paused, all geometric primitives
generated must be compatible with the value of primitiveMode passed to Begin-
TransformFeedback.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if mode is not one of the allowed modes in table 13.1.
If a tessellation evaluation or geometry shader is active, the type of primitive
emitted by that shader is used instead of the mode parameter passed to drawing
commands for the purposes of this error check. If tessellation evaluation and
geometry shaders are both active, the output primitive type of the geometry
shader will be used for the purposes of this error. Any primitive type may be
used while transform feedback is paused.

Errors

An INVALID_OPERATION error is generated by PauseTransformFeed-
back if the currently bound transform feedback object is not active or is
paused.

An INVALID_OPERATION error is generated by ResumeTransformFeed-
back if the currently bound transform feedback object is not active or is not
paused.

Regions of buffer objects are bound as targets of the currently bound transform
feedback object by calling one of the BindBuffer* commands (see sections 6.1

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

508

13.2. TRANSFORM FEEDBACK 509

Transform Feedback | Allowed render primitive

primitiveMode (Begin) modes

POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP

TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

Table 13.1: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

and 6.1.1 with target set to TRANSFORM_FEEDBACK_BUFFER. Alternatively, re-
gions of buffer objects may be bound directly to a transform feedback object with
the commands

void TransformFeedbackBufferRange(uint xfb, uint index,
uint buffer, intptr offset, sizeiptr size);

void TransformFeedbackBufferBase(uint xfb, uint index,
uint buffer);

xfb must be zero, indicating the default transform feedback object, or the name
of an existing transform feedback object. buffer must be zero or the name of an
existing buffer object.

TransformFeedbackBufferRange and TransformFeedbackBufferBase be-
have similarly to BindBufferRange and BindBufferBase, respectively, except
that the target of the operation is xfb, and they do not affect any binding to the
generic TRANSFORM_FEEDBACK_BUFFER target.

Errors

An INVALID_OPERATION error is generated if xfb is not zero or the name
of an existing transform feedback object.

An INVALID_VALUE error is generated if buffer is not zero or the name of
an existing buffer object.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of binding points for transform feedback, as described in sec-
tion 6.7.1.

An INVALID VALUE error is generated by TransformFeedbackBuffer-
Range if offset is negative.

An INVALID_VALUE error is generated by TransformFeedbackBuffer-

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 510

Range if size is less than or equal to zero.

An INVALID_VALUE error is generated by TransformFeedbackBuffer-
Range if offset or size do not satisfy the constraints described for those param-
eters for transform feedback array bindings, as described in section 6.7.1.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active and not paused, the values of the
specified output variables of the vertex are appended to the buffer objects bound to
the transform feedback binding points. The attributes of the first vertex received af-
ter BeginTransformFeedback are written at the starting offsets of the bound buffer
objects set by BindBufferRange, and subsequent vertex attributes are appended to
the buffer object. When capturing line and triangle primitives, all attributes of the
first vertex are written first, followed by attributes of the subsequent vertices.

When capturing vertices, the stride associated with each transform feedback
binding point indicates the number of basic machine units of storage reserved for
each vertex in the bound buffer object. For every vertex captured, each output
variable with an assigned transform feedback offset will be written to the storage
reserved for the vertex at the associated binding point. When writing output vari-
ables that are arrays or structures, individual array elements or structure members
are written in order. For vector types, individual components are written in order.
For matrix types, outputs are written as an array of column vectors. If any com-
ponent of an output with an assigned transform feedback offset was not written
to by its shader, the value recorded for that component is undefined. The results
of writing an output variable to a transform feedback buffer are undefined if any
component of that variable would be written at an offset not aligned to the size of
the component. When capturing a vertex, any portion of the reserved storage not
associated with an output variable with an assigned transform feedback offset will
be unmodified.

When transform feedback is paused, no vertices are recorded. When transform
feedback is resumed, subsequent vertices are appended to the bound buffer ob-
jects immediately following the last vertex written before transform feedback was
paused.

Individual lines or triangles of a strip
or fan primitive will be extracted and recorded separately. Incomplete primitives
are not recorded.

When using a geometry shader that writes vertices to multiple vertex streams,
each vertex emitted may trigger a new primitive in the vertex stream to which
it was emitted. If transform feedback is active, the outputs of the primitive are

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 511

written to a transform feedback binding point if and only if the outputs directed at
that binding point belong to the vertex stream in question. All outputs assigned to
a given binding point are required to come from a single vertex stream.

If recording the vertices of a primitive to the buffer objects being used for trans-
form feedback purposes would result in either exceeding the limits of any buffer
object’s size, or in exceeding the end position offset + size — 1, as set by Bind-
BufferRange, then no vertices of that primitive are recorded in any buffer object,
and the counter corresponding to the asynchronous query target TRANSFORM_ -
FEEDBACK_PRIMITIVES_WRITTEN (see section 13.3) is not incremented. For
the purposes of this test, g1_SkipComponents variables are counted as recording
data to a buffer object.

Any transform feedback binding point used for capturing vertices must have
buffer objects bound when BeginTransformFeedback is called. A binding point
requires a bound buffer object if and only if its associated stride in the program
object used for transform feedback primitive capture is non-zero.

Errors

An INVALID_OPERATION error is generated by BeginTransformFeed-
back if any of these binding points does not have a buffer object bound.

An INVALID_OPERATION error is generated by BeginTransformFeed-
back if no binding points would be used, either because no program object is
active or because the active program object has specified no output variables
to record.

When BeginTransformFeedback is called with an active program object con-
taining a vertex, tessellation or geometry shader, the set of output variables cap-
tured during transform feedback is taken from the active program object and may
not be changed while transform feedback is active. That program object must
be active until the EndTransformFeedback is called, except while the transform
feedback object is paused.

Errors
An INVALID_OPERATION error is generated by:

e UseProgram if the current transform feedback object is active and not
paused;

o UseProgramStages if the program pipeline object it refers to is current

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK

and the current transform feedback object is active and not paused;

e BindProgramPipeline if the current transform feedback object is active
and not paused;

e LinkProgram or ProgramBinary if program is the name of a program
being used by one or more transform feedback objects, even if the ob-
jects are not currently bound or are paused;

o ResumeTransformFeedback if the program object being used by the
current transform feedback object is not active;

o ResumeTransformFeedback if the program pipeline object being used
by the current transform feedback object is not bound, if any of its
shader stage bindings has changed, or if a single program object is active
and overriding it; and

o BindBufferRange or BindBufferBase if rarget is TRANSFORM_-
FEEDBACK_BUFFER and transform feedback is currently active.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include ReadPixels to a pixel buffer object binding point and
client access to a buffer mapped with MapBuffer. Commands that attempt to read
or write to an active and unpaused transform feedback buffer will have undefined
results. Generating an INVALID_OPERATION error is recommended in this case.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

13.2.3 Transform Feedback Draw Operations

When transform feedback is active, the values of output variables or transformed
vertex attributes are captured into the buffer objects attached to the current trans-
form feedback object. After transform feedback is complete, subsequent rendering
operations may use the contents of these buffer objects (see section 6). The number
of vertices captured from each vertex stream during transform feedback is stored in
the corresponding transform feedback object and may be used in conjunction with

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

512

13.2. TRANSFORM FEEDBACK 513

the commands

void DrawTransformFeedback(enum mode, uint id);

void DrawTransformFeedbackInstanced(enum mode,
uint id, sizei instancecount);

void DrawTransformFeedbackStream(enum mode, uint id,
uint stream);

void DrawTransformFeedbackStreamInstanced(enum mode,
uint id, uint stream, sizei instancecount);

to replay the captured vertices.

DrawTransformFeedbackStreamInstanced is equivalent to call-
ing DrawArraysInstanced with mode as specified, first set to zero, count set to
the number of vertices captured from the vertex stream numbered stream the last
time transform feedback was active on the transform feedback object named id,
and instancecount as specified.

Calling DrawTransformFeedbackInstanced is equivalent to calling Draw-
TransformFeedbackStreamInstanced with stream set to zero.

Calling DrawTransformFeedbackStream is equivalent to calling Draw-
TransformFeedbackStreamInstanced with instancecount set to one.

Finally, calling DrawTransformFeedback is equivalent to calling Draw-
TransformFeedbackStreamInstanced with stream set to zero and instancecount
set to one.

Note that the vertex count is from the number of vertices recorded to the se-
lected vertex stream during the transform feedback operation. If no outputs be-
longing to the selected vertex stream are recorded, the corresponding vertex count
will be zero even if complete primitives were emitted to the selected stream.

No error is generated if the transform feedback object named by id is active;
the vertex count used for the rendering operation is set by the previous EndTrans-
formFeedback command.

Errors

An INVALID_VALUE error is generated if stream is greater than or equal
to the value of MAX_VERTEX_STREAMS.

An INVALID_VALUE error is generated if id is not the name of a transform
feedback object.

An INVALID_VALUE error is generated if instancecount is negative.

An INVALID_OPERATION error is generated if EndTransformFeedback
has never been called while the object named by id was bound.

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.3. PRIMITIVE QUERIES 514

13.3 Primitive Queries

Primitive queries use query objects to track the number of primitives in each vertex
stream that are generated by the GL and the number of primitives in each vertex
stream that are written to buffer objects in transform feedback mode.

When BeginQueryIndexed is called with a target of PRIMITIVES_-
GENERATED, the primitives generated count maintained by the GL for the vertex
stream index is set to zero. There is a separate query and counter for each vertex
stream. The number of vertex streams is given by the value of the implementation-
dependent constant MAX_VERTEX_STREAMS. When a generated primitive query
for a vertex stream is active, the primitives-generated count is incremented every
time a primitive emitted to that stream reaches the transform feedback stage (see
section 13.2), whether or not transform feedback is active. This counter counts
the number of primitives emitted by a geometry shader, if active, possibly further
tessellated into separate primitives during the transform feedback stage, if active.

When BeginQueryIndexed is called with a farget of TRANSFORM_-—
FEEDBACK_PRIMITIVES_WRITTEN, the transform feedback primitives written
count maintained by the GL for vertex stream index is set to zero. There is a
separate query and counter for each vertex stream. When a transform feedback
primitives written query for a vertex stream is active, the counter for that vertex
stream is incremented every time the vertices of a primitive written to that stream
are recorded into one or more buffer objects. If transform feedback is not active
or if a primitive to be recorded does not fit in a buffer object, the counter is not
incremented.

These two types of queries can be used together to determine if all primitives
in a given vertex stream have been written to the bound feedback buffers; if both
queries are run simultaneously and the query results are equal, all primitives have
been written to the buffer(s). If the number of primitives written is less than the
number of primitives generated, one or more buffers overflowed.

13.4 Flatshading

Flatshading a vertex shader output means to assign all vertices of the primitive the
same value for that output.

The output values assigned are those of the provoking vertex of
the primitive. The provoking vertex is controlled with the command

OpenGL 4.5 (Compatibility Profile) - October 24, 2016

13.4. FLATSHADING 515

| Primitive type of polygon ¢ First vertex convention | Last vertex convention |
point 1 ?
independent line 2 —1 21
line loop i 1+ 1,ifi <n
Lifi