The OpenGL® Graphics System:

A Specification
(Version 3.1 - May 28, 2009)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-3.1): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (© 2006-2009 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics, Inc.

Contents

1 Introduction 1
1.1 What is the OpenGL Graphics System? 1
1.2 Programmer’s View of OpenGL 1
1.3 Implementor’s View of OpenGL 2
14 OurView 2
1.5 The DeprecationModel 3
1.6 Companion Documents 3

1.6.1 OpenGL Shading Language 3
1.6.2 Window System Bindings 3
2 OpenGL Operation 5
2.1 OpenGL Fundamentals 5
2.1.1 Floating-Point Computation 7
2.1.2 16-Bit Floating-Point Numbers 8
2.1.3 Unsigned 11-Bit Floating-Point Numbers 8
2.1.4 Unsigned 10-Bit Floating-Point Numbers 9
2.1.5 Fixed-Point Data Conversions 10
22 GLState 12
2.2.1 Shared ObjectState 13
23 GLCommand Syntax 13
24 BasicGLOperation 15
25 GLErrorso 18
2.6 Primitives and Vertices oL L 19
2.6.1 Primitive Types L. 21
2.7 Vertex Specification 23
2.8 VerteX Arrays e 24
2.8.1 Transferring Array Elements 26
2.8.2 Drawing Commands 27
2.9 BufferObjects. 30

CONTENTS ii

2.9.1 Mapping and Unmapping BufferData 34

2.9.2 Effects of Accessing Outside Buffer Bounds 38

2.9.3 Copying Between Buffers 38

2.9.4 Vertex Arrays in Buffer Objects 39

2.9.5 Array Indices in Buffer Objects 40

2.9.6 BufferObjectState 40

2.10 Vertex Array Objects 40
211 Vertex Shaders 41
2.11.1 Shader Objects 42
2.11.2 Program Objects 44
2.11.3 Vertex Attributes Lo 46
2.11.4 Uniform Variables 49
2115 Samplers oL o 64
2.11.6 Varying Variables 65
2.11.7 Shader Execution 67
2.11.8 Required State 72

2.12 Coordinate Transformations 73
2.12.1 Controlling the Viewport 74

2.13 Asynchronous Queries 75
2.14 Conditional Rendering 77
2.15 Transform Feedback 78
2.16 Primitive Queries 81
2.17 Primitive Clipping 81
2.17.1 Clipping Shader Varying Outputs 83

3 Rasterization 84
3.1 Discarding Primitives Before Rasterization 85
32 Invarianceo 85
3.3 Antialiasing 86
3.3.1 Multisampling oL 87

34 Points 88
3.4.1 Basic Point Rasterization 89

3.4.2 Point Rasterization State 90

3.4.3 Point Multisample Rasterization 90

3.5 LineSegments 91
3.5.1 Basic Line Segment Rasterization 91

3.5.2 Other Line Segment Features 93

3.5.3 Line Rasterization State 94

3.54 Line Multisample Rasterization 95

3.6 Polygons 95

OpenGL 3.1 - May 28, 2009

CONTENTS

3.6.1
3.6.2
3.63
3.6.4
3.6.5
3.6.6

Basic Polygon Rasterization
Antialiasing
Options Controlling Polygon Rasterization
Depth Offset
Polygon Multisample Rasterization
Polygon Rasterization State

3.7 PixelRectangles.,

3.7.1
372

Pixel Storage Modes and Pixel Buffer Objects
Transfer of Pixel Rectangles

3.8 Texturing e e

3.8.1
3.8.2
3.83
3.84
3.8.5
3.8.6
3.8.7
3.8.8
3.89
3.8.10
3.8.11
3.8.12
3.8.13
3.8.14
3.8.15
3.8.16

Texture Image Specification
Alternate Texture Image Specification Commands

Compressed Texture Images
Buffer Textures
Texture Parameters
Depth Component Textures
Cube Map Texture Selection
Texture Minification
Texture Magnification
Combined Depth/Stencil Textures
Texture Completeness
Texture State and Proxy State
Texture Objects
Texture Comparison Modes
sRGB Texture Color Conversion
Shared Exponent Texture Color Conversion

3.9 FragmentShaders,

39.1
392

Shader Variables
Shader Execution

3.10 Aantialiasing Application L.
3.11 Multisample PointFade

Per-Fragment Operations and the Framebuffer

4.1 Per-Fragment Operations

4.1.1
4.1.2
413
414
4.15
4.1.6

Pixel Ownership Test
Scissor Test
Multisample Fragment Operations
Stencil Test
Depth Buffer Test
Occlusion Queries o e

OpenGL 3.1 - May 28, 2009

iii

95

98

98

99
100
100
101
101
102
114
115
127
134
138
141
141
143
144
152
153
153
154
156
157
159
159
160
160
161
165
165

CONTENTS v

4.2

4.3

4.4

417 Blending, 173
4.1.8 sRGBConversion 178
419 Dithering 178
4.1.10 Logical Operation 179
4.1.11 Additional Multisample Fragment Operations 180
Whole Framebuffer Operations 181
4.2.1 Selecting a Buffer for Writing 181
4.2.2 Fine Control of Buffer Updates 185
423 Clearingthe Buffers 187
Reading and Copying Pixels 189
43.1 ReadingPixels, 189
432 CopyingPixels 196
4.3.3 Pixel Draw/Read State 198
Framebuffer Objects 199
4.4.1 Binding and Managing Framebuffer Objects 199
4.4.2 Attaching Images to Framebuffer Objects 202
4.4.3 Feedback Loops Between Textures and the Framebuffer . 209
444 Framebuffer Completeness 211
4.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values 216

4.4.6 Mapping between Pixel and Element in Attached Image . 216

5 Special Functions 218
5.1 FlushandFinish. 218

52 Hints. 218

6 State and State Requests 220
6.1 QueryingGL State 220
6.1.1 SimpleQueries 220

6.1.2 DataConversions 221

6.1.3 Enumerated Queries 222

6.14 TextureQueries 224

6.1.5 StringQueries Lo 226

6.1.6 Asynchronous Queries 227

6.1.7 Buffer Object Queries 229

6.1.8 Vertex Array Object Queries 231

6.1.9 Shader and Program Queries 231

6.1.10 Framebuffer Object Queries 235

6.1.11 Renderbuffer Object Queries 238

6.2 StateTables 238

OpenGL 3.1 - May 28, 2009

CONTENTS

A

Invariance

A.l1 Repeatability
A.2 Multi-pass Algorithms
A.3 InvarianceRules.
A4 What All ThisMeans

Corollaries

Compressed Texture Image Formats

C.1 RGTC Compressed Texture Image Formats
C.1.1 Format COMPRESSED_RED_RGTC1
C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1
C.1.3 Format COMPRESSED_RG_RGTC2
C.1.4 Format COMPRESSED_SIGNED_RG_RGTC2

Shared Objects and Multiple Contexts

D.1 Object Deletion Behavior

D.2 Propagating State Changes
D.2.1 Definitions
D22 Rules

The Deprecation Model
E.1 Profiles and Deprecated Features of OpenGL 3.0 .

Version 3.0 and Before

F1 NewPFeatures
F2 Deprecation Model
F3 ChangedTokens.
F4 Changelog
E5 Credits and Acknowledgements

Version 3.1

G.1 NewPFeatures
G.2 DeprecationModel
G3 Changelog
G.4 Credits and Acknowledgements

Extension Registry, Header Files, and ARB Extensions
H.1 Extension Registry
H2 HeaderFiles
H3 ARBExtensions.

OpenGL 3.1 - May 28, 2009

280
280
281
281
282

284

286
286
287
288
288
289

290
290
291
292
292

294
294

300
300
301
302
302
304

307
307
308
308
309

CONTENTS

H.3.1

H.3.2

H.3.3

H.3.4

H.3.5

H.3.6

H.3.7

H.3.8

H.3.9

H.3.10
H.3.11
H.3.12
H.3.13
H.3.14
H.3.15
H.3.16
H.3.17
H.3.18
H.3.19
H.3.20
H.3.21
H.3.22
H.3.23
H.3.24
H.3.25
H.3.26
H.3.27
H.3.28
H.3.29
H.3.30
H.3.31
H.3.32
H.3.33
H.3.34
H.3.35
H.3.36
H.3.37
H.3.38
H.3.39
H.3.40

vi
Naming Conventions 314
Promoting Extensions to Core Features 314
Multitextureo 314
Transpose Matrix 315
Multisample 315
Texture Add Environment Mode 315
Cube Map Textures 315
Compressed Textures 315
Texture Border Clamp 315
Point Parameters 315
VertexBlend, 315
Matrix Palette oL 316
Texture Combine Environment Mode 316
Texture Crossbar Environment Mode 316
Texture Dot3 Environment Mode 316
Texture Mirrored Repeat 316
Depth Texture 316
Shadow 316
Shadow Ambient 317
Window Raster Position 317
Low-Level Vertex Programming 317
Low-Level Fragment Programming 317
Buffer Objects 317
Occlusion Queries 317
Shader Objects 318
High-Level Vertex Programming 318
High-Level Fragment Programming 318
OpenGL Shading Language 318
Non-Power-Of-Two Textures 318
Point Spriteso oL 318
Fragment Program Shadow 318
Multiple Render Targets 319
Rectangular Textures 319
Floating-Point Color Buffers 319
Half-Precision Floating Point 319
Floating-Point Textures 320
Pixel Buffer Objects 320
Floating-Point Depth Buffers 320
Instanced Rendering 320
Framebuffer Objects 320

OpenGL 3.1 - May 28, 2009

CONTENTS

H.3.41
H.3.42
H.3.43
H.3.44
H.3.45
H.3.46
H.3.47
H.3.48
H.3.49
H.3.50
H.3.51
H.3.52
H.3.53
H.3.54

vii
sRGB Framebuffers 321
Geometry Shaders 321
Half-Precision Vertex Data 321
Instanced Rendering 321
Flexible Buffer Mapping 321
Texture Buffer Objects 322
RGTC Texture Compression Formats 322
One- and Two-Component Texture Formats 322
Vertex Array Objects, 322
Versioned Context Creation 322
Uniform Buffer Objects 322
Restoration of features removed from OpenGL 3.0 323
Fast Buffer-to-Buffer Copies 323
Shader Texture Level of Detail Control 323

OpenGL 3.1 - May 28, 2009

List of Figures

2.1
2.2
23

3.1
3.2
33
34
3.5
3.6

4.1
4.2

Block diagramofthe GL. 15
Vertex processing and primitive assembly. 19
Triangle strips, fans, and independent triangles. 22
Rasterization. 84
Visualization of Bresenham’s algorithm. 92
The region used in rasterizing an antialiased line segment. 94
Transfer of pixel rectangles. 102
Selecting a subimage from animage 107
A texture image and the coordinates used to accessit. 127
Per-fragment operations. 168
Operation of ReadPixels. 189

viii

List of Tables

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10

3.1
32
33
34
35
3.6

3.7
3.8
39
3.10
3.11

3.12
3.13
3.14
3.15
3.16

GL command suffixes 14
GL datatypes e 16
Summary of GL errors 19
Vertex array sizes (values per vertex) and data types 25
Buffer object binding targets. 31
Buffer object parameters and their values. 31
Buffer object initial state. 33
Buffer object state set by MapBufferRange. 36
OpenGL Shading Language type tokens 56
Transform feedback modes 78
PixelStore parameters. 102
Pixeldatatypes. 105
Pixel data formats. L. 106
Swap Bytes bitordering. 106
Packed pixel formats. 108
UNSIGNED_BYTE formats. Bit numbers are indicated for each

COMPONENL. . .« v v v v v v v e et e e et e e e e 109
UNSIGNED_SHORT formats 110
UNSIGNED_INT formats 111
FLOAT_UNSIGNED_INT formats 112
Packed pixel field assignments. 113
Conversion from RGBA, depth, and stencil pixel components to

internal texture components. 117
Sized internal color formats. 122
Sized internal depth and stencil formats. 123
Generic and specific compressed internal formats. 124
Internal formats for buffer textures 140
Texture parameters and their values. 142

ix

LIST OF TABLES X

3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

Selection of cube map images. 143
Texel location wrap mode application. 147
Depth texture comparison functions. 158
Correspondence of filtered texture components to texture source

COMPONENLS. « .« v v v v v v v e et e e e e e e e e e 161
RGB and Alpha blend equations. 176
Blending functions. Lo oo 177
Arguments to LogicOp and their corresponding operations. 180
Buffer selection for the default framebuffer 183
Buffer selection for a framebuffer object 183
DrawBuffers buffer selection for the default framebuffer 183
PixelStore parameters. 191
ReadPixels index masks. 194
ReadPixels GL data types and reversed component conversion for-

mulas. 195
Correspondence of renderbuffer sized to base internal formats. . . 204
Framebuffer attachment points. 206
Hint targets and descriptions 219
Texture, table, and filter return values. 226
State Variable Types oo 239
Vertex Array Object State (cont.) 240
Vertex Array Object State (cont.) 241
Vertex Array Data (not in Vertex Array objects) 242
Buffer Object State 243
Transformation state 244
Coloring e 245
Rasterization 246
Rasterization (cont.) 247
Multisampling oL 248
Textures (state per texture unit and binding point) 249
Textures (state per texture object) 250
Textures (state per texture image) 251
Texture Environment and Generation 252
Pixel Operations 253
Pixel Operations (cont.) 254
Framebuffer Control 255
Framebuffer (state per target binding point) 256

OpenGL 3.1 - May 28, 2009

LIST OF TABLES xi

6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40

6.41
6.42

F.1

Framebuffer (state per framebuffer object) 257
Framebuffer (state per attachment point) 258
Renderbuffer (state per target and binding point) 259
Renderbuffer (state per renderbuffer object) 260
Pixels 261
Shader Object State 262
Program Object State 263
Program Object State (cont.) 264
Program Object State (cont.) 265
Program Object State (cont.) 266
Vertex Shader State 267
Query Object State 268
Transform Feedback State 269
Hints. o 270
Implementation Dependent Values 271
Implementation Dependent Values (cont.) 272
Implementation Dependent Values (cont.) 273
Implementation Dependent Values (cont.) 274
Implementation Dependent Values (cont.) 275
Implementation Dependent Values (cont.) 276
Implementation Dependent Values (cont.)

(1) The minimum value for each stage is MAX_stage -
UNIFORM_BLOCKS X MAX_stage_UNIFORM_BLOCK_SIZE +

MAX_stage UNIFORM_COMPONENTS v . v o v 277
Framebuffer Dependent Values 278
Miscellaneous e 279
New tokennames v v i e 302

OpenGL 3.1 - May 28, 2009

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, and polygons,
but the way that some of this drawing occurs (such as when antialiasing is enabled)
relies on the existence of a framebuffer. Further, some of OpenGL is specifically
concerned with framebuffer manipulation.

1.2 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate

1.3. IMPLEMENTOR’S VIEW OF OPENGL 2

a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.3 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

1.4 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven stages that control a set of specific drawing operations. This model should
engender a specification that satisfies the needs of both programmers and imple-
mentors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the speci-
fied methods, but there may be ways to carry out a particular computation that are
more efficient than the one specified.

OpenGL 3.1 - May 28, 2009

1.5. THE DEPRECATION MODEL 3

1.5 The Deprecation Model

GL features marked as deprecated in one version of the specification are expected
to be removed in a future version, allowing applications time to transition away
from use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.6 Companion Documents

1.6.1 OpenGL Shading Language

This specification should be read together with a companion document titled The
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.11
and 3.9). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 3.1 implementations are guaranteed to support at least version 1.30 of
the shading language. The actual version supported may be queried as described
in section 6.1.4.

1.6.2 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

OpenGL Graphics with the X Window System, also called the “GLX Specifica-
tion”, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is avail-
able. The GLX Specification is available in the OpenGL Extension Registry (see
appendix H).

The WGL API supports use of OpenGL with Microsoft Windows. WGL is
documented in Microsoft’s MSDN system, although no full specification exists.

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X win-
dow system, including CGL, AGL, and NSOpenGLView. These APIs are docu-
mented on Apple’s developer website.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.

OpenGL 3.1 - May 28, 2009

1.6. COMPANION DOCUMENTS 4
EGL implementations may be available supporting OpenGL as well. The EGL

Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

OpenGL 3.1 - May 28, 2009

http://www.khronos.org/registry/egl

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader
programs. Each primitive is a point, line segment, or polygon. Each mode may
be changed independently; the setting of one does not affect the settings of oth-
ers (although many modes may interact to determine what eventually ends up in
the framebuffer). Modes are set, primitives specified, and other GL operations
described by sending commands in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a polygon where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In

2.1. OPENGL FUNDAMENTALS 6

general, the effects of a GL. command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does
not provide a means for describing or modeling complex geometric objects. An-
other way to describe this situation is to say that the GL provides mechanisms to
describe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL contexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.6.2.

OpenGL 3.1 - May 28, 2009

2.1. OPENGL FUNDAMENTALS 7

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. In some cases, the representation and/or precision of such opera-
tions is defined or limited; by the OpenGL Shading Language Specification for
operations in shaders, and in some cases implicitly limited by the specified format
of vertex, texture, or renderbuffer data consumed by the GL. Otherwise, the rep-
resentation of such floating-point numbers, and the details of how operations on
them are performed, is not specified. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough so
that individual results of floating-point operations are accurate to about 1 part in
10°. The maximum representable magnitude of a floating-point number used to
represent positional, normal, or texture coordinates must be at least 232 the max-
imum representable magnitude for colors must be at least 2'°. The maximum
representable magnitude for all other floating-point values must be at least 232.
z-0 = 0.2 = 0 for any non-infinite and non-NaN z. 1 -2 = = -1 = =z.
z+0=0+x =z 0° = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as %. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

OpenGL 3.1 - May 28, 2009

2.1. OPENGL FUNDAMENTALS 8

Any representable floating-point value is legal as input to a GL. command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.1.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S5), a 5-bit exponent (£), and a
10-bit mantissa (M). The value V' of a 16-bit floating-point number is determined
by the following:

(—1)% x 0.0, E=0,M=0
(—1)% x 271 x JL E=0,M#0
V=S (-1)9x2E 5 x (1+4f), 0<E<31
(—1)% x Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer IV, then

g {N mod 65536J
32768
B {N mod 32768J
1024
M =N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

2.1.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number is

OpenGL 3.1 - May 28, 2009

2.1. OPENGL FUNDAMENTALS 9

determined by the following:

0.0, E=0,M=0
—14 M —
271 % &, E=0,M+#0
V=928 x (1+4), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 11-bit integer NV, then

| N
64
M=N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number is
determined by the following:

(0.0, E=0,M=0

— M

271 % 2, E=0,M+#0
V=928 (1+4]), 0<E<31

Inf, E=31,M=0

NaN, E=31,M#0

OpenGL 3.1 - May 28, 2009

2.1. OPENGL FUNDAMENTALS 10

If the floating-point number is interpreted as an unsigned 10-bit integer IV, then

pe | N
32
M =N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 3.8.1), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.
When the integer is a framebuffer color or depth component (see section 4, b is the
number of bits allocated to that component in the framebuffer. For framebuffer and
renderbuffer A components, b must be at least 2 if the buffer does not contain an A
component, or if there is only 1 bit of A in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively The
signed fixed-point representation may be treated in one of two ways, as discussed
below.

OpenGL 3.1 - May 28, 2009

2.1. OPENGL FUNDAMENTALS 11

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

&
= —. 2.1
f=5— 2.1)
Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding

floating-point value f may be performed in two ways:

_20+1

f=%— 2.2)

In this case the full range of the representation is used, so that —2°~! corre-
sponds to -1.0 and 2°~! — 1 corresponds to 1.0. For example, if b = 8, then the
integer value -128 corresponds to -1.0 and the value 127 corresponds to 1.0. Note
that it is not possible to exactly express O in this representation. In general, this rep-
resentation is used for signed normalized fixed-point parameters in GL commands,
such as vertex attribute values.

Alternatively, conversion may be performed using

¢
f = mazx {Qb—l - 1,—1.0}) (2.3)

In this case only the range [—2°~! + 1,2°~! — 1] is used to represent signed
fixed-point values in the range [—1,1]. For example, if b = 8, then the integer
value -127 corresponds to -1.0 and the value 127 corresponds to 1.0. Note that
while zero can be exactly expressed in this representation, one value (-128 in the
example) is outside the representable range, and must be clamped before use. In
general, this representation is used for signed normalized fixed-point texture or
framebuffer values.

Everywhere that signed normalized fixed-point values are converted, the equa-
tion used is specified.

OpenGL 3.1 - May 28, 2009

2.2. GL STATE 12

Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

fl=fx(2b-1). (2.4)

1 is then cast to an unsigned binary integer value with exactly b bits.

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ may be performed in two ways, both beginning by
clamping f to the range [—1, 1]:

fl=fx@-1-1
2
In general, this conversion is used when querying floating-point state (see sec-
tion 6) and returning integers.
Alternatively, conversion may be performed using

(2.5)

fl=fx@"t—1). (2.6)

In general, this conversion is used when specifying signed normalized fixed-
point texture or framebuffer values.

After conversion, f’ is then cast to a signed two’s-complement binary integer
value with exactly b bits.

Everywhere that floating-point values are converted to signed normalized fixed-
point, the equation used is specified.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one

OpenGL 3.1 - May 28, 2009

2.3. GL COMMAND SYNTAX 13

complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.6.2. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix D. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name followed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 8-bit integer, 16-bit
integer, 32-bit integer, single-precision floating-point, or double-precision floating-
point. The final character, if present, is v, indicating that the command takes a
pointer to an array (a vector) of values rather than a series of individual arguments.
Two specific examples are:

void Uniform4f(int location, £loat v0, £loat vl,
float v2, float v3);

and

void GetFloatv(enum value, float *data);

OpenGL 3.1 - May 28, 2009

2.3. GL COMMAND SYNTAX 14

’ Letter ‘ Corresponding GL Type

byte
S short
i int
f float
d double
ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to table 2.2 for definitions of the GL types.

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form'

rtype Name{e1234}{c b sifd ub us ui}{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of char-
acters (or character pairs) of which one is selected. € indicates no character. The
arguments enclosed in brackets ([args ,] and [, args]) may or may not be present.
The N arguments argl through arg N have type T, which corresponds to one of the
type letters or letter pairs as indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then V is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of NV values
of the indicated type. Finally, we indicate an unsigned type by the shorthand of
prepending a u to the beginning of the type name (so that, for instance, unsigned
byte is abbreviated ubyte).
For example,

void Uniform{1234}{if}(int location, T value);
indicates the eight declarations

void Uniformli(int location, int value);

'The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

OpenGL 3.1 - May 28, 2009

2.4. BASIC GL OPERATION 15

void Uniformlf(int location, f£loat value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, float v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, f£loat vl, float v2,
float v2);

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these

types.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Commands are effectively sent
through a processing pipeline.

The first stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices may be transformed and lit,
and primitives are clipped to a viewing volume in preparation for the next stage,
rasterization. The rasterizer produces a series of framebuffer addresses and values
using a two-dimensional description of a point, line segment, or polygon. Each
fragment so produced is fed to the next stage that performs operations on individ-
ual fragments before they finally alter the framebuffer. These operations include
conditional updates into the framebuffer based on incoming and previously stored
depth values (to effect depth buffering), blending of incoming fragment colors with
stored colors, as well as masking and other logical operations on fragment values.

Finally, values may also be read back from the framebuffer or copied from one
portion of the framebuffer to another. These transfers may include some type of
decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

OpenGL 3.1 - May 28, 2009

2.4. BASIC GL OPERATION

16

GL Type Minimum | Description

Bit Width
boolean 1 Boolean
byte 8 Signed 2’s complement binary integer
ubyte 8 Unsigned binary integer
char 8 Characters making up strings
short 16 Signed 2’s complement binary integer
ushort 16 Unsigned binary integer
int 32 Signed 2’s complement binary integer
uint 32 Unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
half 16 Half-precision floating-point value

encoded in an unsigned scalar

float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr and sizeiptr must be sufficiently large as to store any address.

OpenGL 3.1 - May 28, 2009

2.4. BASIC GL OPERATION

17

Pixel
> Pack/Unpack

*

Transform
Feedback
Vertex Ve_rtex Primitive Fragment
Data Shading and Assembly Shading and
—le-| Per-Vertex = - =1 Framebuffer
" and Per-Fragment|
Operations PR ?
Rasterization Operations
Pixel
Data * A
-
Texture
Memory

Figure 2.1. Block diagram of the GL.

OpenGL 3.1 - May 28, 2009

2.5. GL ERRORS 18

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Several error generation conditions are implicit in the description of every GL
command:

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

OpenGL 3.1 - May 28, 2009

2.6. PRIMITIVES AND VERTICES

19

Error Description Offending com-
mand ignored?
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes

INVALID_FRAMEBUFFER_OPERATION || Framebuffer object is not com- | Yes
plete

cute command

OUT_OF_MEMORY Not enough memory left to exe- | Unknown

Table 2.3: Summary of GL errors

o If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Primitives and Vertices

In the GL, most geometric objects are drawn by specifying a series of generic
attribute sets using DrawArrays or one of the other drawing commands defined in
section 2.8.2. There are seven geometric objects that are drawn this way: points,
line segment strips, line segment loops, separated line segments, triangle strips,
triangle fans, and separated triangles,

Each vertex is specified with one or more generic vertex attributes. Each at-
tribute is specified with one, two, three, or four scalar values. Generic vertex
attributes can be accessed from within vertex shaders (section 2.11) and used to
compute values for consumption by later processing stages.

The methods by which generic attributes are sent to the GL, as well as how
attributes are used by vertex shaders to generate vertices mapped to the two-
dimensional screen, are discussed later.

Before vertex shader execution, the state required by a vertex is its generic
vertex attributes. Vertex shader execution processes vertices producing a homo-
geneous vertex position and any varying outputs explicitly written by the vertex
shader.

Figure 2.2 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it

OpenGL 3.1 - May 28, 2009

2.6. PRIMITIVES AND VERTICES

20

Vertex
Shader
Execution

Coordinates

Generic
Vertex
Attributes

Point, . .
Shaded Line Segment, or Eﬁ::g:;lr:gg;
Vertices Triangle or Triangle
(Primitive) liopi 9
Assembly clipping
Varying o "
Outputs

Primitive type
(from DrawArrays or
DrawElements mode)

Figure 2.2. Vertex processing and primitive assembly.

Rasterization

OpenGL 3.1 - May 28, 2009

2.6. PRIMITIVES AND VERTICES 21

is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates and varying vertex shader outputs. In the case of line and polygon
primitives, clipping may insert new vertices into the primitive. The vertices defin-
ing a primitive to be rasterized have varying outputs associated with them.

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using DrawArrays or one of the other
drawing commands defined in section 2.8.2. There is no limit to the number of
vertices that may be specified, other than the size of the vertex arrays. The mode
parameter of these commands determines the type of primitives to be drawn using
the vertices. The types, and the corresponding mode parameters, are:

Points. A series of individual points may be specified with mode POINTS.
Each vertex defines a separate point.

Line Strips. A series of one or more connected line segments may be specified
with mode L.INE_STRIP. In this case, the first vertex specifies the first segment’s
start point while the second vertex specifies the first segment’s endpoint and the
second segment’s start point. In general, the ith vertex (for ¢ > 1) specifies the
beginning of the ith segment and the end of the 7 — 1st. The last vertex specifies
the end of the last segment. If only one vertex is specified, then no primitive is
generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops may be specified with mode LINE_10OOP. Loops are
the same as line strips except that a final segment is added from the final specified
vertex to the first vertex. The required state consists of the processed first vertex,
in addition to the state required for line strips.

Separate Lines. Individual line segments, each specified by a pair of vertices,
may be specified with mode LINES. The first two vertices passed define the first
segment, with subsequent pairs of vertices each defining one more segment. If the
number of specified vertices is odd, then the last one is ignored. The state required
is the same as for line strips but it is used differently: a processed vertex holding
the first vertex of the current segment, and a boolean flag indicating whether the
current vertex is odd or even (a segment start or end).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges, and may be specified with mode TRIANGLE_STRIP. In this case, the first
three vertices define the first triangle (and their order is significant). Each subse-
quent vertex defines a new triangle using that point along with two vertices from
the previous triangle. If fewer than three vertices are specified, no primitive is

OpenGL 3.1 - May 28, 2009

2.6. PRIMITIVES AND VERTICES 22

NN

1 3

(@) (b) ()

Figure 2.3. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

produced. See figure 2.3.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices, (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
The pointer is initialized to point to vertex A. Each successive vertex toggles the
pointer. Therefore, the first vertex is stored as vertex A, the second stored as vertex
B, the third stored as vertex A, and so on. Any vertex after the second one sent
forms a triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one exception:
each vertex after the first always replaces vertex B of the two stored vertices. A
triangle fan may be specified with mode TRIANGLE_FAN.

Separate Triangles. Separate triangles are specified with mode TRIANGLES.
In this case, The 3¢ + 1st, 37 4+ 2nd, and 37 + 3rd vertices (in that order) determine
a triangle for each ¢ = 0,1, ...,n — 1, where there are 3n + k vertices drawn. k is
either 0, 1, or 2; if k is not zero, the final k vertices are ignored. For each triangle,
vertex A is vertex 3¢ and vertex B is vertex 3¢ + 1. Otherwise, separate triangles
are the same as a triangle strip.

Depending on the current state of the GL, a polygon primitive generated
from a drawing command with mode TRIANGLE_FAN, TRIANGLE_STRIP, Or
TRIANGLES may be rendered in one of several ways, such as outlining its bor-
der or filling its interior. The order of vertices in such a primitive is significant in

OpenGL 3.1 - May 28, 2009

2.7. VERTEX SPECIFICATION 23
polygon rasterization and fragment shading (see sections 3.6.1 and 3.9.2).

2.7 Vertex Specification

Vertex shaders (see section 2.11) access an array of 4-component generic vertex
attributes . The first slot of this array is numbered 0, and the size of the array is
specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex when a
vertex array defining that data is not enabled, as described in section 2.8. The cur-
rent values of a generic shader attribute declared as a floating-point scalar, vector,
or matrix may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{sfd}(uint index, T values);
void VertexAttrib{123}{sfd}v(uint index, T values);
void VertexAttrib4{bsifd ub us wi}v(uint index, T values);
void VertexAttribdNub(uint index, T values);

void VertexAttrib4N{bsi ub us ui}v(uint index, T values);

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [—1, 1] range as described in equations 2.1 and 2.2, re-
spectively, while the other commands specify values that are converted directly to
the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is not floating-point (e.g. is signed or unsigned integer). To
load current values of a generic shader attribute declared as a signed or unsigned
scalar or vector, use the commands

void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, T values);

OpenGL 3.1 - May 28, 2009

2.8. VERTEX ARRAYS 24

void VertexAttribl4{bs ubus}v(uint index, T values);

These commands specify values that are extended to full signed or unsigned
integers, then loaded into the generic attribute at slot index in the same fashion as
described above.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is floating-point; if the base type is integer and unsigned in-
teger values are supplied (the VertexAttribI*ui, VertexAttribI*us, and Vertex-
AttribI*ub commands); or if the base type is unsigned integer and signed integer
values are supplied (the VertexAttribI*i, VertexAttribI*s, and VertexAttribI*b
commands)

The error INVALID_VALUE is generated by VertexAttrib* if index is greater
than or equal to MAX_VERTEX_ATTRIBS.

The state required to support vertex specification consists of the value of
MAX_VERTEX_ATTRIBS four-component vectors to store generic vertex attributes.

The initial values for all generic vertex attributes are (0.0, 0.0, 0.0, 1.0).

2.8 Vertex Arrays

Vertex data is placed into arrays that are stored in the server’s address space (de-
scribed in section 2.9). Blocks of data in these arrays may then be used to specify
multiple geometric primitives through the execution of a single GL command. The
client may specify up to the value of MAX_VERTEX_ATTRIBS arrays to store one
or more generic vertex attributes. The commands

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

describe the locations and organizations of these arrays. For each command, fype
specifies the data type of the values stored in the array. size indicates the number
of values per vertex (1, 2, 3, or 4) that are stored in the array. Table 2.4 indicates
the allowable values for size and fype (when present). For type the values BYTE,
SHORT, INT, FLOAT, HALF_FLOAT, and DOUBLE indicate types byte, short,
int, float, half, and double, respectively; and the values UNSIGNED_-
BYTE, UNSIGNED_SHORT, and UNSIGNED_INT indicate types ubyte, ushort,
and uint, respectively. The error INVALID_VALUE is generated if size is specified
with a value other than that indicated in the table.

OpenGL 3.1 - May 28, 2009

2.8. VERTEX ARRAYS 25

Integer
Command Sizes | Handling | Types
VertexAttribPointer | 1,2,3.4 | flag byte, ubyte, short,

ushort, int, uint, float,
half, double

VertexAttribIPointer | 1,2,3.4 | integer byte, ubyte, short,
ushort, int, uint

Table 2.4: Vertex array sizes (values per vertex) and data types. The “Integer Han-
dling” column indicates how fixed-point data types are handled: “integer” means
that they remain as integer values, and “flag” means that they are either converted
to floating-point directly, or converted by normalizing to [0, 1] (for unsigned types)
or [—1,1] (for signed types), depending on the setting of the normalized flag in
VertexAttribPointer.

The index parameter in the VertexAttribPointer and VertexAttribIPointer
commands identifies the generic vertex attribute array being described. The er-
ror INVALID_VALUE is generated if index is greater than or equal to the value of
MAX_VERTEX_ATTRIBS. Generic attribute arrays with integer fype arguments can
be handled in one of three ways: converted to float by normalizing to [0, 1] or
[—1,1] as described in equations 2.1 and 2.2, respectively; converted directly to
float, or left as integers. Data for an array specified by VertexAttribPointer will
be converted to floating-point by normalizing if normalized is TRUE, and converted
directly to floating-point otherwise. Data for an array specified by VertexAttribl-
Pointer will always be left as integer values; such data are referred to as pure
integers.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. The values within each array element are stored se-
quentially in memory. If stride is specified as zero, then array elements are stored
sequentially as well. The error INVALID_VALUE is generated if stride is negative.
Otherwise pointers to the ith and (i + 1)st elements of an array differ by stride
basic machine units (typically unsigned bytes), the pointer to the (i + 1)st element
being greater. For each command, pointer specifies the offset within a buffer of the
first value of the first element of the array being specified.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

OpenGL 3.1 - May 28, 2009

2.8. VERTEX ARRAYS 26

where index identifies the generic vertex attribute array to enable or disable. The
error INVALID_VALUE is generated if index is greater than or equal to MAX_-
VERTEX_ATTRIBS.

2.8.1 Transferring Array Elements

When an array element 7 is transferred to the GL by DrawArrays, DrawElements,
or the other Draw* commands described below, each generic attribute is expanded
to four components. If size is one then the z component of the attribute is specified
by the array; the y, z, and w components are implicitly set to 0, 0, and 1, respec-
tively. If size is two then the = and y components of the attribute are specified by
the array; the z and w components are implicitly set to 0 and 1, respectively. If size
is three then z, y, and z are specified, and w is implicitly set to 1. If size is four
then all components are specified.
Primitive restarting is enabled or disabled by calling one of the commands

void Enable(enum rarget);

and
void Disable(enum rarget);

with target PRIMITIVE_RESTART. The command
void PrimitiveRestartIndex(uint index);

specifies a vertex array element that is treated specially when primitive restarting is
enabled. This value is called the primitive restart index. When one of the Draw™*
commands transfers the ith successive set of generic attribute array elements to
the GL, if 7 ? is equal to the primitive restart index, then the GL does not process
those elements as a vertex. Instead, it is as if the drawing command ended with
the immediately preceding transfer, and another drawing command is immediately
started with the same parameters, but only transferring elements ¢ + 1 through the
end of the originally specified elements.

*Note that 4 is used here to index the successively transferred attribute sets, so that the first set
transferred has ¢ = 0, the second set transferred has ¢ = 1, and so on. ¢ is not the same as the index
of a set within the attribute arrays, which will also depend on either the first or indices arguments,
depending on which drawing command is used.

OpenGL 3.1 - May 28, 2009

2.8. VERTEX ARRAYS 27

2.8.2 Drawing Commands

The command
void DrawArrays(enum mode, int first, sizei count);

constructs a sequence of geometric primitives by transferring elements first through
first+ count—1 of each enabled array to the GL. mode specifies what kind of prim-
itives are constructed, as defined in section 2.6.1. If an array corresponding to a
generic attribute required by a vertex shader is not enabled, then the corresponding
element is taken from the current generic attribute state (see section 2.7).

If an array corresponding to a generic attribute required by a vertex is enabled,
the corresponding current generic attribute value is undefined after the execution
of DrawArrays.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void MultiDrawArrays(enum mode, int *first,
sizei *count, sizei primcount);

behaves identically to DrawArrays except that primcount separate ranges of
elements are specified instead. It has the same effect as:

for (i = 0; i < primcount; i++) {
if (count[i] > 0)
DrawArrays (mode, first[i], count[i]);

}

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives by successively transferring the
count elements whose indices are stored in the currently bound element array
buffer (see section 2.9.5) at the offset defined by indices to the GL. The ith el-
ement transferred by DrawElements will be taken from element indices[¢] of
each enabled array. type must be one of UNSIGNED_BYTE, UNSIGNED_SHORT, or
UNSIGNED_INT, indicating that the index values are of GL type ubyte, ushort,
or uint respectively. mode specifies what kind of primitives are constructed, as
defined in section 2.6.1. If an array corresponding to a generic attribute required

OpenGL 3.1 - May 28, 2009

2.8. VERTEX ARRAYS 28

by a vertex shader is not enabled, then the corresponding element is taken from the
current generic attribute state (see section 2.7).

If an array corresponding to a generic attribute required by a vertex is enabled,
the corresponding current generic attribute value is undefined after the execution
of DrawElements.

The command

void MultiDrawElements(enum mode, sizei *count,
enum type, void **indices, sizei primcount);

behaves identically to DrawElements except that primcount separate lists of
elements are specified instead. It has the same effect as:

for (1 = 0; i < primcount; i++) {
if (count[i]) > 0)
DrawElements (mode, count[i], type, indices[1]);

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end — start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end| be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for indices to lie outside the range [start, end], but
implementations may not check for this. Such indices will cause implementation-
dependent behavior.

The internal counter instancelD is a 32-bit integer value which may be read by
a vertex shader as gl_InstancelID, as described in section 2.11.7. The value of
this counter is always zero, except as noted below.

OpenGL 3.1 - May 28, 2009

2.8. VERTEX ARRAYS 29

The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei primcount);

behaves identically to DrawArrays except that primcount instances of the range
of elements are executed and the value of instancelD advances for each iteration.
It has the same effect as:

if (mode or count is invalid)
generate appropriate error
else {
for (int i = 0; 1 < primcount; i++) {
instancelID = 1i;
DrawArrays (mode, first, count);

}

instancelID = 0;

}

The command

void DrawElementsInstanced(enum mode, sizei count,
enum type, const void *indices, sizei primcount);

behaves identically to DrawElements except that primcount instances of the set of
elements are executed, and the value of instancelD advances for each iteration. It
has the same effect as:

if (mode, count, or type is invalid)
generate appropriate error
else {
for (int i = 0; 1 < primcount; i++) {
instancelID = 1i;
DrawElements (mode, count, type, indices) ;

}

instanceID = 0;

}

If the number of supported generic vertex attributes (the value of MAX_-
VERTEX_ATTRIBS) is n, then the client state required to implement vertex ar-
rays consists of n boolean values, n memory pointers, n integer stride values,

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS 30

n symbolic constants representing array types, n integers representing values per
element, n boolean values indicating normalization, n boolean values indicating
whether the attribute values are pure integers, and an unsigned integer representing
the restart index.

In the initial state, the boolean values are each false, the memory pointers are
each NULL, the strides are each zero, the array types are each FLOAT, the integers
representing values per element are each four, the normalized and pure integer flags
are each false, and the restart index is zero.

2.9 Buffer Objects

Vertex array data are stored in high-performance server memory. GL buffer ob-
jects provide a mechanism that clients can use to allocate, initialize, and render
from such memory.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names in buffers
are silently ignored, as is the value zero.

A buffer object is created by binding a name returned by GenBuffers to a
buffer target. The binding is effected by calling

void BindBuffer(enum farget, uint buffer);

target must be one of the targets listed in table 2.5. If the buffer object named buffer
has not been previously bound, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising the state values listed in table 2.6.

Buffer objects created by binding a name returned by GenBuffers to any of
the valid fargets are formally equivalent, but the GL may make different choices
about storage location and layout based on the initial binding.

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS

31

Target name Purpose Described in section(s) ‘

ARRAY_BUFFER Vertex attributes 294

COPY_READ_BUFFER Buffer copy source 293

COPY_WRITE_BUFFER Buffer copy destination 293

ELEMENT_ARRAY_BUFFER Vertex array indices 2.9.5

PIXEL_PACK_BUFFER Pixel read target 4.3.1, 6.1

PIXEL_UNPACK_BUFFER Texture data source 3.7

TEXTURE_BUFFER Texture data buffer 3.8.4

TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer | 2.15

UNIFORM_BUFFER Uniform block storage 2114

Table 2.5: Buffer object binding targets.

Name Type Initial Value | Legal Values

BUFFER_SIZE integer 0 any non-negative integer

BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE

BUFFER_ACCESS_FLAGS | integer 0 See section 2.9.1

BUFFER_MAPPED boolean FALSE TRUE, FALSE

BUFFER_MAP_POINTER | void* NULL address

BUFFER_MAP_OFFSET integer 0 any non-negative integer

BUFFER_MAP_LENGTH integer 0 any non-negative integer

Table 2.6: Buffer object parameters and their values.

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS 32

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

BindBuffer fails and an INVALID_OPERATION error is generated if buffer is
not zero or a name returned from a previous call to GenBuffers, or if such a name
has since been deleted with DeleteBuffers.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts and other threads are not affected, but
attempting to use a deleted buffer in another thread produces undefined results,
including but not limited to possible GL errors and rendering corruption. Using
a deleted buffer in another context or thread may not, however, result in program
termination.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID_OPERATION error.

The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

with rarget set to one of the targets listed in table 2.5. size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-null, then the source data is copied to the buffer object’s data store.
If data is null, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source for GL drawing and image
specification commands.

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS 33

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS READ_WRITE
BUFFER_ACCESS_FLAGS | 0
BUFFER_MAPPED FALSE
BUFFER_MAP_POINTER | NULL
BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 2.7: Buffer object initial state.

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing and image spec-
ification commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_coPY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.7.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising [V basic machine units be a multiple of N.

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS 34

If the GL is unable to create a data store of the requested size, the error OUT_-
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 2.5. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range. An INVALID_VALUE
error is generated if offset or size is less than zero or if offset 4 size is greater than
the value of BUFFER_SIZE. An INVALID_OPERATION error is generated if any
part of the specified buffer range is mapped with MapBufferRange or MapBuffer
(see section 2.9.1).

2.9.1 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with target set to one of the targets listed in table 2.5. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS 35

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array
pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

e MAP_INVALIDATE_ BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS

Name Value
BUFFER_ACCESS Depends on access'
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 2.8: Buffer object state set by MapBufferRange.

! BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ_BIT, MAP_-
WRITE_BIT, Or MAP_READ_BIT|MAP_WRITE_BIT.

or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 2.8.

Errors

If an error occurs, MapBufferRange returns a NULL pointer.

An INVALID_VALUE error is generated if offset or length is negative, if offset—+
length is greater than the value of BUFFER_STIZE, or if access has any bits set other
than those defined above.

An INVALID_OPERATION error is generated for any of the following condi-
tions:

o The buffer is already in a mapped state.

Neither MAP_ READ_BIT nor MAP_WRITE_BIT iS set.

e MAP_READ_BIT is set and any of MAP_INVALIDATE_RANGE_BIT, MAP_—
INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_BIT is set.

e MAP_FLUSH EXPLICIT_BIT issetand MAP_WRITE_BIT is not set.

An OUT_OF_MEMORY error is generated if MapBufferRange fails because
memory for the mapping could not be obtained.

No error is generated if memory outside the mapped range is modified or
queried, but the result is undefined and system errors (possibly including program
termination) may occur.

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS 37

The entire data store of a buffer object can be mapped into the client’s address
space by calling

void *MapBuffer(enum target, enum access);

MapBuffer is equivalent to calling MapBufferRange with the same rarget, offset
of zero, length equal to the value of BUFFER_SIZE, and the access value passed to
MapBufferRange equal to

e MAP_READ_BIT, if access is READ_ONLY
e MAP_WRITE_BIT, if access is WRITE_ONLY
e MAP_READ_BIT|MAP_WRITE_BIT, if access is READ_WRITE.

INVALID_ENUMis generated if access is not one of the values described above.
Other errors are generated as described above for MapBufferRange.

If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications
to the mapped range may be indicated by calling

void FlushMappedBufferRange(enum rarget, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 2.5. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

Errors

An INVALID_VALUE error is generated if offser or length is negative, or if
offset + length exceeds the size of the mapping.

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_OPERATION error is generated if the buffer bound to rarget is
not mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before
the data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum rarget);

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS 38

with farget set to one of the targets listed in table 2.5. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_-
MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_-
OFFSET, and BUFFER_MAP_LENGTH state variables to the initial values shown in
table 2.7.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID_OPERATION error is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

Effects of Mapping Buffers on Other GL Commands

Any GL command that attempts to read data from a buffer object will fail and
generate an INVALID_OPERATION error if the object is mapped at the time the
command is issued.

2.9.2 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error will be generated. Any command which does not detect these attempts,
and performs such an invalid read or write, has undefined results, and may result
in GL interruption or termination.

2.9.3 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void *CopyBufferSubData(enum readtarget,
enum writetarget, intptr readoffset, intptr writeoffset,
sizeiptr size);

OpenGL 3.1 - May 28, 2009

2.9. BUFFER OBJECTS 39

with readtarget and writetarget each set to one of the targets listed in table 2.5.
While any of these targets may be used, the COPY_READ_BUFFER and COPY_—
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use. writeoffset
and size specify the range of data in the buffer object bound to writetarget that is
to be replaced, in terms of basic machine units. readoffset and size specify the
range of data in the buffer object bound to readtarget that is to be copied to the
corresponding region of writetarget.

An INVALID_VALUE error is generated if any of readoffset, writeoffset, or size
are negative, if readoffset + size exceeds the size of the buffer object bound to
readtarget, or if writeoffset + size exceeds the size of the buffer object bound to
writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound to
both readtarget and writetarget, and the ranges [readoffset, readoffset+size) and
[writeoffset, writeoffset+size) overlap.

An INVALID_OPERATION error is generated if zero is bound to readtarget or
writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound to
either readtarget or writetarget are mapped.

2.9.4 Vertex Arrays in Buffer Objects

Blocks of vertex array data are stored in buffer objects with the same format and
layout options described in section 2.8. A buffer object binding point is added to
the client state associated with each vertex array type. The commands that specify
the locations and organizations of vertex arrays copy the buffer object name that is
bound to ARRAY_BUFFER to the binding point corresponding to the vertex array of
the type being specified. For example, the VertexAttribPointer command copies
the value of ARRAY_BUFFER_BINDING (the queriable name of the buffer binding
corresponding to the target ARRAY_BUFFER) to the client state variable VERTEX_ —
ATTRIB_ARRAY BUFFER_BINDING for the specified index.

Rendering commands DrawArrays, and the other drawing commands defined
in section 2.8.2 operate as previously defined, where data for enabled generic
attribute arrays are sourced from buffer objects. When an array is sourced from a
buffer object, the pointer value of that array is used to compute an offset, in basic
machine units, into the data store of the buffer object. This offset is computed by
subtracting a null pointer from the pointer value, where both pointers are treated as
pointers to basic machine units.

If any enabled array’s buffer binding is zero when DrawArrays or one of the
other drawing commands defined in section 2.8.2 is called, the result is undefined.

OpenGL 3.1 - May 28, 2009

2.10. VERTEX ARRAY OBJECTS 40

2.9.5 Array Indices in Buffer Objects

Blocks of array indices are stored in buffer objects in the formats described by the
type parameter of DrawElements (see section 2.8.2).

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with farget set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from the buffer object whose name is bound to ELEMENT_ARRAY_ —
BUFFER, using their indices parameters as offsets into the buffer object in the
same fashion as described in section 2.9.4. MultiDrawElements also sources its
indices from that buffer object, using its indices parameter as a pointer to an array
of pointers that represent offsets into the buffer object. If zero is bound to
ELEMENT_ARRAY_BUFFER, the result of these drawing commands is undefined.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

2.9.6 Buffer Object State

The state required to support buffer objects consists of binding names for the array
buffer, element buffer, pixel unpack buffer, and pixel pack buffer. Additionally,
each vertex array has an associated binding so there is a buffer object binding for
each of the vertex attribute arrays. The initial values for all buffer object bindings
is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 41

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound, just as if they were unused.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays are silently
ignored, as is the value zero.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state values listed in tables 6.3 and 6.4.

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 6).

Bind VertexArray fails and an INVALID_OPERATION error is generated if ar-
ray is not zero or a name returned from a previous call to GenVertexArrays, or if
such a name has since been deleted with DeleteVertexArrays.

An INVALID_OPERATION error is generated if any of the *Pointer commands
specifying the location and organization of vertex array data are called while zero
is bound to the ARRAY_BUFFER buffer object binding point, and the pointer argu-
ment is not NULL>,

2.11 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their asso-
ciated data.

3 This error makes it impossible to create a vertex array object containing client array pointers,
while still allowing buffer objects to be unbound.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 42

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a shader ob-
ject and then compiled. One or more vertex shader objects are then attached to
a program object. A program object is then linked, which generates executable
code from all the compiled shader objects attached to the program. When a linked
program object is used as the current program object, the executable code for the
vertex shaders it contains is used to process vertices.

In addition to vertex shaders, fragment shaders can be created, compiled, and
linked into program objects. Fragment shaders affect the processing of fragments
during rasterization, and are described in section 3.9. A single program object can
contain both vertex and fragment shaders.

When the program object currently in use includes a vertex shader, its vertex
shader is considered active and is used to process vertices. If the program object
has no vertex shader, or no program object is currently in use, the results of vertex
shader execution are undefined.

A vertex shader can reference a number of variables as it executes. Vertex
attributes are the per-vertex values specified in section 2.7. Uniforms are per-
program variables that are constant during program execution. Samplers are a
special form of uniform used for texturing (section 3.8). Varying variables hold
the results of vertex shader execution that are used later in the pipeline. Each of
these variable types is described in more detail below.

2.11.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero reserved
for the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects by name. Commands
that accept shader or program object names will generate the error INVALID_—
VALUE if the provided name is not the name of either a shader or program object
and INVALID_OPERATION if the provided name identifies an object that is not the
expected type.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created. For vertex shaders, type must be VERTEX_SHADER.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 43

A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.
The command

void ShaderSource(uint shader, sizei count, const
char **string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.9). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfolLog to obtain more information about the compilation attempt (see
section 6.1.9).

Shader objects can be deleted with the command

void DeleteShader(uint shader);

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 44

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.9). DeleteShader will silently ignore
the value zero.

2.11.2 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, 0 will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is already attached to pro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 45

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.9). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise. Linking can fail for a variety
of reasons as specified in the OpenGL Shading Language Specification. Linking
will also fail if one or more of the shader objects, attached to program are not
compiled successfully, or if more active uniform or active sampler variables are
used in program than allowed (see section 2.11.5). If LinkProgram failed, any
information about a previous link of that program object is lost. Thus, a failed link
does not restore the old state of program.

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 6.1.9).

If a valid executable is created, it can be made part of the current rendering
state with the command

void UseProgram(uint program);

This command will install the executable code as part of current rendering state if
the program object program contains valid executable code, i.e. has been linked
successfully. If UseProgram is called with program set to 0, then the current
rendering state refers to an invalid program object, and the results of vertex and
fragment shader execution are undefined. However, this is not an error. If program
has not been successfully linked, the error INVALID_OPERATION is generated and
the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If the program object that is in use is re-linked successfully, the LinkProgram
command will install the generated executable code as part of the current rendering
state if the specified program object was already in use as a result of a previous call
to UseProgram.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set to FALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call to UseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

Program objects can be deleted with the command

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 46

void DeleteProgram(uint program);

If program is not the current program for any GL context, it is deleted immediately.
Otherwise, program is flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached. DeleteProgram will silently ignore the value
Zero.

2.11.3 Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to the generic
vertex attributes that are set by VertexAttrib*. This binding can be specified by
the application before the program is linked, or automatically assigned by the GL
when the program is linked.

When an attribute variable declared as a f1oat, vec2, vec3 or vec4 is bound
to a generic attribute index 4, its value(s) are taken from the z, (z,y), (z,y, z), or
(x,y, z, w) components, respectively, of the generic attribute <. When an attribute
variable is declared as a mat2, mat3x2 or mat4x2, its matrix columns are taken
from the (x, y) components of generic attributes ¢ and i + 1 (mat2), from attributes
¢ through ¢ + 2 (mat3x2), or from attributes ¢ through ¢ + 3 (mat4x2). When an
attribute variable is declared as a mat2x3, mat3 or mat4x3, its matrix columns
are taken from the (z, y, z) components of generic attributes 7 and 7 + 1 (mat2x3),
from attributes ¢ through 7 4 2 (mat 3), or from attributes 7 through ¢ 4+ 3 (mat 4x3).
When an attribute variable is declared as a mat2x4, mat3x4 or mat4, its matrix
columns are taken from the (z, y, z, w) components of generic attributes ¢ and i + 1
(mat2x4), from attributes ¢ through ¢ + 2 (mat3x4), or from attributes ¢ through
1+ 3 (mat4).

A generic attribute variable is considered active if it is determined by the com-
piler and linker that the attribute may be accessed when the shader is executed. At-
tribute variables that are declared in a vertex shader but never used will not count
against the limit. In cases where the compiler and linker cannot make a conclusive
determination, an attribute will be considered active. A program object will fail to
link if the number of active vertex attributes exceeds MAX_VERTEX_ATTRIBS.

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib(uint program, uint index,

sizei bufSize, sizei *length, int *size, enum *type,
char *name);

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 47

This command provides information about the attribute selected by index. An in-
dex of 0 selects the first active attribute, and an index of ACTIVE_ATTRIBUTES — 1
selects the last active attribute. The value of ACTIVE_ATTRIBUTES can be queried
with GetProgramiv (see section 6.1.9). If index is greater than or equal to
ACTIVE_ATTRIBUTES, the error INVALID_VALUE is generated. Note that index
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. It is not necessary for program to
have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null termina-
tor, is specified by bufSize. The returned attribute name must be the name of a
generic attribute. The length of the longest attribute name in program is given by
ACTIVE_ATTRIBUTE_MAX_LENGTH, which can be queried with GetProgramiv
(see section 6.1.9).

For the selected attribute, the type of the attribute is returned into fype.
The size of the attribute is returned into size. The value in size is in units of
the type returned in fype. The type returned can be any of FLOAT, FLOAT_-
VEC2, FLOAT_VEC3, FLOAT_VEC4, FLOAT_MAT2, FLOAT_MAT3, FLOAT_MAT4,
FLOAT MAT2x3, FLOAT MAT2x4, FLOAT_MAT3x2, FLOAT MAT3x4, FLOAT -
MAT4x2, FLOAT_MAT4x3, INT, INT_VEC2, INT_VEC3, INT_VEC4, UNSIGNED_-
INT, UNSIGNED_INT_VEC2, UNSIGNED_INT_VEC3, or UNSIGNED_INT_VECA.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available, length will be set to zero and name will be an
empty string. This situation could arise if GetActiveAttrib is issued after a failed
link.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 48

returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID_OPERATION is generated. If name is not an
active attribute, or if an error occurs, -1 will be returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null-terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

When a program is linked, any active attributes without a binding specified
through BindAttribLocation will automatically be bound to vertex attributes by
the GL. Such bindings can be queried using the command GetAttribLocation.
LinkProgram will fail if the assigned binding of an active attribute variable would
cause the GL to reference a non-existent generic attribute (one greater than or
equal to MAX_VERTEX_ATTRIBS). LinkProgram will fail if the attribute bind-
ings assigned by BindAttribLocation do not leave not enough space to assign a
location for an active matrix attribute, which requires multiple contiguous generic
attributes.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name to an index,
including a name that is never used as an attribute in any vertex shader object. As-
signed bindings for attribute variables that do not exist or are not active are ignored.

The values of generic attributes sent to generic attribute index ¢ are part of
current state. If a new program object has been made active, then these values
will be tracked by the GL in such a way that the same values will be observed by
attributes in the new program object that are also bound to index .

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 49

no aliasing is done, and may employ optimizations that work only in the absence
of aliasing.

2.11.4 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. Uniforms are program
object-specific state. They retain their values once loaded, and their values are
restored whenever a program object is used, as long as the program object has not
been re-linked. A uniform is considered active if it is determined by the compiler
and linker that the uniform will actually be accessed when the executable code
is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms can be grouped into uniform blocks. The values of each uni-
form in such a set are extracted from the data store of a buffer object corresponding
to the uniform block. OpenGL Shading Language syntax serves to delimit named
blocks of uniforms that can be backed by a buffer object. These are referred to
as named uniform blocks, and are assigned a uniform block index. Uniforms that
are declared outside of a named uniform block are said to be part of the default
uniform block. Default uniform blocks have no name or uniform block index. Like
uniforms, uniform blocks can be active or inactive. Active uniform blocks are those
that contain active uniforms after a program has been compiled and linked.

The amount of storage available for uniform variables in the default uniform
block accessed by a vertex shader is specified by the value of the implementation-
dependent constant MAX_VERTEX_UNIFORM_COMPONENTS. The total amount of
combined storage available for uniform variables in all uniform blocks accessed
by a vertex shader (including the default uniform block) is specified by the value
of the implementation-dependent constant MAX_ COMBINED_VERTEX_UNIFORM_-—
COoMPONENTS. These values represent the numbers of individual floating-point,
integer, or boolean values that can be held in uniform variable storage for a vertex
shader. A link error is generated if an attempt is made to utilize more than the space
available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object’s default uniform block are initialized as defined by the version of
the OpenGL Shading Language used to compile the program. A successful link
will also generate a location for each active uniform in the default uniform block.
The values of active uniforms in the default uniform block can be changed using
this location and the appropriate Uniform* command (see below). These locations
are invalidated and new ones assigned after each successful re-link.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 50

Similarly, when a program is successfully linked, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object using commands such as Buffer-
Data, BufferSubData, MapBuffer, and UnmapBuffer. Uniforms in a named
uniform block are not assigned a location and may be be modified using the Uni-
form* commands. The offsets and strides of all active uniforms belonging to
named uniform blocks of a program object are invalidated and new ones assigned
after each successful re-link.

To find the location within a program object of an active uniform variable as-
sociated with the default uniform block, use the command

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name if it is associ-
ated with the default uniform block. name must be a null-terminated string, without
white space. The value -1 will be returned if if name does not correspond to an
active uniform variable name in program, or if name is associated with a named
uniform block.

If program has not been successfully linked, the error INVALID_OPERATION
is generated. After a program is linked, the location of a uniform variable will not
change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of

a single vector or a matrix. In order to identify a valid name, the " ." (dot) and
" [1" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with " [0] ". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with " [0] ".

Named uniform blocks, like uniforms, are identified by name strings. Uniform
block indices corresponding to uniform block names can be queried by calling

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 51

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockName must contain a null-terminated string specifying the name
of a uniform block.

GetUniformBlockIndex returns the uniform block index for the uniform block
named uniformBlockName of program. If uniformBlockName does not identify an
active uniform block of program, or an error occurred, then INVALID_INDEX iS
returned. The indices of the active uniform blocks of a program are assigned in
consecutive order, beginning with zero.

An active uniform block’s name string can be queried from its uniform block
index by calling

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei *length,
char *uniformBlockName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex must be an active uniform block index of program, in the
range zero to the value of ACTIVE_UNIFORM_BLOCKS - 1. The value of ACTIVE_-
UNIFORM_BLOCKS can be queried with GetProgramiv (see section 6.1.9). If
uniformBlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_-
BLOCKS, the error INVALID_VALUE is generated.

The string name of the uniform block identified by uniformBlockIndex is re-
turned into uniformBlockName. The name is null-terminated. The actual number
of characters written into uniformBlockName, excluding the null terminator, is re-
turned in length. If length is NULL, no length is returned.

bufSize contains the maximum number of characters (including the null termi-
nator) that will be written back to uniformBlockName.

If an error occurs, nothing will be written to uniformBlockName or length.

Information about an active uniform block can be queried by calling

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 52

successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex is an active uniform block index of program. If uniform-
BlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_BLOCKS, or
is not the index of an active uniform block in program, the error INVALID_VALUE
is generated.

If no error occurs, the uniform block parameter(s) specified by pname are re-
turned in params. Otherwise, nothing will be written to params.

If pname is UNIFORM_BLOCK_BINDING, then the index of the uniform buffer
binding point last selected by the uniform block specified by uniformBlockIndex
for program is returned. If no uniform block has been previously specified, zero is
returned.

If pname is UNIFORM_BLOCK_DATA_SIZE, then the implementation-
dependent minimum total buffer object size, in basic machine units, required to
hold all active uniforms in the uniform block identified by uniformBlockIndex is
returned. It is neither guaranteed nor expected that a given implementation will
arrange uniform values as tightly packed in a buffer object. The exception to this is
the std140 uniform block layout, which guarantees specific packing behavior and
does not require the application to query for offsets and strides. In this case the
minimum size may still be queried, even though it is determined in advance based
only on the uniform block declaration (see “Standard Uniform Block Layout” in
section 2.11.4).

The total amount of buffer object storage available for any given uniform block
is subject to an implementation-dependent limit. The maximum amount of avail-
able space, in basic machine units, can be queried by calling GetIntegerv with
the constant MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required for a
uniform block exceeds this limit, a program may fail to link.

If pname is UNIFORM_BLOCK_NAME_LENGTH, then the total length (includ-
ing the null terminator) of the name of the uniform block identified by uniform-
BlockIndex is returned.

If pname is UNIFORM_BLOCK_ACTIVE_UNIFORMS, then the number of active
uniforms in the uniform block identified by uniformBlockIndex is returned.

If pname is UNTFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the
active uniform indices for the uniform block identified by uniformBlockIndex is
returned. The number of elements that will be written to params is the value of
UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex.

If pname is UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER oOr
UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER, then a boolean value
indicating whether the uniform block identified by uniformBlockIndex is refer-
enced by the vertex or fragment programming stages of program, respectively, is

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 53

returned.

Each active uniform, whether in a named uniform block or in the default block,
is assigned an index when a program is linked. Indices are assigned in consecutive
order, beginning with zero. The indices assigned to a set of uniforms in a program
may be queried by calling

void GetUniformIndices(uint program,
sizei uniformCount, const char **uniformNames,
uint *uniformlndices);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformCount indicates both the number of elements in the array of names
uniformNames and the number of indices that may be written to uniformlindices.

uniformNames contains a list of uniformCount name strings identifying the uni-
form names to be queried for indices. For each name string in uniformNames, the
index assigned to the active uniform of that name will be written to the correspond-
ing element of uniformindices. If a string in uniformNames is not the name of an
active uniform, the value INVALID_INDEX will be written to the corresponding
element of uniformindices.

If an error occurs, nothing is written to uniformindices.

The name of an active uniform may be queried from the corresponding uniform
index by calling

void GetActiveUniformName(uint program,
uint uniformindex, sizei bufSize, sizei *length,
char *uniformName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformlndex must be an active uniform index of the program program, in
the range zero to the value of ACTIVE_UNIFORMS - 1. The value of ACTIVE_-
UNIFORMS can be queried with GetProgramiv. If uniformindex is greater than or
equal to the value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

The name of the uniform identified by uniformindex is returned as a null-
terminated string in uniformName. The actual number of characters written into

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 54

uniformName, excluding the null terminator, is returned in length. If length is
NULL, no length is returned. The maximum number of characters that may be writ-
ten into uniformName, including the null terminator, is specified by bufSize. The
returned uniform name can be the name of built-in uniform state as well. The com-
plete list of built-in uniform state is described in section 7.5 of the OpenGL Shad-
ing Language specification. The length of the longest uniform name in program
is given by the value of ACTIVE_UNIFORM_MAX_LENGTH, which can be queried
with GetProgramiv.

If GetActiveUniformName is not successful, nothing is written to length or

uniformName.
Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it

is legal to pass each string back into GetUniformLocation, for default uniform
block uniform names, or GetUniformIndices, for named uniform block uniform
names.

Information about active uniforms can be obtained by calling either

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

or

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

These commands provide information about the uniform or uniforms selected
by index or uniformindices, respectively. In GetActiveUniform, an index of 0
selects the first active uniform, and an index of the value of ACTIVE_UNIFORMS
- 1 selects the last active uniform. In GetActiveUniformsiv, uniformindices is an
array of such active uniform indices. If any index is greater than or equal to the
value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

For the selected uniform, GetActiveUniform returns the uniform name as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 55

is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-in
uniform state is described in section 7.5 of the OpenGL Shading Language specifi-
cation. The length of the longest uniform name in program is given by ACTIVE_-
UNIFORM_MAX_ LENGTH.

Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it is
legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.

For the selected uniform, GetActiveUniform returns the type of the uniform
into type and the size of the uniform is into size. The value in size is in units of the
uniform type, which can be any of the type name tokens in table 2.9, corresponding
to OpenGL Shading Language type keywords also shown in that table.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in type. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available, length will be set to zero and name will be
an empty string. This situation could arise if GetActiveUniform is issued after a
failed link.

If an error occurs, nothing is written to length, size, type, or name.

For GetActiveUniformsiv, uniformCount indicates both the number of ele-
ments in the array of indices uniformindices and the number of parameters written
to params upon successful return. pname identifies a property of each uniform in
uniformlndices that should be written into the corresponding element of params.
If an error occurs, nothing will be written to params.

If pname is UNIFORM_TYPE, then an array identifying the types of the uniforms
specified by the corresponding array of uniformindices is returned. The returned
types can be any of the values in table 2.9.

If pname is UNIFORM_SIZE, then an array identifying the size of the uniforms
specified by the corresponding array of uniformindices is returned. The sizes re-
turned are in units of the type returned by a query of UNIFORM_TYPE. For active
uniforms that are arrays, the size is the number of active elements in the array; for
all other uniforms, the size is one.

If pname is UNIFORM_NAME_LENGTH, then an array identifying the length,
including the terminating null character, of the uniform name strings specified by
the corresponding array of uniformlIndices is returned.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS

56

Type Name Token Keyword Type Name Token Keyword

FLOAT float SAMPLER_1D samplerlD
FLOAT_VEC2 vec?2 SAMPLER_2D sampler2D
FLOAT_VEC3 vec3 SAMPLER_3D sampler3D
FLOAT_VEC4 vec4d SAMPLER_CUBE samplerCube

INT int SAMPLER_1D_SHADOW samplerlDShadow
INT_VEC2 ivec2 SAMPLER_2D_ SHADOW sampler2DShadow
INT_VEC3 ivec3 SAMPLER_1D_ARRAY samplerlDArray
INT_VEC4 ivecd SAMPLER_2D_ARRAY sampler2DArray
UNSIGNED_INT unsigned int | SAMPLER_1D_ARRAY_SHADOW samplerlDArraySh
UNSIGNED_INT_VEC2 | uvec?2 SAMPLER_2D_ARRAY_SHADOW sampler2DArraySh
UNSIGNED_INT_VEC3 | uvec3 SAMPLER_CUBE_SHADOW samplerCubeShado
UNSIGNED_INT_VEC4 | uvecd SAMPLER_2D_RECT sampler2DRect
BOOL bool SAMPLER_2D_RECT_SHADOW sampler2DRectSha
BOOL_VEC2 bvec?2 INT_SAMPLER_1D isamplerlD
BOOL_VEC3 bvec3 INT_SAMPLER_2D isampler2D
BOOL_VEC4 bvecd INT_SAMPLER_3D isampler3D
FLOAT_MAT2 mat?2 INT_SAMPLER_CUBE isamplerCube
FLOAT_MAT3 mat3 INT_SAMPLER_1D_ARRAY isamplerlDArray
FLOAT_MAT4 matd INT_SAMPLER_2D_ARRAY isampler2DArray
FLOAT_MAT2x3 mat2x3 UNSIGNED_INT_SAMPLER_1D usamplerlD
FLOAT_MAT2x4 mat2x4 UNSIGNED_INT_SAMPLER_2D usampler2D
FLOAT_MAT3x2 mat3x2 UNSIGNED_INT_SAMPLER_3D usampler3D
FLOAT_MAT3x4 mat3x4 UNSIGNED_INT_SAMPLER_CUBRE usamplerCube
FLOAT MAT4x2 mat4x2 UNSIGNED_INT_SAMPLER_1D_ARRAY | usamplerlDArray
FLOAT_MAT4x3 matidx3 UNSIGNED_INT_SAMPLER_2D_ARRAY | usampler2DArray

Table 2.9: OpenGL Shading Language type tokens returned by GetActiveUni-
form and GetActiveUniformsiv, and corresponding shading language keywords

declaring each such type.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 57

If pname is UNIFORM_BLOCK_INDEX, then an array identifying the uniform
block index of each of the uniforms specified by the corresponding array of unifor-
mindices is returned. The index of a uniform associated with the default uniform
block is -1.

If pname is UNIFORM_OFFSET, then an array of uniform buffer offsets is re-
turned. For uniforms in a named uniform block, the returned value will be its offset,
in basic machine units, relative to the beginning of the uniform block in the buffer
object data store. For uniforms in the default uniform block, -1 will be returned.

If pname is UNIFORM_ARRAY_STRIDE, then an array identifying the stride
between elements, in basic machine units, of each of the uniforms specified by
the corresponding array of uniformlndices is returned. The stride of a uniform
associated with the default uniform block is -1. Note that this information only
makes sense for uniforms that are arrays. For uniforms that are not arrays, but are
declared in a named uniform block, an array stride of zero is returned.

If pname is UNIFORM_MATRIX_STRIDE, then an array identifying the stride
between columns of a column-major matrix or rows of a row-major matrix, in ba-
sic machine units, of each of the uniforms specified by the corresponding array of
uniformlndices is returned. The matrix stride of a uniform associated with the de-
fault uniform block is -1. Note that this information only makes sense for uniforms
that are matrices. For uniforms that are not matrices, but are declared in a named
uniform block, a matrix stride of zero is returned.

If pname is UNIFORM_IS_ROW_MAJOR, then an array identifying whether each
of the uniforms specified by the corresponding array of uniformindices is a row-
major matrix or not is returned. A value of one indicates a row-major matrix, and
a value of zero indicates a column-major matrix, a matrix in the default uniform
block, or a non-matrix.

Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables of the default uniform block of the
program object that is currently in use, use the commands

void Uniform{1234}{if}(int location, T value);

void Uniform{1234}{if}v(int location, sizei count,
T value);

void Uniform{1,2,3,4}ui(int location, T value);

void Uniform{1,2,3,4}uiv(int location, sizei count,
T value);

void UniformMatrix{234}fv(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv(

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 58

int location, sizei count, boolean transpose, const
float *value);

The given values are loaded into the default uniform block uniform variable loca-
tion identified by location.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an unsigned
integer vector, an array of unsigned integers or an array of unsigned integer vectors.

The UniformMatrix{234 }fv commands will load count 2 x 2,3 x 3, or 4 x 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv commands will load count
2x3,3%x2,2x4,4x%x2,3x4, or 4x 3 matrices (corresponding to the numbers in the
command name) of floating-point values into a uniform location defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv
is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, the Uniform*i{v}, Uni-
form*ui{v}, and Uniform*f{v} set of commands can be used to load boolean
values. Type conversion is done by the GL. The uniform is set to FALSE if the
input value is 0 or 0.0f, and set to TRUE otherwise. The Uniform* command used
must match the size of the uniform, as declared in the shader. For example, to
load a uniform declared as a bvec2, any of the Uniform2{if ui}* commands may
be used. An INVALID_OPERATION error will be generated if an attempt is made
to use a non-matching Uniform* command. In this example using Uniform1liv
would generate an error.

For all other uniform types the Uniform* command used must match the size
and type of the uniform, as declared in the shader. No type conversions are

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 59

done. For example, to load a uniform declared as a vec4, Uniform4f{v} must
be used. To load a 3x3 matrix, UniformMatrix3fv must be used. An INVALID -
OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example, using Uniformd4i{v} would generate an
error.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k£ through k + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

e if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

e if count is greater than one, and the uniform declared in the shader is not an
array variable,

e if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

if there is no program object currently in use.

Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of ac-
tive uniform blocks used by each shader (vertex and fragment). If the number of
uniform blocks used by any shader in the program exceeds its corresponding limit,
the program will fail to link. The limits for vertex and fragment shaders can be
obtained by calling GetIntegerv with pname values of MAX_VERTEX_UNIFORM_-
BLOCKS and MAX_FRAGMENT_UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader of a program. If a uniform

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 60

block is used by multiple shaders, each such use counts separately against this
combined limit. The combined uniform block use limit can be obtained by calling
Getlntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names and types, and in the same order. If a program
contains multiple shaders with different declarations for the same named uniform
block differs between shader, the program will fail to link.

Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

e Members of type bool are extracted from a buffer object by reading a single
uint-typed value at the specified offset. All non-zero values correspond to
true, and zero corresponds to false.

e Members of type int are extracted from a buffer object by reading a single
int-typed value at the specified offset.

e Members of type uint are extracted from a buffer object by reading a single
uint-typed value at the specified offset.

e Members of type float are extracted from a buffer object by reading a
single float-typed value at the specified offset.

e Vectors with NV elements with basic data types of bool, int, uint, or
float are extracted as /N values in consecutive memory locations begin-
ning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

e Column-major matrices with C' columns and R rows (using the type
matCxR, or simply matC if C' = R) are treated as an array of C' floating-
point column vectors, each consisting of i components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The dif-
ference in offsets between consecutive columns of the matrix will be re-
ferred to as the column stride, and is constant across the matrix. The column
stride, UNTFORM_MATRIX_STRIDE, is an implementation-dependent value
and may be queried after a program is linked.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 61

e Row-major matrices with C' columns and R rows (using the type matCxR,
or simply matC if C==R) are treated as an array of R floating-point row
vectors, each consisting of C' components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between
consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride, UNIFORM_MATRIX_ STRIDE, iS
an implementation-dependent value and may be queried after a program is
linked.

e Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

If a uniform block is declared in multiple shaders linked together into a single
program, the link will fail unless the uniform block declaration, including layout
qualifier, are identical in all such shaders.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

OpenGL 3.1 - May 28, 2009

2.11.

10.

VERTEX SHADERS 62

. If the member is a scalar consuming /N basic machine units, the base align-

ment is V.

. If the member is a two- or four-component vector with components consum-

ing IV basic machine units, the base alignment is 2N or 4N, respectively.

. If the member is a three-component vector with components consuming N

basic machine units, the base alignment is 4N .

If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

. If the member is a column-major matrix with C' columns and R rows, the

matrix is stored identically to an array of C column vectors with R compo-
nents each, according to rule (4).

. If the member is an array of .S column-major matrices with C' columns and

R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

. If the member is a row-major matrix with C' columns and R rows, the matrix

is stored identically to an array of R row vectors with C' components each,
according to rule (4).

. If the member is an array of S row-major matrices with C' columns and R

rows, the matrix is stored identically to a row of S x R row vectors with C
components each, according to rule (4).

. If the member is a structure, the base alignment of the structure is [N, where

N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

If the member is an array of .S structures, the S elements of the array are laid
out in order, according to rule (9).

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 63

Uniform Buffer Object Bindings

The value an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points can be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

Buffer objects are bound to uniform block binding points by calling one of the
commands

void BindBufferRange(enum farget, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

with target set to UNIFORM_BUFFER. There is an array of buffer object binding
points with which uniform blocks can be associated via UniformBlockBinding,
plus a single general binding point that can be used by other buffer object manip-
ulation functions (e.g. BindBuffer, MapBuffer). Both commands bind the buffer
object named by buffer to the general binding point, and additionally bind the buffer
object to the binding point in the array given by index. The error INVALID_VALUE
is generated if index is greater than or equal to the value of MAX UNIFORM_-
BUFFER_BINDINGS.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from the buffer ob-
ject while used as the storage for a uniform block. Both offset and size are in
basic machine units. The error INVALID_VALUE is generated if the value of size
is less than or equal to zero, if offset + size is greater than the value of BUFFER_-
SIZE, or if offset is not a multiple of the implementation-dependent required align-
ment (UNIFORM_BUFFER_OFFSET_ALIGNMENT). BindBufferBase is equivalent
to calling BindBufferRange with offset zero and size equal to the size of buffer.

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. This binding point can be assigned by calling:

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

uniformBlockIndex must be an active uniform block index of the program pro-
gram. Otherwise, INVALID_VALUE is generated.

uniformBlockBinding must be less than MAX_UNTIFORM_BUFFER_BINDINGS.
Otherwise, INVALID_VALUE is generated.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 64

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution are undefined, and may result in GL interruption or termination. Shaders
may be executed to process the primitives and vertices specified by vertex array
commands (see section 2.8).

When a program object is linked or re-linked, the uniform buffer object binding
point assigned to each of its active uniform blocks is reset to zero.

2.11.5 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to 7 selects texture
image unit number ¢. The values of ¢ range from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform™* entry points is not allowed and
will result in an INVALID_OPERATION €rror.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 65

mines that the count of active samplers exceeds the allowable limits, then the link
fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

2.11.6 Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL Shad-
ing Language specification). These values are expected to be interpolated across
the primitive being rendered. The OpenGL Shading Language specification defines
a set of built-in varying variables for vertex shaders that correspond to the values
required for the fixed-function processing that occurs after vertex processing.

The number of interpolators available for processing varying variables is
given by the value of the implementation-dependent constant MAX_VARYING_-
coMPONENTS. This value represents the number of individual scalar numeric val-
ues that can be interpolated; varying variables declared as vectors, matrices, and
arrays will all consume multiple interpolators. When a program is linked, all com-
ponents of any varying variable written by a vertex shader, read by a fragment
shader, or used for transform feedback will count against this limit. The trans-
formed vertex position (gl_Position) is not a varying variable and does not
count against this limit. A program whose shaders access more than the value
of MAX_VARYING_COMPONENTS components worth of varying variables may fail
to link, unless device-dependent optimizations are able to make the program fit
within available hardware resources.

Each program object can specify a set of one or more varying variables to be
recorded in transform feedback mode with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char **varyings, enum bufferMode);

program specifies the program object. count specifies the number of vary-
ing variables used for transform feedback. varyings is an array of count zero-
terminated strings specifying the names of the varying variables to use for trans-
form feedback. Varying variables are written out in the order they appear in the
array varyings. bufferMode is either INTERLEAVED_ATTRIBS Or SEPARATE_ -
ATTRIBS, and identifies the mode used to capture the varying variables when
transform feedback is active. The error INVALID_VALUE is generated if program
is not the name of a program object, or if bufferMode is SEPARATE_ATTRIBS
and count is greater than the value of the implementation-dependent limit MAX_ -
TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 66

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram is
called, the program is linked so that the values of the specified varying variables
for the vertices of each primitive generated by the GL are written to a single buffer
object (if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects
(if the buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

o the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex shader;

e any variable name specified in the varyings array is not declared as an output
in the vertex shader.

e any two entries in the varyings array specify the same varying variable;

o the total number of components to capture in any varying variable in varyings
is greater than the constant MAX_TRANSFORM_FEEDBACK_SEPARATE_-—
COMPONENTS and the buffer mode is SEPARATE_ATTRIBS; or

e the total number of components to capture is greater than the constant
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS.

To determine the set of varying variables in a linked program object that will
be captured in transform feedback mode, the command:

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

provides information about the varying variable selected by index. An index of 0
selects the first varying variable specified in the varyings array of TransformFeed-
backVaryings, and an index of TRANSFORM_FEEDBACK_VARYINGS-1 selects the
last such varying variable. The value of TRANSFORM_FEEDBACK_VARYINGS can
be queried with GetProgramiv (see section 6.1.9). If index is greater than or equal
to TRANSFORM_FEEDBACK_VARYINGS, the error INVALID_VALUE is generated.
The parameter program is the name of a program object for which the command
LinkProgram has been issued in the past. If program has not been linked, the er-
ror INVALID_OPERATION is generated. If a new set of varying variables is speci-
fied by TransformFeedbackVaryings after a program object has been linked, the
information returned by GetTransformFeedbackVarying will not reflect those
variables until the program is re-linked.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 67

The name of the selected varying is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,
is specified by bufSize. The length of the longest varying name in program is
given by TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, which can be queried
with GetProgramiv (see section 6.1.9).

For the selected varying variable, its type is returned into fype. The size of
the varying is returned into size. The value in size is in units of the type returned
in type. The type returned can be any of the scalar, vector, or matrix attribute
types returned by GetActiveAttrib. If an error occurred, the return parameters
length, size, type and name will be unmodified. This command will return as much
information about the varying variables as possible. If no information is available,
length will be set to zero and name will be an empty string. This situation could
arise if GetTransformFeedbackVarying is called after a failed link.

2.11.7 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values . In particular,

The following operations are applied to vertex values that are the result of
executing the vertex shader:

e Perspective division on clip coordinates (section 2.12).

e Viewport mapping, including depth range scaling (section 2.12.1).
e Clipping, including client-defined half-spaces (section 2.17).

e Front face determination (section 3.6.1).

e generic attribute clipping (section 2.17.1).

There are several special considerations for vertex shader execution described
in the following sections.
Shader Only Texturing

This section describes texture functionality that is accessible through vertex or
fragment shaders. Also refer to section 3.8 and to the OpenGL Shading Language
Specification, section 8.7.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 68

Texel Fetches

The OpenGL Shading Language texel fetch functions provide the ability to
extract a single texel from a specified texture image. The integer coordinates passed
to the texel fetch functions are used directly as the texel coordinates (¢, j, k) into the
texture image. This in turn means the texture image is point-sampled (no filtering
is performed).

The level of detail accessed is computed by adding the specified level-of-detail
parameter /od to the base level of the texture, levelp,ge.-

The texel fetch functions can not perform depth comparisons or access cube
maps. Unlike filtered texel accesses, texel fetches do not support LOD clamping or
any texture wrap mode, and require a mipmapped minification filter to access any
level of detail other than the base level.

The results of the texel fetch are undefined if any of the following conditions
hold:

o the computed LOD is less than the texture’s base level (levelp,se) or greater
than the maximum level (level,,q.)

e the computed LOD is not the texture’s base level and the texture’s minifica-
tion filter is NEAREST or LINEAR

o the layer specified for array textures is negative or greater than the number
of layers in the array texture,

e the texel coordinates (i, j, k) refer to a border texel outside the defined ex-
tents of the specified LOD, where any of

1< —bg i > ws — by
j < —bs j > hs—bs
k < —bg k> ds— b

and the size parameters ws, hs, ds, and b, refer to the width, height, depth,
and border size of the image, as in equations 3.16

e the texture being accessed is not complete (or cube complete for cubemaps).

Texture Size Query

The OpenGL Shading Language texture size functions provide the ability to
query the size of a texture image. The LOD value /od passed in as an argument
to the texture size functions is added to the levelp,s Of the texture to determine
a texture image level. The dimensions of that image level, excluding a possible
border, are then returned. If the computed texture image level is outside the range

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 69

[levelpgse, level gz], the results are undefined. When querying the size of an array
texture, both the dimensions and the layer index are returned.

Texture Access

Vertex shaders have the ability to do a lookup into a texture map. The maxi-
mum number of texture image units available to a vertex shader is the value of
the implementation-dependent constant MAX_VERTEX_TEXTURE_IMAGE_UNITS.
The maximum number of texture image units available to a fragment shader is
the value of MAX_TEXTURE_IMAGE_UNITS. Both the vertex shader and fragment
shader combined cannot use more than the value of MAX_COMBINED_TEXTURE_-
IMAGE_UNITS texture image units. If both the vertex shader and the fragment
processing stage access the same texture image unit, then that counts as using two
texture image units against the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a vertex shader, the filtered texture value
7 is computed in the manner described in sections 3.8.8 and 3.8.9, and converted
to a texture source color C according to table 3.20 (section 3.9.2). A four-
component vector (R, G, Bs, As) is returned to the vertex shader. Texture lookup
functions (see section 8.7 of the OpenGL Shading Language Specification) may
return floating-point, signed, or unsigned integer values depending on the function
and the internal format of the texture.

In a vertex shader, it is not possible to perform automatic level-of-detail calcu-
lations using partial derivatives of the texture coordinates with respect to window
coordinates as described in section 3.8.8. Hence, there is no automatic selection of
an image array level. Minification or magnification of a texture map is controlled
by a level-of-detail value optionally passed as an argument in the texture lookup
functions. If the texture lookup function supplies an explicit level-of-detail value [,
then the pre-bias level-of-detail value \pqse(x,y) = [(replacing equation 3.17). If
the texture lookup function does not supply an explicit level-of-detail value, then
Mbase(z,y) = 0. The scale factor p(z,y) and its approximation function f(z,y)
(see equation 3.21) are ignored.

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with a refer-
ence depth value specified in the coordinates passed to the texture lookup func-
tion, as described in section 3.8.14. The comparison operation is requested in
the shader by using any of the shadow sampler types (samplerlDShadow,
sampler2DShadow, Or sampler2DRectShadow), and in the texture using the
TEXTURE_COMPARE_MODE parameter. These requests must be consistent; the re-
sults of a texture lookup are undefined if:

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 70

e The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT oOr
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS NONE.

e The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT Or
DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

If a vertex shader uses a sampler where the associated texture object is not com-
plete, as defined in section 3.8.11, the texture image unit will return (R, G, B, A)
=(0,0,0,1).

Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables g1_vertexID and g1_InstancelID

gl_vVertexID holds the integer index ¢ implicitly passed by DrawArrays or
one of the other drawing commands defined in section 2.8.2.

gl_InstanceID holds the integer index of the current primitive in an in-
stanced draw call (see section 2.8.2).

Section 7.1 of the OpenGL Shading Language Specification also describes
these variables.

Shader Outputs

A vertex shader can write to user-defined varying variables. These values are
expected to be interpolated across the primitive it outputs, unless they are specified
to be flat shaded. Refer to the OpenGL Shading Language specification sections
4.3.6, 7.1 and 7.6 for more detail.

The built-in special variable g1_Position is intended to hold the homoge-
neous vertex position. Writing g1_Position is optional.

The built-in special variable g1_ClipDistance holds the clip distance(s)
used in the clipping stage, as described in section 2.17. If clipping is enabled,
gl_ClipDistance should be written.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 71

Validation

It is not always possible to determine at link time if a program object actually will
execute. Therefore validation is done when the first rendering command is issued,
to determine if the currently active program object can be executed. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.

This error is generated by any command that transfers vertices to the GL if:

e any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

e the number of active samplers in the program exceeds the maximum number
of texture image units allowed.

Undefined behavior results if the program object in use has no fragment shader
unless transform feedback is enabled, in which case only a vertex shader is re-
quired.

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 6.1.9). If
validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID_OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log of program is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

OpenGL 3.1 - May 28, 2009

2.11. VERTEX SHADERS 72

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds reads will return undefined values; out-of-bounds
writes will have undefined results and could corrupt other variables used by shader
or the GL. The level of protection provided against such errors in the shader is
implementation-dependent.

2.11.8 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.

e An integer holding the value of SHADER_TYPE.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An array of type char containing the concatenated shader string, initially
empty.

e An integer holding the length of the concatenated shader string.

The state required per program object consists of:

e An unsigned integer indicating the program object name.
e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last link attempt, initially FALSE.

OpenGL 3.1 - May 28, 2009

2.12. COORDINATE TRANSFORMATIONS 73

e A boolean holding the status of the last validation attempt, initally FALSE.
¢ An integer holding the number of attached shader objects.

o A list of unsigned integers to keep track of the names of the shader objects
attached.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.
e An integer holding the number of active uniforms.

e For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

e An array holding the values of each active uniform.
¢ An integer holding the number of active attributes.

e For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

Additional state required to support vertex shaders consists of:

e A bit indicating whether or not vertex program two-sided color mode is en-
abled, initially disabled.

e A bit indicating whether or not vertex program point size mode (sec-
tion 3.4.1) is enabled, initially disabled.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

2.12 Coordinate Transformations

Clip coordinates for a vertex result from vertex shader execution, which yields a
vertex coordinate g1_Position. Perspective division on clip coordinates yields
normalized device coordinates, followed by a viewport transformation to convert

these coordinates into window coordinates.
Te

If a vertex in clip coordinates is given by

OpenGL 3.1 - May 28, 2009

2.12. COORDINATE TRANSFORMATIONS 74

then the vertex’s normalized device coordinates are

Tc

We
_ Y
Ya | = | wo
Ze
Zd we

2.12.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, p, and p,;, respectively, and its center (o, 0,) (also in pixels). The vertex’s

L
window coordinates, | vy, | , are given by
Zw
p
Yw | = %yd + 0y
2w f%n 2q + %f

The factor and offset applied to z; encoded by n and f are set using
void DepthRange(clampdn, clampdf);

zyw 18 represented as either fixed- or floating-point depending on whether the frame-
buffer’s depth buffer uses a fixed- or floating-point representation. If the depth
buffer uses fixed-point, we assume that it represents each value k /(2" — 1), where
k € {0,1,...,2"™ — 1}, as k (e.g. 1.0 is represented in binary as a string of all
ones). The parameters n and f are clamped to the range [0, 1], as are all arguments
of type clampd or clampf.

Viewport transformation parameters are specified using

void Viewport(int x, inty, sizeiw, sizeih);

where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and h give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as

Oy =T+ 75
oy:y—i-%
Pz =W
py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing

OpenGL 3.1 - May 28, 2009

2.13. ASYNCHRONOUS QUERIES 75

an appropriate Get command (see chapter 6). The maximum viewport dimensions
must be greater than or equal to the larger of the visible dimensions of the display
being rendered to (if a display exists), and the largest renderbuffer image which
can be successfully created and attached to a framebuffer object (see chapter 4).
INVALID_VALUE is generated if either w or & is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and h are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. If the default framebuffer is bound but no default framebuffer is associated
with the GL context (see chapter 4), then w and # are initially set to zero. oz, 0y,

n, and f are set to %, %, 0.0, and 1.0, respectively.

2.13 Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. There are two query types supported by
the GL. Transform feedback queries (see section 2.15) return information on the
number of vertices and primitives processed by the GL and written to one or more
buffer objects. Occlusion queries (see section 4.1.6) count the number of fragments
or samples that pass the depth test.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 6.1.6 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

Each type of query supported by the GL has an active query object name. If
the active query object name for a query type is non-zero, the GL is currently
tracking the information corresponding to that query type and the query results
will be written into the corresponding query object. If the active query object for a
query type name is zero, no such information is being tracked.

A query object is created and made active by calling

void BeginQuery(enum target, uint id);

target indicates the type of query to be performed; valid values of farget are defined
in subsequent sections. If id is an unused query object name, the name is marked
as used and associated with a new query object of the type specified by target.
Otherwise id must be the name of an existing query object of that type.

OpenGL 3.1 - May 28, 2009

2.13. ASYNCHRONOUS QUERIES 76

BeginQuery fails and an INVALID_OPERATION error is generated if id is not
a name returned from a previous call to GenQueries, or if such a name has since
been deleted with DeleteQueries.

BeginQuery sets the active query object name for the query type given by
target to id. If BeginQuery is called with an id of zero, if the active query object
name for farget is non-zero, if id is the name of an existing query object whose
type does not match target, if id is the active query object name for any query type,
or if id is the active query object for condtional rendering (see section 2.14), the
error INVALID_OPERATION is generated.

The command

void EndQuery(enum farget);

marks the end of the sequence of commands to be tracked for the query type given
by target. The active query object for farget is updated to indicate that query results
are not available, and the active query object name for rarget is reset to zero. When
the commands issued prior to EndQuery have completed and a final query result
is available, the query object active when EndQuery is called is updated by the
GL. The query object is updated to indicate that the query results are available and
to contain the query result. If the active query object name for farget is zero when
EndQuery is called, the error INVALID_OPERATION is generated.
The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery.

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names in ids are silently ignored.

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits used to represent the query result is implementation-dependent. In
the initial state of a query object, the result is available and its value is zero.

The necessary state for each query type is an unsigned integer holding the
active query object name (zero if no query object is active), and any state necessary
to keep the current results of an asynchronous query in progress.

OpenGL 3.1 - May 28, 2009

2.14. CONDITIONAL RENDERING 77

2.14 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES_PASSED)
of the query is zero, all rendering commands between BeginConditionalRender
and the corresponding EndConditionalRender are discarded. In this case, all
vertex array commands (see section 2.8), as well as Clear and ClearBuffer* (see
section 4.2.3), have no effect. The effect of commands setting current vertex state,
such as VertexAttrib, are undefined. If the result of the occlusion query is non-
zero, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id. If mode is QUERY_WATIT, the GL waits for the results of
the query to be available and then uses the results to determine if subsquent render-
ing commands are discarded. If mode is QUERY_NO_WAIT, the GL may choose to
unconditionally execute the subsequent rendering commands without waiting for
the query to complete.

If mode is QUERY_BY_REGION_WAIT, the GL will also wait for occlusion
query results and discard rendering commands if the result of the occlusion query is
zero. If the query result is non-zero, subsequent rendering commands are executed,
but the GL may discard the results of the commands for any region of the frame-
buffer that did not contribute to the sample count in the specified occlusion query.
Any such discarding is done in an implementation-dependent manner, but the ren-
dering command results may not be discarded for any samples that contributed
to the occlusion query sample count. If mode is QUERY_BY_REGION_NO_WAIT,
the GL operates as in QUERY_BY_REGION_WAIT, but may choose to uncondition-
ally execute the subsequent rendering commands without waiting for the query to
complete.

If BeginConditionalRender is called while conditional rendering is in
progress, or if EndConditionalRender is called while conditional rendering is not
in progress, the error INVALID_OPERATION is generated. The error INVALID_-
VALUE is generated if id is not the name of an existing query object. The error
INVALID_OPERATION is generated if id is the name of a query object with a target
other than SAMPLES_PASSED, or id is the name of a query currently in progress.

OpenGL 3.1 - May 28, 2009

2.15. TRANSFORM FEEDBACK 78

Transform Feedback | Allowed render primitive

primitiveMode modes

POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP

TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

Table 2.10: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

2.15 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives

processed by a vertex shader are written out to one or more buffer objects. The

vertices are fed back after vertex color clamping, but before clipping. The trans-

formed vertices may be optionally discarded after being stored into one or more

buffer objects, or they can be passed on down to the clipping stage for further

processing. The set of attributes captured is determined when a program is linked.
Transform feedback is started and finished by calling

void BeginTransformFeedback(enum primitiveMode);
and
void EndTransformFeedback(void);

respectively. Transform feedback is said to be active after a call to BeginTrans-
formFeedback and inactive after a call to EndTransformFeedback. primitive-
Mode is one of TRIANGLES, LINES, or POINTS, and specifies the output type of
primitives that will be recorded into the buffer objects bound for transform feed-
back (see below). primitiveMode restricts the primitive types that may be rendered
while transform feedback is active, as shown in table 2.10.

Transform feedback commands must be paired; the error INVALID_-
OPERATION is generated by BeginTransformFeedback if transform feedback is
active, and by EndTransformFeedback if transform feedback is inactive.

Transform feedback mode captures the values of varying variables written by
the vertex shader.

When transform feedback is active, all geometric primitives generated must
be compatible with the value of primitiveMode passed to BeginTransformFeed-
back. The error INVALID_OPERATION is generated by DrawArrays and the

OpenGL 3.1 - May 28, 2009

2.15. TRANSFORM FEEDBACK 79

other drawing commands defined in section 2.8.2 if mode is not one of the allowed
modes in table 2.10.

Buffer objects are made to be targets of transform feedback by calling one of
the commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

with target set to TRANSFORM_FEEDBACK_BUFFER. There is an array of buffer
object binding points that are used while transform feedback is active, plus a sin-
gle general binding point that can be used by other buffer object manipulation
functions (e.g., BindBuffer, MapBuffer). Both commands bind the buffer object
named by buffer to the general binding point, and additionally bind the buffer ob-
ject to the binding point in the array given by index. The error INVALID_VALUE
is generated if index is greater than or equal to the value of MAX_ TRANSFORM_-—
FEEDBACK_SEPARATE_ATTRIBS.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be written to the buffer object
while transform feedback mode is active. Both offset and size are in basic machine
units. The error INVALID_VALUE is generated if the value of size is less than
or equal to zero, if offset + size is greater than the value of BUFFER_SIZE, or if
either offset or size are not a multiple of 4. BindBufferBase is equivalent to calling
BindBufferRange with offset zero and size equal to the size of buffer, rounded
down to the nearest multiple of 4.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active, the values of the specified varying
variables of the vertex are appended to the buffer objects bound to the transform
feedback binding points. The attributes of the first vertex received after Begin-
TransformFeedback are written at the starting offsets of the bound buffer objects
set by BindBufferRange, and subsequent vertex attributes are appended to the
buffer object. When capturing line and triangle primitives, all attributes of the first
vertex are written first, followed by attributes of the subsequent vertices. When
writing varying variables that are arrays, individual array elements are written in
order. For multi-component varying variables or varying array elements, the indi-
vidual components are written in order. The value for any attribute specified to be
streamed to a buffer object but not actually written by a vertex shader is undefined.

Individual lines or triangles of a strip or fan primitive will be extracted and
recorded separately. Incomplete primitives are not recorded.

Transform feedback can operate in either INTERLEAVED_ATTRIBS oOr
SEPARATE_ATTRIBS mode. In INTERLEAVED_ATTRIBS mode, the values of one

OpenGL 3.1 - May 28, 2009

2.15. TRANSFORM FEEDBACK 80

or more varyings are written, interleaved, into the buffer object bound to the first
transform feedback binding point (index = 0). If more than one varying variable is
written, they will be recorded in the order specified by TransformFeedbackVary-
ings (see section 2.11.6). In SEPARATE_ATTRIBS mode, the first varying variable
specified by TransformFeedbackVaryings is written to the first transform feed-
back binding point; subsequent varying variables are written to the subsequent
transform feedback binding points. The total number of variables that may be cap-
tured in separate mode is given by MAX_ TRANSFORM_FEEDBACK_SEPARATE_-—
ATTRIBS.

If recording the vertices of a primitive to the buffer objects being used for trans-
form feedback purposes would result in either exceeding the limits of any buffer
object’s size, or in exceeding the end position offset + size — 1, as set by Bind-
BufferRange, then no vertices of that primitive are recorded in any buffer object,
and the counter corresponding to the asynchronous query target TRANSFORM_ -
FEEDBACK_PRIMITIVES_WRITTEN (see section 2.16) is not incremented.

In either separate or interleaved modes, all transform feedback binding points
that will be written to must have buffer objects bound when BeginTransformFeed-
back is called. The error INVALID_OPERATION is generated by BeginTrans-
formFeedback if any binding point used in transform feedback mode does not
have a buffer object bound. In interleaved mode, only the first buffer object bind-
ing point is ever written to. The error INVALID_OPERATION is also generated
by BeginTransformFeedback if no binding points would be used, either because
no program object is active or because the active program object has specified no
varying variables to record.

While transform feedback is active, the set of attached buffer objects and the set
of varying variables captured may not be changed. If transform feedback is active,
the error INVALID_OPERATION is generated by UseProgram, by LinkProgram
if program is the currently active program object, and by BindBufferRange or
BindBufferBase if farget is TRANSFORM_FEEDBACK_BUFFER.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include ReadPixels to a pixel buffer object binding point and client access to a
buffer mapped with MapBuffer.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

OpenGL 3.1 - May 28, 2009

2.16. PRIMITIVE QUERIES 81

2.16 Primitive Queries

Primitive queries use query objects to track the number of primitives generated by
the GL and to track the number of primitives written to transform feedback buffers.

When BeginQuery is called with a target of PRIMITIVES_GENERATED, the
primitives-generated count maintained by the GL is set to zero. When the generated
primitive query is active, the primitives-generated count is incremented every time
a primitive reaches the ‘“Discarding Primitives Before Rasterization™ stage (see
section 3.1) immediately before rasterization.

When BeginQuery is called with a farget of TRANSFORM FEEDBACK_-—
PRIMITIVES_WRITTEN, the transform-feedback-primitives-written count main-
tained by the GL is set to zero. When the transform feedback primitive written
query is active, the transform-feedback-primitives-written count is incremented ev-
ery time a primitive is recorded into a buffer object. If transform feedback is not
active, this counter is not incremented. If the primitive does not fit in the buffer
object, the counter is not incremented.

These two queries can be used together to determine if all primitives have been
written to the bound feedback buffers; if both queries are run simultaneously and
the query results are equal, all primitives have been written to the buffer(s). If the
number of primitives written is less than the number of primitives generated, the
buffer is full.

2.17 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume
is defined by
—we < xe < We
—We < Yo < We
—wWe < Ze < We.

This view volume may be further restricted by as many as n client-defined half-
spaces. (n is an implementation-dependent maximum that must be at least 6.) The
clip volume is the intersection of all such half-spaces with the view volume (if no
client-defined half-spaces are enabled, the clip volume is the view volume).

A vertex shader may write a single clip distance for each supported half-space
to elements of the g1_ClipDistance[] array. Half-space n is then given by the
set of points satisfying the inequality

cn(P) 20,

OpenGL 3.1 - May 28, 2009

2.17. PRIMITIVE CLIPPING 82

where ¢, (P) is the value of clip distance n at point P. For point primitives,
cn(P) is simply the clip distance for the vertex in question. For line and triangle
primitives, per-vertex clip distances are interpolated using a weighted mean, with
weights derived according to the algorithms described in sections 3.5 and 3.6.

Client-defined half-spaces are enabled with the generic Enable command and
disabled with the Disable command. The value of the argument to either com-
mand is CLIP_DISTANCE: where ¢ is an integer between 0 and n — 1; specifying a
value of ¢ enables or disables the plane equation with index 7. The constants obey
CLIP_DISTANCE; = CLIP_DISTANCEOQ + i.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the clip volume, and discards it if it lies entirely outside the volume.

If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or both
vertices. A clipped line segment endpoint lies on both the original line segment
and the boundary of the clip volume.

This clipping produces a value, 0 < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P
and P, then ¢ is given by

P=tP, + (1 — t)PQ.

The value of ¢ is used to clip vertex shader varying variables as described in sec-
tion 2.17.1.

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge.

Primitives rendered with user-defined half-spaces must satisfy a complemen-
tarity criterion. Suppose a series of primitives is drawn where each vertex ¢ has a
single specified clip distance d; (or a number of similarly specified clip distances,
if multiple half-spaces are enabled). Next, suppose that the same series of primi-
tives are drawn again with each such clip distance replaced by —d; (and the GL
is otherwise in the same state). In this case, primitives must not be missing any
pixels, nor may any pixels be drawn twice in regions where those primitives are
cut by the clip planes.

OpenGL 3.1 - May 28, 2009

2.17. PRIMITIVE CLIPPING 83

The state required for clipping is at least 8 bits indicating which of the client-
defined half-spaces are enabled. In the initial state, all half-spaces are disabled.

2.17.1 Clipping Shader Varying Outputs

Next, vertex shader varying variables are clipped. The varying values associ-
ated with a vertex that lies within the clip volume are unaffected by clipping. If a
primitive is clipped, however, the varying values assigned to vertices produced by
clipping are clipped.

Let the varying values assigned to the two vertices P; and P of an unclipped
edge be c; and co. The value of ¢ (section 2.17) for a clipped point P is used to
obtain the varying value associated with P as *

c=tc+ (1 —t)ca.

(Multiplying a varying value by a scalar means multiplying each of x, y, z, and w
by the scalar.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one half-space at a time. Varying value clipping is done in the
same way, so that clipped points always occur at the intersection of polygon edges
(possibly already clipped) with the clip volume’s boundary.

For vertex shader varying variables specified to be interpolated without per-
spective correction (using the noperspective qualifier), the value of ¢ used to
obtain the varying value associated with P will be adjusted to produce results that
vary linearly in screen space.

Varying outputs of integer or unsigned integer type must always be declared
with the f1at qualifier. Since such varyings are constant over the primitive being
rasterized (see sections 3.5.1 and 3.6.1), no interpolation is performed.

* Since this computation is performed in clip space before division by w.., clipped varying values
are perspective-correct.

OpenGL 3.1 - May 28, 2009

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a depth value and one or more color values to each such
square. The results of this process are passed on to the next stage of the GL (per-
fragment operations), which uses the information to update the appropriate loca-
tions in the framebuffer. Figure 3.1 diagrams the rasterization process. The color
values assigned to a fragment are initially determined by the rasterization opera-
tions (sections 3.4 through 3.7) and modified by a fragment shader as defined in
section 3.9. The final depth value is initially determined by the rasterization op-
erations and may be modified or replaced by a fragment shader. The results from
rasterizing a point, line, or polygon can be routed through a fragment shader.

A grid square along with its parameters of assigned colors, z (depth), fog coor-
dinate, and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment’s associated data. A fragment is located by its lower left cor-
ner, which lies on integer grid coordinates. Rasterization operations also refer to a
fragment’s center, which is offset by (1/2,1/2) from its lower left corner (and so
lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Primitives may be discarded before ras-
terization. Points may be given differing diameters and line segments differing

84

3.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 85

Point

/ Resterization \

From Line Fragment

imiti » » »
Primitive / Program

Assembly Rasterization Fragments
Triangle

Rasterization

Figure 3.1. Rasterization.

widths. A point, line segment, or polygon may be antialiased.

3.1 Discarding Primitives Before Rasterization

Primitives can be optionally discarded before rasterization by calling Enable and
Disable with RASTERIZER_DISCARD. When enabled, primitives are discarded im-
mediately before the rasterization stage, but after the optional transform feedback
stage (see section 2.15). When disabled, primitives are passed through to the ras-
terization stage to be processed normally. When enabled, RASTERIZER_DISCARD
also causes the Clear and ClearBuffer* commands to be ignored.

3.2 Invariance

Consider a primitive p’ obtained by translating a primitive p through an offset (x, y)
in window coordinates, where x and y are integers. As long as neither p’ nor p is
clipped, it must be the case that each fragment f’ produced from p’ is identical to
a corresponding fragment f from p except that the center of f’ is offset by (z,y)
from the center of f.

OpenGL 3.1 - May 28, 2009

3.3. ANTIALIASING 86

3.3 Antialiasing

The R, G, and B values of the rasterized fragment are left unaffected, but the A
value is multiplied by a floating-point value in the range [0, 1] that describes a
fragment’s screen pixel coverage. The per-fragment stage of the GL can be set up
to use the A value to blend the incoming fragment with the corresponding pixel
already present in the framebuffer.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called a fragment square and has lower left corner
(x,y) and upper right corner (x4 1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f; and f5 are two fragments, and the portion of f; covered by some prim-
itive is a subset of the corresponding portion of fs covered by the primitive,
then the coverage computed for f; must be less than or equal to that com-
puted for fo.

2. The coverage computation for a fragment f must be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend on f’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

OpenGL 3.1 - May 28, 2009

3.3. ANTIALIASING 87

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 5.2), allowing a user to make an image quality
versus speed tradeoff.

3.3.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, and
polygons. The technique is to sample all primitives multiple times at each pixel.
The color sample values are resolved to a single, displayable color each time a
pixel is updated, so the antialiasing appears to be automatic at the application level.
Because each sample includes color, depth, and stencil information, the color (in-
cluding texture operation), depth, and stencil functions perform equivalently to the
single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.
Color buffers do coexist with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adja-
cent polygons, object silhouettes, and even intersecting polygons. If only lines
are being rendered, the “smooth” antialiasing mechanism provided by the base GL
may result in a higher quality image. This mechanism is designed to allow multi-
sample and smooth antialiasing techniques to be alternated during the rendering of
a single scene.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_ -
BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

Second, each fragment includes SAMPLES depth values, color values, and sets
of texture coordinates, instead of the single depth value, color value, and set of
texture coordinates that is maintained in single-sample rendering mode. An imple-
mentation may choose to assign the same color value and the same set of texture
coordinates to more than one sample. The location for evaluating the color value
and the set of texture coordinates can be anywhere within the pixel including the

OpenGL 3.1 - May 28, 2009

3.4. POINTS 88

fragment center or any of the sample locations. The color value and the set of tex-
ture coordinates need not be evaluated at the same location. Each pixel fragment
thus consists of integer x and y grid coordinates, SAMPLES color and depth values,
SAMPLES sets of texture coordinates, and a coverage value with a maximum of
SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable
with the symbolic constant MULTISAMPLE.

If MULTISAMPLE is disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has SAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.4 Points

If vertex program point size mode is enabled, then the derived point size is taken
from the (potentially clipped) shader built-in g1_PointSize and clamped to the
implementation-dependent point size range. If the value writtento g1_PointSize
is less than or equal to zero, results are undefined. If vertex program point size
mode is disabled, then the derived point size is specified with the command

void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the error INVALID_VALUE. Vertex program point

OpenGL 3.1 - May 28, 2009

3.4. POINTS &9

size mode is enabled and disabled by calling Enable or Disable with the symbolic
value VERTEX_PROGRAM_POINT_SIZE.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 3.11) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

) derived_size derived_size > threshold
width = { threshold otherwise 3.1
and the fade factor is computed as follows:
fad 1 derived_size > threshold (32)
ade = ' } .
(Sretsize)” otherwise

The point fade threshold is specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enum pname, const T params);

If pname is POINT_FADE_THRESHOLD_SIZE, then param specifies, or params
points to the point fade threshold. Values of POINT_FADE THRESHOLD_SIZE
less than zero result in the error INVALID_ VALUE.

The point sprite texture coordinate origin is set with the PointParame-
ter* commands where pname is POINT_SPRITE_COORD_ORIGIN and param is
LOWER_LEFT or UPPER_LEFT. The default value is UPPER_LEFT.

3.4.1 Basic Point Rasterization

Point rasterization produces a fragment for each framebuffer pixel whose center
lies inside a square centered at the point’s (., ¥,), with side length equal to the
current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. However,
the fragment shader builtin g1_PointCoord contains point sprite texture coor-
dinates. The s point sprite texture coordinate varies from O to 1 across the
point horizontally left-to-right. If POINT_SPRITE_COORD_ORIGIN is LOWER_ —
LEFT, the ¢ coordinate varies from O to 1 vertically bottom-to-top. Otherwise if
the point sprite texture coordinate origin is UPPER_LEFT, the ¢ coordinate varies
from O to 1 vertically top-to-bottom. The r and g coordinates are replaced with the
constants 0 and 1, respectively.

OpenGL 3.1 - May 28, 2009

3.4. POINTS 90

The following formula is used to evaluate the s and ¢ point sprite texture coor-
dinates:

1 (2 + 5 —20)

s= -4 fT2 T M) (3.3)
2 size
1, (wrts—vw)
,_) 3+ 2" POINI_SPRITE_COORD_ORIGIN = LOWER LEFT
- "Fl_ w
1 W) poINT_SPRITE_COORD_ORIGIN = UPPER_LEFT

(3.4)
where size is the point’s size, x ¢ and y are the (integral) window coordinates of
the fragment, and x,, and y,, are the exact, unrounded window coordinates of the
vertex for the point.

Not all point widths need be supported, but the width 1.0 must be provided.
The range of supported widths and the width of evenly-spaced gradations within
that range are implementation-dependent. The range and gradations may be ob-
tained using the query mechanism described in chapter 6. If, for instance, the
width range is from 0.1 to 2.0 and the gradation width is 0.1, then the widths
0.1,0.2,...,1.9,2.0 are supported. Additional point widths may also be sup-
ported. There is no requirement that these widths must be equally spaced. If
an unsupported width is requested, the nearest supported width is used instead.

3.4.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, a bit indicating whether or not vertex program point size mode is enabled,
a bit for the point sprite texture coordinate origin, and a floating-point value speci-
fying the point fade threshold size.

3.4.3 Point Multisample Rasterization

IfMULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then points
are rasterized using the following algorithm Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s (z,,, yy,). This region is a square with side equal
to the current point width. Coverage bits that correspond to sample points that
intersect the region are 1, other coverage bits are 0. All data associated with each
sample for the fragment are the data associated with the point being rasterized, .

The set of point sizes supported is equivalent to those for point sprites without
multisample .

OpenGL 3.1 - May 28, 2009

3.5. LINE SEGMENTS 91

3.5 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line segment rasterization is controlled by several variables. Line width,
which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0. Values less than or equal to 0.0 generate
the error INVALID_VALUE. Antialiasing is controlled with Enable and Disable
using the symbolic constant LINE_SMOOTH.

3.5.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [—1,1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for z-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates x s and y, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z —zp| + |y —ysl <1/2.}

Essentially, a line segment starting at p, and ending at p; produces those frag-
ments f for which the segment intersects ¢, except if py, is contained in Ry. See
figure 3.2.

To avoid difficulties when an endpoint lies on a boundary of Ry we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let p, and p; have window
coordinates (x4, y,) and (z, yp), respectively. Obtain the perturbed endpoints p/,
given by (z4,94) — (€, €2) and pj, given by (x4,) — (€, €2). Rasterizing the line
segment starting at p, and ending at p; produces those fragments f for which the
segment starting at p/, and ending on pj intersects R, except if pj is contained in
Ry. e is chosen to be so small that rasterizing the line segment produces the same
fragments when 4 is substituted for € for any 0 < § < e.

When p, and p; lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pp)

OpenGL 3.1 - May 28, 2009

3.5. LINE SEGMENTS

92

Figure 3.2. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-

ing fragments.

is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult

to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by

more than one unit in either x or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

. For an z-major line, no two fragments may be produced that lie in the same

window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

. If two line segments share a common endpoint, and both segments are either

z-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce

OpenGL 3.1 - May 28, 2009

3.5. LINE SEGMENTS 93

duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (24,y4) and let pg, = (24, ya) and py = (zs, yp). Set

(pr - pa)) (pb - pa)
1Py — Pall?
(Note that t = 0 at p, and ¢t = 1 at pp.) The value of an associated datum f for the
fragment, whether it be a varying shader output or the clip w coordinate, is found

as

t= (3.5)

(1 - t)fa/wa + tfb/wb
(1 —1t)/wq + t/wy
where f, and fj, are the data associated with the starting and ending endpoints of
the segment, respectively; w, and wy are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines

must be interpolated by

f=

(3.6)

z2=(1—1t)zq + tz (3.7)

where z, and z;, are the depth values of the starting and ending endpoints of the
segment, respectively.

The noperspective and flat keywords used to declare varying shader
outputs affect how they are interpolated. When neither keyword is specified, inter-
polation is performed as described in equation 3.6. When the noperspective
keyword is specified, interpolation is performed in the same fashion as for depth
values, as described in equation 3.7. When the f1lat keyword is specified, no
interpolation is performed, and varying outputs are taken from the corresponding
generic attribute value of the last (highest numbered) vertex transferred to the GL
corresponding to that primitive.

3.5.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one. We now describe the rasterization of line segments for general values of the
line segment rasterization parameters.

OpenGL 3.1 - May 28, 2009

3.5. LINE SEGMENTS 94

Figure 3.3. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see figure 3.3;
see also section 3.3). Equation 3.6 is used to compute associated data values just as
with non-antialiased lines; equation 3.5 is used to find the value of ¢ for each frag-
ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width 1.0 antialiased segments
must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

3.5.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width
and a bit indicating whether line antialiasing is on or off. The initial value of the
line width is 1.0. The initial state of line segment antialiasing is disabled.

OpenGL 3.1 - May 28, 2009

3.6. POLYGONS

3.5.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE_SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in the Antialiasing portion of section 3.5.2 (Other Line
Segment Features).

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equation 3.5,
then using the result to evaluate equation 3.7. An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equation 3.5 at any location within the pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.6. The color value and the set of texture coordinates need not be evaluated
at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.6 Polygons

A polygon results from a triangle arising from a triangle strip, triangle fan, or
series of separate triangles. Like points and line segments, polygon rasterization
is controlled by several variables. Polygon antialiasing is controlled with Enable
and Disable with the symbolic constant POLYGON_SMOOTH.

3.6.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back-facing
or front-facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

=t o
a= 3 Z xiuyifm — xfﬂy; (3.8)
=0

where 2%, and 4! are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of this

OpenGL 3.1 - May 28, 2009

95

3.6. POLYGONS 96

computation) and i@ 1 is (i+1) mod n. The interpretation of the sign of this value
is controlled with

void FrontFace(enumdir);

Setting dir to cCw (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) uses a as computed above. Setting dir to
cw (corresponding to clockwise orientation) indicates that the sign of a should be
reversed prior to use. Front face determination requires one bit of state, and is
initially set to cCw.

If the sign of a (including the possible reversal of this sign as determined by
FrontFace) is positive, the polygon is front-facing; otherwise, it is back-facing.
This determination is used in conjunction with the CullFace enable bit and mode
value to decide whether or not a particular polygon is rasterized. The CullFace
mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant CULL_—
FACE. Front-facing polygons are rasterized if either culling is disabled or the Cull-
Face mode is BACK while back-facing polygons are rasterized only if either culling
is disabled or the CullFace mode is FRONT. The initial setting of the CullFace
mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon edge. In such a case
we require that if two polygons lie on either side of a common edge (with identical
endpoints) on which a fragment center lies, then exactly one of the polygons results
in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and ¢, each in the range [0, 1], with a + b + ¢ = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

P = apa + bpp + cpe,

OpenGL 3.1 - May 28, 2009

3.6. POLYGONS 97

where pg, py, and p. are the vertices of the triangle. a, b, and ¢ can be found as

_ A(ppbpc) h— A(ppapc) _ A(ppapb)
A(papspe)’ A(papppe)’ A(papvpe)’

where A (lmn) denotes the area in window coordinates of the triangle with vertices
[, m, and n.

Denote an associated datum at p,, pp, Or P as fq, fp, Or fe, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

afa/wa + bfb/wb + Cfc/wc

a/wg + b/wy + ¢/w,
where w,, wp, and w,. are the clip w coordinates of p,, py, and p., respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and ¢ must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

=

(3.9)

Z = azg + bzp + cze (3.10)

where z,, 25, and z. are the depth values of p,, py, and p, respectively.

The noperspective and flat keywords used to declare varying shader
outputs affect how they are interpolated. When neither keyword is specified, inter-
polation is performed as described in equation 3.9. When the noperspective
keyword is specified, interpolation is performed in the same fashion as for depth
values, as described in equation 3.10. When the f1at keyword is specified, no
interpolation is performed, and varying outputs are taken from the corresponding
generic attribute value of the last (highest numbered) vertex transferred to the GL
corresponding to that primitive.

For a polygon with more than three edges, such as may be produced by clipping
a triangle, we require only that a convex combination of the values of the datum
at the polygon’s vertices can be used to obtain the value assigned to each fragment
produced by the rasterization algorithm. That is, it must be the case that at every

fragment
n
F=Yaif;
i=1
where n is the number of vertices in the polygon, f; is the value of the f at vertex

1; foreach7 0 < a; < 1 and Z?:l a; = 1. The values of the a; may differ from
fragment to fragment, but at vertex ¢, a; = 0,j # 7 and a; = 1.

OpenGL 3.1 - May 28, 2009

3.6. POLYGONS 98

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.9 should be iterated independently and a division performed for each frag-
ment).

3.6.2 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section 3.10. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

3.6.3 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using
void PolygonMode(enum face, enum mode);

face must be FRONT_AND_BACK, indicating that the rasterizing method described
by mode replaces the rasterizing method for both front- and back-facing polygons.
mode is one of the symbolic constants POINT, LINE, or FILL. Calling Polygon-
Mode with POINT causes the vertices of a polygon to be treated, for rasterization
purposes, as if they had been drawn with mode POINTS. LINE causes edges to
be rasterized as line segments. FILL is the default mode of polygon rasteriza-
tion, corresponding to the description in sections 3.6.1, and 3.6.2. Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Polygon antialiasing applies only to the FILL state of PolygonMode. For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-

ply.

OpenGL 3.1 - May 28, 2009

3.6. POLYGONS 99

3.6.4 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

Oz 2 0z 2
m:\/ (a) *(aﬂ G-AD

where (., Yw, 2w) is @ point on the triangle. m may be approximated as

Q| |20
0y OYw

)

m:max{

}. (3.12)

The minimum resolvable difference r is an implementation-dependent param-
eter that depends on the depth buffer representation. It is the smallest difference in
window coordinate z values that is guaranteed to remain distinct throughout poly-
gon rasterization and in the depth buffer. All pairs of fragments generated by the
rasterization of two polygons with otherwise identical vertices, but z,, values that
differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range
of the entire depth buffer. For floating-point depth buffers, there is no single min-
imum resolvable difference. In this case, the minimum resolvable difference for a
given polygon is dependent on the maximum exponent, e, in the range of z values
spanned by the primitive. If n is the number of bits in the floating-point mantissa,
the minimum resolvable difference, r, for the given primitive is defined as

r=2".
The offset value o for a polygon is
o =m X factor +r X units. (3.13)

m is computed as described above. If the depth buffer uses a fixed-point represen-
tation, m is a function of depth values in the range [0, 1], and o is applied to depth
values in the same range.

OpenGL 3.1 - May 28, 2009

3.6. POLYGONS 100

Boolean state values POLYGON_OFFSET_POINT, POLYGON_OFFSET_LINE,
and POLYGON_OFFSET_FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FI1LL modes. These boolean state values are
enabled and disabled as argument values to the commands Enable and Disable.
If POLYGON_OFFSET_POINT is enabled, o is added to the depth value of each
fragment produced by the rasterization of a polygon in POINT mode. Likewise,
if POLYGON_OFFSET_LINE or POLYGON_OFFSET_FILL is enabled, o is added to
the depth value of each fragment produced by the rasterization of a polygon in
LINE or FILL modes, respectively.

For fixed-point depth buffers, fragment depth values are always limited to the
range [0, 1], either by clamping after offset addition is performed (preferred), or by
clamping the vertex values used in the rasterization of the polygon. Fragment depth
values are clamped even when the depth buffer uses a floating-point representation.

3.6.5 Polygon Multisample Rasterization

If MULTISAMPLE is enabled and the value of SAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGON_SMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in section 3.6.1. If a polygon is
culled, based on its orientation and the CullFace mode, then no fragments are pro-
duced during rasterization.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each associated datum is produced as
described in section 3.6.1, but using the corresponding sample location instead of
the fragment center. An implementation may choose to assign the same associated
data values to more than one sample by barycentric evaluation using any location
within the pixel including the fragment center or one of the sample locations.

When using a vertex shader, the noperspective and f1at keywords affect
how varying shader outputs are interpolated, as described in the OpenGL Shading
Language Specification.

The rasterization described above applies only to the FILL state of Polygon-
Mode. For POINT and LINE, the rasterizations described in sections 3.4.3 (Point
Multisample Rasterization) and 3.5.4 (Line Multisample Rasterization) apply.

3.6.6 Polygon Rasterization State

The state required for polygon rasterization consists of the current state of polygon
antialiasing (enabled or disabled), the current values of the PolygonMode setting,

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 101

whether point, line, and fill mode polygon offsets are enabled or disabled, and
the factor and bias values of the polygon offset equation. The initial setting of
polygon antialiasing is disabled. The initial state for PolygonMode is FILL . The
initial polygon offset factor and bias values are both 0; initially polygon offset is
disabled for all modes.

3.7 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL
using TexImage*D (see section 3.8.1). Some of the parameters and operations
governing the operation of these commands are shared by ReadPixels (used to
obtain pixel values from the framebuffer); the discussion of ReadPixels, how-
ever, is deferred until chapter 4 after the framebuffer has been discussed in detail.
Nevertheless, we note in this section when parameters and state pertaining to these
commands also pertain to ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with PixelStore.

3.7.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D, and
ReadPixels when one of these commands is issued. Pixel storage modes are set
with

void PixelStore{if}(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Table 3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the error INVALID_VALUE.

The version of PixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is set to FALSE if
the passed value is 0.0 and TRUE otherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set to FALSE if the passed value is 0 and TRUE otherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 102

Parameter Name Type Initial Value ‘ Valid Range ‘
UNPACK_SWAP_BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP_PIXELS integer 0 [0, 00)
UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT | integer 0 [0, 00)
UNPACK_SKIP_IMAGES | integer 0 [0, 00)

Table 3.1: PixelStore parameters pertaining to one or more of TexImagelD, Tex-
Image2D, TexImage3D, TexSubImagelD, TexSubImage2D, and TexSubIm-
age3D.

In addition to storing pixel data in client memory, pixel data may also be
stored in buffer objects (described in section 2.9). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_—
PACK_BUFFER targets respectively.

Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-
age specification commands such as TexImage*D source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into
the designated buffer object.

3.7.2 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory
is diagrammed in figure 3.4. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.

width and height are the width and height, respectively, of the pixel rectangle
to be transferred.

data refers to the data to be drawn. These data are represented with one of
several GL data types, specified by fype. The correspondence between the type
token values and the GL data types they indicate is given in table 3.2.

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES

103

byte, short, int, float, or packed
pixel component data stream

1 1
1Convert to Float,

Pixel Storage
Operations

\

y

Expansion to
RGBA

RGBA pixel data outl

Figure 3.4. Transfer of pixel rectangles to the GL. Output is RGBA pixels. Depth
and stencil pixel paths are not shown.

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 104

Not all combinations of format and type are valid. If format is DEPTH_-
STENCIL and fype is not UNSIGNED_INT_24_8 or FLOAT_32_UNSIGNED_-—
INT_24_8_REV, then the error INVALID_ENUM occurs. If format is one of the
integer component formats as defined in table 3.3 and fype is FLOAT, the error
INVALID_ENUM occurs. Some additional constraints on the combinations of for-
mat and type values that are accepted are discussed below. Additional restrictions
may be imposed by specific commands.

Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 3.3 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer. If a pixel unpack buffer object is bound and unpacking the pixel data
according to the process described below would access memory beyond the size of
the pixel unpack buffer’s memory size, an INVALID_OPERATION error results. If a
pixel unpack buffer object is bound and data is not evenly divisible by the number
of basic machine units needed to store in memory the corresponding GL data type
from table 3.2 for the fype parameter, an INVALID_OPERATION error results.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 3.4. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is not positive,
then the number of groups in a row is width; otherwise the number of groups is
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 105

type Parameter Corresponding Special
Token Name GL Data Type | Interpretation
UNSIGNED_BYTE ubyte No
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
HALF_FLOAT half No
FLOAT float No
UNSIGNED_BYTE_3_3_2 ubyte Yes
UNSIGNED_BYTE_2_3_3_REV ubyte Yes
UNSIGNED_SHORT_5_6_5 ushort Yes
UNSIGNED_SHORT_5_6_5_REV ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_4_4_4_4_ REV ushort Yes
UNSIGNED_SHORT_5_5_5_1 ushort Yes
UNSIGNED_SHORT_1_5_5_5_REV ushort Yes
UNSIGNED_INT_8_8_8_8 uint Yes
UNSIGNED_INT_8_8_8_8_REV uint Yes
UNSIGNED_INT_10_10_10_2 uint Yes
UNSIGNED_INT_2_10_10_10_REV uint Yes
UNSIGNED_INT_24_8 uint Yes
UNSIGNED_INT_10F_11F_11F_REV uint Yes
UNSIGNED_INT_5_9_9_9 REV uint Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes

Table 3.2: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described near the end of section 3.5.

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 106
Format Name H Element Meaning and Order Target Buffer
STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Index Depth and Stencil
RED R Color
GREEN G Color
BLUE B Color
RG R,G Color
RGB R,G,B Color
RGBA R,G,B, A Color
BGR B,G,R Color
BGRA B,G, R, A Color
RED_INTEGER iR Color
GREEN_INTEGER i1G Color
BLUE_INTEGER iB Color
RG_INTEGER iR, i1G Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, i1G, 1B, iA Color
BGR_INTEGER iB, iG, iR Color
BGRA_INTEGER 1B, iG, iR, 1A Color

Table 3.3: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Unless specified as an index, formats
yield components. Components are floating-point unless prefixed with the letter
’1’, which indicates they are integer.

Element Size | Default Bit Ordering | Modified Bit Ordering

8 bit [7..0] [7..0]

16 bit [15..0] [7..0][15..8]

32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.4: Bit ordering modification of elements when UNPACK_SWAP_BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the least significant.

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 107

ROW LENGTH

Figure 3.5. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK__ for TexImage* and by PACK__ for ReadPixels.

of the first row, then the first element of the Nth row is indicated by

p+ Nk (3.14)

where [V is the row number (counting from zero) and k is defined as

nl s> a,

b= { a/s[snl/a] s<a (3-15)

where n is the number of elements in a group, [is the number of groups in

the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL

ubytes, of an element. If the number of bits per element is not 1, 2, 4, or 8 times
the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 3.5.

Special Interpretations

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 108
type Parameter GL Data | Number of Matching
Token Name Type Components Pixel Formats
UNSIGNED_BYTE_3_3_2 ubyte 3 RGB
UNSIGNED_BYTE_2_3_3_REV ubyte 3 RGB
UNSIGNED_SHORT_5_6_5 ushort 3 RGB
UNSIGNED_SHORT_5_6_5_REV ushort 3 RGB
UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA,BGRA
UNSIGNED_SHORT_4_4_4_4_REV ushort 4 RGBA,BGRA
UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA,BGRA
UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA,BGRA
UNSIGNED_INT_8_8_8_8 uint 4 RGBA,BGRA
UNSIGNED_INT_8_8_8_8_REV uint 4 RGBA,BGRA
UNSIGNED_INT_10_10_10_2 uint 4 RGBA,BGRA
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA,BGRA
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL
UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB
UNSIGNED_INT_5_9_9_9 REV uint 4 RGB
FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 3.5: Packed pixel formats.

A type matching one of the types in table 3.5 is a special case in which all

the components of each group are packed into a single unsigned byte, unsigned
short, or unsigned int, depending on the type. If fype is FLOAT_32_UNSIGNED_-
INT_24_8_REV, the components of each group are contained within two 32-bit
words; the first word contains the float component, and the second word contains
a packed 24-bit unused field, followed by an 8-bit component. The number of
components per packed pixel is fixed by the type, and must match the number of
components per group indicated by the format parameter, as listed in table 3.5.
The error INVALID_OPERATION is generated by any command processing pixel
rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 3.6- 3.9. Each bitfield is interpreted as
an unsigned integer value. If the base GL type is supported with more than the
minimum precision (e.g. a 9-bit byte) the packed components are right-justified in
the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 109

significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

UNSIGNED_BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.6: UNSIGNED_BYTE formats. Bit numbers are indicated for each compo-
nent.

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES

110

UNSIGNED_SHORT_5_6_5:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd
UNSIGNED_SHORT_5_6_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3rd 2nd 1st Component
UNSIGNED_SHORT_4_4_4_4:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th
UNSIGNED_SHORT_4_4_4_4_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4th 3rd 2nd 1st Component
UNSIGNED_SHORT_5_5_5_1:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th ‘
UNSIGNED_SHORT_1_5_5_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ 4th ‘ 3rd 2nd 1st Component

Table 3.7: UNSIGNED_SHORT formats

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES

UNSIGNED_INT_8_8_8_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

111

131211109 8 7 6 5 4 3 2 1 0

1st Component 2nd

3rd 4th

UNSIGNED_INT_8_8_8_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

131211109 8 7 6 5 4 3 2 1 0

4th 3rd

2nd 1st Component

UNSIGNED_INT_10_10_10_2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

131211109 8 7 6 5 4 3 2 1 0

1st Component 2nd

UNSIGNED_INT_2_10_10_10_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

’ 4th ‘ 3rd 2nd

1st Component

UNSIGNED_INT_24_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

1st Component

UNSIGNED_INT_10F_11F_11F_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

131211109 8 7 6 5 4 3 2 1 0

3rd 2nd

1st Component

UNSIGNED_INT_5_9_9_9_ REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

4th 3rd

2nd 1st Component

Table 3.8: UNSIGNED_INT formats

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 112

FLOAT_32_UNSIGNED_INT_24_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211109 8 7 6 5 4 3 2 1 0

’ 1st Component ‘

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

’ Unused 2nd ‘

Table 3.9: FLOAT_UNSIGNED_INT formats

OpenGL 3.1 - May 28, 2009

3.7. PIXEL RECTANGLES 113
Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha
DEPTH_STENCIL depth stencil

Table 3.10: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.10.

Byte swapping, if enabled, is performed before the components are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies 3
packed components as shown in table 3.8. The 1st, 2nd, and 3rd components are
called freq (11 bits), fgreen (11 bits), and fy,,e (10 bits) respectively.

freda and fg cen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.1.3. fpye 1s treated as an unsigned 10-bit floating-point value and converted
to a floating-point blue component as described in section 2.1.4.
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in table 3.8. The 1st, 2nd, 3rd, and 4th components
are called pred, Pgreens Polue, and pesp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the ”Conversion to floating-point” section below in this case) as follows:

red = pred2pmpiBiN
green = pgreen2pezPiBiN

blue = pblue2pﬁzpiBiN

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 114

Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and
indices, such as DEPTH_STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value. For unsigned
integer elements, equation 2.1 is used. For signed integer elements, equation 2.2
is used unless the final destination of the transferred element is a texture or frame-
buffer component in one of the SNORM formats described in table 3.12, in which
case equation 2.3 is used instead.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A ele-
ment, then A is added and set to 1 for integer components or 1.0 for floating-point
components. If any of R, G, or B is missing from the group, each missing element
is added and assigned a value of O for integer components or 0.0 for floating-point
components.

3.8 Texturing

Texturing maps a portion of one or more specified images onto a fragment or
vertex. This mapping is accomplished in shaders by sampling the color of an
image at the location indicated by specified (s, t,) texture coordinates. ~Texture
lookups are typically used to modify a fragment’s RGBA color but may be used
for any purpose in a shader.

The internal data type of a texture may be signed or unsigned normalized
fixed-point, signed or unsigned integer, or floating-point, depending on the inter-
nal format of the texture. The correspondence between the internal format and the
internal data type is given in tables 3.12-3.13. Fixed-point and floating-point tex-
tures return a floating-point value and integer textures return signed or unsigned
integer values. The fragment shader is responsible for interpreting the result of a
texture lookup as the correct data type, otherwise the result is undefined.

Eight types of texture are supported; each is a collection of images built from
one-, two-, or three-dimensional array of image elements referred to as texels.
One-, two-, and three-dimensional textures consist respectively of one-, two-, or
three-dimensional texel arrays. One- and two-dimensional array textures are arrays
of one- or two-dimensional images, consisting of one or more layers. Cube maps
are special two-dimensional array textures with six layers that represent the faces

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 115

of a cube. When accessing a cube map, the texture coordinates are projected onto
one of the six faces of the cube. Rectangular textures are special two-dimensional
textures consisting of only a single image and accessed using unnormalized coor-
dinates. Buffer textures are special one-dimensional textures whose texel arrays
are stored in separate buffer objects.

Implementations must support texturing using multiple images. The following
subsections (up to and including section 3.8.8) specify the GL operation with a
single texture. The process by which multiple texture images may be sampled and
combined by the application-supplied vertex and fragment shaders is described in
sections 2.11 and 3.9.

The coordinates used for texturing in a fragment shader are defined by the
OpenGL Shading Language Specification.

The command

void ActiveTexture(enum fexture);

specifies the active texture unit selector, ACTIVE_TEXTURE. Each texture image
unit consists of all the texture state defined in section 3.8.

The active texture unit selector selects the texture image unit accessed by com-
mands involving texture image processing. Such commands include TexPa-
rameter, TexImage, BindTexture, and queries of all such state. If the texture
image unit number corresponding to the current value of ACTIVE_TEXTURE is
greater than or equal to the implementation-dependent constant MAX_COMBINED_—
TEXTURE_IMAGE_UNITS, the error INVALID_OPERATION is generated by any
such command.

ActiveTexture generates the error INVALID_ENUM if an invalid texture is spec-
ified. texture is a symbolic constant of the form TEXTURE4, indicating that texture
unit ¢ is to be modified. The constants obey TEXTURE? = TEXTUREO + ¢ (7 is in the
range 0 to kK — 1, where k is the value of MAX_COMBINED_TEXTURE_IMAGE_—
UNITS).

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTUREO.

3.8.1 Texture Image Specification
The command
void TexImage3D(enum farget, int level, int internalformat,

sizei width, sizei height, sizei depth, int border,
enum format, enum type, void *data);

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 116

is used to specify a three-dimensional texture image. farget must be one of
TEXTURE_ 3D for a three-dimensional texture or TEXTURE_2D_ARRAY for an two-
dimensional array texture. Additionally, target may be either PROXY_TEXTURE_ -
3D for a three-dimensional proxy texture, or PROXY_TEXTURE_2D_ARRAY for a
two-dimensional proxy array texture, as discussed in section 3.8.12. format, type,
and data specify the format of the image data, the type of those data, and a refer-
ence to the image data in the currently bound pixel unpack buffer or client memory,
as described in section 3.7.2. The format STENCIL_INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 3.7.2. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_ —
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 3.7.2.

The selected groups are transferred to the GL as described in section 3.7.2
and then clamped to the representable range of the internal format. If the inter-
nalformat of the texture is signed or unsigned integer, components are clamped
to [—2"71 2771 — 1] or [0,2" — 1], respectively, where n is the number of bits
per component. For color component groups, if the internalformat of the texture
is signed or unsigned normalized fixed-point, components are clamped to [—1, 1]
or [0, 1], respectively. For depth component groups, the depth value is clamped
to [0, 1]. Otherwise, values are not modified. Stencil index values are masked by
2™ — 1, where n is the number of stencil bits in the internal format resolution (see
below). If the base internal format is DEPTH_STENCIL and format is not DEPTH_ -
STENCIL, then the values of the stencil index texture components are undefined.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 3.11 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the internal format
symbolic constants listed in table 3.11, as one of the sized internal format symbolic

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 117

Base Internal Format | RGBA, Depth, and Stencil Values \ Internal Components

DEPTH_COMPONENT | Depth D
DEPTH_STENCIL Depth,Stencil D,S

RED R R

RG R,G R,G

RGB R.G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.11: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture components. Texture components R, G, B, and A are converted back
to RGBA colors during filtering as shown in table 3.20.

constants listed in tables 3.12- 3.13, as one of the generic compressed internal
format symbolic constants listed in table 3.14, or as one of the specific compressed
internal format symbolic constants (if listed in table 3.14). Specifying a value for
internalformat that is not one of the above values generates the error INVALID_-
VALUE.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_ -
STENCIL are supported by texture image specification commands only if
target iS TEXTURE_1D, TEXTURE_2D, TEXTURE_1D_ARRAY, TEXTURE_2D_-
ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP, PROXY_TEXTURE_ -
1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_1D_ARRAY, PROXY_TEXTURE_-
2D_ARRAY, PROXY_TEXTURE_RECTANGLE, or PROXY_TEXTURE_CUBE_MAP.
Using these formats in conjunction with any other farget will result in an
INVALID_OPERATION error.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_ -
STENCIL require either depth component data or depth/stencil component data.
Textures with other base internal formats require RGBA component data. The error
INVALID_OPERATION is generated if one of the base internal format and format is
DEPTH_COMPONENT or DEPTH_STENCIL, and the other is neither of these values.

Textures with integer internal formats (see table 3.12) require integer data.
The error INVALID_OPERATION is generated if the internal format is integer and
format is not one of the integer formats listed in table 3.3; if the internal format is
not integer and format is an integer format; or if format is an integer format and fype
is FLOAT, HALF_FLOAT, UNSIGNED_INT_10F_11F_11F_REV, or UNSIGNED_-
INT_5_9_9_9_REV.

In addition to the specific compressed internal formats listed in table 3.14, the
GL provides a mechanism to obtain token values for all such formats provided

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 118

by extensions. The number of specific compressed internal formats supported
by the renderer can be obtained by querying the value of NUM_COMPRESSED_ -
TEXTURE_FORMATS. The set of specific compressed internal formats supported by
the renderer can be obtained by querying the value of COMPRESSED_TEXTURE_—
FORMATS. The only values returned by this query are those corresponding to for-
mats suitable for general-purpose usage. The renderer will not enumerate formats
with restrictions that need to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures), internalformat is replaced by the corresponding
base internal format and the texture image will not be compressed by the GL.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, depth,
and stencil values to texture components is equivalent to the mapping of the cor-
responding base internal format’s components, as specified in table 3.11; the type
(unsigned int, float, etc.) is assigned the same type specified by internalformat;
and the memory allocation per texture component is assigned by the GL to match
the allocations listed in tables 3.12- 3.13 as closely as possible. (The definition of
closely is left up to the implementation. However, a non-zero number of bits must
be allocated for each component whose desired allocation in tables 3.12- 3.13 is
non-zero, and zero bits must be allocated for all other components).

Required Texture Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
any texture type will allocate at least the internal component sizes, and exactly the
component types shown for that format in tables 3.12- 3.13:

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 119

e Texture and renderbuffer color formats (see section 4.4.2)).

RGBA32F, RGBA32I, RGBA32UI, RGBA16, RGBAl6F, RGBAL6I,
RGBA16UI, RGBA8, RGBA8I, RGBASUI, SRGBS8_ALPHAS, and
RGB10_A2.

R11F_GI11F_BI1OF.

RG32F, RG321I, RG32UI, RG16, RG16F, RG16I, RG16UI, RG8, RG8I,
and RG8SUI.

R32F, R321I, R32UI, R16F, R16I,R16UI, R16, R8, R8I, and R8UI.

e Texture-only color formats:

RGBA16_SNORM and RGBAS_SNORM.

RGB32F, RGB321I, and RGB32UT.

RGB16_SNORM, RGB16F, RGB16T, RGB16UI, and RGB16.
RGBS8_SNORM, RGBS, RGB8I, RGBSUI, and SRGBS.
RGB9_ES5.

RG16_SNORM, RG8_SNORWY, COMPRESSED_RG_RGTC2 and
COMPRESSED_SIGNED_RG_RGTC2.

R16_SNORM, R8_SNORM, COMPRESSED_RED_RGTC1 and
COMPRESSED_SIGNED_RED_RGTCI.

e Depth formats: DEPTH_COMPONENT32F, DEPTH_COMPONENT24, and
DEPTH_COMPONENT16.

e Combined depth+stencil formats: DEPTH32F_STENCILS and DEPTH24_-
STENCILS.

Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.1.3 and 2.1.4.

If internalformat is RGB9_ES5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 120

red. = max(0, min(sharedexpmag, red))
green. = max(0, min(sharedexpmag, green))
blue. = max(0, min(sharedexrpmaz, blue))
where

2V -1)

2Emaz -B .
oN

sharedexpmar =

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and F,,,; is the maximum allowed biased exponent value (31).
The largest clamped component, max., is determined:

max. = maz(red., green, blue.)

A preliminary shared exponent exp,, is computed:

expp = maxz(—B — 1, [loga(maz.)])+1+ B
A refined shared exponent exp, is computed:

max.

gexpp—B—N + 0'5J

maxrs = {

{expp, 0 < max, < 2V
exps =

expy, +1, maxs = 2N

Finally, three integer values in the range 0 to 2V — 1 are computed:

red,

TedS = W =+ 05
green

greeng = _W + O5J
blue.

blues = W —+ 05

The resulting reds, greens, blueg, and exp, are stored in the red, green, blue,
and shared bits respectively of the texture image.

REV with format RGB is allowed to store the components “as is”.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING

121

Sized Base R G B A Shared
Internal Format Internal Format | bits | bits | bits | bits bits
RS RED 8

R3_G3_B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGBS RGB 8 8 8
) O

RGB10 RGB 10 10 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16
[| [|

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5_A1l RGBA 5 5 5 1

RGBAS RGBA 8 8 8 8
! | | |

RGB10_A2 RGBA 10 10 10 2

RGBA12 RGBA 12 12 12 12

RGBA16 RGBA 16 16 16 16
S

SRGBS RGB 8 8 8

SRGBS_ALPHAS RGBA 8 8 8 8

R16F RED f16

RG16F RG f16 | f16

RGB16F RGB fl6 | fl6 | fl6

RGBALGF RGBA fi6 | fl6 | fl16 | f16

R32F RED 32

RG32F RG 32 | 132

RGB32F RGB 32 | 32 | 132

Sized internal color formats continued on next page

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 122
Sized internal color formats continued from previous page

Sized Base R G B A | Shared
Internal Format Internal Format | bits | bits | bits | bits bits
RGBA32F RGBA 32 | 32 | 32 | 32
R11F_G11F_B10F | RGB f11 f11 f10
RGB9_E5 RGB 9 9 9 5
R8I RED 8
R8UI RED ui8
R16I RED 16
R16UI RED uil6
R32I RED 132
R32UI RED ui32
RGSI RG i8 8
RG8UI RG ui8 | ui8
RG161 RG il6 | il6
RG16UI RG uil6 | uil6
RG321I RG 132 | 132
RG32U1I RG ui32 | ui32
RGBSI RGB i8 i8 i8
RGB8UI RGB ui8 | ui8 | ui8
RGB161I RGB 116 116 | 116
RGB16UI RGB uil6 | vil6 | uil6
RGB321 RGB i32 | 132 | i32
RGB32UI RGB ui32 | ui32 | ui32
RGBASI RGBA 8 8 8 8
RGBASUI RGBA ui8 | ui8 ui8 | ui8
RGBA161 RGBA 16 116 | 116 | il6
RGBA16UI RGBA uil6 | uil6 | uil6 | uil6
RGBA321I RGBA 132 132 | 132 | 132
RGBA32UI RGBA ui32 | uwi32 | w32 | ui32

Table 3.12: Correspondence of sized internal color formats to base
internal formats, internal data type, and desired component reso-
lutions for each sized internal format. The component resolution
prefix indicates the internal data type: fis floating point, i is signed
integer, ui is unsigned integer, s is signed normalized fixed-point,

and no prefix is unsigned normalized fixed-point.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 123

Sized Base D S
Internal Format Internal Format bits | bits

DEPTH_COMPONENT16 DEPTH_COMPONENT | 16
DEPTH_COMPONENT?24 DEPTH_COMPONENT | 24
DEPTH_COMPONENT32 DEPTH_COMPONENT | 32
DEPTH_COMPONENT32F | DEPTH_COMPONENT | {32
DEPTH24_STENCILS DEPTH_STENCIL 24 8
DEPTH32F_STENCILS8 DEPTH_STENCIL 32 8

Table 3.13: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and desired component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: fis floating point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point.

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 3.11. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImagelD (see below) parameter (except target), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by the data parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.8.12.

The image itself (referred to by data) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of width width from left to right; height rows are stacked from bottom
to top forming a single two-dimensional image slice; and depth slices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of a fexel as described by table 3.11.
Counting from zero, each resulting Nth texel is assigned internal integer coordi-
nates (4, j, k), where

i = (N mod width) — wy

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 124

Compressed Internal Format Base Internal Format | Type

COMPRESSED_RED RED Generic
COMPRESSED_RG RG Generic
COMPRESSED_RGB RGB Generic
COMPRESSED_RGBA RGBA Generic
COMPRESSED_ SRGB RGB Generic
COMPRESSED_SRGB_ALPHA RGBA Generic
COMPRESSED_RED_RGTC1 RED Specific
COMPRESSED_SIGNED_RED_RGTC1 | RED Specific
COMPRESSED_RG_RGTC2 RG Specific
COMPRESSED_SIGNED_RG_RGTC2 RG Specific

Table 3.14: Generic and specific compressed internal formats. The specific
*RGTC+ formats are described in appendix C.1.

i=(l | mod height) — hy

width
N
k pu—
(Lwidth X height

and wy, hy, and d;, are the specified border width, height, and depth. wy and h;, are
the specified border value; dj, is the specified border value if target is TEXTURE_—
3D, or zero if target is TEXTURE_2D_ARRAY. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of .

If the internal data type of the image array is signed or unsigned normalized
fixed-point, each color component is converted using equation 2.6 or 2.4, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed below, under Mipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID_VALUE is generated.

The border argument to TexImage3D is a border width. The significance of
borders is described below. The border width affects the dimensions of the texture

| mod depth) — dj

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 125
image: let

Ws = Wt + 2wy
hs = hy + 2hy (3.16)
ds = d; + 2d,

where wys, hg, and dg are the specified image width, height, and depth, and wy,
ht, and d; are the dimensions of the texture image internal to the border. If wy, hy,
or d; are less than zero, then the error INVALID_VALUE is generated.

The maximum border width b; is 0. If border is less than zero, or greater than
by, then the error INVALID_VALUE is generated.

The maximum allowable width, height, or depth of a texel array for a three-
dimensional texture is an implementation-dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 2¥—%°4 4 2p,
for image arrays of level-of-detail 0 through k, where k is the log base 2 of MAX_ -
3D_TEXTURE_SIZE, lod is the level-of-detail of the image array, and b; is the
maximum border width. It may be zero for image arrays of any level-of-detail
greater than k. The error INVALID_VALUE is generated if the specified image is
too large to be stored under any conditions.

If a pixel unpack buffer object is bound and storing texture data would access
memory beyond the end of the pixel unpack buffer, an INVALID_OPERATION error
results.

In a similar fashion, the maximum allowable width of a texel array for a one-
or two-dimensional, or one- or two-dimensional array texture, and the maximum
allowable height of a two-dimensional or two-dimensional array texture, must be
at least 2814 - 21, for image arrays of level 0 through k, where k is the log base 2
of MAX_TEXTURE_SIZE. The maximum allowable width and height of a cube map
texture must be the same, and must be at least 2~/ + 2b, for image arrays level
0 through k, where k is the log base 2 of MAX_CUBE_MAP_TEXTURE_SIZE. The
maximum number of layers for one- and two-dimensional array textures (height or
depth, respectively) must be at least MAX_ARRAY_TEXTURE_LAYERS for all levels.

The maximum allowable width and height of a rectangular texture image
must each be at least the value of the implementation-dependent constant MAX_ -
RECTANGLE_TEXTURE_SIZE.

An implementation may allow an image array of level O to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section 3.8.11.

The command

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 126

void TexImage2D(enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, TEXTURE_1D_ARRAY for a one-
dimensional array texture, TEXTURE_RECTANGLE for a rectangle texture, or
one of TEXTURE_CUBE_MAP_POSITIVE_ X, TEXTURE_CUBE_MAP NEGATIVE -
X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_ 7, or TEXTURE_CUBE_MAP_NEGATIVE_z for
a cube map texture. Additionally, target may be either PROXY_TEXTURE_2D
for a two-dimensional proxy texture, PROXY_TEXTURE_1D_ARRAY for a one-
dimensional proxy array texture, PROXY_ TEXTURE_RECTANGLE for a rectangle
proxy texture, or PROXY_TEXTURE_CUBE_MAP for a cube map proxy texture
in the special case discussed in section 3.8.12. The other parameters match the
corresponding parameters of TexImage3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that
UNPACK_SKIP_IMAGES is ignored.

A two-dimensional or rectangle texture consists of a single two-dimensional
texture image. A cube map texture is a set of six two-dimensional texture im-
ages. The six cube map texture targets form a single cube map texture though
each target names a distinct face of the cube map. The TEXTURE_CUBE_MAP_ *
targets listed above update their appropriate cube map face 2D texture image. Note
that the six cube map two-dimensional image tokens such as TEXTURE_CUBE_ -
MAP_POSITIVE_X are used when specifying, updating, or querying one of a cube
map’s six two-dimensional images, but when binding to a cube map texture ob-
ject (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), the TEXTURE_CUBE_MAP target is specified.

When the target parameter to TexImage2D is one of the six cube map two-
dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

When farget is TEXTURE_RECTANGLE, an INVALID_VALUE error is generated
if level is non-zero.

An INVALID_VALUE error is generated if border is non-zero.

Finally, the command

void TexImagelD(enum target, int level,

int internalformat, sizei width, int border,
enumn format, enum type, void *data);

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 127

is used to specify a one-dimensional texture image. target must be either
TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 3.8.12.

For the purposes of decoding the texture image, TexImagelD is equivalent to
calling TexImage2D with corresponding arguments and height of 1.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory.

We shall refer to the decoded image as the texel array. A three-dimensional
texel array has width, height, and depth wg, hs, and d; as defined in equation 3.16.
A two-dimensional or rectangular texel array has depth d; = 1, with height hg
and width ws as above. A one-dimensional texel array has depth ds = 1, height
hs = 1, and width wg as above.

An element (7, j, k) of the texel array is called a fexel (for a two-dimensional
texture or one-dimensional array texture, k is irrelevant; for a one-dimensional
texture, j and k are both irrelevant). The fexture value used in texturing a fragment
is determined by sampling the texture in a shader, but may not correspond to any
actual texel. See figure 3.6.

If the data argument of TexImagelD, TexImage2D, or TexImage3D is a null
pointer (a zero-valued pointer in the C implementation), and the pixel unpack
buffer object is zero, a one-, two-, or three-dimensional texel array is created with
the specified rarget, level, internalformat, border, width, height, and depth, but
with unspecified image contents. In this case no pixel values are accessed in client
memory, and no pixel processing is performed. Errors are generated, however, ex-
actly as though the data pointer were valid. Otherwise if the pixel unpack buffer
object is non-zero, the data argument is treatedly normally to refer to the beginning
of the pixel unpack buffer object’s data.

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D(enum farget, int level,
enum internalformat, int x, inty, sizei width,
sizei height, int border);

defines a two-dimensional texel array in exactly the manner of TexImage2D, ex-
cept that the image data are taken from the framebuffer rather than from client

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING

128

1.0

-1.0 u 9.0

0.0 S 1.0

Figure 3.6. A texture image and the coordinates used to access it. This is a two-
dimensional texture with n = 3 and m = 2. A one-dimensional texture would
consist of a single horizontal strip. « and /3, values used in blending adjacent texels
to obtain a texture value, are also shown.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 129

memory. Currently, farget must be one of TEXTURE_2D, TEXTURE_1D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_-
Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_ Z, Or
TEXTURE_CUBE_MAP_NEGATIVE_Z. X, y, width, and height correspond precisely
to the corresponding arguments to ReadPixels (refer to section 4.3.1); they specify
the image’s width and height, and the lower left (x,y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passed to ReadPixels with argument #ype set to COLOR,
DEPTH, or DEPTH_STENCIL, depending on internalformat, stopping after con-
version of depth values. = RGBA data is taken from the current color buffer,
while depth component and stencil index data are taken from the depth and sten-
cil buffers, respectively. The error INVALID_OPERATION is generated if depth
component data is required and no depth buffer is present; if stencil index data is
required and no stencil buffer is present; if integer RGBA data is required and the
format of the current color buffer is not integer; or if floating- or fixed-point RGBA
data is required and the format of the current color buffer is integer.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, A, or depth values, and masking of the stencil
index values from the resulting pixel groups. Parameters level, internalformat, and
border are specified using the same values, with the same meanings, as the equiv-
alent arguments of TexImage2D. An invalid value specified for internalformat
generates the error INVALID_ENUM. The constraints on width, height, and border
are exactly those for the equivalent arguments of TexImage2D.

When the farget parameter to CopyTexImage2D is one of the six cube map
two-dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

An INVALID_FRAMEBUFFER_OPERATION error will be generated if the ob-
ject bound to READ_FRAMEBUFFER_BINDING (see section 4.4) is not framebuffer
complete (as defined in section 4.4.4). An INVALID_OPERATION error will be
generated if the object bound to READ_FRAMEBUFFER_BINDING is framebuffer
complete and the value of SAMPLE_BUFFERS is greater than zero.

The command

void CopyTexImagelD(enum farget, int level,
enum internalformat, int x, inty, sizei width,

int border);

defines a one-dimensional texel array in exactly the manner of TexImagelD, ex-
cept that the image data are taken from the framebuffer, rather than from client

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 130

memory. Currently, farget must be TEXTURE_1D. For the purposes of decoding
the texture image, CopyTexImagelD is equivalent to calling CopyTexImage2D
with corresponding arguments and height of 1, except that the height of the image
is always 1, regardless of the value of border. level, internalformat, and border are
specified using the same values, with the same meanings, as the equivalent argu-
ments of TexImagelD. The constraints on width and border are exactly those of
the equivalent arguments of TexImagelD.
Six additional commands,

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enumn format, enum type, void *data);

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data);

void TexSublmagelD(enum target, int level, int xoffset,
sizei width, enum format, enum type, void *data);

void CopyTexSublmage3D(enum farget, int level,
int xoffset, int yoffset, int zoffset, int x, inty,
sizei width, sizei height);

void CopyTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

void CopyTexSublmagelD(enum farget, int level,
int xoffset, int x, inty, sizei width);

respecify only a rectangular subregion of an existing texel array. No change is
made to the internalformat, width, height, depth, or border parameters of the
specified texel array, nor is any change made to texel values outside the speci-
fied subregion. Currently the farget arguments of TexSubImagelD and CopyTex-
SubImagelD must be TEXTURE_1D, the farget arguments of TexSubImage2D
and CopyTexSubImage2D must be one of TEXTURE_2D, TEXTURE_1D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_-
MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_-
MAP_NEGATIVE_Z, and the farget arguments of TexSubImage3D and CopyTex-
SubImage3D must be TEXTURE_3D or TEXTURE_2D_ARRAY. The level parameter
of each command specifies the level of the texel array that is modified. If level is
less than zero or greater than the base 2 logarithm of the maximum texture width,
height, or depth, the error INVALID_VALUE is generated. If farget is TEXTURE_-

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 131

RECTANGLE and level is not zero, the error INVALID_VALUE is generated. Tex-
SubImage3D arguments width, height, depth, format, type, and data match the
corresponding arguments to TexImage3D, meaning that they are specified using
the same values, and have the same meanings. Likewise, TexSubImage2D argu-
ments width, height, format, type, and data match the corresponding arguments
to TexImage2D, and TexSubImagelD arguments width, format, type, and data
match the corresponding arguments to TexImagelD.

CopyTexSubIlmage3D and CopyTexSubImage2D arguments x, y, width,
and height match the corresponding arguments to CopyTexImage2D'. CopyTex-
SubImagelD arguments x, y, and width match the corresponding arguments to
CopyTexImagelD. Each of the TexSubImage commands interprets and processes
pixel groups in exactly the manner of its TexImage counterpart, except that the as-
signment of R, G, B, A, depth, and stencil index pixel group values to the texture
components is controlled by the internalformat of the texel array, not by an argu-
ment to the command. The same constraints and errors apply to the TexSubImage
commands’ argument format and the internalformat of the texel array being re-
specified as apply to the format and internalformat arguments of its TexImage
counterparts.

Arguments xoffset, yoffset, and zoffset of TexSublmage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texel array. The depth argument
associated with CopyTexSubImage3D is always 1, because framebuffer memory
is two-dimensional - only a portion of a single s,t slice of a three-dimensional
texture is replaced by CopyTexSubImage3D.

Negative values of xoffset, yoffset, and zoffset correspond to the coordinates
of border texels, addressed as in figure 3.6. Taking wg, hs, ds, wy, hy, and dy to
be the specified width, height, depth, and border width, border height, and border
depth of the texel array, and taking x, y, z, w, h, and d to be the xoffset, yoffset,
zoffset, width, height, and depth argument values, any of the following relationships
generates the error INVALID_VALUE:

r < —wyp

T+ w>ws — Wy

y < —hy
y+h>hs—hy
z < —dy

! Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 132

z+d>ds—dp

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, 7, k], where

i =2+ (n mod w)

n
| = — dh
j=y+ (L] modh)
.
width * height

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangular
subregion of the texel array. Negative values of xoffset and yoffset correspond to
the coordinates of border texels, addressed as in figure 3.6. Taking ws, hs, and by
to be the specified width, height, and border width of the texel array, and taking x,
y, w, and h to be the xoffset, yoffset, width, and height argument values, any of the
following relationships generates the error INVALID_VALUE:

kE=z+(] | mod d

T < —byg
T+ w > ws — b
y < _bs
y+h>hs—bs
Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where
i =1z + (n mod w)
, n
j=y+ (1] mod h)

The xoffset argument of TexSubImagelD and CopyTexSubImagelD speci-
fies the left texel coordinate of a width-wide subregion of the texel array. Negative
values of xoffset correspond to the coordinates of border texels. Taking ws and by
to be the specified width and border width of the texel array, and x and w to be the
xoffset and width argument values, either of the following relationships generates
the error INVALID_VALUE:

T < —by

T+ w > ws — by

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 133

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i], where

i =+ (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. Calling TexSubImage3D, CopyTexSubImage3D, TexSubIm-
age2D, CopyTexSubIlmage2D, TexSubImagelD, or CopyTexSubImagelD will
result in an INVALID_OPERATION error if xoffset, yoffset, or zoffset is not equal to
—bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

If the internal format of the texture image being modified is one of the spe-
cific RGTC formats described in table 3.14, the texture is stored using one of the
RGTC texture image encodings (see appendix C.1). Since RGTC images are easily
edited along 4 x 4 texel boundaries, the limitations on subimage location and size
are relaxed for TexSubImage2D, TexSubImage3D, CopyTexSubIlmage2D, and
CopyTexSubImage3D. These commands will generate an INVALID_OPERATION
error if one of the following conditions occurs:

e width is not a multiple of four, width + xoffset is not equal to the value of
TEXTURE_WIDTH, and either xoffset or yoffset is non-zero.

e height is not a multiple of four, height + yoffset is not equal to the value of
TEXTURE_HEIGHT, and either xoffset or yoffset is non-zero.

e xoffset or yoffset is not a multiple of four.

The contents of any 4 x 4 block of texels of an RGTC compressed texture
image that does not intersect the area being modified are preserved during valid
TexSubImage* and CopyTexSubImage* calls.

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSublmage2D,
CopyTexImagelD, or CopyTexSublmagelD will result in an INVALID_-—
FRAMEBUFFER_OPERATION error if the object bound to READ_FRAMEBUFFER_ -
BINDING is not framebuffer complete (see section 4.4.4).

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 134

Texture Copying Feedback Loops

Calling CopyTexSublmage3D, CopyTexImage2D, CopyTexSublmage2D,
CopyTexImagelD, or CopyTexSubIlmagelD will result in undefined behavior if
the destination texture image level is also bound to to the selected read buffer (see
section 4.3.1) of the read framebuffer. This situation is discussed in more detail in
the description of feedback loops in section 4.4.2.

3.8.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, such as the RGTC formats defined in ap-
pendix C, or additional formats defined by GL extensions.

The commands

void CompressedTexImagelD(enum target, int level,
enumn internalformat, sizei width, int border,
sizei imageSize, void *data);
void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, void *data);
void CompressedTexImage3D(enum target, int level,
enumn internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, void *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. The target, level, inter-
nalformat, width, height, depth, and border parameters have the same meaning as
in TexImagelD, TexImage2D, and TexImage3D, except that compressed rect-
angular texture formats are not supported. data refers to compressed image data
stored in the specific compressed image format corresponding to internalformat.
If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and the
compressed data is read from the buffer relative to this offset; otherwise, data is
a pointer to client memory and the compressed data is read from client memory
relative to the pointer.

If the target parameter to any of the CompressedTexImagenD commands is
TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE, the error INVALID_—
ENUM is generated.

internalformat must be a supported specific compressed internal format. An
INVALID_ENUM error will be generated if any other values, including any of the

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 135

generic compressed internal formats, is specified.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining the internalformat token. Com-
pressed texture images are treated as an array of imageSize ubytes relative to
data. If a pixel unpack buffer object is bound and data + imageSize is greater
than the size of the pixel buffer, an INVALID_ OPERATION error results. All pixel
storage modes are ignored when decoding a compressed texture image. If the im-
ageSize parameter is not consistent with the format, dimensions, and contents of
the compressed image, an INVALID_VALUE error results. If the compressed image
is not encoded according to the defined image format, the results of the call are
undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zero border values. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in an INVALID OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTexImagelD, Compressed-
TexImage2D, or CompressedTexImage3D will not result in an INVALID_-
OPERATION error if the following restrictions are satisfied:

e data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

o target, level, and internalformat match the target, level and format parame-
ters provided to the GetCompressed TexImage call returning data.

o width, height, depth, border, internalformat, and imageSize match the values
of TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, TEXTURE_-
BORDER, TEXTURE_INTERNAL_FORMAT, and TEXTURE_COMPRESSED_-—
IMAGE_SIZE for image level level in effect at the time of the GetCom-
pressed TexImage call returning data.

This guarantee applies not just to images returned by GetCompressedTexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

If internalformat is one of the specific RGTC formats described in table 3.14,
the compressed image data is stored using one of the RGTC compressed texture
image encodings (see appendix C.1) The RGTC texture compression algorithm

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 136

supports only two-dimensional images without borders. If internalformat is an
RGTC format, CompressedTexImagelD will generate an INVALID_ENUM error;
CompressedTexImage2D will generate an INVALID_OPERATION error if bor-
der is non-zero or target is TEXTURE_RECTANGLE; and Compressed TexImage3D
will generate an INVALID_OPERATION error if border is non-zero or target is not
TEXTURE_2D_ARRAY.

If the data argument of CompressedTexImage1D, Compressed TexImage2D,
or CompressedTexImage3D is a null pointer (a zero-valued pointer in the C imple-
mentation), and the pixel unpack buffer object is zero, a texel array with unspeci-
fied image contents is created, just as when a null pointer is passed to TexImagelD,
TexImage2D, or TexImage3D.

The commands

void CompressedTexSublmagelD(enum farget, int level,
int xoffset, sizei width, enum format, sizei imageSize,
void *data);

void CompressedTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, sizei width, sizei height,
enumn format, sizei imageSize, void *data);

void CompressedTexSublmage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, void *data);

respecify only a rectangular region of an existing texel array, with incoming data
stored in a known compressed image format. The farget, level, xoffset, yoffset, zoff-
set, width, height, and depth parameters have the same meaning as in TexSubIm-
agelD, TexSubImage2D, and TexSubImage3D. data points to compressed image
data stored in the compressed image format corresponding to format. Using any of
the generic compressed internal formats as format will result in an INVALID_ENUM
error.

If the rarget parameter to any of the CompressedTexSubImagenD com-
mands iS TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE, the error
INVALID_ENUM is generated.

The image pointed to by data and the imageSize parameter are interpreted
as though they were provided to CompressedTexImagelD, CompressedTexIm-
age2D, and CompressedTexImage3D. These commands do not provide for im-
age format conversion, so an INVALID_OPERATION error results if format does
not match the internal format of the texture image being modified. If the image-
Size parameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data), an INVALID_VALUE error results.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 137

As with CompressedTexImage calls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTexSubImagelD, Compressed-
TexSubImage2D, Compressed TexSubImage3D will not result in an INVALID_-
OPERATION error if the following restrictions are satisfied:

e data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

o rarget, level, and format match the rarget, level and format parameters pro-
vided to the GetCompressedTexImage call returning data.

o width, height, depth, format, and imageSize match the values of TEXTURE_ -
WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, TEXTURE_INTERNAL_-—
FORMAT, and TEXTURE_COMPRESSED_IMAGE_SIZE for image level level
in effect at the time of the GetCompressedTexImage call returning data.

o width, height, depth, format match the values of TEXTURE_WIDTH,
TEXTURE_HEIGHT, TEXTURE_DEPTH, and TEXTURE_INTERNAIL_FORMAT
currently in effect for image level level.

o xoffset, yoffset, and zoffset are all —b, where b is the value of TEXTURE_—
BORDER currently in effect for image level level.

This guarantee applies not just to images returned by GetCompressed TexIm-
age, but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSubImage3D, CompressedTexSublmage2D, or
CompressedTexSubImagelD will result in an INVALID_OPERATION error if
xoffset, yoffset, or zoffset is not equal to —b, (border width), or if width, height,
and depth do not match the values of TEXTURE_WIDTH, TEXTURE_HEIGHT, or
TEXTURE_DEPTH, respectively. The contents of any texel outside the region mod-
ified by the call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

If internalformat is one of the specific RGTC formats described in table 3.14,
the texture is stored using one of the RGTC compressed texture image encod-
ings (see appendix C.1). If internalformat is an RGTC format, CompressedTex-

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 138

SubImagelD will generate an INVALID_ENUM error; CompressedTexSubIm-
age2D will generate an INVALID_OPERATION error if border is non-zero; and
CompressedTexSubImage3D will generate an INVALID_OPERATION error if
border is non-zero or target is not TEXTURE_2D_ARRAY. Since RGTC images are
easily edited along 4 x 4 texel boundaries, the limitations on subimage location and
size are relaxed for CompressedTexSubImage2D and CompressedTexSubIm-
age3D. These commands will result in an INVALID_OPERATION error if one of
the following conditions occurs:

e width is not a multiple of four, and width + xoffset is not equal to the value
of TEXTURE_WIDTH.

e height is not a multiple of four, and height + yoffset is not equal to the value
of TEXTURE_HETIGHT.

e xoffset or yoffset is not a multiple of four.

The contents of any 4 x 4 block of texels of an RGTC compressed texture
image that does not intersect the area being modified are preserved during valid
TexSubImage* and CopyTexSubImage* calls.

3.8.4 Buffer Textures

In addition to one-, two-, and three-dimensional, one- and two-dimensional array,
and cube map textures described in previous sections, one additional type of texture
is supported. A buffer texture is similar to a one-dimensional texture. However,
unlike other texture types, the texel array is not stored as part of the texture. Instead,
a buffer object is attached to a buffer texture and the texel array is taken from that
buffer object’s data store. When the contents of a buffer object’s data store are
modified, those changes are reflected in the contents of any buffer texture to which
the buffer object is attached. Also unlike most other texture types, buffer textures
do not have multiple image levels; only a single data store is available.
The command

void TexBuffer(enum target, enum internalformat, uint

buffer);

attaches the storage for the buffer object named buffer to the active buffer texture,
and specifies an internal format for the texel array found in the attached buffer
object. If buffer is zero, any buffer object attached to the buffer texture is detached,
and no new buffer object is attached. If buffer is non-zero, but is not the name

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING

of an existing buffer object, the error INVALID_OPERATION is generated. target
must be TEXTURE_BUFFER. internalformat specifies the storage format, and must
be one of the sized internal formats found in table 3.15.

When a buffer object is attached to a buffer texture, the buffer object’s data store
is taken as the texture’s texel array. The number of texels in the buffer texture’s
texel array is given by

{ buf fer_size J

components X sizeof(base_type)

where buffer_size is the size of the buffer object, in basic machine units and
components and base_type are the element count and base data type for elements,
as specified in table 3.15. The number of texels in the texel array is then clamped
to the implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE. When a
buffer texture is accessed in a shader, the results of a texel fetch are undefined
if the specified texel coordinate is negative, or greater than or equal to the clamped
number of texels in the texel array.

When a buffer texture is accessed in a shader, an integer is provided to indicate
the texel coordinate being accessed. If no buffer object is bound to the buffer tex-
ture, the results of the texel access are undefined. Otherwise, the attached buffer
object’s data store is interpreted as an array of elements of the GL data type cor-
responding to internalformat. Each texel consists of one to four elements that are
mapped to texture components (R, G, B, and A). Element m of the texel numbered
n is taken from element n X components + m of the attached buffer object’s data
store. Elements and texels are both numbered starting with zero. For texture for-
mats with signed or unsigned normalized fixed-point components, the extracted
values are converted to floating-point using equations 2.1 or 2.3, respectively. The
components of the texture are then converted to an (R,G,B,A) vector according to
table 3.15, and returned to the shader as a four-component result vector with com-
ponents of the appropriate data type for the texture’s internal format. The base data
type, component count, normalized component information, and mapping of data
store elements to texture components is specified in table 3.15.

In addition to attaching buffer objects to textures, buffer objects can be bound
to the buffer object target named TEXTURE_BUFFER, in order to specify, modify, or
read the buffer object’s data store. The buffer object bound to TEXTURE_BUFFER
has no effect on rendering. A buffer object is bound to TEXTURE_BUFFER by call-
ing BindBuffer with target set to TEXTURE_BUFFER, as described in section 2.9.

OpenGL 3.1 - May 28, 2009

139

3.8. TEXTURING

Sized Internal Format | Base Type | Components | Norm Component
01]2]3
RS ubyte 1 Yes R|O0 |0 |1
R16 ushort 1 Yes R|0 |0 |1
R16F half 1 No R|O0 |0 |1
R32F float 1 No R|O0O |0 |1
R8I byte 1 No R0 |0 |1
R161I short 1 No R|0 |0 |1
R321 int 1 No R|O0 |0 |1
R8UI ubyte 1 No R|O0 |0 |1
R16UI ushort 1 No R|0 |0 |1
R32U1I uint 1 No RO |0 |1
RGS8 ubyte 2 Yes R|G|O0O |1
RG16 ushort 2 Yes R|{G|O0O |1
RG16F half 2 No R|G|O |1
RG32F float 2 No R|G|O0 |1
RGSI byte 2 No R|G|O0 |1
RG161I short 2 No R|G|O0 |1
RG321 int 2 No R|G|O0 |1
RG8UI ubyte 2 No R|G|O0 |1
RG16UI ushort 2 No R|G|O0 |1
RG32UI uint 2 No R|{G|O |1
RGBAS ubyte 4 Yes R|G|B|A
RGBA16 ushort 4 Yes R|G|B|A
RGBA1G6F half 4 No R|G|B|A
RGBA32F float 4 No R|G|B|A
RGBAST byte 4 No R|G|B|A
RGBA16I short 4 No R|G|B|A
RGBA321 int 4 No R|G|B|A
RGBASUI ubyte 4 No R|G|B|A
RGBA16UI ushort 4 No R|{G|B|A
RGBA32UT uint 4 No R|{|G|B|A

Table 3.15: Internal formats for buffer textures. For each format, the data type
of each element is indicated in the “Base Type” column and the element count is
in the “Components” column. The “Norm” column indicates whether components
should be treated as normalized floating-point values. The “Component 0, 1, 2, and
3” columns indicate the mapping of each element of a texel to texture components.

OpenGL 3.1 - May 28, 2009

140

3.8. TEXTURING 141

3.8.5 Texture Parameters

Various parameters control how the texel array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}(enum farget, enum pname, T param);
void TexParameter{if}v(enum target, enum pname,

T *params);
void TexParameterl{i ui}v(enum farget, enum pname,

T *params);

taget is the target, either TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_—
1D_ARRAY, TEXTURE_2D_ARRAY. TEXTURE_RECTANGLE, or TEXTURE_CUBE_ -
MAP. params is a symbolic constant indicating the parameter to be set; the possible
constants and corresponding parameters are summarized in table 3.16. In the first
form of the command, param is a value to which to set a single-valued parameter;
in the remaining forms, params is an array of parameters whose type depends on
the parameter being set.

If the values for TEXTURE_BORDER_COLOR are specified with TexParame-
terliv or TexParameterlIuiv, the values are unmodified and stored with an internal
data type of integer. If specified with TexParameteriv, they are converted to
floating-point using equation 2.2. Otherwise the values are unmodified and stored
as floating-point.

In the remainder of section 3.8, denote by lodmin, [0dmaz, levelpyse, and
level g, the values of the texture parameters TEXTURE_MIN_LOD, TEXTURE_—
MAX_LOD, TEXTURE_BASE_LEVEL, and TEXTURE_MAX_LEVEL respectively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

When target is TEXTURE_RECTANGLE, certain texture parameter values may
not be specified. In this case, the error INVALID_ENUM is generated if the
TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R parameter is set
to REPEAT or MIRRORED_REPEAT. The error INVALID_ENUM is generated if
TEXTURE_MIN_FILTER is set to a value other than NEAREST or LINEAR (no
mipmap filtering is permitted). The error INVALID_ENUM is generated if
TEXTURE_BASE_LEVEL is set to any value other than zero.

3.8.6 Depth Component Textures

Depth textures and the depth components of depth/stencil textures can be treated
as RED textures during texture filtering and application (see section 3.8.14). The

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING

142

Name Type Legal Values
TEXTURE_WRAP_S enum CLAMP_TO_EDGE, REPEAT,

CLAMP_TO_BORDER,

MIRRORED_REPEAT
TEXTURE_WRAP_T enum CLAMP_TO_EDGE, REPEAT,

CLAMP_TO_BORDER,

MIRRORED_REPEAT
TEXTURE_WRAP_R enum CLAMP_TO_EDGE, REPEAT,

CLAMP_TO_BORDER,

MIRRORED_REPEAT
TEXTURE_MIN_FILTER enum NEAREST,

LINEAR,

NEAREST_MIPMAP_NEAREST,

NEAREST_MIPMAP_LINEAR,

LINEAR_MIPMAP_NEAREST,

LINEAR_MIPMAP_LINEAR,
TEXTURE_MAG_FILTER enum NEAREST,

LINEAR
TEXTURE_BORDER_COLOR 4 floats, any 4 values

integers, or
unsigned
integers

TEXTURE_MIN_LOD float any value
TEXTURE_MAX_TLOD float any value
TEXTURE_BASE_LEVEL integer any non-negative integer
TEXTURE_MAX_LEVEL integer any non-negative integer
TEXTURE_LOD_BIAS float any value
TEXTURE_COMPARE_MODE enum NONE, COMPARE_REF_TO_-

TEXTURE
TEXTURE_COMPARE_FUNC enum LEQUAL, GEQUAL

LESS, GREATER,
EQUAL, NOTEQUAL,
ALWAYS, NEVER

Table 3.16: Texture parameters and their values.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 143

Major Axis Direction | Target \ Se \ te \ Mg, \
+7ry TEXTURE_CUBE_MAP_POSITIVE_X | —T, | —Ty | Tz
—Ty TEXTURE_CUBE_MAP_NEGATIVE_X | 1, —Ty | Tz
+7y TEXTURE_CUBE_MAP_POSITIVE_Y | 7y T, Ty
—Ty TEXTURE_CUBE_MAP_NEGATIVE_Y | 7y —T, | Ty
+r, TEXTURE_CUBE_MAP_POSITIVE_ Z | 7y —Ty | T2
—r, TEXTURE_CUBE_MAP_NEGATIVE_Z | =Ty | —Ty | T

Table 3.17: Selection of cube map images based on major axis direction of texture
coordinates.

initial state for depth and depth/stencil textures treats them as RED textures.

3.8.7 Cube Map Texture Selection

When cube map texturing is enabled, the (s t 7“) texture coordinates are treated
as a direction vector (rw Ty rz) emanating from the center of a cube (the ¢
coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
magnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on
(rx Ty rz). The target column in table 3.17 explains how the major axis direc-
tion maps to the two-dimensional image of a particular cube map target.

Using the s, t., and m, determined by the major axis direction as specified in
table 3.17, an updated (s ¢) is calculated as follows:

1/ s, >
s = — +1

2(’ma|

1 te >
t=— +1

2<‘ma

This new (s t) is used to find a texture value in the determined face’s two-
dimensional texture image using the rules given in sections 3.8.8 through 3.8.9.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 144

3.8.8 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor p(z,y) and the level-of-detail parameter
Az, y), defined as

Abase(l‘a y) = log2 [,O(CL‘, y)] (3.17)
N(z,y) = Mase(T,y) + clamp(biasiegob; + biasshader) (3.18)
lodmaz, N > lodmaa
)‘,7 lodpin < N <lodmaz
A= lodyin, N < lodmn (3.19)

undefined, lodmin > lodmaz

biastezopj 18 the value of TEXTURE_LOD_BIAS for the bound texture object (as
described in section 3.8.5). biasspader 1S the value of the optional bias parameter
in the texture lookup functions available to fragment shaders. If the texture access
is performed in a fragment shader without a provided bias, or outside a fragment
shader, then biasgpader 1S zero. The sum of these values is clamped to the range
[—biaSmaz, DiaSmaz| Where bias,., is the value of the implementation defined
constant MAX_TEXTURE_LOD_BIAS.

If A(z,y) is less than or equal to the constant ¢ (see section 3.8.9) the texture
is said to be magnified; if it is greater, the texture is minified. Sampling of minified
textures is described in the remainder of this section, while sampling of magnified
textures is described in section 3.8.9.

The initial values of lod,,;, and lod,,, are chosen so as to never clamp the
normal range of A\. They may be respecified for a specific texture by calling Tex-
Parameter[if] with pname set to TEXTURE_MIN_LOD or TEXTURE_MAX_LOD re-
spectively.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 145

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (x, y) that lie within a primitive; define ¢(z, y) and r(z, y)
analogously. Let

(2.1) wt + Oy, rectangular texture
w(x,y) = .
Y wy X s(x,y) + &y, otherwise

(1) hi + 84, rectangular texture (3.20)
/l) l" == .
Y hy X t(x,y) + d,, otherwise

U)(J,‘,y) = dt S T(l‘,y) + 511)

where wy, ht, and d; are as defined by equation 3.16 with wg, hs, and ds equal to
the width, height, and depth of the image array whose level is levelp,s.. For a one-
dimensional or one-dimensional array texture, define v(z,y) = 0 and w(z,y) = 0;
for a two-dimensional, two-dimensional array, rectangular, or cube map texture,
define w(z,y) = 0.

(Ou, 0y, Oyy) are the texel offsets specified in the OpenGL Shading Language
texture lookup functions that support offsets. If the texture function used does
not support offsets, all three shader offsets are taken to be zero. If any of the
offset values are outside the range of the implementation-defined values MIN_—
PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET, results of the
texture lookup are undefined.

For a polygon or point, pis given at a fragment with window coordinates (z, y)
by

e d (O (Y (Y (oY (20N (o)

P= Ox Ox ox)’ oy oy oy
(3.21)

where Ju/0x indicates the derivative of v with respect to window z, and similarly

for the other derivatives.
For a line, the formula is

ou ou 2 ov ov 2 ow ow 2
= —A —A —A —A —A —A l
g \/<3$ Ty y) * <3l’ T oy y) " (356 T oy y) /
(3.22)
where Az = x9 — x1 and Ay = yo — y; with (z1,y;1) and (z2,y2) being the

segment’s window coordinate endpoints and [= \/Ax? + Ay?2.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 146

While it is generally agreed that equations 3.21 and 3.22 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal p with a function f(z,y) subject to these
conditions:

1. f(x,y) is continuous and monotonically increasing in each of |Ou/0z],
|Ou/dy|, |0v/dx|, |0v/dy|, |ow/dx|, and |Ow/Dy|

2. Let

m mx@ Ou
e ox|’ |y
o {120] (20
m, = max 9| |3y
Ow| |ow

x| | Oy

Coordinate Wrapping and Texel Selection

After generating u(x,y), v(x,y), and w(z,y), they may be clamped and wrapped
before sampling the texture, depending on the corresponding texture wrap modes.

Let

u'(z,y) =

(@y) u(z,y), otherwise
V' (x,y) =

(@y) v(z,y), otherwise
w'(z,y) =

(@y) w(x,y), otherwise

where clamp(a, b, ¢) returns b if a < b, ¢ if a > ¢, and a otherwise.
The value assigned to TEXTURE_MIN_FILTER is used to determine how the

texture value for a fragment is selected.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 147

When the value of TEXTURE_MIN_FILTER is NEAREST, the texel in the image
array of level levelp,se that is nearest (in Manhattan distance) to (u/,v’,w’) is
obtained. Let (i, j, k) be integers such that

i = wrap(|u'(z,y)])
j = wrap([v'(z,y)])
k= wrap(|w'(z,y)])

and the value returned by wrap() is defined in table 3.18. For a three-dimensional
texture, the texel at location (4,7, k) becomes the texture value. For two-
dimensional, two-dimensional array, rectangular, or cube map textures, k is irrele-
vant, and the texel at location (i, j) becomes the texture value. For one-dimensional
texture or one-dimensional array textures, j and k are irrelevant, and the texel at
location ¢ becomes the texture value.

For one- and two-dimensional array textures, the texel is obtained from image
layer [, where

- clamp(|t +0.5],0,hy — 1), for one-dimensional array textures
| cdamp(|r +0.5],0,d; — 1), for two-dimensional array textures

’ Wrap mode ‘ Result of wrap(coord)
CLAMP_TO_EDGE clamp(coord, 0, size — 1)
CLAMP_TO_BORDER | clamp(coord, —1, size)
REPEAT fmod(coord, size)
MIRRORED_REPEAT | (size — 1) — mirror(fmod(coord,2 x size) — size)

Table 3.18: Texel location wrap mode application. fmod(a, b) returns a —b x | ¢].
mirror(a) returns a if a > 0, and —(1 + a) otherwise. The values of mode and
size are TEXTURE_WRAP_S and w;, TEXTURE_WRAP_T and h;, and TEXTURE_—
WRAP_R and d; when wrapping ¢, j, or k coordinates, respectively.

If the selected (3, j, k), (4, j), or i location refers to a border texel that satisfies
any of the conditions

1 < —by 1 > wi + by
j<_bs tht"i‘bs
k‘<—bs kzdt“‘bs

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 148

then the border values defined by TEXTURE_BORDER_COLOR are used in place
of the non-existent texel. If the texture contains color components, the values of
TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table 3.11. The internal data type of the
border values must be consistent with the type returned by the texture as described
in section 3.8, or the result is undefined. Border values are clamped before they are
used, according to the format in which texture components are stored. For signed
and unsigned normalized fixed-point formats, border values are clamped to [—1, 1]
and [0, 1], respectively. For floating-point and integer formats, border values are
clamped to the representable range of the format. If the texture contains depth
components, the first component of TEXTURE_BORDER_COLOR is interpreted as a
depth value.

When the value of TEXTURE_MIN_FILTER is LINEAR, a 2 X 2 x 2 cube of
texels in the image array of level levely,s. 18 selected. Let

ip = wrap(|u’ — 0.5])
jo = wrap([v' - 0.5])
ko = wrap(|w’ —0.5])
i1 = wrap(|u’ — 0.5] +1)
g1 = wrap(|v' — 0.5] + 1)
k1 = wrap(|w' —0.5] +1)
alpha = frac(u’ — 0.5)
beta = frac(v' — 0. 5)
(w' - 0.5)
where frac(z) denotes the fractional part of .
For a three-dimensional texture, the texture value 7 is found as

gamma = frac

=(1-a)1-p)1 ’Y)Tiojoko +a(l-p8)1 - V)Tiljoko
+ (1= a)B(1 = 7)Tigjiko + @Bl — V) Tiyjiko
+(1—a)(l -)VTZOJOkl +a(l - ﬂ)77i1j0k1
+ (1 — @) B Tigjikr + BV Tiyjika

(3.23)

where 7;, is the texel at location (4, j, k) in the three-dimensional texture image.
For a two-dimensional, two-dimensional array, rectangular, or cube map tex-
ture,

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 149

T =1 = a)(1 = B)Tigjo + (1 = B)Tirjo
+ (1= a)Brigjy + abTinjy
where 7;; is the texel at location (4, j) in the two-dimensional texture image. For
two-dimensional array textures, all texels are obtained from layer [, where

I = clamp(|r +0.5],0,d; — 1).
And for a one-dimensional or one-dimensional array texture,
T=01-a)n,+am,

where 7; is the texel at location 7 in the one-dimensional texture. For one-
dimensional array textures, both texels are obtained from layer [, where

I = clamp(|t +0.5],0,hy — 1).
For any texel in the equation above that refers to a border texel outside the

defined range of the image, the texel value is taken from the texture border color as
with NEAREST filtering.

Rendering Feedback Loops

If all of the following conditions are satisfied, then the value of the selected 7,
Tij» Or T; in the above equations is undefined instead of referring to the value of the
texel at location (i, j, k), (4,), or (i) respectively. This situation is discussed in
more detail in the description of feedback loops in section 4.4.2.

e The current DRAW_FRAMEBUFFER_BINDING names a framebuffer object F.

e The texture is attached to one of the attachment points, A, of framebuffer
object F.

e The value of TEXTURE_MIN_FILTER is NEAREST or LINEAR, and the value
of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A
is equal to the value of TEXTURE_BASE_LEVEL

Or

The value of TEXTURE_MIN_FILTER iS NEAREST MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, or LINEAR_ -
MIPMAP_LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_-—
TEXTURE_LEVEL for attachment point A is within the the inclusive range
from TEXTURE_BASE_LEVEL to q.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 150

Mipmapping

TEXTURE_MIN_FILTER values NEAREST MIPMAP_NEAREST, NEAREST_-
MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR
each require the use of a mipmap. Rectangular textures do not support mipmap-
ping (it is an error to specify a minification filter that requires mipmapping). A
mipmap is an ordered set of arrays representing the same image; each array has
a resolution lower than the previous one. If the image array of level levelpyse
has dimensions w; x h; X dy, then there are |logy(maxsize)| + 1 levels in the
mipmap. where

Wy, for 1D and 1D array textures
mazxsize = § max(wy, hy), for 2D, 2D array, and cube map textures

maz(wy, hy,dy), for 3D textures

Numbering the levels such that level levely, . is the Oth level, the ith array has
dimensions

W hyt dy
max(1, Lw—dj) x max(1, Lh—dJ) x max(1, Ld—dJ)

where

L {1, for 1D and 1D array textures
d =

2! otherwise

{Qi, for 3D textures
dg =

1, otherwise

until the last array is reached with dimension 1 x 1 x 1.

Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-
TexImage2D, TexImagelD, or CopyTexImagelD; the array being set is indicated
with the level-of-detail argument /evel. Level-of-detail numbers proceed from
levelpyse for the original texel array through p = |log,(mazxsize)| + levelpyse
with each unit increase indicating an array of half the dimensions of the previous
one (rounded down to the next integer if fractional) as already described. All ar-
rays from levelpyse through ¢ = min{p, level,,q, } must be defined, as discussed
in section 3.8.11.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING

The values of levely,se and level,,q,; may be respecified for a specific tex-
ture by calling TexParameter[if] with pname set to TEXTURE_BASE_LEVEL Or
TEXTURE_MAX_LEVEL respectively.

The error INVALID_VALUE is generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Let c be the value
of A\ at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values of A where
A > o).

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_-
NEAREST, the dth mipmap array is selected, where

levelpase, A< %
d = < [levelpgse + X+ %1 -1, A> %, levelpgse + A < g+ % (3.24)
q, A > %,levelbase+)\>q+%

The rules for NEAREST or LINEAR filtering are then applied to the selected
array. Specifically, the coordinate (u, v, w) is computed as in equation 3.20, with
ws, hs, and dg equal to the width, height, and depth of the image array whose level
is d.

For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR_MIPMAP_-
LINEAR, the level d and dy mipmap arrays are selected, where

l l ase)\ Z
dp =1 CUeibase + A 2 4 (3.25)
|levelpgse + A], otherwise
l l ase A Z
dy =40 EVease + A 2 ¢ (3.26)
dy +1, otherwise

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values 7 and 79. Specifically,
for level d;, the coordinate (u, v, w) is computed as in equation 3.20, with wg, hs,
and dg equal to the width, height, and depth of the image array whose level is d;.
For level dy the coordinate (u/,v',w’) is computed as in equation 3.20, with ws,
hs, and ds equal to the width, height, and depth of the image array whose level is
da.

The final texture value is then found as

T = [1 — frac(\)]m + frac(\)7e.

OpenGL 3.1 - May 28, 2009

151

3.8. TEXTURING 152

Manual Mipmap Generation

Mipmaps can be generated manually with the command
void GenerateMipmap(enum farget);

where target is one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_—
1D_ARRAY, TEXTURE_2D_ARRAY, or TEXTURE_CUBE_MAP. Mipmap generation
affects the texture image attached to farget. For cube map textures, an INVALID_-
OPERATION error is generated if the texture bound to farget is not cube complete,
as defined in section 3.8.11.

Mipmap generation replaces texel array levels levelpqse + 1 through ¢ with
arrays derived from the levely,s. array, regardless of their previous contents. All
other mipmap arrays, including the levely, . array, are left unchanged by this com-
putation.

The internal formats of the derived mipmap arrays all match those of the
levelp,se array, and the dimensions of the derived arrays follow the requirements
described in section 3.8.11.

The contents of the derived arrays are computed by repeated, filtered reduction
of the levelp,se array. For one- and two-dimensional array textures, each layer is
filtered independently. No particular filter algorithm is required, though a box filter
is recommended as the default filter.

3.8.9 Texture Magnification

When A indicates magnification, the value assigned to TEXTURE_MAG_FILTER
determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER and LINEAR behaves exactly as LINEAR for
TEXTURE_MIN_FILTER as described in section 3.8.8, including the texture coor-
dinate wrap modes specified in table 3.18. The level-of-detail levely, . texel array
is always used for magnification.

Implementations may either unconditionally assume ¢ = 0 for the minifica-
tion vs. magnification switch-over point, or may choose to make ¢ depend on the
combination of minification and magnification modes as follows: if the magnifi-
cation filter is given by LINEAR and the minification filter is given by NEAREST_ -
MIPMAP_NEAREST or NEAREST MIPMAP_LINEAR, then ¢ = 0.5. This is done to
ensure that a minified texture does not appear “sharper” than a magnified texture.
Otherwise ¢ = 0.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 153

3.8.10 Combined Depth/Stencil Textures

If the texture image has a base internal format of DEPTH_STENCIL, then the stencil
index texture component is ignored. The texture value 7 does not include a stencil
index component, but includes only the depth component.

3.8.11 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on the texture dimensionality.

For one-, two-, or three-dimensional textures and one- or two-dimensional ar-
ray textures, a texture is complete if the following conditions all hold true:

e The set of mipmap arrays levelp,se through g (where ¢ is defined in the
Mipmapping discussion of section 3.8.8) were each specified with the same
internal format.

e The dimensions of the arrays follow the sequence described in the Mipmap-
ping discussion of section 3.8.8.

o levelpyse < levelmar
e Each dimension of the levely, . array is positive.

o If the internal format of the arrays is integer (see (see table 3.12),
TEXTURE_MAG_FILTER must be NEAREST and TEXTURE_MIN_FILTER
must be NEAREST or NEAREST_MIPMAP_NEAREST.

Array levels k£ where k < levelp,se Or k > ¢ are insignificant to the definition of
completeness.

For cube map textures, a texture is cube complete if the following conditions
all hold true:

e The levely,s. arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

e The levely,s. arrays were each specified with the same internal format.

Finally, a cube map texture is mipmap cube complete if, in addition to being
cube complete, each of the six texture images considered individually is complete.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 154

Effects of Completeness on Texture Application

Texture lookups performed in vertex and fragment shaders are affected by com-
pleteness of the texture being sampled as described in sections 2.11.7 and 3.9.2.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be cre-
ated only if a mipmap complete set of image arrays consistent with the requested
array can be supported. A mipmap complete set of arrays is equivalent to a com-
plete set of arrays where levelp,se = 0 and levely,, = 1000, and where the
dimensions of the image array being created are understood to be half the corre-
sponding dimensions of the next lower numbered array (rounded down to the next
integer if fractional).

3.8.12 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there
are the multiple sets of texel arrays (a single array for the rectangular texture tar-
get; one set of mipmap arrays each for the one-, two-, and three-dimensional and
one- and two-dimensional array texture targets; and six sets of mipmap arrays for
the cube map texture targets) and their number. Each array has associated with
it a width, height (two- and three-dimensional, rectangular, one-dimensional ar-
ray, and cube map only), and depth (three-dimensional and two-dimensional array
only), an integer describing the internal format of the image, integer values de-
scribing the resolutions of each of the red, green, blue, alpha, depth, and stencil
components of the image, integer values describing the type (unsigned normal-
ized, integer, floating-point, etc.) of each of the components, a boolean describing
whether the image is compressed or not, and an integer size of a compressed image.
Each initial texel array is null (zero width, height, and depth, internal format RGBA,
component sizes set to zero and component types set to NONE, the compressed flag
set to FALSE, and a zero compressed size). The buffer texture target has asso-
ciated an integer containing the name of the buffer object that provided the data
store for the texture, initially zero, and an integer identifying the internal format of
the texture, initially R8. Next, there are the four sets of texture properties, corre-
sponding to the one-, two-, three-dimensional, and cube map texture targets. Each
set consists of the selected minification and magnification filters, the wrap modes
for s, t (two- and three-dimensional and cube map only), and r (three-dimensional
only), the TEXTURE_BORDER_COLOR, two floating-point numbers describing the
minimum and maximum level of detail, two integers describing the base and max-
imum mipmap array, a boolean flag indicating whether the texture is resident,

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 155

and three integers describing the depth texture mode, compare mode, and com-
pare function. In the initial state, the value assigned to TEXTURE_MIN_FILTER
is NEAREST_MIPMAP_LINEAR, (except for rectangular textures, where the initial
value is LINEAR), and the value for TEXTURE_MAG_FILTERIS LINEAR. s, t,and r
wrap modes are all set to REPEAT (except for rectangular textures, where the initial
value is CLAMP_TO_EDGE). The values of TEXTURE_MIN_LOD and TEXTURE_ -
MAX_10D are -1000 and 1000 respectively. The values of TEXTURE_BASE_LEVEL
and TEXTURE_MAX_LEVEL are 0 and 1000 respectively. The value of TEXTURE_ -
BORDER_COLOR is (0,0,0,0). The values of TEXTURE_COMPARE_MODE, and
TEXTURE_COMPARE_FUNC are NONE, and LEQUAL respectively.

In addition to image arrays for the non-proxy texture targets described above,
partially instantiated image arrays are maintained for one-, two-, and three-
dimensional, rectangular, and one- and two-dimensional array textures. Addi-
tionally, a single proxy image array is maintained for the cube map texture. Each
proxy image array includes width, height, depth, and internal format state values,
as well as state for the red, green, blue, alpha, depth, and stencil component reso-
lutions and types. Proxy arrays do not include image data nor texture parameters.
When TexImage3D is executed with farget specified as PROXY_TEXTURE_ 3D, the
three-dimensional proxy state values of the specified level-of-detail are recomputed
and updated. If the image array would not be supported by TexImage3D called
with farget set to TEXTURE_ 3D, no error is generated, but the proxy width, height,
depth, and component resolutions are set to zero, and the component types are set
to NONE. If the image array would be supported by such a call to TexImage3D,
the proxy state values are set exactly as though the actual image array were being
specified. No pixel data are transferred or processed in either case.

Proxy arrays for one- and two-dimensional textures and one- and two-
dimensional array textures are operated on in the same way when TexImagelD is
executed with target specified as PROXY_TEXTURE_1D, TexImage2D is executed
with target specified as PROXY_TEXTURE_2D, PROXY_TEXTURE_1D_ARRAY, Or
PROXY_TEXTURE_RECTANGLE, or TexImage3D is executed with target specified
as PROXY_TEXTURE_2D_ARRAY.

The cube map proxy arrays are operated on in the same manner when TexIm-
age2D is executed with the target field specified as PROXY_TEXTURE_CUBE_MAP,
with the addition that determining that a given cube map texture is supported with
PROXY_TEXTURE_CUBE_MAP indicates that all six of the cube map 2D images
are supported. Likewise, if the specified PROXY_TEXTURE_CUBE_MAP is not sup-
ported, none of the six cube map 2D images are supported.

There is no image or non-level-related state associated with proxy textures.
Therefore they may not be used as textures, and calling BindTexture, GetTex-
Image, GetTexParameteriv, or GetTexParameterfv with a proxy texture target

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 156

generates an INVALID_ENUM error.

3.8.13 Texture Objects

In addition to the default textures TEXTURE_1D, TEXTURE_2D, TEXTURE_-
3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_RECTANGLE,
TEXTURE_BUFFER, and TEXTURE_CUBE_MAP, named one, two-, and three-
dimensional, one- and two-dimensional array, rectangular, buffer, and cube map
texture objects can be created and operated upon. The name space for texture
objects is the unsigned integers, with zero reserved by the GL.

A texture object is created by binding an unused name to one of these texture
targets. The binding is effected by calling

void BindTexture(enum farget, uint texture);

with farget set to the desired texture target and fexture set to the unused name. The
resulting texture object is a new state vector, comprising all the state values listed
in section 3.8.12, set to the same initial values. The new texture object bound to
target is, and remains a texture of the dimensionality and type specified by target
until it is deleted.

BindTexture may also be used to bind an existing texture object to any of
these targets. The error INVALID_OPERATION is generated if an attempt is made
to bind a texture object of different dimensionality than the specified target. If the
bind is successful no change is made to the state of the bound texture object, and
any previous binding to farget is broken.

BindTexture fails and an INVALID_OPERATION error is generated if fexture
is not zero or a name returned from a previous call to GenTextures, or if such a
name has since been deleted with DeleteTextures.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

In the initial state, TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_—
1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER,
and TEXTURE_CUBE_MAP have one-, two-, and three-dimensional, one- and two-
dimensional array, rectangular, buffer, and cube map texture state vectors re-
spectively associated with them. In order that access to these initial textures not
be lost, they are treated as texture objects all of whose names are 0. The ini-
tial one-, two-, three-dimensional, one- and two-dimensional array, rectangular,

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 157

buffer, and cube map texture is therefore operated upon, queried, and applied as
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_-
2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER, or TEXTURE_CUBE_MAP
respectively while O is bound to the corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *fextures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same targer and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 4.4.2
for details.

Unused names in textures are silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *fextures);

returns n previously unused texture object names in fextures. These names are
marked as used, for the purposes of GenTextures only, but they acquire texture
state and a dimensionality only when they are first bound, just as if they were
unused.

The texture object name space, including the initial one-, two-, and three-
dimensional, one- and two-dimensional array, rectangular, buffer, and cube map
texture objects, is shared among all texture units. A texture object may be bound
to more than one texture unit simultaneously. After a texture object is bound, any
GL operations on that target object affect any other texture units to which the same
texture object is bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE.

If a texture object is deleted, it as if all texture units which are bound to that
texture object are rebound to texture object zero.

3.8.14 Texture Comparison Modes

Texture values can also be computed according to a specified comparison function.
Texture parameter TEXTURE_COMPARE_MODE specifies the comparison operands,
and parameter TEXTURE_COMPARE_FUNC specifies the comparison function.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 158

Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, then TEXTURE_COMPARE_MODE and TEXTURE_COMPARE_ -
FUNC control the output of the texture unit as described below. Otherwise, the
texture unit operates in the normal manner and texture comparison is bypassed.

Let D; be the depth texture value and D,y be the reference value, provided
by the shader’s texture lookup function.

If the texture’s internal format indicates a fixed-point depth texture, then Dy
and D,.s are clamped to the range [0, 1]; otherwise no clamping is performed.
Then the effective texture value is computed as follows:

If the value of TEXTURE_COMPARE_MODE is NONE, then

T:Dt

If the value of TEXTURE_COMPARE_MODE iS COMPARE_REF_TO_TEXTURE,
then r depends on the texture comparison function as shown in table 3.19.

Texture Comparison Function \ Computed result

1~07 Dref < Dt
LEQUAL r=
0.0, Dref > Dy
1.0, D > D
GEQUAL r= el =Tt
0-07 Dref < Dt
1.0, Dyef < D
LESS r=
0-07 Dref > Dt
1.0, D
GREATER r= v Dreg > Dy
0-07 Dref < Dt
1.0, Dy =D
EQUAL r= ref t
0‘07 Dref 7é Dt
1.0, D D
NOTEQUAL r= » Drep 7 Dy
0.0, Dyes =D,
ALWAYS r=1.0
NEVER r=20.0

Table 3.19: Depth texture comparison functions.

The resulting r is assigned to R;.

OpenGL 3.1 - May 28, 2009

3.8. TEXTURING 159

If the value of TEXTURE_MAG_FILTER iS not NEAREST, or the value of
TEXTURE_MIN_FILTER iS not NEAREST or NEAREST MIPMAP_ NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
reference value. The details of this are implementation-dependent, but r should
be a value in the range [0, 1] which is proportional to the number of comparison
passes or failures.

3.8.15 sRGB Texture Color Conversion

If the currently bound texture’s internal format is one of SRGB, SRGB8, SRGB_—
ALPHA, SRGBS_ALPHAS8, COMPRESSED_SRGB, or COMPRESSED_SRGB_ALPHA,
the red, green, and blue components are converted from an sSRGB color space to
a linear color space as part of filtering described in sections 3.8.8 and 3.8.9. Any
alpha component is left unchanged. Ideally, implementations should perform this
color conversion on each sample prior to filtering but implementations are allowed
to perform this conversion after filtering (though this post-filtering approach is in-
ferior to converting from sRGB prior to filtering).

The conversion from an sSRGB encoded component, c;, to a linear component,
¢, 1s as follows.

o < 0.04045
o =14 292 = (3.27)
: {(Csff)]é’%gf))wl, co > 0.04045

Assume c; is the SRGB component in the range [0, 1].

3.8.16 Shared Exponent Texture Color Conversion

If the currently bound texture’s internal format is RGB9_E5, the red, green, blue,
and shared bits are converted to color components (prior to filtering) using shared
exponent decoding. The component red, greens, blues, and expgpqreq Values (see
section 3.8.1) are treated as unsigned integers and are converted to red, green, and
blue as follows:

red = red 26"Psharea=B

green = greeng26Pshared=B

blue = blu652emp5ha7‘ed—B

OpenGL 3.1 - May 28, 2009

3.9. FRAGMENT SHADERS 160

3.9 Fragment Shaders

The sequence of operations that are applied to fragments that result from rasterizing
a point, line segment, or polygon are described using a fragment shader.

A fragment shader is an array of strings containing source code for the opera-
tions that are meant to occur on each fragment that results from rasterization. The
language used for fragment shaders is described in the OpenGL Shading Language
Specification.

Fragment shaders are created as described in section 2.11.1 using a fype pa-
rameter of FRAGMENT_SHADER. They are attached to and used in program objects
as described in section 2.11.2.

When the program object currently in use includes a fragment shader, its frag-
ment shader is considered active, and is used to process fragments. If the program
object has no fragment shader, or no program object is currently in use, the results
of fragment shader execution are undefined.

3.9.1 Shader Variables

Fragment shaders can access uniforms belonging to the current shader object. The
amount of storage available for fragment shader uniform variables in the default
uniform block is specified by the value of the implementation-dependent constant
MAX_FRAGMENT_UNIFORM_COMPONENTS. The total amount of combined storage
available for fragment shader uniform variables in all uniform blocks (includ-
ing the default uniform block) is specified by the value of the implementation-
dependent constant MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS. These
values represent the numbers of individual floating-point, integer, or boolean val-
ues that can be held in uniform variable storage for a fragment shader. A uniform
matrix will consume no more than 4 x min(r, ¢) such values, where r and ¢ are
the number of rows and columns in the matrix. A link error will be generated if
an attempt is made to utilize more than the space available for fragment shader
uniform variables.

Fragment shaders can read varying variables that correspond to the attributes
of the fragments produced by rasterization. The OpenGL Shading Language Spec-
ification defines a set of built-in varying variables that can be be accessed by a
fragment shader. These built-in varying variables include data associated with a
fragment such as the fragment’s position.

Additionally, when a vertex shader is active, it may define one or more varying
variables (see section 2.11.6 and the OpenGL Shading Language Specification).
These values are, if not flat shaded, interpolated across the primitive being ren-
dered. The results of these interpolations are available when varying variables of

OpenGL 3.1 - May 28, 2009

3.9. FRAGMENT SHADERS 161

Texture Base Texture source color
Internal Format Cs Ag
RED (R, 0,0) 1
RG (Rt, Gt, 0) 1
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.20: Correspondence of filtered texture components to texture source com-
ponents.

the same name are defined in the fragment shader.

A fragment shader can also write to varying out variables. Values written to
these variables are used in the subsequent per-fragment operations. Varying out
variables can be used to write floating-point, integer or unsigned integer values des-
tined for buffers attached to a framebuffer object, or destined for color buffers at-
tached to the default framebuffer. The Shader OQutputs subsection of section 3.9.2
describes how to direct these values to buffers.

3.9.2 Shader Execution

The executable version of the fragment shader is used to process incoming frag-
ment values that are the result of rasterization.

Texture Access

The Shader Only Texturing subsection of section 2.11.7 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to fragment shaders.

When a texture lookup is performed in a fragment shader, the GL computes
the filtered texture value 7 in the manner described in sections 3.8.8 and 3.8.9, and
converts it to a texture source color C'; according to table 3.20. The GL returns a
four-component vector (R, G5, Bs, A) to the fragment shader. For the purposes
of level-of-detail calculations, the derivatives ‘;—’;, Z—Z, g—;, %, ‘C%’; and %U may be
approximated by a differencing algorithm as detailed in section 8.8 of the OpenGL
Shading Language specification.

Texture lookups involving textures with depth component data can either return
the depth data directly or return the results of a comparison with the D,.. ¢ value (see
section 3.8.14) used to perform the lookup. The comparison operation is requested

in the shader by using any of the shadow sampler types (samplerlDShadow,

OpenGL 3.1 - May 28, 2009

3.9. FRAGMENT SHADERS 162

sampler2DShadow, or sampler2DRectShadow), and in the texture using the
TEXTURE_COMPARE_MODE parameter. These requests must be consistent; the re-
sults of a texture lookup are undefined if:

e The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT oOr
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS NONE.

e The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT Or
DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

If a fragment shader uses a sampler whose associated texture object is not com-
plete, as defined in section 3.8.11, the texture image unit will return (R, G, B, A)
=(0,0,0,1).

The number of separate texture units that can be accessed from within a
fragment shader during the rendering of a single primitive is specified by the
implementation-dependent constant MAX_TEXTURE_IMAGE_UNITS.

Shader Inputs

The OpenGL Shading Language specification describes the values that are avail-
able as inputs to the fragment shader.

The built-in variable g1_FragCoord holds the window coordinates x, y, 2,
and % for the fragment. The z component of g1_FragCoord undergoes an im-
plied conversion to floating-point. This conversion must leave the values 0 and
1 invariant. Note that this z component already has a polygon offset added in, if
enabled (see section 3.6.4). The i value is computed from the w,. coordinate (see
section 2.12).

The built-in variable g1_FrontFacing is set to TRUE if the fragment is gen-
erated from a front-facing primitive, and FALSE otherwise. For fragments gener-
ated from triangle primitives (including ones resulting from primitives rendered
as points or lines), the determination is made by examining the sign of the area
computed by equation 3.8 of section 3.6.1 (including the possible reversal of this
sign controlled by FrontFace). If the sign is positive, fragments generated by the

OpenGL 3.1 - May 28, 2009

3.9. FRAGMENT SHADERS 163

primitive are front-facing; otherwise, they are back-facing. All other fragments are
considered front-facing.

The built-in variable g1_PrimitiveID is filled with the number of primitives
processed by the rasterizer since the last drawing command was called. The first
primitive generated by a drawing command is numbered zero, and the primitive ID
counter is incremented after every individual point, line, or polygon primitive is
processed. For polygons drawn in point or line mode, the primitive ID counter is
incremented only once, even though multiple points or lines may be drawn.

Restarting a primitive using the primitive restart index (see section 2.8) has no
effect on the primitive ID counter.

gl_PrimitiveID is only defined under the same conditions that gl1_-
VertexID is defined, as described under “Shader Inputs” in section 2.11.7.

Shader Outputs

The OpenGL Shading Language specification describes the values that may be
output by a fragment shader. These outputs are split into two categories, user-
defined varying out variables and the built-in variables g1_FragColor, gl_-—
FragData[n], and gl_FragDepth. If fragment color clamping is enabled and
the color buffer has an unsigned normalized fixed-point, signed normalized fixed-
point, or floating-point format, the final fragment color, fragment data, or vary-
ing out variable values written by a fragment shader are clamped to the range
[0, 1]. Only user-defined varying out variables declared as a floating-point type are
clamped and may be converted. If fragment color clamping is disabled, or the color
buffer has an integer format, the final fragment color, fragment data, or varying out
variable values are not modified. For fixed-point depth buffers, the final fragment
depth written by a fragment shader is first clamped to [0, 1] and then converted to
fixed-point as if it were a window z value (see section 2.12.1). For floating-point
depth buffers, conversion is not performed but clamping is. Note that the depth
range computation is not applied here, only the conversion to fixed-point.

Color values written by a fragment shader may be floating-point, signed inte-
ger, or unsigned integer. If the color buffer has an signed or unsigned normalized
fixed-point format, color values are assumed to be floating-point and are converted
to fixed-point as described in equations 2.6 or 2.4, respectively; otherwise no type
conversion is applied. If the values written by the fragment shader do not match
the format(s) of the corresponding color buffer(s), the result is undefined.

Writing to g1_FragColor specifies the fragment color (color number zero)
that will be used by subsequent stages of the pipeline. Writing to gl_-—
FragData[n] specifies the value of fragment color number n. Any colors, or
color components, associated with a fragment that are not written by the frag-

OpenGL 3.1 - May 28, 2009

3.9. FRAGMENT SHADERS 164

ment shader are undefined. A fragment shader may not statically assign values to
more than one of g1_FragColor, gl_FragData, and any user-defined varying
out variable. In this case, a compile or link error will result. A shader statically
assigns a value to a variable if, after pre-processing, it contains a statement that
would write to the variable, whether or not run-time flow of control will cause that
statement to be executed.

Writing to g1_FragDepth specifies the depth value for the fragment being
processed. If the active fragment shader does not statically assign a value to g1_ -
FragDepth, then the depth value generated during rasterization is used by sub-
sequent stages of the pipeline. Otherwise, the value assigned to g1_FragDepth
is used, and is undefined for any fragments where statements assigning a value to
gl_FragDepth are not executed. Thus, if a shader statically assigns a value to
gl_FragDepth, then it is responsible for always writing it.

The binding of a user-defined varying out variable to a fragment color number
can be specified explicitly. The command

void BindFragDatalocation(uint program,
uint colorNumber, const char *name);

specifies that the varying out variable name in program should be bound to frag-
ment color colorNumber when the program is next linked. If name was bound
previously, its assigned binding is replaced with colorNumber. name must be a
null-terminated string. The error INVALID_VALUE is generated if colorNumber is
equal or greater than MAX_DRAW_BUFFERS. BindFragDataLocation has no effect
until the program is linked. In particular, it doesn’t modify the bindings of varying
out variables in a program that has already been linked. The error INVALID_—
OPERATION is generated if name starts with the reserved g1_ prefix.

When a program is linked, any varying out variables without a binding spec-
ified through BindFragDatal.ocation will automatically be bound to fragment
colors by the GL. Such bindings can be queried using the command GetFrag-
Datal.ocation. LinkProgram will fail if the number of active outputs is greater
than the value of MAX_DRAW_BUFFERS. LinkProgram will also fail if more than
one varying out variable is bound to the same number. This type of aliasing is not
allowed.

BindFragDatal.ocation may be issued before any shader objects are attached
to a program object. Hence it is allowed to bind any name (except a name starting
with g1_) to a color number, including a name that is never used as a varying out
variable in any fragment shader object. Assigned bindings for variables that do not
exist are ignored.

After a program object has been linked successfully, the bindings of varying
out variable names to color numbers can be queried. The command

OpenGL 3.1 - May 28, 2009

3.10. ANTIALIASING APPLICATION 165

int GetFragDatalocation(uint program, const
char *name);

returns the number of the fragment color to which the varying out variable name
was bound when the program object program was last linked. name must be
a null-terminated string. If program has not been successfully linked, the error
INVALID_OPERATION is generated. If name is not a varying out variable, or if an
error occurs, -1 will be returned.

3.10 Antialiasing Application

If antialiasing is enabled for the primitive from which a rasterized fragment was
produced, then the computed coverage value is applied to the fragment. The value
is multiplied by the fragment’s alpha (A) value to yield a final alpha value. The
coverage value is applied separately to each fragment color, and only applied if the
corresponding color buffer in the framebuffer has a fixed- or floating-point format.

3.11 Multisample Point Fade

Finally, if multisampling is enabled and the rasterized fragment results from a point
primitive, then the computed fade factor from equation 3.2 is applied to the frag-
ment. The fade factor is multiplied by the fragment’s alpha value to yield a final
alpha value. The fade factor is applied separately to each fragment color, and
only applied if the corresponding color buffer in the framebuffer has a fixed- or
floating-point format.

OpenGL 3.1 - May 28, 2009

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer, whether it is the default framebuffer or a framebuffer object (see
section 2.1), consists of a set of pixels arranged as a two-dimensional array. For
purposes of this discussion, each pixel in the framebuffer is simply a set of some
number of bits. The number of bits per pixel may vary depending on the GL im-
plementation, the type of framebuffer selected, and parameters specified when the
framebuffer was created. Creation and management of the default framebuffer is
outside the scope of this specification, while creation and management of frame-
buffer objects is described in detail in section 4.4.

Corresponding bits from each pixel in the framebuffer are grouped together
into a bitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into several logical buffers. These are the color, depth, and stencil
buffers. The color buffer actually consists of a number of buffers, and these color
buffers serve related but slightly different purposes depending on whether the GL
is bound to the default framebuffer or a framebuffer object.

For the default framebuffer, the color buffers are the front left buffer, the front
right buffer, the back left buffer, and the back right buffer. Typically the con-
tents of the front buffers are displayed on a color monitor while the contents of the
back buffers are invisible. (Monoscopic contexts display only the front left buffer;
stereoscopic contexts display both the front left and the front right buffers.) All
color buffers must have the same number of bitplanes, although an implementation
or context may choose not to provide right buffers, or back buffers at all. Further,
an implementation or context may choose not to provide depth or stencil buffers.
If no default framebuffer is associated with the GL context, the framebufter is in-
complete except when a framebuffer object is bound (see sections 4.4.1 and 4.4.4).

166

4.1. PER-FRAGMENT OPERATIONS 167

Framebuffer objects are not visible, and do not have any of the color buffers
present in the default framebuffer. Instead, the buffers of an framebuffer object
are specified by attaching individual textures or renderbuffers (see section 4.4) to
a set of attachment points. A framebuffer object has an array of color buffer at-
tachment points, numbered zero through n, a depth buffer attachment point, and
a stencil buffer attachment point. In order to be used for rendering, a framebuffer
object must be complete, as described in section 4.4.4. Not all attachments of a
framebuffer object need to be populated.

Each pixel in a color buffer consists of up to four color components. The four
color components are named R, G, B, and A, in that order; color buffers are not
required to have all four color components. R, G, B, and A components may be
represented as signed or unsigned normalized fixed-point, floating-point, or signed
or unsigned integer values; all components must have the same representation.
Each pixel in a depth buffer consists of a single unsigned integer value in the format
described in section 2.12.1 or a floating-point value. Each pixel in a stencil buffer
consists of a single unsigned integer value.

The number of bitplanes in the color, depth, and stencil buffers is dependent
on the currently bound framebuffer. For the default framebuffer, the number of
bitplanes is fixed. For framebuffer objects, the number of bitplanes in a given
logical buffer may change if the image attached to the corresponding attachment
point changes.

The GL has two active framebuffers; the draw framebuffer is the destination
for rendering operations, and the read framebuffer is the source for readback op-
erations. The same framebuffer may be used for both drawing and reading. Sec-
tion 4.4.1 describes the mechanism for controlling framebuffer usage.

The default framebuffer is initially used as the draw and read framebuffer !,
and the initial state of all provided bitplanes is undefined. The format and encod-
ing of buffers in the draw and read framebuffers can be queried as described in
section 6.1.3.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (2, y,,) mod-
ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
figure 4.1, in the order in which they are performed. Figure 4.1 diagrams these

'The window system binding API may allow associating a GL context with two separate “default
framebuffers” provided by the window system as the draw and read framebuffers, but if so, both
default framebuffers are referred to by the name zero at their respective binding points.

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 168

Fragment
(or sample) Pixel Scissor Multisample
+ Ownership = Test — Fragm_ent
Associated Test Operations

Data

. Occlusion Depth Buffer Stencil
Blending [Query [Test [Test

J Framebuffer 45 Framebuffer#

Framebuffer

SRGB —»| Dithering =] Logicop P To

Conversion Framebuffer

Framebuffer 45

Figure 4.1. Per-fragment operations.

modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (x,, ¥y,) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

If the draw framebuffer is a framebuffer object (see section 4.2.1), the pixel
ownership test always passes, since the pixels of framebuffer objects are owned by
the GL, not the window system. If the draw framebuffer is the default framebuffer,
the window system controls pixel ownership.

4.1.2 Scissor Test

The scissor test determines if (i, y,,) lies within the scissor rectangle defined by
four values. These values are set with

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 169

void Scissor(int left, int bottom, sizei width,
sizei height);

If left < xy, < left + width and bottom < y,, < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded. The
test is enabled or disabled using Enable or Disable using the constant SCISSOR_-
TEST. When disabled, it is as if the scissor test always passes. If either width or
height is less than zero, then the error INVALID_VALUE is generated. The state
required consists of four integer values and a bit indicating whether the test is
enabled or disabled. In the initial state, left = bottom = 0. width and height are
set to the width and height, respectively, of the window into which the GL is to
do its rendering. If the default framebuffer is bound but no default framebuffer is
associated with the GL context (see chapter 4), then width and height are initially
set to zero. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the val-
ues of SAMPLE_ALPHA_TO_COVERAGE, SAMPLE_ALPHA_TO_ONE, SAMPLE_-
COVERAGE, SAMPLE_COVERAGE_VALUE, and SAMPLE_COVERAGE_INVERT. No
changes to the fragment alpha or coverage values are made at this step if
MULTISAMPLE is disabled, or if the value of SAMPLE_BUFFERS is not one.
SAMPLE_ALPHA_TO_COVERAGE, SAMPLE_ALPHA_TO_ONE, and SAMPLE_-
COVERAGE are enabled and disabled by calling Enable and Disable with cap spec-
ified as one of the three token values. All three values are queried by calling ISEn-
abled with cap set to the desired token value. If SAMPLE_ALPHA_TO_COVERAGE
is enabled and the color buffer has a fixed-point or floating-point format, a tempo-
rary coverage value is generated where each bit is determined by the alpha value at
the corresponding sample location. The temporary coverage value is then ANDed
with the fragment coverage value. Otherwise the fragment coverage value is un-
changed at this point. If multiple colors are written by a fragment shader, the alpha
value of fragment color zero is used to determine the temporary coverage value.
No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1’s in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1’s
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. The alpha values used to generate a coverage value are
clamped to the range [0, 1]. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 170

does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Next, if SAMPLE_ALPHA_TO_ONE is enabled, each alpha value is replaced
by the maximum representable alpha value. Otherwise, the alpha values are not
changed.

Finally, if SAMPLE_COVERAGE is enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated in the
same manner as the one described above, but as a function of the value of
SAMPLE_COVERAGE_VALUE. The function need not be identical, but it must have
the same properties of proportionality and invariance. If SAMPLE_COVERAGE_—
INVERT is TRUE, the temporary coverage is inverted (all bit values are inverted)
before it is ANDed with the fragment coverage.

The values of SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT
are specified by calling

void SampleCoverage(clampf value, boolean invert);

with value set to the desired coverage value, and invert set to TRUE or FALSE.
value is clamped to [0,1] before being stored as SAMPLE_COVERAGE_VALUE.
SAMPLE_COVERAGE_VALUE is queried by calling GetFloatv with pname set to
SAMPLE_COVERAGE_VALUE. SAMPLE_COVERAGE_INVERT is queried by calling
GetBooleanv with pname set to SAMPLE_COVERAGE_INVERT.

4.1.4 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location (., ¥,,) and a reference
value. The test is enabled or disabled with the Enable and Disable commands,
using the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc(enum func, int ref, uint mask);

void StencilFuncSeparate(enum face, enum func, int ref,
uint mask);

void StencilOp(enum sfail, enum dpfail, enum dppass);

void StencilOpSeparate(enum face, enum sfail, enum dpfail,
enum dppass);

There are two sets of stencil-related state, the front stencil state set and the
back stencil state set. Stencil tests and writes use the front set of stencil state

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 171

when processing fragments rasterized from non-polygon primitives (points and
lines) and front-facing polygon primitives while the back set of stencil state is
used when processing fragments rasterized from back-facing polygon primitives.
For the purposes of stencil testing, a primitive is still considered a polygon even if
the polygon is to be rasterized as points or lines due to the current polygon mode.
Whether a polygon is front- or back-facing is determined in the same manner used
for two-sided lighting and face culling (see section 3.6.1).

StencilFuncSeparate and StencilOpSeparate take a face argument which can
be FRONT, BACK, or FRONT_AND_BACK and indicates which set of state is affected.
StencilFunc and StencilOp set front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails. refis an integer reference value that is used
in the unsigned stencil comparison. Stencil comparison operations and queries of
ref clamp its value to the range [0,2° — 1], where s is the number of bits in the
stencil buffer attached to the draw framebuffer. The s least significant bits of mask
are bitwise ANDed with both the reference and the stored stencil value, and the
resulting masked values are those that participate in the comparison controlled by
func. func is a symbolic constant that determines the stencil comparison function;
the eight symbolic constants are NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, and if
the masked reference value is less than, less than or equal to, equal to, greater than
or equal to, greater than, or not equal to the masked stored value in the stencil
buffer.

StencilOp and StencilOpSeparate take three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, and DECR_WRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at 0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in 0, and decrementing O results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (see section 4.1.5) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed to StencilFunc or StencilFuncSeparate

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 172

and to StencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and
back stencil reference value are both zero, the front and back stencil comparison
functions are both ALWAYS, and the front and back stencil mask are both set to the
value 2° — 1, where s is greater than or equal to the number of bits in the deepest
stencil buffer supported by the GL implementation. Initially, all three front and
back stencil operations are KEEP.

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls to StencilFunc.

4.1.5 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the generic Enable and Disable com-
mands using the symbolic constant DEPTH_TEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-
fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.
The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’s z,, value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s (2, Y1)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s (z,,, y,,) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s (xy,, yu)
location is set to the fragment’s z,, value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 173

4.1.6 Occlusion Queries

Occlusion queries use query objects to track the number of fragments or samples
that pass the depth test. An occlusion query can be started and finished by calling
BeginQuery and EndQuery, respectively, with a target of SAMPLES_PASSED.

When an occlusion query is started, the samples-passed count maintained by
the GL is set to zero. When an occlusion query is active, the samples-passed
count is incremented for each fragment that passes the depth test. If the value
of SAMPLE_BUFFERS is 0, then the samples-passed count is incremented by 1 for
each fragment. If the value of SAMPLE_BUFFERS is 1, then the samples-passed
count is incremented by the number of samples whose coverage bit is set. How-
ever, implementations, at their discretion, may instead increase the samples-passed
count by the value of SAMPLES if any sample in the fragment is covered.

When an occlusion query finishes and all fragments generated by commands
issued prior to EndQuery have been generated, the samples-passed count is written
to the corresponding query object as the query result value, and the query result for
that object is marked as available.

If the samples-passed count overflows (exceeds the value 2™ — 1, where n is
the number of bits in the samples-passed count), its value becomes undefined. It is
recommended, but not required, that implementations handle this overflow case by
saturating at 2" — 1 and incrementing no further.

The necessary state is a single bit indicating whether an occlusion query is
active, the identifier of the currently active occlusion query, and a counter keeping
track of the number of samples that have passed.

4.1.7 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with
the destination R, G, B, and A values stored in the framebuffer at the fragment’s
(2w, Yu) location.

Source and destination values are combined according to the blend equation,
quadruplets of source and destination weighting factors determined by the blend
functions, and a constant blend color to obtain a new set of R, G, B, and A values,
as described below.

If the color buffer is fixed-point, the components of the source and destination
values and blend factors are clamped to [0, 1] prior to evaluating the blend equation.
If the color buffer is floating-point, no clamping occurs. The resulting four values
are sent to the next operation.

Blending applies only if the color buffer has a fixed-point or floating-point
format. If the color buffer has an integer format, proceed to the next operation.

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 174

Blending is enabled or disabled for an individual draw buffer with the com-
mands

void Enablei(enum farget, uint index);
void Disablei(enum farget, uint index);

target is the symbolic constant BLEND and index is an integer ¢ specifying the draw
buffer associated with the symbolic constant DRAW_BUFFERi:. If the color buffer
associated with DRAW_BUFFER: is one of FRONT, BACK, LEFT, RIGHT, or FRONT_ —
AND_BACK (specifying multiple color buffers), then the state enabled or disabled is
applicable for all of the buffers. Blending can be enabled or disabled for all draw
buffers using Enable or Disable with the symbolic constant BLEND. If blending
is disabled for a particular draw buffer, or if logical operation on color values is
enabled (section 4.1.10), proceed to the next operation.

An INVALID_VALUE error is generated if index is greater than the value of
MAX_DRAW_BUFFERS minus one.

If multiple fragment colors are being written to multiple buffers (see sec-
tion 4.2.1), blending is computed and applied separately for each fragment color
and the corresponding buffer.

Blend Equation

Blending is controlled by the blend equations, defined by the commands

void BlendEquation(enum mode);
void BlendEquationSeparate(enum modeRGB,
enum modeAlpha);

BlendEquationSeparate argument modeRGB determines the RGB blend func-
tion while modeAlpha determines the alpha blend equation. BlendEquation ar-
gument mode determines both the RGB and alpha blend equations. modeRGB and
modeAlpha must each be one of FUNC_ADD, FUNC_SUBTRACT, FUNC_REVERSE_ -
SUBTRACT, MIN, or MAX.

Signed or unsigned normalized fixed-point destination (framebuffer) compo-
nents are represented as described in section 2.1.5. Constant color compo-
nents, floating-point destination components, and source (fragment) components
are taken to be floating point values. If source components are represented in-
ternally by the GL as fixed-point values, they are also interpreted according to
section 2.1.5.

Prior to blending, signed and unsigned normalized fixed-point color compo-
nents undergo an implied conversion to floating-point using equations 2.1 and 2.3,

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 175

respectively. This conversion must leave the values 0 and 1 invariant. Blending
computations are treated as if carried out in floating-point.

If FRAMEBUFFER_SRGB is enabled and the value of FRAMEBUFFER_-—
ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding
to the destination buffer is SRGB (see section 6.1.3), the R, G, and B destination
color values (after conversion from fixed-point to floating-point) are considered to
be encoded for the sSRGB color space and hence must be linearized prior to their
use in blending. Each R, G, and B component is converted in the same fashion
described for sSRGB texture components in section 3.8.15.

If FRAMEBUFFER_SRGB is disabled or the value of FRAMEBUFFER -
ATTACHMENT_COLOR_ENCODING is not SRGB, no linearization is performed.

The resulting linearized R, G, and B and unmodified A values are recombined
as the destination color used in blending computations.

Table 4.1 provides the corresponding per-component blend equations for each
mode, whether acting on RGB components for modeRGB or the alpha component
for modeAlpha.

In the table, the s subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, the d subscript
on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and the ¢ subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally, S, Sy, Sp, and S, are the red, green, blue, and alpha com-
ponents of the source weighting factors determined by the source blend function,
and D,, Dy, Dy, and D, are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend
functions are described below.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. Blend functions are specified with the commands

void BlendFuncSeparate(enum srcRGB, enum dstRGB,
enum srcAlpha, enumn dstAlpha);
void BlendFunc(enum src, enumdst);

BlendFuncSeparate arguments srcRGB and dstRGB determine the source and
destination RGB blend functions, respectively, while srcAlpha and dstAlpha deter-
mine the source and destination alpha blend functions. BlendFunc argument src

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 176
Mode RGB Components Alpha Component
FUNC_ADD R=RsxS,+RyxD, | A=A,% S, + Ag* D,

G =Gy#Sy+ Gy Dy
B = Bs*xSy,+ By x Dy

FUNC_SUBTRACT

fB::fQ>k5;——}ﬁi*1)T
G=Gs*Sy—Gqx* D,
B = Bs* S, — By *x Dy

A=A,%xS, — Agx D,

FUNC_REVERSE_SUBTRACT

R=Ry;* D, — Rs* S,
G=GgxDyg—Gs*S,
E?ZZZii*l)b—-E%=k5%

A=A;+xD,— As* S,

()
G = max(Gg, Gq)
B = max(Bs, By)

MIN R = min(Rs, Ry) A = min(As, Ag)
G = min(Gs, Gg)
B = min(Bg, By)

MAX R = max(Rs, Ry A = max(As, Ag)

Table 4.1: RGB and alpha blend equations.

determines both RGB and alpha source functions, while dst determines both RGB

and alpha destination functions.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table 4.2.

Blend Color

The constant color C.. to be used in blending is specified with the command

void BlendColor(clampf red, clampf green, clampf blue,

clampf alpha);

The constant color can be used in both the source and destination blending

functions

The state required for blending is two integers for the RGB and alpha blend
equations, four integers indicating the source and destination RGB and alpha
blending functions, four floating-point values to store the RGBA constant blend
color, and a bit indicating whether blending is enabled or disabled for each of the
MAX_DRAW_BUFFERS draw buffers.

The initial blend equations for RGB and alpha are both FUNC_ADD. The initial
blending functions are ONE for the source RGB and alpha functions and ZERO

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 177

Function RGB Blend Factors Alpha Blend Factor
(ST, Sg, Sb) or (DT, Dg, Db) Sa or Da
ZERO (0,0,0) 0
ONE (1,1,1) 1
SRC_COLOR (Rs, G5, Bs) A,
ONE_MINUS_SRC_COLOR (1,1,1) — (Rs, Gs, Bs) 1— A
DST_COLOR (Rgq,Gq, By) Ay
ONE_MINUS_DST_COLOR (1,1,1) — (R4, Gq, Ba) 1— Ay
SRC_ALPHA (A, As, Ag) A,
ONE_MINUS_SRC_ALPHA (1,1,1) — (As, As, As) 1— A,
DST_ALPHA (Ag, Ag, Ag) Ay
ONE_MINUS_DST_ALPHA (1,1,1) — (Aqg, Ag, Ag) 1— Ay
CONSTANT_COLOR (R, Ge, Be) A
ONE_MINUS_CONSTANT_COLOR | (1,1,1) — (R, G¢, Be) 1-A.
CONSTANT_ALPHA (Ac, Acy Ae) A,
ONE_MINUS_CONSTANT_ALPHA | (1,1,1) — (A, Ac, A¢) 1— A,
SRC_ALPHA_SATURATE! (f, £, f)? 1

Table 4.2: RGB and ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.

! SRC_ALPHA_SATURATE is valid only for source RGB and alpha blending func-
tions.

2 f = min(Ag, 1 — Ay).

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 178

for the destination RGB and alpha functions. The initial constant blend color is
(R,G,B,A) =(0,0,0,0). Initially, blending is disabled for all draw buffers.

The value of the blend enable for draw buffer ¢ can be queried by calling IsEn-
abledi with target BLEND and index i. The value of the blend enable for draw
buffer zero may also be queried by calling IsEnabled with value BLEND.

Blending occurs once for each color buffer currently enabled for blending and
for writing (section 4.2.1) using each buffer’s color for Cy. If a color buffer has no
A value, then A, is taken to be 1.

4.1.8 sRGB Conversion

If FRAMEBUFFER_SRGB 1is enabled and the value of FRAMEBUFFER_-
ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding
to the destination buffer is SRGB (see section 6.1.3), the R, G, and B values after
blending are converted into the non-linear SRGB color space by computing

0.0, a <0

12.92¢, 0 < ¢ < 0.0031308 @1
Cg = . .
° 1.055¢)-41666 — 0,055, 0.0031308 < ¢; < 1

1.0, aq>1

where c; is the R, G, or B element and c; is the result (effectively converted into an
sRGB color space).

If FRAMEBUFFER_SRGB is disabled or the value of FRAMEBUFFER_-—
ATTACHMENT_COLOR_ENCODING is not SRGB, then

Cs = (Cj.

The resulting cs values for R, G, and B, and the unmodified A form a new
RGBA color value. If the color buffer is fixed-point, each component is clamped to
the range [0, 1] and then converted to a fixed-point value using equation 2.4. The
resulting four values are sent to the subsequent dithering operation.

4.1.9 Dithering

Dithering selects between two representable color values or indices. A repre-
sentable value is a value that has an exact representation in the color buffer. Dither-
ing selects, for each color component, either the largest positive representable color
value (for that particular color component) that is less than or equal to the incoming
color component value, ¢, or the smallest negative representable color value that is
greater than or equal to c. The selection may depend on the z,, and y,, coordinates

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 179

of the pixel, as well as on the exact value of c. If one of the two values does not
exist, then the selection defaults to the other value.

Many dithering selection algorithms are possible, but an individual selection
must depend only on the incoming component value and the fragment’s z and y
window coordinates. If dithering is disabled, then each incoming color component
c is replaced with the largest positive representable color value (for that particular
component) that is less than or equal to ¢, or by the smallest negative representable
value, if no representable value is less than or equal to c.

Dithering is enabled with Enable and disabled with Disable using the symbolic
constant DITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.10 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color val-
ues and the color values stored at the corresponding location in the framebuffer.
The result replaces the values in the framebuffer at the fragment’s (., yy,) coordi-
nates. If the selected draw buffers refer to the same framebuffer-attachable image
more than once, then the values stored in that image are undefined.

The logical operation on color values is enabled or disabled with Enable or
Disable using the symbolic constant COLOR_LOGIC_OP. If the logical operation is
enabled for color values, it is as if blending were disabled, regardless of the value
of BLEND. If multiple fragment colors are being written to multiple buffers (see
section 4.2.1), the logical operation is computed and applied separately for each
fragment color and the corresponding buffer.

Logical operation has no effect on a floating-point destination color buffer.
However, if logical operation is enabled, blending is still disabled.

The logical operation is selected by

void LogicOp(enumop);

op is a symbolic constant; the possible constants and corresponding operations are
enumerated in table 4.3. In this table, s is the value of the incoming fragment and d
is the value stored in the framebuffer. The numeric values assigned to the symbolic
constants are the same as those assigned to the corresponding symbolic values in
the X window system.

Logical operations are performed independently for each red, green, blue, and
alpha value of each color buffer that is selected for writing. The required state is
an integer indicating the logical operation, and a bit indicating whether the logical
operation is enabled or disabled. The initial state is for the logic operation to be
given by COPY, and to be disabled.

OpenGL 3.1 - May 28, 2009

4.1. PER-FRAGMENT OPERATIONS 180
Argument value Operation
CLEAR 0
AND sAd
AND_REVERSE s A\ —d
COPY S
AND_INVERTED s Ad
NOOP d
XOR s xor d
OR sVvd
NOR —(sVd)
EQUIV —(s xor d)
INVERT -d
OR_REVERSE sV —d
COPY_INVERTED | -8
OR_INVERTED -sVd
NAND (s Ad)
SET all 1’s

Table 4.3: Arguments to LogicOp and their corresponding operations.

4.1.11 Additional Multisample Fragment Operations

If the DrawBuffer mode is NONE, no change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, the
stencil test, depth test, blending, dithering, and logical operations are performed
for each pixel sample, rather than just once for each fragment. Failure of the sten-
cil or depth test results in termination of the processing of that sample, rather than
discarding of the fragment. All operations are performed on the color, depth, and
stencil values stored in the multisample buffer (to be described in a following sec-
tion). The contents of the color buffers are not modified at this point.

Stencil, depth, blending, dithering, and logical operations are performed for
a pixel sample only if that sample’s fragment coverage bit is a value of 1. If the
corresponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLE is disabled, and the value of SAMPLE_BUFFERS is one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization
is allowed, however. An implementation may choose to identify a centermost sam-
ple, and to perform stencil and depth tests on only that sample. Regardless of the

OpenGL 3.1 - May 28, 2009

4.2. WHOLE FRAMEBUFFER OPERATIONS 181

outcome of the stencil test, all multisample buffer stencil sample values are set to
the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment’s centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the sample
values for each color in the multisample buffer are combined to produce a single
color value, and that value is written into the corresponding color buffers selected
by DrawBuffer or DrawBuffers. An implementation may defer the writing of the
color buffers until a later time, but the state of the framebuffer must behave as if
the color buffers were updated as each fragment was processed. The method of
combination is not specified. If the framebuffer contains SRGB values, then it
is recommended that the an average of sample values is computed in a linearized
space, as for blending (see section 4.1.7). Otherwise, a simple average computed
independently for each color component is recommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the color buffers into which each of the
fragment color values is written. This is accomplished with either DrawBuffer or
DrawBuffers.

The command

void DrawBuffer(enum buf);

defines the set of color buffers to which fragment color zero is written. buf
must be one of the values from tables 4.4 or 4.5. In addition, acceptable val-
ues for buf depend on whether the GL is using the default framebuffer (i.e.,
DRAW_FRAMEBUFFER_BINDING is zero), or a framebuffer object (i.e., DRAW_—
FRAMEBUFFER_BINDING is non-zero). In the initial state, the GL is bound to
the default framebuffer. For more information about framebuffer objects, see sec-
tion 4.4,

OpenGL 3.1 - May 28, 2009

4.2. WHOLE FRAMEBUFFER OPERATIONS 182

If the GL is bound to the default framebufter, then buf must be one of the values
listed in table 4.4, which summarizes the constants and the buffers they indicate.
In this case, buf is a symbolic constant specifying zero, one, two, or four buffers
for writing. These constants refer to the four potentially visible buffers (front left,
front right, back left, and back right). Arguments that omit reference to LEFT or
RIGHT refer to both left and right buffers. Arguments that omit reference to FRONT
or BACK refer to both front and back buffers.

If the GL is bound to a framebuffer object, buf must be one of the values listed
in table 4.5, which summarizes the constants and the buffers they indicate. In
this case, buf is a symbolic constant specifying a single color buffer for writing.
Specifying COLOR_ATTACHMENT: enables drawing only to the image attached to
the framebuffer at COLOR_ATTACHMENT:. Each COLOR_ATTACHMENT: adheres to
COLOR_ATTACHMENT? = COLOR_ATTACHMENTO + ¢. The intial value of DRAW_-
BUFFER for framebuffer objects is COLOR_ATTACHMENTO.

If the GL is bound to the default framebuffer and DrawBuffer is supplied with
a constant (other than NONE) that does not indicate any of the color buffers allocated
to the GL context, the error INVALID_OPERATION results.

If the GL is bound to a framebuffer object and buf is one of the constants
from table 4.4, then the error INVALID_OPERATION results. If buf is COLOR_-
ATTACHMENTm and m is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS, then the error INVALID_VALUE results.

If DrawBuffer is supplied with a constant that is legal for neither the default
framebuffer nor a framebuffer object, then the error INVALID_ENUM results.

DrawBuffer will set the draw buffer for fragment colors other than zero to
NONE.

The command

void DrawBuffers(sizein, const enum *bufs);

defines the draw buffers to which all fragment colors are written. n specifies the
number of buffers in bufs. bufs is a pointer to an array of symbolic constants
specifying the buffer to which each fragment color is written.

Each buffer listed in bufs must be one of the values from tables 4.5 or 4.6. Oth-
erwise, an INVALID_ENUM error is generated. Further, acceptable values for the
constants in bufs depend on whether the GL is using the default framebuffer (i.e.,
DRAW_FRAMEBUFFER_BINDING is zero), or a framebuffer object (i.e., DRAW_—
FRAMEBUFFER_BINDING is non-zero). For more information about framebuffer
objects, see section 4.4.

If the GL is bound to the default framebuffer, then each of the constants must
be one of the values listed in table 4.6.

OpenGL 3.1 - May 28, 2009

4.2. WHOLE FRAMEBUFFER OPERATIONS 183

Symbolic Front | Front | Back | Back
Constant Left | Right | Left | Right
NONE

FRONT_LEFT °

FRONT_RIGHT °

BACK_LEFT °
BACK_RIGHT °
FRONT ° °

BACK ° °
LEFT °

RIGHT ° °
FRONT_AND_BACK ° ° ° °

Table 4.4: Arguments to DrawBuffer(s) and ReadBuffer when the context is
bound to a default framebuffer, and the buffers they indicate.

Symbolic Constant ‘ Meaning

NONE No buffer

COLOR_ATTACHMENT (see caption) | Output fragment color to image attached
at color attachment point ¢

Table 4.5: Arguments to DrawBuffer(s) and ReadBuffer when the context is
bound to a framebuffer object, and the buffers they indicate. ¢ in COLOR_-
ATTACHMENT: may range from zero to the value of MAX_COLOR_ATTACHMENTS
- 1.

Symbolic Front | Front | Back | Back
Constant Left | Right | Left | Right

NONE
FRONT_LEFT °
FRONT_RIGHT °
BACK_LEFT °
BACK_RIGHT °

Table 4.6: Arguments to DrawBuffers when the context is bound to the default
framebuffer, and the buffers they indicate.

OpenGL 3.1 - May 28, 2009

4.2. WHOLE FRAMEBUFFER OPERATIONS 184

If the GL is bound to an framebuffer object, then each of the constants must be
one of the values listed in table 4.5.

In both cases, the draw buffers being defined correspond in order to the re-
spective fragment colors. The draw buffer for fragment colors beyond 7 is set to
NONE.

The maximum number of draw buffers is implementation-dependent. The
number of draw buffers supported can be queried by calling GetIntegerv with the
symbolic constant MAX_DRAW_BUFFERS. An INVALID_VALUE error is generated
if n is greater than MAX_DRAW_BUFFERS.

Except for NONE, a buffer may not appear more then once in the array pointed
to by bufs. Specifying a buffer more then once will result in the error INVALID_-
OPERATION.

If a fragment shader writes to g1_FragColor, DrawBuffers specifies a set
of draw buffers into which the single fragment color defined by g1_FragColor
is written. If a fragment shader writes to g1_FragData, or a user-defined vary-
ing out variable, DrawBuffers specifies a set of draw buffers into which each of
the multiple output colors defined by these variables are separately written. If a
fragment shader writes to none of g1_FragColor, gl_FragData, nor any user-
defined varying out variables, the values of the fragment colors following shader
execution are undefined, and may differ for each fragment color.

For both the default framebuffer and framebuffer objects, the constants FRONT,
BACK, LEFT, RIGHT, and FRONT_AND_BACK are not valid in the bufs array passed
to DrawBuffers, and will result in the error INVALID_OPERATION. This restric-
tion is because these constants may themselves refer to multiple buffers, as shown
in table 4.4.

If the GL is bound to the default framebuffer and DrawBuffers is supplied with
a constant (other than NONE) that does not indicate any of the color buffers allocated
to the GL context by the window system, the error INVALID_OPERATION will be
generated.

If the GL is bound to a framebuffer object and DrawBuffers is supplied with
a constant from table 4.6, or COLOR_ATTACHMENTm where m is greater than
or equal to the value of MAX_COLOR_ATTACHMENTS, then the error INVALID_—
OPERATION results.

Indicating a buffer or buffers using DrawBuffer or DrawBuffers causes sub-
sequent pixel color value writes to affect the indicated buffers.

Specifying NONE as the draw buffer for a fragment color will inhibit that frag-
ment color from being written to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.

OpenGL 3.1 - May 28, 2009

4.2. WHOLE FRAMEBUFFER OPERATIONS 185

The type of context is selected at GL initialization.

The state required to handle color buffer selection for each framebuffer is an
integer for each supported fragment color. For the default framebuffer, in the initial
state the draw buffer for fragment color zero is BACK if there is a back buffer;
FRONT if there is no back buffer; and NONE if no default framebuffer is associated
with the context. For framebuffer objects, in the initial state the draw buffer for
fragment color zero is COLOR_ATTACHMENTO. For both the default framebuffer
and framebuffer objects, the initial state of draw buffers for fragment colors other
then zero is NONE.

The value of the draw buffer selected for fragment color ¢ can be queried by
calling GetIntegerv with the symbolic constant DRAW_BUFFERi. DRAW_BUFFER
is equivalent to DRAW_BUFFERO.

4.2.2 Fine Control of Buffer Updates

Writing of bits to each of the logical framebuffers after all per-fragment operations
have been performed may be masked. The commands

void ColorMask(boolean r, boolean g, booleanb,
booleana);

void ColorMaski(uint buf, boolean r, boolean g,
boolean b, booleana);

control writes to the active draw buffers.

ColorMask and ColorMaski are used to mask the writing of R, G, B and A
values to the draw buffer or buffers. ColorMaski sets the mask for a particular
draw buffer. The mask for DRAW_BUFFER: is modified by passing 7 as the pa-
rameter buf. r, g, b, and a indicate whether R, G, B, or A values, respectively,
are written or not (a value of TRUE means that the corresponding value is writ-
ten). The mask specified by r, g, b, and a is applied to the color buffer associated
with DRAW_BUFFER:. If DRAW_BUFFER¢ is one of FRONT, BACK, LEFT, RIGHT, or
FRONT_AND_BACK (specifying multiple color buffers) then the mask is applied to
all of the buffers.

ColorMask sets the mask for all draw buffers to the same values as specified
by r, g, b, and a.

An INVALID_VALUE error is generated if index is greater than the value of
MAX_DRAW_BUFFERS minus one.

In the initial state, all color values are enabled for writing for all draw buffers.

The value of the color writemask for draw buffer ¢ can be queried by calling
GetBooleani_v with farget COLOR_WRITEMASK and index i. The value of the color

OpenGL 3.1 - May 28, 2009

4.2. WHOLE FRAMEBUFFER OPERATIONS 186

writemask for draw buffer zero may also be queried by calling GetBooleanv with
value COLOR_WRITEMASK.
The depth buffer can be enabled or disabled for writing z,, values using

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.
The commands

void StencilMask(uint mask);
void StencilMaskSeparate(enum face, uint mask);

control the writing of particular bits into the stencil planes.

The least significant s bits of mask, where s is the number of bits in the stencil
buffer, specify an integer mask. Where a 1 appears in this mask, the corresponding
bit in the stencil buffer is written; where a O appears, the bit is not written. The face
parameter of StencilMaskSeparate can be FRONT, BACK, or FRONT_AND_BACK
and indicates whether the front or back stencil mask state is affected. StencilMask
sets both front and back stencil mask state to identical values.

Fragments generated by front-facing primitives use the front mask and frag-
ments generated by back-facing primitives use the back mask (see section 4.1.4).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is two integers for the
front and back stencil values, and a bit for depth values. A set of four bits is also
required indicating which color components of an RGBA value should be written.
In the initial state, the integer masks are all ones, as are the bits controlling depth
value and RGBA component writing.

Fine Control of Multisample Buffer Updates

When the value of SAMPLE_BUFFERS is one, ColorMask, DepthMask, and Sten-
cilMask or StencilMaskSeparate control the modification of values in the multi-
sample buffer. The color mask has no effect on modifications to the color buffers.
If the color mask is entirely disabled, the color sample values must still be com-
bined (as described above) and the result used to replace the color values of the
buffers enabled by DrawBuffer.

OpenGL 3.1 - May 28, 2009

4.2. WHOLE FRAMEBUFFER OPERATIONS 187

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which buffers are to be
cleared. The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, STENCIL_-
BUFFER_BIT, and indicating the buffers currently enabled for color writing, the
depth buffer, and the stencil buffer (see below), respectively. The value to which
each buffer is cleared depends on the setting of the clear value for that buffer. If the
mask is not a bitwise OR of the specified values, then the error INVALID_VALUE
is generated.

void ClearColor(clampf r, clampf g, clampf b,
clampfa);

sets the clear value for fixed- and floating-point color buffers. The specified com-
ponents are stored as floating-point values.
The command

void ClearDepth(clampdd);

sets the depth value used when clearing the depth buffer. d is clamped to the
range [0, 1]. When clearing a fixed-point depth buffer, d is converted to fixed-point
according to the rules for a window z value given in section 2.12.1. No conversion
is applied when clearing a floating-point depth buffer.

The command

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking
operations described in section 4.2.2 are also applied. If a buffer is not present,
then a Clear directed at that buffer has no effect. Unsigned normalized fixed-
point and signed normalized fixed-point RGBA color buffers are cleared to color
values derived by clamping each component of the clear color to the range [0, 1]
or [—1, 1] respectively, then converting to fixed-point using equations 2.4 or 2.6,
respectively. The result of clearing integer color buffers is undefined.

OpenGL 3.1 - May 28, 2009

4.2. WHOLE FRAMEBUFFER OPERATIONS 188

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, and the stencil buffer. Initially, the RGBA color clear value is
(0,0,0,0), the depth buffer clear value is 1.0, and the stencil buffer clear index is
0.

Individual buffers of the currently bound draw framebuffer may be cleared with
the command

void ClearBuffer{if ui}v(enum buffer, int drawbuffer,
const T *value);

where buffer and drawbuffer identify a buffer to clear, and value specifies the value
or values to clear it to.

If buffer is COLOR, a particular draw buffer DRAW_BUFFER: is specified by
passing i as the parameter drawbuffer, and value points to a four-element vec-
tor specifying the R, G, B, and A color to clear that draw buffer to. If the draw
buffer is one of FRONT, BACK, LEFT, RIGHT, or FRONT_AND_BACK, identifying
multiple buffers, each selected buffer is cleared to the same value. The Clear-
Bufferfv, ClearBufferiv, and ClearBufferuiv commands should be used to clear
fixed- and floating-point, signed integer, and unsigned integer color buffers respec-
tively. Clamping and conversion for fixed-point color buffers are performed in the
same fashion as ClearColor.

If buffer is DEPTH, drawbuffer must be zero, and value points to the single
depth value to clear the depth buffer to. Clamping and type conversion for fixed-
point depth buffers are performed in the same fashion as ClearDepth. Only Clear-
Bufferfv should be used to clear depth buffers.

If buffer is STENCIL, drawbuffer must be zero, and value points to the single
stencil value to clear the stencil buffer to. Masking and type conversion are per-
formed in the same fashion as ClearStencil. Only ClearBufferiv should be used
to clear stencil buffers.

The command

void ClearBufferfi(enum buffer, int drawbuffer,
float depth, int stencil);

clears both depth and stencil buffers of the currently bound draw framebuffer.
buffer must be DEPTH_STENCIL and drawbuffer must be zero. depth and sten-
cil are the values to clear the depth and stencil buffers to, respectively. Clamping
and type conversion of depth for fixed-point depth buffers is performed in the same
fashion as ClearDepth. Masking of stencil for stencil buffers is performed in the
same fashion as ClearStencil. ClearBufferfi is equivalent to clearing the depth

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 189

and stencil buffers separately, but may be faster when a buffer of internal format
DEPTH_STENCIL is being cleared.

The result of ClearBuffer is undefined if no conversion between the type of
the specified value and the type of the buffer being cleared is defined (for example,
if ClearBufferiv is called for a fixed- or floating-point buffer, or if ClearBufferfv
is called for a signed or unsigned integer buffer). This is not an error.

When ClearBuffer is called, the same per-fragment and masking operations
defined for Clear are applied.

Errors

ClearBuffer{if ui}v generates an INVALID_ENUM error if buffer is not COLOR,
DEPTH, or STENCIL. ClearBufferfi generates an INVALID_ENUM error if buffer is
not DEPTH_STENCIL,

ClearBuffer generates an INVALID_VALUE error if buffer is COLOR and draw-
buffer is less than zero, or greater than the value of MAX_DRAW_BUFFERS minus
one; or if buffer is DEPTH, STENCIL, or DEPTH_STENCIL and drawbuffer is not
Zero.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by the Clear mask bit COLOR_BUFFER_BIT and
the DrawBuffer mode. If the DrawBuffer mode is NONE, the color samples of the
multisample buffer cannot be cleared using Clear.

If the Clear mask bits DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT are
set, then the corresponding depth or stencil samples, respectively, are cleared.

The ClearBuffer commands also clear color, depth, or stencil samples of mul-
tisample buffers corresponding to the specified buffer.

4.3 Reading and Copying Pixels

Pixels may be read from the framebuffer using ReadPixels. BlitFramebuffer
can be used to copy a block of pixels from one portion of the framebuffer to another.

4.3.1 Reading Pixels

The method for reading pixels from the framebuffer and placing them in pixel pack
buffer or client memory is diagrammed in figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Initially, zero is bound for the PIXEL_PACK_BUFFER, indicating that image
read and query commands such as ReadPixels return pixel results into client mem-

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 190

RGBA pixel data in _}
jmmmmmd - N

1
: Convert to floats
]

..... ¥ ———

S ! Pixel Storage
Clamp to [0,1] & .

: : Operations

byte, short, int, float, or packed
pixel component data stream -

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes are not performed
for all data formats. Depth and stencil pixel paths are not shown.

ory pointer parameters. However, if a non-zero buffer object is bound as the current
pixel pack buffer, then the pointer parameter is treated as an offset into the desig-
nated buffer object.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments after x and y to ReadPixels are described in section 3.7.2. The pixel
storage modes that apply to ReadPixels and other commands that query images
(see section 6.1) are summarized in table 4.7.

ReadPixels generates an INVALID_OPERATION error
if READ_FRAMEBUFFER_BINDING (see section 4.4) is non-zero, the read frame-
buffer is framebuffer complete, and the value of SAMPLE_BUFFERS for the read
framebuffer is greater than zero.

Obtaining Pixels from the Framebuffer

If the format is DEPTH_COMPONENT, then values are obtained from the depth buffer.
If there is no depth buffer, the error INVALID_OPERATION occurs.

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 191

Parameter Name Type Initial Value ‘ Valid Range ‘
PACK_SWAP_BYTES boolean FALSE TRUE/FALSE
PACK_LSB_FIRST boolean FALSE TRUE/FALSE
PACK_ROW_LENGTH integer 0 [0, 00)
PACK_SKIP_ROWS integer 0 [0, 00)
PACK_SKIP_PIXELS integer 0 [0, 00)
PACK_ALIGNMENT integer 4 1,2,4,8
PACK_IMAGE_HEIGHT | integer 0 [0, 00)
PACK_SKIP_IMAGES | integer 0 [0, 00)

Table 4.7: PixelStore parameters pertaining to ReadPixels, and GetTexImage.

If there is a multisample buffer (the value of SAMPLE_BUFFERS is one), then
values are obtained from the depth samples in this buffer. It is recommended that
the depth value of the centermost sample be used, though implementations may
choose any function of the depth sample values at each pixel.

If the format is DEPTH_STENCIL, then values are taken from both the depth
buffer and the stencil buffer. If there is no depth buffer or if there is no stencil
buffer, then the error INVALID_OPERATION occurs. If the fype parameter is not
UNSIGNED_INT_24_8 or FLOAT_32_UNSIGNED_INT_24_8_REV, then the error
INVALID_ENUM Occurs.

If there is a multisample buffer, then values are obtained from the depth and
stencil samples in this buffer. It is recommended that the depth and stencil values of
the centermost sample be used, though implementations may choose any function
of the depth and stencil sample values at each pixel.

If the format is STENCIL_INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the error INVALID_OPERATION OccCurs.

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the read buffer from which values are obtained is one of
the color buffers; the selection of color buffer is controlled with ReadBuffer.

The command

void ReadBuffer(enum src);

takes a symbolic constant as argument. src must be one of the values from ta-
bles 4.4 or 4.5. Otherwise, an INVALID_ENUM error is generated. Further, the

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 192

acceptable values for src depend on whether the GL is using the default frame-
buffer (i.e., READ_FRAMEBUFFER_BINDING is zero), or a framebuffer object (i.e.,
READ_FRAMEBUFFER_BINDING is non-zero). For more information about frame-
buffer objects, see section 4.4.

If the object bound to READ_FRAMEBUFFER_BINDING is not framebuffer com-
plete (as defined in section 4.4.4), then ReadPixels generates the error INVALID_-
FRAMEBUFFER_OPERATION. If ReadBuffer is supplied with a constant that is nei-
ther legal for the default framebuffer, nor legal for a framebuffer object, then the
error INVALID_ENUM results.

When READ_FRAMEBUFFER_BINDING is zero, i.e. the default framebuffer, src
must be one of the values listed in table 4.4, including NONE. FRONT_AND_BACK,
FRONT, and LEFT refer to the front left buffer, BACK refers to the back left buffer,
and RIGHT refers to the front right buffer. The other constants correspond directly
to the buffers that they name. If the requested buffer is missing, then the error
INVALID_OPERATION is generated. For the default framebuffer, the initial setting
for ReadBuffer is FRONT if there is no back buffer and BACK otherwise.

When the GL is using a framebuffer object, src must be one of the values listed
in table 4.5, including NONE. In a manner analogous to how the DRAW_BUFFERS
state is handled, specifying COLOR_ATTACHMENT: enables reading from the image
attached to the framebuffer at COLOR_ATTACHMENT. For framebuffer objects, the
initial setting for ReadBuffer is COLOR_ATTACHMENTO.

ReadPixels generates an INVALID_OPERATION error if it attempts to select a
color buffer while READ_BUFFER is NONE.

ReadPixels obtains values from the selected buffer from each pixel with lower
left hand corner at (z + i,y + j) for 0 < i < width and 0 < j < height;
this pixel is said to be the ith pixel in the jth row. If any of these pixels lies
outside of the window allocated to the current GL context, or outside of the image
attached to the currently bound framebuffer object, then the values obtained for
those pixels are undefined. When READ_FRAMEBUFFER_BINDING is zero, values
are also undefined for individual pixels that are not owned by the current context.
Otherwise, ReadPixels obtains values from the selected buffer, regardless of how
those values were placed there.

If format is one of RED, GREEN, BLUE, ALPHA, RG, RGB, RGBA, BGR, Or BGRA,
then red, green, blue, and alpha values are obtained from the selected buffer at each
pixel location. If the framebuffer does not support alpha values then the A that is
obtained is 1.0.

If format is an integer format and the color buffer is not an integer format; if the
color buffer is an integer format and format is not an integer format; or if format
is an integer format and fype is FLOAT or HALF_FLOAT, the error INVALID -
OPERATION occurs.

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 193

When READ_FRAMEBUFFER_BINDING is non-zero, the red, green, blue, and
alpha values are obtained by first reading the internal component values of the
corresponding value in the image attached to the selected logical buffer. Internal
components are converted to an RGBA color by taking each R, G, B, and A com-
ponent present according to the base internal format of the buffer (as shown in
table 3.11). If G, B, or A values are not present in the internal format, they are
taken to be zero, zero, and one respectively.

Conversion of RGBA values

This step applies only if format is not STENCIL_INDEX, DEPTH_COMPONENT, Or
DEPTH_STENCIL. The R, G, B, and A values form a group of elements.

For a signed or unsigned normalized fixed-point color buffer, each element is
converted to floating-point using equations 2.3 or 2.1, respectively. For an integer
or floating-point color buffer, the elements are unmodified.

Conversion of Depth values

This step applies only if format is DEPTH_COMPONENT or DEPTH_STENCIL and
the depth buffer uses a fixed-point representation. An element is taken to be a
fixed-point value in [0, 1] with m bits, where m is the number of bits in the depth
buffer (see section 2.12.1). No conversion is necessary if the depth buffer uses a
floating-point representation.

Final Conversion

For an index, if the type is not FLOAT or HALF_FLOAT, final conversion consists
of masking the index with the value given in table 4.8; if the fype is FLOAT or
HALF_FLOAT, then the integer index is converted to a GL float or half data
value.

Read color clamping is controlled by calling

void ClampColor(enum target, enum clamp);

with farget set to CLAMP_READ_COLOR. If clamp is TRUE, read color clamping is
enabled; if clamp is FALSE, read color clamping is disabled. If clamp is FIXED_-
ONLY, read color clamping is enabled if the selected read color buffer has fixed-
point components.

For a floating-point RGBA color, if fype is not one of FLOAT, HALF,

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 194

’ type Parameter Index Mask
UNSIGNED_BYTE 28 1
BYTE 27— 1
UNSIGNED_SHORT 216 1
SHORT 21 1
UNSIGNED_INT 232 _1
INT 231 1
UNSIGNED_INT_24_8 28 1

FLOAT_32_UNSIGNED_INT_24_8_REV 28 1

Table 4.8: Index masks used by ReadPixels. Floating point data are not masked.

read color clamping is enabled, each component is first clamped to [0, 1]. Then the
appropriate conversion formula from table 4.9 is applied to the component.

In the special case of calling ReadPixels with fype of UNSIGNED_INT_10F_-
11F_11F_REV and format of RGB, conversion is performed as follows: the returned
data are packed into a series of uint values. The red, green, and blue components
are converted to unsigned 11-bit floating-point, unsigned 11-bit floating-point, and
unsigned 10-bit floating point as described in sections 2.1.3 and 2.1.4. The result-
ing red 11 bits, green 11 bits, and blue 10 bits are then packed as the 1st, 2nd, and
3rd components of the UNSIGNED_INT_10F_11F_11F_REV format as shown in
table 3.8.

In the special case of calling ReadPixels with fype of UNSIGNED_INT_5_-
9_9_9_REV and format RGB, the conversion is performed as follows: the returned
data are packed into a series of uint values. The red, green, and blue compo-
nents are converted to reds, greeng, blues, and expgpqreq integers as described
in section 3.8.1 when internalformat is RGB9_E5. The reds, greens, blues,
and expgpqreq are then packed as the 1Ist, 2nd, 3rd, and 4th components of the

For an integer RGBA color, each component is clamped to the representable
range of type.

Placement in Pixel Pack Buffer or Client Memory

If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_PACK_-
BUFFER_BINDING), data is an offset into the pixel pack buffer and the pixels are
packed into the buffer relative to this offset; otherwise, data is a pointer to a block
client memory and the pixels are packed into the client memory relative to the

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS

195

type Parameter GL Data Type | Component
Conversion Formula
UNSIGNED_BYTE ubyte c=(28-1)f
BYTE byte c= %
UNSIGNED_SHORT ushort c= (2% —1)f
SHORT short c= (216_#
UNSIGNED_INT uint c=(22%-1)f
INT int c= (232_#
HALF_FLOAT half c=f
FLOAT float c=f
UNSIGNED_BYTE_3_3_2 ubyte c=02N -1)f
UNSIGNED_BYTE_2_3_3_REV ubyte c=2N -1)f
UNSIGNED_SHORT_5_6_5 ushort c=02N-1)f
UNSIGNED_SHORT_5_6_5_REV ushort c=02N-1)f
UNSIGNED_SHORT_4_4_4 4 ushort c=02N -1)f
UNSIGNED_SHORT_4_4_4_4_ REV ushort c=02N -1)f
UNSIGNED_SHORT_5_5_5_1 ushort c=02N -1)f
UNSIGNED_SHORT_1_5_5_5_REV ushort c=02N -1)f
UNSTIGNED_INT_8_8_8_8 uint c=02N -1)f
UNSIGNED_INT_8_8_8_8_REV uint c=02N -1)f
UNSIGNED_INT_10_10_10_2 uint c=02N -1)f
UNSIGNED_INT_2 10 _10_10_REV uint c=02N -1)f
UNSIGNED_INT_24_8 uint c=02N-1)f
UNSIGNED_INT_10F_11F_11F REV uint Special
UNSIGNED_INT_5_9_9_ 9 REV uint Special
FLOAT_32_UNSIGNED_INT_24_8_REV float ¢ = f (depth only)

Table 4.9: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representation (f) to a datum of the specified GL
data type (c) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
query commands and to components of pixel data returned to client memory. The
equations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See table 2.2.) Equations with N as
the exponent are performed for each bitfield of the packed data type, with N set to

the number of bits in the bitfield.

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 196

pointer. If a pixel pack buffer object is bound and packing the pixel data according
to the pixel pack storage state would access memory beyond the size of the pixel
pack buffer’s memory size, an INVALID_OPERATION error results. If a pixel pack
buffer object is bound and data is not evenly divisible by the number of basic
machine units needed to store in memory the corresponding GL data type from
table 3.2 for the type parameter, an INVALID_OPERATION error results.

Groups of elements are placed in memory just as they are taken from mem-
ory when transferring pixel rectangles to the GL. That is, the ith group of the jth
row (corresponding to the 7th pixel in the jth row) is placed in memory just where
the ith group of the jth row would be taken from when transferring pixels. See
Unpacking under section 3.7.1. The only difference is that the storage mode pa-
rameters whose names begin with PACK_ are used instead of those whose names
begin with UNPACK_. If the format is RED, GREEN, BLUE, or ALPHA, only the
corresponding single element is written. Likewise if the format is RG, RGB, or
BGR, only the corresponding two or three elements are written. Otherwise all the
elements of each group are written.

4.3.2 Copying Pixels

The command

void BlitFramebuffer(int srcX0, int srcY0, int srcXI,
int srcYl, int dstX0, int dstY0, int dstXI, int dstYl,
bitfield mask, enumn filter);

transfers a rectangle of pixel values from one region of the read framebuffer to
another in the draw framebuffer.

mask is the bitwise OR of a number of values indicating which buffers are
to be copied. The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and
STENCIL_BUFFER_BIT, which are described in section 4.2.3. The pixels corre-
sponding to these buffers are copied from the source rectangle bounded by the lo-
cations (srcX0, srcY0) and (sreX1, srcY 1) to the destination rectangle bounded
by the locations (dstX0,dstY0) and (dstX1,dstY'1). The lower bounds of the
rectangle are inclusive, while the upper bounds are exclusive.

When the color buffer is transferred, values are taken from the read buffer of the
read framebuffer and written to each of the draw buffers of the draw framebuffer.

The actual region taken from the read framebuffer is limited to the intersection
of the source buffers being transferred, which may include the color buffer selected
by the read buffer, the depth buffer, and/or the stencil buffer depending on mask.
The actual region written to the draw framebuffer is limited to the intersection of

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 197

the destination buffers being written, which may include multiple draw buffers,
the depth buffer, and/or the stencil buffer depending on mask. Whether or not the
source or destination regions are altered due to these limits, the scaling and offset
applied to pixels being transferred is performed as though no such limits were
present.

If the source and destination rectangle dimensions do not match, the source im-
age is stretched to fit the destination rectangle. filter must be LINEAR or NEAREST,
and specifies the method of interpolation to be applied if the image is stretched.
LINEAR filtering is allowed only for the color buffer; if mask includes DEPTH_-
BUFFER_BIT or STENCII_BUFFER_BIT, and filter is not NEAREST, no copy is
performed and an INVALID_OPERATION error is generated. If the source and
destination dimensions are identical, no filtering is applied. If either the source or
destination rectangle specifies a negative width or height (X1 < X0or Y1 < Y0),
the image is reversed in the corresponding direction. If both the source and des-
tination rectangles specify a negative width or height for the same direction, no
reversal is performed. If a linear filter is selected and the rules of LINEAR sam-
pling would require sampling outside the bounds of a source buffer, it is as though
CLAMP_TO_EDGE texture sampling were being performed. If a linear filter is se-
lected and sampling would be required outside the bounds of the specified source
region, but within the bounds of a source buffer, the implementation may choose
to clamp while sampling or not.

If the source and destination buffers are identical, and the source and destina-
tion rectangles overlap, the result of the blit operation is undefined.

Blit operations bypass the fragment pipeline. The only fragment operations
which affect a blit are the pixel ownership test and the scissor test.

If a buffer is specified in mask and does not exist in both the read and draw
framebuffers, the corresponding bit is silently ignored.

If the color formats of the read and draw buffers do not match, and mask in-
cludes COLOR_BUFFER_BIT, pixel groups are converted to match the destination
format. However, colors are clamped only if all draw color buffers have fixed-
point components. Format conversion is not supported for all data types, and an
INVALID_OPERATION error is generated under any of the following conditions:

o The read buffer contains floating-point values and any draw buffer does not
contain floating-point values.

e The read buffer contains non-floating-point values and any draw buffer con-
tains floating-point values.

e The read buffer contains unsigned integer values and any draw buffer does
not contain unsigned integer values.

OpenGL 3.1 - May 28, 2009

4.3. READING AND COPYING PIXELS 198

e The read buffer contains signed integer values and any draw buffer does not
contain signed integer values.

Calling BlitFramebuffer will result in an INVALID_FRAMEBUFFER_-
OPERATION error if the objects bound to DRAW_FRAMEBUFFER_BINDING and
READ_FRAMEBUFFER_BINDING are not framebuffer complete (section 4.4.4).

Calling BlitFramebuffer will result in an INVALID_OPERATION error if mask
includes DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT, and the source and
destination depth and stencil buffer formats do not match.

Calling BlitFramebuffer will result in an INVALID_OPERATION error if filter
is LINEAR and read buffer contains integer data.

If samMPLE_BUFFERS for the read framebuffer is greater than zero and
SAMPLE_BUFFERS for the draw framebuffer is zero, the samples corresponding
to each pixel location in the source are converted to a single sample before being
written to the destination.

If saMpPLE_BUFFERS for the read framebuffer is zero and SAMPLE_BUFFERS
for the draw framebuffer is greater than zero, the value of the source sample is
replicated in each of the destination samples.

If sSAMPLE_BUFFERS for either the read framebuffer or draw framebuffer is
greater than zero, no copy is performed and an INVALID_OPERATION error is
generated if the dimensions of the source and destination rectangles provided to
BlitFramebuffer are not identical, if the formats of the read and draw framebuffers
are not identical, or if the values of SAMPLES for the read and draw buffers are not
identical.

If saMPLE_BUFFERS for both the read and draw framebuffers are greater than
zero, and the values of sAMPLES for the read and draw framebuffers are identical,
the samples are copied without modification from the read framebuffer to the draw
framebuffer. Otherwise, no copy is performed and an INVALID_OPERATION error
is generated. Note that the samples in the draw buffer are not guaranteed to be at
the same sample location as the read buffer, so rendering using this newly created
buffer can potentially have geometry cracks or incorrect antialiasing. This may
occur if the sizes of the framebuffers do not match, if the formats differ, or if
the source and destination rectangles are not defined with the same (X0, Y0) and
(X1,Y1) bounds.

4.3.3 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore, This state has been summarized in tables 3.1, Additional state in-
cludes an integer indicating the current setting of ReadBuffer, and a three-valued

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS

integer controlling clamping during final conversion. For the default framebuffer,
in the initial state the read buffer is BACK if there is a back buffer; FRONT if there is
no back buffer; and NONE if no default framebuffer is associated with the context.
The initial value of read color clamping is FIXED_ONLY. State set with PixelStore
is GL client state.

4.4 Framebuffer Objects

As described in chapter 1 and section 2.1, the GL renders into (and reads values
from) a framebuffer. GL defines two classes of framebuffers: window system-
provided and application-created.

Initially, the GL uses the default framebuffer. The storage, dimensions, allo-
cation, and format of the images attached to this framebuffer are managed entirely
by the window system. Consequently, the state of the default framebuffer, includ-
ing its images, can not be changed by the GL, nor can the default framebuffer be
deleted by the GL.

The routines described in the following sections, however, can be used to cre-
ate, destroy, and modify the state and attachments of framebuffer objects.

Framebuffer objects encapsulate the state of a framebuffer in a similar manner
to the way texture objects encapsulate the state of a texture. In particular, a frame-
buffer object encapsulates state necessary to describe a collection of color, depth,
and stencil logical buffers (other types of buffers are not allowed). For each logical
buffer, a framebuffer-attachable image can be attached to the framebuffer to store
the rendered output for that logical buffer. Examples of framebuffer-attachable im-
ages include texture images and renderbuffer images. Renderbuffers are described
further in section 4.4.2

By allowing the images of a renderbuffer to be attached to a framebuffer, the
GL provides a mechanism to support off-screen rendering. Further, by allowing the
images of a texture to be attached to a framebuffer, the GL provides a mechanism
to support render to texture.

4.4.1 Binding and Managing Framebuffer Objects

The default framebuffer for rendering and readback operations is provided by the
window system. In addition, named framebuffer objects can be created and oper-
ated upon. The namespace for framebuffer objects is the unsigned integers, with
zero reserved by the GL for the default framebuffer.

A framebuffer object is created by binding a name returned by GenFrame-
buffers (see below) to DRAW_FRAMEBUFFER or READ_FRAMEBUFFER. The bind-

OpenGL 3.1 - May 28, 2009

199

4.4. FRAMEBUFFER OBJECTS 200

ing is effected by calling
void BindFramebuffer(enum target, uint framebuffer);

with target set to the desired framebuffer target and framebuffer set to the frame-
buffer object name. The resulting framebuffer object is a new state vector, com-
prising all the state values listed in table 6.20, as well as one set of the state values
listed in table 6.21 for each attachment point of the framebuffer, set to the same
initial values. There are MAX_COLOR_ATTACHMENTS color attachment points, plus
one each for the depth and stencil attachment points.

BindFramebuffer may also be used to bind an existing framebuffer object
to DRAW_FRAMEBUFFER and/or READ_FRAMEBUFFER. If the bind is successful no
change is made to the state of the bound framebuffer object, and any previous
binding to farget is broken.

BindFramebuffer fails and an INVALID_OPERATION error is generated if
framebuffer is not zero or a name returned from a previous call to GenFrame-
buffers, or if such a name has since been deleted with DeleteFramebuffers.

If a framebuffer object is bound to DRAW_FRAMEBUFFER Or READ_-
FRAMEBUFFER, it becomes the target for rendering or readback operations, respec-
tively, until it is deleted or another framebuffer is bound to the corresponding bind
point. Calling BindFramebuffer with farget set to FRAMEBUFFER binds frame-
buffer to both the draw and read targets.

While a framebuffer object is bound, GL operations on the target to which it
is bound affect the images attached to the bound framebuffer object, and queries
of the target to which it is bound return state from the bound object. Queries of
the values specified in tables 6.41 and 6.23 are derived from the framebuffer object
bound to DRAW_FRAMEBUFFER.

The initial state of DRAW_FRAMEBUFFER and READ_FRAMEBUFFER refers to
the default framebuffer. In order that access to the default framebuffer is not lost,
it is treated as a framebuffer object with the name of zero. The default framebuffer
is therefore rendered to and read from while zero is bound to the corresponding
targets. On some implementations, the properties of the default framebuffer can
change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Framebuffer objects (those with a non-zero name) differ from the default
framebuffer in a few important ways. First and foremost, unlike the default frame-
buffer, framebuffer objects have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer-attachable images can be attached to and
detached from these attachment points, which are described further in section 4.4.2.

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 201

Also, the size and format of the images attached to framebuffer objectss are con-
trolled entirely within the GL interface, and are not affected by window system
events, such as pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created-
framebuffer object,

e The pixel ownership test always succeeds. In other words, framebuffer ob-
jects own all of their pixels.

e There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back, front, left, or right color bitplanes.

e The only color buffer bitplanes are the ones defined by the frame-
buffer attachment points named COLOR_ATTACHMENTO through COLOR_-
ATTACHMENTnN.

e The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH_ATTACHMENT.

e The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL_ATTACHMENT.

o If the attachment sizes are not all identical, rendering will be limited to the
largest area that can fit in all of the attachments (an intersection of rectangles
having a lower left of (0,0) and an upper right of (width, height) for each
attachment).

o If the attachment sizes are not all identical, the values of pixels outside the
common intersection area after rendering are undefined.

Framebuffer objects are deleted by calling
void DeleteFramebuffers(sizei n, uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a frame-
buffer object is deleted, it has no attachments, and its name is again unused.
If a framebuffer that is currently bound to one or more of the targets DRAW_-
FRAMEBUFFER or READ_FRAMEBUFFER is deleted, it is as though BindFrame-
buffer had been executed with the corresponding target and framebuffer zero. Un-
used names in framebuffers are silently ignored, as is the value zero.

The command

void GenFramebuffers(sizein, uint *ids);

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 202

returns n previously unused framebuffer object names in ids. These names are
marked as used, for the purposes of GenFramebuffers only, but they acquire state
and type only when they are first bound, just as if they were unused.

The names bound to the draw and read framebuffer bindings can be queried by
calling GetIntegerv with the symbolic constants DRAW_FRAMEBUFFER_BINDING
and READ_FRAMEBUFFER_BINDING, respectively. FRAMEBUFFER_BINDING is
equivalent to DRAW_FRAMEBUFFER_BINDING.

4.4.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer
objects. In contrast, the image attachments of the default framebuffer may not be
changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer
objects, potentially avoiding some data copies, and possibly decreasing memory
consumption.

For each logical buffer, a framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to
indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 6.21

There are two types of framebuffer-attachable images: the image of a render-
buffer object, and an image of a texture object.

Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable
internal format. GL provides the methods described below to allocate and delete a
renderbuffer’s image, and to attach a renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero
reserved for the GL. A renderbuffer object is created by binding a name returned
by GenRenderbuffers (see below) to RENDERBUFFER. The binding is effected by
calling

void BindRenderbuffer(enum target, uint renderbuffer);

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name. If renderbuffer is not zero, then the resulting renderbuffer object is a new
state vector, initialized with a zero-sized memory buffer, and comprising the state
values listed in table 6.23. Any previous binding to target is broken.

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 203

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

While a renderbuffer object is bound, GL operations on the target to which it
is bound affect the bound renderbuffer object, and queries of the target to which a
renderbuffer object is bound return state from the bound object.

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to farget is broken
and the target binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate GL errors, as described in section 6.1.3.

The current RENDERBUFFER binding can be determined by calling GetInte-
gerv with the symbolic constant RENDERBUFFER_BINDING.

BindRenderbuffer fails and an INVALID_OPERATION error is generated if
renderbuffer is not zero or a name returned from a previous call to GenRender-
buffers, or if such a name has since been deleted with DeleteRenderbuffers.

Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const
uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After
a renderbuffer object is deleted, it has no contents, and its name is again unused. If
a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
BindRenderbuffer had been executed with the target RENDERBUFFER and name
of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object (see section 4.4.2).
Unused names in renderbuffers are silently ignored, as is the value zero.
The command

void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
acquire renderbuffer state only when they are first bound, just as if they were un-
used.

The command

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 204
Sized Base S
Internal Format Internal Format bits
STENCIL_INDEX1 STENCIL_INDEX 1
STENCIL_INDEX4 STENCIL_INDEX | 4
STENCIL_INDEXS8 STENCIL_INDEX | 8
STENCIL_INDEX16 | STENCIL_INDEX | 16

Table 4.10: Correspondence of sized internal formats to base internal formats for
formats that can be used only with renderbuffers.

void RenderbufferStorageMultisample(enum target,
sizei samples, enum internalformat, sizei width,
sizei height);

establishes the data storage, format, dimensions, and number of samples of a ren-
derbuffer object’s image. target must be RENDERBUFFER. infernalformat must
be color-renderable, depth-renderable, or stencil-renderable (as defined in sec-
tion 4.4.4). width and height are the dimensions in pixels of the renderbuffer. If
either width or height is greater than MAX_RENDERBUFFER_SIZE, or if samples
is greater than MAX_SAMPLES, then the error INVALID_VALUE is generated. The
error INVALID_OPERATION may be generated if infernalformat is a signed or un-
signed integer format, samples is greater than one, and the implementation does
not support multisampled integer renderbuffers (see “Required Renderbuffer For-
mats” below). If the GL is unable to create a data store of the requested size, the
error OUT_OF_MEMORY is generated.

Upon success, RenderbufferStorageMultisample deletes any existing data
store for the renderbuffer image and the contents of the data store after call-
ing RenderbufferStorageMultisample are undefined. RENDERBUFFER_WIDTH
is set to width, RENDERBUFFER_HETIGHT is set to height, and RENDERBUFFER_ -
INTERNAL_FORMAT is set to internalformat.

If samples is zero, then RENDERBUFFER_SAMPLES is set to zero. Otherwise
samples represents a request for a desired minimum number of samples. Since
different implementations may support different sample counts for multisampled
rendering, the actual number of samples allocated for the renderbuffer image is
implementation-dependent. However, the resulting value for RENDERBUFFER_ -
SAMPLES is guaranteed to be greater than or equal to samples and no more than the
next larger sample count supported by the implementation.

A GL implementation may vary its allocation of internal component resolution
based on any RenderbufferStorage parameter (except target), but the allocation

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 205

and chosen internal format must not be a function of any other state and cannot be
changed once they are established.
The command

void RenderbufferStorage(enum farget, enum internalformat,
sizei width, sizei height);

is equivalent to calling RenderbufferStorageMultisample with samples equal to
Zero.

Required Renderbuffer Formats

Implementations are required to support the same internal formats for renderbuffers
as the required formats for textures enumerated in section 3.8.1, with the excep-
tion of the color formats labelled “texture-only”. Requesting one of these internal
formats for a renderbuffer will allocate at least the internal component sizes and
exactly the component types shown for that format in tables 3.12- 3.13.

Implementations must support creation of renderbuffers in these required for-
mats with up to the value of MAX_SAMPLES multisamples, with the exception that
the signed and unsigned integer formats are required only to support creation of
renderbuffers with one sample.

Attaching Renderbuffer Images to a Framebuffer

A renderbuffer can be attached as one of the logical buffers of the currently bound
framebuffer object by calling

void FramebufferRenderbuffer(enum target,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. An INVALID_OPERATION
error is generated if the value of the corresponding binding is zero. attachment
should be set to one of the attachment points of the framebuffer listed in table 4.11.

renderbuffertarget must be RENDERBUFFER and renderbuffer should be set to
the name of the renderbuffer object to be attached to the framebuffer. render-
buffer must be either zero or the name of an existing renderbuffer object of type
renderbuffertarget, otherwise an INVALID_OPERATION error is generated. If ren-
derbuffer is zero, then the value of renderbuffertarget is ignored.

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 206

If renderbuffer is not zero and if FramebufferRenderbuffer is successful,
then the renderbuffer named renderbuffer will be used as the logical buffer iden-
tified by attachment of the framebuffer currently bound to farget. The value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_-
NAME is set to renderbuffer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 6.21. No change is made
to the state of the renderbuffer object and any previous attachment to the attach-
ment logical buffer of the framebuffer object bound to framebuffer rarget is broken.
If the attachment is not successful, then no change is made to the state of either the
renderbuffer object or the framebuffer object.

Calling FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer currently bound
to target. All state values of the attachment point specified by attachment in the
object bound to target are set to their default values listed in table 6.21.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to be
set to renderbuffer, which should have base internal format DEPTH_STENCIL.

If a renderbuffer object is deleted while its image is attached to one or more
attachment points in the currently bound framebuffer, then it is as if Framebuf-
ferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
point to which this image was attached in the currently bound framebuffer. In
other words, this renderbuffer image is first detached from all attachment points in
the currently bound framebuffer. Note that the renderbuffer image is specifically
not detached from any non-bound framebuffers. Detaching the image from any
non-bound framebuffers is the responsibility of the application.

Name of attachment ‘

COLOR_ATTACHMENT (see caption)
DEPTH_ATTACHMENT
STENCIL_ATTACHMENT
DEPTH_STENCIL_ATTACHMENT

Table 4.11: Framebuffer attachment points. ¢ in COLOR_ATTACHMENT{ may range
from zero to the value of MAX_COLOR_ATTACHMENTS - 1.

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 207

Attaching Texture Images to a Framebuffer

GL supports copying the rendered contents of the framebuffer into the images of
a texture object through the use of the routines CopyTexImage* and CopyTex-
SubImage*. Additionally, GL supports rendering directly into the images of a
texture object.

To render directly into a texture image, a specified image from a texture object
can be attached as one of the logical buffers of the currently bound framebuffer ob-
ject by calling one of the following routines, depending on the type of the texture:

void FramebufferTexturelD(enum target, enum attachment,
enum fextarget, uint texture, int level);

void FramebufferTexture2D(enum target, enum attachment,
enum fextarget, uint texture, int level);

void FramebufferTexture3D(enum target, enum attachment,
enum fextarget, uint texture, int level, int layer);

In all three routines, farget must be DRAW_FRAMEBUFFER, READ_-
FRAMEBUFFER, or FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_-
FRAMEBUFFER. An INVALID_OPERATION error is generated if the value of the
corresponding binding is zero. attachment must be one of the attachment points of
the framebuffer listed in table 4.11.

If texture is zero, the image identified by attachment, if any, will be detached
from the framebuffer currently bound to farget. textarget, level, and layer are ig-
nored. All state values of the attachment point specified by attachment are set to
their default values listed in table 6.21.

If texture is not zero, then texture must either name an existing texture
object with an target of textarget, or texture must name an existing cube map
texture and fextarget must be one of TEXTURE_CUBE_MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_Y, oOr
TEXTURE_CUBE_MAP_NEGATIVE_Z. Otherwise, an INVALID_OPERATION error
is generated.

level specifies the mipmap level of the texture image to be attached to the
framebuffer.

If textarget is TEXTURE_RECTANGLE, then level must be zero. If textar-
get is TEXTURE_3D, then level must be greater than or equal to zero and less
than or equal to logy of the value of MAX_3D_TEXTURE_SIZE. If fextarget is
one of TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_POSITIVE_-
Y, TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_-
X, TEXTURE_CUBE_MAP_NEGATIVE_Y, or TEXTURE_CUBE_MAP_NEGATIVE_Z,

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 208

then level must be greater than or equal to zero and less than or equal to logs of
the value of MAX_CUBE_MAP_TEXTURE_SIZE. For all other values of textarget,
level must be greater than or equal to zero and no larger than logo of the value of
MAX_TEXTURE_SIZE. Otherwise, an INVALID_VALUE error is generated.

layer specifies the layer of a 2-dimensional image within a 3-dimensional tex-
ture. An INVALID_VALUE error is generated if layer is larger than the value of
MAX_3D_TEXTURE_SIZE-1.

For FramebufferTexturelD, if rexture is not zero, then textarget must be
TEXTURE_1D.

For FramebufferTexture2D, if texture is not zero, then textarget must be one
of TEXTURE_2D, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_-
7, TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_Y, or
TEXTURE_CUBE_MAP_NEGATIVE_Z.

For FramebufferTexture3D, if rexture is not zero, then textarget must be
TEXTURE_3D.

If texture is not zero, and if FramebufferTexture* is successful, then the
specified texture image will be used as the logical buffer identified by attach-
ment of the framebuffer currently bound to farget. The value of FRAMEBUFFER_—
ATTACHMENT_OBJECT_TYPE for the specified attachment point is set to TEXTURE
and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is set to fexture.
Additionally, the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for the
named attachment point is set to level. If texture is a cube map texture, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE for the
named attachment point is set to textarget. If texture is a 3D texture, then the
value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER for the named attach-
ment point is set to layer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 6.21. No change is made
to the state of the texture object, and any previous attachment to the attachment
logical buffer of the framebuffer object bound to framebuffer farget is broken. If
the attachment is not successful, then no change is made to the state of either the
texture object or the framebuffer object.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to texture. texture must have base internal format DEPTH_STENCIL, or the
depth and stencil framebuffer attachments will be incomplete (see section 4.4.4).

The command

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level, int layer);

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 209

operates identically to FramebufferTexture3D, except that it attaches a single
layer of a three-dimensional texture or a one- or two-dimensional array texture.
layer is an integer indicating the layer number, and is treated identically to the
layer parameter in FramebufferTexture3D. The error INVALID_VALUE is gener-
ated if texture is non-zero and layer is negative. The error INVALID_OPERATION
is generated if fexture is non-zero and is not the name of a three dimensional tex-
ture or one- or two-dimensional array texture. Unlike FramebufferTexture3D, no
textarget parameter is accepted.

If texture is non-zero and the command does not result in an error, the frame-
buffer attachment state corresponding to attachment is updated as in the other
FramebufferTexture commands, except that FRAMEBUFFER_ATTACHMENT_ -
TEXTURE_LAYER is set to layer.

If a texture object is deleted while its image is attached to one or more attach-
ment points in the currently bound framebuffer, then it is as if FramebufferTex-
ture* had been called, with a texture of zero, for each attachment point to which
this image was attached in the currently bound framebuffer. In other words, this
texture image is first detached from all attachment points in the currently bound
framebuffer. Note that the texture image is specifically not detached from any
other framebuffer objects. Detaching the texture image from any other framebuffer
objects is the responsibility of the application.

4.4.3 Feedback Loops Between Textures and the Framebuffer

A feedback loop may exist when a texture object is used as both the source and
destination of a GL operation. When a feedback loop exists, undefined behavior
results. This section describes rendering feedback loops (see section 3.8.8) and
texture copying feedback loops (see section 3.8.2) in more detail.

Rendering Feedback Loops

The mechanisms for attaching textures to a framebuffer object do not prevent a
one- or two-dimensional texture level, a face of a cube map texture level, or a
layer of a two-dimensional array or three-dimensional texture from being attached
to the draw framebuffer while the same texture is bound to a texture unit. While
this conditions holds, texturing operations accessing that image will produce unde-
fined results, as described at the end of section 3.8.8. Conditions resulting in such
undefined behavior are defined in more detail below. Such undefined texturing
operations are likely to leave the final results of fragment processing operations
undefined, and should be avoided.

Special precautions need to be taken to avoid attaching a texture image to the

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 210

currently bound framebuffer while the texture object is currently bound and en-
abled for texturing. Doing so could lead to the creation of a rendering feedback
loop between the writing of pixels by GL rendering operations and the simulta-
neous reading of those same pixels when used as texels in the currently bound
texture. In this scenario, the framebuffer will be considered framebuffer complete
(see section 4.4.4), but the values of fragments rendered while in this state will be
undefined. The values of texture samples may be undefined as well, as described
under “Rendering Feedback Loops” in section 3.8.8

Specifically, the values of rendered fragments are undefined if all of the fol-
lowing conditions are true:

e an image from texture object T is attached to the currently bound draw
framebuffer at attachment point A

e the texture object 7 is currently bound to a texture unit U, and

e the current programmable vertex and/or fragment processing state makes it
possible (see below) to sample from the texture object 7 bound to texture
unit U

while either of the following conditions are true:

e the value of TEXTURE_MIN_FILTER for texture object T is NEAREST or
LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL
for attachment point A is equal to the value of TEXTURE_BASE_LEVEL for
the texture object T’

e the value of TEXTURE_MIN_FILTER for texture object 7 is one
of NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR, LINEAR_ —
MIPMAP_NEAREST, or LINEAR MIPMAP_LINEAR, and the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A is
within the the range specified by the current values of TEXTURE_BASE_-
LEVEL to ¢, inclusive, for the texture object 7. (q is defined in the Mipmap-
ping discussion of section 3.8.8).

For the purpose of this discussion, it is possible to sample from the texture
object T bound to texture unit U if the active fragment or vertex shader contains
any instructions that might sample from the texture object T bound to U, even if
those instructions might only be executed conditionally.

Note that if TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL exclude any
levels containing image(s) attached to the currently bound framebuffer, then the
above conditions will not be met (i.e., the above rule will not cause the values of
rendered fragments to be undefined.)

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 211

Texture Copying Feedback Loops

Similarly to rendering feedback loops, it is possible for a texture image to be
attached to the read framebuffer while the same texture image is the destination
of a CopyTexImage* operation, as described under “Texture Copying Feedback
Loops” in section 3.8.2. While this condition holds, a texture copying feedback
loop between the writing of texels by the copying operation and the reading of
those same texels when used as pixels in the read framebuffer may exist. In this
scenario, the values of texels written by the copying operation will be undefined
(in the same fashion that overlapping copies via BlitFramebuffer are undefined).

Specifically, the values of copied texels are undefined if all of the following
conditions are true:

e an image from texture object T is attached to the currently bound read frame-
buffer at attachment point A

o the selected read buffer is attachment point A
e Tis bound to the texture target of a CopyTexImage* operation

o the /evel argument of the copying operation selects the same image that is
attached to A

4.4.4 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL.

The default framebuffer is always complete if it exists; however, if no default
framebuffer exists (no window system-provided drawable is associated with the
GL context), it is deemed to be incomplete.

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined
below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation-dependent restrictions.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached.

e The following base internal formats from table 3.11 are color-renderable:
RED, RG, RGB, and RGBA. The sized internal formats from table 3.12 that
have a color-renderable base internal format are also color-renderable. No
other formats, including compressed internal formats, are color-renderable.

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 212

An internal format is depth-renderable if it is DEPTH_COMPONENT oOr one
of the formats from table 3.13 whose base internal format is DEPTH -
COMPONENT or DEPTH_STENCIL. No other formats are depth-renderable.

An internal format is stencil-renderable if it is STENCIL_INDEX oOr
DEPTH_STENCIL, if it is one of the STENCIIL_INDEX formats from ta-
ble 4.10, or if it is one of the formats from table 3.13 whose base internal
format is DEPTH_STENCIL. No other formats are stencil-renderable.

Framebuffer Attachment Completeness

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the framebuffer
attachment point attachment is not NONE, then it is said that a framebuffer-
attachable image, named image, is attached to the framebuffer at the attachment
point. image is identified by the state in attachment as described in section 4.4.2.

The framebuffer attachment point atfachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for
attachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

image is a component of an existing object with the name specified by
FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, and of the type specified by
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

The width and height of image are non-zero.

If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE iS TEXTURE and
FRAMEBUFFER_ATTACHMENT_OBJECT_NAME names a three-dimensional
texture, then FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER must be
smaller than the depth of the texture.

If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE and
FRAMEBUFFER_ATTACHMENT_ OBJECT_NAME names a one- Or two-
dimensional array texture, then FRAMEBUFFER_ATTACHMENT_TEXTURE_—
LAYER must be smaller than the number of layers in the texture.

If attachment is COLOR_ATTACHMENT:, then image must have a color-
renderable internal format.

If attachment is DEPTH_ATTACHMENT, then image must have a depth-
renderable internal format.

If attachment is STENCIL_ATTACHMENT, then image must have a stencil-
renderable internal format.

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 213

Whole Framebuffer Completeness

Each rule below is followed by an error token enclosed in { brackets }. The mean-
ing of these errors is explained below and under “Effects of Framebuffer Com-
pleteness on Framebuffer Operations™ later in section 4.4.4.

The framebuffer object target is said to be framebuffer complete if all the fol-
lowing conditions are true:

e target is the default framebuffer, and the default framebuffer exists.

{ FRAMEBUFFER_UNDEFINED }

o All framebuffer attachment points are framebuffer attachment complete.

{ FRAMEBUFFER_INCOMPLETE_ATTACHMENT }

e There is at least one image attached to the framebuffer.

{ FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT }

e The value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE must not be
NONE for any color attachment point(s) named by DRAW_BUFFERs.

{ FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER }

e If READ_BUFFER is not NONE, then the value of FRAMEBUFFER_-
ATTACHMENT_OBJECT_TYPE must not be NONE for the color attachment
point named by READ_BUFFER.

{ FRAMEBUFFER_INCOMPLETE_READ_BUFFER }

e The combination of internal formats of the attached images does not violate
an implementation-dependent set of restrictions.

{ FRAMEBUFFER_UNSUPPORTED }

e The value of RENDERBUFFER_SAMPLES is the same for all attached render-
buffers; and, if the attached images are a mix of renderbuffers and textures,
the value of RENDERBUFFER_SAMPLES is zero for all attached renderbuffers.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 214

The token in brackets after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus (see below) that is gen-
erated when that clause is violated. If more than one clause is violated, it is
implementation-dependent which value will be returned by CheckFramebuffer-
Status.

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete:

e Binding to a different framebuffer with BindFramebuffer.

e Attaching an image to the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

e Detaching an image from the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

e Changing the internal format of a texture image that is attached to the frame-
buffer by calling CopyTexImage* or Compressed TexImage*.

e Changing the internal format of a renderbuffer that is attached to the frame-
buffer by calling RenderbufferStorage.

e Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-
ing an image that is attached to a framebuffer object that is bound to the
framebuffer.

e Changing the read buffer or one of the draw buffers.

e Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
those described in section 1.6.2.

Although the GL defines a wide variety of internal formats for framebuffer-
attachable images, such as texture images and renderbuffer images, some imple-
mentations may not support rendering to particular combinations of internal for-
mats. If the combination of formats of the images attached to a framebuffer object
are not supported by the implementation, then the framebuffer is not complete un-
der the clause labeled FRAMEBUFFER_UNSUPPORTED.

Implementations are required to support certain combinations of framebuffer
internal formats as described under “Required Framebuffer Formats” in sec-
tion 4.4.4.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 215

set of attached images is modified, it is strongly advised, though not required, that
an application check to see if the framebuffer is complete prior to rendering. The
status of the framebuffer object currently bound to target can be queried by calling

enum CheckFramebufferStatus(enum rarget);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, oOr
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. If
CheckFramebufferStatus generates an error, zero is returned.

Otherwise, a value is returned that identifies whether or not the framebuffer
bound to farget is complete, and if not complete the value identifies one of the
rules of framebuffer completeness that is violated. If the framebuffer is complete,
then FRAMEBUFFER_COMPLETE is returned.

The values of SAMPLE_BUFFERS and SAMPLES are derived from the at-
tachments of the currently bound framebuffer object. If the current DRAW_—
FRAMEBUFFER_BINDING is not framebuffer complete, then both SAMPLE_-
BUFFERS and SAMPLES are undefined. Otherwise, SAMPLES is equal to the value
of RENDERBUFFER_SAMPLES for the attached images (which all must have the
same value for RENDERBUFFER_SAMPLES). Further, SAMPLE_BUFFERS is one if
SAMPLES is non-zero. Otherwise, SAMPLE_BUFFERS 1S zero.

Required Framebuffer Formats

Implementations must support framebuffer objects with up to MAX COLOR_-
ATTACHMENTS color attachments, a depth attachment, and a stencil attachment.
Each color attachment may be in any of the required color formats for textures
and renderbuffers described in sections 3.8.1 and 4.4.2. The depth attachment may
be in any of the required depth or combined depth+stencil formats described in
those sections, and the stencil attachment may be in any of the required combined
depth+stencil formats.

There must be at least one default framebuffer format allowing creation of a
default framebuffer supporting front-buffered rendering.

Effects of Framebuffer Completeness on Framebuffer Operations

Attempting to render to or read from a framebuffer which is not framebuffer com-
plete will generate an INVALID_FRAMEBUFFER_OPERATION error. This means
that rendering commands such as DrawArrays or one of the other drawing com-
mands defined in section 2.8.2, as well as commands that read the framebuffer
such as ReadPixels, CopyTexImage, and CopyTexSubImage, will generate the

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 216

error INVALID_FRAMEBUFFER_OPERATION if called while the framebuffer is not
framebuffer complete.

4.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 6.41 may change when a change
is made to DRAW_FRAMEBUFFER_BINDING, to the state of the currently bound
framebuffer object, or to an image attached to the currently bound framebuffer
object.

When DRAW_FRAMEBUFFER_BINDING is zero, the values of the state variables
listed in table 6.41 are implementation defined.

When DRAW_FRAMEBUFFER_BINDING is non-zero, if the currently bound
framebuffer object is not framebuffer complete, then the values of the state vari-
ables listed in table 6.41 are undefined.

When DRAW_FRAMEBUFFER_BINDING is non-zero and the currently bound
framebuffer object is framebuffer complete, then the values of the state variables
listed in table 6.41 are completely determined by DRAW_FRAMEBUFFER_BINDING,
the state of the currently bound framebuffer object, and the state of the images at-
tached to the currently bound framebuffer object. The actual sizes of the color,
depth, or stencil bit planes can be obtained by querying an attachment point us-
ing GetFramebufferAttachmentParameteriv, or querying the object attached to
that point. If the value of FRAMEBUFFER_ATTACHMENT OBJECT_TYPE at a par-
ticular attachment point is RENDERBUFFER, the sizes may be determined by call-
ing GetRenderbufferParameteriv as described in section 6.1.3. If the value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE at a particular attachment point is
TEXTURE, the sizes may be determined by calling GetTexParameter, as described
in section 6.1.3.

4.4.6 Mapping between Pixel and Element in Attached Image

When DRAW_FRAMEBUFFER_BINDING is non-zero, an operation that writes to the
framebuffer modifies the image attached to the selected logical buffer, and an oper-
ation that reads from the framebuffer reads from the image attached to the selected
logical buffer.

If the attached image is a renderbuffer image, then the window coordinates
(Zw, Yuw) corresponds to the value in the renderbuffer image at the same coordi-
nates.

If the attached image is a texture image, then the window coordinates (., y)
correspond to the texel (7, j, k) from figure 3.6 as follows:

i = (xy —b)

OpenGL 3.1 - May 28, 2009

4.4. FRAMEBUFFER OBJECTS 217

J=(Yw—b)
k = (layer — b)

where b is the texture image’s border width and layer is the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER for the selected logical buffer.
For a two-dimensional texture, k and layer are irrelevant; for a one-dimensional
texture, j, k, and layer are irrelevant.

(T, Y) corresponds to a border texel if ., Y4, Or layer is less than the border
width, or if x,,, y,, or layer is greater than or equal to the border width plus the
width, height, or depth, respectively, of the texture image.

Conversion to Framebuffer-Attachable Image Components

When an enabled color value is written to the framebuffer while the draw frame-
buffer binding is non-zero, for each draw buffer the R, G, B, and A values are
converted to internal components as described in table 3.11, according to the ta-
ble row corresponding to the internal format of the framebuffer-attachable image
attached to the selected logical buffer, and the resulting internal components are
written to the image attached to logical buffer. The masking operations described
in section 4.2.2 are also effective.

Conversion to RGBA Values

When a color value is read or is used as the source of a logical operation or blending
while the read framebuffer binding is non-zero, the components of the framebuffer-
attachable image that is attached to the logical buffer selected by READ_BUFFER
are first converted to R, G, B, and A values according to table 3.20 and the internal
format of the attached image.

OpenGL 3.1 - May 28, 2009

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of flushing and finishing
(used to synchronize the GL command stream), and hints.

5.1 Flush and Finish
The command
void Flush(void);

indicates that all commands that have previously been sent to the GL must complete
in finite time.
The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.2 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enum target, enum hint);

218

5.2. HINTS 219

Target ‘ Hint description
LINE_SMOOTH_HINT Line sampling quality
POLYGON_SMOOTH_HINT Polygon sampling quality
TEXTURE_COMPRESSTION_HINT Quality and performance of

texture image compression
FRAGMENT_SHADER_DERIVATIVE_HINT | Derivative accuracy for fragment
processing built-in functions
dFdx, dFdy and fwidth

Table 5.1: Hint targets and descriptions.

target is a symbolic constant indicating the behavior to be controlled, and hint is a
symbolic constant indicating what type of behavior is desired. The possible targets
are described in table 5.1; for each target, hint must be one of FASTEST, indicating
that the most efficient option should be chosen; NICEST, indicating that the highest
quality option should be chosen; and DONT_CARE, indicating no preference in the
matter.

For the texture compression hint, a hint of FASTEST indicates that texture im-
ages should be compressed as quickly as possible, while NICEST indicates that
the texture images be compressed with as little image degradation as possible.
FASTEST should be used for one-time texture compression, and NICEST should
be used if the compression results are to be retrieved by GetCompressed TexIm-
age (section 6.1.4) for reuse.

The interpretation of hints is implementation-dependent. An implementation
may ignore them entirely.

The initial value of all hints is DONT_CARE.

OpenGL 3.1 - May 28, 2009

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2. Most
state is set through the calls described in previous chapters, and can be queried
using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set of Get commands. There are
four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data);
void Getlntegerv(enum value, int *data);
void GetFloatv(enum value, f£loat *data);
void GetDoublev(enum value, double *data);

The commands obtain boolean, integer, floating-point, or double-precision state
variables. value is a symbolic constant indicating the state variable to return. data
is a pointer to a scalar or array of the indicated type in which to place the returned
data.

Indexed simple state variables are queried with the commands

void GetBooleani_v(enum rarget, uint index,

boolean *data);
void Getlntegeri_v(enum target, uint index, int *data);

220

6.1. QUERYING GL STATE 221

target is the name of the indexed state and index is the index of the particular
element being queried. data is a pointer to a scalar or array of the indicated type in
which to place the returned data. An INVALID_VALUE error is generated if index
is outside the valid range for the indexed state target.

Finally,

boolean IsEnabled(enum value);

can be used to determine if value is currently enabled (as with Enable) or disabled,
and

boolean IsEnabledi(enum farget, uint index);

can be used to determine if the indexed state corresponding to target and index is
enabled or disabled. An INVALID_VALUE error is generated if index is outside the
valid range for the indexed state target.

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed. If GetBooleanv is called, a
floating-point or integer value converts to FALSE if and only if it is zero (otherwise
it converts to TRUE). If GetIntegerv (or any of the Get commands below) is called,
a boolean value of TRUE or FALSE is interpreted as 1 or 0, respectively, and a
floating-point value is rounded to the nearest integer, unless the value is an RGBA
color component, a DepthRange value, or a depth buffer clear value. In these
cases, the Get command converts the floating-point value to an integer according
to the INT entry of table 4.9; a value not in [—1, 1] converts to an undefined value.
If GetFloatv is called, a boolean value of TRUE or FALSE is interpreted as 1.0 or
0.0, respectively, an integer is coerced to floating-point, and a double-precision
floating-point value is converted to single-precision. Analogous conversions are
carried out in the case of GetDoublev. If a value is so large in magnitude that it
cannot be represented with the requested type, then the nearest value representable
using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f.

If fragment color clamping is enabled, querying of the texture border color,
blend color, and RGBA clear color will clamp the corresponding state values to

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 222

[0, 1] before returning them. This behavior provides compatibility with previous
versions of the GL that clamped these values when specified.

Most texture state variables are qualified by the value of ACTIVE_TEXTURE to
determine which server texture state vector is queried. Table 6.12 indicates those
state variables which are qualified by ACTIVE_TEXTURE during state queries. All
other texture state queries will result in an INVALID_OPERATION error if the value
of ACTIVE_TEXTURE is greater than or equal to MAX_COMBINED_TEXTURE_-
IMAGE_UNITS.

Vertex array state variables are qualified by the value of VERTEX_ARRAY_-—
BINDING to determine which vertex array object is queried. Tables 6.3 and 6.4
define the set of state stored in a vertex array object.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category as
well as a symbolic constant.
The commands

void GetTexParameter{if}v(enum target, enum value,
T data);

void GetTexParameterI{i ui}v(enum rarget, enumvalue,
T data);

place information about texture parameter value for the specified target into data.
value must be one of the symbolic values in table 3.16.

target may be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_—
1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_RECTANGLE, of TEXTURE_CUBE_-
MAP, indicating the currently bound one-, two-, three-dimensional, one- or two-
dimensional array, rectangular, or cube map texture object.

Querying value TEXTURE_BORDER_COLOR with GetTexParameterliv or Get-
TexParameterlIuiv returns the border color values as signed integers or unsigned
integers, respectively; otherwise the values are returned as described in sec-
tion 6.1.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

void GetTexLevelParameter{if}v(enum target, int lod,
enum value, T data);

places information about texture image parameter value for level-of-detail lod of
the specified farget into data. value must be one of the symbolic values in ta-
ble 6.14.

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 223

target may be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_ -
1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_-
MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_-
MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_-
MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_Z, PROXY_TEXTURE_1D,
PROXY_TEXTURE_2D, PROXY_TEXTURE_3D, PROXY_TEXTURE_1D_ARRAY,
PROXY_TEXTURE_2D_ARRAY, PROXY_TEXTURE_RECTANGLE, Or PROXY_-
TEXTURE_CUBE_MAP, indicating the one-, two-, or three-dimensional texture,
one- or two-dimensional array texture, rectangular texture, one of the six
distinct 2D images making up the cube map texture object, or the one-, two-,
three-dimensional, one- or two-dimensional array, rectangular, or cube map proxy
state vector.

target may also be TEXTURE_BUFFER, indicating the texture buffer. In the case
lod must be zero or an INVALID_VALUE error is generated.

Note that TEXTURE_CUBE_MAP is not a valid farget parameter for Get-
TexLevelParameter, because it does not specify a particular cube map face.

lod determines which level-of-detail’s state is returned. If /od is less than zero
or larger than the maximum allowable level-of-detail, then an INVALID_VALUE
error is generated.

For texture images with uncompressed internal formats, queries of
value TEXTURE_RED_TYPE, TEXTURE_GREEN_TYPE, TEXTURE_BLUE_TYPE,
TEXTURE_ALPHA_TYPE, and TEXTURE_DEPTH_TYPE return the data type used
to store the component. Types NONE, SIGNED_NORMALIZED, UNSIGNED_-
NORMALIZED, FLOAT, INT, and UNSIGNED_INT respectively indicate missing,
signed normalized fixed-point, unsigned normalized fixed-point, floating-point,
signed unnormalized integer, and unsigned unnormalized integer components.
Queries of value TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_-—
BLUE_SIZE, TEXTURE_ALPHA_SIZE, TEXTURE_DEPTH_SIZE, TEXTURE_-
STENCIL_SIZE, and TEXTURE_SHARED_SIZE return the actual resolutions of the
stored image array components, not the resolutions specified when the image array
was defined. For texture images with a compressed internal format, the resolutions
returned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Querying value TEXTURE_COMPRESSED_IMAGE_SIZE returns the size (in
ubytes) of the compressed texture image that would be returned by GetCom-
pressedTexImage (section 6.1.4). Querying TEXTURE_COMPRESSED_IMAGE_—
SIZzE is not allowed on texture images with an uncompressed internal format or on

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 224

proxy targets and will result in an INVALID_OPERATION error if attempted.

Queries of value TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH,
and TEXTURE_BORDER return the width, height, depth, and border as specified
when the image array was created. The internal format of the image array is queried
as TEXTURE_INTERNAL_FORMAT.

6.1.4 Texture Queries

The command

void GetTexImage(enum tex, int lod, enum format,
enum type, void *img);

is used to obtain texture images. It is somewhat different from the other Get* com-
mands; tex is a symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtained. TEXTURE_1D, TEXTURE_—
2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, and TEXTURE_—
RECTANGLE indicate a one-, two-, or three-dimensional, one- or two-dimensional
array, or rectangular texture respectively. TEXTURE_CUBE_MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, and
TEXTURE_CUBE_MAP_NEGATIVE_Z indicate the respective face of a cube map
texture. lod is a level-of-detail number, format is a pixel format from table 3.3,
type is a pixel type from table 3.2.

Any of the following mismatches between format and the internal format of
the texture image will generate an INVALID_OPERATION error:

e format is a color format (one of the formats in table 3.3 whose target is the
color buffer) and the base internal format of the texture image is not a color
format.

e format is DEPTH_COMPONENT and the base internal format is not DEPTH_ -
COMPONENT or DEPTH_STENCIL.

e format is DEPTH_STENCIL and the base internal format is not DEPTH_—
STENCIL.

e format is one of the integer formats in table 3.3 and the internal format of
the texture image is not integer, or format is not one of the integer formats in
table 3.3 and the internal format is integer.

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 225

GetTexImage obtains component groups from a texture image with the indi-
cated level-of-detail. If format is a color format then the components are assigned
among R, G, B, and A according to table 6.1, starting with the first group in the
first row, and continuing by obtaining groups in order from each row and proceed-
ing from the first row to the last, and from the first image to the last for three-
dimensional textures. One- and two-dimensional array textures are treated as two-
and three-dimensional images, respectively, where the layers are treated as rows or
images. If format is DEPTH_COMPONENT, then each depth component is assigned
with the same ordering of rows and images. If format is DEPTH_STENCIL, then
each depth component and each stencil index is assigned with the same ordering
of rows and images.

These groups are then packed and placed in client or pixel buffer object mem-
ory. If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_-
PACK_BUFFER_BINDING), img is an offset into the pixel pack buffer; otherwise,
img is a pointer to client memory. Pixel storage modes that are applicable to
ReadPixels are applied.

For three-dimensional and two-dimensional array textures, pixel storage op-
erations are applied as if the image were two-dimensional, except that the addi-
tional pixel storage state values PACK_IMAGE_HEIGHT and PACK_SKIP_IMAGES
are applied. The correspondence of texels to memory locations is as defined for
TexImage3D in section 3.8.1.

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). Calling Get-
TexImage with lod less than zero or larger than the maximum allowable causes
the error INVALID_VALUE. Calling GetTexImage with a format of STENCIL_-
INDEX causes the error INVALTID_ENUM. Calling GetTexImage with a non-zero
lod when tex is TEXTURE_RECTANGLE causes the error INVALID_VALUE. If a
pixel pack buffer object is bound and packing the texture image into the buffer’s
memory would exceed the size of the buffer, an INVALID_OPERATION error re-
sults. If a pixel pack buffer object is bound and img is not evenly divisible by
the number of basic machine units needed to store in memory the GL data type
corresponding to fype (see table 3.2), an INVALID_OPERATION error results.

The command

void GetCompressedTexImage(enum farget, int lod,
void *img);

is used to obtain texture images stored in compressed form. The parameters tar-
get, lod, and img are interpreted in the same manner as in GetTexImage. When
called, GetCompressedTexImage writes n ubytes of compressed image data to

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 226

Base Internal Format ‘ R ‘ G ‘ B ‘ A ‘
RED R, | O 0 1
RG R; Gl 0 1
RGB R; Gz B; 1
RGBA R, | G| B; | A4

Table 6.1: Texture, table, and filter return values. R;, G;, B;, and A; are compo-
nents of the internal format that are assigned to pixel values R, G, B, and A. If a
requested pixel value is not present in the internal format, the specified constant
value is used.

the pixel pack buffer or client memory pointed to by img, where n is the value
of TEXTURE_COMPRESSED_IMAGE_SIZE for the texture. The compressed image
data is formatted according to the definition of the texture’s internal format. All
pixel storage modes are ignored when returning a compressed texture image.

Calling GetCompressedTexImage with an lod value less than zero or greater
than the maximum allowable causes an INVALID_VALUE error. Calling GetCom-
pressedTexImage with a texture image stored with an uncompressed internal for-
mat causes an INVALID_OPERATION error. If a pixel pack buffer object is bound
and ¢mg + n is greater than the size of the buffer, an INVALID_OPERATION error
results.

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If fexture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE. A name returned by GenTextures, but not yet bound, is
not the name of a texture object.

6.1.5 String Queries

String queries return pointers to UTF-8 encoded, NULL-terminated static
strings describing properties of the current GL context . The command
ubyte *GetString(enum name);

accepts name values of RENDERER, VENDOR, VERSION, and SHADING_-
LANGUAGE_VERSION. The format of the RENDERER and VENDOR strings is

! Applications making copies of these static strings should never use a fixed-length buffer, because
the strings may grow unpredictably between releases, resulting in buffer overflow when copying.

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 227

implementation-dependent. The VERSION and SHADING_LANGUAGE_VERSION
strings are laid out as follows:

<version number> <space><vendor-specific information>

The version number is either of the form major_number.minor_number or major _-
number.minor_number.release_number, where the numbers all have one or more
digits. The release_number and vendor specific information are optional. How-
ever, if present, then they pertain to the server and their format and contents are
implementation-dependent.

GetString returns the version number (in the VERSION string) that can be
supported by the current GL context. Thus, if the client and server support different
versions a compatible version is returned.

The GL version may also be queried by calling GetIntegerv with values
MAJOR_VERSION and MINOR_VERSION, which respectively return the same val-
ues as major_number and minor_number in the VERSION string, and value
CONTEXT_FLAGS, which returns a set of flags defining additional properties of
a context. If CONTEXT_FLAG_FORWARD_COMPATIBLE_BIT iS set in CONTEXT_-
FLAGS, then the context is a forward-compatible context as defined in appendix E,
and the deprecated features described in that appendix are not supported; other-
wise the context is a full context, and all features described in the specification are
supported.

Indexed strings are queried with the command

ubyte *GetStringi(enum name, uint index);

name is the name of the indexed state and index is the index of the particular ele-
ment being queried. name may only be EXTENSIONS, indicating that the extension
name corresponding to the indexth supported extension should be returned. index
may range from zero to the value of NUM_EXTENSIONS minus one. There is no
defined relationship between any particular extension name and the index values;
an extension name may correspond to a different index in different GL contexts
and/or implementations.

An INVALID_VALUE error is generated if index is outside the valid range for
the indexed state name.

6.1.6 Asynchronous Queries

The command

boolean IsQuery(uint id);

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 228

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.
Information about a query target can be queried with the command

void GetQueryiv(enum farget, enum pname, int *params);

target identifies the query target, and must be one of SAMPLES_PASSED for
occlusion queries or PRIMITIVES_GENERATED and TRANSFORM_FEEDBACK_-
PRIMITIVES_WRITTEN for primitive queries.

If pname is CURRENT_QUERY, the name of the currently active query for target, or
zero if no query is active, will be placed in params.

If pname is QUERY_COUNTER_BITS, the implementation-dependent number of
bits used to hold the query result for rarger will be placed in params. The number
of query counter bits may be zero, in which case the counter contains no useful
information.

For primitive queries (PRIMITIVES_GENERATED and TRANSFORM -
FEEDBACK_PRIMITIVES_WRITTEN) if the number of bits is non-zero, the
minimum number of bits allowed is 32.

For occlusion queries (SAMPLES_PASSED), if the number of bits is non-zero,
the minimum number of bits allowed is a function of the implementation’s maxi-
mum viewport dimensions (MAX_VIEWPORT_DIMS). The counter must be able to
represent at least two overdraws for every pixel in the viewport. The formula to
compute the allowable minimum value (where n is the minimum number of bits)
is

n = min{32, [logy (maxViewportWidth x maxViewportHeight x 2)]}.
The state of a query object can be queried with the commands

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

If id is not the name of a query object, or if the query object named by id is currently
active, then an INVALID_OPERATION error is generated.

If pname is QUERY_RESULT, then the query object’s result value is returned as
a single integer in params. If the value is so large in magnitude that it cannot be
represented with the requested type, then the nearest value representable using the

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE

requested type is returned. If the number of query counter bits for farget is zero,
then the result is returned as a single integer with the value zero.

There may be an indeterminate delay before the above query returns. If pname
is QUERY_RESULT_AVAILABLE, FALSE is returned if such a delay would be re-
quired; otherwise TRUE is returned. It must always be true that if any query object
returns a result available of TRUE, all queries of the same type issued prior to that
query must also return TRUE.

Querying the state for any given query object forces that occlusion query to
complete within a finite amount of time.

If multiple queries are issued using the same object name prior to calling Get-
QueryObject[uliv, the result and availability information returned will always be
from the last query issued. The results from any queries before the last one will be
lost if they are not retrieved before starting a new query on the same target and id.

6.1.7 Buffer Object Queries

The command
boolean IsBuffer(uint buffer);

returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.
The command

void GetBufferParameteriv(enum farget, enum pname,
int *data);

returns information about a bound buffer object. farget must be one of the targets
listed in table 2.5, and pname must be one of the buffer object parameters in ta-
ble 2.6, other than BUFFER_MAP_POINTER. The value of the specified parameter
of the buffer object bound to target is returned in data.

The command

void GetBufferSubData(enum target, intptr offset,
sizeiptr size, void *data);

queries the data contents of a buffer object. farget must be one of the targets listed
in table 2.5. offset and size indicate the range of data in the buffer object that is
to be queried, in terms of basic machine units. data specifies a region of client
memory, size basic machine units in length, into which the data is to be retrieved.

OpenGL 3.1 - May 28, 2009

229

6.1. QUERYING GL STATE

An error is generated if GetBufferSubData is executed for a buffer object that
is currently mapped.

While the data store of a buffer object is mapped, the pointer to the data store
can be queried by calling

void GetBufferPointerv(enum target, enum pname,
void **params);

with rarget set to one of the targets listed in table 2.5 and pname set to BUFFER_—
MAP_POINTER. The single buffer map pointer is returned in params. GetBuffer-
Pointerv returns the NULL pointer value if the buffer’s data store is not currently
mapped, or if the requesting client did not map the buffer object’s data store, and
the implementation is unable to support mappings on multiple clients.

To query which buffer objects are bound to the array of uniform buffer binding
points and will be used as the storage for active uniform blocks, call GetIntegeri_v
with param set to UNIFORM_BUFFER_BINDING. index must be in the range zero
to the value of MAX_UNIFORM_BUFFER_BINDINGS - 1. The name of the buffer
object bound to index is returned in values. If no buffer object is bound for index,
zero is returned in values.

To query the starting offset or size of the range of each buffer object bind-
ing used for uniform buffers, call GetIntegeri_v with param set to UNIFORM_—
BUFFER_START or UNIFORM_BUFFER_SIZE respectively. index must be in the
range zero to the value of MAX_UNIFORM_BUFFER_BINDINGS - 1. If the param-
eter (starting offset or size) was not specified when the buffer object was bound,
zero is returned. If no buffer object is bound to index, -1 is returned.

To query which buffer objects are bound to the array of transform feedback
binding points and will be used when transform feedback is active, call GetInte-
geri_v with param set to TRANSFORM_FEEDBACK_BUFFER_BINDING. index must
be in the range zero to the value of MAX_TRANSFORM_FEEDBACK_SEPARATE_-
ATTRIBS - 1. The name of the buffer object bound to index is returned in values.
If no buffer object is bound for index, zero is returned in values.

To query the starting offset or size of the range of each buffer object binding
used for transform feedback, call GetIntegeri_v with param set to TRANSFORM_ —
FEEDBACK_BUFFER_START or TRANSFORM_FEEDBACK_BUFFER_SIZE respec-
tively. index must be in the range O to the value of MAX_TRANSFORM_FEEDBACK_—
SEPARATE_ATTRIBS - 1. If the parameter (starting offset or size) was not specified
when the buffer object was bound, zero is returned. If no buffer object is bound to
index, -1 is returned.

OpenGL 3.1 - May 28, 2009

230

6.1. QUERYING GL STATE 231

6.1.8 Vertex Array Object Queries

The command
boolean IsVertexArray(uint array);

returns TRUE if array is the name of a vertex array object. If array is zero, or a
non-zero value that is not the name of a vertex array object, IsVertexArray returns
FALSE. No error is generated if array is not a valid vertex array object name.

6.1.9 Shader and Program Queries

State stored in shader or program objects can be queried by commands that ac-
cept shader or program object names. These commands will generate the error
INVALID_VALUE if the provided name is not the name of either a shader or pro-
gram object, and INVALID_OPERATION if the provided name identifies an object
of the other type. If an error is generated, variables used to hold return values are
not modified.

The command

boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

The command

void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, VERTEX_SHADER is returned if shader is a vertex
shader object, and FRAGMENT_SHADER is returned if shader is a fragment shader
object. If pname is DELETE_STATUS, TRUE is returned if the shader has been
flagged for deletion and FALSE is returned otherwise. If pname is COMPILE_-
STATUS, TRUE is returned if the shader was last compiled successfully, and FALSE
is returned otherwise. If pname is INFO_LOG_LENGTH, the length of the info log,
including a null terminator, is returned. If there is no info log, zero is returned. If
pname is SHADER_SOURCE_LENGTH, the length of the concatenation of the source
strings making up the shader source, including a null terminator, is returned. If no
source has been defined, zero is returned.

The command

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 232

boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise. If pname is LINK_STATUS, TRUE
is returned if the program was last compiled successfully, and FALSE is returned
otherwise. If pname is VALIDATE_STATUS, TRUE is returned if the last call to Val-
idateProgram with program was successful, and FALSE is returned otherwise. If
pname is INFO_LOG_LENGTH, the length of the info log, including a null termina-
tor, is returned. If there is no info log, zero is returned. If pname is ATTACHED_—
SHADERS, the number of objects attached is returned. If pname is ACTIVE_-
ATTRIBUTES, the number of active attributes in program is returned. If no ac-
tive attributes exist, zero is returned. If pname is ACTIVE_ATTRIBUTE_MAX_-—
LENGTH, the length of the longest active attribute name, including a null terminator,
is returned. If no active attributes exist, zero is returned. If pname is ACTIVE_-
UNIFORMS, the number of active uniforms is returned. If no active uniforms ex-
ist, zero is returned. If pname is ACTIVE_UNIFORM_MAX_LENGTH, the length of
the longest active uniform name, including a null terminator, is returned. If no
active uniforms exist, zero is returned. If pname is TRANSFORM_FEEDBACK_-—
BUFFER_MODE, the buffer mode used when transform feedback is active is re-
turned. It can be one of SEPARATE_ATTRIBS or INTERLEAVED_ATTRIBS. If
pname is TRANSFORM_FEEDBACK_VARYINGS, the number of varying variables
to capture in transform feedback mode for the program is returned. If prame is
TRANSFORM_FEEDBACK_VARYING_MAX_ LENGTH, the length of the longest vary-
ing name specified to be used for transform feedback, including a null terminator,
is returned. If no varyings are used for transform feedback, zero is returned. If
pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform blocks for program
containing active uniforms is returned. If pname is ACTIVE_UNIFORM_BLOCK_-—
MAX_NAME_LENGTH, the length of the longest active uniform block name, includ-
ing the null terminator, is returned.

The command

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 233

void GetAttachedShaders(uint program, sizei maxCount,
sizeil *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders are
attached, count is set to zero. If count is NULL then it is ignored. The maximum
number of shader names that may be written into shaders is specified by maxCount.
The number of objects attached to program is given by can be queried by calling
GetProgramiv with ATTACHED_SHADERS.

A string that contains information about the last compilation attempt on a
shader object or last link or validation attempt on a program object, called the
info log, can be obtained with the commands

void GetShaderInfol.og(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramlnfolLog(uint program, sizei bufSize,
sizei *length, char *infoLog);

These commands return the info log string in infoLog. This string will be null-
terminated. The actual number of characters written into infoLog, excluding the
null terminator, is returned in length. If length is NULL, then no length is returned.
The maximum number of characters that may be written into infoLog, including
the null terminator, is specified by bufSize. The number of characters in the info
log can be queried with GetShaderiv or GetProgramiv with INFO_LOG_LENGTH.
If shader is a shader object, the returned info log will either be an empty string or
it will contain information about the last compilation attempt for that object. If
program is a program object, the returned info log will either be an empty string or
it will contain information about the last link attempt or last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.
The string source will be null-terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE 234

source, including the null terminator, is specified by bufSize. The string source is
a concatenation of the strings passed to the GL using ShaderSource. The length
of this concatenation is given by SHADER_SOURCE_LENGTH, which can be queried
with GetShaderiv.

The commands

void GetVertexAttribdv(uint index, enum pname,
double *params);

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

void GetVertexAttribliv(uint index, enum pname,
int *params);

void GetVertexAttribluiv(uint index, enum pname,
uint *params);

obtain the vertex attribute state named by pname for the generic vertex attribute
numbered index and places the information in the array params. pname must
be one of VERTEX ATTRIB_ARRAY BUFFER_BINDING, VERTEX ATTRIB_-
ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_ SIZE, VERTEX ATTRIB_ARRAY -
STRIDE, VERTEX_ATTRIB_ARRAY_TYPE, VERTEX_ATTRIB_ARRAY_ -
NORMALIZED, VERTEX_ATTRIB_ARRAY_ INTEGER, Or CURRENT_VERTEX -
ATTRIB. Note that all the queries except CURRENT_VERTEX_ATTRIB return values
stored in the currently bound vertex array object (the value of VERTEX_ARRAY_—
BINDING). If the zero object is bound, these values are client state. The error
INVALID_VALUE is generated if index is greater than or equal to MAX_VERTEX_—
ATTRIBS.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex
attribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type, normalized flag, and unconverted integer flag are set by the
commands VertexAttribPointer and VertexAttribIPointer. The normalized flag
is always set to FALSE by VertexAttribIPointer. The unconverted integer flag is
always set to FALSE by VertexAttribPointer and TRUE by VertexAttribIPointer.

The query CURRENT_VERTEX_ATTRIB returns the current value for the
generic attribute index. GetVertexAttribdv and GetVertexAttribfv read and re-
turn the current attribute values as floating-point values; GetVertexAttribiv reads
them as floating-point values and converts them to integer values; GetVertexAt-
tribliv reads and returns them as integers; GetVertexAttribIuiv reads and returns

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE

them as unsigned integers. The results of the query are undefined if the current
attribute values are read using one data type but were specified using a different
one.

The command

void GetVertexAttribPointerv(uint index, enum pname,
void **pointer);

obtains the pointer named pname for the vertex attribute numbered index and places
the information in the array pointer. pname must be VERTEX_ATTRIB_ARRAY_ -
POINTER. The value returned is queried from the currently bound vertex array
object. If the zero object is bound, the value is queried from client state. An
INVALID_VALUE error is generated if index is greater than or equal to the value of
MAX_VERTEX_ ATTRIBS.

The commands

void GetUniformfv(uint program, int location,
float *params);

void GetUniformiv(uint program, int location,
int *params);

void GetUniformuiv(uint program, int location,
uint *params);

return the value or values of the uniform at location location of the default uni-
form block for program object program in the array params. The type of the uni-
form at location determines the number of values returned. The error INVALID -
OPERATION is generated if program has not been linked successfully, or if location
is not a valid location for program. In order to query the values of an array of uni-
forms, a GetUniform* command needs to be issued for each array element. If the
uniform queried is a matrix, the values of the matrix are returned in column major
order. If an error occurred, params will not be modified.

6.1.10 Framebuffer Object Queries

The command
boolean IsFramebuffer(uint framebuffer);

returns TRUE if framebuffer is the name of an framebuffer object. If framebuffer is
zero, or if framebuffer is a non-zero value that is not the name of an framebuffer
object, IsFramebuffer return FALSE.

The command

OpenGL 3.1 - May 28, 2009

235

6.1. QUERYING GL STATE 236

void GetFramebufferAttachmentParameteriv(enum target,
enum attachment, enum pname, int *params);

returns information about attachments of a bound framebuffer object. rar-
get must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

If the default framebuffer is bound to farget, then attachment must be one of
FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, or BACK_RIGHT, identifying a color
buffer; DEPTH, identifying the depth buffer; or STENCIL, identifying the stencil
buffer.

If a framebuffer object is bound to target, then attachment must be one of the
attachment points of the framebuffer listed in table 4.11.

If attachment is DEPTH_STENCIL_ATTACHMENT, and different objects are
bound to the depth and stencil attachment points of farget, the query will fail and
generate an INVALID_OPERATION error. If the same object is bound to both at-
tachment points, information about that object will be returned.

Upon successful return from GetFramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then param will contain
one of NONE, FRAMEBUFFER_DEFAULT, TEXTURE, or RENDERBUFFER, identify-
ing the type of object which contains the attached image. Other values accepted
for pname depend on the type of object, as described below.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, no
framebuffer is bound to target. In this case querying pname FRAMEBUFFER_—
ATTACHMENT_OBJECT_NAME will return zero, and all other queries will generate
an INVALID_OPERATION error.

If the value of FRAMEBUFFER_ATTACHMENT_ OBJECT_TYPE iS not NONE,
these queries apply to all other framebuffer types:

o H?pname 1S FRAMEBUFFER_ATTACHMENT_RED_SIZE, FRAMEBUFFER_—

ATTACHMENT_GREEN_SIZE, FRAMEBUFFER_ATTACHMENT_BLUE_ -
SIZE, FRAMEBUFFER_ATTACHMENT_ALPHA_ SIZE, FRAMEBUFFER_-—
ATTACHMENT_DEPTH_SIZE, or FRAMEBUFFER_ATTACHMENT_ -

STENCIL_SIZE, then param will contain the number of bits in the
corresponding red, green, blue, alpha, depth, or stencil component of the
specified attachment. Zero is returned if the requested component is not
present in attachment.

e If pname is FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE, param will
contain the format of components of the specified attachment, one of
FLOAT, INT, UNSIGNED_INT, SIGNED_NORMALTIZED, or UNSIGNED_-
NORMALIZED for floating-point, signed integer, unsigned integer, signed

OpenGL 3.1 - May 28, 2009

6.1. QUERYING GL STATE

normalized fixed-point, or unsigned normalized fixed-point components re-
spectively. Only color buffers may have integer components.

o If pname is FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, param will
contain the encoding of components of the specified attachment, one of
LINEAR or SRGB for linear or sSRGB-encoded components, respectively.
Only color buffer components may be sRGB-encoded; such components
are treated as described in sections 4.1.7 and 4.1.8. For the default frame-
buffer, color encoding is determined by the implementation. For framebuffer
objects, components are sSRGB-encoded if the internal format of a color
attachment is one of the color-renderable SRGB formats described in sec-
tion 3.8.15.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE iS
RENDERBUFFER, then

o If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE, then

o If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will
contain the name of the texture object which contains the attached image.

o If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

e If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE and
the texture object named FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a
cube map texture, then params will contain the cube map face of the cube-
map texture object which contains the attached image. Otherwise params
will contain the value zero.

o If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER and the tex-
ture object named FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a three-
dimensional texture or a one- or two-dimensional array texture, then params
will contain the number of the texture layer which contains the attached im-
age. Otherwise params will contain the value zero.

Any combinations of framebuffer type and pname not described above will
generate an INVALID_ENUM error.

OpenGL 3.1 - May 28, 2009

237

6.2. STATE TABLES 238

6.1.11 Renderbuffer Object Queries
The command
boolean IsRenderbuffer(uint renderbuffer);

returns TRUE if renderbuffer is the name of a renderbuffer object. If renderbuffer
is zero, or if renderbuffer is a non-zero value that is not the name of a renderbuffer
object, IsRenderbuffer return FATSE.

The command

void GetRenderbufferParameteriv(enum target, enum pname,
int* params);

returns information about a bound renderbuffer object. target must be
RENDERBUFFER and pname must be one of the symbolic values in table 6.23. If
the renderbuffer currently bound to target is zero, then an INVALID_OPERATION
error is generated.

Upon successful return from GetRenderbufferParameteriv, if pname
iS RENDERBUFFER WIDTH, RENDERBUFFER_HEIGHT, RENDERBUFFER -
INTERNAL_FORMAT, or RENDERBUFFER_SAMPLES, then params will contain
the width in pixels, height in pixels, internal format, or number of samples,
respectively, of the image of the renderbuffer currently bound to target.

If pname is RENDERBUFFER _RED_SIZE, RENDERBUFFER_GREEN_-—
SIZE, RENDERBUFFER_BLUE_SIZE, RENDERBUFFER_ALPHA_SIZE,
RENDERBUFFER_DEPTH_SIZE, or RENDERBUFFER_STENCIL_SIZE, then
params will contain the actual resolutions (not the resolutions specified when
the image array was defined) for the red, green, blue, alpha depth, or stencil
components, respectively, of the image of the renderbuffer currently bound to
target.

Otherwise, an INVALID_ENUM error is generated.

In the tables that follow, a type is indicated for each variable. Table 6.2 explains
these types. The type actually identifies all state associated with the indicated
description; in certain cases only a portion of this state is returned. This is the case
with textures, where only the selected texture or texture parameter is returned.

The M and m entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any of GetBooleanv,

OpenGL 3.1 - May 28, 2009

6.2. STATE TABLES

239

’ Type code ‘ Explanation
B Boolean
BMU Basic machine units
C Color (floating-point R, G, B, and A values)
Z Integer
Zt Non-negative integer or enumerated token value
YAA k-valued integer (k* indicates k is minimum)
R Floating-point number
Rt Non-negative floating-point number
Rla-?) Floating-point number in the range [a, b]
RF k-tuple of floating-point numbers
S NULL-terminated string
I Image
Y Pointer (data type unspecified)
n X type | n copies of type type (n* indicates n is minimum)

Table 6.2: State Variable Types

Getlntegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands — the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained using IsEnabled. However, state vari-
ables for which IsEnabled is listed as the query command can also be obtained
using GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev. State variables
for which any other command is listed as the query command can be obtained by
using that command or any of its typed variants, although information may be lost
when not using the listed command. Unless otherwise specified, when floating-
point state is returned as integer values or integer state is returned as floating-point
values it is converted in the fashion described in section 6.1.2.

OpenGL 3.1 - May 28, 2009

240

6.2. STATE TABLES

1rod ARUIOJqIIN Y
8T) TTINN * * AX *9T YALNIOd AVIIV gIRILLY XALIEA
Aeire que XOMOA -X3)IIARD)
s1950)ur pajIeAuOOUN i
87 : qSTVY.A gX %97 WIDALNI AVI IV dIMLLY XALIIA
sey Aelle QUIE XOMOA AIQLI}}VX9)IIA J99)
pazifewt 3
MN : HSTV A mx * @ﬂ AIZI'TVINION AVIIY dIYLLY XHLIgA
-Iou ABIIR QLB XOMOA AIQLI}}YXJ)I9A J95)
: od£1 Aeire qume X919 677 x AIAL AVIY SIALLY XALIAA
8T) quIE XolPA | IVOTd —— 91
: opLIS ArlIe QLR X119 X HATILS AVIV dI4LLV XALI9dA
8¢ pIn qInye XaleA 0 AIQUIIIVX91I9A195) +Z X *91
: AZIS %Nbﬂ 11)Je X91I9, X % HZISTAVIIY LIV XdLddA
87T I qInye X9leA 4 AIQLI)YX9119A 105 ZX *97
WN HSTVA mx * @H AITIVNT AVIIV dILLV XALIdA
9[qeud ABIIE qLIIB XOLIOA AIQLI}}YXJ)I9A J95)
eEIN uonduosaq anfeA puewwo) AdAL, anyea jon
[entuy 1D

Table 6.3. Vertex Array Object State (cont.)

OpenGL 3.1 - May 28, 2009

241

6.2. STATE TABLES

67 - - @M._MMMM 0 AI(LI))YX3)IIA J95) + ZX * 971 ONIANIE YELANG AV dILLY XALIHA
e 3urpuiq AT AV
W @ N HOM.%H—@ %N.HHN HGOEOMMM O >h®MQH=HHQw LﬂN ONIANIE YH4INg" AVIIY LNFINF T
k1N uonduosoq onfeA puewIwIo)) odA], on[eaA 10
[entuy 1D

Table 6.4. Vertex Array Object State (cont.)

OpenGL 3.1 - May 28, 2009

242

6.2. STATE TABLES

8T XOpUI JI8ISAT JANTWLIJ 0 ARZNUIPY | 7 XIANI LI VLS SALLINTI
R 9[qeuD 1IB)SAI AW | HSTVA PaIqeuAST g LAVISTA HALLINRY
. Surpuiq 09f .
0rI'c -q0 Al XoMOA JUALIND 0 AJIZAUIIN) +7Z ONIANIE™ AV IV XALIIA
67 Surpuiq 1opynq juarn)) 0 ARSNUPY | 7 ONIANIE HE4NE AVHAY
eEIN uonduosaq anfeA puBwIWO)) adAg, anyea jon
[eniuy 1D

Table 6.5. Vertex Array Data (not in Vertex Array objects)

OpenGL 3.1 - May 28, 2009

243

6.2. STATE TABLES

6T a3uer zopnq paddew jo azIg 0 ALIR)PWRIBJIJINGID) LZ XU HLONSTdVIN ¥e4Ng
6C a3uer zopynq paddew jo jre1g 0 ALIRJIWRIBRJIIJNIO) LZ XU LASIO dVIN ¥EENE
6C 1urod 1oynq paddey TION ATQUIOJ IG5 AXu MALNIOJ dVIN ¥ELINE
67T Sey dew 1opng qSTVA ALIRPURIEJIINYIIN) gxu QHddYIN YN
67 Sey sso00€ I9nq popudAlXyg 0 ALIR)IWRIEJIINGIIT) LZxXu SOV SSHOOV ME:LINg
67T Seg sseoorv ropng | FIIMUM AVEY | AMIJOWRIRJIPNEIID) €7 XU SSHODV ¥
67T woned agesn ong | MYIA OILVIS | AlRJWRIBRJIPNGIID) 67 xu HOVSN ¥
6'C QZIS elep jjng 0 ALRPWRIEJI]JNGII) +Z XU HZIS™4d4INg
67C Bjep Iofng - Bleqqnseyngiad nNg xXu -
eEIN uonduosaq anfeA puewIwio) adAg, anfea o0
[entug 1D

Table 6.6. Buffer Object State

OpenGL 3.1 - May 28, 2009

244

6.2. STATE TABLES

. pa[qeus _
Lre ouerd Surddro 1osn yp 45TV POLABHAST | &> *9 ST
1'21'C Iej 29 Ieou o3uel yydog 1°0 AJRO[ID) | Y X ¢ HONVYHLIAd
1'21°C | uaxe 29 urSuo odmarp | ['71°799S | ARSIUIPD | 7 X T LNOdMAIA
ekeIN uonduosaqg an[eA purwIwio)) adAy, anyea 100
[entug 1D

Table 6.7. Transformation state

OpenGL 3.1 - May 28, 2009

245

6.2. STATE TABLES

[1ey | Surduwrep 10[00 peoy | XINO™ dX1d | ArSaupan | §7 || wotoravarawn |
LN uonduoseaq anJeA puewwio) adA[, anyea 100
renmu 100

Table 6.8. Coloring

OpenGL 3.1 - May 28, 2009

246

6.2. STATE TABLES

G¢ uo JuIserenue auT| qSTV A Palqeudst q HLOOWS ANI'T

G'¢ YIpIM QUT 01 AJRO[]199) Y HLAIM ANIT

'€ sa1uids jurod 10§ uonrBIUALIO UISLIO IAAT d9Hddn | AISIULI (A NIDIO QY00 ALI4dS LNIOd

¢ uonenuaye eyde 10} ploysauy, 01 AJBO[I19D) Wy HZIS” A TOHSTIHL EAVA LNIOd

'€ 9Z1S JuI0g 01 AJeO[399 oy HZIS"LNIOd

LN uonduosaq anfeA puBwIWIO)) ad£], angea 120
[enmg 1D

Table 6.9. Rasterization

OpenGL 3.1 - May 28, 2009

247

6.2. STATE TABLES

UOTJBZ1I9)SBI dpOoul

bo¢ TTTa 10 eiqEue so w0RA[0g ISTIVA P3lqeuyst q TI LASHI0"NODX10d
L UOTJRZ1I9)SBI POl 3 :

v'9°¢ ANIT 10§ 9[quus 19sjjo oSA[oq dSTIVA Palqeuysy qg ANIT LAS410"NODATOd
. UOIJBZ1I9)SBI PO :

rot INIOd I0J 9[qeud 13sjo uo3A[od ASTVA | PIIRUEST q IO LS HONODATOA

7'9°¢ sjrun Jasgo uo3A[04 0 AJBO[J)99) Y SLINM"LASAI0"NODATOd

v'9°¢ 103o8J 19sjJo uo3A[04 0 AJRO[J)99) Yy MOLOVA LASAI0"NODXTOd
9¢ uo 3urserenue uo3A[0d | ZSTVA | PIlqBUAST g HIOOWS NODATOd

1'9°¢ _BOIPUT OO/ M 20RO U0S b”m MDD ARZNUIPD) | 7 HOVATLNO¥A

1'9°¢ suo3Ajod Suroej-yoeq/-1uoij [[nD | MOVL | AISIUIPRY | €7 HQOW HOV: T1ND

19°¢ pojqeus Surno uo3A[od | ZSTIVA | PIlqeuSI g HOVATIND
k1N uonduosoq anfeA puewwio) odAJ, angea 100

[eniuy 1D

Table 6.10. Rasterization (cont.)

OpenGL 3.1 - May 28, 2009

248

6.2. STATE TABLES

Iy oN[eA YSBW 9FBI0A0D JIOAU] | HSTVA | AUBI[00G)IN) q LHHANTHOVEHAOD T TdNVS
Iy an[ea Ysew 938I0A0D) 1 AJRO[199 Wy AN'TVAHDVHHAOD T TANVS
7 93e10A00 AJIpow O} SN | HSTVA pajqeuysy q HOVEHAOD HTANVS
7 wnwixew o3 eyde 19§ | ISTVA pajqeuysy q ANO™OL VHATY T TdNVS
Ty eyd[e woij 25819400 AJIPON | ISTVA palqeuysy qg HOVIHAOD OL VHI TV H1dNVS
I'ee uonezud)sel Jidwesnny | INAL pajqeuys| q TTINVSILINN
LN uonduosag anfeA purwIwio) adAy, anyeA 100
fenmy 1D

Table 6.11. Multisampling

OpenGL 3.1 - May 28, 2009

249

6.2. STATE TABLES

1 P o[Je 98ewI

[']°¢ omyxa) dew aqno aoey 2 — ['R°¢ 935 | Adew[x31199) I Xu Z HALLVOEN dVIN 380D HINLXEL
e vpropyeodewn | i
['8°¢ ormyxo) dew aqno ooy 2+ ['Q°¢C 998 owﬁﬁuxoﬁaow I Xu Z HALLISOd dVIN 280D HINLXAL
o ¢propieofewr | . :
1'8°¢ armyxa) dew aqno oty fi 1°8°¢ 998 @wﬂamxo,ﬁuomv I Xu AHALLYOAN dVIN 29N TINLXAL
- tpopleodewrt | . S
1'8°¢ ooy dewr aqno aoey fi+ 1'8°€ 99s | J8ewI[X9}199) I Xu ATHALLISOd dVIN 28ND TINIXEL
o 1 'pro’[Je 93ewiI 21N} L _
['8°¢ xa) dewr aqno oovy T— ['R°¢ 93 | ddew[X31195) I Xu X HALLVOAN dVIN 29N HINLXEL
o v porieofewtom |]
['8°¢ -x01 dew aqno 208y T+ ['Q°¢C 998 Qwﬂauxo,ﬁavmv I Xu X HALLISOd dVIN HIND HINLXAL
] 013Z "p'O°’[8 93¢k = }
8¢ _wr omixe) enSueIYy Q¢ 23S | IFeWIXILID I xXu FTONVLOHY HYNLXAL
- 190118 . 3
8¢ & oSt ARLE AIIX9) (g Q'€ 99s | afew[Xa 199 I XU AVAAV-ACEINLXAL
. 1 MOI . .
Q¢ e vwmﬁh fe1re amyxa) ar Q'€ 998 owﬁﬁuxoﬁaow I Xu AVIIV AT TINLXAL
8C | poe oSewr amxe) QM €995 | dBEWX2L10D Irxu A AINIXAL
o dVYW ddND JF¥NIXAL) :]
€I'8°¢ 0} punoq 80.50 B 0 >.5w3=~aow +ZX * T8 dVIN"HEND ONIANIE HINLXAL
crsc o @MMM@WMBMMW%WMM 0 ATIZNUIPD) +ZX %28 ¥EAANE ONIANIE HYNLXAL
ATONVYIOHY
I8¢ | - TENIXAL 0} 0 AJIZIUIIID) LZX *C¢ STONVIOMI ONIANTE TINLXEL
punoq 109[qo aIyxay,
crge OWMMMM MUMBMMMMWWMM 0 ATIZNUIID LZX*T8 AVHEV Az ONIANIE N LXAL
- AVIEIY dT H¥NLIXHEL - §
€I'8°¢ 01 punoq 109qo AIMXAL 0 AJIZIAULIIN) +ZX *C¢ AV¥IY dI"ONIANIE HINLXEL
o AT HINIXHEL .]
€r'g'e 01 punoq 109(qo AIMXA], 0 AJIZIUIID) +Z X EX *C¢ Q= ONIANIE HINLXEL
298 uonduoseg onfeA puBWIWIO)) adA], onpea 100
Teniug 1D

Table 6.12. Textures (state per texture unit and binding point)
OpenGL 3.1 - May 28, 2009

250

6.2. STATE TABLES

y1°8°¢ uonouny uostreduio)) TVNOHT ALRPUWERIEIXI[IND | 87 X U ONNHIVANOD AN LXAL

$1'8°€ apowt uostedwo)) ANON ALRPUWERIBIXILIND | 7 X U HAOW HAVAWOOD HUNLXAL
e (For2smq) seiq . .

Q']°¢ [Ie1op JO [0A9] QIMXAL 00 AJI9joWeIeJXx9] 395 g Xu SVIE AdOTHINLXIL
Y [9A9] AelIe 9INIXd) "XBIA 0001 AJIIPWRILIXILPD | 7 X U THAET XV HANLXAL
8¢ Ke1re aIyxa) aseq 0 AJIIPWRILIXILPD | 7 X U THATTHSVEHANLXAL
8¢ [Te19p JO [9AQ] WINWITXRIA 0001 AJIPWRIBIXILID | Y X U AOT XV HNLXAL
¥y [Te19p JO [9AS] WNWITUTIA 0001- AJIPWRIBIXILID | Y X U QOTNIWHINLXAL
o (K[uo somixa) ¢) o - .

8'8°¢ spow deis 4 pI00dXa]. T1°8°C 09s 995 JPWRILIXI[IND | "7 X u AAVAMHINLXEL

(Auo seim

8'8°¢ | -xa1 dew aqnd ‘¢ ‘) | TI°8°E "99s 995 JPUWRIBIXI[IND | 77 X u LdVIM TANLXAL

opowr deim 7 pIoodoXay,

2'8°¢ opows deim s pIOOOXAL, | 71'§°€ "09S 9S JRPWRILIXIA[IND | 77 X u SAVIMENNLXAL

6'8°€ uornouny uoneoyruseN YEANIT JPUWRIBIXILIND) | 7 X U WAL T OVINHNNLXEL

R8¢ UuoT)OUNJ UOIBOYTUTN | 71 °]°€ "09S 998 JPWRILIXI[IND) | 97 X U AL TENINEANLXAL
8¢ 10700 IopIog 0°0°0°0 JPUWRIRIXITIND) |) X U MOTOD ¥IANOT HANLXAL
kN uonduosog onfeA puewIwio)) odA1, angea 199

[eniug 1D

Table 6.13. Textures (state per texture object)

OpenGL 3.1 - May 28, 2009

251

6.2. STATE TABLES

QIMX9)
| 1opgnq samun oSewl AN ONI
M— mw m -0e OH_H HO.% 3I0)S Nuﬁﬁ OQH O hQHQENHNm——Q>QW~NQEHQU ITN xu ~ANIF HIOLS VIVA 944N d dINLXIL
se punoq 1o9[qo Io5ng
o a8ewr passarduwod 3 :
€8¢ jo (so3kqn up) oz 0 JIJPUWRBIBJ[IAIXIL}9D) +Z XU HZIS"DVINT AASSTIdNOD HMNLXAL
o JewLIo} [euroiul passaid :
€8¢ “woo ® sey oww:: J1onig, dSTV A J3)OWRIBJ[IAI[XI],}95) gXxu QISSHYdNOD HINLXAL
(HLd¥a Io ‘VHJTY
€19 | ‘ANTd ‘NIAE¥O ‘add ANON JII)AWRIBJ[IAITXILI0D) 7 XU H4AL T HANLXEL
st) odAy jusuodwo)
o uonn[osax 3 3
8¢ PPy uouodxe pareys 0 IRPUWRIEJ[IAITXI 19D LZxu AZIS"AHEVHS FANLXEL
(TIDONHELS
¥y wo ﬁﬁmmo Mmmmqm 0 JIPWRIBJPAITXILIND) | L7 X 9 X U AZIS T HANLXAL
A0Td NEHED "ddy St
) uonnjosai juouodwo))
g¢ (z1°g'¢ uon Q¥ 10 YEOY | JOJOUMIRIRJ[PAITXILII0) *8977 % U VN0 TYNUA LN BN LXAL
-03S 93S) JRULIO} [RUIAIU]
¥ (ag) yadop payroadg 0 IPUWRIEJ[IAITXI 19D LZxXu HLAA H¥NLXEL
¥ (Aag/ag) wsey payroadg 0 JII)AUWIBIBJ[IAITXILI0D) LZxXu LHOIEH FANLXAL
8¢ yIpIm pagroadg 0 JI)AWRIBJ[IAITXILI0D) LZxXu HLAIM HENIXEL
PEIN uonduosaq anfeA purwIWIO)) adAl, anyea 100
[enruy)

Table 6.14. Textures (state per texture image)

OpenGL 3.1 - May 28, 2009

252

6.2. STATE TABLES

7 LT 7 01038 JIUN AINIXS) ANDY | OFUNIXAL | AI3Sd)U[)95) 7 *2Ey : TANIXALTALLOY 7
REIN uonduosaq anfeA puewwio) adA[, anyeA 100
[entug 1D

Table 6.15. Texture Environment and Generation

OpenGL 3.1 - May 28, 2009

253

6.2. STATE TABLES

VI wonoe ssed saggng updap ouas org Eicicy’l AJIZNULIIN) 87 SSVd HLdaAdSSVd3OVE TIONELS
¥ 1'% | uonoe [rej roynq yidop [10Ud)s yoeg damEd AIISANUYIID) 87 IV HLdEIA SV MOVE TIONELS
YIv uonoe [1eJ [10U9)s Joeq damEd ATIZNUIID 87 TV MOVE TIONALS
VI oNJeA 90UAIRJAI [IOUS)S Yoy 0 ARSI | L7 JEASIOVETIONALS
A R JSew [10ud)s Joeqg | {99 AJIZUIID) A SISVINHNTVA SOVE TIONALS
vy uonounj [OUAS Joeg | SAVMIV | AJISNUIIID) 87 ONN IOV TIONALS
- uon -
IV | o ssed Togng yudop [roud)s juoLf A AABAUDRD Z ST
b wonoe (123 1933 dap [OUSS 1OL] d99) AJIZANULIIN) 87 TV HLdEA SSYd " TIONELS
YIv UONOe [TeJ [IOU9)S JUOI] Eiciee’ ATIZNUIID 87 TV TIONELS
Vv onJeA 90UAIIJAI [IOUR)S JUOL] 0 ARSI | L7 ¥ TIONELS
YIv MSBW [IOUIS JUOL | #'['# 39S | ATSUNPD | 7 SISV VA TIONALS
AR uonouny [10U9)s JUOL] | SAVMTIVY | AJISNUIID 87 ONNATIONALS
Vv pajqeus Suroualg | HSTVd pPaIqeuyST g LSAL TIONALS
AR X0Q IOSSIOG | 7' 1H99S | AXSIUPRD | 7 X XOE¥0SSIOS
Ty pa[qeus SunossSIOS | HSTVA pPaIqeuySsT g LSALAOSSIOS
k1N uonduosoq onfeA puewIwo)) odA], onpea 100
[enIuL 12D

Table 6.16. Pixel Operations

OpenGL 3.1 - May 28, 2009

254

6.2. STATE TABLES

or'r+y uonouny do 21307 XdOD ATIZNUIIRD) 9Nz AAOW dOIDOT
0I'l'v pa[qeus do o130[J0[0D qSTV A parqeugsy q d07DIDOTHOTOD
6’1y Pa[qeud SuLeyi(qNAL pa[qeusy q YAHLIA
LTV dIqeua Sul dSTIVd pPaIqeuysI q A0S HALANTANY Ul
-pueiq pue ajepdn gos
L1V JO[0J pUI[q JUBISUOD) 0°0°0‘0 AJeO[J139) o) HOT0D ANT'TH
LTV uonenba Surpuoiq eydly | dav ONQJ | AIISIIULIID Sz VHJTV"NOLLYNOT ANE'1d
) _ (NOLLYNOHA
LTy uonenba SuIpudlq 4O aav ONad ABNUIPD 4 “ANHTE ‘S'1A) DY NOLLYNOHE aNd'1d
L'l) uon OdE7Z >.~QW®&-H&@U wHN VHdTV"LSA aNd1d
-ounj v 3sep Surpusrg
L1V vonouny 0947 AJIZNUIIRD) Vig (LSA-ANATE:E 14) DY LSAANATH
0¥ 1s9p 3uipudg
LTt o ANO AJIZNUIID) Sty VHATV DS ANT T8
-ouny Y 20In0s 3uipuag
L1V Honouty ANO AJIZNUIID) Sl (O¥S ANETE:€ 1A) 4OYDUS ANATE
g0y 9omos IJurpud[g
LTV b doggnq meIp CISEAAC IPIIqBUHS] | X * T ana'g
I0J po[qeus 3urpuolg :
STt on SSHT AJIZNUIIRD) 87 ONN HIdEA
-ouny 1591 Joynq ydog
STy pajqeud 1oynq ydog dSTVd palqeuyst q LSALHLdEd
pEIN uonduosaq anfeA puewIwIo)) ad£], anyea 100
[enmy)

Table 6.17. Pixel Operations (cont.)

OpenGL 3.1 - May 28, 2009

255

6.2. STATE TABLES

ey neA 0 AJIZANUIIN) 7z ANTVA MVATO TIONELS
Ieq[o LBLEIN
- onfeA } _
£V | R op 1apnq yidag I AJIZNULIIN) oy ANTVA VAT HLdAd
- onfea (ren . _
ey Iv3]0 IapNq 10700 0°‘0°0°0 AJRO[195) o) ANTVA MVATO HOT0D
Ty MMHMHBEB HMQNMM S. 1 AJIZANUIIN) A MSVINALINM MOVE TIONALS
[y _M.MHM@HCB HM,WMM S. 1 AJIZANUIID) A SISVINELRM TIONELS
. 3unum Ioj po[qe .
<Y | o sopnq ydag YL AUBI[00{)5) g SSYNALRMM HLIAQ
7 JQJJNq MBIp 10
2Ty | (WD) soqe | (INYIEANIHAYIHAYI) | ATIUed[oogIdn) | g X FX x| SSYWHLRMM0TOD
-UQ M JI0[0D)
1N uonduosaq anfeA puewwio) ad£], anyea 100
[eniug 1D

Table 6.18. Framebuffer Control

OpenGL 3.1 - May 28, 2009

256

6.2. STATE TABLES

AAAAINGANYIA AVET

V7 | o punog 1oalgo soyngowmyy | O | ARBMMIRD | 7 || onaummsmra
. YAAINGANYIA MTId - _
~ ._N Av 0 ﬁﬁﬁO@ HOQ_,QO .HO.%MSG—OENHHM O >.~QW®H=HHQU ITN ONIANIF YHAINFIHNV I MV IA
k1N uonduosoq onfeA puewIwo)) odA], onpea 100
[enuy 1°D

Table 6.19. Framebuffer (state per target binding point)

OpenGL 3.1 - May 28, 2009

257

6.2. STATE TABLES

BB 19JJnq 90INOS Peay | ['C'H99S | AJISIIULIIN) *z HEANE AV
. eind | - .
ey -JNO JO[0D I0J PAYI[as IQPNq MeI(] Ty oes | ABRUD ZX AL | A
LN uonduosaq aneA puBwIIO)) adA], anyea 100
fenmuy 1D

Table 6.20. Framebuffer (state per framebuffer object)

OpenGL 3.1 - May 28, 2009

258

6.2. STATE TABLES

TIDNALS
1o ‘HIdEd ‘YHJTIY ALRJWRIRY
€19 | ‘E4NTd ‘NIATED ‘@Y st - uwyeny | L7 215" %" INEIWHOVLLY YN GHNVEA
T ‘uouodwiod T s o3ewr BRE) ILUELI AR (1))
payoene Jo SIq Ul 97ZIS
ALI)WRIEJ
T DMNEm UOSONHHN Oﬂu ut - .:0& Bl i HdAL ININOdNOD™ LNHWHOVLLV dddAN NV I
¢ syjuouodwod jo 2dAy ereq) i 4
ERE) LB AR (1))
ALRPWERIRY
o 93ewl payoeye oy} ut ’ :
€19 - A—:QEJU&H—AN NN DONIAOIONT JOTOD" LNHWHOVLLY JdIAN NV I
sjuouodwod jo Jurpoouyg
: ERE) ILUELICAR (1))
2IN)X9) (I§ ST payoe} ALRPWERIRY
vty | -1le 1walqo Jr “‘payoene 0 -JuauydR Y 7 MIAY THINLXAL LINGFWNHOVLIV ¥FAANGTNY ¥
Fewll AINIXd) JO JAKe] -IdJJnqaweI 195
)
ALRPWERIRY
| -x91 dewraqno St payoene ’ : i
vy . HINON IH-\—OEH—QNHH< + N HOVA dVIN 9N HINLXAL INHWNHOVLIV dg94dNddINV 44
103[qo JI ‘payoene oFeurr
BRE) ILLELICAR (1))
IM)x9) jo aoey dewoqn)
2IN)X9) SI payoe)e ALRPWERIRY
7t | 109[qo 1 ‘payoene o3ewr 0 -Juuyde))y 7 THAS T HYNLXEL INFWHOVLLY LN GENY ¥
AIMX3} JO [9A9] dewdiy -IJINgawer a9
jurod juowryoe)e ALR)RUERIE
7Yy | Iepngawely 0} payoe) 0 -Juauyde))y 7 HNVN"LOEIE0" LNEWHOVLLY YHAINGINY 4L
-)e 100[Q0 jJo oweN BRE)IUELICAR (1))
jurod juowr ALIRJOWRIR]
7YY | -yoene Iopngowelj 0} INON -JuAuIYIR) Y VA HAL LOH40" LNEIWNHOVLLY YHLANGHNY ¥
payoene o3ewr jo adAJ, -IJNgqawer a9
099 uonduosaq onpeA puewIwo)) adA], on[eaA 100
[enrug 1D

Table 6.21. Framebuffer (state per attachment point)

OpenGL 3.1 - May 28, 2009

259

6.2. STATE TABLES

dHAANGIHANEAT

vy o1 punog Hoo.Bo [Pe— 0 A howwaﬁﬁww 7 ONIANIE ¥IAINGITANT T
LN uonduosaqg anfeA purwIwio) adAL, anyea 100
[entug 1D

Table 6.22. Renderbuffer (state per target and binding point)

OpenGL 3.1 - May 28, 2009

260

6.2. STATE TABLES

Y'Y sordures jo requny 0 ALIR)RURIEJIIJNGIIPUIYID) 7 SHTNYS ELINEATANEY
" Juouodwod [1oudls _ 3

a7 5, SPUT IOJNQIOPURI JO SIq UI JZIS 0 ALI?)WRICJIJJNQIIPUIYIIL) +Z HZISTIONHLS YHLINGYHANT S
. jusuodwod yydop)

Yy 5 08EWT Io]JNQIAPUST JO S1Iq UI OZIS 0 ALIR)RIUWERIEJIIJJNGIIPUIYIA) A HZIS HLAAA YN FIEANTY
. juouodwod eyde))

(77 5 08EWT Jo]JNQIOPUSI JO S1Iq UI OZI 0 ALIR)RURIEJIIJJNGIIPUIYID) 7 HZIS"VHI TV ELN SHEANEY
o juouodwos an[q o

Yy 5 0FEUI Jo]JNQIOPUAI JO $IIq UI OZI 0 ALI)WRIEJINJNGIIPUIYIOD) A AZIS HN TS YN GHAANTY
o jusuodwod U913) :

Yy 5 08EWT Io]JNQIAPUST JO S1Iq UI OZIS 0 ALRPUWERIEJIJNGIIPUIYIAD) Z HZIS"NITIO YALINTATANEY
. jusuodwod pax)

Y'Yy 5 08EWT Io]JNQIAPUSI JO S1Iq UI OZIS 0 ALIR)RUWRIEJIIJJNGIIPUIYID) A HZIS" A WA N T HANTY

Ty JIOJNQISPURI JO JRULIO] [RUIOIU] | VEIOY | AMIJOUWRIRJIIJINQIIPUIYIID) A IVINNOA TYNNALNI ¥ N EAANTY

Yy I9QnqIapual Jo WSIOH 0 ALR)PUWERIEJIJNGIIPUIYIAD) Z LHOIEH ¥4I EEANTY

Yy I0JJNQIOpUaI JO YIPIM 0 ALRPUWERIEJIRHNGIIPUIYIAD) 7 HLAIM ¥E1INTIAANES

LN uonduosag anfeA puewIwIo)) adAg, anyea 100

[entug 1D

Table 6.23. Renderbuffer (state per renderbuffer object)

OpenGL 3.1 - May 28, 2009

261

6.2. STATE TABLES

L'T9 Surpuiq 1opynq yoedun [ox1g 0 AJIZNUIID) A DNIANIE ¥ENE SIOVINA TEXId
I % Surpuiq 1o5ynq yoed [ox1q 0 AJIZNUIIRD) A ONIANIE AN IOV TAXId
I'edy INAWNNOITVY MOVdJ JO anfep 74 >.~ww3:=vw +7 INHANOITY MOV
|4 STHXId dIMS MOVdJ Jo an[ep 0 AJIZNUIID) A STAXIA IS MOVd
1I'ey SMOY dIMS MOVdJ Jo onfep 0 >.5w3=500 +7 SMOY NS MOVd
I'cdy HIONAT MOY MOVdJ JO anjep 0 ATIZUTIN) A HLONIT MOY OVd
I'cy SHOVIWI dIMS MOVdJ JO anfep 0 ATIZNUTIN) +7 SHDVINT dIMS OV
I'evy IHOIAH AOVIWI MOVd JO anJeA 0 AJIZANUTID) +Z LHOIEH HOVINI OV
['CY I1SYIA dST MOVdJooneA | HSTVA | AUBI[00)IN) qg LSYLTgST3OVd
'€V SHIXD dVYMS MOVdJooneA | HSTVA | AUBI[00Y)IN) g SHLAL dVMS MOV
['L°¢ INHNNOITY MOVYJANQ JO anfep v AJIZNUIID) +7Z LINHWNOITY MOVAINA
I'L°€ | STEXId dIMS MOVANQ JO anfep 0 AJIZNUIID) .z STAXId"dISOVANA
I'L'¢ SMOY dIMS MOVJNQN Jo anjep 0 AJIZNUIID) A SMO dIMS MOVANN
1'L¢ HISNHET MOY MOV JANN JO anjeA 0 AJIZIUTI) +Z HLONET MOY MOVANN
['L°€ | SHOVYWI dIMS MOVJNN JO anjep 0 ATIZUTI) Z SHOVINTdINS OVANN
1'L'¢ — — LHD LAH 0 AJIZNUIID) +Z LHOIHH OVINI MOVANN
— HDVIWI DOVd4NN Jo nfeA
I'Le ISYIA dST MOVANN Jooan[eA | ISTVA | AUBI[00Y)IN) qg LSALT gSTMOVANN
I'L¢ SHIAG dVYMS MOVANN Joon[eA | HSTIVA | AUBI[00HIIN) g SHLAE dVMS MOVANN
LN uonduosaq anfeA purwIwio) adAy, anyea 100
[enuy 19D

Table 6.24. Pixels

OpenGL 3.1 - May 28, 2009

262

6.2. STATE TABLES

619 9p0d 921N0S JO U] 0 ALIIPRYSIID) 7 HLONITHIYNOS ¥AAVHS
1'11°C Iopeys & 10J opod 2010 | Suwns Aildwa | 90InoSIIpRYSIAN) IS -
6’19 3o[ojur jo P3ua 0 ALIIPRYSIID) “Z HLONHTDOTO:ANI
6’19 s309[qo 1opeys 10y Soj oju | Sums Aidwo | ForjojurIIPRYSIID IS -
I'11°¢ Ppopaoons 9[idwoo Ise| ASTvVa ALIIPRYSIID q SNLVLS HTIdNOD
I'11°¢ uono[ep 10J pagsey Jopeys ASTvVd ALIRPEYSIID g SNLVISLATEa
I'T1°z | (QuowSery 10 X9119A) J9peys Jo odA], - ALIIPRYSIID) A 4dAL MHAVHS
LN uonduosaq anfeA puewIwio) ad4], angea 120
[entug 1D

Table 6.25. Shader Object State

OpenGL 3.1 - May 28, 2009

263

6.2. STATE TABLES

S sanqrn
e1re g0 oAmOR JO IaquinN 0 AIWRBIZ0IJIND) 7 SALNERILLY ALY
VIre on[eA uLIojrur) 0 WIOJIU)3dY | Y X * 1§
619 Wauo duteu 0 AIWRBIZ0IJIND) VA HLONIT XVINWHOAINIIALLDY
WIOJIUN ATIOR WINWIXBIA] : +
YI1C uLIoJIun 9ANOR Jo oweN | Aidwo WLIOJIUIAIIVINL) | IRUDX * () -
VI1C wIoJIun 9ANJe Jo odAJ, - ULIOJIUN)PAIPRVIRD | | 7 X *() -
VI1C ULIOJTUN JATIOR JO IZIS - WLIOJIU)IATRVIRD | | 7 X * () -
6’19 suoJ - UONBIOTULIOJU()IIY) ZX %) -
-IUN QAT}OB JO UONEBIOT] ’ :
YI1°C SO 0 ATUIRIS0IJI95) +Z SIWIOAINNEAILOY
-TUN QATIOBR JO IOqUINN :
11T 3o[ojur jo p3ua 0 AIWRBIZ0IJIND) 7z HLONETDOTO:ANI
N 100
619 -qo wres3oxd 105 S0 oy Kydud SoTojuuwreI301J3195) s -
6’19 payoene s199[qo 1opeys Kdwo SIAPEYSPIYIBNVINY | 7 X % -
o s100[qo 19peys
619 poyoene Jo Joquuny 0 ATUIRIS0IJIID) +Z SYIAVHS AHHOVLLY
R Papa93d -
r4n 4 ~ons jdwone oepI[EA JsE] [CESHIAVAC ZE&.—woha—a@U q SNIVLS dLIVAITVA
- Papaad -
TIT | o dwene uy 18] HSTIVA ATureI301J)195) q SOLVLSINIT
11T palerep 109fqo weiold | HSTVA ATuIeI301J)95) q SOIVLS 41aTIa
i REINY
TI1e wesSoid JuaLInG Jo SweN 0 AJ3NULIID) +Z WVIDOUd LNIHAND
098 uonduosaq an[eA purwIwio)) adAy, anfea 120
[eniuy 1D

Table 6.26. Program Object State

OpenGL 3.1 - May 28, 2009

264

6.2. STATE TABLES

011z zwwmug SurArea Joeqpasy _ | Surkrepyoeqpasg e X 10)
Jsuen) [oed JO QWEN -ULIOJSURI] 19D
. J[qeLIBA JUIATRA YOBRqPIQJ SurkaeA yorqpasyg
91rC wiIojsuen) yoea Jo odAj, i ~WLIOJSUBILLJID) +Z .
o J[qeLIRA SUIATRA YORQPISY SuifaeA yoeqpady
9Tre WLIOJSURI} [oBd JO QZIS i -ULIOJSURI] J95) +Z .
o 3u9] aweu JurkreA yoeq HLONET XVIAONI
619 -p99J wiIojsueI) WNWIXBIA 0 AIEI3014)3D) +Z -KIVA IOVEATIS WIOASNVIL
. (s)109[qo 101ynq 03 wreans SONI
619 0) mm:_mhg .ﬁm% JoquInN 0 AIWEI3014199 +Z AAVAMOVEHAHAT WIOASNY 4L
61° wei3oid oy} 10§ B SgIYIIVY AnEIR01 105 oy ‘ ‘ HAON
Qpouwl YOorqpa9J ULIOJSueI], — T AIAYATIAINT YHAIN - MOVIATdT IWHOASNY Y.L
o y3u9] aweu o
619 dingrnje JANde wWNWIXBJN 0 >~E&.~mo.~n~aumv + VA HIONAT XV HLNGIMLLY HALLOY
11T INQLNIE AT)OR JO JWEN Kydwd qUIVIAIPVID | TeysXx x () -
e1re aInquuye 2ANE Jo adA[, - qQUPVIAIPVIRY | 1 ZX*0)
e1re QInque 9ANOE JO AZIS - qUPVIAIPVIRY | L Z7X *()
e JInqrme
X OLI0UA3 QAIOR JO UOIEBIO] | uoned0qLNVIAN Zx*0 ‘
pEIN uonduosaq anyeA purwIwIo)) adA], anyeaA 100
entuy 19D

Table 6.27. Program Object State (cont.)

OpenGL 3.1 - May 28, 2009

265

6.2. STATE TABLES

7 A4 19SJJO I9JJNq ULIOJIU) T —. ZX *() LASHI0 WHOHINA
YT Xapur Yo0[q WIOJIu) AISULIOJUPAIOVIOD) ZX *() XAANT MO0 TE WAOAINN
VI1T ISuo[ouweU WLIOJIU) AISULIOJUNPAIIOVIOD) +ZX %0 HLONATHNVN INIOAINA
R o -
VI1°C wIojiun 9Ande Jo 9Z1§ AISULIOJIU()2ATIO V105 +ZX*(HZISTINIOAINN
e o d& Lz y
V11T uLIoJIun 9ANOR Jo adAT, AISULIOJIUPAOVIOD 7 X % () F4ALWIOLINN
—_ QuIeU YO0[q ULIOJIUN AWEIS0111 HLONETHNVN
4 2AnOE 1593u0] Jo YISu] : 4P +Z “XVIN D0 TE WIOJINAHALLOY
117 | weiSoid e ur syo0[q WLIO] ATueI301J)95) A SO0 TE WIOAINN HATLOV
-TUN QATIOB JO JIoqUINN
jutod 3urpurq 1x93U00
#'11°C | pogoads oy) 01 punoq ALRSNUIPY | L7 XU ONIANIE NS WAOAINA
109lqo 1oyynq wrIojIUN)
uon
. -e[ndruewr 309[qo 19nq
711C 10} 1X3JU0D 3y} 0} punoq AJIZNUIIRD) +Z ONIANIE ¥EAANE WIOIINN
109fqo 1opynq wojIUN)
k1N uonduosaq anfeA puswwio) AdAY, anfea jon
[entuy 1D

Table 6.28. Program Object State (cont.)

OpenGL 3.1 - May 28, 2009

266

6.2. STATE TABLES

93e)s Juowdely oy}

FIAVHS INFNOV YT A9

11°C | AQq peouaojor Kjaanoe st ApporguLIoyiun i ~QHONEYEATA MO0 T WIOLINN
JyO0[q wLojIUN JT onij, -AIDVION
a3e3s xa110A oY)) B
1 K K[oAT3OR SI ADO[gULIOJIU PECVHS XALEA A
._N —~ N Q @OUEOHO.%OH ﬁ : : .Mm —m M. D m “AIONTIFITI AD0 T INIOIINN
YOO[q wWIOIUN JI nif, -9AIIVIRNH)
. . Q MUO?# E.Howﬁﬁﬁ SHOIANI"INIOA
PLIC | PoGIoads ou) Jo saoipul ABpOIguLIopun |7 x U INOTHALLOV MO0 Td WAOAINA
WIOJIUN QANOR JO AvIly -9AIIVYIND
MUOTH— SINIOA
11 ds oy ur ADo[guLIOIU) VA
._V —— N E.HO%MCS @DWEUO : * * + “INOTHALLDV D0 T INIOAINN
SULIOJTUN QATIOR JO JUNOD) -9AIIVIRD)
BIEp S, 300[q ULIOJIUN
PI1°C | SITY p[oy 0O} papasu ADpdo[guLIojIun) +Z HZIS"VIVA 0018 WOJINA
agero)s oy Jo zZIS -9AIIVIRD)
32019
—— wioyiun - pagroads oy AT IO JULIONTU ONIANIE MO0 TE WHOLINA
v1re ym pajeroosse sjutod Plorgu-Ioptul) +Z
: ‘ -9AIIVIRD
Surpuiq Ioyng wLofIuf)
XLIjew Jo[ew-mol o
._w— ﬁN :) +N X % O YOIVIN" MO STINYOAINN
B ST WIOJIUN JOUIOUAM AISULIOJIU)IAI}I V)99
o opLIS XLIjBW))
._V ~ M N N X % O HATYLS XTILVIN INIOHINN
-eUI JOJyNq WLIOJIU() AISULIOJIU()IAI}IV)I5)
: ° D_uﬁhum X % HATILS" AVIIV INIOJINN
PITC e RPnq wIojiun AISULIOJIU()9AI}IV}I5) Zx*0
LN uonduoseg onfeA puewIIo)) adA], anJeA 190
[enmgy 1D

Table 6.29. Program Object State (cont.)

OpenGL 3.1 - May 28, 2009

267

6.2. STATE TABLES

v'e opour 9ZIs Jurod HSIV A parqeuisy qg HZIS"LNIOd NVID0Ud XALIHA
mv: “ANn‘N NN - -
LT [2A SINQUITE ¥oYI0A SUAULS JuSLINS 0'T°00°00°0°0 | AJQUIVXIINIARD | ;37X * 9T SRILLY XELYEA"LNTND
GeEIN uonduasaq anfeA puewIwio) adAy, anfea 1o
[entuy 1D

Table 6.30. Vertex Shader State

OpenGL 3.1 - May 28, 2009

268

6.2. STATE TABLES

919 | ¢9rqe[reae 3nsa13oafqo Aronb oy sy | ISTVA | ARRIqOAIdINQNIY g 1V IVAV LINSTA XYEN0

919 JInsax109[qo A1on) 0 AmRfqoiendPey | 7 LINSEY AYEND

LN uonduoseq anfeA purwIWIO)) adA], anfea 10
fenmy 19D

Table 6.31. Query Object State

OpenGL 3.1 - May 28, 2009

269

6.2. STATE TABLES

CI'e

opow 9jeredas ur Sur
-A1eA 10 9nqume 1od sjuou
-odwoo jo roqunu Xe

AJ3UL)ID)

47

SININOJINOD ALVIVAAS AOVIAdTS WIOISNVIL XVIN

CI'e

Aoeqpasy
wojsuen ur paimded oq
ued Jey) s3urkea Jo sonqrn
-Je 9Jeredos Jo ToquInu XeIA

AJ3U[)ID)

+7Z

SAIRLLIV AIVIVAIS IOVEAddd WIOISNVIL XVIN

Sre

9POW PAABS[ISIUI UT I3Jnq
9[Surs ® 01 Q)M 0} SHUSU
-odwoo jo roqunu Xe

¥9

AJ3U[)ID)

+7

SINANOdINOD AFAVHTIHLNI ADVIATTA WIOASNVIL XVIN

weans "quye
YoBrqpPe9J WIOJSuRI} OB
10] o3uel 3uipuliq JO 9ZIS

ATLIZIUL)ID)

LZXu

HZISTYH4dNg AOVIAdHd WIOASNV YL

weans "quije Jorqpagy
wojsues} yoed Ioj oSuer
Suipuiq Jo Jospo 1IelS

ATLIdZIUL)ID)

LZru

LIVLS d941N g AOVadddd WIOISNVIL

weans anqryje
Novqpad) WIOJSUBID) OB
0] punoq 309[qo I3png

ATLIZIUL)ID)

LZru

ONIANIF 444N gAOVIAddd WIOASNV L

JOBqQPe9) ULIOJSueI)
Joj juod puiq Ououdd
0} punoq 309[qo Iopng

0

AJIZNUIIRD)

+Z

ONIANIF 444N g OV dddd WIOASNV L

"09g

uonduosaqg

anfep
reniug

purwwo))
190

odA],

anfea 100

Table 6.32. Transform Feedback State

OpenGL 3.1 - May 28, 2009

270

6.2. STATE TABLES

jury £oel _ -
s ' YYD INOQ | AJISNUIID 374 INIH HALLVATIEA 4IAVHS INFNOV ¥
-NOJB QANBALIOP IOpEYS JUSWSeL]
TS jury Aipenb vorssordwios aInyxa], | IYYOT INOA | AJI3IUIID €7 INTH NOISSTIdNOD TN LXAL
TS jury yroows U0SA[0d | TIVD INOQ | AIISIULID) A LNIH"HLOOWS NOOX10d
TS JUIY QIOOWSs AUI] | FIVD INOd | AJISIUIdD A INIH HLOOWS NIT
eEIN uonduosaq anfeA puBwWIWO)) ad£], anfea o0
[eniuy 1D

Table 6.33. Hints

OpenGL 3.1 - May 28, 2009

271

6.2. STATE TABLES

. sIopngIop . .
[Aay ~U01 J0 WSIOY PUT WPIM WNWIXEN 201 AR3NUPYH | L7 HZIS ¥ GIHANTA XVIN
e uoIsuauIp . -
['8°¢ oSewnr amyxe) dewr aqno WNWIXERY 201 AJI3NUIIID) +Z HZIS HINLXIL dVIN 39N XVIN
8'8°¢ SEq 1E19P 07¢ Ajeo[qn | LYy SVIE QO THINLXAL XVIN
JO [9A9] 2IM)XJ) N[OSqe WNWIXBIA
o sAe1re oImy - -
['8°¢ X3 10§ S10A®] JO IDQUINU WINWIXEJ 96T AJIZNUIIRD) A SYFAV T HINLXAL AVINV XVIN
o uorsuaw . .
['8°¢ Ip o8ewWr SIX) (T[/7 WALIXEJy 201 AR3NUPYH | L7 AZIS HANLXALXVIN
1'8°c - omeM SIIXa) E:EMMM\M 96T ?amoucmawmv +7Z HZIS HINLXAL A XVIN
A Tfi pue ™ Ud2IJS Ul -
€ worstoaid [oxIdqns Jo S1q JO JqUINN ¥ ATBNUIPD | 7 SLIE1X1ddNS
. soue[d N
L1'C Surddipo 1081 JO JOQUINU WAWITXEJY 8 AR3NUPYH | L7 SHONVLSIA I XVIN
eL=IN uonduosog onep puewwo) odAJ, onfeA 100
WNWIUTA 190

Table 6.34. Implementation Dependent Values

OpenGL 3.1 - May 28, 2009

272

6.2. STATE TABLES

._NM |.=w~5ﬁﬂhw oz Q:.HQm ﬂ:%“ — >u—-w°—.mma00 .Tm ALV INNVIO dZIS™LNIOd
) s9z1s uids . N
73 wuod jo (1y oy of) aSuey ‘1 AJROLID) | LY X ¢ AONV I AZIS"INIOd
. suorsuowirp | - i
1'21°¢ yodsmora —— 12177998 AJIZINUTIID) LZ X SINIA"LIOdMEIA"XYIN
PEIN uonduosaq anyeA puBwWIWO)) adAg, anyeA 100
WNWIUTA 190

Table 6.35. Implementation Dependent Values (cont.)

OpenGL 3.1 - May 28, 2009

273

6.2. STATE TABLES

SQIN)X9} Je[n3ue}oal

1']°¢ 10 14810y 7 WP XEN +201 AJISIIULIID) A HZIS"UNLXAL T TONVLOTY XYIN
'8¢ SIMX9} 123NQ 103 9¢C<9 >.5m3:50mv VA AZIS™4A4IN g FINLXAL XVIN
S[9X9) J[qBSSAIPPE JO ‘ON +
. SJRULIOJ 2INIX9) } :
€8¢ passardwon Jo Ioquuny 14 AJISIAUIIIN) VA SIVINJOI FINLXAL AASSTIINOD NN
€8¢ STEULIO} 2IMX3) - AJISIULIID) X % ¥ SLVWHOL TANLXAL AISSTIINOD
passardwod pojerownuyg +
SQOTIIIA
8T j0 m«ﬂwwﬂh“ﬂm——@wsﬂmk.ww“m - AJISIIULIID) +7Z SHOLLMAA™SLNIWATE XVIN
PAPUAWOINY
SIIpUL
8C J0 m«”m“ﬂ“ﬂownﬂmk.wwmm - AJISIULIID) +7 SHDIANT SLNHWATE XVIN
PapUIIOdNY
) Aenueid (ALRIVINNYVEO HLAIM
st JQpim aul] poselfenuy a AJEOLAIFD +m& SHNIT T'TA) ALV INNVYO HLAIM ANI T HLOOWS
. SYIPIM QUI[pasel[en . (EONVY
s -ue Jo AE 0] OC ww:ﬁm Il AJEOLID +m& Xe “HLAIM™ENIT :1'TA) ONVI HLAIM ANITHLOONS
. SYIpIAM SuI| ¢ -
c'e pasere Jo (1 03 of) o3uey 'l AJeO[199 +4 X T AONVI HLAIM INIT AdSVITY
eIN uonduosaq anfeA puBwIwo)) adA], anfea jon
WNWIUTIA 190

Table 6.36. Implementation Dependent Values (cont.)

OpenGL 3.1 - May 28, 2009

274

6.2. STATE TABLES

o panod
P19 dns uoisioa TouadQ - BungPH 5 NOISHaR
$'1°9 Suins Jopusp - F111R TN ETS) I AOANAA
o paytoddns uors)
¥'1°9 _1oa o3enSue] Sumpeys - Sun§rReon S NOIS¥HA HOVNONYTONIAVHS
¥'1°9 Suins 1e10puay - Surng1en IS FAAANTY
. Sep orquedwod
719 premIOl/y — - ATISNUIIRD) “Z SOV LXHINOD
+'1°9 paroddns - AJISIULIID) 7 NOISYHAJONIW
JOQUWINU UOISISA IOUIJA[+
o pawoddns)
Y19 PQUNE TOSIA I0feTy - AJ3ULIID) +Z NOISYHA HOIVIN
19 SOUEH OIS} - AJIZNUIIID) +Z SNOISNELXE NN
-Xd [eNPIAIPUIL JO IOQUINN]
. SOWeU UOISUS)
PI9 | 4o [Enprapw poyoddng - 1BUINSRY | §X *() SNOISNELXE
e S)q Iopunos - — _
919 | (ionb SMOTOIGOUASY 9'1°9 998 AKBRNQOPY | L7 X ¢ SLIE¥HINNOD AYIND
099G uonduosag anyeA puBwWIWO)) adA], anyeA 100
WINWITUTA 19D

Table 6.37. Implementation Dependent Values (cont.)

OpenGL 3.1 - May 28, 2009

275

6.2. STATE TABLES

dnyoo[ur pamoj

L'11°C [© 195150 [9X) WMIIXER L AJIZIUIID) A LASAIO TAXAL WY IDOUd XVIN
L'11°C dn>yoo ut pamol Q- AJIZUIID) VA LSO TAXHAL NVIDO0Id NIN
-[& 19SJJO [9X9) WNWITUTIA]
So[qeLeA
I @m E.HOMME_W— u@ﬁﬁﬂm .ww.ﬂ .HO% ,_VNOﬁ >h®w0aﬁﬂavw + N SINANOdINOD IWIOAINN" LNHNOV YA XVIA
sjuouodwod Jo IoquIny
Surssaooid juowr
L'11°7 | -8exy Aq 91qIssedoe syun 91 AJIZANUIIN) A SLINMHOVINI HYNLXEL XVIN
98w 21N)Xa) JO IOqUINN
Iopeys Xo)
L'T1°Z | -10A ® Aq 91qIssa00e sytun 91 ARSNUPY | L7 SLINNHOVINI FUNLXEL XALITAXVIN
98w 21M)Xa) JO IoqUINN
10
N\ﬁ ﬁN OSH \AQ O—Qmmmooom wu::.— Nm >h0wvagﬂaow +N SLINN HOVINT HINLXHL AINIFINOD X VI
QIM)X9) JO Iaqunu [eiof,
. so[qeLrea SulkIeA 10J .)
911°C R L p— +9 ARINUPD | L7 SINANOJNOD DNIAYVA XYIN
So[qeLIeA
£ 11°C | wIoyIun I9peys XalIdA I0J 201 AJIZUIID) +Z SLNENOdNOD WIOAINN XHLIFA XVIN
sjuouodwod Jo JoquInN
LT SANQLINE 91 AJISANUIIN) +Z SAMYLLV XALNAAXVIN
X9JI0A QATIOR JO IOqUINN
kN uonduosog anfeA puewIwo)) odA7, onpea 100
WNWITUTA 1D

Table 6.38. Implementation Dependent Values (cont.)

OpenGL 3.1 - May 28, 2009

276

6.2. STATE TABLES

$19SJJO pUB SIZIS

P11°C | 19JJnq wiojun IoJ juswt 1 ARINUIPD | 7 LNHANDITY LHSII0 444N WHOAINN
-ugie paxmnbar wnuwrurpy
32019
£ 11°C | wIoJiun e JO symun auryd $8€91 >.3w3=~aomu +7Z HAZIS MO0 T WIOAINNXVIN
-eW OISBq UL 9ZIS XBJA
1X91U09 A}
$#'11°7 | uo surod 3urpulq ropnq \é >.5w3=~aow A SONIANIE F1IN G NIOAINNXVIN
WIOJIUN JO JquINu XeJA
vI1'C weigoid 1od sxagnq v AJIZUIID) SMD0TE WIOHINN QANIEINOD XVIN
ULIoJIuN JO IqUINU XBJA[+Z
weid
117 | -o1d 1od s1opgng wiojiun 1 AJIZANUIIIN) A SO0 TE INIOAINN LNTNOV Y XVIN
juswgely Jo JoquInu XeJA
weid
$' 117 | -o1d 1od s1opng wiojun 1 AJIZANUIIIN) A SMDOTE WIOAINNXALNIA XVIN
X9lOA JO IdQUINU XBIA
eleIN uonduosaq aneA puewiwio)) dAg, anfea o0
WNWIULA 1D

Table 6.39. Implementation Dependent Values (cont.)

OpenGL 3.1 - May 28, 2009

277

6.2. STATE TABLES

Ve

(rnejop
Surpnpour) sYo0[q wWIOJ
-Iun [[e Ul S9[QELIBA
WIOJTUN IOPRYS JUSWIT L)
I0oJ spiom JO IoqunN

AJIZANUIIN)

+Z

SINAN
~OdNOD IWIOAINN" INFNOV I AANIFINOD™XVIA

VI1e

(neyop
Surpnjour) sYo0[q WLIOJ
-[un 8 Ul S9[qeLIBA
wIojiun - ISpeYs XoLeA
Io] Spiom JO IJoqunN

AJIZUIID)

+Z

SINAN
“OdINOD IWIOAINN XALITA AANIFNOD XVIN

Ve

J00[q W0}
-Tun J[NeJop Ul SO[qeLIBA
uLIojIun J9peys juawdely
I0oJ spiom JO JoquunN

AJIZIUIID)

SINANOdIWOD IWIOAINN"LNHNOVIA XVIA

Ve

3d019
wiojiun j[nejop ur so[qe
-HIBA ULIOJTUN JOPRYS XJ)
-IOA JOJ SPIOM JO IOqUINN]

AJIZIUIID)

+Z

SININOdINOD WIOAINN" XTI LIFA X VI

09§

uonduosaq

anfeA
WNWITUTIA

puewwo))
100

odA],

anfea 100

Table 6.40. Implementation Dependent Values (cont.)

(1) The minimum value for each stage is MAX_stage

UNIFORM_BLOCKS X
e_UNIFORM_COMPONENTS

SIZE + MAX_stage_

UNIFORM_BLOCK

ge_

MAX_sta

OpenGL 3.1 - May 28, 2009

278

6.2. STATE TABLES

Surduwresnynw 10§ payiod

VY | _dns so[dwres Jo Ioquinu WNWIXBA 4 ARBRRD | 17 SRS
vy $191§0q 10100 10§ sputod Judur 8 AJIZANUIIN) VA SLNANHOVLIYV I0TOD"XVIN
-yoene Qg JO JoquINU WNWIXBIA +
I'ee 9ZIS YSeW 9FRIOA0D) 0 ARINUPYH | L7 SHTANYS
1'ce s1opynq o[duresnnu jo raquinN 0 ARINUPYH | L7 SUALANT ATINYS
9 ISTXd SIdJJNQ WYSLI 29 1J9] JIT ani], - AuBd[OOgPRD | g OFAALS
1'CY JSTX SIQJJNQ okq 29 JUOIJ JT aNiJ, - AuBdOOgPRD | g AAANFATANOA
I'cy S1o4nq 8 AJISNUIIN) VA SYALANT MVIA XY
MBID QATOB JO IOQUINU WNWIXEBIA +
REIN uonduosaqg anfeA purwIwIo) adAg, anyea 100
WNWIUTA 190

Table 6.41. Framebuffer Dependent Values

OpenGL 3.1 - May 28, 2009

279

6.2. STATE TABLES

e wutod puiq]
€1'S°€ 101 211X} 0] punoq 19fqo 1opng 0 AJI3UIIID) A AN TINLXEL
. jutod puiq oim,, :
€67C 1onq £dos 0y punoq 19qo Jxng 0 AJISANUIIN) A MALINGHLIMAOD
. wrtod puiq pear,, o
€67 1a1nq £do 01 punoq 199fqo 1gNg 0 AJIZIUIID) Z AAAANT AVE AdOD
919 sowreu 393(qo A1onb aAnoy 0 AkdNQPY | L7 X ¢ AYEND"INTIND
9TV Anoe A1anb uorsnooQ | ESTVA - q
ST Jo119 SuIpuodsarIod B ST QI JIoNI], | HSTVd - gxu -
ST ($)9p02 10113 JudLIND 0 JI0LI)9D) Sz XU -
LN uonduosaq anyeA puBwIWO)) adAL, anfea 100
[entuy 19D

Table 6.42. Miscellaneous

OpenGL 3.1 - May 28, 2009

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer state vector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

280

A.2. MULTI-PASS ALGORITHMS 281

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

e “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

e Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules
For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

o Framebuffer contents (all bitplanes)
e The color buffers enabled for writing

e Scissor parameters (other than enable)

OpenGL 3.1 - May 28, 2009

A.4. WHAT ALL THIS MEANS 282

o Writemasks (color, depth, stencil)

o Clear values (color, depth, stencil)
Strongly suggested:

o Stencil parameters (other than enable)

Depth test parameters (other than enable)

o Blend parameters (other than enable)

e Logical operation parameters (other than enable)
e Pixel storage state

e Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with e in Rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it.

Corollary 2 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

Rule 4 The same vertex or fragment shader will produce the same result when
run multiple times with the same input. The wording ’'the same shader’ means a
program object that is populated with the same source strings, which are compiled
and then linked, possibly multiple times, and which program object is then executed
using the same GL state vector.

Rule 5 All fragment shaders that either conditionally or unconditionally assign
gl_FragCoord.z to gl_FragDepth are depth-invariant with respect to each
other, for those fragments where the assignment to gl_FragDepth actually is
done.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies

OpenGL 3.1 - May 28, 2009

A.4. WHAT ALL THIS MEANS 283

that a subsequent command always is executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.

OpenGL 3.1 - May 28, 2009

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1.

The error semantics of upward compatible OpenGL revisions may change,
and features deprecated in a previous revision may be removed. Otherwise,
only additions can be made to upward compatible revisions.

. GL query commands are not required to satisfy the semantics of the Flush

or the Finish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

. Application specified point size and line width must be returned as specified

when queried. Implementation-dependent clamping affects the values only
while they are in use.

. The mask specified as the third argument to StencilFunc affects the operands

of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified by StencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

. Polygon shading is completed before the polygon mode is interpreted. If the

shade model is FLAT, all of the points or lines generated by a single polygon
will have the same color.

. There is no atomicity requirement for OpenGL rendering commands, even

at the fragment level.

284

7.

10.

285

Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

. OpenGL does not force left- or right-handedness on any of its coordinates

systems.

. (No pixel dropouts or duplicates.) Let two polygons share an identical edge

(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

OpenGL 3.1 - May 28, 2009

Appendix C

Compressed Texture Image
Formats

C.1 RGTC Compressed Texture Image Formats

Compressed texture images stored using the RGTC compressed image encodings
are represented as a collection of 4 x 4 texel blocks, where each block contains
64 or 128 bits of texel data. The image is encoded as a normal 2D raster image in
which each 4 x 4 block is treated as a single pixel. If an RGTC image has a width
or height that is not a multiple of four, the data corresponding to texels outside
the image are irrelevant and undefined.

When an RGTC image with a width of w, height of 4, and block size of block-
size (8 or 16 bytes) is decoded, the corresponding image size (in bytes) is:

w

[Z} X (%} x blocksize.

When decoding an RGTC image, the block containing the texel at offset (z, y)
begins at an offset (in bytes) relative to the base of the image of:

blocksize x ([%1 X

The data corresponding to a specific texel (x, y) are extracted from a 4 x 4 texel
block using a relative (z, y) value of

(r mod 4,y mod 4).

There are four distinct RGTC image formats:

286

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 287

C.1.1 Format COMPRESSED_RED_RGTC1

Each 4 x 4 block of texels consists of 64 bits of unsigned red image data.
Each red image data block is encoded as a sequence of 8 bytes, called (in order
of increasing address):

redg, redy, bitsg, bitsy, bitse, bitss, bitsy, bitss
The 6 bits, bytes of the block are decoded into a 48-bit bit vector:

bits = bitsg+256x (bitsy + 256 x (bitss + 256 x (bitss + 256 x (bitsy + 256 x bitss))))

redy and red; are 8-bit unsigned integers that are unpacked to red values
REDgand RED;

bits is a 48-bit unsigned integer, from which a three-bit control code is ex-
tracted for a texel at location (z, y) in the block using:

code(x,y) =bits[3x (dxy+x)+2...3x (dxy+z)+0]

where bit 47 is the most significant and bit O is the least significant bit.
The red value R for a texel at location (x, y) in the block is given by:

RED,, redy > redy,code(z,y) =0
RED;q, redg > redy, code(x,y) = 1
76REDOTRED1 redy > redy, code(x,y) = 2
—5RED0+’2RED1 redy > redy, code(x,y) =3
—4RED°+’3RED1 redy > redy, code(x,y) =4
—BREDO#REDI redy > redy,code(x,y) =5
w redg > redy, code(x,y) = 6
R— %?RE& redy > redy, code(x,y) =7
RED,, redg < redy,code(x,y) =0
REDq, redp < redy,code(x,y) =1
w redp < redy,code(x,y) = 2
w redy < redy,code(x,y) =3
w redg < redy,code(x,y) =4
%?J%Em redy < redy,code(x,y) =5
RED,in, redp < redy,code(x,y) = 6
RED 0z, redp < redy,code(x,y) =7

OpenGL 3.1 - May 28, 2009

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 288

RED, i, and RE Dy, are 0.0 and 1.0 respectively.
Since the decoded texel has a red format, the resulting RGBA value for the
texel is (R, 0,0, 1).

C.1.2 Format COMPRESSED SIGNED_RED RGTC1

Each 4 x 4 block of texels consists of 64 bits of signed red image data. The red
values of a texel are extracted in the same way as COMPRESSED_RED_RGTC1 eX-
cept red 0, red_1, RED_ 0, RED_1, RED,,;y,, and RE D, are signed values
defined as follows:

redy and red; are 8-bit signed (two’s complement) integers.

redg do > —128
RED, = { 1270, "0
—1.0, redy=—128

d
RED, — {1’“;7.57 red; > —128

—1.0, red; = —128

REDy,, = —1.0

REDpa, =1.0

CAVEAT for signed redy and red; values: the expressions redy > red; and
redy < red; above are considered undefined (read: may vary by implementation)
when redy = —127 and red; = —128. This is because if redy were remapped to
-127 prior to the comparison to reduce the latency of a hardware decompressor, the
expressions would reverse their logic. Encoders for the signed red-green formats
should avoid encoding blocks where redgp = —127 and red; = —128.

C.1.3 Format COMPRESSED RG_RGTC2

Each 4 x 4 block of texels consists of 64 bits of compressed unsigned red image
data followed by 64 bits of compressed unsigned green image data.

The first 64 bits of compressed red are decoded exactly like COMPRESSED_—
RED_RGTC1 above.

The second 64 bits of compressed green are decoded exactly like
COMPRESSED_RED_RGTC1 above except the decoded value R for this second
block is considered the resulting green value G.

Since the decoded texel has a red-green format, the resulting RGBA value for
the texel is (R, G,0,1).

OpenGL 3.1 - May 28, 2009

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 289

C.1.4 Format COMPRESSED_SIGNED_RG_RGTC2

Each 4 x 4 block of texels consists of 64 bits of compressed signed red image data
followed by 64 bits of compressed signed green image data.

The first 64 bits of compressed red are decoded exactly like COMPRESSED_ -
SIGNED_RED_RGTC1 above.

The second 64 bits of compressed green are decoded exactly like
COMPRESSED_SIGNED_RED_RGTC1 above except the decoded value R for this
second block is considered the resulting green value G.

Since this image has a red-green format, the resulting RGBA value is
(R,G,0,1).

OpenGL 3.1 - May 28, 2009

Appendix D

Shared Objects and Multiple
Contexts

State that can be shared between contexts includes pixel and vertex buffer objects,
program and shader objects, and texture objects (except for the texture objects
named zero).

Framebuffer, query, and vertex array objects are not shared.

D.1 Object Deletion Behavior

After an object is deleted, its name is immediately marked unused. Caution should
be taken when deleting an object attached to a container object (such as a buffer
object attached to a vertex array object, or a renderbuffer or texture attached to a
framebuffer object), or a shared object bound in multiple contexts. Following its
deletion, the object’s name may be returned by Gen* commands, even though
the underlying object state and data may still be referred to by container objects,
or in use by contexts other than the one in which the object was deleted. Such
a container or other context may continue using the object, and may still contain
state identifying its name as being currently bound, until such time as the container
object is deleted, the attachment point of the container object is changed to refer to
another object, or another attempt to bind or attach the name is made in that context.
Since the name is marked unused, binding the name will create a new object with
the same name, and attaching the name will generate an error. The underlying
storage backing a deleted object will not be reclaimed by the GL until all references
to the object from container object attachment points or context binding points are
removed.

290

D.2. PROPAGATING STATE CHANGES 291

D.2 Propagating State Changes

Data is information the GL implementation does not have to inspect, and does not
have an operational effect. Currently, data consists of:

e Pixels in the framebuffer.
e The contents of textures and renderbuffers.

o The contents of buffer objects.

State determines the configuration of the rendering pipeline and the driver does
have to inspect.

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the state of an object 7 is changed, such changes are not always imme-
diately visible, and do not always immediately affect GL operations involving that
object. Changes to an object may occur via any of the following means:

e State-setting commands, such as TexParameter.
e Data-setting commands, such as TexSubImage* or BufferSubData.

e Data-setting through rendering to attached renderbuffers or transform feed-
back operations.

e Commands that affect both state and data, such as TexImage* and Buffer-
Data.

e Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

The object T is considered to have been changed once such a command has
completed. Completion of a command ! may be determined only by calling Fin-
ish.

'The GL already specifies that a single context processes commands in the order they are received.
This means that a change to an object in a context at time ¢ must be completed by the time a command
issued in the same context at time ¢ + 1 uses the result of that change.

OpenGL 3.1 - May 28, 2009

D.2. PROPAGATING STATE CHANGES 292

D.2.1 Definitions

In the remainder of this section, the following terminology is used:

e An object T'is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

e T is indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

e An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which 7 is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

D.2.2 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 [f the state of object T is changed in the current context while T is directly
or indirectly attached, then all operations on T will use that new state in the current
context.

Note: The intent of this rule is to address state changes in a single context only.
The multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with update via GL commands. Once EndTransformFeedback has been issued,
any command in the same context that uses the results of the transform feedback
operation will see the results. If a feedback loop is setup between rendering and
transform feedback (see above), results will be undefined.

Rule 2 While a container object C is bound, any changes made to C’s attachments
in the current context are guaranteed to be seen. To guarantee seeing changes
made in another context to objects attached to C must be completed in that other
context (by calling Finish) prior to C being bound. Changes made in another

OpenGL 3.1 - May 28, 2009

D.2. PROPAGATING STATE CHANGES 293

context without calling Finish, or after C is bound in the current context, are not
guaranteed to be seen.

Rule 3 State changes to shared objects are not automatically propagated between
contexts. If the state of a shared object T is changed in a context other than the
current context, and T is already directly or indirectly attached to the current con-
text, any operations on the current context involving T via those attachments are
not guaranteed to use its new state.

Rule 4 If the state of a shared object T is changed in a context other than the cur-
rent context, and T is already directly or indirectly attached to the current context
at multiple attachment or bind points, it must be attached or re-attached to at least
one binding point in the current context in order for the new state of T to be visible
in the current context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached.

Note: This rule also applies to the pointer to the data store of an object. The
pointer itself is state, while the content of the data store are data, not state. To
guarantee that another context sees data updates to an object, you should attach
or re-attach the object in that context, since the pointer to the data store could have
changed.

Note: To be sure that a data update, as the result of a transform-feedback
operation in another context, is visible in the current context, the app needs to make
sure that the command EndTransformFeedback has completed (using Finish).

Example: If a texture image is bound to multiple texture bind points and the
texture is modified in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the modifications to be visible at all texture
bind points.

OpenGL 3.1 - May 28, 2009

Appendix E

The Deprecation Model

OpenGL 3.0 introduces a deprecation model in which certain features may be
marked as deprecated. Deprecated features are expected to be completely removed
from a future version of OpenGL. Deprecated features are summarized in sec-
tion E.1.

To aid developers in writing applications which will run on such future ver-
sions, it is possible to create an OpenGL 3.0 context which does not support dep-
recated features. Such a context is called a forward compatible context, while a
context supporting all OpenGL 3.0 features is called a full context. Forward com-
patible contexts cannot restore deprecated functionality through extensions, but
they may support additional, non-deprecated functionality through extensions.

Profiles allow defining subsets of OpenGL functionality targeted to specific ap-
plication domains. While OpenGL 3.0 only defines a single profile, future versions
may introduce profiles addressing domains such as workstation, gaming, and em-
bedded. Implementations are not required to support all defined profiles, but must
support at least one profile.

To enable application control of deprecation and profiles, new context creation
APIs have been defined as extensions to GLX and WGL. These APIs allow spec-
ifying a particular version, profile, and full or forward compatible status, and will
either create a context compatible with the request, or fail (if, for example, request-
ing an OpenGL version or profile not supported by the implementation),

Only the ARB may define OpenGL profiles and deprecated features.

E.1 Profiles and Deprecated Features of OpenGL 3.0

OpenGL 3.0 defines a single profile, and all OpenGL 3.0 implementations must
support that profile.

294

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 295

The features deprecated in OpenGL 3.0 are summarized below, together with
the sections of the specification in which they are defined. Functions which are
completely deprecated will generate an INVALID_OPERATION error if called in
a forward-compatible context. Functions which are partially deprecated (e.g. no
longer accept some parameter values) will generate the errors appropriate for any
other unrecognized value of that parameter when a deprecated value is passed in a
forward-compatible context.

Application-generated object names - the names of all object types, such as
buffer, query, and texture objects, must be generated using the correspond-
ing Gen* commands. Trying to bind an object name not returned by a Gen*
command will result in an INVALID_ OPERATION error. This behavior is
already the case for framebuffer, renderbuffer, and vertex array objects. Ob-
ject types which have default objects (objects named zero) , such as vertex
array, framebuffer, and texture objects, may also bind the default object, even
though it is not returned by Gen*.

Color index mode - No color index visuals are supplied by the window
system-binding APIs such as GLX and WGL, so the default framebuffer
is always in RGBA mode. All language and state related to color index
mode vertex, rasterization, and fragment processing behavior is removed.
COLOR_INDEX formats are also deprecated.

OpenGL Shading Language versions 1.10 and 1.20. These versions of the
shading language depend on many API features that have also been depre-
cated.

Begin / End primitive specification - Begin, End, and EdgeFlag*; Color¥,
FogCoord*, Index*, Normal3*, SecondaryColor3*, TexCoord*, Vertex*
Vertex*; and all associated state. Vertex arrays and array drawing com-
mands must be used to draw primitives. However, VertexAttrib* and the
current vertex attribute state are retained in order to provide default attribute
values for disabled attribute arrays.

Edge flags and fixed-function vertex processing - ColorPointer, EdgeFlag-
Pointer, FogCoordPointer, IndexPointer, NormalPointer, Secondary-
ColorPointer, TexCoordPointer, VertexPointer, EnableClientState, Dis-
ableClientState, and InterleavedArrays, ClientActiveTexture; Frus-
tum, Loadldentity, LoadMatrix, Load TransposeMatrix, MatrixMode,
MultMatrix, MultTransposeMatrix, Ortho, PopMatrix, PushMatrix,
Rotate, Scale, and Translate; Enable/Disable targets RESCALE_NORMAL

OpenGL 3.1 - May 28, 2009

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 296

and NORMALIZE; TexGen* and Enable/Disable targets TEXTURE_-—
GEN_«, Material*, Light* LightModel*, and ColorMaterial, Shade-
Model, and Enable/Disable targets LIGHTING. VERTEX_PROGRAM_TWO_-
SIDE, LIGHT:, and COLOR_MATERIAL; ClipPlane; and all associated
fixed-function vertex array, multitexture, matrix and matrix stack, normal
and texture coordinate, lighting, and clipping state. A vertex shader must be
defined in order to draw primitives.

Language referring to edge flags in the current specification is modified as
though all edge flags are TRUE.

Note that the FrontFace and ClampColor commands are not deprecated,
as they still affect other non-deprecated functionality; however, the Clam-
pColor targets CLAMP_VERTEX_COLOR and CLAMP_FRAGMENT_COLOR are
deprecated.

e Client vertex and index arrays - all vertex array attribute and element array
index pointers must refer to buffer objects. The default vertex array object
(the name zero) is also deprecated. Calling VertexAttribPointer when no
buffer object or no vertex array object is bound will generate an INVALID_-
OPERATION errot, as will calling any array drawing command when no ver-
tex array object is bound.

e Rectangles - Rect*.

o Current raster position - RasterPos* and WindowPos*, and all associated
state.

e Two-sided color selection - Enable target VERTEX_PROGRAM_TWO_—
SIDE; OpenGL Shading Language builtins gl_BackColor and gl_-
BackSecondaryColor; and all associated state.

e Non-sprite points - Enable/Disable targets POINT_SMOOTH and POINT_—
SPRITE, and all associated state. Point rasterization is always performed as
though POINT_SPRITE were enabled.

e Wide lines and line stipple - LineWidth is not deprecated, but values greater
than 1.0 will generate an INVALID_VALUE error; LineStipple and En-
able/Disable target LINE_STIPPLE, and all associated state.

e Quadrilateral and polygon primitives - vertex array drawing modes
POLYGON, QUADS, and QUAD_STRIP, related descriptions of rasterization
of non-triangle polygons, and all associated state.

OpenGL 3.1 - May 28, 2009

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 297

e Separate polygon draw mode - PolygonMode face values of FRONT and
BACK; polygons are always drawn in the same mode, no matter which face
is being rasterized.

e Polygon Stipple - PolygonStipple and Enable/Disable target POLYGON_—
STIPPLE, and all associated state.

e Pixel transfer modes and operations - all pixel transfer modes, including
pixel maps, shift and bias, color table lookup, color matrix, and convolu-
tion commands and state, and all associated state and commands defining
that state.

e Pixel drawing - DrawPixels and PixelZoom. However, the language de-
scribing pixel rectangles in section 3.7 is retained as it is required for Tex-
Image* and ReadPixels.

e Bitmaps - Bitmap and the BITMAP external format.

e Legacy OpenGL 1.0 pixel formats - the values 1, 2, 3, and 4 are no longer
accepted as internal formats by TexImage* or any other command taking
an internal format argument. The initial internal format of a texel array is
RGBA instead of 1. TEXTURE_COMPONENTS is deprecated; always use
TEXTURE_INTERNAL_FORMAT.

e [egacy pixel formats - all ALPHA, LUMINANCE, LUMINANCE_ALPHA, and
INTENSITY external and internal formats, including compressed, floating-
point, and integer variants; all references to luminance and intensity formats
elsewhere in the specification, including conversion to and from those for-
mats; and all associated state. including state describing the allocation or
format of luminance and intensity texture or framebuffer components.

e Depth texture mode - DEPTH_TEXTURE_MODE. Section 3.8.14 is to be
changed so that r is returned to texture samplers directly, and the OpenGL
Shading Language 1.30 Specification is to be changed so that (r,r,r, 1) is
always returned from depth texture samplers in this case.

e Texture wrap mode CLAMP - CLAMP is no longer accepted as a value of
texture parameters TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_ -
WRAP_R.

e Texture borders - the border value to TexImage* must always be zero, or
an INVALID_VALUE error is generated (section 3.8.1); all language in sec-
tion 3.8 referring to nonzero border widths during texture image specification
and texture sampling; and all associated state.

OpenGL 3.1 - May 28, 2009

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 298

e Automatic mipmap generation - TexParameter* target GENERATE_-
MIPMAP, and all associated state.

e Fixed-function fragment processing - AreTexturesResident, Prioritize-
Textures, and TexParameter farget TEXTURE_PRIORITY; TexEnv farget
TEXTURE_ENV, and all associated parameters; TexEnv farget TEXTURE_-
FILTER_CONTROL, and parameter name TEXTURE_LOD_BIAS; Enable rar-
gets of all dimensionalities (TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, and TEXTURE_CUBE_MAP);
Enable target COL.OR_sSUM; Enable trarget F0G, Fog, and all associated pa-
rameters; the implementation-dependent values MAX_TEXTURE_UNITS and
MAX_TEXTURE_COORDS; and all associated state.

e Alpha test - AlphaFunc and Enable/Disable target ALPHA_TEST, and all
associated state.

e Accumulation buffers - ClearAccum, and ACCUM_BUFFER_BIT is not valid
as a bit in the argument to Clear (section 4.2.3); Accum; the ACCUM_x_—
BITS framebuffer state describing the size of accumulation buffer compo-
nents; and all associated state.

Window system-binding APIs such as GLX and WGL may choose to either
not expose window configs containing accumulation buffers, or to ignore
accumulation buffers when the default framebuffer bound to a GL context
contains them.

e Pixel copying - CopyPixels (the comments also applying to CopyTexImage
will be moved to section 3.8.2).

e Aucxiliary color buffers, including aUx; targets of the default framebuffer.

e Context framebuffer size queries - RED_BITS, GREEN_BITS, BLUE_BITS,
ALPHA_BITS, DEPTH_BITS, and STENCIL_BITS.

e Evaluators - Map¥*, EvalCoord*, MapGrid*, EvalMesh*, EvalPoint*, and
all evaluator map enables, and all associated state.

e Selection and feedback modes - RenderMode, InitNames, PopName,
PushName, LoadName, and SelectBuffer; FeedbackBuffer and
PassThrough; and all associated state.

e Display lists - NewList, EndList, CallList, CallLists, ListBase, GenLists,
IsList, and DeleteLists; all references to display lists and behavior when

OpenGL 3.1 - May 28, 2009

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 299

compiling commands into display lists elsewhere in the specification; and all
associated state.

e Hints - the PERSPECTIVE_CORRECTION_HINT, POINT_SMOOTH_HINT,
FOG_HINT, and GENERATE_MIPMAP_HINT targets to Hint (section 5.2).

e Attribute stacks - PushAttrib, PushClientAttrib, PopAttrib, Pop-
ClientAttrib, the MAX_ATTRIB_STACK_DEPTH, MAX_CLIENT_ATTRIB_-
STACK_DEPTH, ATTRIB_STACK_DEPTH, and CLIENT_ATTRIB_STACK_-
DEPTH state, the client and server attribute stacks, and the values ALL_-
ATTRIB_BITS and CLIENT_ALL_ATTRIB_BITS.

e Unified extension string - EXTENSIONS target to GetString.

e Token names and queries - all token names and queries not otherwise men-
tioned above for deprecated state, as well as all query entry points where all
valid targets of that query are deprecated state (chapter 6 and the state tables)

OpenGL 3.1 - May 28, 2009

Appendix F

Version 3.0 and Before

OpenGL version 3.0, released on August 11, 2008, is the eighth revision since
the original version 1.0. When using a full 3.0 context, OpenGL 3.0 is upward
compatible with earlier versions, meaning that any program that runs with a 2.1 or
earlier GL implementation will also run unchanged with a 3.0 GL implementation.
OpenGL 3.0 context creation is done using a window system binding API, and
on most platforms a new command, defined by extensions introduced along with
OpenGL 3.0, must be called to create a 3.0 context. Calling the older context
creation commands will return an OpenGL 2.1 context. When using a forward
compatible context, many OpenGL 2.1 features are not supported.

Following are brief descriptions of changes and additions to OpenGL 3.0. De-
scriptions of changes and additions in earlier versions of OpenGL (versions 1.1,
1.2,1.2.1, 1.3, 1.4, 1.5, 2.0, and 2.1) are omitted in this specification, but may be
found in the OpenGL 3.0 Specification, available on the World Wide Web at URL

http://www.opengl.org/registry/

F.1 New Features

New features in OpenGL 3.0, including the extension or extensions if any on which
they were based, include:

o API support for the new texture lookup, texture format, and integer and un-
signed integer capabilities of the OpenGL Shading Language 1.30 specifica-
tion (GL_EXT_gpu_shader4).

e Conditional rendering (GL_NV_conditional_render).

300

http://www.opengl.org/registry/

F.2. DEPRECATION MODEL 301

e Fine control over mapping buffer subranges into client space and flushing
modified data (GL_APPLE_flush_buffer_range).

e Floating-point color and depth internal formats for textures and ren-
derbuffers (GL_ARB_color_buffer_float, GL_NV_depth_buffer_ -
float, GL_ARB_texture_float, GL_EXT_packed_float, and GL_-

EXT_texture_shared_exponent)
e Framebuffer objects (GL_EXT_framebuffer_object).

o Half-float (16-bit) vertex array and pixel data formats (GL_NV_half_ float
and GL_ARB_half_float_pixel).

e Multisample stretch blit functionality (GL_EXT_framebuffer_ -
multisample and GI,_EXT_framebuffer_blit).

e Non-normalized integer color internal formats for textures and renderbuffers
(GL_EXT_texture_integer).

e One- and two-dimensional layered texture targets (GL_EXT_texture_-
array).

e Packed depth/stencil internal formats for combined depth+stencil textures
and renderbuffers (GL_EXT_packed_depth_stencil).

e Per-color-attachment blend enables and color writemasks (GL_EXT_draw_-
buffers?2).

e RGTC specific internal compressed formats
(GL_EXT_texture_compression_rgtc).

e Single- and double-channel (R and RG) internal formats for textures and ren-
derbuffers.

e Transform feedback (GL_EXT_transform_feedback).
e Vertex array objects (GL_APPLE_vertex_array_object).

e sRGB framebuffer mode (GL_EXT_framebuffer_sRGB)

F.2 Deprecation Model

OpenGL 3.0 introduces a deprecation model in which certain features may be
marked as deprecated. The deprecation model is described in detail in appendix E,
together with a summary of features deprecated in OpenGL 3.0.

OpenGL 3.1 - May 28, 2009

F3. CHANGED TOKENS 302

F.3

New Token Name Old Token Name

COMPARE_REF_TO_TEXTURE | COMPARE_R_TO_TEXTURE
MAX_VARYING_COMPONENTS | MAX_VARYING_FLOATS
MAX_CLIP_DISTANCES MAX_CLIP_PLANES
CLIP_DISTANCE] CLIP_PLANE?

Table F.1: New token names and the old names they replace.

Changed Tokens

New token names are introduced to be used in place of old, inconsistent names.
However, the old token names continue to be supported, for backwards compati-
bility with code written for previous versions of OpenGL. The new names, and the
old names they replace, are shown in table F.1.

F4

Change Log

Minor corrections to the OpenGL 3.0 Specification were made after its initial re-

lease.

Changes in the draft of September 23, 2008:

Changed ClearBuffer* in section 4.2.3 to use DEPTH and STENCIL
buffer names. Changed GetFramebufferAttachmentParameteriv in sec-
tion 6.1.10 to accept only DEPTH and STENCIL to identify default frame-
buffer depth and stencil buffers, and only DEPTH_ATTACHMENT and
STENCIL_ATTACMENT to identify framebuffer object depth and stencil
buffers (bug 3744).

Changes in the draft of September 18, 2008:

Added missing close-brace to ArrayElement pseudocode in section 2.8
(bug 3897).

Noted in section 2.13 that BeginQuery will generate an INVALID_-—
OPERATION error when called with an existing query object name whose
type does not match the specified target (bug 3712).

Add description of g1_ClipDistance to shader outputs in section 2.11.7
and note that only one of g1_ClipVertex and gl_ClipDistance should
be written by a shader (bug 3898).

OpenGL 3.1 - May 28, 2009

F4. CHANGE LOG 303

Changed ClearBuffer* in section 4.2.3 to indirect through the draw
buffer state by specifying the buffer type and draw buffer number, rather
than the attachment name; also changed to accept DEPTH_BUFFER /
DEPTH_ATTACHMENT and STENCIL_BUFFER/ STENCIL_ATTACHMENT in-
terchangeably, to reduce inconsistency between clearing the default frame-
buffer and framebuffer objects. Likewise changed GetFramebufferAttach-
mentParameteriv in section 6.1.10 to accept DEPTH_BUFFER / DEPTH_-
ATTACHMENT and STENCIL_BUFFER/ STENCIL_ATTACMENT interchange-
ably (bug 3744).

Add proper type suffix to query commands in tables 6.3 and 6.30 (Mark
Kilgard).

Update deprecation list in section E.1 to itemize deprecated state for two-
sided color selection and include per-texture-unit LOD bias (bug 3735).

Changes in the draft of August 28, 2008:

Sections 2.9, 2.9.1; tables 2.6, 2.7, and 6.6 - move buffer map/unmap
calls into their own subsection and rewrite MapBuffer in terms of Map-
BufferRange. Add buffer state BUFFER_ACCESS_FLAGS, BUFFER_MAP_—
OFFSET, BUFFER_MAP_LENGTH. Make MapBuffer and MapBufferRange
errors consistent (bug 3601).

Section 2.10 - Extend INVALID_OPERATION error to any array pointer-
setting command called to specify a client array while a vertex array object
is bound, not just VertexAttrib*Pointer (bug 3696).

Sections 2.12.1,4.1.2,4.2.1, and 4.3.3 - define initial state when a context is
bound with no default framebuffer - null viewport and scissor region, draw
buffer = read buffer = NONE, max viewport dims = max(display size - if any,
max renderbuffer size). Viewport/scissor language added to the GLX and
WGL create context extension specs as well (bug 2941).

Section 2.15 - define “word-aligned” to be a multiple of 4 (e.g. 32 bits) (bug
3624).

Section 6.1.7 - Moved GetBufferParameteriv query from section 6.1.3
and changed formal argument specifying the parameter name from value
to pname (side effect of bug 3697).

Section 6.1.10 - Moved GetFramebufferAttachmentiv query from sec-
tion 6.1.3. Querying framebuffer attachment parameters other than object

OpenGL 3.1 - May 28, 2009

E5. CREDITS AND ACKNOWLEDGEMENTS 304

type and name when no attachment is present is an INVALID_ENUM error.
Querying texture parameters (level, cube map face, or layer) for a render-
buffer attachment is also an INVALID_ENUM error (note that this was allowed
in previous versions of the extension but the return values were not specified;
it should clearly be an error as are other parameters that don’t exist for the
type of attachment present). Also reorganized the description of this com-
mand quite a bit to improve readability and remove redundancy and internal
inconsistencies (bug 3697).

e Section 6.1.11 - Moved GetRenderbufferParameteriv query from sec-
tion 6.1.3 (side effect of bug 3697).

e Appendix D.1 - add language to clarify that attachments to an object affect
its reference count, and that object storage doesn’t go away until there are no
references remaining (bug 3725).

e Appendix E.1 - remove TEXTURE_BORDER_COLOR and CLAMP_TO_BORDER
mode from the deprecated feature list; they were put in by accident (bug

3750).

e Appendix F - Cite GL_EXT_texture_array instead of GL_EXT_-
geometry_shader4 as the source of 1D/2D array texture functionality. Fix
a typo. Add change log relative to initial 3.0 spec release.

F.5 Credits and Acknowledgements

OpenGL 3.0 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ARB Working Group during the development
of OpenGL 3.0, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed to-
gether with their name, including specific functionality developed in the form of
new ARB extensions together with OpenGL 3.0. In addition, many people partic-
ipated in developing earlier vendor and EXT extensions on which the OpenGL 3.0
functionality is based in part; those individuals are listed in the respective extension
specifications in the OpenGL Extension Registry.

Aaftab Munshi, Apple

Alain Bouchard, Matrox

Alexis Mather, AMD (Chair, ARB Marketing TSG)
Andreas Wolf, AMD

Avi Shapira, Graphic Remedy

OpenGL 3.1 - May 28, 2009

E5. CREDITS AND ACKNOWLEDGEMENTS 305

Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)

Benjamin Lipchak, AMD

Benji Bowman, Imagination Technologies

Bill Licea-Kane, AMD (Chair, ARB Shading Language TSG)

Bob Beretta, Apple

Brent Insko, Intel

Brian Paul, Tungsten Graphics

Bruce Merry, ARM (Detailed specification review)

Cass Everitt, NVIDIA

Chris Dodd, NVIDIA

Daniel Horowitz, NVIDIA

Daniel Koch, Transgaming (Framebuffer objects, half float vertex formats, and
instanced rendering)

Daniel Omachi, Apple

Dave Shreiner, ARM

Eric Boumaour, AMD

Eskil Steenberg, Obsession

Evan Hart, NVIDIA

Folker Schamel, Spinor GMBH

Gavriel State, Transgaming

Geoft Stahl, Apple

Georg Kolling, Imagination Technologies

Gregory Prisament, NVIDIA

Guillaume Portier, HI Corp

Ian Romanick, IBM / Intel (Vertex array objects; GLX protocol)

James Helferty, Transgaming (Instanced rendering)

James Jones, NVIDIA

Jamie Gennis, NVIDIA

Jason Green, Transgaming

Jeff Bolz, NVIDIA

Jeff Juliano, NVIDIA

Jeremy Sandmel, Apple (Chair, ARB Nextgen (OpenGL 3.0) TSG)

John Kessenich, Intel (OpenGL Shading Language Specification Editor; depre-
cation model)

John Rosasco, Apple

Jon Leech, Independent (Chair, ARB Ecosystem TSG; OpenGL API Specifica-
tion Editor; R/RG image formats and new context creation APIs)

Marc Olano, U. Maryland

Mark Callow, HI Corp

Mark Kilgard, NVIDIA (Many extensions on which OpenGL 3.0 features were

OpenGL 3.1 - May 28, 2009

E5. CREDITS AND ACKNOWLEDGEMENTS 306

based)

Matti Paavola, Nokia

Michael Gold, NVIDIA (Framebufter objects and instanced rendering)

Neil Trevett, NVIDIA (President, Khronos Group)

Nick Burns, Apple

Nick Haemel, AMD

Pat Brown, NVIDIA (Many extensions on which OpenGL 3.0 features were
based; detailed specification review)

Paul Martz, SimAuthor

Paul Ramsey, Sun

Pierre Boudier, AMD (Floating-point depth buffers)

Rob Barris, Blizzard (Framebuffer object and map buffer range)

Robert Palmer, Symbian

Robert Simpson, AMD

Steve Demlow, Vital Images

Thomas Roell, NVIDIA

Timo Suoranta, Futuremark

Tom Longo, AMD

Tom Olson, TI (Chair, Khronos OpenGL ES Working Group)

Travis Bryson, Sun

Yaki Tebeka, Graphic Remedy

Yanjun Zhang, S3 Graphics

Zack Rusin, Tungsten Graphics

The ARB gratefully acknowledges administrative support by the members of
Gold Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Freder-
icks, and Michelle Clark, and technical support from James Riordon, webmaster
of Khronos.org and OpenGL.org.

OpenGL 3.1 - May 28, 2009

Appendix G

Version 3.1

OpenGL version 3.1, released on March 24, 2009, is the ninth revision since the
original version 1.0.

Unlike earlier versions of OpenGL, OpenGL 3.1 is not upward compatible with
earlier versions. The commands and interfaces identified as deprecated in OpenGL
3.0 (see appendix F) have been removed from OpenGL 3.1 entirely, with the
following exception:

e Wide lines have not been removed, and calling LineWidth with values
greater than 1.0 is not an error.

Implementations may restore such removed features using the GL_ARB_-
compatibility extension discussed in section G.2.
Following are brief descriptions of changes and additions to OpenGL 3.1.

G.1 New Features

New features in OpenGL 3.1, including the extension or extensions if any on which
they were based, include:

e Support for OpenGL Shading Language 1.30 and 1.40.

e Instanced rendering with a per-instance counter accessible to vertex shaders
(GL_ARB_draw_instanced).

e Data copying between buffer objects (GL_ARB_copy_buffer).

e Primitive restart (GL_NV_primitive_restart). Because client en-
able/disable no longer exists in OpenGL 3.1, the PRIMITIVE_RESTART

307

G.2. DEPRECATION MODEL 308

state has become server state, unlike the NV extension where it is client
state. As aresult, the numeric values assigned to PRIMITIVE_RESTART and
PRIMITIVE_RESTART_INDEX differ from the NV versions of those tokens.

e Atleast 16 texture image units must be accessible to vertex shaders, in addi-
tion to the 16 already guaranteed to be accessible to fragment shaders.

e Texture buffer objects (GL_ARB_texture_buffer_object).
e Rectangular textures (GI_ARB_texture_rectangle).
e Uniform buffer objects (GL_ARB_uniform_buffer_object).

e Signed normalized texture component formats.

G.2 Deprecation Model

The features marked as deprecated in OpenGL 3.0 (see section E) have been re-
moved from OpenGL 3.1 (with the exception of line widths greater than one, which
are retained).

As described by the deprecation model, features removed from OpenGL 3.0
have been moved into the new extension GI,_ARB_compatibility. If an imple-
mentation chooses to provide this extension, it restores all features deprecated by
OpenGL 3.0 and removed from OpenGL 3.1. This extension may only be provided
in an OpenGL 3.1 or later context version.

Because of the complexity of describing this extension relative to the OpenGL
3.1 core specification, it is not written up as a separate document, unlike other ex-
tensions in the extension registry. Instead, an alternate version of this specification
document has been generated with the deprecated material still present, but marked

No additional features are deprecated in OpenGL 3.1.

G.3 Change Log

Changes in the specification update of May 28, 2009:

e Update MAX_CLIP_DISTANCES from 6 to 8 in section 2.17 and table 6.34,
to match GLSL (bug 4803).

e Accept null pointers in CompressedTexImage* (section 3.8.3) and treat
them the same as for the corresponding TexImage* commands (bug 4863).

OpenGL 3.1 - May 28, 2009

G.4. CREDITS AND ACKNOWLEDGEMENTS 309

e Relax error conditions when specifying RGTC format texture images (sec-
tion 3.8.2) and subimages (section 3.8.3) so that non-power-of-two RGTC
images may be specified (also see section C.1), and edits to partial tiles at
the edge of such an image made (bug 4856).

e Relaxed texture magnification switch-over point calculation in section 3.8.9
(bug 4392).

e Clarify initial value of stencil value masks in section 4.1.4 and table 6.16
(bug 4378).

e Change FramebufferTextureLayer in section 4.4.2 to generate
INVALID_VALUE for negative layer only if fexture is non-zero (bug
4084).

e Clarify RenderbufferStorageMultisample language in section 4.4.2 to al-
low, but not require creation of multisampled integer renderbuffers with more
one sample (bug 4396).

e Added language to section 6.1.4 disallowing data-type format mismatches
between internal and external texture formats in GetTexImage (bug 4163).

e Change initial value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_—
MAP_FACE in table 6.21 to NONE (bug 4407).

e Brought extension list in appendix H.3 up to date and correctly described
extensions introduced along with OpenGL 3.0 and OpenGL 3.1 which im-
plement subsets of new functionality in those versions to enable older hard-
ware.

e Added missing contributors to the OpenGL 3.1 contributor list.

G.4 Credits and Acknowledgements

OpenGL 3.1 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ARB Working Group during the development
of OpenGL 3.1, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed to-
gether with their name, including specific functionality developed in the form of
new ARB extensions together with OpenGL 3.1. In addition, many people partic-
ipated in developing earlier vendor and EXT extensions on which the OpenGL 3.1
functionality is based in part; those individuals are listed in the respective extension
specifications in the OpenGL Extension Registry.

OpenGL 3.1 - May 28, 2009

G.4. CREDITS AND ACKNOWLEDGEMENTS 310

Alexis Mather, AMD (Chair, ARB Marketing TSG)

Avi Shapira, Graphic Remedy

Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)

Benjamin Lipchak, Apple (Uniform buffer objects)

Bill Licea-Kane, AMD (Chair, ARB Shading Language TSG; signed normalized
texture formats)

Brent Insko, Intel

Brian Paul, Tungsten Graphics

Bruce Merry, ARM (Detailed specification review)

Christopher Webb, NVIDIA

Daniel Koch, Transgaming

Daniel Omachi, Apple

Eric Werness, NVIDIA

Gavriel State, Transgaming

Geoff Stahl, Apple

Gregory Roth, NVIDIA

Ian Romanick, Intel

James Helferty, Transgaming

James Jones, NVIDIA

Jeff Bolz, NVIDIA (Buffer to buffer copies)

Jeremy Sandmel, Apple (Chair, ARB Nextgen (OpenGL 3.1) TSG; uniform
buffer objects)

John Kessenich, Intel (OpenGL Shading Language Specification Editor)

John Rosasco, Apple (Uniform buffer objects)

Jon Leech, Independent (OpenGL API Specification Editor)

Mark Callow, HI Corp

Mark Kilgard, NVIDIA (Many extensions on which OpenGL 3.0 features were
based)

Matt Craighead, NVIDIA

Michael Gold, NVIDIA

Neil Trevett, NVIDIA (President, Khronos Group)

Nick Haemel, AMD

Pat Brown, NVIDIA (Many extensions on which OpenGL 3.0 features were
based; detailed specification review)

Paul Martz, SimAuthor

Pierre Boudier, AMD

Rob Barris, Blizzard

Tom Olson, TI (Chair, Khronos OpenGL ES Working Group)

Yaki Tebeka, Graphic Remedy

Yanjun Zhang, S3 Graphics

OpenGL 3.1 - May 28, 2009

G.4. CREDITS AND ACKNOWLEDGEMENTS 311

The ARB gratefully acknowledges administrative support by the members of
Gold Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Freder-
icks, and Michelle Clark, and technical support from James Riordon, webmaster
of Khronos.org and OpenGL.org.

OpenGL 3.1 - May 28, 2009

Appendix H

Extension Registry, Header Files,
and ARB Extensions

H.1 Extension Registry

Many extensions to the OpenGL API have been defined by vendors, groups of
vendors, and the OpenGL ARB. In order not to compromise the readability of
the GL Specification, such extensions are not integrated into the core language;
instead, they are made available online in the OpenGL Extension Registry, together
with extensions to window system binding APIs, such as GLX and WGL, and with
specifications for OpenGL, GLX, and related APIs.

Extensions are documented as changes to a particular version of the Specifica-
tion. The Registry is available on the World Wide Web at URL

http://www.opengl.org/registry/

H.2 Header Files

Historically, C and C++ source code calling OpenGL was to #include a single
header file, <GL/gl.h>. In addition to the core OpenGL API, the APIs for all
extensions provided by an implementation were defined in this header.

When platforms became common where the OpenGL SDK (library and header
files) were not necessarily obtained from the same source as the OpenGL driver,
such as Microsoft Windows and Linux, <GL/gl.h> could not always be kept
in sync with new core API versions and extensions supported by drivers. At this
time the OpenGL ARB defined a new header, <GL/glext . h>, which could be
obtained directly from the OpenGL Extension Registry (see section H.1). The

312

http://www.opengl.org/registry/

H.3. ARB EXTENSIONS 313

combination of <GL/gl.h> and <GL/glext .h> always defines APIs for the
latest core OpenGL version as well as for all extensions defined in the Registry.

With the introduction of OpenGL 3.1, many features were removed from the
core API. The deprecation model does not allow reintroduction of these features ex-
cept via the special GL_ARB_compatibility extension (see section G.2). While
it is possible to continue using <GL/gl.h> and <GL/glext .h>, new header
files are defined for OpenGL 3.1 and future versions. The ARB recommends using
these headers for any new application which is written to the OpenGL 3.1 core
without using any of the features removed from OpenGL 3.0. The header files so
defined are:

e <GL3/gl3.h>, which will always define the core API of the current ver-
sion of OpenGL, and only that API. It does not include APIs for features
removed by OpenGL 3.1. Initially it contains only the APIs in OpenGL 3.1.

e <GL3/gl3ext.h>, which will always define APIs for registered exten-
sions which may be provided by an OpenGL 3.1 implementation that does
not support the GI_ARB_compatibility extension. Most currently de-
fined extensions cannot be provided by such an implementation, since they
depend on features no longer present in OpenGL 3.1.

By using <GL3/gl3.h> and <GL3/gl3ext.h>, instead of the legacy
<GL/gl.h> and <GL/glext .h>, newly developed applications are given in-
creased protection against accidentally using a “legacy” feature that has been re-
moved from OpenGL 3.1. This can assist in developing applications on a GL
implementation that supports GL_ARB_compatibility when the application is
also intended to run on other platforms supporting only the core OpenGL 3.1 API.

Developers should always be able to download <GL3/gl3.h> and
<GL3/gl3ext .h> from the Registry, with these headers replacing, or being used
in place of older versions that may be provided by a platform SDK.

H.3 ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are summarized in this section. ARB extensions are not required
to be supported by a conformant OpenGL implementation, but are expected to be
widely available; they define functionality that is likely to move into the required
feature set in a future revision of the specification.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 314

H.3.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

e A unique name string of the form ”GL_ARB_name” is associated with each
extension. If the extension is supported by an implementation, this string will
be among the EXTENSIONS strings returned by GetStringi, as described in
section 6.1.4.

o All functions defined by the extension will have names of the form Func-
tionARB

e All enumerants defined by the extension will have names of the form
NAME_ARB.

¢ In additional to OpenGL extensions, there are also ARB extensions to the
related GLX and WGL APIs. Such extensions have name strings prefixed by
"GLX_" and "WGL_" respectively. Not all GLX and WGL ARB extensions
are described here, but all such extensions are included in the registry.

H.3.2 Promoting Extensions to Core Features

ARB extensions can be promoted to required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have the ARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in the EXTENSIONS strings and continue to support
the ARB-affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
beyond, see the corresponding version of the OpenGL specification, or the de-
scriptions of that version in version-specific appendices to later versions of the
specification.

H.3.3 Multitexture

The name string for multitexture is GL_ARB_multitexture. It was promoted to
a core feature in OpenGL 1.3.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 315

H.3.4 Transpose Matrix

The name string for transpose matrix is GL_ARB_transpose_matrix. It was
promoted to a core feature in OpenGL 1.3.

H.3.5 Multisample

The name string for multisample is GL_ARB_multisample. It was promoted to a
core feature in OpenGL 1.3.

H.3.6 Texture Add Environment Mode

The name string for texture add mode is GI,_ARB_texture_env_add. It was
promoted to a core feature in OpenGL 1.3.

H.3.7 Cube Map Textures

The name string for cube mapping is GL_ARB_texture_cube_map. It was pro-
moted to a core feature in OpenGL 1.3.

H.3.8 Compressed Textures

The name string for compressed textures is GL_ARB_texture_compression. It
was promoted to a core feature in OpenGL 1.3.

H.3.9 Texture Border Clamp

The name string for texture border clamp is GL_ARB_texture_border_clamp.
It was promoted to a core feature in OpenGL 1.3.

H.3.10 Point Parameters

The name string for point parameters is GL_ARB_point_parameters. It was
promoted to a core features in OpenGL 1.4.

H.3.11 Vertex Blend

Vertex blending replaces the single model-view transformation with multiple ver-
tex units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the model-view matrices.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 316

The name string for vertex blend is GI,_ARB_vertex_blend.

H.3.12 Matrix Palette
Matrix palette extends vertex blending to include a palette of model-view matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette is GL_ARB_matrix_palette.
H.3.13 Texture Combine Environment Mode
The name string for texture combine mode is GL_ARB_texture_env_combine.
It was promoted to a core feature in OpenGL 1.3.
H.3.14 Texture Crossbar Environment Mode
The name string for texture crossbar is GI,_ARB_texture_env_crossbar. It
was promoted to a core features in OpenGL 1.4.
H.3.15 Texture Dot3 Environment Mode
The name string for DOT3 is GI,_ARB_texture_env_dot3. It was promoted to
a core feature in OpenGL 1.3.
H.3.16 Texture Mirrored Repeat
The name string for texture mirrored repeat is GL_ARB_texture_mirrored_ -
repeat. It was promoted to a core feature in OpenGL 1.4.
H.3.17 Depth Texture
The name string for depth texture is GL_ARB_depth_texture. It was promoted
to a core feature in OpenGL 1.4.
H.3.18 Shadow

The name string for shadow is GL_ARB_shadow. It was promoted to a core feature
in OpenGL 1.4.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 317

H.3.19 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by the TEXTURE_COMPARE_FAIL_VALUE_ARB texture
parameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambient is GL_ARB_shadow_ambient.

H.3.20 Window Raster Position

The name string for window raster position is GI,_ARB_window_pos. It was pro-
moted to a core feature in OpenGL 1.4.

H.3.21 Low-Level Vertex Programming

Application-defined vertex programs may be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipelines that will be
fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programming is GL_ARB_vertex_-
program.

H.3.22 Low-Level Fragment Programming

Application-defined fragment programs may be specified in the same low-level lan-
guage as GL_ARB_vertex_program, replacing the standard fixed-function vertex
texturing, fog, and color sum operations.

The name string for low-level fragment programming is GL_ARB_-—

fragment_program.

H.3.23 Buffer Objects

The name string for buffer objects is GL_ARB_vertex_buffer_object. It was
promoted to a core feature in OpenGL 1.5.

H.3.24 Occlusion Queries

The name string for occlusion queries is GL_ARB_occlusion_gquery. It was
promoted to a core feature in OpenGL 1.5.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 318

H.3.25 Shader Objects

The name string for shader objects is GL_ARB_shader_objects. It was pro-
moted to a core feature in OpenGL 2.0.

H.3.26 High-Level Vertex Programming

The name string for high-level vertex programming is GL_ARB_vertex_shader.
It was promoted to a core feature in OpenGL 2.0.

H.3.27 High-Level Fragment Programming

The name string for high-level fragment programming is GL_ARB_fragment_-
shader. It was promoted to a core feature in OpenGL 2.0.

H.3.28 OpenGL Shading Language

The name string for the OpenGL Shading Language is GL_ARB_shading_ -
language_100. The presence of this extension string indicates that programs
written in version 1 of the Shading Language are accepted by OpenGL. It was
promoted to a core feature in OpenGL 2.0.

H.3.29 Non-Power-Of-Two Textures

The name string for non-power-of-two textures is GIL_ARB_texture_non_-—
power_of_two. It was promoted to a core feature in OpenGL 2.0.

H.3.30 Point Sprites

The name string for point sprites is GL_ARB_point_sprite. It was promoted to
a core feature in OpenGL 2.0.

H.3.31 Fragment Program Shadow

Fragment program shadow extends low-level fragment programs defined with
GL_ARB_fragment_program to add shadow 1D, 2D, and 3D texture targets, and
remove the interaction with GL_ARB_shadow.

The name string for fragment program shadow is GL_ARB_fragment_-—
program_shadow.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 319

H.3.32 Multiple Render Targets

The name string for multiple render targets is GL_ARB_draw_buffers. It was
promoted to a core feature in OpenGL 2.0.

H.3.33 Rectangular Textures

Rectangular textures define a new texture target TEXTURE_RECTANGLE_ARB that
supports 2D textures without requiring power-of-two dimensions. Rectangular
textures are useful for storing video images that do not have power-of-two sizes
(POTS). Resampling artifacts are avoided and less texture memory may be re-
quired. They are are also useful for shadow maps and window-space texturing.
These textures are accessed by dimension-dependent (aka non-normalized) texture
coordinates.

Rectangular textures are a restricted version of non-power-of-two textures. The
differences are that rectangular textures are supported only for 2D; they require a
new texture target; and the new target uses non-normalized texture coordinates.

The name string for texture rectangles is GL_ARB_texture_rectangle. It
was promoted to a core feature in OpenGL 3.1.

H.3.34 Floating-Point Color Buffers

Floating-point color buffers can represent values outside the normal [0, 1] range
of colors in the fixed-function OpenGL pipeline. This group of related exten-
sions enables controlling clamping of vertex colors, fragment colors throughout the
pipeline, and pixel data read back to client memory, and also includes WGL and
GLX extensions for creating frame buffers with floating-point color components
(referred to in GLX as framebuffer configurations, and in WGL as pixel formats).

The name strings for floating-point color buffers are GL_ARB_color_-
buffer float, GLX_ARB_fbconfig_float, and WGL_ARB_pixel -
format_float. GL_ARB_color_buffer_float was promoted to a core
feature in OpenGL 3.0.

H.3.35 Half-Precision Floating Point

This extension defines the representation of a 16-bit floating point data format, and
a corresponding type argument which may be used to specify and read back pixel
and texture images stored in this format in client memory. Half-precision floats are
smaller than full precision floats, but provide a larger dynamic range than similarly
sized (short) data types.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 320

The name string for half-precision floating point is GI,_ARB_half_float_-
pixel. It was promoted to a core feature in OpenGL 3.0.

H.3.36 Floating-Point Textures

Floating-point textures stored in both 32- and 16-bit formats may be defined using
new internalformat arguments to commands which specify and read back texture
images.

The name string for floating-point textures is GL_ARB_texture_float. It
was promoted to a core feature in OpenGL 3.0.

H.3.37 Pixel Buffer Objects

The buffer object interface is expanded by adding two new binding targets for
buffer objects, the pixel pack and unpack buffers. This permits buffer objects to be
used to store pixel data as well as vertex array data. Pixel-drawing and -reading
commands using data in pixel buffer objects may operate at greatly improved per-
formance compared to data in client memory.

The name string for pixel buffer objects is GL_ARB_pixel_buffer_object.
It was promoted to a core feature in OpenGL 2.1.

H.3.38 Floating-Point Depth Buffers

The name string for floating-point depth buffers is GIL_ARB_depth_buffer -
float. This extension is equivalent to new core functionality introduced in
OpenGL 3.0, based on the earlier GI,_NV_depth_buffer_float extension, and
is provided to enable this functionality in older drivers.

H.3.39 Instanced Rendering
The name string for instanced rendering is GI_ARB_draw_instanced. It was
promoted to a core feature in OpenGL 3.1.

H.3.40 Framebuffer Objects

The name string for framebuffer objects is GL_ARB_framebuffer_object. This
extension is equivalent to new core functionality introduced in OpenGL 3.0, based
on the earlier GL_EXT_framebuffer_object, GL_EXT_framebuffer_ -
multisample, and GL_EXT_framebuffer_blit extensions, and is provided
to enable this functionality in older drivers.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 321

H.3.41 sRGB Framebuffers

The name string for sSRGB framebuffers is GL_ARB_framebuffer_sRGB. It was
promoted to a core feature in OpenGL 3.0. This extension is equivalent to new
core functionality introduced in OpenGL 3.0, based on the earlier GIL_EXT_-—
framebuffer_sRGB extension, and is provided to enable this functionality in
older drivers.

To create sSRGB format surface for use on display devices, an additional pixel
format (config) attribute is required in the window system integration layer. The
name strings for the GLX and WGL sRGB pixel format interfaces are GLX_ARB_ -
framebuffer_sRGB and WGL_ARB_ framebuffer_sRGB respectively.

H.3.42 Geometry Shaders

This extension defines a new shader type called a geometry shader. Geometry
shaders are run after vertices are transformed, but prior to the remaining fixed-
function vertex processing, and may generate new vertices for, or remove vertices
from the primitive assembly process.

The name string for geometry shaders is GL_ARB_geometry_shader4.

H.3.43 Half-Precision Vertex Data

The name string for half-precision vertex data GI,_ARB_half_float_vertex.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,
based on the earlier GI,_NV_half_float extension, and is provided to enable this
functionality in older drivers.

H.3.44 Instanced Rendering

This instanced rendering interface is a less-capable form of GL_ARB_draw_-
instanced which can be supported on older hardware.
The name string for instance rendering is GL_ARB_instanced_arrays.

H.3.45 Flexible Buffer Mapping

The name string for flexible buffer mapping is GL_ARB_map_buffer_range.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,
based on the earlier GL_APPLE_flush_buffer_ range extension, and is pro-
vided to enable this functionality in older drivers.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 322

H.3.46 Texture Buffer Objects

The name string for texture buffer objects is GL_ARB_texture_buffer_ -
object. It was promoted to a core feature in OpenGL 3.1.

H.3.47 RGTC Texture Compression Formats

The name string for RGTC texture compression formats is GL_ARB_texture_-—
compression_rgtc. This extension is equivalent to new core functionality intro-
duced in OpenGL 3.0, based on the earlier GL_EXT_texture_compression_ -
rgtc extension, and is provided to enable this functionality in older drivers.

It was promoted to a core feature in OpenGL 3.0.

H.3.48 One- and Two-Component Texture Formats

The name string for one- and two-component texture formats is GIL_ARB_-—
texture_rg. It was promoted to a core feature in OpenGL 3.0. This extension is
equivalent to new core functionality introduced in OpenGL 3.0, and is provided to
enable this functionality in older drivers.

H.3.49 Vertex Array Objects

The name string for vertex array objects iS GL_ARB_vertex_array_object.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,
based on the earlier GL_APPLE_vertex_array_object extension, and is pro-
vided to enable this functionality in older drivers.

It was promoted to a core feature in OpenGL 3.0.

H.3.50 Versioned Context Creation

Starting with OpenGL 3.0, a new context creation interface is required in the win-
dow system integration layer. This interface specifies the context version required
as well as other attributes of the context.

The name strings for the GLX and WGL context creation interfaces are GLX_—
ARB_create_context and WGL_ARB_create_context respectively.

H.3.51 Uniform Buffer Objects

The name string for uniform buffer objects is GIL_ARB_uniform_buffer_ -
object. This extension is equivalent to new core functionality introduced in
OpenGL 3.1 and is provided to enable this functionality in older drivers.

OpenGL 3.1 - May 28, 2009

H.3. ARB EXTENSIONS 323

H.3.52 Restoration of features removed from OpenGL 3.0

OpenGL 3.1 removes a large number of features that were marked deprecated
in OpenGL 3.0 (see appendix G.2). GL implementations needing to maintain
these features to support existing applications may do so, following the depreca-
tion model, by exporting an extension string indicating those features are present.
Applications written for OpenGL 3.1 should not depend on any of the features cor-
responding to this extension, since they will not be available on all platforms with
3.1 implementations.

The name string for restoration of features deprecated by OpenGL 3.0 is GL_ -
ARB_compatibility.

H.3.53 Fast Buffer-to-Buffer Copies

The name string for fast buffer-to-buffer copies is GL_ARB_copy_buffer. This
extension is equivalent to new core functionality introduced in OpenGL 3.1 and is
provided to enable this functionality in older drivers.

H.3.54 Shader Texture Level of Detail Control

The name string for shader texture level of detail control is GL_ARB_shader_-—
texture_lod. This extension is equivalent to new core functions introduced in
OpenGL Shading Language 1.30 and is provided to enable this functionality in
older versions of the shading language.

OpenGL 3.1 - May 28, 2009

Index

*CopyBufferSubData, 38
*GetString, 226
*GetStringi, 227
*MapBuffer, 37
*MapBufferRange, 34
*Pointer, 41

-, 262264

-, 279

279

Accum, 298

ACCUM_*_BITS, 298

ACCUM_BUFFER_BIT, 298

ACTIVE_ATTRIBUTE_MAX _-
LENGTH, 47, 232, 264

ACTIVE_ATTRIBUTES, 47, 232, 263

ACTIVE_TEXTURE, 115, 157, 222,
252

ACTIVE_UNIFORM_BLOCK -
MAX_NAME_LENGTH, 232,
265

ACTIVE_UNIFORM_BLOCKS,
52,232,265

ACTIVE_UNIFORM _-
MAX_LENGTH, 54, 55, 232,
263

ACTIVE_UNIFORMS, 53, 54,232, 263

ActiveTexture, 64, 115

ALIASED_LINE_WIDTH_RANGE,
273

ALL_ATTRIB_BITS, 299

ALPHA, 177, 192, 196, 251, 258, 297

51,

ALPHA_BITS, 298

ALPHA_TEST, 298

AlphaFunc, 298

ALWAYS, 142, 158, 171, 172, 253
AND, 180

AND_INVERTED, 180
AND_REVERSE, 180

Antialiasing, 95

AreTexturesResident, 298

ARRAY _BUFFER, 31, 39, 41

ARRAY _BUFFER _BINDING, 39, 242
ArrayElement, 302
ATTACHED_SHADERS, 232, 233, 263
AttachShader, 44
ATTRIB_STACK_DEPTH, 299

AUXi, 298

BACK, 96, 171, 174, 182-186, 188,
192, 199, 247, 297
BACK_LEFT, 183, 236
BACK_RIGHT, 183, 236
Begin, 295
BeginConditionalRender, 77
BeginQuery, 75, 76, 81, 173, 302
BeginTransformFeedback, 78-80
BGR, 106, 192, 196
BGR_INTEGER, 106
BGRA, 106, 108, 113, 192
BGRA_INTEGER, 106
BindAttribLocation, 48
BindBulffer, 30, 32, 40, 63, 79, 139
BindBufferBase, 63, 79, 80

324

INDEX

BindBufferRange, 63, 64, 79, 80
BindFragDatalLocation, 164
BindFramebuffer, 200, 201, 214
BindRenderbuffer, 202, 203
BindTexture, 64, 115, 155-157
BindVertexArray, 41
BITMAP, 297
Bitmap, 297
BLEND, 174, 178, 179, 254
BLEND_COLOR, 254
BLEND_DST_ALPHA, 254
BLEND_DST_RGB
(v1.3:BLEND_DST), 254
BLEND_EQUATION_ALPHA, 254
BLEND_EQUA-
TION_RGB (v1.5: BLEND.-
EQUATION), 254
BLEND_SRC_ALPHA, 254
BLEND_SRC_RGB
(v1.3:BLEND_SRC), 254
BlendColor, 176
BlendEquation, 174
BlendEquationSeparate, 174
BlendFunc, 175
BlendFuncSeparate, 175
BlitFramebuffer, 189, 196, 198, 211
BLUE, 106, 192, 196, 251, 258
BLUE_BITS, 298
BLUE_INTEGER, 106
BOOL, 56
bool, 56, 60
BOOL_VEC2, 56
BOOL_VEC3, 56
BOOL_VEC4, 56
BUFFER_ACCESS, 31, 33, 36, 243
BUFFER_ACCESS _FLAGS, 31, 33, 36,
38, 243, 303
BUFFER_MAP_LENGTH, 31, 33, 36,
38, 243, 303

325

BUFFER_MAP_OFFSET, 31, 33, 36,
38,243, 303

BUFFER_MAP_POINTER, 31, 33, 36,
38, 229, 230, 243

BUFFER_MAPPED, 31, 33, 36, 38, 243

BUFFER_SIZE, 31, 33, 34, 36, 37, 63,
79, 243

BUFFER_USAGE, 31, 33, 35, 243

BufferData, 32, 33, 50, 291

BufferSubData, 34, 50, 291

bvec2, 56, 58

bvec3, 56

bvec4, 56

BYTE, 24, 105, 194, 195

CallList, 298

CallLists, 298

CCW, 96, 247
CheckFramebufferStatus, 214, 215
CLAMP, 297
CLAMP_FRAGMENT_COLOR, 296
CLAMP_READ_COLOR, 193, 245
CLAMP_TO_BORDER, 142, 147, 304
CLAMP_TO_EDGE, 142, 147, 155, 197
CLAMP_VERTEX_COLOR, 296
ClampColor, 193, 296

CLEAR, 180

Clear, 77, 85, 187, 189, 298
ClearAccum, 298

ClearBuffer, 189

ClearBuffer*, 77, 85, 302, 303
ClearBuffer{if ui}v, 188, 189
ClearBufferfi, 188, 189
ClearBufferfv, 188, 189
ClearBufferiv, 188, 189
ClearBufferuiv, 188

ClearColor, 187, 188

ClearDepth, 187, 188

ClearStencil, 187, 188
CLIENT_ALL_ATTRIB_BITS, 299

OpenGL 3.1 - May 28, 2009

INDEX

CLIENT_ATTRIB_STACK_DEPTH,
299
ClientActiveTexture, 295
CLIP_DISTANCEG:, 82, 244, 302
CLIP_DISTANCEQO, 82
CLIP_PLANE;, 302
ClipPlane, 296
COLOR, 129, 188, 189
Color*, 295
COLOR_ATTACHMENT,
192, 206, 212
COLOR_ATTACHMENTm, 182, 184
COLOR_ATTACHMENT®, 201

182, 183,

COLOR_ATTACHMENTO, 182, 185,
192, 201

COLOR_BUFFER_BIT, 187, 189, 196,
197

COLOR_CLEAR_VALUE, 255
COLOR_INDEX, 295
COLOR_LOGIC_OP, 179, 254
COLOR_MATERIAL, 296
COLOR_SUM, 298
COLOR_WRITEMASK, 185, 186, 255
ColorMask, 185, 186
ColorMaski, 185
ColorMaterial, 296
ColorPointer, 295
COMPARE _R_TO_TEXTURE, 302
COMPARE_REF_TO_TEXTURE, 142,
158, 302
COMPILE_STATUS, 43, 231, 262
CompileShader, 43
COMPRESSED_RED, 124
COMPRESSED_RED _RGTCl,
124, 287, 288
COMPRESSED_RG, 124
COMPRESSED_RG_RGTC2,
124, 288
COMPRESSED_RGB, 124
COMPRESSED_RGBA, 124

119,

119,

326

COMPRESSED_SIGNED _-
RED_RGTCl, 119, 124, 288,
289
COMPRESSED_SIGNED_RG -
RGTC2, 119, 124, 289
COMPRESSED_SRGB, 124, 159
COMPRESSED_SRGB_ALPHA,
159
COMPRESSED_TEXTURE_FOR-
MATS, 118, 273
CompressedTexImage, 137
CompressedTexImagenD, 134
CompressedTexImage™*, 214, 308
CompressedTexImage1D, 134-136
CompressedTexImage2D, 134-136
CompressedTexImage3D, 134-136
CompressedTexSubImagenD, 136
CompressedTexSubImage1D, 136—138
CompressedTexSubImage2D, 136-138
CompressedTexSubImage3D, 136—138
CONSTANT_ALPHA, 177
CONSTANT_COLOR, 177
CONTEXT_FLAG_FORWARD_COM-
PATIBLE _BIT, 227
CONTEXT_FLAGS, 227, 274
COPY, 179, 180, 254
COPY_INVERTED, 180
COPY_READ_BUFFER, 31, 39, 279
COPY_WRITE_BUFFER, 31, 39, 279
CopyPixels, 298
CopyTexImage, 215, 298
CopyTexImage*, 207, 211, 214
CopyTexImagelD, 129-131, 133, 134,
150
CopyTexImage2D, 127, 129-131, 133,
134, 150
CopyTexImage3D, 131
CopyTexSublmage, 215
CopyTexSubImage*, 133, 138, 207
CopyTexSublmagel1D, 130-134

124,

OpenGL 3.1 - May 28, 2009

INDEX

CopyTexSublmage2D, 130-134

CopyTexSublmage3D, 130, 131, 133,
134

CreateProgram, 44

CreateShader, 42

CULL_FACE, 96, 247

CULL_FACE_MODE, 247

CullFace, 96, 100

CURRENT_PROGRAM, 263

CURRENT_QUERY, 228, 279

CURRENT_VERTEX_ATTRIB,
267

CW, 96

234,

DECR, 171

DECR_WRAP, 171

DELETE_STATUS, 44, 231, 232, 262,
263

DeleteBuffers, 30, 32

DeleteFramebuffers, 200, 201

DeleteLists, 298

DeleteProgram, 46

DeleteQueries, 76

DeleteRenderbuffers, 203, 214

DeleteShader, 43, 44

DeleteTextures, 156, 157, 214

Delete Vertex Arrays, 41

DEPTH, 129, 188, 189, 236, 251, 258,
302

DEPTH24_STENCILS, 119, 123

DEPTH32F_STENCILS, 119, 123

DEPTH_ATTACHMENT, 201,
212,302, 303

DEPTH_BITS, 298

DEPTH_BUFFER, 303

DEPTH_BUFFER_BIT, 187, 189, 196—
198

DEPTH_CLEAR_VALUE, 255

DEPTH_COMPONENT, 70, 106, 117,
123, 158, 162, 190, 193, 212,

206,

327

224,225
DEPTH_COMPONENT16, 119, 123
DEPTH_COMPONENT?24, 119, 123
DEPTH_COMPONENT32, 123
DEPTH_COMPONENT32F, 119, 123
DEPTH_FUNC, 254
DEPTH_RANGE, 244
DEPTH_STENCIL, 70, 104, 106, 108,

113, 114, 116, 117, 123, 129,

153, 158, 162, 188, 189, 191,

193, 206, 208, 212, 224, 225
DEPTH_STENCIL_ATTACHMENT,

206, 208, 236
DEPTH_TEST, 172, 254
DEPTH_TEXTURE_MODE, 297
DEPTH_WRITEMASK, 255
DepthFunc, 172
DepthMask, 186
DepthRange, 74, 221
DetachShader, 44
dFdx, 219
dFdy, 219
Disable, 26, 82, 85, 88, 89, 91, 95, 96,

100, 169, 170, 172, 174, 179,

295-298
DisableClientState, 295
Disablei, 174
DisableVertex AttribArray, 25, 234
DITHER, 179, 254
DONT_CARE, 219, 270
DOUBLE, 24
DOUBLEBUFFER, 278
DRAW _BUFFER, 182, 185, 192
DRAW BUFFERz, 174, 185, 188, 213,

257
DRAW _BUFFERO, 185
DRAW _FRAMEBUFFER,

199201, 205, 207, 215, 236,

256
DRAW_FRAMEBUFFER_BINDING,

OpenGL 3.1 - May 28, 2009

INDEX

149, 181, 182, 198, 202, 215,
216, 256
DrawAurrays, 19, 21, 26, 27, 29, 39, 41,
70, 78, 215
DrawArraysInstanced, 29
DrawBuffer, 180—184, 186, 189
DrawBuffers, 181-184
DrawElements, 26-29, 40, 41
DrawElementsInstanced, 29, 40
DrawPixels, 297
DrawRangeElements, 28, 40, 273
DST_ALPHA, 177
DST_COLOR, 177
DYNAMIC_COPY, 31, 33
DYNAMIC_DRAW, 31, 33
DYNAMIC_READ, 31, 33

EdgeFlag*, 295

EdgeFlagPointer, 295

ELEMENT_ARRAY _BUFFER, 31, 40

ELEMENT_ARRAY _BUFFER _BIND-
ING, 241

Enable, 26, 82, 85, 88, 89, 91, 95, 96,
100, 169, 170, 172, 174, 179,
221, 295-298

EnableClientState, 295

Enablei, 174

EnableVertex AttribArray, 25, 41, 234

End, 295

EndConditionalRender, 77

EndList, 298

EndQuery, 76, 173

EndTransformFeedback, 78, 292, 293

EQUAL, 142, 158, 171,172

EQUIYV, 180

EvalCoord*, 298

EvalMesh*, 298

EvalPoint*, 298

EXTENSIONS, 227, 274, 299, 314

328

FALSE, 31, 33, 38, 43, 45, 58, 71-73,
101, 102, 154, 162, 170, 191,
193, 221, 226, 228, 229, 231,
232, 234, 235, 238, 240, 242—
244, 246-248, 251, 253, 254,
261-263, 267, 268, 279

FASTEST, 219

FeedbackBuffer, 298

FILL, 98, 100, 101, 247, 285

Finish, 218, 284, 291-293

FIXED_ONLY, 193, 199, 245

FLAT, 284

FLOAT, 24, 30, 47, 56, 104, 105, 117,
192, 193, 195, 223, 236, 240

float, 46, 56, 60

FLOAT_32_UNSIGNED_INT -
24 8 REV, 104, 105, 108, 112,
191, 194, 195

FLOAT_MAT?2, 47, 56

FLOAT _MAT?2x3, 47, 56

FLOAT_MAT?2x4, 47, 56

FLOAT_MATS3, 47, 56

FLOAT MAT3x2, 47, 56

FLOAT _MAT3x4, 47, 56

FLOAT _MAT4, 47, 56

FLOAT_MAT4x2, 47, 56

FLOAT _MAT4x3, 47, 56

FLOAT_VEC?2, 47, 56

FLOAT_VEC3, 47, 56

FLOAT_VEC4, 47, 56

Flush, 218, 284

FlushMappedBufferRange, 35, 37, 291

FOQG, 298

Fog, 298

FOG_HINT, 299

FogCoord*, 295

FogCoordPointer, 295

FRAGMENT _SHADER, 160, 231

FRAGMENT_SHADER _DERIVA-
TIVE_HINT, 219, 270

OpenGL 3.1 - May 28, 2009

INDEX

FRAMEBUFFER, 200, 205, 207, 215,
236
FRAMEBUFFER_ATTACHMENT _z _-
SIZE, 258
FRAMEBUFFER_ATTACHMENT _-
ALPHA _SIZE, 236
FRAMEBUFFER_ATTACHMENT _-
BLUE_SIZE, 236
FRAMEBUFFER_ATTACHMENT _-
COLOR_ENCODING, 175,
178, 237,258
FRAMEBUFFER_ATTACHMENT _-
COMPONENT_TYPE, 236,
258
FRAMEBUFFER_ATTACHMENT _-
DEPTH_SIZE, 236
FRAMEBUFFER_ATTACHMENT _-
GREEN_SIZE, 236
FRAMEBUFFER_ATTACH-
MENT_OBJECT_NAME, 206,
208, 212, 236, 237, 258
FRAMEBUFFER_ATTACH-
MENT_OBJECT_TYPE, 206,
208, 212, 213, 216, 236, 237,
258
FRAMEBUFFER_ATTACHMENT _-
RED_SIZE, 236
FRAMEBUFFER_ATTACHMENT _-
STENCIL_SIZE, 236
FRAMEBUFFER_ATTACHMENT _-
TEXTURE .-
CUBE_MAP_FACE, 208, 237,
258, 309
FRAMEBUFFER_ATTACHMENT _-
TEXTURE_LAYER, 208, 209,
212,217, 237, 258
FRAMEBUFFER_ATTACHMENT _-
TEXTURE_LEVEL, 149, 208,
210, 237, 258
FRAMEBUFFER _BINDING, 202

329

FRAMEBUFFER_COMPLETE, 215
FRAMEBUFFER _DEFAULT, 236
FRAMEBUFFER _INCOMPLETE_AT-
TACHMENT, 213
FRAMEBUFFER INCOMPLETE _-
DRAW BUFFER, 213
FRAMEBUFFER _INCOMPLETE _-
MISSING_ATTACHMENT,
213
FRAMEBUFFER_INCOMPLETE _-
MULTISAMPLE, 213
FRAMEBUFFER _INCOMPLETE _-
READ_BUFFER, 213
FRAMEBUFFER_SRGB, 175,
254
FRAMEBUFFER _UNDEFINED, 213
FRAMEBUFFER _UNSUPPORTED,
213,214
FramebufferRenderbuffer,
214
FramebufferTexture, 209
FramebufferTexture*, 208, 209, 214
FramebufferTexture1D, 207, 208
FramebufferTexture2D, 207, 208
FramebufferTexture3D, 207209
FramebufferTextureLayer, 208, 309
FRONT, 96, 171, 174, 182-186, 188,
192, 199, 297
FRONT_AND_BACK, 96, 98, 171, 174,
183-186, 188, 192
FRONT _FACE, 247
FRONT_LEFT, 183, 236
FRONT _RIGHT, 183, 236
FrontFace, 96, 162, 296
Frustum, 295
FUNC_ADD, 174, 176, 254
FUNC_REVERSE_SUBTRACT,
176
FUNC_SUBTRACT, 174, 176
fwidth, 219

178,

205, 206,

174,

OpenGL 3.1 - May 28, 2009

INDEX

Gen*, 290, 295
GenBuffers, 30, 32
GENERATE_MIPMAP, 298
GENERATE_MIPMAP_HINT, 299
GenerateMipmap, 152
GenFramebuffers, 199-202
GenlLists, 298
GenQueries, 76
GenRenderbuffers, 202, 203
GenTextures, 156, 157, 226
GenVertexArrays, 40, 41
GEQUAL, 142, 158, 171, 172
Get, 75, 220, 221
GetActiveUniformBlockiv, 266
GetActiveAttrib, 46, 47, 67, 264
GetActiveUniform, 54-56, 59, 263
GetActiveUniformBlockiv, 51
GetActiveUniformBlockName, 51
GetActiveUniformName, 53, 54
GetActiveUniformsiv, 54-56, 265, 266
GetAttachedShaders, 233, 263
GetAttribLocation, 47, 48, 264
GetBooleani_v, 185, 220, 255
GetBooleanv, 170, 186, 220, 221, 238,
239, 248, 255, 261, 278
GetBufferParameteriv, 229, 243, 303
GetBufferPointerv, 230, 243
GetBufferSubData, 229, 230, 243
GetCompressedTexImage, 135,
219, 223, 225, 226
GetDoublev, 220, 221, 239
GetError, 18, 279
GetFloatv, 13, 170, 220, 221, 239, 244,
246-248, 254, 255, 271-273
GetFragDatal.ocation, 164, 165
GetFramebufferAttachment-
Parameteriv, 258
GetFramebufferAttachmentiv, 303
GetFramebufferAttachmentParameteriv,
216, 236, 302, 303

137,

330

Getlntegeri_v, 220, 230, 265, 269
Getlntegerv, 28, 52, 59, 60, 63, 87, 184,
185, 202, 203, 220, 221, 227,
239, 241, 242, 244-247, 249,
252-257, 259, 261, 263, 265,
269-279
GetProgramInfolog, 45, 233, 263
GetProgramiv, 45, 47, 51, 53, 54, 66,
67,71, 232,233, 263-265
GetQueryiv, 228, 274, 279
GetQueryObject[u]iv, 229
GetQueryObjectiv, 228, 268
GetQueryObjectuiv, 228, 268
GetRenderbufferParameteriv, 260
GetRenderbufferParameteriv, 216, 238,
304
GetShaderInfolLog, 43, 233, 262
GetShaderiv, 43, 44, 231, 233, 234, 262
GetShaderSource, 233, 262
GetString, 227, 274, 299
GetStringi, 274, 314
GetTexImage, 155, 191, 224, 225, 249,
309
GetTexLevelParameter, 222, 223, 251
GetTexParameter, 216, 222, 250
GetTexParameterfv, 155, 250
GetTexParameterl, 222
GetTexParameterliv, 222
GetTexParameterluiv, 222
GetTexParameteriv, 155, 250
GetTransformFeedback Varying, 264
GetTransformFeedbackVarying, 66, 67
GetUniform, 263
GetUniform*, 235
GetUniformBlockIndex, 50, 51
GetUniformfv, 235
GetUniformIndices, 53-55
GetUniformiv, 235
GetUniformLocation, 50, 54, 55, 64,
263

OpenGL 3.1 - May 28, 2009

INDEX

GetUniformuiv, 235

GetVertex AttribPointerv, 240
GetVertex Attribdv, 234
GetVertex Attribfv, 234, 267
GetVertex Attribliv, 234
GetVertex Attribluiv, 234
GetVertex Attribiv, 234, 240, 241
GetVertex AttribPointerv, 235

GL_APPLE flush_buffer range, 301,
321

GL_APPLE _vertex_array_object, 301,
322

GL_ARB_color_buffer_float, 301, 319
GL_ARB _compeatibility, 307, 308, 313,
323
GL_ARB _copy_buffer, 307, 323
GL_ARB __depth_buffer_float, 320
GL_ARB _depth_texture, 316
GL_ARB _draw_buffers, 319
GL_ARB _draw_instanced,
321
GL_ARB _fragment_program, 317, 318
GL_ARB _fragment_program_shadow,
318
GL_ARB _fragment_shader, 318
GL_ARB _framebuffer_object, 320
GL_ARB _framebuffer_sRGB, 321
GL_ARB _geometry_shader4, 321
GL_ARB _half float_pixel, 301, 320
GL_ARB_half_float_vertex, 321
GL_ARB _instanced _arrays, 321
GL_ARB _map_buffer_range, 321
GL_ARB _matrix_palette, 316
GL_ARB _multisample, 315
GL_ARB _multitexture, 314
GL_ARB _occlusion_query, 317
GL_ARB _pixel_buffer_object, 320
GL_ARB _point_parameters, 315
GL_ARB _point_sprite, 318
GL_ARB _shader_objects, 318

307, 320,

331

GL_ARB _shader_texture_lod, 323
GL_ARB _shading_language_100, 318
GL_ARB_shadow, 316, 318
GL_ARB _shadow_ambient, 317
GL_ARB _texture_border_clamp, 315
GL_ARB _texture_buffer_object, 308,
322
GL_ARB _texture_compression, 315
GL_ARB _texture_compression _rgtc,
322
GL_ARB __texture_cube_map, 315
GL_ARB_texture_env_add, 315
GL_ARB_texture_env_combine, 316
GL_ARB_texture_env_crossbar, 316
GL_ARB _texture_env_dot3, 316
GL_ARB _texture_float, 301, 320
GL_ARB _texture_mirrored_repeat, 316
GL_ARB _texture_non_power_of_two,
318
GL_ARB _texture_rectangle, 308, 319
GL_ARB _texture_rg, 322
GL_ARB _transpose_matrix, 315
GL_ARB _uniform_buffer_object,
322
GL_ARB _vertex_array_object, 322
GL_ARB _vertex_blend, 316
GL_ARB _vertex_buffer_object, 317
GL_ARB _vertex_program, 317
GL_ARB _vertex_shader, 318
GL_ARB _window_pos, 317
GL_ARB_name, 314
gl_BackColor, 296
gl_BackSecondaryColor, 296
gl _ClipDistance, 70, 302
gl_ClipDistance[], 81
gl_ClipVertex, 302
GL_EXT_draw_buffers2, 301
GL_EXT _framebuffer_blit, 301, 320
GL_EXT _framebuffer_multisample,
301, 320

308,

OpenGL 3.1 - May 28, 2009

INDEX

GL_EXT _framebuffer_object, 301, 320

GL_EXT _framebuffer_sRGB, 301, 321

GL_EXT_geometry_shader4, 304

GL_EXT_gpu_shader4, 300

GL_EXT _packed_depth_stencil, 301

GL_EXT _packed_float, 301

GL_EXT _texture_array, 301, 304

GL_EXT _texture_compression_rgtc,
301, 322

GL_EXT _texture_integer, 301

GL_EXT _texture_shared_exponent, 301

GL_EXT _transform_feedback, 301

gl FragColor, 163, 164, 184

gl_FragCoord, 162

gl _FragCoord.z, 282

gl FragData, 164, 184

gl _FragData[n], 163

gl_FragDepth, 163, 164, 282

gl _FrontFacing, 162

gl InstancelD, 28, 70

GL_NV _conditional_render, 300

GL_NV _depth_buffer_float, 301, 320

GL_NV_half float, 301, 321

GL_NV _primitive_restart, 307

gl _PointCoord, 89

gl _PointSize, 88

gl_Position, 65, 70, 73

gl _PrimitivelD, 163

gl_VertexID, 70, 163

GLX_ARB _create_context, 322

GLX_ARB _fbconfig_float, 319

GLX_ARB _framebuffer_sRGB, 321

GREATER, 142, 158, 171, 172

GREEN, 106, 192, 196, 251, 258

GREEN_BITS, 298

GREEN_INTEGER, 106

HALEF, 193
HALF_FLOAT, 24, 105, 117, 192, 193,
195

332

Hint, 218, 299

INCR, 171

INCR_WRAP, 171

Index*, 295

IndexPointer, 295

INFO_LOG_LENGTH, 231-233, 262,
263

InitNames, 298

INT, 24, 47, 56, 105, 194, 195, 223, 236

int, 56, 60

INT_SAMPLER_1D, 56

INT_SAMPLER_1D_ARRAY, 56

INT_SAMPLER 2D, 56

INT_SAMPLER_2D_ARRAY, 56

INT_SAMPLER_3D, 56

INT_SAMPLER _CUBE, 56

INT_VEC2, 47, 56

INT_VEC3, 47, 56

INT_VEC4, 47, 56

INTENSITY, 297

INTERLEAVED_ATTRIBS, 65, 66, 79,
232,264

InterleavedArrays, 295

INVALID_ENUM, 18, 19, 37, 104, 115,
129, 134, 136, 138, 141, 156,
182, 189, 191, 192, 225, 237,
238, 304

INVALID_FRAMEBUFFER_OPERA-
TION, 19, 129, 133, 192, 198,
215,216

INVALID_INDEX, 51, 53

INVALID_OPERATION, 19, 32, 34,
36-39, 41, 42, 44, 45, 48, 50,
58, 59, 64, 66, 71, 76-78, 80,
104, 108, 115, 117, 125, 129,
133, 135-139, 152, 156, 164,
165, 182, 184, 190-192, 196~
198, 200, 203-205, 207, 209,
222, 224-226, 228, 231, 235,

OpenGL 3.1 - May 28, 2009

INDEX 333

236, 238, 295, 296, 302,303 Light*, 296
INVALID_VALUE, 18, 19, 24-28, 34, LIGHTING, 296
36, 37, 39, 42, 47, 48, 51-54, LightModel*, 296
63, 65, 66, 75, 77, 79, 88, 89, LINE, 98, 100, 247
91, 101, 117, 124-126, 129— LINE_LOOP, 21, 78
132, 135, 136, 151, 164, 169, LINE_SMOOTH, 91, 95, 246
174, 182, 184, 185, 187, 189, LINE_SMOOTH_HINT, 219, 270
204, 208, 209, 221, 223, 225- LINE_STIPPLE, 296
227, 231, 234, 235, 296, 297, LINE_STRIP, 21, 78

309 LINE_WIDTH, 246
INVERT, 171, 180 LINEAR, 68, 141, 142, 148, 149, 151,
isampler1D, 56 152, 155, 197, 198, 210, 237,
isampler1DArray, 56 250
isampler2D, 56 LINEAR_MIPMAP_LINEAR, 142,
isampler2DArray, 56 149-151, 210
isampler3D, 56 LINEAR_MIPMAP_NEAREST, 142,
isamplerCube, 56 149-151, 210
IsBuffer, 229 LINES, 21, 78
IsEnabled, 169, 178, 221,239, 242,244, LineStipple, 296

246-248, 253, 254, 267 LineWidth, 91, 296, 307
IsEnabledi, 178, 221, 254 LINK_STATUS, 45, 232, 263
IsFramebuffer, 235 LinkProgram, 44, 45, 47, 48, 51, 53, 54,
IsList, 298 63, 64, 66, 80, 164
IsProgram, 232 ListBase, 298
IsQuery, 227, 228 LoadlIdentity, 295
IsRenderbuffer, 238 LoadMatrix, 295
IsShader, 231 LoadName, 298
IsTexture, 226 LoadTransposeMatrix, 295
IsVertexArray, 231 LOGIC_OP_MODE, 254
ivec2, 56 LogicOp, 179, 180
ivec3, 56 LOWER_LEFT, 89, 90
ivec4, 56 LUMINANCE, 297

LUMINANCE_ALPHA, 297
KEEP, 171, 172, 253

MAJOR_VERSION, 227, 274

layout, 61 Map*, 208

LEFT, 174, 182-185, 188, 192 MAP_FLUSH_EXPLICIT BIT, 35-37
LEQUAL, 142, 155, 158, 171, 172,250 AP INVALIDATE.BUFFER BIT
LESS, 142, 158, 171, 172, 254 35,36

LIGHTY, 296

OpenGL 3.1 - May 28, 2009

INDEX

MAP_INVALIDATE_RANGE_BIT, 35,
36

MAP_READ BIT, 34-37

MAP_UNSYNCHRONIZED_BIT, 35,
36

MAP_WRITE_BIT, 34-37

MapBuffer, 34, 37, 50, 63, 79, 80, 303

MapBufferRange, 34-37, 303

MapGrid*, 298

matC', 60, 61

matCx R, 60, 61

mat2, 46, 56

mat2x3, 46, 56

mat2x4, 46, 56

mat3, 46, 56

mat3x2, 46, 56

mat3x4, 46, 56

mat4, 46, 56

mat4x2, 46, 56

mat4x3, 46, 56

Material*, 296

MatrixMode, 295

MAX, 174, 176

MAX_3D_TEXTURE_SIZE, 125, 207,
208, 271

MAX_ARRAY_TEXTURE_LAYERS,
125, 271

MAX_ATTRIB_STACK_DEPTH, 299

MAX_CLIENT_ATTRIB_STACK _-
DEPTH, 299

MAX_CLIP_DISTANCES, 271,
308

MAX_CLIP_PLANES, 302

MAX_COLOR_ATTACHMENTS,
182-184, 200, 206, 215, 278

MAX_COMBINED_FRAGMENT _-
UNIFORM_COMPONENTS,
160, 277

MAX_COMBINED_TEXTURE _-
IMAGE_UNITS, 69, 115, 222,

302,

334

275
MAX_COMBINED _UNIFORM _-
BLOCKS, 60, 276
MAX_COMBINED_VERTEX_UNI-
FORM_COMPONENTS, 49,

277
MAX_CUBE_MAP_TEXTURE_SIZE,
125, 208, 271
MAX_DRAW _BUFFERS, 164, 174,

176, 184, 185, 189, 278
MAX_ELEMENTS_INDICES, 28, 273
MAX_ELEMENTS_VERTICES, 28,

273
MAX_FRAGMENT _UNIFORM _-

BLOCKS, 59, 276
MAX_FRAGMENT _UNI-

FORM_COMPONENTS, 160,

275,277
MAX_PROGRAM_TEXEL_OFFSET,

145, 275
MAX_RECTANGLE_TEXTURE.-

SIZE, 125, 273
MAX_RENDERBUFFER _SIZE,

271
MAX_SAMPLES, 204, 205, 278
MAX_TEXTURE_BUFFER_SIZE,

139, 273
MAX_TEXTURE_COORDS, 298
MAX_TEXTURE_IMAGE_UNITS, 69,

162, 275
MAX_TEXTURE_LOD_BIAS,

271
MAX_TEXTURE_SIZE, 125, 208, 271
MAX_TEXTURE_UNITS, 298
MAX_TRANSFORM _FEEDBACK -

INTERLEAVED_COMPO-

NENTS, 66, 269
MAX_TRANSFORM _FEEDBACK -

SEPARATE_ATTRIBS, 65,

79, 80, 230, 269

204,

144,

OpenGL 3.1 - May 28, 2009

INDEX

MAX_TRANSFORM_FEEDBACK _-
SEPARATE_COMPONENTS,
66, 269
MAX_UNIFORM_BLOCK SIZE, 52,
276
MAX_UNIFORM_BUFFER _BIND-
INGS, 63, 230, 276
MAX_VARYING_COMPONENTS, 65,
275, 302
MAX_VARYING_FLOATS, 302
MAX_VERTEX_ATTRIBS, 23-26, 29,
46, 48, 234, 235, 275
MAX_VERTEX_TEXTURE_IMAGE._-
UNITS, 69, 275
MAX_VERTEX_UNIFORM -
BLOCKS, 59, 276
MAX_VERTEX_UNIFORM_COMPO-
NENTS, 49, 275, 277
MAX_VIEWPORT_DIMS, 228, 272
MIN, 174, 176
MIN_PROGRAM _TEXEL_OFFSET,
145, 275
MINOR_VERSION, 227, 274
MIRRORED_REPEAT, 141, 142, 147
MultiDrawArrays, 27
MultiDrawElements, 28, 40
MULTISAMPLE, 88, 90, 95, 100, 169,
180, 248
MultMatrix, 295
MultTransposeMatrix, 295

NAND, 180

NEAREST, 68, 141, 142, 147, 149,
151-153, 159, 197, 210

NEAREST_MIPMAP _-
LINEAR, 142, 149-152, 155,
210

NEAREST_MIPMAP_NEAREST, 142,
149-153, 159, 210

NEVER, 142, 158, 171, 172

335

NewlList, 298

NICEST, 219

NO_ERROR, 18

NONE, 70, 142, 154, 155, 158, 162,
180, 182-185, 189, 192, 199,
212, 213, 223, 236, 250, 251,
258, 303, 309

NOOP, 180

noperspective, 83

NOR, 180

Normal3*, 295

NORMALIZE, 296

NormalPointer, 295

NOTEQUAL, 142, 158, 171, 172

NULL, 30, 31, 33, 36, 40, 41, 43, 47,
51, 54, 67, 230, 233, 239, 240,
243

NUM_COMPRESSED_TEXTURE _-
FORMATS, 118, 273

NUM_EXTENSIONS, 227, 274

NV, 308

ONE, 176, 177, 254

ONE_MINUS_CONSTANT_ALPHA,
177

ONE_MINUS_CONSTANT_COLOR,
177

ONE_MINUS_DST_ALPHA, 177

ONE_MINUS_DST_COLOR, 177

ONE_MINUS_SRC_ALPHA, 177

ONE_MINUS_SRC_COLOR, 177

OR, 180

OR_INVERTED, 180

OR_REVERSE, 180

Ortho, 295

OUT_OF_MEMORY, 18, 19, 34, 36,
204

PACK_ALIGNMENT, 191, 261

OpenGL 3.1 - May 28, 2009

INDEX

PACK_IMAGE _HEIGHT,
261
PACK_LSB_FIRST, 191, 261
PACK_ROW _LENGTH, 191, 261
PACK_SKIP_IMAGES, 191, 225, 261
PACK_SKIP_PIXELS, 191, 261
PACK_SKIP_ROWS, 191, 261
PACK_SWAP_BYTES, 191, 261
PassThrough, 298
PERSPECTIVE_CORRECTION _-
HINT, 299
PIXEL_PACK_BUFFER, 31, 102, 189
PIXEL_PACK_BUFFER_BINDING,
194, 225, 261
PIXEL_UNPACK_BUFFER, 31, 102
PIXEL_UNPACK_BUFFER _BIND-
ING, 104, 134, 261
PixelStore, 101, 102, 191, 198, 199
PixelZoom, 297
POINT, 98, 100, 247
POINT_FADE_THRESHOLD_SIZE,
89, 246
POINT_SIZE, 246
POINT_SIZE_GRANULARITY, 272
POINT_SIZE_RANGE, 272
POINT_SMOOTH, 296
POINT_SMOOTH_HINT, 299
POINT_SPRITE, 296
POINT_SPRITE_COORD_ORIGIN,
89, 90, 246
PointParameter, 89
PointParameter®, 89
POINTS, 21, 78, 98
PointSize, 88
POLYGON, 296
POLYGON_OFFSET_FACTOR, 247
POLYGON_OFFSET_FILL, 100, 247
POLYGON_OFFSET_LINE, 100, 247
POLYGON_OFFSET _POINT, 100, 247
POLYGON_OFFSET_UNITS, 247

191, 225,

336

POLYGON_SMOOTH, 95, 100, 247

POLYGON_SMOOTH_HINT, 219, 270

POLYGON_STIPPLE, 297

PolygonMode, 98, 100, 101, 297

PolygonOffset, 99

PolygonStipple, 297

PopAttrib, 299

PopClientAttrib, 299

PopMatrix, 295

PopName, 298

PRIMITIVE_RESTART, 26, 242, 307,
308

PRIMITIVE_RESTART _INDEX,
308

PrimitiveRestartIndex, 26

PRIMITIVES_GENERATED, 81, 228

PrioritizeTextures, 298

PROXY_TEXTURE_ID, 117, 127, 155,
223

PROXY _TEXTURE_1D_ARRAY, 117,
126, 155, 223

PROXY _TEXTURE_2D, 117, 126, 155,
223

PROXY _TEXTURE_2D_ARRAY, 116,
117, 155, 223

PROXY _TEXTURE_3D, 116, 155, 223

PROXY _TEXTURE_CUBE_MAP, 117,
126, 155, 223

PROXY _TEXTURE_RECTANGLE,
117, 126, 134, 136, 155, 223

PushAttrib, 299

PushClientAttrib, 299

PushMatrix, 295

PushName, 298

242,

QUAD_STRIP, 296

QUADS, 296

QUERY_BY _REGION_NO_WAIT, 77
QUERY_BY_REGION_WAIT, 77
QUERY_COUNTER_BITS, 228, 274

OpenGL 3.1 - May 28, 2009

INDEX

QUERY _NO_WAIT, 77

QUERY _RESULT, 228, 268

QUERY _RESULT_AVAILABLE, 229,
268

QUERY _WAIT, 77

R, 301

R11F_G11F_B10F, 119, 122

R16, 119, 121, 140

R16_SNORM, 119, 121

RI16F, 119, 121, 140

R16I, 119, 122, 140

R16UI, 119, 122, 140

R32F, 119, 121, 140

R32I, 119, 122, 140

R32UI1, 119, 122, 140

R3_G3_B2, 121

RS, 119, 121, 140, 154, 251

R8_SNORM, 119, 121

R8I, 119, 122, 140

R8UI, 119, 122, 140

RASTERIZER _DISCARD, 85

RasterPos*, 296

READ_BUFFER, 192, 213, 217, 257

READ_FRAMEBUFFER,
199-201, 205, 207, 215, 236,
256

READ_FRAMEBUFFER _BINDING,
129, 133, 190, 192, 193, 198,
202, 256

READ_ONLY, 31, 36, 37

READ_WRITE, 31, 33, 36, 37, 243

ReadBuffer, 183, 191, 192, 198

ReadPixels, 80, 101, 107, 129, 189-
192, 194, 215, 225, 297

Rect*, 296

RED, 106, 117,121, 122, 124, 141, 143,
161, 192, 196, 211, 226, 251,
258

RED_BITS, 298

337

RED_INTEGER, 106
RENDERBUFFER,
236-238, 259
RENDERBUFFER_ALPHA _SIZE,
238, 260
RENDERBUFFER_BINDING,
259
RENDERBUFFER_BLUE_SIZE, 238,
260
RENDERBUFFER_DEPTH_SIZE,
238, 260
RENDERBUFFER_GREEN_SIZE,
238, 260
RENDERBUFFER_HEIGHT, 204, 238,
260
RENDERBUFFER_INTERNAL_FOR-
MAT, 204, 238, 260

202-206, 216,

203,

RENDERBUFFER RED SIZE, 238,
260
RENDERBUFFER_SAMPLES, 204,

213, 215, 238, 260

RENDERBUFFER_STENCIL_SIZE,
238, 260

RENDERBUFFER_WIDTH, 204, 238,
260

RenderbufferStorage, 204, 205, 214

RenderbufferStorageMultisample, 204,
205, 309

RENDERER, 226, 274

RenderMode, 298

REPEAT, 141, 142, 147, 155

REPLACE, 171

RESCALE_NORMAL, 295

RG, 106, 117, 121, 122, 124, 161, 192,
196, 211, 226, 301

RG16, 119, 121, 140

RG16_SNORM, 119, 121

RGI6F, 119, 121, 140

RGI161, 119, 122, 140

RGI16UI, 119, 122, 140

OpenGL 3.1 - May 28, 2009

INDEX

RG32F, 119, 121, 140

RG32I, 119, 122, 140

RG32UI, 119, 122, 140

RG8, 119, 121, 140

RG8_SNORM, 119, 121

RG8I, 119, 122, 140

RG8UI, 119, 122, 140

RG_INTEGER, 106

RGB, 106, 108, 113, 117, 120-122,
124, 161, 177, 192, 194, 196,
211, 226

RGBI10, 121

RGB10_A2, 119, 121

RGBI12, 121

RGB16, 119, 121

RGB16_SNORM, 119, 121

RGBI16F, 119, 121

RGB16], 119, 122

RGB16UI, 119, 122

RGB32F, 119, 121

RGB32I, 119, 122

RGB32UI, 119, 122

RGB4, 121

RGBS, 121

RGB5_Al, 121

RGBS, 119, 121

RGB8_SNORM, 119, 121

RGBS&I, 119, 122

RGB8UI, 119, 122

RGBY_E5, 119, 122, 159, 194

RGB_INTEGER, 106

RGBA, 106, 108, 113, 117, 121, 122,
124, 154, 161, 192, 211, 226,
251, 260, 297

RGBAI12, 121

RGBALI6, 119, 121, 140

RGBA16_SNORM, 119, 121

RGBAIGF, 119, 121, 140

RGBAI16I, 119, 122, 140

RGBAI16UI, 119, 122, 140

338

RGBA2, 121

RGBA32F, 119, 122, 140
RGBA32I, 119, 122, 140
RGBA32UI, 119, 122, 140
RGBA4, 121

RGBAS, 119, 121, 140
RGBAS_SNORM, 119, 121
RGBASI, 119, 122, 140
RGBASUI, 119, 122, 140
RGBA_INTEGER, 106
RIGHT, 174, 182-185, 188, 192
Rotate, 295

SAMPLE_ALPHA _TO_COVERAGE,
169, 248

SAMPLE_ALPHA _TO_ONE, 169, 170,
248

SAMPLE _BUFFERS, 87, 90, 95, 100,
129, 169, 173, 180, 186, 190,
191, 198, 215, 278

SAMPLE_COVERAGE, 169, 170, 248

SAMPLE_COVERAGE_INVERT, 169,
170, 248

SAMPLE_COVERAGE_VALUE,
170, 248

SampleCoverage, 170

sampler1D, 56

sampler1DArray, 56

sampler1 DArrayShadow, 56

sampler1DShadow, 56, 69, 161

sampler2D, 56, 64

sampler2DArray, 56

sampler2DArrayShadow, 56

sampler2DRect, 56

sampler2DRectShadow, 56, 69, 162

sampler2DShadow, 56, 69, 162

sampler3D, 56

SAMPLER_1D, 56

SAMPLER_ID_ARRAY, 56

169,

OpenGL 3.1 - May 28, 2009

INDEX

SAMPLER_1D_ARRAY_SHADOW,
56
SAMPLER_1D_SHADOW, 56
SAMPLER_2D, 56
SAMPLER_2D_ARRAY, 56
SAMPLER 2D_ARRAY_SHADOW,
56
SAMPLER_2D_RECT, 56
SAMPLER _2D_RECT_SHADOW, 56
SAMPLER_2D_SHADOW, 56
SAMPLER_3D, 56
SAMPLER_CUBE, 56
SAMPLER_CUBE_SHADOW, 56
samplerCube, 56
samplerCubeShadow, 56
SAMPLES, 87, 88, 173, 198, 215, 278
SAMPLES PASSED, 77, 173, 228
Scale, 295
Scissor, 169
SCISSOR_BOX, 253
SCISSOR_TEST, 169, 253
SecondaryColor3*, 295
SecondaryColorPointer, 295
SelectBuffer, 298
SEPARATE_ATTRIBS, 65, 66, 79, 80,
232
SET, 180
ShadeModel, 296
SHADER_SOURCE_LENGTH,
234,262
SHADER_TYPE, 72, 231, 262
ShaderSource, 43, 234
SHADING_LANGUAGE_VERSION,
226,227,274
SHORT, 24, 105, 194, 195
SIGNED_NORMALIZED, 223, 236
SMOOTH_LINE_WIDTH_GRANU-
LARITY
(v1.1: LINE_WIDTH_GRAN-
ULARITY), 273

231,

339

SMOOTH_LINE_WIDTH_RANGE
(vl.1: LINE_WIDTH .-
RANGE), 273

SRC_ALPHA, 177

SRC_ALPHA _SATURATE, 177

SRC_COLOR, 177

SRGB, 159, 175, 178, 237

SRGBS, 119, 121, 159

SRGB8_ALPHAS, 119, 121, 159

SRGB_ALPHA, 159

STATIC_COPY, 31, 33

STATIC_DRAW, 31, 33, 243

STATIC_READ, 31, 33

std140, 52, 61

STENCIL, 188, 189, 236, 251, 258, 302

STENCIL_ATTACHMENT, 201, 206,
212,303

STENCIL_ATTACMENT, 302, 303

STENCIL_BACK_FAIL, 253

STENCIL_BACK_FUNC, 253

STENCIL_BACK_PASS_DEPTH -
FAIL, 253

STENCIL_BACK_PASS_DEPTH _-
PASS, 253

STENCIL_BACK_REEF, 253

STENCIL_BACK_VALUE_MASK, 253

STENCIL_BACK_WRITEMASK, 255

STENCIL_BITS, 298

STENCIL_BUFFER, 303

STENCIL_BUFFER_BIT,
196-198

STENCIL_CLEAR_VALUE, 255

STENCIL_FAIL, 253

STENCIL_FUNC, 253

STENCIL_INDEX, 106, 116, 191, 193,
204, 212, 225

STENCIL_INDEX1, 204

STENCIL_INDEX16, 204

STENCIL_INDEX4, 204

STENCIL_INDEXS, 204

187, 189,

OpenGL 3.1 - May 28, 2009

INDEX

STENCIL_PASS _DEPTH _FAIL, 253
STENCIL_PASS _DEPTH_PASS, 253
STENCIL_REF, 253
STENCIL_TEST, 170, 253
STENCIL_VALUE_MASK, 253
STENCIL_WRITEMASK, 255
StencilFunc, 170-172, 284
StencilFuncSeparate, 170, 171
StencilMask, 186, 284
StencilMaskSeparate, 186
StencilOp, 170-172
StencilOpSeparate, 170172
STEREO, 278

STREAM_COPY, 31, 32
STREAM_DRAW, 31, 32
STREAM_READ, 31, 32
SUBPIXEL_BITS, 271

TexBuffer, 138

TexCoord*, 295

TexCoordPointer, 295

TexEnv, 298

TexGen*, 296

TexImage, 115, 131

TexImage™, 107, 291, 297, 308

TexImage*D, 101, 102

TexImagelD, 102, 123, 126, 127, 129-
131, 134, 136, 150, 155

TexImage2D, 102, 123, 126, 127, 129,
131, 134, 136, 150, 155

TexImage3D, 102, 115, 116, 123, 124,
126, 127, 131, 134, 136, 150,
155, 225

TexParameter, 115, 141, 291, 298

TexParameter*, 298

TexParameter[if], 144, 151

TexParameterl, 141

TexParameterliv, 141

TexParameterluiv, 141

TexParameteriv, 141

340

TexSublmage, 131

TexSubIlmage*, 133, 138, 291

TexSublmage*D, 101

TexSublmagelD, 102, 130-133, 136

TexSublmage2D, 102, 130-133, 136

TexSublmage3D, 102, 130, 131, 133,
136

TEXTURE, 208, 212, 216, 236, 237

TEXTURE;, 115

TEXTUREQO, 115, 252

TEXTURE_z_SIZE, 251

TEXTURE_z_TYPE, 251

TEXTURE_zD, 249

TEXTURE_1D, 117, 127, 130, 141,
152, 156, 157, 208, 222-224,
298

TEXTURE_1D_ARRAY, 117, 126, 129,
130, 141, 152, 156, 157, 222~
224,249, 298

TEXTURE_2D, 64, 117, 126, 129, 130,
141, 152, 156, 157, 208, 222—
224, 298

TEXTURE_2D_ARRAY, 116, 117, 124,
130, 136, 138, 141, 152, 156,
157, 222-224, 249, 298

TEXTURE_3D, 116, 124, 130, 141,
152, 155-157, 207, 208, 222~
224,298

TEXTURE_ALPHA _SIZE, 223

TEXTURE_ALPHA_TYPE, 223

TEXTURE_BASE_LEVEL, 141,
149, 151, 155, 210, 250

TEXTURE_BINDING_zD, 249

TEXTURE_BINDING_1D_ARRAY,
249

TEXTURE_BINDING_2D_ARRAY,
249

TEXTURE_BINDING_BUFFER, 249

TEXTURE_BINDING_CUBE_MAP,
249

142,

OpenGL 3.1 - May 28, 2009

INDEX

TEXTURE_BINDING_RECTANGLE,
249
TEXTURE_BLUE_SIZE, 223
TEXTURE_BLUE_TYPE, 223
TEXTURE_BORDER, 135, 137, 224
TEXTURE_BORDER_COLOR, 141,
142, 148, 154, 155, 222, 250,
304
TEXTURE_BUFFER, 31,
157, 223, 249, 279
TEXTURE_BUFFER_DATA _STORE _-
BINDING, 251
TEXTURE_COMPARE_FAIL _-
VALUE_ARB, 317
TEXTURE_COMPARE_FUNC,
155, 157, 158, 250
TEXTURE_COMPARE _-
MODE, 69, 70, 142, 155, 157,
158, 162, 250
TEXTURE_COMPONENTS, 297
TEXTURE_COMPRESSED, 251
TEXTURE_COMPRESSED _-
IMAGE_SIZE, 135, 137, 223,
226, 251
TEXTURE_COMPRESSION_HINT,
219,270
TEXTURE_CUBE_MAP, 117, 126,
141, 152, 156, 157, 222, 223,
249, 298
TEXTURE_CUBE_MAP_*, 126
TEXTURE_CUBE_MAP_NEG-
ATIVE_X, 126, 129, 130, 143,
207, 208, 223, 224, 249
TEXTURE_CUBE_MAP_NEG-
ATIVELY, 126, 129, 130, 143,
207, 208, 223, 224, 249
TEXTURE_CUBE_MAP_NEG-
ATIVE_Z, 126, 129, 130, 143,
207, 208, 223, 224, 249
TEXTURE_CUBE_MAP_POS-

139, 156,

142,

341

ITIVE X, 126, 129, 130, 143,
207, 208, 223, 224, 249
TEXTURE_CUBE_MAP_POS-
ITIVEY, 126, 129, 130, 143,
207, 208, 223, 224, 249
TEXTURE_CUBE_MAP_POS-
ITIVE_Z, 126, 129, 130, 143,
207, 208, 223, 224, 249
TEXTURE_DEPTH, 135, 137,224, 251
TEXTURE_DEPTH_SIZE, 223
TEXTURE_DEPTH_TYPE, 223
TEXTURE_ENYV, 298
TEXTURE_FILTER_CONTROL, 298
TEXTURE_GEN_*, 296
TEXTURE_GREEN_SIZE, 223
TEXTURE_GREEN_TYPE, 223
TEXTURE_HEIGHT, 133, 135,
138, 224, 251
TEXTURE_INTERNAL_FORMAT,
135, 137,224, 251, 297
TEXTURE_LOD_BIAS, 142, 144, 250,

137,

298
TEXTURE_MAG_FILTER, 142, 152,

153, 155, 159, 250
TEXTURE_MAX_LEVEL, 141, 142,

151, 155, 210, 250
TEXTURE_MAX_LOD, 141, 142, 144,

155, 250
TEXTURE_MIN_FILTER, 141, 142,
146-150, 152, 153, 155, 159,
210, 250
TEXTURE_MIN_LOD, 141, 142, 144,
155, 250
TEXTURE_PRIORITY, 298
TEXTURE_RECTANGLE, 117, 126,

129-131, 134, 136, 141, 156,

157, 207, 208, 222-225, 249
TEXTURE_RECTANGLE_ARB, 319
TEXTURE_RED_SIZE, 223
TEXTURE_RED_TYPE, 223

OpenGL 3.1 - May 28, 2009

INDEX

TEXTURE_SHARED _SIZE, 223, 251
TEXTURE_STENCIL_SIZE, 223
TEXTURE_WIDTH, 133, 135,
138, 224, 251
TEXTURE_WRAPR, 141,
250, 297
TEXTURE_WRAP_S, 141, 142,
250, 297
TEXTURE_WRAP_T, 141, 142,
250, 297
TRANSFORM_FEEDBACK _-
BUFFER, 31, 79, 80
TRANSFORM_FEEDBACK _-
BUFFER _BINDING, 230, 269
TRANSFORM_FEEDBACK _-
BUFFER_MODE, 232, 264
TRANSFORM_FEEDBACK _-
BUFFER_SIZE, 230, 269
TRANSFORM_FEEDBACK _-
BUFFER_START, 230, 269
TRANSFORM_FEEDBACK _-
PRIMITIVES _WRITTEN, 80,
81,228
TRANSFORM_FEEDBACK _VARY-
ING_.MAX_LENGTH, 67,
232,264
TRANSFORM _-
FEEDBACK_VARYINGS, 66,
232,264
TransformFeedbackVaryings, 65, 66, 80
Translate, 295
TRIANGLE_FAN, 22, 78
TRIANGLE_STRIP, 21, 22, 78
TRIANGLES, 22, 78
TRUE, 25, 31, 36, 38, 43, 45, 58, 71,
101, 102, 162, 170, 185, 191,
193, 221, 226, 228, 229, 231,
232, 234, 235, 238, 248, 254,
255,296

137,
142, 147,
147,

147,

342

uint, 60

Uniform, 14, 57

Uniform*, 49, 50, 58, 59, 64

Uniform*f{v}, 58

Uniform*i{v}, 58

Uniform*ui{v}, 58

Uniforml1f, 15

Uniformli, 14

Uniform1i{v}, 58, 64

Uniformliv, 58

Uniform2{if ui}*, 58

Uniform2f, 15

Uniform?2i, 15

Uniform3f, 15

Uniform3i, 15

Uniform4f, 13, 15

Uniform4f{v}, 59

Uniform4i, 15

Uniform4i{v}, 59

UNIFORM_ARRAY_STRIDE, 57, 61,
266

UNIFORM_BLOCK_ACTIVE_UNI-
FORM_INDICES, 52, 266

UNIFORM_BLOCK_ACTIVE_UNI-
FORMS, 52, 266

UNIFORM_BLOCK_BINDING,
266

UNIFORM_BLOCK_DATA_SIZE, 52,
64, 266

UNIFORM_BLOCK_INDEX, 57, 265

UNIFORM_BLOCK_NAME _-
LENGTH, 52

UNIFORM_BLOCK_REFERENCED -
BY_FRAGMENT_SHADER,
52,266

UNIFORM_BLOCK_REFERENCED -
BY_VERTEX_SHADER, 52,
266

UNIFORM_BUFFER, 31, 63

UNIFORM_BUFFER _BINDING, 230,

52,

OpenGL 3.1 - May 28, 2009

INDEX

265
UNIFORM _BUFFER _OFFSET _-

ALIGNMENT, 63, 276
UNIFORM _BUFFER _SIZE, 230
UNIFORM_BUFFER _START, 230
UNIFORM_IS_ROW _MAIJOR, 57, 266
UNIFORM_MATRIX_STRIDE, 57, 60,

61, 266
UNIFORM_NAME_LENGTH, 55, 265
UNIFORM _OFFSET, 57, 265
UNIFORM_SIZE, 55, 265
UNIFORM_TYPE, 55, 265
Uniform{1,2,3,4 }ui, 57
Uniform{1,2,3,4 }uiv, 57
UniformBlockBinding, 63, 64
UniformMatrix2x4fv, 58
UniformMatrix3fv, 59
UniformMatrix{234 }fv, 57, 58

UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x 3UNSIGNED_INT_8_8_8_8 REV,

57, 58
UnmapBuffer, 35, 37, 38, 50, 291
UNPACK_ALIGNMENT, 102, 107,
116, 261
UNPACK_IMAGE_HEIGHT, 102, 116,
261
UNPACK_LSB_FIRST, 102, 261
UNPACK_ROW_LENGTH, 102, 104,
107, 116, 261
UNPACK_SKIP_IMAGES, 102, 116,
126, 261
UNPACK_SKIP_PIXELS, 102, 107,
261

UNPACK_SKIP_ROWS, 102, 107, 261

UNPACK_SWAP_BYTES, 102, 104,
106, 261

unsigned int, 56

UNSIGNED_BYTE, 24, 27, 105, 194,
195

UNSIGNED_BYTE_2_3_3_REV,
108, 109, 195

105,

343

UNSIGNED BYTE_3.3.2,
109, 195
UNSIGNED._INT, 24, 27, 47, 56, 105,

194, 195, 223, 236
UNSIGNED_INT_10_10-10_2,
108, 111, 195

UNSIGNED_INT_10F _-
11F_11F_REYV, 105, 108, 111,
113, 117, 193-195
UNSIGNED_INT _24_8, 104, 105, 108,
111, 191, 194, 195
UNSIGNED_INT_2_10_10_10_REYV,
105, 108, 111, 195
UNSIGNED_INT_5.9 9 9 REV,
105, 108, 111, 113, 117, 120,

105, 108,

105,

193-195
UNSIGNED_INT_8_8_8_8, 105, 108,
111, 195
105,

108, 111, 195
UNSIGNED_INT_SAMPLER_ID, 56
UNSIGNED_INT_SAMPLER_1D_AR-

RAY, 56
UNSIGNED_INT_SAMPLER 2D, 56
UNSIGNED_INT_SAMPLER 2D_AR-

RAY, 56
UNSIGNED_INT_SAMPLER _3D, 56
UNSIGNED_INT_SAMPLER_CUBE,

56
UNSIGNED_INT_VEC2, 47, 56
UNSIGNED_INT_VEC3, 47, 56
UNSIGNED_INT_VEC4, 47, 56
UNSIGNED_NORMALIZED, 223, 236
UNSIGNED_SHORT, 24, 27, 105, 194,

195
UNSIGNED_SHORT_1.5_.5_5_REV,

105, 108, 110, 195
UNSIGNED_SHORT 4.4 4 4,

108, 110, 195
UNSIGNED_SHORT 4.4 4 4 REV,

105,

OpenGL 3.1 - May 28, 2009

INDEX

105, 108, 110, 195

UNSIGNED_SHORT 5551,
108, 110, 195

UNSIGNED_SHORT_5_6_5, 105, 108,
110, 195

UNSIGNED_SHORT_5_6_5_REV, 105,
108, 110, 195

UPPER_LEFT, 89, 90, 246

usamplerlD, 56

usampler1 DArray, 56

usampler2D, 56

usampler2DArray, 56

usampler3D, 56

usamplerCube, 56

UseProgram, 45, 67, 80

uvec2, 56

uvec3, 56

uvecd, 56

105,

VALIDATE_STATUS, 71, 232, 263

ValidateProgram, 71, 232

vec2, 46, 56

vec3, 46, 56

vecd, 46, 56, 59

VENDOR, 226, 274

VERSION, 226, 227, 274

Vertex*, 295

VERTEX_ARRAY _BINDING,
234,242

VERTEX_ATTRIB_ARRAY _-
BUFFER _BINDING, 39, 234,
241

VERTEX_ATTRIB_ARRAY _EN-
ABLED, 234, 240

VERTEX_ATTRIB_ARRAY _INTE-
GER, 234, 240

VERTEX_ATTRIB_ARRAY _NOR-
MALIZED, 234, 240

VERTEX_ATTRIB_ARRAY _-
POINTER, 235, 240

222,

344

VERTEX_ATTRIB_ARRAY _SIZE,
234, 240

VERTEX_ATTRIB_ARRAY _STRIDE,
234, 240

VERTEX_ATTRIB_ARRAY _TYPE,
234, 240

VERTEX_PROGRAM_POINT_SIZE,
89, 267

VERTEX_PROGRAM_TWO_SIDE,
296

VERTEX_SHADER, 42, 231

VertexAttrib, 23, 77

VertexAttrib*, 23, 24, 46, 295

Vertex Attrib1*, 23

Vertex Attrib2*, 23

Vertex Attrib3*, 23

Vertex Attrib4, 23

Vertex Attrib4*, 23

Vertex Attrib4N, 23

Vertex Attrib4Nub, 23

Vertex Attribl, 23

Vertex Attribl4, 24

Vertex AttribIPointer, 24, 25, 234

VertexAttribPointer, 24, 25, 39, 41, 234,
296

VertexPointer, 295

VIEWPORT, 244

Viewport, 74

WGL_ARB _create_context, 322
WGL_ARB _framebuffer_sRGB, 321
WGL_ARB _pixel_format_float, 319
WindowPos*, 296

WRITE_ONLY, 31, 36, 37

XOR, 180

ZERO, 171, 176, 177, 254

OpenGL 3.1 - May 28, 2009

	1 Introduction
	1.1 What is the OpenGL Graphics System?
	1.2 Programmer's View of OpenGL
	1.3 Implementor's View of OpenGL
	1.4 Our View
	1.5 The Deprecation Model
	1.6 Companion Documents
	1.6.1 OpenGL Shading Language
	1.6.2 Window System Bindings

	2 OpenGL Operation
	2.1 OpenGL Fundamentals
	2.1.1 Floating-Point Computation
	2.1.2 16-Bit Floating-Point Numbers
	2.1.3 Unsigned 11-Bit Floating-Point Numbers
	2.1.4 Unsigned 10-Bit Floating-Point Numbers
	2.1.5 Fixed-Point Data Conversions

	2.2 GL State
	2.2.1 Shared Object State

	2.3 GL Command Syntax
	2.4 Basic GL Operation
	2.5 GL Errors
	2.6 Primitives and Vertices
	2.6.1 Primitive Types

	2.7 Vertex Specification
	2.8 Vertex Arrays
	2.8.1 Transferring Array Elements
	2.8.2 Drawing Commands

	2.9 Buffer Objects
	2.9.1 Mapping and Unmapping Buffer Data
	2.9.2 Effects of Accessing Outside Buffer Bounds
	2.9.3 Copying Between Buffers
	2.9.4 Vertex Arrays in Buffer Objects
	2.9.5 Array Indices in Buffer Objects
	2.9.6 Buffer Object State

	2.10 Vertex Array Objects
	2.11 Vertex Shaders
	2.11.1 Shader Objects
	2.11.2 Program Objects
	2.11.3 Vertex Attributes
	2.11.4 Uniform Variables
	2.11.5 Samplers
	2.11.6 Varying Variables
	2.11.7 Shader Execution
	2.11.8 Required State

	2.12 Coordinate Transformations
	2.12.1 Controlling the Viewport

	2.13 Asynchronous Queries
	2.14 Conditional Rendering
	2.15 Transform Feedback
	2.16 Primitive Queries
	2.17 Primitive Clipping
	2.17.1 Clipping Shader Varying Outputs

	3 Rasterization
	3.1 Discarding Primitives Before Rasterization
	3.2 Invariance
	3.3 Antialiasing
	3.3.1 Multisampling

	3.4 Points
	3.4.1 Basic Point Rasterization
	3.4.2 Point Rasterization State
	3.4.3 Point Multisample Rasterization

	3.5 Line Segments
	3.5.1 Basic Line Segment Rasterization
	3.5.2 Other Line Segment Features
	3.5.3 Line Rasterization State
	3.5.4 Line Multisample Rasterization

	3.6 Polygons
	3.6.1 Basic Polygon Rasterization
	3.6.2 Antialiasing
	3.6.3 Options Controlling Polygon Rasterization
	3.6.4 Depth Offset
	3.6.5 Polygon Multisample Rasterization
	3.6.6 Polygon Rasterization State

	3.7 Pixel Rectangles
	3.7.1 Pixel Storage Modes and Pixel Buffer Objects
	3.7.2 Transfer of Pixel Rectangles

	3.8 Texturing
	3.8.1 Texture Image Specification
	3.8.2 Alternate Texture Image Specification Commands
	3.8.3 Compressed Texture Images
	3.8.4 Buffer Textures
	3.8.5 Texture Parameters
	3.8.6 Depth Component Textures
	3.8.7 Cube Map Texture Selection
	3.8.8 Texture Minification
	3.8.9 Texture Magnification
	3.8.10 Combined Depth/Stencil Textures
	3.8.11 Texture Completeness
	3.8.12 Texture State and Proxy State
	3.8.13 Texture Objects
	3.8.14 Texture Comparison Modes
	3.8.15 sRGB Texture Color Conversion
	3.8.16 Shared Exponent Texture Color Conversion

	3.9 Fragment Shaders
	3.9.1 Shader Variables
	3.9.2 Shader Execution

	3.10 Antialiasing Application
	3.11 Multisample Point Fade

	4 Per-Fragment Operations and the Framebuffer
	4.1 Per-Fragment Operations
	4.1.1 Pixel Ownership Test
	4.1.2 Scissor Test
	4.1.3 Multisample Fragment Operations
	4.1.4 Stencil Test
	4.1.5 Depth Buffer Test
	4.1.6 Occlusion Queries
	4.1.7 Blending
	4.1.8 sRGB Conversion
	4.1.9 Dithering
	4.1.10 Logical Operation
	4.1.11 Additional Multisample Fragment Operations

	4.2 Whole Framebuffer Operations
	4.2.1 Selecting a Buffer for Writing
	4.2.2 Fine Control of Buffer Updates
	4.2.3 Clearing the Buffers

	4.3 Reading and Copying Pixels
	4.3.1 Reading Pixels
	4.3.2 Copying Pixels
	4.3.3 Pixel Draw/Read State

	4.4 Framebuffer Objects
	4.4.1 Binding and Managing Framebuffer Objects
	4.4.2 Attaching Images to Framebuffer Objects
	4.4.3 Feedback Loops Between Textures and the Framebuffer
	4.4.4 Framebuffer Completeness
	4.4.5 Effects of Framebuffer State on Framebuffer Dependent Values
	4.4.6 Mapping between Pixel and Element in Attached Image

	5 Special Functions
	5.1 Flush and Finish
	5.2 Hints

	6 State and State Requests
	6.1 Querying GL State
	6.1.1 Simple Queries
	6.1.2 Data Conversions
	6.1.3 Enumerated Queries
	6.1.4 Texture Queries
	6.1.5 String Queries
	6.1.6 Asynchronous Queries
	6.1.7 Buffer Object Queries
	6.1.8 Vertex Array Object Queries
	6.1.9 Shader and Program Queries
	6.1.10 Framebuffer Object Queries
	6.1.11 Renderbuffer Object Queries

	6.2 State Tables

	A Invariance
	A.1 Repeatability
	A.2 Multi-pass Algorithms
	A.3 Invariance Rules
	A.4 What All This Means

	B Corollaries
	C Compressed Texture Image Formats
	C.1 RGTC Compressed Texture Image Formats
	C.1.1 Format COMPRESSED_RED_RGTC1
	C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1
	C.1.3 Format COMPRESSED_RG_RGTC2
	C.1.4 Format COMPRESSED_SIGNED_RG_RGTC2

	D Shared Objects and Multiple Contexts
	D.1 Object Deletion Behavior
	D.2 Propagating State Changes
	D.2.1 Definitions
	D.2.2 Rules

	E The Deprecation Model
	E.1 Profiles and Deprecated Features of OpenGL 3.0

	F Version 3.0 and Before
	F.1 New Features
	F.2 Deprecation Model
	F.3 Changed Tokens
	F.4 Change Log
	F.5 Credits and Acknowledgements

	G Version 3.1
	G.1 New Features
	G.2 Deprecation Model
	G.3 Change Log
	G.4 Credits and Acknowledgements

	H Extension Registry, Header Files, and ARB Extensions
	H.1 Extension Registry
	H.2 Header Files
	H.3 ARB Extensions
	H.3.1 Naming Conventions
	H.3.2 Promoting Extensions to Core Features
	H.3.3 Multitexture
	H.3.4 Transpose Matrix
	H.3.5 Multisample
	H.3.6 Texture Add Environment Mode
	H.3.7 Cube Map Textures
	H.3.8 Compressed Textures
	H.3.9 Texture Border Clamp
	H.3.10 Point Parameters
	H.3.11 Vertex Blend
	H.3.12 Matrix Palette
	H.3.13 Texture Combine Environment Mode
	H.3.14 Texture Crossbar Environment Mode
	H.3.15 Texture Dot3 Environment Mode
	H.3.16 Texture Mirrored Repeat
	H.3.17 Depth Texture
	H.3.18 Shadow
	H.3.19 Shadow Ambient
	H.3.20 Window Raster Position
	H.3.21 Low-Level Vertex Programming
	H.3.22 Low-Level Fragment Programming
	H.3.23 Buffer Objects
	H.3.24 Occlusion Queries
	H.3.25 Shader Objects
	H.3.26 High-Level Vertex Programming
	H.3.27 High-Level Fragment Programming
	H.3.28 OpenGL Shading Language
	H.3.29 Non-Power-Of-Two Textures
	H.3.30 Point Sprites
	H.3.31 Fragment Program Shadow
	H.3.32 Multiple Render Targets
	H.3.33 Rectangular Textures
	H.3.34 Floating-Point Color Buffers
	H.3.35 Half-Precision Floating Point
	H.3.36 Floating-Point Textures
	H.3.37 Pixel Buffer Objects
	H.3.38 Floating-Point Depth Buffers
	H.3.39 Instanced Rendering
	H.3.40 Framebuffer Objects
	H.3.41 sRGB Framebuffers
	H.3.42 Geometry Shaders
	H.3.43 Half-Precision Vertex Data
	H.3.44 Instanced Rendering
	H.3.45 Flexible Buffer Mapping
	H.3.46 Texture Buffer Objects
	H.3.47 RGTC Texture Compression Formats
	H.3.48 One- and Two-Component Texture Formats
	H.3.49 Vertex Array Objects
	H.3.50 Versioned Context Creation
	H.3.51 Uniform Buffer Objects
	H.3.52 Restoration of features removed from OpenGL 3.0
	H.3.53 Fast Buffer-to-Buffer Copies
	H.3.54 Shader Texture Level of Detail Control

