
The OpenGL
R©

Graphics System:
A Specification

(Version 3.0 - September 23, 2008)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-3.0): Jon Leech

Editor (version 2.0): Pat Brown

Copyright c© 2006-2008 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics, Inc.

Contents

1 Introduction 1
1.1 Formatting of Optional Features 1
1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 2
1.4 Implementor’s View of OpenGL 2
1.5 Our View . 3
1.6 The Deprecation Model . 3
1.7 Companion Documents . 3

1.7.1 OpenGL Shading Language 3
1.7.2 Window System Bindings 3

2 OpenGL Operation 5
2.1 OpenGL Fundamentals . 5

2.1.1 Floating-Point Computation 7
2.1.2 16-Bit Floating-Point Numbers 8
2.1.3 Unsigned 11-Bit Floating-Point Numbers 9
2.1.4 Unsigned 10-Bit Floating-Point Numbers 9

2.2 GL State . 10
2.2.1 Shared Object State . 11

2.3 GL Command Syntax . 11
2.4 Basic GL Operation . 13
2.5 GL Errors . 15
2.6 Begin/End Paradigm . 16

2.6.1 Begin and End . 19
2.6.2 Polygon Edges . 23
2.6.3 GL Commands within Begin/End 24

2.7 Vertex Specification . 24
2.8 Vertex Arrays . 28
2.9 Buffer Objects . 38

i

CONTENTS ii

2.9.1 Mapping and Unmapping Buffer Data 42
2.9.2 Vertex Arrays in Buffer Objects 46
2.9.3 Array Indices in Buffer Objects 47
2.9.4 Buffer Object State . 47

2.10 Vertex Array Objects . 48
2.11 Rectangles . 49
2.12 Coordinate Transformations . 49

2.12.1 Controlling the Viewport 51
2.12.2 Matrices . 52
2.12.3 Normal Transformation 57
2.12.4 Generating Texture Coordinates 59

2.13 Asynchronous Queries . 61
2.14 Conditional Rendering . 63
2.15 Transform Feedback . 64
2.16 Primitive Queries . 67
2.17 Clipping . 68
2.18 Current Raster Position . 70
2.19 Colors and Coloring . 73

2.19.1 Lighting . 75
2.19.2 Lighting Parameter Specification 80
2.19.3 ColorMaterial . 84
2.19.4 Lighting State . 84
2.19.5 Color Index Lighting . 85
2.19.6 Clamping or Masking 86
2.19.7 Flatshading . 86
2.19.8 Color and Associated Data Clipping 87
2.19.9 Final Color Processing 88

2.20 Vertex Shaders . 88
2.20.1 Shader Objects . 89
2.20.2 Program Objects . 90
2.20.3 Shader Variables . 92
2.20.4 Shader Execution . 104
2.20.5 Required State . 110

3 Rasterization 112
3.1 Discarding Primitives Before Rasterization 114
3.2 Invariance . 114
3.3 Antialiasing . 114

3.3.1 Multisampling . 115
3.4 Points . 117

Version 3.0 (September 23, 2008)

CONTENTS iii

3.4.1 Basic Point Rasterization 119
3.4.2 Point Rasterization State 123
3.4.3 Point Multisample Rasterization 123

3.5 Line Segments . 123
3.5.1 Basic Line Segment Rasterization 124
3.5.2 Other Line Segment Features 126
3.5.3 Line Rasterization State 129
3.5.4 Line Multisample Rasterization 129

3.6 Polygons . 130
3.6.1 Basic Polygon Rasterization 130
3.6.2 Stippling . 132
3.6.3 Antialiasing . 133
3.6.4 Options Controlling Polygon Rasterization 133
3.6.5 Depth Offset . 134
3.6.6 Polygon Multisample Rasterization 135
3.6.7 Polygon Rasterization State 136

3.7 Pixel Rectangles . 136
3.7.1 Pixel Storage Modes and Pixel Buffer Objects 136
3.7.2 The Imaging Subset . 138
3.7.3 Pixel Transfer Modes . 138
3.7.4 Rasterization of Pixel Rectangles 149
3.7.5 Pixel Transfer Operations 163
3.7.6 Pixel Rectangle Multisample Rasterization 173

3.8 Bitmaps . 174
3.9 Texturing . 176

3.9.1 Texture Image Specification 177
3.9.2 Alternate Texture Image Specification Commands 192
3.9.3 Compressed Texture Images 197
3.9.4 Texture Parameters . 201
3.9.5 Depth Component Textures 203
3.9.6 Cube Map Texture Selection 203
3.9.7 Texture Minification . 204
3.9.8 Texture Magnification 213
3.9.9 Combined Depth/Stencil Textures 213
3.9.10 Texture Completeness 213
3.9.11 Texture State and Proxy State 215
3.9.12 Texture Objects . 216
3.9.13 Texture Environments and Texture Functions 219
3.9.14 Texture Comparison Modes 222
3.9.15 sRGB Texture Color Conversion 225

Version 3.0 (September 23, 2008)

CONTENTS iv

3.9.16 Shared Exponent Texture Color Conversion 227
3.9.17 Texture Application . 227

3.10 Color Sum . 228
3.11 Fog . 230
3.12 Fragment Shaders . 231

3.12.1 Shader Variables . 232
3.12.2 Shader Execution . 233

3.13 Antialiasing Application . 237
3.14 Multisample Point Fade . 237

4 Per-Fragment Operations and the Framebuffer 239
4.1 Per-Fragment Operations . 241

4.1.1 Pixel Ownership Test . 241
4.1.2 Scissor Test . 242
4.1.3 Multisample Fragment Operations 242
4.1.4 Alpha Test . 243
4.1.5 Stencil Test . 244
4.1.6 Depth Buffer Test . 246
4.1.7 Occlusion Queries . 246
4.1.8 Blending . 247
4.1.9 sRGB Conversion . 252
4.1.10 Dithering . 252
4.1.11 Logical Operation . 253
4.1.12 Additional Multisample Fragment Operations 254

4.2 Whole Framebuffer Operations 255
4.2.1 Selecting a Buffer for Writing 255
4.2.2 Fine Control of Buffer Updates 260
4.2.3 Clearing the Buffers . 261
4.2.4 The Accumulation Buffer 264

4.3 Drawing, Reading, and Copying Pixels 266
4.3.1 Writing to the Stencil or Depth/Stencil Buffers 266
4.3.2 Reading Pixels . 266
4.3.3 Copying Pixels . 274
4.3.4 Pixel Draw/Read State 278

4.4 Framebuffer Objects . 278
4.4.1 Binding and Managing Framebuffer Objects 279
4.4.2 Attaching Images to Framebuffer Objects 282
4.4.3 Rendering When an Image of a Bound Texture Object is

Also Attached to the Framebuffer 289
4.4.4 Framebuffer Completeness 290

Version 3.0 (September 23, 2008)

CONTENTS v

4.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values . 295

4.4.6 Mapping between Pixel and Element in Attached Image . 296

5 Special Functions 297
5.1 Evaluators . 297
5.2 Selection . 303
5.3 Feedback . 305
5.4 Display Lists . 307
5.5 Commands Not Usable In Display Lists 311
5.6 Flush and Finish . 312
5.7 Hints . 313

6 State and State Requests 315
6.1 Querying GL State . 315

6.1.1 Simple Queries . 315
6.1.2 Data Conversions . 316
6.1.3 Enumerated Queries . 317
6.1.4 Texture Queries . 320
6.1.5 Stipple Query . 323
6.1.6 Color Matrix Query . 323
6.1.7 Color Table Query . 323
6.1.8 Convolution Query . 324
6.1.9 Histogram Query . 325
6.1.10 Minmax Query . 326
6.1.11 Pointer and String Queries 327
6.1.12 Asynchronous Queries 328
6.1.13 Buffer Object Queries 330
6.1.14 Vertex Array Object Queries 331
6.1.15 Shader and Program Queries 331
6.1.16 Framebuffer Object Queries 336
6.1.17 Renderbuffer Object Queries 338
6.1.18 Saving and Restoring State 339

6.2 State Tables . 343

A Invariance 393
A.1 Repeatability . 393
A.2 Multi-pass Algorithms . 394
A.3 Invariance Rules . 394
A.4 What All This Means . 396

Version 3.0 (September 23, 2008)

CONTENTS vi

B Corollaries 397

C Compressed Texture Image Formats 400
C.1 RGTC Compressed Texture Image Formats 400

C.1.1 Format COMPRESSED RED RGTC1 401
C.1.2 Format COMPRESSED SIGNED RED RGTC1 402
C.1.3 Format COMPRESSED RG RGTC2 403
C.1.4 Format COMPRESSED SIGNED RG RGTC2 403

D Shared Objects and Multiple Contexts 404
D.1 Object Deletion Behavior . 404

E The Deprecation Model 405
E.1 Profiles and Deprecated Features of OpenGL 3.0 405

F Version 1.1 411
F.1 Vertex Array . 411
F.2 Polygon Offset . 412
F.3 Logical Operation . 412
F.4 Texture Image Formats . 412
F.5 Texture Replace Environment . 412
F.6 Texture Proxies . 413
F.7 Copy Texture and Subtexture . 413
F.8 Texture Objects . 413
F.9 Other Changes . 413
F.10 Acknowledgements . 414

G Version 1.2 416
G.1 Three-Dimensional Texturing . 416
G.2 BGRA Pixel Formats . 416
G.3 Packed Pixel Formats . 417
G.4 Normal Rescaling . 417
G.5 Separate Specular Color . 417
G.6 Texture Coordinate Edge Clamping 417
G.7 Texture Level of Detail Control 418
G.8 Vertex Array Draw Element Range 418
G.9 Imaging Subset . 418

G.9.1 Color Tables . 418
G.9.2 Convolution . 419
G.9.3 Color Matrix . 419

Version 3.0 (September 23, 2008)

CONTENTS vii

G.9.4 Pixel Pipeline Statistics 420
G.9.5 Constant Blend Color . 420
G.9.6 New Blending Equations 420

G.10 Acknowledgements . 420

H Version 1.2.1 424

I Version 1.3 425
I.1 Compressed Textures . 425
I.2 Cube Map Textures . 425
I.3 Multisample . 426
I.4 Multitexture . 426
I.5 Texture Add Environment Mode 427
I.6 Texture Combine Environment Mode 427
I.7 Texture Dot3 Environment Mode 427
I.8 Texture Border Clamp . 427
I.9 Transpose Matrix . 428
I.10 Acknowledgements . 428

J Version 1.4 433
J.1 Automatic Mipmap Generation 433
J.2 Blend Squaring . 433
J.3 Changes to the Imaging Subset 434
J.4 Depth Textures and Shadows . 434
J.5 Fog Coordinate . 434
J.6 Multiple Draw Arrays . 434
J.7 Point Parameters . 435
J.8 Secondary Color . 435
J.9 Separate Blend Functions . 435
J.10 Stencil Wrap . 435
J.11 Texture Crossbar Environment Mode 435
J.12 Texture LOD Bias . 436
J.13 Texture Mirrored Repeat . 436
J.14 Window Raster Position . 436
J.15 Acknowledgements . 436

K Version 1.5 439
K.1 Buffer Objects . 439
K.2 Occlusion Queries . 440
K.3 Shadow Functions . 440

Version 3.0 (September 23, 2008)

CONTENTS viii

K.4 Changed Tokens . 440
K.5 Acknowledgements . 440

L Version 2.0 445
L.1 Programmable Shading . 445

L.1.1 Shader Objects . 445
L.1.2 Shader Programs . 445
L.1.3 OpenGL Shading Language 446
L.1.4 Changes To Shader APIs 446

L.2 Multiple Render Targets . 446
L.3 Non-Power-Of-Two Textures . 446
L.4 Point Sprites . 447
L.5 Separate Blend Equation . 447
L.6 Separate Stencil . 447
L.7 Other Changes . 447
L.8 Acknowledgements . 449

M Version 2.1 451
M.1 OpenGL Shading Language . 451
M.2 Non-Square Matrices . 451
M.3 Pixel Buffer Objects . 451
M.4 sRGB Textures . 452
M.5 Other Changes . 452
M.6 Acknowledgements . 454

N Version 3.0 457
N.1 New Features . 457
N.2 Deprecation Model . 458
N.3 Changed Tokens . 459
N.4 Change Log . 459
N.5 Credits and Acknowledgements 461

O ARB Extensions 464
O.1 Naming Conventions . 464
O.2 Promoting Extensions to Core Features 465
O.3 Multitexture . 465
O.4 Transpose Matrix . 465
O.5 Multisample . 465
O.6 Texture Add Environment Mode 466
O.7 Cube Map Textures . 466

Version 3.0 (September 23, 2008)

CONTENTS ix

O.8 Compressed Textures . 466
O.9 Texture Border Clamp . 466
O.10 Point Parameters . 466
O.11 Vertex Blend . 466
O.12 Matrix Palette . 467
O.13 Texture Combine Environment Mode 467
O.14 Texture Crossbar Environment Mode 467
O.15 Texture Dot3 Environment Mode 467
O.16 Texture Mirrored Repeat . 467
O.17 Depth Texture . 467
O.18 Shadow . 467
O.19 Shadow Ambient . 468
O.20 Window Raster Position . 468
O.21 Low-Level Vertex Programming 468
O.22 Low-Level Fragment Programming 468
O.23 Buffer Objects . 468
O.24 Occlusion Queries . 469
O.25 Shader Objects . 469
O.26 High-Level Vertex Programming 469
O.27 High-Level Fragment Programming 469
O.28 OpenGL Shading Language . 469
O.29 Non-Power-Of-Two Textures . 469
O.30 Point Sprites . 470
O.31 Fragment Program Shadow . 470
O.32 Multiple Render Targets . 470
O.33 Rectangular Textures . 470
O.34 Floating-Point Color Buffers . 470
O.35 Half-Precision Floating Point . 471
O.36 Floating-Point Textures . 471
O.37 Pixel Buffer Objects . 471

Index 472

Version 3.0 (September 23, 2008)

List of Figures

2.1 Block diagram of the GL. 13
2.2 Creation of a processed vertex from a transformed vertex and cur-

rent values. 17
2.3 Primitive assembly and processing. 19
2.4 Triangle strips, fans, and independent triangles. 21
2.5 Quadrilateral strips and independent quadrilaterals. 22
2.6 Vertex transformation sequence. 50
2.7 Current raster position. 71
2.8 Processing of RGBA colors. 73
2.9 Processing of color indices. 73
2.10 ColorMaterial operation. 84

3.1 Rasterization. 112
3.2 Rasterization of non-antialiased wide points. 119
3.3 Rasterization of antialiased wide points. 119
3.4 Visualization of Bresenham’s algorithm. 124
3.5 Rasterization of non-antialiased wide lines. 127
3.6 The region used in rasterizing an antialiased line segment. 128
3.7 Operation of DrawPixels. 149
3.8 Selecting a subimage from an image 154
3.9 A bitmap and its associated parameters. 174
3.10 A texture image and the coordinates used to access it. 190
3.11 Multitexture pipeline. 228

4.1 Per-fragment operations. 241
4.2 Operation of ReadPixels. 266
4.3 Operation of CopyPixels. 274

5.1 Map Evaluation. 299
5.2 Feedback syntax. 308

x

List of Tables

2.1 GL command suffixes . 12
2.2 GL data types . 14
2.3 Summary of GL errors . 17
2.4 Vertex array sizes (values per vertex) and data types 30
2.5 Variables that direct the execution of InterleavedArrays. 37
2.6 Buffer object parameters and their values. 39
2.7 Buffer object initial state. 41
2.8 Buffer object state set by MapBufferRange. 44
2.9 Transform feedback modes . 65
2.10 Component conversions . 75
2.11 Summary of lighting parameters. 77
2.12 Correspondence of lighting parameter symbols to names. 82
2.13 Polygon flatshading color selection. 87

3.1 PixelStore parameters. 137
3.2 PixelTransfer parameters. 139
3.3 PixelMap parameters. 140
3.4 Color table names. 141
3.5 DrawPixels and ReadPixels types. 152
3.6 DrawPixels and ReadPixels formats. 153
3.7 Swap Bytes bit ordering. 154
3.8 Packed pixel formats. 156
3.9 UNSIGNED BYTE formats. Bit numbers are indicated for each com-

ponent. 157
3.10 UNSIGNED SHORT formats . 158
3.11 UNSIGNED INT formats . 159
3.12 Packed pixel field assignments. 160
3.13 Color table lookup. 166
3.14 Computation of filtered color components. 167

xi

LIST OF TABLES xii

3.15 Conversion from RGBA, depth, and stencil pixel components to
internal texture, table, or filter components. 179

3.16 Sized internal color formats. 184
3.18 Sized internal depth and stencil formats. 185
3.17 Sized internal luminance and intensity formats. 185
3.19 Generic and specific compressed internal formats. 186
3.20 Texture parameters and their values. 202
3.21 Selection of cube map images. 203
3.22 Texel location wrap mode application. 207
3.23 Correspondence of filtered texture components to texture source

components. 221
3.24 Texture functions REPLACE, MODULATE, and DECAL 221
3.25 Texture functions BLEND and ADD. 222
3.26 COMBINE texture functions. 223
3.27 Arguments for COMBINE RGB functions. 224
3.28 Arguments for COMBINE ALPHA functions. 224
3.29 Depth texture comparison functions. 226

4.1 RGB and Alpha blend equations. 250
4.2 Blending functions. 251
4.3 Arguments to LogicOp and their corresponding operations. 254
4.4 Buffer selection for the default framebuffer 257
4.5 Buffer selection for a framebuffer object 257
4.6 DrawBuffers buffer selection for the default framebuffer 258
4.7 PixelStore parameters. 268
4.8 ReadPixels index masks. 272
4.9 ReadPixels GL data types and reversed component conversion for-

mulas. 273
4.10 Effective ReadPixels format for DEPTH STENCIL CopyPixels op-

eration. 276
4.11 Correspondence of renderbuffer sized to base internal formats. . . 284
4.12 Framebuffer attachment points. 286

5.1 Values specified by the target to Map1. 298
5.2 Correspondence of feedback type to number of values per vertex. . 307
5.3 Hint targets and descriptions . 314

6.1 Texture, table, and filter return values. 322
6.2 Attribute groups . 341
6.3 State Variable Types . 342

Version 3.0 (September 23, 2008)

LIST OF TABLES xiii

6.4 GL Internal begin-end state variables (inaccessible) 344
6.5 Current Values and Associated Data 345
6.6 Vertex Array Object State . 346
6.7 Vertex Array Object State (cont.) 347
6.8 Vertex Array Object State (cont.) 348
6.9 Vertex Array Object State (cont.) 349
6.10 Vertex Array Data (not in Vertex Array objects) 350
6.11 Buffer Object State . 351
6.12 Transformation state . 352
6.13 Coloring . 353
6.14 Lighting (see also table 2.11 for defaults) 354
6.15 Lighting (cont.) . 355
6.16 Rasterization . 356
6.17 Rasterization (cont.) . 357
6.18 Multisampling . 358
6.19 Textures (state per texture unit and binding point) 359
6.20 Textures (state per texture object) 360
6.21 Textures (state per texture image) 361
6.22 Texture Environment and Generation 362
6.23 Texture Environment and Generation (cont.) 363
6.24 Pixel Operations . 364
6.25 Pixel Operations (cont.) . 365
6.26 Framebuffer Control . 366
6.27 Framebuffer (state per target binding point) 367
6.28 Framebuffer (state per framebuffer object) 368
6.29 Framebuffer (state per attachment point) 369
6.30 Renderbuffer (state per target and binding point) 370
6.31 Renderbuffer (state per renderbuffer object) 371
6.32 Pixels . 372
6.33 Pixels (cont.) . 373
6.34 Pixels (cont.) . 374
6.35 Pixels (cont.) . 375
6.36 Pixels (cont.) . 376
6.37 Pixels (cont.) . 377
6.38 Evaluators (GetMap takes a map name) 378
6.39 Shader Object State . 379
6.40 Program Object State . 380
6.41 Program Object State (cont.) . 381
6.42 Vertex Shader State . 382
6.43 Query Object State . 383

Version 3.0 (September 23, 2008)

LIST OF TABLES xiv

6.44 Transform Feedback State . 384
6.45 Hints . 385
6.46 Implementation Dependent Values 386
6.47 Implementation Dependent Values (cont.) 387
6.48 Implementation Dependent Values (cont.) 388
6.49 Implementation Dependent Values (cont.) 389
6.50 Implementation Dependent Values (cont.) 390
6.51 Framebuffer Dependent Values 391
6.52 Miscellaneous . 392

K.1 New token names . 441

N.1 New token names . 459

Version 3.0 (September 23, 2008)

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see section 3.7.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see section 3.7.2). State table entries which are
optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, polygons, and
bitmaps, but the way that some of this drawing occurs (such as when antialiasing

1

1.3. PROGRAMMER’S VIEW OF OPENGL 2

or texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer. For the most part, OpenGL
provides an immediate-mode interface, meaning that specifying an object causes it
to be drawn.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

Version 3.0 (September 23, 2008)

1.5. OUR VIEW 3

1.5 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven stages that control a set of specific drawing operations. This model should
engender a specification that satisfies the needs of both programmers and imple-
mentors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the speci-
fied methods, but there may be ways to carry out a particular computation that are
more efficient than the one specified.

1.6 The Deprecation Model

GL features marked as deprecated in one version of the specification are expected
to be removed in a future version, allowing applications time to transition away
from use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.7 Companion Documents

1.7.1 OpenGL Shading Language

This specification should be read together with a companion document titled The
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.20
and 3.12). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 3.0 implementations are guaranteed to support at least versions 1.10,
1.20, and 1.30 of the shading language, although versions 1.10 and 1.20 are dep-
recated in a forward-compatible context. The actual version supported may be
queried as described in section 6.1.11.

1.7.2 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

OpenGL Graphics with the X Window System, also called the “GLX Specifica-
tion”, describes the GLX API for use of OpenGL in the X Window System. It is

Version 3.0 (September 23, 2008)

1.7. COMPANION DOCUMENTS 4

primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is avail-
able. The GLX Specification is available in the OpenGL Extension Registry (see
appendix O).

The WGL API supports use of OpenGL with Microsoft Windows. WGL is
documented in Microsoft’s MSDN system, although no full specification exists.

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X win-
dow system, including CGL, AGL, and NSGLView. These APIs are documented
on Apple’s developer website.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

Version 3.0 (September 23, 2008)

http://www.khronos.org/registry/egl

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader
programs. Each primitive is a point, line segment, polygon, or pixel rectangle.
Each mode may be changed independently; the setting of one does not affect the
settings of others (although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified, and other GL
operations described by sending commands in the form of function or procedure
calls.

Primitives are defined by a group of one or more vertices. A vertex defines a
point, an endpoint of an edge, or a corner of a polygon where two edges meet. Data
(consisting of positional coordinates, colors, normals, and texture coordinates) are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all

5

2.1. OPENGL FUNDAMENTALS 6

previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and
2D graphics. This includes specification of such parameters as vertex and frag-
ment shaders, transformation matrices, lighting equation coefficients, antialiasing
methods, and pixel update operators. It does not provide a means for describing
or modeling complex geometric objects. Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric ob-
jects are to be rendered rather than mechanisms to describe the complex objects
themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL contexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided frame-
buffer at any time, referred to as the default framebuffer. Application-created
framebuffers, referred to as framebuffer objects, may be created as desired. These
two types of framebuffer are distinguished primarily by the interface for configur-
ing and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs such as GLX,

Version 3.0 (September 23, 2008)

2.1. OPENGL FUNDAMENTALS 7

WGL, and CGL for GL implementations running on the X Window System, Mi-
crosoft Windows, and MacOS X respectively.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications neeting to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL , and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. In some cases, the representation and/or precision of such oper-
ations is defined or limited; by the OpenGL Shading Language Specification for
operations in shaders, and in some cases implicitly limited by the specified format
of vertex, texture, or renderbuffer data consumed by the GL. Otherwise, the rep-
resentation of such floating-point numbers, and the details of how operations on
them are performed, is not specified. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough so
that individual results of floating-point operations are accurate to about 1 part in
105. The maximum representable magnitude of a floating-point number used to
represent positional, normal, or texture coordinates must be at least 232; the max-
imum representable magnitude for colors must be at least 210. The maximum
representable magnitude for all other floating-point values must be at least 232.
x · 0 = 0 · x = 0 for any non-infinite and non-NaN x. 1 · x = x · 1 = x.
x+ 0 = 0 + x = x. 00 = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

The special values Inf and −Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting

Version 3.0 (September 23, 2008)

2.1. OPENGL FUNDAMENTALS 8

from undefined arithmetic operations such as 1
0 . Implementations are permitted,

but not required, to support Inf s and NaN s in their floating-point computations.
Any representable floating-point value is legal as input to a GL command that

requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.1.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S), a 5-bit exponent (E), and a
10-bit mantissa (M). The value V of a 16-bit floating-point number is determined
by the following:

V =



(−1)S × 0.0, E = 0,M = 0
(−1)S × 2−14 × M

210 , E = 0,M 6= 0
(−1)S × 2E−15 ×

(
1 + M

210

)
, 0 < E < 31

(−1)S × Inf , E = 31,M = 0
NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 16-bit integerN , then

S =
⌊
N mod 65536

32768

⌋
E =

⌊
N mod 32768

1024

⌋
M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

Version 3.0 (September 23, 2008)

2.1. OPENGL FUNDAMENTALS 9

2.1.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 6-bit mantissa (M). The value V of an unsigned 11-bit floating-point number is
determined by the following:

V =



0.0, E = 0,M = 0
2−14 × M

64 , E = 0,M 6= 0
2E−15 ×

(
1 + M

64

)
, 0 < E < 31

Inf , E = 31,M = 0
NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 11-bit integerN , then

E =
⌊
N

64

⌋
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 5-bit mantissa (M). The value V of an unsigned 10-bit floating-point number is
determined by the following:

Version 3.0 (September 23, 2008)

2.2. GL STATE 10

V =



0.0, E = 0,M = 0
2−14 × M

32 , E = 0,M 6= 0
2E−15 ×

(
1 + M

32

)
, 0 < E < 31

Inf , E = 31,M = 0
NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 10-bit integerN , then

E =
⌊
N

32

⌋
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one

Version 3.0 (September 23, 2008)

2.3. GL COMMAND SYNTAX 11

complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.7.2. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix D. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name followed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 8-bit integer, 16-bit
integer, 32-bit integer, single-precision floating-point, or double-precision floating-
point. The final character, if present, is v, indicating that the command takes a
pointer to an array (a vector) of values rather than a series of individual arguments.
Two specific examples come from the Vertex command:

void Vertex3f(float x, float y, float z);

and

void Vertex2sv(short v[2]);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form1

1The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

Version 3.0 (September 23, 2008)

2.3. GL COMMAND SYNTAX 12

Letter Corresponding GL Type
b byte
s short
i int
f float
d double

ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to table 2.2 for definitions of the GL types.

rtype Name{ε1234}{ε b s i f d ub us ui}{εv}
([args ,] T arg1 , . . . , T argN [, args]);

rtype is the return type of the function. The braces ({}) enclose a series of char-
acters (or character pairs) of which one is selected. ε indicates no character. The
arguments enclosed in brackets ([args ,] and [, args]) may or may not be present.
TheN arguments arg1 through argN have type T, which corresponds to one of the
type letters or letter pairs as indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then N is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg1 is present and it is an array of N values
of the indicated type. Finally, we indicate an unsigned type by the shorthand of
prepending a u to the beginning of the type name (so that, for instance, unsigned
char is abbreviated uchar).

For example,

void Normal3{fd}(T arg);

indicates the two declarations

void Normal3f(float arg1, float arg2, float arg3);
void Normal3d(double arg1, double arg2, double arg3);

while

void Normal3{fd}v(T arg);

Version 3.0 (September 23, 2008)

2.4. BASIC GL OPERATION 13

means the two declarations

void Normal3fv(float arg[3]);
void Normal3dv(double arg[3]);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in a display list for processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and sur-
face geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, and primitives are clipped
to a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional de-
scription of a point, line segment, or polygon. Each fragment so produced is fed
to the next stage that performs operations on individual fragments before they fi-
nally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read
back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

Version 3.0 (September 23, 2008)

2.4. BASIC GL OPERATION 14

GL Type Minimum Description
Bit Width

boolean 1 Boolean
byte 8 Signed 2’s complement binary integer
ubyte 8 Unsigned binary integer
char 8 Characters making up strings
short 16 Signed 2’s complement binary integer
ushort 16 Unsigned binary integer
int 32 Signed 2’s complement binary integer
uint 32 Unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
half 16 Half-precision floating-point value

encoded in an unsigned scalar
float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped to [0, 1]
time 64 Unsigned binary representing an ab-

solute absolute or relative time inter-
val. Precision is nanoseconds but ac-
curacy is implementation-dependent.

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.
ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr and sizeiptr must be sufficiently large as to store any address.

Version 3.0 (September 23, 2008)

2.5. GL ERRORS 15

Display
 List

Evaluator

Per−Vertex
Operations Rasteriz−

ation

Per−
Fragment
Operations

Framebuffer

Pixel
Operations

Primitive
Assembly

Texture
Memory

Figure 2.1. Block diagram of the GL.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO ERROR codes have been returned. When there are no more
non-NO ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO ERROR.

Version 3.0 (September 23, 2008)

2.6. BEGIN/END PARADIGM 16

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT OF MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Several error generation conditions are implicit in the description of every GL
command:

• If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

• If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID VALUE is generated.

• If memory is exhausted as a side effect of the execution of a command, the
error OUT OF MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
between Begin/End pairs. There are ten geometric objects that are drawn this
way: points, line segments, line segment loops, separated line segments, polygons,
triangle strips, triangle fans, separated triangles, quadrilateral strips, and separated
quadrilaterals.

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiple current texture coordinate sets, multiple current generic
vertex attributes, current color, current secondary color, and current fog coor-
dinate may be used in processing each vertex. Normals are used by the GL in
lighting calculations; the current normal is a three-dimensional vector that may be
set by sending three coordinates that specify it. Texture coordinates determine how

Version 3.0 (September 23, 2008)

2.6. BEGIN/END PARADIGM 17

Error Description Offending com-
mand ignored?

INVALID ENUM enum argument out of range Yes
INVALID VALUE Numeric argument out of range Yes
INVALID OPERATION Operation illegal in current state Yes
INVALID FRAMEBUFFER OPERATION Framebuffer object is not com-

plete
Yes

STACK OVERFLOW Command would cause a stack
overflow

Yes

STACK UNDERFLOW Command would cause a stack
underflow

Yes

OUT OF MEMORY Not enough memory left to exe-
cute command

Unknown

TABLE TOO LARGE The specified table is too large Yes

Table 2.3: Summary of GL errors

a texture image is mapped onto a primitive. Multiple sets of texture coordinates
may be used to specify how multiple texture images are mapped onto a primitive.
The number of texture units supported is implementation dependent but must be
at least two. The number of texture units supported can be queried with the state
MAX TEXTURE UNITS. Generic vertex attributes can be accessed from within ver-
tex shaders (section 2.20) and used to compute values for consumption by later
processing stages.

Primary and secondary colors are associated with each vertex (see sec-
tion 3.10). These associated colors are either based on the current color and current
secondary color or produced by lighting, depending on whether or not lighting is
enabled. Texture and fog coordinates are similarly associated with each vertex.
Multiple sets of texture coordinates may be associated with a vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, fog coordinate,
generic attributes, and colors are sent to the GL, as well as how normals are trans-

Version 3.0 (September 23, 2008)

2.6. BEGIN/END PARADIGM 18

Current
Edge Flag &
Fog Coord

lighting

vertex / normal
transformation

Current
Normal

Current
Colors &
Materials

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
Fog and Texture

Coordinates)

Vertex
Coordinates In

texgen texture
matrix 0

Current
Texture

Coord Set 0

texgen texture
matrix 1

Current
Texture

Coord Set 1

texgen texture
matrix 2

Current
Texture

Coord Set 2

texgen texture
matrix 3

Current
Texture

Coord Set 3

Figure 2.2. Association of current values with a vertex. The heavy lined boxes rep-
resent GL state. Four texture units are shown; however, multitexturing may support
a different number of units depending on the implementation.

Version 3.0 (September 23, 2008)

2.6. BEGIN/END PARADIGM 19

Processed
Vertices

Point,
Line Segment, or

Polygon
(Primitive)
Assembly

Begin/End
State

Point culling;
Line Segment
 or Polygon

Clipping

Color
Processing

Rasterization

Coordinates

Associated
Data

Figure 2.3. Primitive assembly and processing.

formed and how vertices are mapped to the two-dimensional screen, are discussed
later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see section 2.19.2), the current fog co-
ordinate, the multiple generic vertex attribute sets, and the multiple current texture
coordinate sets. Because color assignment is done vertex-by-vertex, a processed
vertex comprises the vertex’s coordinates, its edge flag, its fog coordinate, its as-
signed colors, and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-
itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

2.6.1 Begin and End

Vertices making up one of the supported geometric object types are specified by
enclosing commands defining those vertices between the two commands

void Begin(enum mode);
void End(void);

Version 3.0 (September 23, 2008)

2.6. BEGIN/END PARADIGM 20

There is no limit on the number of vertices that may be specified between a Begin
and an End.

Points. A series of individual points may be specified by calling Begin with an
argument value of POINTS. No special state need be kept between Begin and End
in this case, since each point is independent of previous and following points.

Line Strips. A series of one or more connected line segments is specified by
enclosing a series of two or more endpoints within a Begin/End pair when Begin is
called with LINE STRIP. In this case, the first vertex specifies the first segment’s
start point while the second vertex specifies the first segment’s endpoint and the
second segment’s start point. In general, the ith vertex (for i > 1) specifies the
beginning of the ith segment and the end of the i − 1st. The last vertex specifies
the end of the last segment. If only one vertex is specified between the Begin/End
pair, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops, specified with the LINE LOOP argument value to
Begin, are the same as line strips except that a final segment is added from the final
specified vertex to the first vertex. The additional state consists of the processed
first vertex.

Separate Lines. Individual line segments, each specified by a pair of vertices,
are generated by surrounding vertex pairs with Begin and End when the value
of the argument to Begin is LINES. In this case, the first two vertices between a
Begin and End pair define the first segment, with subsequent pairs of vertices each
defining one more segment. If the number of specified vertices is odd, then the last
one is ignored. The state required is the same as for lines but it is used differently: a
vertex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series of
line segments. When Begin is called with POLYGON, the bounding line segments
are specified in the same way as line loops. Depending on the current state of the
GL, a polygon may be rendered in one of several ways such as outlining its border
or filling its interior. A polygon described with fewer than three vertices does not
generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL. If a
specified polygon is nonconvex when projected onto the window, then the rendered
polygon need only lie within the convex hull of the projected vertices defining its
boundary.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use

Version 3.0 (September 23, 2008)

2.6. BEGIN/END PARADIGM 21

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices between Begin and End. Note that in
(a) and (b) triangle edge ordering is determined by the first triangle, while in (c) the
order of each triangle’s edges is independent of the other triangles.

more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified. The order of the vertices is significant in
lighting and polygon rasterization (see sections 2.19.1 and 3.6.1).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges. A triangle strip is specified by giving a series of defining vertices between
a Begin/End pair when Begin is called with TRIANGLE STRIP. In this case, the
first three vertices define the first triangle (and their order is significant, just as for
polygons). Each subsequent vertex defines a new triangle using that point along
with two vertices from the previous triangle. A Begin/End pair enclosing fewer
than three vertices, when TRIANGLE STRIP has been supplied to Begin, produces
no primitive. See figure 2.4.

The state required to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A
and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. After a Begin(TRIANGLE STRIP), the pointer is initialized
to point to vertex A. Each vertex sent between a Begin/End pair toggles the pointer.
Therefore, the first vertex is stored as vertex A, the second stored as vertex B, the
third stored as vertex A, and so on. Any vertex after the second one sent forms a
triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one exception:
each vertex after the first always replaces vertex B of the two stored vertices. The

Version 3.0 (September 23, 2008)

2.6. BEGIN/END PARADIGM 22

1

2

3

4

5

6

1

2 3

4 5

6 7

8

(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices between Begin and End.

vertices of a triangle fan are enclosed between Begin and End when the value of
the argument to Begin is TRIANGLE FAN.

Separate Triangles. Separate triangles are specified by placing vertices be-
tween Begin and End when the value of the argument to Begin is TRIANGLES. In
this case, The 3i + 1st, 3i + 2nd, and 3i + 3rd vertices (in that order) determine
a triangle for each i = 0, 1, . . . , n − 1, where there are 3n + k vertices between
the Begin and End. k is either 0, 1, or 2; if k is not zero, the final k vertices are
ignored. For each triangle, vertex A is vertex 3i and vertex B is vertex 3i + 1.
Otherwise, separate triangles are the same as a triangle strip.

The rules given for polygons also apply to each triangle generated from a tri-
angle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-sharing
quadrilaterals from vertices appearing between Begin and End, when Begin is
called with QUAD STRIP. If the m vertices between the Begin and End are
v1, . . . , vm, where vj is the jth specified vertex, then quad i has vertices (in or-
der) v2i, v2i+1, v2i+3, and v2i+2 with i = 0, . . . , bm/2c. The state required is thus
three processed vertices, to store the last two vertices of the previous quad along
with the third vertex (the first new vertex) of the current quad, a flag to indicate
when the first quad has been completed, and a one-bit counter to count members
of a vertex pair. See figure 2.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip between Begin and End is odd, the
final vertex is ignored.

Version 3.0 (September 23, 2008)

2.6. BEGIN/END PARADIGM 23

Separate Quadrilaterals Separate quads are just like quad strips except that
each group of four vertices, the 4j + 1st, the 4j + 2nd, the 4j + 3rd, and the
4j + 4th, generate a single quad, for j = 0, 1, . . . , n − 1. The total number of
vertices between Begin and End is 4n+ k, where 0 ≤ k ≤ 3; if k is not zero, the
final k vertices are ignored. Separate quads are generated by calling Begin with
the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad strip
or from separate quads.

The state required for Begin and End consists of an eleven-valued integer indi-
cating either one of the ten possible Begin/End modes, or that no Begin/End mode
is being processed.

Calling Begin will result in an INVALID FRAMEBUFFER OPERATION error if
the object bound to DRAW FRAMEBUFFER BINDING is not framebuffer complete
(see section 4.4.4).

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, triangle fan,
separate triangle set, quadrilateral strip, or separate quadrilateral set, is flagged as
either boundary or non-boundary. These classifications are used during polygon
rasterization; some modes affect the interpretation of polygon boundary edges (see
section 3.6.4). By default, all edges are boundary edges, but the flagging of poly-
gons, separate triangles, or separate quadrilaterals may be altered by calling

void EdgeFlag(boolean flag);
void EdgeFlagv(boolean *flag);

to change the value of a flag bit. If flag is zero, then the flag bit is set to FALSE; if
flag is non-zero, then the flag bit is set to TRUE.

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair be-
gins an edge. If the edge flag bit is TRUE, then each specified vertex begins an edge
that is flagged as boundary. If the bit is FALSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

Version 3.0 (September 23, 2008)

2.7. VERTEX SPECIFICATION 24

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are the com-
mands for specifying vertex coordinates, vertex colors, normal coordinates, texture
coordinates, generic vertex attributes, and fog coordinates (Vertex, Color, Sec-
ondaryColor, Index, Normal, TexCoord and MultiTexCoord, VertexAttrib,
FogCoord), the ArrayElement command (see section 2.8), the EvalCoord and
EvalPoint commands (see section 5.1), commands for specifying lighting mate-
rial parameters (Material commands; see section 2.19.2), display list invocation
commands (CallList and CallLists; see section 5.4), and the EdgeFlag command.
Executing any other GL command between the execution of Begin and the corre-
sponding execution of End results in the error INVALID OPERATION. Executing
Begin after Begin has already been executed but before an End is executed gen-
erates the INVALID OPERATION error, as does executing End without a previous
corresponding Begin.

Execution of the commands EnableClientState, DisableClientState, Push-
ClientAttrib, PopClientAttrib, ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryCol-
orPointer, VertexPointer, VertexAttribPointer, ClientActiveTexture, Inter-
leavedArrays, and PixelStore is not allowed within any Begin/End pair, but an
error may or may not be generated if such execution occurs. If an error is not gen-
erated, GL operation is undefined. (These commands are described in sections 2.8,
3.7.1, and chapter 6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(T coords);

A call to any Vertex command specifies four coordinates: x, y, z, and w. The
x coordinate is the first coordinate, y is second, z is third, and w is fourth. A
call to Vertex2 sets the x and y coordinates; the z coordinate is implicitly set to
zero and the w coordinate to one. Vertex3 sets x, y, and z to the provided values
and w to one. Vertex4 sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invoking a Vertex command outside of a
Begin/End pair results in undefined behavior.

Version 3.0 (September 23, 2008)

2.7. VERTEX SPECIFICATION 25

Current values are used in associating auxiliary data with a vertex as described
in section 2.6. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q. The
TexCoord1 family of commands set the s coordinate to the provided single argu-
ment while setting t and r to 0 and q to 1. Similarly, TexCoord2 sets s and t to the
specified values, r to 0 and q to 1; TexCoord3 sets s, t, and r, with q set to 1, and
TexCoord4 sets all four texture coordinates.

Implementations must support at least two sets of texture coordinates. The
commands

void MultiTexCoord{1234}{sifd}(enum texture,T coords)
void MultiTexCoord{1234}{sifd}v(enum texture,T

coords)

take the coordinate set to be modified as the texture parameter. texture is a symbolic
constant of the form TEXTUREi, indicating that texture coordinate set i is to be
modified. The constants obey TEXTUREi = TEXTURE0 + i (i is in the range 0 to
k− 1, where k is the implementation-dependent number of texture coordinate sets
defined by MAX TEXTURE COORDS).

The TexCoord commands are exactly equivalent to the corresponding Multi-
TexCoord commands with texture set to TEXTURE0.

Gets of CURRENT TEXTURE COORDS return the texture coordinate set defined
by the value of ACTIVE TEXTURE.

Specifying an invalid texture coordinate set for the texture argument of Multi-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(T coords);

Byte, short, or integer values passed to Normal are converted to floating-point
values as indicated for the corresponding (signed) type in table 2.10.

The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd}v(T coord);

Version 3.0 (September 23, 2008)

2.7. VERTEX SPECIFICATION 26

There are several ways to set the current color and secondary color. The GL
stores a current single-valued color index, as well as a current four-valued RGBA
color and secondary color. Either the index or the color and secondary color are
significant depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T components);
void Color{34}{bsifd ubusui}v(T components);
void SecondaryColor3{bsifd ubusui}(T components);
void SecondaryColor3{bsifd ubusui}v(T components);

The Color command has two major variants: Color3 and Color4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section 2.19.)

The secondary color has only the three value versions. Secondary A is always
set to 1.0.

Versions of the Color and SecondaryColor commands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.19 on colors and color-
ing). Values outside [0, 1] are not clamped.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

Vertex shaders (see section 2.20) can be written to access an array of 4-
component generic vertex attributes in addition to the conventional attributes spec-
ified previously. The first slot of this array is numbered 0, and the size of the array
is specified by the implementation-dependent constant MAX VERTEX ATTRIBS.

To load values into a generic shader attribute declared as a floating-point scalar,
vector, or matrix, use the commands

void VertexAttrib{1234}{sfd}(uint index, T values);
void VertexAttrib{123}{sfd}v(uint index, T values);
void VertexAttrib4{bsifd ubusui}v(uint index, T values);

Version 3.0 (September 23, 2008)

2.7. VERTEX SPECIFICATION 27

void VertexAttrib4Nub(uint index, T values);
void VertexAttrib4N{bsi ubusui}v(uint index, T values);

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [−1, 1] range as shown in table 2.10, while the other com-
mands specify values that are converted directly to the internal floating-point rep-
resentation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX VERTEX ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is not floating-point (e.g. is signed or unsigned integer). To
load values into a generic shader attribute declared as a signed or unsigned scalar
or vector, use the commands

void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, T values);
void VertexAttribI4{bs ubus}v(uint index, T values);

These commands specify values that are extended to full signed or unsigned
integers, then loaded into the generic attribute at slot index in the same fashion as
described above.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is floating-point; if the base type is integer and unsigned in-
teger values are supplied (the VertexAttribI*ui, VertexAttribI*us, and Vertex-
AttribI*ub commands); or if the base type is unsigned integer and signed integer
values are supplied (the VertexAttribI*i, VertexAttribI*s, and VertexAttribI*b
commands)

The error INVALID VALUE is generated by VertexAttrib* if index is greater
than or equal to MAX VERTEX ATTRIBS.

Setting generic vertex attribute zero specifies a vertex; the four vertex coordi-
nates are taken from the values of attribute zero. A Vertex2, Vertex3, or Vertex4

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 28

command is completely equivalent to the corresponding VertexAttrib* command
with an index of zero. Setting any other generic vertex attribute updates the current
values of the attribute. There are no current values for vertex attribute zero.

There is no aliasing among generic attributes and conventional attributes. In
other words, an application can set all MAX VERTEX ATTRIBS generic attributes
and all conventional attributes without fear of one particular attribute overwriting
the value of another attribute.

The state required to support vertex specification consists of four floating-point
numbers per texture coordinate set to store the current texture coordinates s, t, r,
and q, three floating-point numbers to store the three coordinates of the current
normal, one floating-point number to store the current fog coordinate, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and MAX VERTEX ATTRIBS − 1 four-component floating-point vectors to
store generic vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coor-
dinates or generic attribute zero. The initial texture coordinates are (s, t, r, q) =
(0, 0, 0, 1) for each texture coordinate set. The initial current normal has coor-
dinates (0, 0, 1). The initial fog coordinate is zero. The initial RGBA color is
(R,G,B,A) = (1, 1, 1, 1) and the initial RGBA secondary color is (0, 0, 0, 1).
The initial color index is 1. The initial values for all generic vertex attributes are
(0, 0, 0, 1).

2.8 Vertex Arrays

The vertex specification commands described in section 2.7 accept data in almost
any format, but their use requires many command executions to specify even sim-
ple geometry. Vertex data may also be placed into arrays that are stored in the
client’s address space. Blocks of data in these arrays may then be used to spec-
ify multiple geometric primitives through the execution of a single GL command.
The client may specify up to seven plus the values of MAX TEXTURE COORDS and
MAX VERTEX ATTRIBS arrays: one each to store vertex coordinates, normals, col-
ors, secondary colors, color indices, edge flags, fog coordinates, two or more tex-
ture coordinate sets, and one or more generic vertex attributes. The commands

void VertexPointer(int size, enum type, sizei stride,
void *pointer);

void NormalPointer(enum type, sizei stride,
void *pointer);

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 29

void ColorPointer(int size, enum type, sizei stride,
void *pointer);

void SecondaryColorPointer(int size, enum type,
sizei stride, void *pointer);

void IndexPointer(enum type, sizei stride, void *pointer);
void EdgeFlagPointer(sizei stride, void *pointer);
void FogCoordPointer(enum type, sizei stride,

void *pointer);
void TexCoordPointer(int size, enum type, sizei stride,

void *pointer);
void VertexAttribPointer(uint index, int size, enum type,

boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

describe the locations and organizations of these arrays. For each command, type
specifies the data type of the values stored in the array. Because edge flags are al-
ways type boolean, EdgeFlagPointer has no type argument. size, when present,
indicates the number of values per vertex that are stored in the array. Because
normals are always specified with three values, NormalPointer has no size argu-
ment. Likewise, because color indices and edge flags are always specified with
a single value, IndexPointer and EdgeFlagPointer also have no size argument.
Table 2.4 indicates the allowable values for size and type (when present). For type
the values BYTE, SHORT, INT, FLOAT, HALF FLOAT, and DOUBLE indicate types
byte, short, int, float, half, and double, respectively; and the values
UNSIGNED BYTE, UNSIGNED SHORT, and UNSIGNED INT indicate types ubyte,
ushort, and uint, respectively. The error INVALID VALUE is generated if size
is specified with a value other than that indicated in the table.

The index parameter in the VertexAttribPointer and VertexAttribI-
Pointer commands identify the generic vertex attribute array being described.
The error INVALID VALUE is generated if index is greater than or equal to
MAX VERTEX ATTRIBS. Generic attribute arrays with integer type arguments can
be handled in one of three ways: converted to float by normalizing to [0, 1] or
[−1, 1] as specified in table 2.10, converted directly to float, or left as integers.
Data for an array specified by VertexAttribPointer will be converted to floating-
point by normalizing if normalized is TRUE, and converted directly to floating-point
otherwise. Data for an array specified by VertexAttribIPointer will always be left
as integer values; such data are referred to as pure integers.

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 30

Integer
Command Sizes Handling Types
VertexPointer 2,3,4 cast short, int, float, half,

double
NormalPointer 3 normalize byte, short, int, float,

half, double
ColorPointer 3,4 normalize byte, ubyte, short,

ushort, int, uint, float,
half, double

SecondaryColorPointer 3 normalize byte, ubyte, short,
ushort, int, uint, float,
half, double

IndexPointer 1 cast ubyte, short, int, float,
double

FogCoordPointer 1 n/a float, half, double
TexCoordPointer 1,2,3,4 cast short, int, float, half,

double
EdgeFlagPointer 1 integer boolean
VertexAttribPointer 1,2,3,4 flag byte, ubyte, short,

ushort, int, uint, float,
half, double

VertexAttribIPointer 1,2,3,4 integer byte, ubyte, short,
ushort, int, uint

Table 2.4: Vertex array sizes (values per vertex) and data types. The “Integer Han-
dling” column indicates how fixed-point data types are handled: “cast” means that
they converted to floating-point directly, “normalize” means that they are converted
to floating-point by normalizing to [0, 1] (for unsigned types) or [−1, 1] (for signed
types), “integer” means that they remain as integer values, and “flag” means that
either “cast” or “normalized” applies, depending on the setting of the normalized
flag in VertexAttribPointer.

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 31

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. The values within each array element are stored se-
quentially in memory. If stride is specified as zero, then array elements are stored
sequentially as well. The error INVALID VALUE is generated if stride is negative.
Otherwise pointers to the ith and (i + 1)st elements of an array differ by stride
basic machine units (typically unsigned bytes), the pointer to the (i+ 1)st element
being greater. For each command, pointer specifies the location in memory of the
first value of the first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with array set to VERTEX ARRAY, NORMAL ARRAY, COLOR ARRAY,
SECONDARY COLOR ARRAY, INDEX ARRAY, EDGE FLAG ARRAY,
FOG COORD ARRAY, or TEXTURE COORD ARRAY, for the vertex, normal, color,
secondary color, color index, edge flag, fog coordinate, or texture coordinate array,
respectively.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable.
The error INVALID VALUE is generated if index is greater than or equal to
MAX VERTEX ATTRIBS.

The command

void ClientActiveTexture(enum texture);

is used to select the vertex array client state parameters to be modified by
the TexCoordPointer command and the array affected by EnableClientState and
DisableClientState with parameter TEXTURE COORD ARRAY. This command sets
the client state variable CLIENT ACTIVE TEXTURE. Each texture coordinate set
has a client state vector which is selected when this command is invoked. This
state vector includes the vertex array state. This call also selects the texture coor-
dinate set state used for queries of client state.

Specifying an invalid texture generates the error INVALID ENUM. Valid values
of texture are the same as for the MultiTexCoord commands described in sec-
tion 2.7.

The command

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 32

void ArrayElement(int i);

transfers the ith element of every enabled array to the GL. The effect of
ArrayElement(i) is the same as the effect of the command sequence

if (normal array enabled)
Normal3[type]v(normal array element i);

if (color array enabled)
Color[size][type]v(color array element i);

if (secondary color array enabled)
SecondaryColor3[type]v(secondary color array element i);

if (fog coordinate array enabled)
FogCoord[type]v(fog coordinate array element i);

for (j = 0; j < textureUnits; j++) {
if (texture coordinate set j array enabled)

MultiTexCoord[size][type]v(TEXTURE0 + j, texture coordinate set j array element i);
}
if (color index array enabled)

Index[type]v(color index array element i);
if (edge flag array enabled)

EdgeFlagv(edge flag array element i);
for (j = 1; j < genericAttributes; j++) {
if (generic vertex attribute j array enabled) {
if (generic vertex attribute j array is a pure integer array)

VertexAttribI[size][type]v(j, generic vertex attribute j array element i);
else if (generic vertex attribute j array normalization flag is set, and

type is not FLOAT or DOUBLE)
VertexAttrib[size]N[type]v(j, generic vertex attribute j array element i);

else
VertexAttrib[size][type]v(j, generic vertex attribute j array element i);

}
}
if (generic vertex attribute array 0 enabled) {
if (generic vertex attribute 0 array is a pure integer array)

VertexAttribI[size][type]v(0, generic vertex attribute 0 array element i);
else if (generic vertex attribute 0 array normalization flag is set, and

type is not FLOAT or DOUBLE)
VertexAttrib[size]N[type]v(0, generic vertex attribute 0 array element i);

else
VertexAttrib[size][type]v(0, generic vertex attribute 0 array element i);

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 33

} else if (vertex array enabled) {
Vertex[size][type]v(vertex array element i);

}

where textureUnits and genericAttributes give the number of texture coordinate
sets and generic vertex attributes supported by the implementation, respectively.
”[size]” and ”[type]” correspond to the size and type of the corresponding array.
For generic vertex attributes, it is assumed that a complete set of vertex attribute
commands exists, even though not all such functions are provided by the GL.

Changes made to array data between the execution of Begin and the corre-
sponding execution of End may affect calls to ArrayElement that are made within
the same Begin/End period in non-sequential ways. That is, a call to ArrayEle-
ment that precedes a change to array data may access the changed data, and a call
that follows a change to array data may access original data.

Specifying i < 0 results in undefined behavior. Generating the error
INVALID VALUE is recommended in this case.

The command

void DrawArrays(enum mode, int first, sizei count);

constructs a sequence of geometric primitives using elements first through
first + count − 1 of each enabled array. mode specifies what kind of primi-
tives are constructed; it accepts the same token values as the mode parameter of
the Begin command. The effect of

DrawArrays (mode, first, count);

is the same as the effect of the command sequence

if (mode or count is invalid)
generate appropriate error

else {
Begin(mode);
for (int i = 0; i < count ; i++)

ArrayElement(first+ i);
End();

}

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are
each indeterminate after execution of DrawArrays, if the corresponding array is

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 34

enabled. Current values corresponding to disabled arrays are not modified by the
execution of DrawArrays.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID VALUE is recommended in this case.

The command

void MultiDrawArrays(enum mode, int *first,
sizei *count, sizei primcount);

behaves identically to DrawArrays except that primcount separate ranges of
elements are specified instead. It has the same effect as:

for (i = 0; i < primcount; i++) {
if (count[i] > 0)

DrawArrays(mode, first[i], count[i]);
}

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives using the count elements
whose indices are stored in indices. type must be one of UNSIGNED BYTE,
UNSIGNED SHORT, or UNSIGNED INT, indicating that the values in indices are in-
dices of GL type ubyte, ushort, or uint respectively. mode specifies what
kind of primitives are constructed; it accepts the same token values as the mode
parameter of the Begin command. The effect of

DrawElements (mode, count, type, indices);

is the same as the effect of the command sequence

if (mode, count, or type is invalid)
generate appropriate error

else {
Begin(mode);
for (int i = 0; i < count ; i++)

ArrayElement(indices[i]);
End();

}

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 35

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are each
indeterminate after the execution of DrawElements, if the corresponding array is
enabled. Current values corresponding to disabled arrays are not modified by the
execution of DrawElements.

The command

void MultiDrawElements(enum mode, sizei *count,
enum type, void **indices, sizei primcount);

behaves identically to DrawElements except that primcount separate lists of
elements are specified instead. It has the same effect as:

for (i = 0; i < primcount; i++) {
if (count[i]) > 0)

DrawElements(mode, count[i], type, indices[i]);
}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
values in the array indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX ELEMENTS VERTICES and MAX ELEMENTS INDICES. If end − start + 1 is
greater than the value of MAX ELEMENTS VERTICES, or if count is greater than
the value of MAX ELEMENTS INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for indices to lie outside the range [start, end], but
implementations may not check for this. Such indices will cause implementation-
dependent behavior.

The command

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 36

void InterleavedArrays(enum format, sizei stride,
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 con-
figurations. format must be one of 14 symbolic constants: V2F,
V3F, C4UB V2F, C4UB V3F, C3F V3F, N3F V3F, C4F N3F V3F, T2F V3F,
T4F V4F, T2F C4UB V3F, T2F C3F V3F, T2F N3F V3F, T2F C4F N3F V3F, or
T4F C4F N3F V4F.

The effect of

InterleavedArrays(format, stride, pointer);

is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error

else {
int str;
set et, ec, en, st, sc, sv, tc, pc, pn, pv, and s as a function

of table 2.5 and the value of format.
str = stride;
if (str is zero)
str = s;

DisableClientState(EDGE FLAG ARRAY);
DisableClientState(INDEX ARRAY);
DisableClientState(SECONDARY COLOR ARRAY);
DisableClientState(FOG COORD ARRAY);
if (et) {

EnableClientState(TEXTURE COORD ARRAY);
TexCoordPointer(st, FLOAT, str, pointer);

} else
DisableClientState(TEXTURE COORD ARRAY);

if (ec) {
EnableClientState(COLOR ARRAY);
ColorPointer(sc, tc, str, pointer + pc);

} else
DisableClientState(COLOR ARRAY);

if (en) {
EnableClientState(NORMAL ARRAY);
NormalPointer(FLOAT, str, pointer + pn);

} else

Version 3.0 (September 23, 2008)

2.8. VERTEX ARRAYS 37

format et ec en st sc sv tc

V2F False False False 2
V3F False False False 3
C4UB V2F False True False 4 2 UNSIGNED BYTE

C4UB V3F False True False 4 3 UNSIGNED BYTE

C3F V3F False True False 3 3 FLOAT

N3F V3F False False True 3
C4F N3F V3F False True True 4 3 FLOAT

T2F V3F True False False 2 3
T4F V4F True False False 4 4
T2F C4UB V3F True True False 2 4 3 UNSIGNED BYTE

T2F C3F V3F True True False 2 3 3 FLOAT

T2F N3F V3F True False True 2 3
T2F C4F N3F V3F True True True 2 4 3 FLOAT

T4F C4F N3F V4F True True True 4 4 4 FLOAT

format pc pn pv s

V2F 0 2f
V3F 0 3f
C4UB V2F 0 c c+ 2f
C4UB V3F 0 c c+ 3f
C3F V3F 0 3f 6f
N3F V3F 0 3f 6f
C4F N3F V3F 0 4f 7f 10f
T2F V3F 2f 5f
T4F V4F 4f 8f
T2F C4UB V3F 2f c+ 2f c+ 5f
T2F C3F V3F 2f 5f 8f
T2F N3F V3F 2f 5f 8f
T2F C4F N3F V3F 2f 6f 9f 12f
T4F C4F N3F V4F 4f 8f 11f 15f

Table 2.5: Variables that direct the execution of InterleavedArrays. f is
sizeof(FLOAT). c is 4 times sizeof(UNSIGNED BYTE), rounded up to
the nearest multiple of f . All pointer arithmetic is performed in units of
sizeof(UNSIGNED BYTE).

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 38

DisableClientState(NORMAL ARRAY);
EnableClientState(VERTEX ARRAY);
VertexPointer(sv, FLOAT, str, pointer + pv);

}

If the number of supported texture units (the value of MAX TEXTURE COORDS)
is m and the number of supported generic vertex attributes (the value of
MAX VERTEX ATTRIBS) is n, then the client state required to implement vertex
arrays consists of an integer for the client active texture unit selector, 7 + m + n
boolean values, 7 + m + n memory pointers, 7 + m + n integer stride values,
7 + m + n symbolic constants representing array types, 3 + m + n integers rep-
resenting values per element, n boolean values indicating normalization, and n
boolean values indicating whether the attribute values are pure integers.

In the initial state, the client active texture unit selector is TEXTURE0, the
boolean values are each false, the memory pointers are each NULL, the strides are
each zero, the array types are each FLOAT, the integers representing values per
element are each four, and the normalized and pure integer flags are each false.

2.9 Buffer Objects

The vertex data arrays described in section 2.8 are stored in client memory. It
is sometimes desirable to store frequently used client data, such as vertex array
and pixel data, in high-performance server memory. GL buffer objects provide a
mechanism that clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero reserved
for the GL. A buffer object is created by binding an unused name to a buffer target.
The binding is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of ARRAY BUFFER, ELEMENT ARRAY BUFFER,
PIXEL UNPACK BUFFER, or PIXEL PACK BUFFER. The ARRAY BUFFER target is
discussed in section 2.9.2. The ELEMENT ARRAY BUFFER target is discussed in
section 2.9.3. The PIXEL UNPACK BUFFER and PIXEL PACK BUFFER targets are
discussed later in sections 3.7, 4.3.2, and 6.1. If the buffer object named buffer has
not been previously bound or has been deleted since the last binding, the GL cre-
ates a new state vector, initialized with a zero-sized memory buffer and comprising
the state values listed in table 2.6.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 39

Name Type Initial Value Legal Values
BUFFER SIZE integer 0 any non-negative integer
BUFFER USAGE enum STATIC DRAW STREAM DRAW, STREAM READ,

STREAM COPY, STATIC DRAW,
STATIC READ, STATIC COPY,
DYNAMIC DRAW, DYNAMIC READ,
DYNAMIC COPY

BUFFER ACCESS enum READ WRITE READ ONLY, WRITE ONLY,
READ WRITE

BUFFER ACCESS FLAGS integer 0 See section 2.9.1
BUFFER MAPPED boolean FALSE TRUE, FALSE
BUFFER MAP POINTER void* NULL address
BUFFER MAP OFFSET integer 0 any non-negative integer
BUFFER MAP LENGTH integer 0 any non-negative integer

Table 2.6: Buffer object parameters and their values.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID OPERATION error.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names in buffers
are silently ignored, as is the value zero.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound, just as if they were unused.

While a buffer object is bound, any GL operations on that object affect any
other bindings of that object. If a buffer object is deleted while it is bound, all

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 40

bindings to that object in the current context (i.e. in the thread that called Delete-
Buffers) are reset to zero. Bindings to that buffer in other contexts and other
threads are not affected, but attempting to use a deleted buffer in another thread
produces undefined results, including but not limited to possible GL errors and
rendering corruption. Using a deleted buffer in another context or thread may not,
however, result in program termination.

The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

with target set to one of ARRAY BUFFER, ELEMENT ARRAY BUFFER,
PIXEL UNPACK BUFFER, or PIXEL PACK BUFFER, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-null, then the source data is copied to the buffer object’s data store.
If data is null, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM COPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source for GL drawing and image
specification commands.

STATIC DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

STATIC READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing and image spec-
ification commands.

DYNAMIC DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 41

Name Value
BUFFER SIZE size
BUFFER USAGE usage
BUFFER ACCESS READ WRITE

BUFFER ACCESS FLAGS 0
BUFFER MAPPED FALSE

BUFFER MAP POINTER NULL

BUFFER MAP OFFSET 0
BUFFER MAP LENGTH 0

Table 2.7: Buffer object initial state.

DYNAMIC READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC COPY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.7.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising N basic machine units be a multiple of N .

If the GL is unable to create a data store of the requested size, the error
OUT OF MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum target, intptr offset,
sizeiptr size, const void *data);

with target set to ARRAY BUFFER. offset and size indicate the range of data in the
buffer object that is to be replaced, in terms of basic machine units. data speci-
fies a region of client memory size basic machine units in length, containing the
data that replace the specified buffer range. An INVALID VALUE error is gener-
ated if offset or size is less than zero, or if offset + size is greater than the value

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 42

of BUFFER SIZE. An INVALID OPERATION error is generated if any part of the
specified buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 2.9.1).

2.9.1 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with target set to one of ARRAY BUFFER, ELEMENT ARRAY BUFFER,
PIXEL UNPACK BUFFER, or PIXEL PACK BUFFER. offset and length indi-
cate the range of data in the buffer object that is to be mapped, in terms of basic
machine units. access is a bitfield containing flags which describe the requested
mapping. These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

• MAP READ BIT indicates that the returned pointer may be used to read buffer
object data. No GL error is generated if the pointer is used to query a map-
ping which excludes this flag, but the result is undefined and system errors
(possibly including program termination) may occur.

• MAP WRITE BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

Pointer values returned by MapBuffer may not be passed as parameter values
to GL commands. For example, they may not be used to specify array pointers, or
to specify or query pixel or texture image data; such actions produce undefined re-
sults, although implementations may not check for such behavior for performance
reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 43

with the values of BUFFER USAGE and access. Using a mapping in a fashion incon-
sistent with these values is liable to be multiple orders of magnitude slower than
using normal memory.

The following optional flag bits in access may be used to modify the mapping:

• MAP INVALIDATE RANGE BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP READ BIT.

• MAP INVALIDATE BUFFER BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP READ BIT.

• MAP FLUSH EXPLICIT BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP WRITE BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

• MAP UNSYNCHRONIZED BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 2.8.
Errors

If an error occurs, MapBufferRange returns a NULL pointer.

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 44

Name Value
BUFFER ACCESS Depends on access1

BUFFER ACCESS FLAGS access
BUFFER MAPPED TRUE

BUFFER MAP POINTER pointer to the data store
BUFFER MAP OFFSET offset
BUFFER MAP LENGTH length

Table 2.8: Buffer object state set by MapBufferRange.
1 BUFFER ACCESS is set to READ ONLY, WRITE ONLY, or READ WRITE if
access & (MAP READ BIT|MAP WRITE BIT) is respectively MAP READ BIT,
MAP WRITE BIT, or MAP READ BIT|MAP WRITE BIT.

An INVALID VALUE error is generated if offset or length is negative, if offset+
length is greater than the value of BUFFER SIZE, or if access has any bits set other
than those defined above.

An INVALID OPERATION error is generated for any of the following condi-
tions:

• The buffer is already in a mapped state.

• Neither MAP READ BIT nor MAP WRITE BIT is set.

• MAP READ BIT is set and any of MAP INVALIDATE RANGE BIT,
MAP INVALIDATE BUFFER BIT, or MAP UNSYNCHRONIZED BIT is set.

• MAP FLUSH EXPLICIT BIT is set and MAP WRITE BIT is not set.

An OUT OF MEMORY error is generated if MapBufferRange fails because
memory for the mapping could not be obtained.

No error is generated if memory outside the mapped range is modified or
queried, but the result is undefined and system errors (possibly including program
termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space by calling

void *MapBuffer(enum target, enum access);

MapBuffer is equivalent to calling MapBufferRange with the same target, offset
of zero, length equal to the value of BUFFER SIZE, and the access value passed to
MapBufferRange equal to

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 45

• MAP READ BIT, if access is READ ONLY

• MAP WRITE BIT, if access is WRITE ONLY

• MAP READ BIT|MAP WRITE BIT, if access is READ WRITE.

INVALID ENUM is generated if access is not one of the values described above.
Other errors are generated as described above for MapBufferRange.

If a buffer is mapped with the MAP FLUSH EXPLICIT BIT flag, modifications
to the mapped range may be indicated by calling

void FlushMappedBufferRange(enum target, intptr offset,
sizeiptr length);

with target set to one of ARRAY BUFFER, ELEMENT ARRAY BUFFER,
PIXEL UNPACK BUFFER, or PIXEL PACK BUFFER. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct
subranges of the mapping which require flushing.
Errors

An INVALID VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

An INVALID OPERATION error is generated if zero is bound to target.
An INVALID OPERATION error is generated if buffer is not mapped, or is

mapped without the MAP FLUSH EXPLICIT BIT flag.
After the client has specified the contents of a mapped buffer range, and before

the data in that range are dereferenced by any GL commands, the mapping must
be relinquished by calling

boolean UnmapBuffer(enum target);

with target set to one of ARRAY BUFFER, ELEMENT ARRAY BUFFER,
PIXEL UNPACK BUFFER, or PIXEL PACK BUFFER. Unmapping a mapped
buffer object invalidates the pointer to its data store and sets the ob-
ject’s BUFFER MAPPED, BUFFER MAP POINTER, BUFFER ACCESS FLAGS,
BUFFER MAP OFFSET, and BUFFER MAP LENGTH state variables to the initial
values shown in table 2.7.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 46

event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID OPERATION error is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

2.9.2 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. However, it is expected
that GL implementations will (at minimum) be optimized for data with all compo-
nents represented as floats, as well as for color data with components represented
as either floats or unsigned bytes.

A buffer object binding point is added to the client state associated with
each vertex array type. The commands that specify the locations and or-
ganizations of vertex arrays copy the buffer object name that is bound to
ARRAY BUFFER to the binding point corresponding to the vertex array of the
type being specified. For example, the NormalPointer command copies the
value of ARRAY BUFFER BINDING (the queriable name of the buffer bind-
ing corresponding to the target ARRAY BUFFER) to the client state variable
NORMAL ARRAY BUFFER BINDING.

Rendering commands ArrayElement, DrawArrays, DrawElements,
DrawRangeElements, MultiDrawArrays, and MultiDrawElements operate as
previously defined, except that data for enabled vertex and attrib arrays are sourced
from buffers if the array’s buffer binding is non-zero. When an array is sourced
from a buffer object, the pointer value of that array is used to compute an offset, in
basic machine units, into the data store of the buffer object. This offset is computed
by subtracting a null pointer from the pointer value, where both pointers are treated
as pointers to basic machine units.

It is acceptable for vertex or attrib arrays to be sourced from any combination
of client memory and various buffer objects during a single rendering operation.

Any GL command that attempts to read data from a buffer object will fail and
generate an INVALID OPERATION error if the object is mapped at the time the
command is issued.

Version 3.0 (September 23, 2008)

2.9. BUFFER OBJECTS 47

2.9.3 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT ARRAY BUFFER, indicating that DrawElements and DrawRangeEle-
ments are to source their indices from arrays passed as their indices parameters,
and that MultiDrawElements is to source its indices from the array of pointers to
arrays passed in as its indices parameter.

A buffer object is bound to ELEMENT ARRAY BUFFER by calling BindBuffer
with target set to ELEMENT ARRAY BUFFER, and buffer set to the name of the buffer
object. If no corresponding buffer object exists, one is initialized as defined in
section 2.9.

While a non-zero buffer object name is bound to ELEMENT ARRAY BUFFER,
DrawElements and DrawRangeElements source their indices from that buffer
object, using their indices parameters as offsets into the buffer object in the same
fashion as described in section 2.9.2. MultiDrawElements also sources its in-
dices from that buffer object, using its indices parameter as a pointer to an array of
pointers that represent offsets into the buffer object.

Buffer objects created by binding an unused name to ARRAY BUFFER and to
ELEMENT ARRAY BUFFER are formally equivalent, but the GL may make different
choices about storage implementation based on the initial binding. In some cases
performance will be optimized by storing indices and array data in separate buffer
objects, and by creating those buffer objects with the corresponding binding points.

2.9.4 Buffer Object State

The state required to support buffer objects consists of binding names for the array
buffer, element buffer, pixel unpack buffer, and pixel pack buffer. Additionally,
each vertex array has an associated binding so there is a buffer object binding for
each of the vertex array, normal array, color array, index array, multiple texture
coordinate arrays, edge flag array, secondary color array, fog coordinate array, and
vertex attribute arrays. The initial values for all buffer object bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units,
a usage parameter, an access parameter, a mapped boolean, a pointer to the mapped
buffer (NULL if unmapped), and the sized array of basic machine units for the buffer
data.

Version 3.0 (September 23, 2008)

2.10. VERTEX ARRAY OBJECTS 48

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, and are initialized
with the state listed in tables 6.6 through 6.9.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays are silently
ignored, as is the value zero.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state values listed in tables 6.6 through 6.9.

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 6).

BindVertexArray fails and an INVALID OPERATION error is generated if ar-
ray is not a name returned from a previous call to GenVertexArrays, or if such a
name has since been deleted with DeleteVertexArrays.

An INVALID OPERATION error is generated if any of the *Pointer commands
specifying the location and organization of vertex array data are called while a
non-zero vertex array object is bound and zero is bound to the ARRAY BUFFER

buffer object binding point 2.
2This error makes it impossible to create a vertex array object containing client array pointers.

Version 3.0 (September 23, 2008)

2.11. RECTANGLES 49

2.11 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}(T x1, T y1, T x2, T y2);
void Rect{sifd}v(T v1[2], T v2[2]);

Each command takes either four arguments organized as two consecutive pairs of
(x, y) coordinates, or two pointers to arrays each of which contains an x value
followed by a y value. The effect of the Rect command

Rect (x1, y1, x2, y2);

is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2(x1, y1);
Vertex2(x2, y1);
Vertex2(x2, y2);
Vertex2(x1, y2);

End();

The appropriate Vertex2 command would be invoked depending on which of the
Rect commands is issued.

2.12 Coordinate Transformations

This section and the following discussion through section 2.19 describe the state
values and operations necessary for transforming vertex attributes according to a
fixed-functionality method. An alternate programmable method for transforming
vertex attributes is described in section 2.20.

Vertices, normals, and texture coordinates are transformed before their coordi-
nates are used to produce an image in the framebuffer. We begin with a description
of how vertex coordinates are transformed and how this transformation is con-
trolled.

Figure 2.6 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are termed object co-
ordinates. The model-view matrix is applied to these coordinates to yield eye co-
ordinates. Then another matrix, called the projection matrix, is applied to eye
coordinates to yield clip coordinates. A perspective division is carried out on clip

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 50

Object

Coordinates Coordinates

Eye

Coordinates

Window

Coordinates

Normalized
DeviceModel−View

Matrix

Perspective
Division

Viewport
Transformation

Coordinates

ClipProjection

Matrix

Figure 2.6. Vertex transformation sequence.

coordinates to yield normalized device coordinates. A final viewport transforma-
tion is applied to convert these coordinates into window coordinates.

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting of x, y, z, and w coordinates (in that order). The model-view and pro-
jection matrices are thus 4× 4.

If a vertex in object coordinates is given by


xo

yo

zo
wo

 and the model-view matrix

is M , then the vertex’s eye coordinates are found as
xe

ye

ze
we

 = M


xo

yo

zo
wo

 .

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are
xc

yc

zc
wc

 = P


xe

ye

ze
we

 .

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 51

The vertex’s normalized device coordinates are thenxd

yd

zd

 = P

 xc
wc
ye

wc
ze
wc

 .

2.12.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, px and py, respectively, and its center (ox, oy) (also in pixels). The vertex’s

window coordinates,

xw

yw

zw

 , are given by

xw

yw

zw

 =

 px

2 xd + ox
py

2 yd + oy
f−n

2 zd + n+f
2

 .

The factor and offset applied to zd encoded by n and f are set using

void DepthRange(clampd n, clampd f);

zw is represented as either fixed- or floating-point depending on whether the frame-
buffer’s depth buffer uses a fixed- or floating-point representation. If the depth
buffer uses fixed-point, we assume that it represents each value k/(2m− 1), where
k ∈ {0, 1, . . . , 2m − 1}, as k (e.g. 1.0 is represented in binary as a string of all
ones). The parameters n and f are clamped to the range [0, 1], as are all arguments
of type clampd or clampf.

Viewport transformation parameters are specified using

void Viewport(int x, int y, sizei w, sizei h);

where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and h give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as ox =
x+ w/2 and oy = y + h/2; px = w, py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriate Get command (see chapter 6). The maximum viewport dimensions
must be greater than or equal to the larger of the visible dimensions of the display
being rendered to (if a display exists), and the largest renderbuffer image which

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 52

can be successfully created and attached to a framebuffer object (see chapter 4).
INVALID VALUE is generated if either w or h is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and h are set to the
width and height, respectively, of the window into which the GL is to do its render-
ing. If the default framebuffer is bound but no default framebuffer is associated
with the GL context (see chapter 4), then w and h are initially set to zero. ox and oy

are set to w/2 and h/2, respectively. n and f are set to 0.0 and 1.0, respectively.

2.12.2 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE, MODELVIEW, COLOR, or
PROJECTION as the argument value. TEXTURE is described later in section 2.12.2,
and COLOR is described in section 3.7.3. If the current matrix mode is MODELVIEW,
then matrix operations apply to the model-view matrix; if PROJECTION, then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix{fd}(T m[16]);
void MultMatrix{fd}(T m[16]);

LoadMatrix takes a pointer to a 4× 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

a4 a8 a12 a16

 .

(This differs from the standard row-major C ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to. Mult-
Matrix takes the same type argument as LoadMatrix, but multiplies the current
matrix by the one pointed to and replaces the current matrix with the product. If C

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 53

is the current matrix and M is the matrix pointed to by MultMatrix’s argument,
then the resulting current matrix, C ′, is

C ′ = C ·M.

The commands

void LoadTransposeMatrix{fd}(T m[16]);
void MultTransposeMatrix{fd}(T m[16]);

take pointers to 4×4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as 

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

 .

The effect of

LoadTransposeMatrix[fd](m);

is the same as the effect of

LoadMatrix[fd](mT);

The effect of

MultTransposeMatrix[fd](m);

is the same as the effect of

MultMatrix[fd](mT);

The command

void LoadIdentity(void);

effectively calls LoadMatrix with the identity matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

There are a variety of other commands that manipulate matrices. Rotate,
Translate, Scale, Frustum, and Ortho manipulate the current matrix. Each com-
putes a matrix and then invokes MultMatrix with this matrix. In the case of

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 54

void Rotate{fd}(T θ, T x, T y, T z);

θ gives an angle of rotation in degrees; the coordinates of a vector v are given by
v = (x y z)T . The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0

0
0 0 0 1

 .

Let u = v/||v|| =
(
x′ y′ z′

)T . If

S =

 0 −z′ y′

z′ 0 −x′
−y′ x′ 0


then

R = uuT + cos θ(I − uuT) + sin θS.

The arguments to

void Translate{fd}(T x, T y, T z);

give the coordinates of a translation vector as (x y z)T . The resulting matrix is a
translation by the specified vector:

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 .

void Scale{fd}(T x, T y, T z);

produces a general scaling along the x-, y-, and z- axes. The corresponding matrix
is 

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

 .

For

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 55

void Frustum(double l, double r, double b, double t,
double n, double f);

the coordinates (l b − n)T and (r t − n)T specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at (0 0 0)T). f gives the distance
from the eye to the far clipping plane. If either n or f is less than or equal to zero,
l is equal to r, b is equal to t, or n is equal to f , the error INVALID VALUE results.
The corresponding matrix is

2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −f+n
f−n − 2fn

f−n

0 0 −1 0

 .

void Ortho(double l, double r, double b, double t,
double n, double f);

describes a matrix that produces parallel projection. (l b − n)T and (r t − n)T

specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively. f gives the distance from the eye
to the far clipping plane. If l is equal to r, b is equal to t, or n is equal to f , the
error INVALID VALUE results. The corresponding matrix is

2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 − 2
f−n −f+n

f−n

0 0 0 1

 .

For each texture coordinate set, a 4× 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16



s
t
r
q

 ,

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode to TEXTURE

causes the already described matrix operations to apply to the texture matrix.
The command

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 56

void ActiveTexture(enum texture);

specifies the active texture unit selector, ACTIVE TEXTURE. Each texture unit con-
tains up to two distinct sub-units: a texture coordinate processing unit (consisting
of a texture matrix stack and texture coordinate generation state) and a texture
image unit (consisting of all the texture state defined in section 3.9). In implemen-
tations with a different number of supported texture coordinate sets and texture
image units, some texture units may consist of only one of the two sub-units.

The active texture unit selector specifies the texture coordinate set accessed
by commands involving texture coordinate processing. Such commands include
those accessing the current matrix stack (if MATRIX MODE is TEXTURE), TexEnv
commands controlling point sprite coordinate replacement (see section 3.4), Tex-
Gen (section 2.12.4), Enable/Disable (if any texture coordinate generation enum
is selected), as well as queries of the current texture coordinates and current raster
texture coordinates. If the texture coordinate set number corresponding to the cur-
rent value of ACTIVE TEXTURE is greater than or equal to the implementation-
dependent constant MAX TEXTURE COORDS, the error INVALID OPERATION is
generated by any such command.

The active texture unit selector also selects the texture image unit accessed
by commands involving texture image processing (section 3.9). Such commands
include all variants of TexEnv (except for those controlling point sprite coordi-
nate replacement), TexParameter, and TexImage commands, BindTexture, En-
able/Disable for any texture target (e.g., TEXTURE 2D), and queries of all such
state. If the texture image unit number corresponding to the current value of
ACTIVE TEXTURE is greater than or equal to the implementation-dependent con-
stant MAX COMBINED TEXTURE IMAGE UNITS, the error INVALID OPERATION is
generated by any such command.

ActiveTexture generates the error INVALID ENUM if an invalid texture is spec-
ified. texture is a symbolic constant of the form TEXTUREi, indicating that tex-
ture unit i is to be modified. The constants obey TEXTUREi = TEXTURE0 + i (i
is in the range 0 to k − 1, where k is the larger of MAX TEXTURE COORDS and
MAX COMBINED TEXTURE IMAGE UNITS).

For backwards compatibility, the implementation-dependent
constant MAX TEXTURE UNITS specifies the number of conventional texture units
supported by the implementation. Its value must be no larger than the minimum of
MAX TEXTURE COORDS and MAX COMBINED TEXTURE IMAGE UNITS.

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at least 2. Texture matrix stacks for all

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 57

texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the error STACK UNDERFLOW; pushing a matrix onto a full
stack generates STACK OVERFLOW.

When the current matrix mode is TEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of an integer for the
active texture unit selector, a four-valued integer indicating the current matrix
mode, one stack of at least two 4 × 4 matrices for each of COLOR, PROJECTION,
and each texture coordinate set, TEXTURE; and a stack of at least 32 4 × 4 matri-
ces for MODELVIEW. Each matrix stack has an associated stack pointer. Initially,
there is only one matrix on each stack, and all matrices are set to the identity.
The initial active texture unit selector is TEXTURE0, and the initial matrix mode is
MODELVIEW.

2.12.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

void Enable(enum target);

and

void Disable(enum target);

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 58

with target equal to RESCALE NORMAL or NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M , then the normal is transformed to eye coordi-
nates by: (

nx
′ ny

′ nz
′ q′

)
=
(
nx ny nz q

)
·M−1

where, if


x
y
z
w

 are the associated vertex coordinates, then

q =



0, w = 0,

−
„
nx ny nz

«0BBBB@
x

y

z

1CCCCA
w , w 6= 0

(2.1)

Implementations may choose instead to transform
(
nx ny nz

)
to eye coor-

dinates using (
nx
′ ny

′ nz
′) =

(
nx ny nz

)
·Mu

−1

where Mu is the upper leftmost 3x3 matrix taken from M .
Rescale multiplies the transformed normals by a scale factor(

nx
′′ ny

′′ nz
′′) = f

(
nx
′ ny

′ nz
′)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is computed
as (mij denotes the matrix element in row i and column j of M−1, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)

f =
1√

m31
2 +m32

2 +m33
2

Note that if the normals sent to GL were unit length and the model-view matrix
uniformly scales space, then rescale makes the transformed normals unit length.

Alternatively, an implementation may choose f as

f =
1√

nx
′2 + ny

′2 + nz
′2

recomputing f for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 59

After rescaling, the final transformed normal used in lighting, nf , is computed
as

nf = m
(
nx
′′ ny

′′ nz
′′)

If normalization is disabled, then m = 1. Otherwise

m =
1√

nx
′′2 + ny

′′2 + nz
′′2

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrix M . In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

2.12.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGen{ifd}(enum coord, enum pname, T param);
void TexGen{ifd}v(enum coord, enum pname, T params);

controls texture coordinate generation. coord must be one of the constants S, T,
R, or Q, indicating that the pertinent coordinate is the s, t, r, or q coordinate, re-
spectively. In the first form of the command, param is a symbolic constant speci-
fying a single-valued texture generation parameter; in the second form, params is
a pointer to an array of values that specify texture generation parameters. pname
must be one of the three symbolic constants TEXTURE GEN MODE, OBJECT PLANE,
or EYE PLANE. If pname is TEXTURE GEN MODE, then either params points to
or param is an integer that is one of the symbolic constants OBJECT LINEAR,
EYE LINEAR, SPHERE MAP, REFLECTION MAP, or NORMAL MAP.

If TEXTURE GEN MODE indicates OBJECT LINEAR, then the generation func-
tion for the coordinate indicated by coord is

g = p1xo + p2yo + p3zo + p4wo.

Version 3.0 (September 23, 2008)

2.12. COORDINATE TRANSFORMATIONS 60

xo, yo, zo, and wo are the object coordinates of the vertex. p1, . . . , p4 are specified
by calling TexGen with pname set to OBJECT PLANE in which case params points
to an array containing p1, . . . , p4. There is a distinct group of plane equation co-
efficients for each texture coordinate; coord indicates the coordinate to which the
specified coefficients pertain.

If TEXTURE GEN MODE indicates EYE LINEAR, then the function is

g = p′1xe + p′2ye + p′3ze + p′4we

where (
p′1 p′2 p′3 p′4

)
=
(
p1 p2 p3 p4

)
M−1

xe, ye, ze, and we are the eye coordinates of the vertex. p1, . . . , p4 are set by
calling TexGen with pname set to EYE PLANE in correspondence with setting the
coefficients in the OBJECT PLANE case. M is the model-view matrix in effect
when p1, . . . , p4 are specified. Computed texture coordinates may be inaccurate or
undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen with
TEXTURE GEN MODE indicating SPHERE MAP can simulate the reflected image of
a spherical environment on a polygon. SPHERE MAP texture coordinates are gen-
erated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) by u. Denote the current normal, after transformation to eye
coordinates, by nf . Let r =

(
rx ry rz

)T , the reflection vector, be given by

r = u− 2nf
T (nfu) ,

and let m = 2
√
r2x + r2y + (rz + 1)2. Then the value assigned to an s coordinate

(the first TexGen argument value is S) is s = rx/m+ 1
2 ; the value assigned to a t

coordinate is t = ry/m + 1
2 . Calling TexGen with a coord of either R or Q when

pname indicates SPHERE MAP generates the error INVALID ENUM.
If TEXTURE GEN MODE indicates REFLECTION MAP, compute the reflection

vector r as described for the SPHERE MAP mode. Then the value assigned to an
s coordinate is s = rx; the value assigned to a t coordinate is t = ry; and the value
assigned to an r coordinate is r = rz . Calling TexGen with a coord of Q when
pname indicates REFLECTION MAP generates the error INVALID ENUM.

If TEXTURE GEN MODE indicates NORMAL MAP, compute the normal vector nf

as described in section 2.12.3. Then the value assigned to an s coordinate is s =
nf x; the value assigned to a t coordinate is t = nf y; and the value assigned to an
r coordinate is r = nf z (the values nf x, nf y, and nf z are the components of nf .)
Calling TexGen with a coord of Q when pname indicates NORMAL MAP generates
the error INVALID ENUM.

Version 3.0 (September 23, 2008)

2.13. ASYNCHRONOUS QUERIES 61

A texture coordinate generation function is enabled or disabled using En-
able and Disable with an argument of TEXTURE GEN S, TEXTURE GEN T,
TEXTURE GEN R, or TEXTURE GEN Q (each indicates the corresponding texture co-
ordinate). When enabled, the specified texture coordinate is computed according
to the current EYE LINEAR, OBJECT LINEAR or SPHERE MAP specification, de-
pending on the current setting of TEXTURE GEN MODE for that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each of EYE LINEAR and OBJECT LINEAR. The initial state has the
texture generation function disabled for all texture coordinates. The initial values
of pi for s are all 0 except p1 which is one; for t all the pi are zero except p2, which
is 1. The values of pi for r and q are all 0. These values of pi apply for both the
EYE LINEAR and OBJECT LINEAR versions. Initially all texture generation modes
are EYE LINEAR.

2.13 Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. There are two query types supported by
the GL. Transform feedback queries (see section 2.15) returns information on the
number of vertices and primitives processed by the GL and written to one or more
buffer objects. Occlusion queries (see section 4.1.7) count the number of fragments
or samples that pass the depth test.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 6.1.12 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

Each type of query supported by the GL has an active query object name. If
the active query object name for a query type is non-zero, the GL is currently
tracking the information corresponding to that query type and the query results
will be written into the corresponding query object. If the active query object for a
query type name is zero, no such information is being tracked.

Version 3.0 (September 23, 2008)

2.13. ASYNCHRONOUS QUERIES 62

A query object is created and made active by calling

void BeginQuery(enum target, uint id);

target indicates the type of query to be performed; valid values of target are defined
in subsequent sections. If id is an unused query object name, the name is marked
as used and associated with a new query object of the type specified by target.
Otherwise id must be the name of an existing query object of that type.

BeginQuery sets the active query object name for the query type given by
target to id. If BeginQuery is called with an id of zero, if the active query object
name for target is non-zero, if id is the name of an existing query object whose
type does not match target, if id is the active query object name for any query type,
or if id is the active query object for condtional rendering (see section 2.14), the
error INVALID OPERATION is generated.

The command

void EndQuery(enum target);

marks the end of the sequence of commands to be tracked for the query type given
by target. The active query object for target is updated to indicate that query results
are not available, and the active query object name for target is reset to zero. When
the commands issued prior to EndQuery have completed and a final query result
is available, the query object active when EndQuery is called is updated by the
GL. The query object is updated to indicate that the query results are available and
to contain the query result. If the active query object name for target is zero when
EndQuery is called, the error INVALID OPERATION is generated.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery.

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names in ids are silently ignored.

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The

Version 3.0 (September 23, 2008)

2.14. CONDITIONAL RENDERING 63

number of bits used to represent the query result is implementation-dependent. In
the initial state of a query object, the result is available and its value is zero.

The necessary state for each query type is an unsigned integer holding the
active query object name (zero if no query object is active), and any state necessary
to keep the current results of an asynchronous query in progress.

2.14 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES PASSED)
of the query is zero, all rendering commands between BeginConditionalRender
and the corresponding EndConditionalRender are discarded. In this case, Begin,
End, all vertex array commands performing an implicit Begin and End, Draw-
Pixels (see section 3.7.4), Bitmap (see section 3.8), Clear (see section 4.2.3),
Accum (see section 4.2.4), CopyPixels (see section 4.3.3), and EvalMesh1 and
EvalMesh2 (see section 5.1) have no effect. The effect of commands setting cur-
rent vertex state, such as Color or VertexAttrib, are undefined. If the result of the
occlusion query is non-zero, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id. If mode is QUERY WAIT, the GL waits for the results of
the query to be available and then uses the results to determine if subsquent render-
ing commands are discarded. If mode is QUERY NO WAIT, the GL may choose to
unconditionally execute the subsequent rendering commands without waiting for
the query to complete.

If mode is QUERY BY REGION WAIT, the GL will also wait for occlusion query
results and discard rendering commands if the result of the occlusion query is zero.
If the query result is non-zero, subsequent rendering commands are executed, but
the GL may discard the results of the commands for any region of the framebuffer
that did not contribute to the sample count in the specified occlusion query. Any
such discarding is done in an implementation-dependent manner, but the render-
ing command results may not be discarded for any samples that contributed to the
occlusion query sample count. If mode is QUERY BY REGION NO WAIT, the GL op-

Version 3.0 (September 23, 2008)

2.15. TRANSFORM FEEDBACK 64

erates as in QUERY BY REGION WAIT, but may choose to unconditionally execute
the subsequent rendering commands without waiting for the query to complete.

If BeginConditionalRender is called while conditional rendering is in
progress, or if EndConditionalRender is called while conditional rendering
is not in progress, the error INVALID OPERATION is generated. The error
INVALID VALUE is generated if id is not the name of an existing query object
query. The error INVALID OPERATION is generated if id is the name of a query
object with a target other than SAMPLES PASSED, or id is the name of a query
currently in progress.

2.15 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
processed by a vertex shader are written out to one or more buffer objects. The
vertices are fed back after vertex color clamping, but before clipping. The trans-
formed vertices may be optionally discarded after being stored into one or more
buffer objects, or they can be passed on down to the clipping stage for further
processing. The set of attributes captured is determined when a program is linked.

Transform feedback is started and finished by calling

void BeginTransformFeedback(enum primitiveMode);

and

void EndTransformFeedback(void);

respectively. Transform feedback is said to be active after a call to BeginTrans-
formFeedback and inactive after a call to EndTransformFeedback. primitive-
Mode is one of TRIANGLES, LINES, or POINTS, and specifies the output type of
primitives that will be recorded into the buffer objects bound for transform feed-
back (see below). primitiveMode restricts the primitive types that may be rendered
while transform feedback is active, as shown in table 2.9.

Transform feedback commands must be paired; the
error INVALID OPERATION is generated by BeginTransformFeedback if trans-
form feedback is active, and by EndTransformFeedback if transform feedback is
inactive.

Transform feedback mode captures the values of varying variables written by
an active vertex shader. The error INVALID OPERATION is generated by Begin-
TransformFeedback if no vertex shader is active.

Version 3.0 (September 23, 2008)

2.15. TRANSFORM FEEDBACK 65

Transform Feedback Allowed render primitive
primitiveMode (Begin) modes
POINTS POINTS

LINES LINES, LINE LOOP, LINE STRIP

TRIANGLES TRIANGLES, TRIANGLE STRIP, TRIANGLE FAN

QUADS, QUAD STRIP, POLYGON

Table 2.9: Legal combinations of the transform feedback primitive mode, as passed
to BeginTransformFeedback, and the current primitive mode.

When transform feedback is active, all geometric primitives generated must be
compatible with the value of primitiveMode passed to BeginTransformFeedback.
The error INVALID OPERATION is generated by Begin or any operation that im-
plicitly calls Begin (such as DrawElements) if mode is not one of the allowed
modes in table 2.9.

Buffer objects are made to be targets of transform feedback by calling one of
the commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);

void BindBufferBase(enum target, uint index, uint buffer);

with target set to TRANSFORM FEEDBACK BUFFER. There is an array of buffer
object binding points that are used while transform feedback is active, plus a
single general binding point that can be used by other buffer object manipu-
lation functions (e.g., BindBuffer, MapBuffer). Both commands bind the
buffer object named by buffer to the general binding point, and additionally bind
the buffer object to the binding point in the array given by index. The error
INVALID VALUE is generated if index is greater than or equal to the value of
MAX TRANSFORM FEEDBACK SEPARATE ATTRIBS.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be written to the buffer object
while transform feedback mode is active. Both offset and size are in basic machine
units. The error INVALID VALUE is generated if the value of size is less than or
equal to zero, if offset + size is greater than the value of BUFFER SIZE, or
if either offset or size are not a multiple of 4. BindBufferBase is equivalent
to calling BindBufferRange with offset zero and size equal to the size of buffer,
rounded down to the nearest multiple of 4.

Version 3.0 (September 23, 2008)

2.15. TRANSFORM FEEDBACK 66

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active, the values of the specified varying
variables of the vertex are appended to the buffer objects bound to the transform
feedback binding points. The attributes of the first vertex received after Begin-
TransformFeedback are written at the starting offsets of the bound buffer objects
set by BindBufferRange, and subsequent vertex attributes are appended to the
buffer object. When capturing line and triangle primitives, all attributes of the first
vertex are written first, followed by attributes of the subsequent vertices. When
writing varying variables that are arrays, individual array elements are written in
order. For multi-component varying variables or varying array elements, the indi-
vidual components are written in order. The value for any attribute specified to be
streamed to a buffer object but not actually written by a vertex shader is undefined.

When quads and polygons are provided to transform feedback with a primitive
mode of TRIANGLES, they will be tessellated and recorded as triangles (the order of
tessellation within a primitive is undefined). Individual lines or triangles of a strip
or fan primitive will be extracted and recorded separately. Incomplete primitives
are not recorded.

Transform feedback can operate in either INTERLEAVED ATTRIBS or
SEPARATE ATTRIBS mode. In INTERLEAVED ATTRIBS mode, the values of
one or more varyings are written, interleaved, into the buffer object bound
to the first transform feedback binding point (index = 0). If more than
one varying variable is written, they will be recorded in the order specified
by TransformFeedbackVaryings (see section 2.20.3). In SEPARATE ATTRIBS

mode, the first varying variable specified by TransformFeedbackVaryings is
written to the first transform feedback binding point; subsequent varying vari-
ables are written to the subsequent transform feedback binding points. The
total number of variables that may be captured in separate mode is given by
MAX TRANSFORM FEEDBACK SEPARATE ATTRIBS.

If recording the vertices of a primitive to the buffer objects being used for
transform feedback purposes would result in either exceeding the limits of any
buffer object’s size, or in exceeding the end position offset + size − 1, as set
by BindBufferRange, then no vertices of that primitive are recorded in any
buffer object, and the counter corresponding to the asynchronous query target
TRANSFORM FEEDBACK PRIMITIVES WRITTEN (see section 2.16) is not incre-
mented.

In either separate or interleaved modes, all transform feedback binding points
that will be written to must have buffer objects bound when BeginTransform-
Feedback is called. The error INVALID OPERATION is generated by BeginTrans-
formFeedback if any binding point used in transform feedback mode does not
have a buffer object bound. In interleaved mode, only the first buffer object bind-

Version 3.0 (September 23, 2008)

2.16. PRIMITIVE QUERIES 67

ing point is ever written to. The error INVALID OPERATION is also generated
by BeginTransformFeedback if no binding points would be used, either because
no program object is active or because the active program object has specified no
varying variables to record.

While transform feedback is active, the set of attached buffer objects and the set
of varying variables captured may not be changed. If transform feedback is active,
the error INVALID OPERATION is generated by UseProgram, by LinkProgram
if program is the currently active program object, and by BindBufferRange or
BindBufferBase if target is TRANSFORM FEEDBACK BUFFER.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically,

If a buffer object is simultaneously bound to a transform feedback buffer bind-
ing point and elsewhere in the GL, any writes to or reads from the buffer generate
undefined values. Examples of such bindings include DrawPixels and ReadPixels
to a pixel buffer object binding point and client access to a buffer mapped with
MapBuffer.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

2.16 Primitive Queries

Primitive queries use query objects to track the number of primitives generated by
the GL and to track the number of primitives written to transform feedback buffers.

When BeginQuery is called with a target of PRIMITIVES GENERATED, the
primitives-generated count maintained by the GL is set to zero. When the generated
primitive query is active, the primitives-generated count is incremented every time
a primitive reaches the “Discarding Primitives Before Rasterization” stage (see
section 3.1) immediately before rasterization.

When BeginQuery is called with a target of
TRANSFORM FEEDBACK PRIMITIVES WRITTEN, the transform-feedback-
primitives-written count maintained by the GL is set to zero. When the transform
feedback primitive written query is active, the transform-feedback-primitives-
written count is incremented every time a primitive is recorded into a buffer object.
If transform feedback is not active, this counter is not incremented. If the primitive
does not fit in the buffer object, the counter is not incremented.

These two queries can be used together to determine if all primitives have been

Version 3.0 (September 23, 2008)

2.17. CLIPPING 68

written to the bound feedback buffers; if both queries are run simultaneously and
the query results are equal, all primitives have been written to the buffer(s). If the
number of primitives written is less than the number of primitives generated, the
buffer is full.

2.17 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume is
defined by

−wc ≤ xc ≤ wc

−wc ≤ yc ≤ wc

−wc ≤ zc ≤ wc.

This view volume may be further restricted by as many as n client-defined clip
planes to generate the clip volume. (n is an implementation dependent maximum
that must be at least 6.) Each client-defined plane specifies a half-space. The clip
volume is the intersection of all such half-spaces with the view volume (if there no
client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane(enum p, double eqn[4]);

The value of the first argument, p, is a symbolic constant, CLIP PLANEi, where i is
an integer between 0 and n− 1, indicating one of n client-defined clip planes. eqn
is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates: p1, p2, p3, and p4 (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding(

p′1 p′2 p′3 p′4
)

=
(
p1 p2 p3 p4

)
M−1

(where M is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccurate if M is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All points with eye coordinates(
xe ye ze we

)T that satisfy

(
p′1 p′2 p′3 p′4

)
xe

ye

ze
we

 ≥ 0

Version 3.0 (September 23, 2008)

2.17. CLIPPING 69

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

When a vertex shader is active, the vector
(
xe ye ze we

)T is no longer
computed. Instead, the value of the gl ClipVertex built-in variable is used in its
place. If gl ClipVertex is not written by the vertex shader, its value is undefined,
which implies that the results of clipping to any client-defined clip planes are also
undefined. The user must ensure that the clip vertex and client-defined clip planes
are defined in the same coordinate space.

A vertex shader may, instead of writing to gl ClipVertex, write a single clip
distance for each supported clip plane to elements of the gl ClipDistance[]

array. The half-space corresponding to clip plane n is then given by the set of
points satisfying the inequality

cn(P) ≥ 0,

where cn(P) is the value of clip distance n at point P . For point primitives,
cn(P) is simply the clip distance for the vertex in question. For line and triangle
primitives, per-vertex clip distances are interpolated using a weighted mean, with
weights derived according to the algorithms described in sections 3.5 and 3.6.

Client-defined clip planes are enabled with the generic Enable command and
disabled with the Disable command. The value of the argument to either com-
mand is CLIP PLANEi where i is an integer between 0 and n − 1; specifying a
value of i enables or disables the plane equation with index i. The constants obey
CLIP PLANEi = CLIP PLANE0 + i.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded. If the prim-
itive is a line segment, then clipping does nothing to it if it lies entirely within the
clip volume and discards it if it lies entirely outside the volume. If part of the line
segment lies in the volume and part lies outside, then the line segment is clipped
and new vertex coordinates are computed for one or both vertices. A clipped line
segment endpoint lies on both the original line segment and the boundary of the
clip volume.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P1

and P2, then t is given by

P = tP1 + (1− t)P2.

The value of t is used in color, secondary color, texture coordinate, and fog coor-
dinate clipping (section 2.19.8).

Version 3.0 (September 23, 2008)

2.18. CURRENT RASTER POSITION 70

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edge flag TRUE), and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

Primitives rendered with clip planes must satisfy a complementarity crite-
rion. Suppose a single clip plane with coefficients

(
p′1 p′2 p′3 p′4

)
(or a num-

ber of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients(
−p′1 −p′2 −p′3 −p′4

)
(and correspondingly for any other clip planes) and the

primitives are drawn again (and the GL is otherwise in the same state). In this case,
primitives must not be missing any pixels, nor may any pixels be drawn twice in
regions where those primitives are cut by the clip planes.

The state required for clipping is at least 6 sets of plane equations (each consist-
ing of four double-precision floating-point coefficients) and at least 6 correspond-
ing bits indicating which of these client-defined plane equations are enabled. In the
initial state, all client-defined plane equation coefficients are zero and all planes are
disabled.

2.18 Current Raster Position

The current raster position is used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPos{234}{sifd}(T coords);
void RasterPos{234}{sifd}v(T coords);

Version 3.0 (September 23, 2008)

2.18. CURRENT RASTER POSITION 71

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or Raster-
Pos2) is analogous, but sets only x, y, and z with w implicitly set to 1 (or only x
and y with z implicitly set to 0 and w implicitly set to 1).

Gets of CURRENT RASTER TEXTURE COORDS are affected by the setting of the
state ACTIVE TEXTURE.

The coordinates are treated as if they were specified in a Vertex command. If
a vertex shader is active, this vertex shader is executed using the x, y, z, and w
coordinates as the object coordinates of the vertex. Otherwise, the x, y, z, and
w coordinates are transformed by the current model-view and projection matri-
ces. These coordinates, along with current values, are used to generate primary
and secondary colors and texture coordinates just as is done for a vertex. The col-
ors and texture coordinates so produced replace the colors and texture coordinates
stored in the current raster position’s associated data. If a vertex shader is active
then the current raster distance is set to the value of the shader built in varying
gl FogFragCoord. Otherwise, if the value of the fog source (see section 3.11)
is FOG COORD, then the current raster distance is set to the value of the current
fog coordinate. Otherwise, the current raster distance is set to the distance from
the origin of the eye coordinate system to the vertex as transformed by only the
current model-view matrix. This distance may be approximated as discussed in
section 3.11.

Since vertex shaders may be executed when the raster position is set, any at-
tributes not written by the shader will result in undefined state in the current raster
position. Vertex shaders should output all varying variables that would be used
when rasterizing pixel primitives using the current raster position.

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (section 2.12) and saved as the current raster position, and the valid
bit is set. If the “point” is culled, the current raster position and its associated
data become indeterminate and the valid bit is cleared. Figure 2.7 summarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one of the WindowPos
commands:

void WindowPos{23}{ifds}(T coords);
void WindowPos{23}{ifds}v(const T coords);

WindowPos3 takes three values indicating x, y and z, while WindowPos2
takes two values indicating x and y with z implicitly set to 0. The current raster
position, (xw, yw, zw, wc), is defined by:

xw = x

Version 3.0 (September 23, 2008)

2.18. CURRENT RASTER POSITION 72

Rasterpos In

Current
Normal

Lighting

Vertex/Normal
Transformation

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color &

Materials

Texture
Matrix 0Current

Texture
Coord Set 0

Texgen

Texture
Matrix 3Current

Texture
Coord Set 3

Texgen

Texture
Matrix 2Current

Texture
Coord Set 2

Texgen

Texture
Matrix 1Current

Texture
Coord Set 1

Texgen

Figure 2.7. The current raster position and how it is set. Four texture units are
shown; however, multitexturing may support a different number of units depending
on the implementation.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 73

yw = y

zw =


n, z ≤ 0
f, z ≥ 1
n+ z(f − n), otherwise

wc = 1

where n and f are the values passed to DepthRange (see section 2.12.1).
Lighting, texture coordinate generation and transformation, and clipping are

not performed by the WindowPos functions. Instead, in RGBA mode, the current
raster color and secondary color are obtained from the current color and secondary
color, respectively. If vertex color clamping is enabled, the current raster color and
secondary color are clamped to [0, 1]. In color index mode, the current raster color
index is set to the current color index. The current raster texture coordinates are set
to the current texture coordinates, and the valid bit is set.

If the value of the fog source is FOG COORD SRC, then the current raster dis-
tance is set to the value of the current fog coordinate. Otherwise, the raster distance
is set to 0.

The current raster position requires six single-precision floating-point values
for its xw, yw, and zw window coordinates, itswc clip coordinate, its raster distance
(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates are all (0, 0, 0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA color is (1, 1, 1, 1), the associated RGBA secondary color is (0, 0, 0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.

2.19 Colors and Coloring

Figures 2.8 and 2.9 diagram the processing of RGBA colors and color indices be-
fore rasterization. Incoming colors arrive in one of several formats. Table 2.10
summarizes the conversions that take place on R, G, B, and A components depend-
ing on which version of the Color command was invoked to specify the compo-
nents. As a result of limited precision, some converted values will not be repre-
sented exactly. In color index mode, a single-valued color index is not mapped.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 74

[0,2k−1]

float

Convert to
[0.0,1.0]

[−2k,2k−1] Convert to
[−1.0,1.0]

Current
RGBA
Color Lighting

Clamp to
[0.0, 1.0]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate both pri-
mary and secondary vertex colors, which are processed in the same fashion. See
table 2.10 for the interpretation of k.

Convert to
float

[0,2n−1]

float

Current
Color
Index Lighting

Mask to

[0.0, 2n−1]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.9. Processing of color indices. n is the number of bits in a color index.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 75

GL Type of c Conversion to floating-point
ubyte c

28−1

byte 2c+1
28−1

ushort c
216−1

short 2c+1
216−1

uint c
232−1

int 2c+1
232−1

half c

float c

double c

Table 2.10: Component conversions. Color, normal, and depth component values
(c) of different types are converted to an internal floating-point representation using
the equations in this table. All arithmetic is done in the internal floating point
format. These conversions apply to components specified as parameters to GL
commands and to components in pixel data. The equations remain the same even if
the implemented ranges of the GL data types are greater than the minimum required
ranges. (Refer to table 2.2)

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color
(primary color) and current secondary color are used in further processing. Af-
ter lighting, RGBA colors may be clamped to the range [0, 1] as described in
section 2.19.6. A color index is converted to fixed-point and then its integer por-
tion is masked (see section 2.19.6). After clamping or masking, a primitive may
be flatshaded, indicating that all vertices of the primitive are to have the same col-
ors. Finally, if a primitive is clipped, then colors (and texture coordinates) must be
computed at the vertices introduced or modified by clipping.

2.19.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in section 2.19.5.)

Lighting is turned on or off using the generic Enable or Disable commands

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 76

with the symbolic value LIGHTING. If lighting is off, the current color and current
secondary color are assigned to the vertex primary and secondary color, respec-
tively. If lighting is on, colors computed from the current lighting parameters are
assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(x, y, z, and w) that specify a position in object coordinates (w may be zero,
indicating a point at infinity in the direction given by x, y, and z). A direction
parameter consists of three floating-point coordinates (x, y, and z) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in table 2.11. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There are n light sources, indexed by i = 0, . . . , n−1. (n is an implementation
dependent maximum that must be at least 8.) Note that the default values for dcli

and scli differ for i = 0 and i > 0.
Before specifying the way that lighting computes colors, we introduce oper-

ators and notation that simplify the expressions involved. If c1 and c2 are col-
ors without alpha where c1 = (r1, g1, b1) and c2 = (r2, g2, b2), then define
c1 ∗ c2 = (r1r2, g1g2, b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. If d1 and d2 are directions, then define

d1 � d2 = max{d1 · d2, 0}.

(Directions are taken to have three coordinates.) If P1 and P2 are (homogeneous,
with four coordinates) points then let

−−−→
P1P2 be the unit vector that points from P1

to P2. Note that if P2 has a zero w coordinate and P1 has non-zero w coordinate,
then

−−−→
P1P2 is the unit vector corresponding to the direction specified by the x, y,

and z coordinates of P2; if P1 has a zero w coordinate and P2 has a non-zero w
coordinate then

−−−→
P1P2 is the unit vector that is the negative of that corresponding

to the direction specified by P1. If both P1 and P2 have zero w coordinates, then−−−→
P1P2 is the unit vector obtained by normalizing the direction corresponding to
P2 −P1.

If d is an arbitrary direction, then let d̂ be the unit vector in d’s direction. Let
‖P1P2‖ be the distance between P1 and P2. Finally, let V be the point corre-

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 77

Parameter Type Default Value Description
Material Parameters

acm color (0.2, 0.2, 0.2, 1.0) ambient color of material
dcm color (0.8, 0.8, 0.8, 1.0) diffuse color of material
scm color (0.0, 0.0, 0.0, 1.0) specular color of material
ecm color (0.0, 0.0, 0.0, 1.0) emissive color of material
srm real 0.0 specular exponent (range:

[0.0, 128.0])
am real 0.0 ambient color index
dm real 1.0 diffuse color index
sm real 1.0 specular color index

Light Source Parameters
acli color (0.0, 0.0, 0.0, 1.0) ambient intensity of light i

dcli(i = 0) color (1.0, 1.0, 1.0, 1.0) diffuse intensity of light 0
dcli(i > 0) color (0.0, 0.0, 0.0, 1.0) diffuse intensity of light i
scli(i = 0) color (1.0, 1.0, 1.0, 1.0) specular intensity of light 0
scli(i > 0) color (0.0, 0.0, 0.0, 1.0) specular intensity of light i

Ppli position (0.0, 0.0, 1.0, 0.0) position of light i
sdli direction (0.0, 0.0,−1.0) direction of spotlight for light i
srli real 0.0 spotlight exponent for light i

(range: [0.0, 128.0])
crli real 180.0 spotlight cutoff angle for light i

(range: [0.0, 90.0], 180.0)
k0i real 1.0 constant attenuation factor for

light i (range: [0.0,∞))
k1i real 0.0 linear attenuation factor for

light i (range: [0.0,∞))
k2i real 0.0 quadratic attenuation factor for

light i (range: [0.0,∞))
Lighting Model Parameters

acs color (0.2, 0.2, 0.2, 1.0) ambient color of scene
vbs boolean FALSE viewer assumed to be at

(0, 0, 0) in eye coordinates
(TRUE) or (0, 0,∞) (FALSE)

ces enum SINGLE COLOR controls computation of colors
tbs boolean FALSE use two-sided lighting mode

Table 2.11: Summary of lighting parameters. The range of individual color com-
ponents is (−∞,+∞).

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 78

sponding to the vertex being lit, and n be the corresponding normal. Let Pe be the
eyepoint ((0, 0, 0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color cpri and a secondary
color csec. The values of cpri and csec depend on the light model color control, ces.
If ces = SINGLE COLOR, then the equations to compute cpri and csec are

cpri = ecm

+ acm ∗ acs

+
n−1∑
i=0

(atti)(spoti) [acm ∗ acli

+ (n�
−−→
VPpli)dcm ∗ dcli

+ (fi)(n� ĥi)srmscm ∗ scli]
csec = (0, 0, 0, 1)

If ces = SEPARATE SPECULAR COLOR, then

cpri = ecm

+ acm ∗ acs

+
n−1∑
i=0

(atti)(spoti) [acm ∗ acli

+ (n�
−−→
VPpli)dcm ∗ dcli]

csec =
n−1∑
i=0

(atti)(spoti)(fi)(n� ĥi)srmscm ∗ scli

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 79

where

fi =

{
1, n�

−−→
VPpli 6= 0,

0, otherwise,
(2.2)

hi =

{ −−→
VPpli +

−−→
VPe, vbs = TRUE,

−−→
VPpli +

(
0 0 1

)T
, vbs = FALSE,

(2.3)

atti =


1

k0i + k1i‖VPpli‖ + k2i‖VPpli‖2
, if Ppli’s w 6= 0,

1.0, otherwise.
(2.4)

spoti =


(
−−−→
PpliV � ŝdli)srli , crli 6= 180.0,

−−−→
PpliV � ŝdli ≥ cos(crli),

0.0, crli 6= 180.0,
−−−→
PpliV � ŝdli < cos(crli),

1.0, crli = 180.0.
(2.5)

All computations are carried out in eye coordinates.
The value of A produced by lighting is the alpha value associated with dcm.

A is always associated with the primary color cpri; the alpha component of csec is
always 1.

Results of lighting are undefined if the we coordinate (w in eye coordinates) of
V is zero.

Lighting may operate in two-sided mode (tbs = TRUE), in which a front color
is computed with one set of material parameters (the front material) and a back
color is computed with a second set of material parameters (the back material).
This second computation replaces n with −n. If tbs = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

Additionally, vertex shaders can operate in two-sided color mode. When a ver-
tex shader is active, front and back colors can be computed by the vertex shader and
written to the gl FrontColor, gl BackColor, gl FrontSecondaryColor

and gl BackSecondaryColor outputs. If VERTEX PROGRAM TWO SIDE is en-
abled, the GL chooses between front and back colors, as described below. Oth-
erwise, the front color output is always selected. Two-sided color mode is

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 80

enabled and disabled by calling Enable or Disable with the symbolic value
VERTEX PROGRAM TWO SIDE.

The selection between back and front colors depends on the primitive of which
the vertex being lit is a part. If the primitive is a point or a line segment, the front
color is always selected. If it is a polygon, then the selection is based on the sign of
the (clipped or unclipped) polygon’s signed area computed in window coordinates.
One way to compute this area is

a =
1
2

n−1∑
i=0

xi
wy

i⊕1
w − xi⊕1

w yi
w (2.6)

where xi
w and yi

w are the x and y window coordinates of the ith vertex of the
n-vertex polygon (vertices are numbered starting at zero for purposes of this com-
putation) and i⊕ 1 is (i+ 1) mod n. The interpretation of the sign of this value is
controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the projected
polygon in window coordinates) indicates that if a ≤ 0, then the color of each
vertex of the polygon becomes the back color computed for that vertex while if
a > 0, then the front color is selected. If dir is CW, then a is replaced by −a in the
above inequalities. This requires one bit of state; initially, it indicates CCW.

2.19.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see table 2.11). Sets of lighting
parameters are specified with

void Material{if}(enum face, enum pname, T param);
void Material{if}v(enum face, enum pname, T params);
void Light{if}(enum light, enum pname, T param);
void Light{if}v(enum light, enum pname, T params);
void LightModel{if}(enum pname, T param);
void LightModel{if}v(enum pname, T params);

pname is a symbolic constant indicating which parameter is to be set (see ta-
ble 2.12). In the vector versions of the commands, params is a pointer to a group
of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector versions, param is a value to

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 81

which to set a single-valued parameter. (If param corresponds to a multi-valued pa-
rameter, the error INVALID ENUM results.) For the Material command, face must
be one of FRONT, BACK, or FRONT AND BACK, indicating that the property name of
the front or back material, or both, respectively, should be set. In the case of Light,
light is a symbolic constant of the form LIGHTi, indicating that light i is to have
the specified parameter set. The constants obey LIGHTi = LIGHT0 + i.

Table 2.12 gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color parame-
ters specified with Material and Light are converted to floating-point values (if
specified as integers) as indicated in table 2.10 for signed integers. The error
INVALID VALUE occurs if a specified lighting parameter lies outside the allowable
range given in table 2.11. (The symbol “∞” indicates the maximum representable
magnitude for the indicated type.)

Material properties can be changed inside a Begin/End pair by calling Ma-
terial. However, when a vertex shader is active such property changes are not
guaranteed to update material parameters, defined in table 2.12, until the following
End command.

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That is, if Mu is the upper left 3x3
matrix taken from the current model-view matrix M , then the spotlight directiondx

dy

dz


is transformed to d′xd′y

d′z

 = Mu

dx

dy

dz

 .

An individual light is enabled or disabled by calling Enable or Disable with the
symbolic value LIGHTi (i is in the range 0 to n−1, where n is the implementation-
dependent number of lights). If light i is disabled, the ith term in the lighting
equation is effectively removed from the summation.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 82

Parameter Name Number of values
Material Parameters (Material)

acm AMBIENT 4
dcm DIFFUSE 4

acm,dcm AMBIENT AND DIFFUSE 4
scm SPECULAR 4
ecm EMISSION 4
srm SHININESS 1

am, dm, sm COLOR INDEXES 3
Light Source Parameters (Light)

acli AMBIENT 4
dcli DIFFUSE 4
scli SPECULAR 4
Ppli POSITION 4
sdli SPOT DIRECTION 3
srli SPOT EXPONENT 1
crli SPOT CUTOFF 1
k0 CONSTANT ATTENUATION 1
k1 LINEAR ATTENUATION 1
k2 QUADRATIC ATTENUATION 1

Lighting Model Parameters (LightModel)
acs LIGHT MODEL AMBIENT 4
vbs LIGHT MODEL LOCAL VIEWER 1
tbs LIGHT MODEL TWO SIDE 1
ces LIGHT MODEL COLOR CONTROL 1

Table 2.12: Correspondence of lighting parameter symbols to names.
AMBIENT AND DIFFUSE is used to set acm and dcm to the same value.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 83

Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure 2.10. ColorMaterial operation. Material properties are continuously up-
dated from the current color while ColorMaterial is enabled and has the appro-
priate mode. Only the front material properties are included in this figure. The
back material properties are treated identically, except that face must be BACK or
FRONT AND BACK.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 84

2.19.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so
that they continuously track its component values. This behavior is enabled and
disabled by calling Enable or Disable with the symbolic value COLOR MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT AND BACK, indicating whether the front
material, back material, or both are affected by the current color. mode is one
of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT AND DIFFUSE and
specifies which material property or properties track the current color. If mode is
EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of ecm, acm, dcm or
scm, respectively, will track the current color. If mode is AMBIENT AND DIFFUSE,
both acm and dcm track the current color. The replacements made to material prop-
erties are permanent; the replaced values remain until changed by either sending a
new color or by setting a new material value when ColorMaterial is not currently
enabled to override that particular value. When COLOR MATERIAL is enabled, the
indicated parameter or parameters always track the current color. For instance,
calling

ColorMaterial(FRONT, AMBIENT)

while COLOR MATERIAL is enabled sets the front material acm to the value of the
current color.

Material properties can be changed inside a Begin/End pair indirectly by en-
abling ColorMaterial mode and making Color calls. However, when a vertex
shader is active such property changes are not guaranteed to update material pa-
rameters, defined in table 2.12, until the following End command.

2.19.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets of
light parameters), a bit indicating whether a back color distinct from the front
color should be computed, at least 8 bits to indicate which lights are enabled,
a five-valued variable indicating the current ColorMaterial mode, a bit indicat-
ing whether or not COLOR MATERIAL is enabled, and a single bit to indicate
whether lighting is enabled or disabled. In the initial state, all lighting parame-
ters have their default values. Back color evaluation does not take place, Color-
Material is FRONT AND BACK and AMBIENT AND DIFFUSE, and both lighting and
COLOR MATERIAL are disabled.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 85

2.19.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of light i (dcli and scli,
respectively) determine color index diffuse and specular light intensities, dli and
sli from

dli = (.30)R(dcli) + (.59)G(dcli) + (.11)B(dcli)

and
sli = (.30)R(scli) + (.59)G(scli) + (.11)B(scli).

R(x) indicates the R component of the color x and similarly for G(x) and B(x).
Next, let

s =
n∑

i=0

(atti)(spoti)(sli)(fi)(n� ĥi)srm

where atti and spoti are given by equations 2.4 and 2.5, respectively, and fi and
ĥi are given by equations 2.2 and 2.3, respectively. Let s′ = min{s, 1}. Finally,
let

d =
n∑

i=0

(atti)(spoti)(dli)(n�
−−→
VPpli).

Then color index lighting produces a value c, given by

c = am + d(1− s′)(dm − am) + s′(sm − am).

The final color index is
c′ = min{c, sm}.

The values am, dm and sm are material properties described in tables 2.11 and 2.12.
Any ambient light intensities are incorporated into am. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation of tbs and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The values am, dm, and sm are set with Material using a pname of
COLOR INDEXES. Their initial values are 0, 1, and 1, respectively. The additional
state consists of three floating-point values. These values have no effect on RGBA
lighting.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 86

2.19.6 Clamping or Masking

When the GL is in RGBA mode and vertex color clamping is enabled, all compo-
nents of both primary and secondary colors are clamped to the range [0, 1] after
lighting. If color clamping is disabled, the primary and secondary colors are un-
modified. Vertex color clamping is controlled by calling

void ClampColor(enum target, enum clamp);

with target set to CLAMP VERTEX COLOR. If clamp is TRUE, vertex color clamp-
ing is enabled; if clamp is FALSE, vertex color clamping is disabled. If clamp is
FIXED ONLY, vertex color clamping is enabled if all enabled color buffers have
fixed-point components.

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) with 2n − 1, where n is the number of
bits in a color in the color index buffer (buffers are discussed in chapter 4).

The state required for color clamping is a three-valued integer, initially set to
TRUE.

2.19.7 Flatshading

A primitive may be flatshaded, meaning that all vertices of the primitive are as-
signed the same color index or the same primary and secondary colors. These
colors are the colors of the vertex that spawned the primitive. For a point, these
are the colors associated with the point. For a line segment, they are the colors of
the second (final) vertex of the segment. For a polygon, they come from a selected
vertex depending on how the polygon was generated. Table 2.13 summarizes the
possibilities.

Flatshading is controlled by

void ShadeModel(enum mode);

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode is
SMOOTH (the initial state), vertex colors are treated individually. If mode is FLAT,
flatshading is turned on. ShadeModel thus requires one bit of state.

If a vertex shader is active, the flat shading control applies to the built-in vary-
ing variables gl FrontColor, gl BackColor, gl FrontSecondaryColor

and gl BackSecondaryColor. Non-color varying variables can be specified
as being flat-shaded via the flat qualifier, as described in section 4.3.6 of the
OpenGL Shading Language Specification.

Version 3.0 (September 23, 2008)

2.19. COLORS AND COLORING 87

Primitive type of polygon i Vertex
single polygon (i ≡ 1) 1
triangle strip i+ 2
triangle fan i+ 2
independent triangle 3i
quad strip 2i+ 2
independent quad 4i

Table 2.13: Polygon flatshading color selection. The colors used for flatshading
the ith polygon generated by the indicated Begin/End type are derived from the
current color (if lighting is disabled) in effect when the indicated vertex is specified.
If lighting is enabled, the colors are produced by lighting the indicated vertex.
Vertices are numbered 1 through n, where n is the number of vertices between the
Begin/End pair.

2.19.8 Color and Associated Data Clipping

After lighting, clamping or masking and possible flatshading, colors are clipped.
Those colors associated with a vertex that lies within the clip volume are unaffected
by clipping. If a primitive is clipped, however, the colors assigned to vertices
produced by clipping are clipped colors.

Let the colors assigned to the two vertices P1 and P2 of an unclipped edge be
c1 and c2. The value of t (section 2.17) for a clipped point P is used to obtain the
color associated with P as

c = tc1 + (1− t)c2.

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B, and
A by the scalar. Both primary and secondary colors are treated in the same fashion.)
Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture and fog coordinates, vertex shader varying variables (section 2.20.3),
and point sizes computed on a per vertex basis must also be clipped when a primi-
tive is clipped. The method is exactly analogous to that used for color clipping.

For vertex shader varying variables specified to be interpolated without per-

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 88

spective correction (using the noperspective qualifier), the value of t used to
obtain the varying value associated with P will be adjusted to produce results that
vary linearly in screen space.

2.19.9 Final Color Processing

In RGBA mode with vertex color clamping disabled, the floating- point RGBA
components are not modified.

In RGBA mode with vertex color clamping enabled, each color component (al-
ready clamped to [0, 1]) may be converted (by rounding to nearest) to a fixed-point
value with m bits. We assume that the fixed-point representation used represents
each value k/(2m−1), where k ∈ {0, 1, . . . , 2m−1}, as k (e.g. 1.0 is represented
in binary as a string of all ones). m must be at least as large as the number of bits
in the corresponding component of the framebuffer. m must be at least 2 for A if
the framebuffer does not contain an A component, or if there is only 1 bit of A in
the framebuffer. GL implementations are not required to convert clamped color
components to fixed-point.

Because a number of the form k/(2m − 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and one of Colorub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: if m is less than the number of bits b with which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most significant b bits of the converted
value must equal the specified value.

A color index is converted (by rounding to nearest) to a fixed-point value with
at least as many bits as there are in the color index portion of the framebuffer.

2.20 Vertex Shaders

The sequence of operations described in sections 2.12 through 2.19 is a fixed-
function method for processing vertex data. Applications can more generally de-
scribe the operations that occur on vertex values and their associated data by using
a vertex shader.

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 89

To use a vertex shader, shader source code is first loaded into a shader ob-
ject and then compiled. One or more vertex shader objects are then attached to
a program object. A program object is then linked, which generates executable
code from all the compiled shader objects attached to the program. When a linked
program object is used as the current program object, the executable code for the
vertex shaders it contains is used to process vertices.

In addition to vertex shaders, fragment shaders can be created, compiled, and
linked into program objects. Fragment shaders affect the processing of fragments
during rasterization, and are described in section 3.12. A single program object
can contain both vertex and fragment shaders.

When the program object currently in use includes a vertex shader, its vertex
shader is considered active and is used to process vertices. If the program object
has no vertex shader, or no program object is currently in use, the fixed-function
method for processing vertices is used instead.

2.20.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero re-
served for the GL. This name space is shared with program objects. The following
sections define commands that operate on shader and program objects by name.
Commands that accept shader or program object names will generate the error
INVALID VALUE if the provided name is not the name of either a shader or pro-
gram object and INVALID OPERATION if the provided name identifies an object
that is not the expected type.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The type argument specifies the type
of shader object to be created. For vertex shaders, type must be VERTEX SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource(uint shader, sizei count, const
char **string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 90

code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.15). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfoLog to obtain more information about the compilation attempt (see
section 6.1.15).

Shader objects can be deleted with the command

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE STATUS is set to true. The value of DELETE STATUS can be
queried with GetShaderiv (see section 6.1.15). DeleteShader will silently ignore
the value zero.

2.20.2 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 91

these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, 0 will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

The error INVALID OPERATION is generated if shader is already attached to pro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

The error INVALID OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.15). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise. Linking can fail for a variety
of reasons as specified in the OpenGL Shading Language Specification. Linking
will also fail if one or more of the shader objects, attached to program are not
compiled successfully, or if more active uniform or active sampler variables are
used in program than allowed (see section 2.20.3). If LinkProgram failed, any
information about a previous link of that program object is lost. Thus, a failed link
does not restore the old state of program.

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 92

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 6.1.15).

If a valid executable is created, it can be made part of the current rendering
state with the command

void UseProgram(uint program);

This command will install the executable code as part of current rendering state if
the program object program contains valid executable code, i.e. has been linked
successfully. If UseProgram is called with program set to 0, it is as if the GL
had no programmable stages and the fixed-function paths will be used instead.
If program has not been successfully linked, the error INVALID OPERATION is
generated and the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If the program object that is in use is re-linked successfully, the LinkProgram
command will install the generated executable code as part of the current rendering
state if the specified program object was already in use as a result of a previous call
to UseProgram.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set to FALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call to UseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

Program objects can be deleted with the command

void DeleteProgram(uint program);

If program is not the current program for any GL context, it is deleted immediately.
Otherwise, program is flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached. DeleteProgram will silently ignore the value
zero.

2.20.3 Shader Variables

A vertex shader can reference a number of variables as it executes. Vertex attributes
are the per-vertex values specified in section 2.7. Uniforms are per-program vari-

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 93

ables that are constant during program execution. Samplers are a special form of
uniform used for texturing (section 3.9). Varying variables hold the results of ver-
tex shader execution that are used later in the pipeline. The following sections
describe each of these variable types.

Vertex Attributes

Vertex shaders can access built-in vertex attribute variables corresponding to the
per-vertex state set by commands such as Vertex, Normal, Color. Vertex shaders
can also define named attribute variables, which are bound to the generic vertex
attributes that are set by VertexAttrib*. This binding can be specified by the ap-
plication before the program is linked, or automatically assigned by the GL when
the program is linked.

When an attribute variable declared as a float, vec2, vec3 or vec4 is bound
to a generic attribute index i, its value(s) are taken from the x, (x, y), (x, y, z), or
(x, y, z, w) components, respectively, of the generic attribute i. When an attribute
variable is declared as a mat2, mat3x2 or mat4x2, its matrix columns are taken
from the (x, y) components of generic attributes i and i+1 (mat2), from attributes
i through i + 2 (mat3x2), or from attributes i through i + 3 (mat4x2). When an
attribute variable is declared as a mat2x3, mat3 or mat4x3, its matrix columns
are taken from the (x, y, z) components of generic attributes i and i+ 1 (mat2x3),
from attributes i through i+2 (mat3), or from attributes i through i+3 (mat4x3).
When an attribute variable is declared as a mat2x4, mat3x4 or mat4, its matrix
columns are taken from the (x, y, z, w) components of generic attributes i and i+1
(mat2x4), from attributes i through i + 2 (mat3x4), or from attributes i through
i+ 3 (mat4).

An attribute variable (either conventional or generic) is considered active if it is
determined by the compiler and linker that the attribute may be accessed when the
shader is executed. Attribute variables that are declared in a vertex shader but never
used will not count against the limit. In cases where the compiler and linker cannot
make a conclusive determination, an attribute will be considered active. A program
object will fail to link if the sum of the active generic and active conventional
attributes exceeds MAX VERTEX ATTRIBS.

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 94

This command provides information about the attribute selected by index. An in-
dex of 0 selects the first active attribute, and an index of ACTIVE ATTRIBUTES− 1
selects the last active attribute. The value of ACTIVE ATTRIBUTES can be queried
with GetProgramiv (see section 6.1.15). If index is greater than or equal to
ACTIVE ATTRIBUTES, the error INVALID VALUE is generated. Note that index
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. It is not necessary for program to
have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,
is specified by bufSize. The returned attribute name can be the name of a generic
attribute or a conventional attribute (which begin with the prefix "gl ", see the
OpenGL Shading Language specification for a complete list). The length of the
longest attribute name in program is given by ACTIVE ATTRIBUTE MAX LENGTH,
which can be queried with GetProgramiv (see section 6.1.15).

For the selected attribute, the type of the attribute is returned into
type. The size of the attribute is returned into size. The value in
size is in units of the type returned in type. The type returned can
be any of FLOAT, FLOAT VEC2, FLOAT VEC3, FLOAT VEC4, FLOAT MAT2,
FLOAT MAT3, FLOAT MAT4, FLOAT MAT2x3, FLOAT MAT2x4, FLOAT MAT3x2,
FLOAT MAT3x4, FLOAT MAT4x2, FLOAT MAT4x3, INT, INT VEC2, INT VEC3,
INT VEC4, UNSIGNED INT, UNSIGNED INT VEC2, UNSIGNED INT VEC3, or
UNSIGNED INT VEC4.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available, length will be set to zero and name will be an
empty string. This situation could arise if GetActiveAttrib is issued after a failed
link.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 95

to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation
returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID OPERATION is generated. If name is not an
active attribute, if name is a conventional attribute, or if an error occurs, -1 will be
returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null terminated string. The error INVALID VALUE is generated if index is equal or
greater than MAX VERTEX ATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

Built-in attribute variables are automatically bound to conventional attributes,
and can not have an assigned binding. The error INVALID OPERATION is gener-
ated if name starts with the reserved "gl " prefix.

When a program is linked, any active attributes without a binding specified
through BindAttribLocation will be automatically be bound to vertex attributes
by the GL. Such bindings can be queried using the command GetAttribLocation.
LinkProgram will fail if the assigned binding of an active attribute variable would
cause the GL to reference a non-existant generic attribute (one greater than or equal
to MAX VERTEX ATTRIBS). LinkProgram will fail if the attribute bindings as-
signed by BindAttribLocation do not leave not enough space to assign a location
for an active matrix attribute, which requires multiple contiguous generic attributes.
LinkProgram will also fail if the vertex shaders used in the program object contain
assignments (not removed during pre-processing) to an attribute variable bound to
generic attribute zero and to the conventional vertex position (gl Vertex).

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name (except a name
starting with "gl ") to an index, including a name that is never used as an attribute
in any vertex shader object. Assigned bindings for attribute variables that do not
exist or are not active are ignored.

The values of generic attributes sent to generic attribute index i are part of
current state, just like the conventional attributes. If a new program object has

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 96

been made active, then these values will be tracked by the GL in such a way that
the same values will be observed by attributes in the new program object that are
also bound to index i.

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing. It is not possible to alias generic attributes with conventional ones.

Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. Uniforms are program
object-specific state. They retain their values once loaded, and their values are
restored whenever a program object is used, as long as the program object has not
been re-linked. A uniform is considered active if it is determined by the compiler
and linker that the uniform will actually be accessed when the executable code
is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

The amount of storage available for uniform variables accessed by
a vertex shader is specified by the implementation dependent constant
MAX VERTEX UNIFORM COMPONENTS. This value represents the number of indi-
vidual floating-point, integer, or boolean values that can be held in uniform vari-
able storage for a vertex shader. A uniform matrix will consume no more than
4 ×min(r, c) such values, where r and c are the number of rows and columns in
the matrix. A link error will be generated if an attempt is made to utilize more than
the space available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object are initialized as defined by the version of the OpenGL Shading
Language used to compile the program. A successful link will also generate a
location for each active uniform. The values of active uniforms can be changed
using this location and the appropriate Uniform* command (see below). These
locations are invalidated and new ones assigned after each successful re-link.

To find the location of an active uniform variable within a program object, use
the command

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 97

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name. name must be a
null terminated string, without white space. The value -1 will be returned if name
does not correspond to an active uniform variable name in program or if name starts
with the reserved prefix "gl ". If program has not been successfully linked, the
error INVALID OPERATION is generated. After a program is linked, the location
of a uniform variable will not change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a valid name, the "." (dot) and
"[]" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with "[0]". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with "[0]".

To determine the set of active uniform attributes used by a program, and to
determine their sizes and types, use the command:

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

This command provides information about the uniform selected by index. An in-
dex of 0 selects the first active uniform, and an index of ACTIVE UNIFORMS − 1
selects the last active uniform. The value of ACTIVE UNIFORMS can be queried
with GetProgramiv (see section 6.1.15). If index is greater than or equal to
ACTIVE UNIFORMS, the error INVALID VALUE is generated. Note that index sim-
ply identifies a member in a list of active uniforms, and has no relation to the
location assigned to the corresponding uniform variable.

The parameter program is a name of a program object for which the command
LinkProgram has been issued in the past. It is not necessary for program to have
been linked successfully. The link could have failed because the number of active
uniforms exceeded the limit.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

For the selected uniform, the uniform name is returned into name. The string
name will be null terminated. The actual number of characters written into name,

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 98

excluding the null terminator, is returned in length. If length is NULL, no length is
returned. The maximum number of characters that may be written into name, in-
cluding the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-
in uniform state is described in section 7.5 of the OpenGL Shading Language
specification. The length of the longest uniform name in program is given by
ACTIVE UNIFORM MAX LENGTH, which can be queried with GetProgramiv (see
section 6.1.15).

Each uniform variable, declared in a shader, is broken down into one or more
strings using the "." (dot) and "[]" operators, if necessary, to the point that it
is legal to pass each string back into GetUniformLocation. Each of these strings
constitutes one active uniform, and each string is assigned an index.

For the selected uniform, the type of the uniform is returned into type.
The size of the uniform is returned into size. The value in size is in units
of the type returned in type. The type returned can be any of FLOAT,
FLOAT VEC2, FLOAT VEC3, FLOAT VEC4, INT, INT VEC2, INT VEC3,
INT VEC4, BOOL, BOOL VEC2, BOOL VEC3, BOOL VEC4, FLOAT MAT2,
FLOAT MAT3, FLOAT MAT4, FLOAT MAT2x3, FLOAT MAT2x4, FLOAT MAT3x2,
FLOAT MAT3x4, FLOAT MAT4x2, FLOAT MAT4x3, SAMPLER 1D, SAMPLER 2D,
SAMPLER 3D, SAMPLER CUBE, SAMPLER 1D SHADOW, SAMPLER 2D SHADOW,
SAMPLER 1D ARRAY, SAMPLER 2D ARRAY, SAMPLER 1D ARRAY SHADOW,
SAMPLER 2D ARRAY SHADOW, SAMPLER CUBE SHADOW, INT SAMPLER 1D,
INT SAMPLER 2D, INT SAMPLER 3D, INT SAMPLER CUBE,
INT SAMPLER 1D ARRAY, INT SAMPLER 2D ARRAY, UNSIGNED INT,
UNSIGNED INT VEC2, UNSIGNED INT VEC3, UNSIGNED INT VEC4,
UNSIGNED INT SAMPLER 1D, UNSIGNED INT SAMPLER 2D,
UNSIGNED INT SAMPLER 3D, UNSIGNED INT SAMPLER CUBE,
UNSIGNED INT SAMPLER 1D ARRAY, or UNSIGNED INT SAMPLER 2D ARRAY.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in type. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available, length will be set to zero and name will be
an empty string. This situation could arise if GetActiveUniform is issued after a
failed link.

To load values into the uniform variables of the program object that is currently
in use, use the commands

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 99

void Uniform{1234}{if}(int location, T value);
void Uniform{1234}{if}v(int location, sizei count,

T value);
void Uniform{1,2,3,4}ui(int location, T value);
void Uniform{1,2,3,4}uiv(int location, sizei count,

T value);
void UniformMatrix{234}fv(int location, sizei count,

boolean transpose, const float *value);
void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv(

int location, sizei count, boolean transpose, const
float *value);

The given values are loaded into the uniform variable location identified by loca-
tion.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an unsigned
integer vector, an array of unsigned integers or an array of unsigned integer vectors.

The UniformMatrix{234}fv commands will load count 2× 2, 3× 3, or 4× 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv commands will load count
2×3, 3×2, 2×4, 4×2, 3×4, or 4×3 matrices (corresponding to the numbers in the
command name) of floating-point values into a uniform location defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv
is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, the Uniform*i{v}, Uni-
form*ui{v}, and Uniform*f{v} set of commands can be used to load boolean

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 100

values. Type conversion is done by the GL. The uniform is set to FALSE if the
input value is 0 or 0.0f, and set to TRUE otherwise. The Uniform* command used
must match the size of the uniform, as declared in the shader. For example, to
load a uniform declared as a bvec2, any of the Uniform2{if ui}* commands may
be used. An INVALID OPERATION error will be generated if an attempt is made
to use a non-matching Uniform* command. In this example using Uniform1iv
would generate an error.

For all other uniform types the Uniform* command used must match the size
and type of the uniform, as declared in the shader. No type conversions are done.
For example, to load a uniform declared as a vec4, Uniform4f{v} must be used.
To load a 3x3 matrix, UniformMatrix3fv must be used. An INVALID OPERATION

error will be generated if an attempt is made to use a non-matching Uniform*
command. In this example, using Uniform4i{v} would generate an error.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through k + N − 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, an INVALID OPERATION error is gen-
erated by the Uniform* commands, and no uniform values are changed:

• if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

• if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

• if count is greater than one, and the uniform declared in the shader is not an
array variable,

• if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

• if there is no program object currently in use.

Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to i selects texture

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 101

image unit number i. The values of i range from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE 2D on
its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform* entry points is not allowed and
will result in an INVALID OPERATION error.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it de-
termines that the count of active samplers exceeds the allowable limits, then the
link fails (these limits can be different for different types of shaders). Each active
sampler variable counts against the limit, even if multiple samplers refer to the
same texture image unit. If this cannot be determined at link time, for example if
the program object only contains a vertex shader, then it will be determined at the
next rendering command issued, and an INVALID OPERATION error will then be
generated.

Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL Shad-
ing Language specification). These values are expected to be interpolated across
the primitive being rendered. The OpenGL Shading Language specification defines
a set of built-in varying variables for vertex shaders that correspond to the values
required for the fixed-function processing that occurs after vertex processing.

The number of interpolators available for processing varying vari-
ables is given by the value of the implementation-dependent constant
MAX VARYING COMPONENTS. This value represents the number of individual
floating-point values that can be interpolated; varying variables declared as vec-
tors, matrices, and arrays will all consume multiple interpolators. When a program

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 102

is linked, all components of any varying variable written by a vertex shader, read
by a fragment shader, or used for transform feedback will count against this limit.
The transformed vertex position (gl Position) is not a varying variable and does
not count against this limit. A program whose shaders access more than the value
of MAX VARYING COMPONENTS components worth of varying variables may fail to
link, unless device-dependent optimizations are able to make the program fit within
available hardware resources.

Each program object can specify a set of one or more varying variables to be
recorded in transform feedback mode with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char **varyings, enum bufferMode);

program specifies the program object. count specifies the number of vary-
ing variables used for transform feedback. varyings is an array of count zero-
terminated strings specifying the names of the varying variables to use for
transform feedback. The varying variables specified in varyings can be ei-
ther built-in varying variables (beginning with "gl ") or user-defined ones.
varying variables are written out in the order they appear in the array vary-
ings. bufferMode is either INTERLEAVED ATTRIBS or SEPARATE ATTRIBS,
and identifies the mode used to capture the varying variables when transform
feedback is active. The error INVALID VALUE is generated if program is
not the name of a program object, or if bufferMode is SEPARATE ATTRIBS

and count is greater than the value of the implementation-dependent limit
MAX TRANSFORM FEEDBACK SEPARATE ATTRIBS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram is
called, the program is linked so that the values of the specified varying variables
for the vertices of each primitive generated by the GL are written to a single buffer
object (if the buffer mode is INTERLEAVED ATTRIBS) or multiple buffer objects
(if the buffer mode is SEPARATE ATTRIBS). A program will fail to link if:

• the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex shader;

• any variable name specified in the varyings array is not declared as an output
in the vertex shader.

• any two entries in the varyings array specify the same varying variable;

• the total number of components
to capture in any varying variable in varyings is greater than the constant

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 103

MAX TRANSFORM FEEDBACK SEPARATE COMPONENTS and the buffer mode
is SEPARATE ATTRIBS; or

• the total number of components to capture is greater than the constant
MAX TRANSFORM FEEDBACK INTERLEAVED COMPONENTS and the buffer
mode is INTERLEAVED ATTRIBS.

To determine the set of varying variables in a linked program object that will
be captured in transform feedback mode, the command:

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

provides information about the varying variable selected by index. An index of
0 selects the first varying variable specified in the varyings array of Transform-
FeedbackVaryings, and an index of TRANSFORM FEEDBACK VARYINGS-1 selects
the last such varying variable. The value of TRANSFORM FEEDBACK VARYINGS

can be queried with GetProgramiv (see section 6.1.15). If index is greater than or
equal to TRANSFORM FEEDBACK VARYINGS, the error INVALID VALUE is gener-
ated. The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. If a new set of varying variables is
specified by TransformFeedbackVaryings after a program object has been linked,
the information returned by GetTransformFeedbackVarying will not reflect those
variables until the program is re-linked.

The name of the selected varying is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null
terminator, is returned in length. If length is NULL, no length is returned. The
maximum number of characters that may be written into name, including the null
terminator, is specified by bufSize. The returned varying name can be the name
of a user defined varying variable or the name of a built- in varying (which be-
gin with the prefix gl , see the OpenGL Shading Language specification for a
complete list). The length of the longest varying name in program is given by
TRANSFORM FEEDBACK VARYING MAX LENGTH, which can be queried with Get-
Programiv (see section 6.1.15).

For the selected varying variable, its type is returned into type. The size of the
varying is returned into size. The value in size is in units of the type returned in type.
The type returned can be any of FLOAT, FLOAT VEC2, FLOAT VEC3, FLOAT VEC4,
INT, INT VEC2, INT VEC3, INT VEC4, UNSIGNED INT, UNSIGNED INT VEC2,
UNSIGNED INT VEC3, UNSIGNED INT VEC4, FLOAT MAT2, FLOAT MAT3, or
FLOAT MAT4. If an error occurred, the return parameters length, size, type and

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 104

name will be unmodified. This command will return as much information about
the varying variables as possible. If no information is available, length will be set
to zero and name will be an empty string. This situation could arise if GetTrans-
formFeedbackVarying is called after a failed link.

2.20.4 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values rather than the fixed-function vertex processing
described in sections 2.12 through 2.19. In particular,

• The model-view and projection matrices are not applied to vertex coordi-
nates (section 2.12).

• The texture matrices are not applied to texture coordinates (section 2.12.2).

• Normals are not transformed to eye coordinates, and are not rescaled or nor-
malized (section 2.12.3).

• Normalization of AUTO NORMAL evaluated normals is not performed. (sec-
tion 5.1).

• Texture coordinates are not generated automatically (section 2.12.4).

• Per vertex lighting is not performed (section 2.19.1).

• Color material computations are not performed (section 2.19.3).

• Color index lighting is not performed (section 2.19.5).

• All of the above applies when setting the current raster position (sec-
tion 2.18).

The following operations are applied to vertex values that are the result of
executing the vertex shader:

• Color clamping or masking (section 2.19.6).

• Perspective division on clip coordinates (section 2.12).

• Viewport mapping, including depth range scaling (section 2.12.1).

• Clipping, including client-defined clip planes (section 2.17).

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 105

• Front face determination (section 2.19.1).

• Flat-shading (section 2.19.7).

• Color, texture coordinate, fog, point-size and generic attribute clipping (sec-
tion 2.19.8).

• Final color processing (section 2.19.9.

There are several special considerations for vertex shader execution described
in the following sections.

Shader Only Texturing

This section describes texture functionality that is only accessible through vertex or
fragment shaders. Also refer to section 3.9 and to the OpenGL Shading Language
Specification, section 8.7.

Additional OpenGL Shading Language texture lookup functions (see section
8.7 of the OpenGL Shading Language Specification) return either signed or un-
signed integer values if the internal format of the texture is signed or unsigned,
respectively.

Texel Fetches
The OpenGL Shading Language texel fetch functions provide the ability to

extract a single texel from a specified texture image. The integer coordinates passed
to the texel fetch functions are used directly as the texel coordinates (i, j, k) into the
texture image. This in turn means the texture image is point-sampled (no filtering
is performed).

The level of detail accessed is computed by adding the specified level-of-detail
parameter lod to the base level of the texture, levelbase.

The texel fetch functions can not perform depth comparisons or access cube
maps. Unlike filtered texel accesses, texel fetches do not support LOD clamping or
any texture wrap mode, and require a mipmapped minification filter to access any
level of detail other than the base level.

The results of the texel fetch are undefined if any of the following conditions
hold:

• the computed LOD is less than the texture’s base level (levelbase) or greater
than the maximum level (levelmax)

• the computed LOD is not the texture’s base level and the texture’s minifica-
tion filter is NEAREST or LINEAR

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 106

• the layer specified for array textures is negative or greater than the number
of layers in the array texture,

• the texel coordinates (i, j, k) refer to a border texel outside the defined ex-
tents of the specified LOD, where any of

i < −bs i ≥ ws − bs
j < −bs j ≥ hs − bs
k < −bs k ≥ ds − bs

and the size parameters ws, hs, ds, and bs refer to the width, height, depth,
and border size of the image, as in equations 3.15

• the texture being accessed is not complete (or cube complete for cubemaps).

Texture Size Query
The OpenGL Shading Language texture size functions provide the ability to

query the size of a texture image. The LOD value lod passed in as an argument
to the texture size functions is added to the levelbase of the texture to determine
a texture image level. The dimensions of that image level, excluding a possible
border, are then returned. If the computed texture image level is outside the range
[levelbase, levelmax], the results are undefined. When querying the size of an array
texture, both the dimensions and the layer index are returned.

Texture Access

Vertex shaders have the ability to do a lookup into a texture map, if sup-
ported by the GL implementation. The maximum number of texture image units
available to a vertex shader is MAX VERTEX TEXTURE IMAGE UNITS; a maxi-
mum number of zero indicates that the GL implemenation does not support
texture accesses in vertex shaders. The maximum number of texture image
units available to the fragment stage of the GL is MAX TEXTURE IMAGE UNITS.
Both the vertex shader and fragment processing combined cannot use more
than MAX COMBINED TEXTURE IMAGE UNITS texture image units. If both
the vertex shader and the fragment processing stage access the same texture
image unit, then that counts as using two texture image units against the
MAX COMBINED TEXTURE IMAGE UNITS limit.

When a texture lookup is performed in a vertex shader, the filtered texture value
τ is computed in the manner described in sections 3.9.7 and 3.9.8, and converted
it to a texture source color Cs according to table 3.23 (section 3.9.13). A four-
component vector (Rs, Gs, Bs, As) is returned to the vertex shader.

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 107

In a vertex shader, it is not possible to perform automatic level-of-detail calcu-
lations using partial derivatives of the texture coordinates with respect to window
coordinates as described in section 3.9.7. Hence, there is no automatic selection of
an image array level. Minification or magnification of a texture map is controlled
by a level-of-detail value optionally passed as an argument in the texture lookup
functions. If the texture lookup function supplies an explicit level-of-detail value l,
then the pre-bias level-of-detail value λbase(x, y) = l (replacing equation 3.16). If
the texture lookup function does not supply an explicit level-of-detail value, then
λbase(x, y) = 0. The scale factor ρ(x, y) and its approximation function f(x, y)
(see equation 3.20) are ignored.

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with a refer-
ence depth value specified in the coordinates passed to the texture lookup func-
tion, as described in section 3.9.14. The comparison operation is requested in the
shader by using any of the shadow sampler types and in the texture using the
TEXTURE COMPARE MODE parameter. These requests must be consistent; the re-
sults of a texture lookup are undefined if:

• The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH COMPONENT or
DEPTH STENCIL, and the TEXTURE COMPARE MODE is not NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH COMPONENT or
DEPTH STENCIL, and the TEXTURE COMPARE MODE is NONE.

• The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH COMPONENT or
DEPTH STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH STENCIL.

If a vertex shader uses a sampler where the associated texture object is not com-
plete, as defined in section 3.9.10, the texture image unit will return (R,G,B,A)
= (0, 0, 0, 1).

Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders can
access the read-only built-in variable gl VertexID. gl VertexID holds the inte-
ger index i explicitly passed to ArrayElement to specify the vertex, or implicitly

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 108

passed by the DrawArrays, MultiDrawArrays, DrawElements, MultiDrawEle-
ments, and DrawRangeElements commands. The value of gl VertexID is de-
fined if and only if:

• the vertex comes from a vertex array command that specifies a com-
plete primitive (DrawArrays, MultiDrawArrays, DrawElements, Mul-
tiDrawElements, or DrawRangeElements)

• all enabled vertex arrays have non-zero buffer object bindings, and

• the vertex does not come from a display list, even if the display list was
compiled using one of the vertex array commands described above with data
sourced from buffer objects.

Also see section 7.1 of the OpenGL Shading Language Specification.

Shader Outputs

A vertex shader can write to built-in as well as user-defined varying variables.
These values are expected to be interpolated across the primitive it outputs, un-
less they are specified to be flat shaded. Refer to section 2.19.7 and the OpenGL
Shading Language specification sections 4.3.6, 7.1 and 7.6 for more detail.

The built-in output variables gl FrontColor, gl BackColor,
gl FrontSecondaryColor, and gl BackSecondaryColor hold the front and
back colors for the primary and secondary colors for the current vertex.

The built-in output variable gl TexCoord[] is an array and holds the set of
texture coordinates for the current vertex.

The built-in output variable gl FogFragCoord is used as the c value described
in section 3.11.

The built-in special variable gl Position is intended to hold the homoge-
neous vertex position. Writing gl Position is optional.

The built-in special variables gl ClipVertex and gl ClipDistance re-
spectively hold the vertex coordinate and clip distance(s) used in the clip-
ping stage, as described in section 2.17. If clipping is enabled, only one of
gl ClipVertex and gl ClipDistance should be written.

The built in special variable gl PointSize, if written, holds the size of the
point to be rasterized, measured in pixels.

Position Invariance

If a vertex shader uses the built-in function ftransform to generate a vertex posi-
tion, then this generally guarantees that the transformed position will be the same

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 109

whether using this vertex shader or the fixed-function pipeline. This allows for cor-
rect multi-pass rendering algorithms, where some passes use fixed-function vertex
transformation and other passes use a vertex shader. If a vertex shader does not use
ftransform to generate a position, transformed positions are not guaranteed to
match, even if the sequence of instructions used to compute the position match the
sequence of transformations described in section 2.12.

Validation

It is not always possible to determine at link time if a program object actually
will execute. Therefore validation is done when the first rendering command is
issued, to determine if the currently active program object can be executed. If
it cannot be executed then no fragments will be rendered, and Begin, Raster-
Pos, or any command that performs an implicit Begin will generate the error
INVALID OPERATION.

This error is generated by Begin, RasterPos, or any command that performs
an implicit Begin if:

• any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

• any active sampler in the current program object refers to a texture image
unit where fixed-function fragment processing accesses a texture target that
does not match the sampler type, or

• the sum of the number of active samplers in the program and the number of
texture image units enabled for fixed-function fragment processing exceeds
the combined limit on the total number of texture image units allowed.

Fixed-function fragment processing operations will be performed if the pro-
gram object in use has no fragment shader.

The INVALID OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE STATUS, that is modified as a result of

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 110

validation. This status can be queried with GetProgramiv (see section 6.1.15).
If validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log of program is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds reads will return undefined values; out-of-bounds
writes will have undefined results and could corrupt other variables used by shader
or the GL. The level of protection provided against such errors in the shader is
implementation-dependent.

2.20.5 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.

The state required per shader object consists of:

• An unsigned integer specifying the shader object name.

• An integer holding the value of SHADER TYPE.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last compile, initially FALSE.

• An array of type char containing the information log, initially empty.

Version 3.0 (September 23, 2008)

2.20. VERTEX SHADERS 111

• An integer holding the length of the information log.

• An array of type char containing the concatenated shader string, initially
empty.

• An integer holding the length of the concatenated shader string.

The state required per program object consists of:

• An unsigned integer indicating the program object object name.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last link attempt, initially FALSE.

• A boolean holding the status of the last validation attempt, initally FALSE.

• An integer holding the number of attached shader objects.

• A list of unsigned integers to keep track of the names of the shader objects
attached.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An integer holding the number of active uniforms.

• For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

• An array of words that hold the values of each active uniform.

• An integer holding the number of active attributes.

• For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

Additional state required to support vertex shaders consists of:

• A bit indicating whether or not vertex program two-sided color mode is en-
abled, initially disabled.

• A bit indicating whether or not vertex program point size mode (sec-
tion 3.4.1) is enabled, initially disabled.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

Version 3.0 (September 23, 2008)

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive. The
second is assigning a depth value and one or more color values to each such square.
The results of this process are passed on to the next stage of the GL (per-fragment
operations), which uses the information to update the appropriate locations in the
framebuffer. Figure 3.1 diagrams the rasterization process. The color values as-
signed to a fragment are initially determined by the rasterization operations (sec-
tions 3.4 through 3.8) and modified by either the execution of the texturing, color
sum, and fog operations defined in sections 3.9, 3.10, and 3.11, or by a fragment
shader as defined in section 3.12. The final depth value is initially determined by
the rasterization operations and may be modified or replaced by a fragment shader.
The results from rasterizing a point, line, polygon, pixel rectangle or bitmap can be
routed through a fragment shader.

A grid square along with its parameters of assigned colors, z (depth), fog coor-
dinate, and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment’s associated data. A fragment is located by its lower left cor-
ner, which lies on integer grid coordinates. Rasterization operations also refer to a
fragment’s center, which is offset by (1/2, 1/2) from its lower left corner (and so
lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

112

113

Point
Rasterization

Polygon
Rasterization

Line
Rasterization

Bitmap
Rasterization

Pixel
Rectangle

Rasterization

Fog

Color Sum

Texturing
Fragment
Program

From
Primitive
Assembly

DrawPixels

Bitmap
Fragments

FRAGMENT_PROGRAM enable

Figure 3.1. Rasterization.

Version 3.0 (September 23, 2008)

3.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 114

Several factors affect rasterization. Primitives may be discarded before ras-
terization. Lines and polygons may be stippled. Points may be given differing
diameters and line segments differing widths. A point, line segment, or polygon
may be antialiased.

3.1 Discarding Primitives Before Rasterization

Primitives can be optionally discarded before rasterization by calling Enable and
Disable with RASTERIZER DISCARD. When enabled, primitives are discarded im-
mediately before the rasterization stage, but after the optional transform feedback
stage (see section 2.15). When disabled, primitives are passed through to the ras-
terization stage to be processed normally. RASTERIZER DISCARD also affects the
DrawPixels, CopyPixels, Bitmap, Clear and Accum commands.

3.2 Invariance

Consider a primitive p′ obtained by translating a primitive p through an offset (x, y)
in window coordinates, where x and y are integers. As long as neither p′ nor p is
clipped, it must be the case that each fragment f ′ produced from p′ is identical to
a corresponding fragment f from p except that the center of f ′ is offset by (x, y)
from the center of f .

3.3 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significant b bits (to the left of the binary point)
of the color index are used for antialiasing; b = min{4,m}, wherem is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
these b bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take

Version 3.0 (September 23, 2008)

3.3. ANTIALIASING 115

into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called a fragment square and has lower left corner
(x, y) and upper right corner (x+1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f1 and f2 are two fragments, and the portion of f1 covered by some prim-
itive is a subset of the corresponding portion of f2 covered by the primitive,
then the coverage computed for f1 must be less than or equal to that com-
puted for f2.

2. The coverage computation for a fragment f must be local: it may depend
only on f ’s relationship to the boundary of the primitive being rasterized. It
may not depend on f ’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 5.7), allowing a user to make an image quality
versus speed tradeoff.

3.3.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, poly-
gons, bitmaps, and images. The technique is to sample all primitives multiple times

Version 3.0 (September 23, 2008)

3.3. ANTIALIASING 116

at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.
Color buffers (left, right, front, back, and aux) do coexist with the multisample
buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only points or
lines are being rendered, the “smooth” antialiasing mechanism provided by the
base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLE BUFFERS is one, the rasterization of all primi-
tives is changed, and is referred to as multisample rasterization. Otherwise,
primitive rasterization is referred to as single-sample rasterization. The value
of SAMPLE BUFFERS is queried by calling GetIntegerv with pname set to
SAMPLE BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

Second, each fragment includes SAMPLES depth values, color values, and sets
of texture coordinates, instead of the single depth value, color value, and set of
texture coordinates that is maintained in single-sample rendering mode. An imple-
mentation may choose to assign the same color value and the same set of texture
coordinates to more than one sample. The location for evaluating the color value
and the set of texture coordinates can be anywhere within the pixel including the
fragment center or any of the sample locations. The color value and the set of tex-
ture coordinates need not be evaluated at the same location. Each pixel fragment
thus consists of integer x and y grid coordinates, SAMPLES color and depth values,
SAMPLES sets of texture coordinates, and a coverage value with a maximum of
SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable

Version 3.0 (September 23, 2008)

3.4. POINTS 117

with the symbolic constant MULTISAMPLE.
If MULTISAMPLE is disabled, multisample rasterization of all primitives is

equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has SAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.4 Points

If a vertex shader is not active, then the rasterization of points is controlled with

void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the error INVALID VALUE.

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

derived size = clamp

(
size×

√(
1

a+ b ∗ d+ c ∗ d2

))
where d is the eye-coordinate distance from the eye, (0, 0, 0, 1) in eye coordinates,
to the vertex, and a, b, and c are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

Version 3.0 (September 23, 2008)

3.4. POINTS 118

If a vertex shader is active and vertex program point size mode is enabled,
then the derived point size is taken from the (potentially clipped) shader built-in
gl PointSize and clamped to the implementation-dependent point size range. If
the value written to gl PointSize is less than or equal to zero, results are unde-
fined. If a vertex shader is active and vertex program point size mode is disabled,
then the derived point size is taken from the point size state as specified by the
PointSize command. In this case no distance attenuation is performed. Vertex pro-
gram point size mode is enabled and disabled by calling Enable or Disable with
the symbolic value VERTEX PROGRAM POINT SIZE.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 3.14) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

width =
{
derived size derived size ≥ threshold
threshold otherwise

(3.1)

and the fade factor is computed as follows:

fade =

{
1 derived size ≥ threshold(

derived size
threshold

)2
otherwise

(3.2)

The distance attenuation function coefficients a, b, and c, the bounds of the first
point size range clamp, and the point fade threshold, are specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enum pname, const T params);

If pname is POINT SIZE MIN or POINT SIZE MAX, then param speci-
fies, or params points to the lower or upper bound respectively to which
the derived point size is clamped. If the lower bound is greater than
the upper bound, the point size after clamping is undefined. If pname is
POINT DISTANCE ATTENUATION, then params points to the coefficients a, b,
and c. If pname is POINT FADE THRESHOLD SIZE, then param specifies,
or params points to the point fade threshold. Values of POINT SIZE MIN,
POINT SIZE MAX, or POINT FADE THRESHOLD SIZE less than zero result in the
error INVALID VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable with the
symbolic constant POINT SMOOTH. The default state is for point antialiasing to be
disabled.

Point sprites are enabled or disabled by calling Enable or Disable with the
symbolic constant POINT SPRITE. The default state is for point sprites to be dis-

Version 3.0 (September 23, 2008)

3.4. POINTS 119

abled. When point sprites are enabled, the state of the point antialiasing enable is
ignored.

The point sprite texture coordinate replacement mode is set with one of the Tex-
Env* commands described in section 3.9.13, where target is POINT SPRITE and
pname is COORD REPLACE. The possible values for param are FALSE and TRUE.
The default value for each texture coordinate set is for point sprite texture coordi-
nate replacement to be disabled.

The point sprite texture coordinate origin is set with the PointParame-
ter* commands where pname is POINT SPRITE COORD ORIGIN and param is
LOWER LEFT or UPPER LEFT. The default value is UPPER LEFT.

3.4.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating its xw and yw coordinates
(recall that the subscripts indicate that these are x and y window coordinates) to
integers. This (x, y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other than 1.0 depends on the state of point antialias-
ing and point sprites. If antialiasing and point sprites are disabled, the actual width
is determined by rounding the supplied width to the nearest integer, then clamp-
ing it to the implementation-dependent maximum non-antialiased point width.
This implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer value,
and in any event no less than 1. If rounding the specified width results in the value
0, then it is as if the value were 1. If the resulting width is odd, then the point

(x, y) = (bxwc+
1
2
, bywc+

1
2

)

is computed from the vertex’s xw and yw, and a square grid of the odd width cen-
tered at (x, y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the
center point is

(x, y) = (bxw +
1
2
c, byw +

1
2
c);

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (x, y). See figure 3.2.

Version 3.0 (September 23, 2008)

3.4. POINTS 120

� � �
� � �

� � �
� � �

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

Version 3.0 (September 23, 2008)

3.4. POINTS 121

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

1.00.0 3.02.0 5.04.0 6.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indicates the
point to be rasterized. The shaded region has the specified width. The X marks
indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-
sponding fragment square. Solid lines lie on integer coordinates.

Version 3.0 (September 23, 2008)

3.4. POINTS 122

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point.

If antialiasing is enabled and point sprites are disabled, then point rasterization
produces a fragment for each fragment square that intersects the region lying within
the circle having diameter equal to the current point width and centered at the
point’s (xw, yw) (figure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corresponding
fragment square (but see section 3.3). This value is saved and used in the final
step of rasterization (section 3.13). The data associated with each fragment are
otherwise the data associated with the point being rasterized.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation dependent. The range and
gradations may be obtained using the query mechanism described in chapter 6. If,
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths 0.1, 0.2, . . . , 1.9, 2.0 are supported.

If point sprites are enabled, then point rasterization produces a fragment for
each framebuffer pixel whose center lies inside a square centered at the point’s
(xw, yw), with side length equal to the current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. How-
ever, for each texture coordinate set where COORD REPLACE is TRUE, these
texture coordinates are replaced with point sprite texture coordinates. The s
coordinate varies from 0 to 1 across the point horizontally left-to-right. If
POINT SPRITE COORD ORIGIN is LOWER LEFT, the t coordinate varies from 0
to 1 vertically bottom-to-top. Otherwise if the point sprite texture coordinate ori-
gin is UPPER LEFT, the t coordinate varies from 0 to 1 vertically top-to-bottom.
The r and q coordinates are replaced with the constants 0 and 1, respectively.

The following formula is used to evaluate the s and t coordinates:

s =
1
2

+

(
xf + 1

2 − xw

)
size

(3.3)

t =

 1
2 + (yf+ 1

2
−yw)

size , POINT SPRITE COORD ORIGIN = LOWER LEFT

1
2 −

(yf+ 1
2
−yw)

size , POINT SPRITE COORD ORIGIN = UPPER LEFT

(3.4)
where size is the point’s size, xf and yf are the (integral) window coordinates of
the fragment, and xw and yw are the exact, unrounded window coordinates of the

Version 3.0 (September 23, 2008)

3.5. LINE SEGMENTS 123

vertex for the point.
The widths supported for point sprites must be a superset of those supported

for antialiased points. There is no requirement that these widths must be equally
spaced. If an unsupported width is requested, the nearest supported width is used
instead.

3.4.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, three floating-point values specifying the minimum and maximum point size
and the point fade threshold size, three floating-point values specifying the distance
attenuation coefficients, a bit indicating whether or not antialiasing is enabled, a bit
for the point sprite texture coordinate replacement mode for each texture coordinate
set, and a bit for the point sprite texture coordinate origin.

3.4.3 Point Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE BUFFERS is one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT SMOOTH) is enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s (xw, yw). This region is a circle having diameter
equal to the current point width if POINT SPRITE is disabled, or a square with
side equal to the current point width if POINT SPRITE is enabled. Coverage bits
that correspond to sample points that intersect the region are 1, other coverage bits
are 0. All data associated with each sample for the fragment are the data associ-
ated with the point being rasterized, with the exception of texture coordinates when
POINT SPRITE is enabled; these texture coordinates are computed as described in
section 3.4.

Point size range and number of gradations are equivalent to those supported
for antialiased points when POINT SPRITE is disabled. The set of point sizes
supported is equivalent to those for point sprites without multisample when
POINT SPRITE is enabled.

3.5 Line Segments

A line segment results from a line strip Begin/End object, a line loop, or a se-
ries of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

Version 3.0 (September 23, 2008)

3.5. LINE SEGMENTS 124

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0. Values less than or equal to 0.0 generate
the error INVALID VALUE. Antialiasing is controlled with Enable and Disable
using the symbolic constant LINE SMOOTH. Finally, line segments may be stippled.
Stippling is controlled by a GL command that sets a stipple pattern (see below).

3.5.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [−1, 1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for x-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates xf and yf , define a diamond-shaped region that is the intersection
of four half planes:

Rf = { (x, y) | |x− xf |+ |y − yf | < 1/2.}

Essentially, a line segment starting at pa and ending at pb produces those frag-
ments f for which the segment intersects Rf , except if pb is contained in Rf . See
figure 3.4.

To avoid difficulties when an endpoint lies on a boundary of Rf we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let pa and pb have window
coordinates (xa, ya) and (xb, yb), respectively. Obtain the perturbed endpoints p′a
given by (xa, ya) − (ε, ε2) and p′b given by (xb, yb) − (ε, ε2). Rasterizing the line
segment starting at pa and ending at pb produces those fragments f for which the
segment starting at p′a and ending on p′b intersects Rf , except if p′b is contained in
Rf . ε is chosen to be so small that rasterizing the line segment produces the same
fragments when δ is substituted for ε for any 0 < δ ≤ ε.

When pa and pb lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pb)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

Version 3.0 (September 23, 2008)

3.5. LINE SEGMENTS 125

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either x or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For an x-major line, no two fragments may be produced that lie in the same
window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

Version 3.0 (September 23, 2008)

3.5. LINE SEGMENTS 126

by pr = (xd, yd) and let pa = (xa, ya) and pb = (xb, yb). Set

t =
(pr − pa) · (pb − pa)

‖pb − pa‖2
. (3.5)

(Note that t = 0 at pa and t = 1 at pb.) The value of an associated datum f for
the fragment, whether it be primary or secondary R, G, B, or A (in RGBA mode)
or a color index (in color index mode), the fog coordinate, an s, t, r, or q texture
coordinate, or the clip w coordinate, is found as

f =
(1− t)fa/wa + tfb/wb

(1− t)/wa + t/wb
(3.6)

where fa and fb are the data associated with the starting and ending endpoints of
the segment, respectively; wa and wb are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines
must be interpolated by

z = (1− t)za + tzb (3.7)

where za and zb are the depth values of the starting and ending endpoints of the
segment, respectively.

3.5.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple of FFFF16. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command

void LineStipple(int factor, ushort pattern);

defines a line stipple. pattern is an unsigned short integer. The line stipple is taken
from the lowest order 16 bits of pattern. It determines those fragments that are
to be drawn when the line is rasterized. factor is a count that is used to modify
the effective line stipple by causing each bit in line stipple to be used factor times.
factor is clamped to the range [1, 256]. Line stippling may be enabled or disabled
using Enable or Disable with the constant LINE STIPPLE. When disabled, it is as
if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved

Version 3.0 (September 23, 2008)

3.5. LINE SEGMENTS 127

using three parameters: the 16-bit line stipple p, the line repeat count r, and an
integer stipple counter s. Let

b = bs/rc mod 16,

Then a fragment is produced if the bth bit of p is 1, and not produced otherwise.
The bits of p are numbered with 0 being the least significant and 15 being the
most significant. The initial value of s is zero; s is incremented after production
of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending point). s is reset to 0 whenever
a Begin occurs, and before every line segment in a group of independent segments
(as specified when Begin is invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no less than 1. If rounding
the specified width results in the value 0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for an x-major line, the minor direction is
y, and for a y-major line, the minor direction is x) and replicating fragments in
the minor direction (see figure 3.5). Let w be the width rounded to the nearest
integer (if w = 0, then it is as if w = 1). If the line segment has endpoints
given by (x0, y0) and (x1, y1) in window coordinates, the segment with endpoints
(x0, y0− (w− 1)/2) and (x1, y1− (w− 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height w (a row of fragments of length w for
a y-major segment) is produced at each x (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the column’s x location is zero; otherwise, the whole
column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to

Version 3.0 (September 23, 2008)

3.5. LINE SEGMENTS 128

width = 2 width = 3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see figure 3.6;
see also section 3.3). Equation 3.6 is used to compute associated data values just as
with non-antialiased lines; equation 3.5 is used to find the value of t for each frag-
ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width 1.0 antialiased segments
must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence of
contiguous rectangles centered on the line segment. Each rectangle has width equal
to the current line width and length equal to 1 pixel (except the last, which may be
shorter). These rectangles are numbered from 0 to n, starting with the rectangle
incident on the starting endpoint of the segment. Each of these rectangles is ei-
ther eliminated or produced according to the procedure given under Line Stipple,
above, where “fragment” is replaced with “rectangle.” Each rectangle so produced

Version 3.0 (September 23, 2008)

3.5. LINE SEGMENTS 129

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings of PolygonMode, and polygon stippling are not applied).

3.5.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
16-bit line stipple, the line stipple repeat count, a bit indicating whether stippling
is enabled or disabled, and a bit indicating whether line antialiasing is on or off.
In addition, during rasterization, an integer stipple counter must be maintained to
implement line stippling. The initial value of the line width is 1.0. The initial value
of the line stipple is FFFF16 (a stipple of all ones). The initial value of the line
stipple repeat count is one. The initial state of line stippling is disabled. The initial
state of line segment antialiasing is disabled.

3.5.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in the Antialiasing portion of section 3.5.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided

Version 3.0 (September 23, 2008)

3.6. POLYGONS 130

into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in section 3.5.2, where “fragment” is replaced by “rectangle”.

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equation 3.5,
then using the result to evaluate equation 3.7. An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equation 3.5 at any location within the pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.6. The color value and the set of texture coordinates need not be evaluated
at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.6 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting from a
triangle strip, triangle fan, or series of separate triangles, or a quadrilateral arising
from a quadrilateral strip, series of separate quadrilaterals, or a Rect command.
Like points and line segments, polygon rasterization is controlled by several vari-
ables. Polygon antialiasing is controlled with Enable and Disable with the sym-
bolic constant POLYGON SMOOTH. The analog to line segment stippling for poly-
gons is polygon stippling, described below.

3.6.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back facing
or front facing. This determination is made by examining the sign of the area com-
puted by equation 2.6 of section 2.19.1 (including the possible reversal of this sign
as indicated by the last call to FrontFace). If this sign is positive, the polygon is
frontfacing; otherwise, it is back facing. This determination is used in conjunction
with the CullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. The CullFace mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT AND BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant
CULL FACE. Front facing polygons are rasterized if either culling is disabled or

Version 3.0 (September 23, 2008)

3.6. POLYGONS 131

the CullFace mode is BACK while back facing polygons are rasterized only if ei-
ther culling is disabled or the CullFace mode is FRONT. The initial setting of the
CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and c, each in the range [0, 1], with a + b + c = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

p = apa + bpb + cpc,

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found as

a =
A(ppbpc)
A(papbpc)

, b =
A(ppapc)
A(papbpc)

, c =
A(ppapb)
A(papbpc)

,

where A(lmn) denotes the area in window coordinates of the triangle with vertices
l, m, and n.

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

f =
afa/wa + bfb/wb + cfc/wc

a/wa + b/wb + c/wc
(3.8)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and c must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

z = aza + bzb + czc,

where za, zb, and zc are the depth values of pa, pb, and pc, respectively.

Version 3.0 (September 23, 2008)

3.6. POLYGONS 132

For a polygon with more than three edges, we require only that a convex com-
bination of the values of the datum at the polygon’s vertices can be used to obtain
the value assigned to each fragment produced by the rasterization algorithm. That
is, it must be the case that at every fragment

f =
n∑

i=1

aifi

where n is the number of vertices in the polygon, fi is the value of the f at vertex
i; for each i 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1. The values of the ai may differ from

fragment to fragment, but at vertex i, aj = 0, j 6= i and ai = 1.
One algorithm that achieves the required behavior is to triangulate a polygon

(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.8 should be iterated independently and a division performed for each frag-
ment).

3.6.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipple(ubyte *pattern);

pattern is a pointer to memory into which a 32× 32 pattern is packed. The pattern
is unpacked from memory according to the procedure given in section 3.7.4 for
DrawPixels; it is as if the height and width passed to that command were both equal
to 32, the type were BITMAP, and the format were COLOR INDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

If xw and yw are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern (xw mod 32, yw mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable using
the constant POLYGON STIPPLE. When disabled, it is as if the stipple pattern were
all ones.

Version 3.0 (September 23, 2008)

3.6. POLYGONS 133

3.6.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section 3.13. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in section 3.6.1, however,
is not enforced for antialiased polygons.

3.6.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode(enum face, enum mode);

face is one of FRONT, BACK, or FRONT AND BACK, indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing poly-
gons, back facing polygons, or both front and back facing polygons, respectively.
mode is one of the symbolic constants POINT, LINE, or FILL. Calling Polygon-
Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed within a Begin(POINT) and End pair.
The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see section 2.6.2). LINE causes edges
that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but
not for subsequent edges.) FILL is the default mode of polygon rasterization, cor-
responding to the description in sections 3.6.1, 3.6.2, and 3.6.3. Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Polygon antialiasing applies only to the FILL state of PolygonMode. For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-
ply.

Version 3.0 (September 23, 2008)

3.6. POLYGONS 134

3.6.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an im-
plementation dependent constant that relates to the usable resolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m =

√(
∂zw
∂xw

)2

+
(
∂zw
∂yw

)2

(3.9)

where (xw, yw, zw) is a point on the triangle. m may be approximated as

m = max
{∣∣∣∣ ∂zw∂xw

∣∣∣∣ , ∣∣∣∣∂zw∂yw

∣∣∣∣} . (3.10)

If the polygon has more than three vertices, one or more values of m may be used
during rasterization. Each may take any value in the range [min,max], wheremin
and max are the smallest and largest values obtained by evaluating equation 3.9 or
equation 3.10 for the triangles formed by all three-vertex combinations.

The minimum resolvable difference r is an implementation-dependent param-
eter that depends on the depth buffer representation. It is the smallest difference in
window coordinate z values that is guaranteed to remain distinct throughout poly-
gon rasterization and in the depth buffer. All pairs of fragments generated by the
rasterization of two polygons with otherwise identical vertices, but zw values that
differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range
of the entire depth buffer. For floating-point depth buffers, there is no single min-
imum resolvable difference. In this case, the minimum resolvable difference for a
given polygon is dependent on the maximum exponent, e, in the range of z values
spanned by the primitive. If n is the number of bits in the floating-point mantissa,
the minimum resolvable difference, r, for the given primitive is defined as

r = 2e−n.

Version 3.0 (September 23, 2008)

3.6. POLYGONS 135

The offset value o for a polygon is

o = m× factor + r × units. (3.11)

m is computed as described above. If the depth buffer uses a fixed-point represen-
tation, m is a function of depth values in the range [0, 1], and o is applied to depth
values in the same range.

Boolean state values POLYGON OFFSET POINT, POLYGON OFFSET LINE, and
POLYGON OFFSET FILL determine whether o is applied during the rasterization
of polygons in POINT, LINE, and FILL modes. These boolean state values are
enabled and disabled as argument values to the commands Enable and Disable. If
POLYGON OFFSET POINT is enabled, o is added to the depth value of each frag-
ment produced by the rasterization of a polygon in POINT mode. Likewise, if
POLYGON OFFSET LINE or POLYGON OFFSET FILL is enabled, o is added to the
depth value of each fragment produced by the rasterization of a polygon in LINE

or FILL modes, respectively.
For fixed-point depth buffers, fragment depth values are always limited to the

range [0, 1], either by clamping after offset addition is performed (preferred), or
by clamping the vertex values used in the rasterization of the polygon. Frag-
ment depth values are clamped even when the depth buffer uses a floating-point
representation.

3.6.6 Polygon Multisample Rasterization

If MULTISAMPLE is enabled and the value of SAMPLE BUFFERS is one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGON SMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in section 3.6.1, including the special
treatment for sample points that lie on a polygon boundary edge. If a polygon is
culled, based on its orientation and the CullFace mode, then no fragments are pro-
duced during rasterization. Fragments are culled by the polygon stipple just as they
are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each color, depth, and set of texture co-
ordinates is produced by substituting the corresponding sample location into the
barycentric equations described in section 3.6.1, using the approximation to equa-
tion 3.8 that omits w components. An implementation may choose to assign the
same color value and the same set of texture coordinates to more than one sample
by barycentric evaluation using any location with the pixel including the fragment

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 136

center or one of the sample locations. The color value and the set of texture coor-
dinates need not be evaluated at the same location.

The rasterization described above applies only to the FILL state of Polygon-
Mode. For POINT and LINE, the rasterizations described in sections 3.4.3 (Point
Multisample Rasterization) and 3.5.4 (Line Multisample Rasterization) apply.

3.6.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of the PolygonMode setting for each of
front and back facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial state for PolygonMode is
FILL for both front and back facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.7 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to fragments
using the DrawPixels command (described in section 3.7.4). Some of the param-
eters and operations governing the operation of DrawPixels are shared by Read-
Pixels (used to obtain pixel values from the framebuffer) and CopyPixels (used to
copy pixels from one framebuffer location to another); the discussion of ReadPix-
els and CopyPixels, however, is deferred until chapter 4 after the framebuffer has
been discussed in detail. Nevertheless, we note in this section when parameters
and state pertaining to DrawPixels also pertain to ReadPixels or CopyPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with three commands: PixelStore, PixelTransfer, and
PixelMap.

3.7.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of DrawPixels and ReadPixels (as well as
other commands; see sections 3.6.2, 3.8, and 3.9) when one of these commands is
issued. This may differ from the time that the command is executed if the command
is placed in a display list (see section 5.4). Pixel storage modes are set with

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 137

Parameter Name Type Initial Value Valid Range
UNPACK SWAP BYTES boolean FALSE TRUE/FALSE
UNPACK LSB FIRST boolean FALSE TRUE/FALSE
UNPACK ROW LENGTH integer 0 [0,∞)
UNPACK SKIP ROWS integer 0 [0,∞)
UNPACK SKIP PIXELS integer 0 [0,∞)
UNPACK ALIGNMENT integer 4 1,2,4,8
UNPACK IMAGE HEIGHT integer 0 [0,∞)
UNPACK SKIP IMAGES integer 0 [0,∞)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPixels, Col-
orTable, ColorSubTable, ConvolutionFilter1D, ConvolutionFilter2D, Separa-
bleFilter2D, PolygonStipple, TexImage1D, TexImage2D, TexImage3D, Tex-
SubImage1D, TexSubImage2D, and TexSubImage3D.

void PixelStore{if}(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Table 3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the error INVALID VALUE.

The version of PixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is set to FALSE if
the passed value is 0.0 and TRUE otherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set to FALSE if the passed value is 0 and TRUE otherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

In addition to storing pixel data in client memory, pixel data may also
be stored in buffer objects (described in section 2.9). The current pixel un-
pack and pack buffer objects are designated by the PIXEL UNPACK BUFFER and
PIXEL PACK BUFFER targets respectively.

Initially, zero is bound for the PIXEL UNPACK BUFFER, indicating that image
specification commands such as DrawPixels source their pixels from client mem-
ory pointer parameters. However, if a non-zero buffer object is bound as the current
pixel unpack buffer, then the pointer parameter is treated as an offset into the des-
ignated buffer object.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 138

3.7.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optional imaging subset. The imaging
subset includes both new commands, and new enumerants allowed as parame-
ters to existing commands. If the subset is supported, all of these calls and enu-
merants must be implemented as described later in the GL specification. If the
subset is not supported, calling any unsupported command generates the error
INVALID OPERATION, and using any of the new enumerants generates the error
INVALID ENUM.

The individual operations available only in the imaging subset are described in
section 3.7.3. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-
sections Color Table Specification, Alternate Color Table Specification
Commands, Color Table State and Proxy State, Color Table Lookup,
Post Convolution Color Table Lookup, and Post Color Matrix Color Ta-
ble Lookup, as well as the query commands described in section 6.1.7.

2. Convolution, including all commands and enumerants described in sub-
sections Convolution Filter Specification, Alternate Convolution Filter
Specification Commands, and Convolution, as well as the query com-
mands described in section 6.1.8.

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation, as
well as the simple query commands described in section 6.1.6.

4. Histogram and minmax, including all commands and enumerants described
in subsections Histogram Table Specification, Histogram State and
Proxy State, Histogram, Minmax Table Specification, and Minmax, as
well as the query commands described in section 6.1.9 and section 6.1.10.

The imaging subset is supported only if the EXTENSIONS string includes
the substring "GL ARB imaging" Querying EXTENSIONS is described in sec-
tion 6.1.11.

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.7.3 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels (section 3.7.4), ReadPix-
els (section 4.3.2), and CopyPixels (section 4.3.3) at the time when one of these

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 139

Parameter Name Type Initial Value Valid Range
MAP COLOR boolean FALSE TRUE/FALSE
MAP STENCIL boolean FALSE TRUE/FALSE
INDEX SHIFT integer 0 (−∞,∞)
INDEX OFFSET integer 0 (−∞,∞)
x SCALE float 1.0 (−∞,∞)
DEPTH SCALE float 1.0 (−∞,∞)
x BIAS float 0.0 (−∞,∞)
DEPTH BIAS float 0.0 (−∞,∞)
POST CONVOLUTION x SCALE float 1.0 (−∞,∞)
POST CONVOLUTION x BIAS float 0.0 (−∞,∞)
POST COLOR MATRIX x SCALE float 1.0 (−∞,∞)
POST COLOR MATRIX x BIAS float 0.0 (−∞,∞)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if}(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is the value
to set it to. Table 3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in the error INVALID VALUE.
The same versions of the command exist as for PixelStore, and the same rules
apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

void PixelMap{ui us f}v(enum map, sizei size, T values);

map is a symbolic map name, indicating the map to set, size indicates the size of
the map, and values refers to an array of size map values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions of PixelMap is called. A table entry is converted to the
appropriate type when it is specified. An entry giving a color component value is
converted according to table 2.10 and then clamped to the range [0, 1]. An entry
giving a color index value is converted from an unsigned short integer or unsigned

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 140

Map Name Address Value Init. Size Init. Value
PIXEL MAP I TO I color idx color idx 1 0.0
PIXEL MAP S TO S stencil idx stencil idx 1 0
PIXEL MAP I TO R color idx R 1 0.0
PIXEL MAP I TO G color idx G 1 0.0
PIXEL MAP I TO B color idx B 1 0.0
PIXEL MAP I TO A color idx A 1 0.0
PIXEL MAP R TO R R R 1 0.0
PIXEL MAP G TO G G G 1 0.0
PIXEL MAP B TO B B B 1 0.0
PIXEL MAP A TO A A A 1 0.0

Table 3.3: PixelMap parameters.

integer to floating-point. An entry giving a stencil index is converted from single-
precision floating-point to an integer by rounding to nearest. The various tables
and their initial sizes and entries are summarized in table 3.3. A table that takes
an index as an address must have size = 2n or the error INVALID VALUE results.
The maximum allowable size of each table is specified by the implementation de-
pendent value MAX PIXEL MAP TABLE, but must be at least 32 (a single maximum
applies to all tables). The error INVALID VALUE is generated if a size larger than
the implemented maximum, or less than one, is given to PixelMap.

If a pixel unpack buffer is bound (as indicated by a non-zero value of
PIXEL UNPACK BUFFER BINDING), values is an offset into the pixel unpack
buffer; otherwise, values is a pointer to client memory. All pixel storage and pixel
transfer modes are ignored when specifying a pixel map. n machine units are read
where n is the size of the pixel map times the size of a float, uint, or ushort
datum in basic machine units, depending on the respective PixelMap version. If
a pixel unpack buffer object is bound and data + n is greater than the size of the
pixel buffer, an INVALID OPERATION error results. If a pixel unpack buffer object
is bound and values is not evenly divisible by the number of basic machine units
needed to store in memory a float, uint, or ushort datum depending on their
respective PixelMap version, an INVALID OPERATION error results.

Color Table Specification

Color lookup tables are specified with

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 141

Table Name Type
COLOR TABLE regular
POST CONVOLUTION COLOR TABLE

POST COLOR MATRIX COLOR TABLE

PROXY COLOR TABLE proxy
PROXY POST CONVOLUTION COLOR TABLE

PROXY POST COLOR MATRIX COLOR TABLE

Table 3.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

void ColorTable(enum target, enum internalformat,
sizei width, enum format, enum type, void *data);

target must be one of the regular color table names listed in table 3.4 to de-
fine the table. A proxy table name is a special case discussed later in this
section. width, format, type, and data specify an image in memory with the
same meaning and allowed values as the corresponding arguments to DrawPix-
els (see section 3.7.4), with height taken to be 1. The maximum allowable width
of a table is implementation-dependent, but must be at least 32. The formats
COLOR INDEX, DEPTH COMPONENT, DEPTH STENCIL, and STENCIL INDEX and
the type BITMAP are not allowed.

The specified image is taken from memory and processed just as if DrawPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the four COLOR TABLE SCALE parameters
and biased by the four COLOR TABLE BIAS parameters. These parameters are set
by calling ColorTableParameterfv as described below. If fragment color clamp-
ing is enabled or internalformat is fixed-point, components are clamped to [0, 1].
Otherwise, components are not modified.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 3.9.1). internalformat must
be one of the formats in table 3.15 or tables 3.16- 3.18, with the exception of the
RED, RG, DEPTH COMPONENT, and DEPTH STENCIL base and sized internal for-
mats in those tables, all sized internal formats with non-fixed internal data types
(see section 3.9), and sized internal format RGB9 E5.

The color lookup table is redefined to have width entries, each with the speci-
fied internal format. The table is formed with indices 0 through width − 1. Table

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 142

location i is specified by the ith image pixel, counting from zero.
The error INVALID VALUE is generated if width is not zero or a non-negative

power of two. The error TABLE TOO LARGE is generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if}v(enum target, enum pname,
T params);

target must be a regular color table name. pname is one of COLOR TABLE SCALE

or COLOR TABLE BIAS. params points to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on any ColorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.

The command

void CopyColorTable(enum target, enum internalformat,
int x, int y, sizei width);

defines a color table in exactly the manner of ColorTable, except that table data
are taken from the framebuffer, rather than from client memory. target must be a
regular color table name. x, y, and width correspond precisely to the corresponding
arguments of CopyPixels (refer to section 4.3.3); they specify the image’s width
and the lower left (x, y) coordinates of the framebuffer region to be copied. The
image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixels with argument type set to COLOR and height set to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, beginning
with scaling by COLOR TABLE SCALE. Parameters target, internalformat and width
are specified using the same values, with the same meanings, as the equivalent
arguments of ColorTable. format is taken to be RGBA.

Two additional commands,

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 143

void ColorSubTable(enum target, sizei start, sizei count,
enum format, enum type, void *data);

void CopyColorSubTable(enum target, sizei start, int x,
int y, sizei count);

respecify only a portion of an existing color table. No change is made to the inter-
nalformat or width parameters of the specified color table, nor is any change made
to table entries outside the specified portion. target must be a regular color table
name.

ColorSubTable arguments format, type, and data match the corresponding ar-
guments to ColorTable, meaning that they are specified using the same values,
and have the same meanings. Likewise, CopyColorSubTable arguments x, y, and
count match the x, y, and width arguments of CopyColorTable. Both of the Color-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled by the internalformat of
the table, not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSubTable spec-
ify a subregion of the color table starting at index start and ending at index
start + count − 1. Counting from zero, the nth pixel group is assigned to the
table entry with index count + n. The error INVALID VALUE is generated if
start+ count > width.

Calling CopyColorTable or CopyColorSubTable
will result in an INVALID FRAMEBUFFER OPERATION error if the object bound
to READ FRAMEBUFFER BINDING is not framebuffer complete (see section 4.4.4).

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format
RGBA, with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they in-

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 144

clude scale and bias parameters. When ColorTable is executed with target speci-
fied as one of the proxy color table names listed in table 3.4, the proxy state values
of the table are recomputed and updated. If the table is too large, no error is gener-
ated, but the proxy format, width and component resolutions are set to zero. If the
color table would be accommodated by ColorTable called with target set to the
corresponding regular table name (COLOR TABLE is the regular name correspond-
ing to PROXY COLOR TABLE, for example), the proxy state values are set exactly
as though the regular table were being specified. Calling ColorTable with a proxy
target has no effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried using GetColorTable. The
error INVALID ENUM is generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *data);

target must be CONVOLUTION 2D. width, height, format, type, and data specify an
image in memory with the same meaning and allowed values as the correspond-
ing parameters to DrawPixels. The formats COLOR INDEX, DEPTH COMPONENT,
DEPTH STENCIL, and STENCIL INDEX and the type BITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The
R, G, B, and A components of each pixel are then scaled by the four two-
dimensional CONVOLUTION FILTER SCALE parameters and biased by the four
two-dimensional CONVOLUTION FILTER BIAS parameters. These parameters are
set by calling ConvolutionParameterfv as described below. No clamping takes
place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) internal-
format, in the same manner as for textures (section 3.9.1). internalformat accepts
the same values as the corresponding argument of ColorTable.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinates i, j such that i increases from left to
right, starting at zero, and j increases from bottom to top, also starting at zero.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 145

Image location i, j is specified by the N th pixel, counting from zero, where

N = i+ j ∗ width

The error INVALID VALUE is generated if width or height is greater
than the maximum supported value. These values are queried with Get-
ConvolutionParameteriv, setting target to CONVOLUTION 2D and pname to
MAX CONVOLUTION WIDTH or MAX CONVOLUTION HEIGHT, respectively.

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if}v(enum target, enum pname,
T params);

with target CONVOLUTION 2D. pname is one of CONVOLUTION FILTER SCALE

or CONVOLUTION FILTER BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D(enum target, enum internalformat,
sizei width, enum format, enum type, void *data);

target must be CONVOLUTION 1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional coun-
terparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if ConvolutionFilter2D
were called with a height of 1, except that it is scaled and biased by the one-
dimensional CONVOLUTION FILTER SCALE and CONVOLUTION FILTER BIAS

parameters. These parameters are specified exactly as the two-dimensional
parameters, except that ConvolutionParameterfv is called with target
CONVOLUTION 1D.

The image is formed with coordinates i such that i increases from left to right,
starting at zero. Image location i is specified by the ith pixel, counting from zero.

The error INVALID VALUE is generated if width is greater than the maximum
supported value. This value is queried using GetConvolutionParameteriv, setting
target to CONVOLUTION 1D and pname to MAX CONVOLUTION WIDTH.

Special facilities are provided for the definition of two-dimensional sepa-
rable filters – filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 146

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *row, void *column);

target must be SEPARABLE 2D. internalformat specifies the formats of the table
entries of the two one-dimensional images that will be retained. row points to a
width pixel wide image of the specified format and type. column points to a height
pixel high image, also of the specified format and type.

The two images are extracted from memory and processed as if Convolu-
tionFilter1D were called separately for each, except that each image is scaled
and biased by the two-dimensional separable CONVOLUTION FILTER SCALE and
CONVOLUTION FILTER BIAS parameters. These parameters are specified exactly
as the one-dimensional and two-dimensional parameters, except that Convolution-
Parameteriv is called with target SEPARABLE 2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.

The command

void CopyConvolutionFilter2D(enum target,
enum internalformat, int x, int y, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner of ConvolutionFilter2D,
except that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION 2D. x, y, width, and height correspond precisely
to the corresponding arguments of CopyPixels (refer to section 4.3.3); they specify
the image’s width and height, and the lower left (x, y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passed to CopyPixels with argument type set to COLOR,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter2D,
beginning with scaling by CONVOLUTION FILTER SCALE. Parameters target, in-
ternalformat, width, and height are specified using the same values, with the same
meanings, as the equivalent arguments of ConvolutionFilter2D. format is taken to
be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int x, int y, sizei width);

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 147

defines a one-dimensional filter in exactly the manner of ConvolutionFilter1D,
except that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION 1D. x, y, and width correspond precisely to the
corresponding arguments of CopyPixels (refer to section 4.3.3); they specify the
image’s width and the lower left (x, y) coordinates of the framebuffer region to
be copied. The image is taken from the framebuffer exactly as if these arguments
were passed to CopyPixels with argument type set to COLOR and height set to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter1D,
beginning with scaling by CONVOLUTION FILTER SCALE. Parameters target, in-
ternalformat, and width are specified using the same values, with the same mean-
ings, as the equivalent arguments of ConvolutionFilter2D. format is taken to be
RGBA.

Calling CopyConvolutionFilter1D or CopyConvolutionFilter2D will re-
sult in an INVALID FRAMEBUFFER OPERATION error if the object bound to
READ FRAMEBUFFER BINDING is not framebuffer complete (see section 4.4.4).

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.

Each initial convolution filter is null (zero width and height, internal format
RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode to COLOR causes the matrix operations described in sec-
tion 2.12.2 to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

Histogram Table Specification

The histogram table is specified with

void Histogram(enum target, sizei width,
enum internalformat, boolean sink);

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 148

target must be HISTOGRAM if a histogram table is to be specified. target value
PROXY HISTOGRAM is a special case discussed later in this section. width speci-
fies the number of entries in the histogram table, and internalformat specifies the
format of each table entry. The maximum allowable width of the histogram table
is implementation-dependent, but must be at least 32. sink specifies whether pixel
groups will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

If no error results from the execution of Histogram, the specified histogram
table is redefined to have width entries, each with the specified internal format.
The entries are indexed 0 through width− 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE TOO LARGE is generated if the specified histogram
table is too large for the implementation. internalformat accepts the same values
as the corresponding argument of ColorTable, with the exception of the values 1,
2, 3, and 4.

A GL implementation may vary its allocation of internal component resolution
based on any Histogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
format RGBA, with zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. When Histogram is executed with target set to PROXY HISTOGRAM, the
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are
set to zero. If the histogram table would be accomodated by Histogram called
with target set to HISTOGRAM, the proxy state values are set exactly as though
the actual histogram table were being specified. Calling Histogram with target

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 149

PROXY HISTOGRAM has no effect on the actual histogram table.
There is no image associated with PROXY HISTOGRAM. It cannot be used as

a histogram, and its image must never queried using GetHistogram. The error
INVALID ENUM results if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax(enum target, enum internalformat,
boolean sink);

target must be MINMAX. internalformat specifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUE) or passed on to final conversion (FALSE).

internalformat accepts the same values as the corresponding argument of Col-
orTable, with the exception of the values 1, 2, 3, and 4, as well as the INTENSITY
base and sized internal formats. The resulting table always has 2 entries, each
with values corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum
table entry set to the minimum representable value. Internal format is set to RGBA

and the initial value of the flag is false.

3.7.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in buffer object or client memory is dia-
grammed in figure 3.7. We describe the stages of this process in the order in which
they occur.

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, void *data);

format is a symbolic constant indicating what the values in memory represent.
width and height are the width and height, respectively, of the pixel rectan-
gle to be drawn. data refers to the data to be drawn. The correspon-
dence between the type token values and the GL data types they indicate is

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 150

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

unpack

convert
to float

convert
L to RGB

RGBA, L

Pixel Storage
Operations

byte, short, int, o r float pixel
data stream (index or component)

color
index

post
convolution

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale a nd bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
look up

index to RGBA
looku p

color table
lookup

color matrix
scale and bias

post
color matrix

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 3.7. Operation of DrawPixels. Output is RGBA pixels if the GL is in RGBA
mode, color index pixels otherwise. Operations in dashed boxes may be enabled
or disabled. RGBA and color index pixel paths are shown; depth and stencil pixel
paths are not shown.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 151

given in table 3.5. If the GL is in color index mode and format is not one of
COLOR INDEX, STENCIL INDEX, DEPTH COMPONENT, or DEPTH STENCIL, then
the error INVALID OPERATION occurs. Results of rasterization are undefined if
any of the selected draw buffers of the draw framebuffer have an integer format and
no fragment shader is active. If format contains integer components, as shown
in table 3.6, an INVALID OPERATION error is generated. If type is BITMAP and
format is not COLOR INDEX or STENCIL INDEX then the error INVALID ENUM

occurs. If format is DEPTH STENCIL and type is not UNSIGNED INT 24 8 or
FLOAT 32 UNSIGNED INT 24 8 REV, then the error INVALID ENUM occurs. If
format is one of the integer component formats as defined in table 3.6 and type
is FLOAT, the error INVALID ENUM occurs. Some additional constraints on the
combinations of format and type values that are accepted are discussed below.

Calling DrawPixels will result in an INVALID FRAMEBUFFER OPERATION er-
ror if the object bound to DRAW FRAMEBUFFER BINDING is not framebuffer com-
plete (see section 4.4.4).

Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 3.6 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of
PIXEL UNPACK BUFFER BINDING), data is an offset into the pixel unpack buffer
and the pixels are unpacked from the buffer relative to this offset; otherwise, data is
a pointer to client memory and the pixels are unpacked from client memory relative
to the pointer. If a pixel unpack buffer object is bound and unpacking the pixel data
according to the process described below would access memory beyond the size of
the pixel unpack buffer’s memory size, an INVALID OPERATION error results. If a
pixel unpack buffer object is bound and data is not evenly divisible by the number
of basic machine units needed to store in memory the corresponding GL data type
from table 3.5 for the type parameter, an INVALID OPERATION error results.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK SWAP BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 3.7. The modified bit orderings are defined only if the GL data type

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 152

type Parameter Corresponding Special
Token Name GL Data Type Interpretation
UNSIGNED BYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNED SHORT ushort No
SHORT short No
UNSIGNED INT uint No
INT int No
HALF FLOAT half No
FLOAT float No
UNSIGNED BYTE 3 3 2 ubyte Yes
UNSIGNED BYTE 2 3 3 REV ubyte Yes
UNSIGNED SHORT 5 6 5 ushort Yes
UNSIGNED SHORT 5 6 5 REV ushort Yes
UNSIGNED SHORT 4 4 4 4 ushort Yes
UNSIGNED SHORT 4 4 4 4 REV ushort Yes
UNSIGNED SHORT 5 5 5 1 ushort Yes
UNSIGNED SHORT 1 5 5 5 REV ushort Yes
UNSIGNED INT 8 8 8 8 uint Yes
UNSIGNED INT 8 8 8 8 REV uint Yes
UNSIGNED INT 10 10 10 2 uint Yes
UNSIGNED INT 2 10 10 10 REV uint Yes
UNSIGNED INT 24 8 uint Yes
UNSIGNED INT 10F 11F 11F REV uint Yes
UNSIGNED INT 5 9 9 9 REV uint Yes
FLOAT 32 UNSIGNED INT 24 8 REV n/a Yes

Table 3.5: DrawPixels and ReadPixels type parameter values and the correspond-
ing GL data types. Refer to table 2.2 for definitions of GL data types. Special
interpretations are described near the end of section 3.7.4.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 153

Format Name Element Meaning and Order Target Buffer
COLOR INDEX Color Index Color
STENCIL INDEX Stencil Index Stencil
DEPTH COMPONENT Depth Depth
DEPTH STENCIL Depth and Stencil Index Depth and Stencil
RED R Color
GREEN G Color
BLUE B Color
ALPHA A Color
RG R, G Color
RGB R, G, B Color
RGBA R, G, B, A Color
BGR B, G, R Color
BGRA B, G, R, A Color
LUMINANCE Luminance Color
LUMINANCE ALPHA Luminance, A Color
RED INTEGER iR Color
GREEN INTEGER iG Color
BLUE INTEGER iB Color
ALPHA INTEGER iA Color
RG INTEGER iR, iG Color
RGB INTEGER iR, iG, iB Color
RGBA INTEGER iR, iG, iB, iA Color
BGR INTEGER iB, iG, iR Color
BGRA INTEGER iB, iG, iR, iA Color

Table 3.6: DrawPixels and ReadPixels formats. The second column gives a de-
scription of and the number and order of elements in a group. Unless specified as an
index, formats yield components. Components are floating-point unless prefixed
with the letter ’i’, which indicates they are integer.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 154

Element Size Default Bit Ordering Modified Bit Ordering
8 bit [7..0] [7..0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements when UNPACK SWAP BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the least significant.

ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series of rows, with the first element of the first group
of the first row pointed to by the pointer passed to DrawPixels. If the value of
UNPACK ROW LENGTH is not positive, then the number of groups in a row is width;
otherwise the number of groups is UNPACK ROW LENGTH. If p indicates the loca-
tion in memory of the first element of the first row, then the first element of theN th
row is indicated by

p+Nk (3.12)

where N is the row number (counting from zero) and k is defined as

k =
{
nl s ≥ a,
a/s dsnl/ae s < a

(3.13)

where n is the number of elements in a group, l is the number of groups in
the row, a is the value of UNPACK ALIGNMENT, and s is the size, in units of GL
ubytes, of an element. If the number of bits per element is not 1, 2, 4, or 8 times
the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK ROW LENGTH, UNPACK SKIP ROWS, and UNPACK SKIP PIXELS. Before
obtaining the first group from memory, the pointer supplied to DrawPixels is effec-
tively advanced by (UNPACK SKIP PIXELS)n+(UNPACK SKIP ROWS)k elements.
Then width groups are obtained from contiguous elements in memory (without ad-
vancing the pointer), after which the pointer is advanced by k elements. height sets
of width groups of values are obtained this way. See figure 3.8.

Calling DrawPixels with a type matching one of the types in table 3.8 is a
special case in which all the components of each group are packed into a sin-

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 155

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK for DrawPixels and by PACK for ReadPixels.

gle unsigned byte, unsigned short, or unsigned int, depending on the type. If
type is FLOAT 32 UNSIGNED INT 24 8 REV, the components of each group are
two 32-bit words; the first word contains the float component, and the second
word contains packed 24-bit and 8-bit components. The number of components
per packed pixel is fixed by the type, and must match the number of compo-
nents per group indicated by the format parameter, as listed in table 3.8. The
error INVALID OPERATION is generated if a mismatch occurs. This constraint
also holds for all other functions that accept or return pixel data using type and
format parameters to define the type and format of that data.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 3.9, 3.10, and 3.11. Each bitfield is
interpreted as an unsigned integer value. If the base GL type is supported with
more than the minimum precision (e.g. a 9-bit byte) the packed components are
right-justified in the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end with REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 156

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats
UNSIGNED BYTE 3 3 2 ubyte 3 RGB

UNSIGNED BYTE 2 3 3 REV ubyte 3 RGB

UNSIGNED SHORT 5 6 5 ushort 3 RGB

UNSIGNED SHORT 5 6 5 REV ushort 3 RGB

UNSIGNED SHORT 4 4 4 4 ushort 4 RGBA,BGRA
UNSIGNED SHORT 4 4 4 4 REV ushort 4 RGBA,BGRA
UNSIGNED SHORT 5 5 5 1 ushort 4 RGBA,BGRA
UNSIGNED SHORT 1 5 5 5 REV ushort 4 RGBA,BGRA
UNSIGNED INT 8 8 8 8 uint 4 RGBA,BGRA
UNSIGNED INT 8 8 8 8 REV uint 4 RGBA,BGRA
UNSIGNED INT 10 10 10 2 uint 4 RGBA,BGRA
UNSIGNED INT 2 10 10 10 REV uint 4 RGBA,BGRA
UNSIGNED INT 24 8 uint 2 DEPTH STENCIL

UNSIGNED INT 10F 11F 11F REV uint 3 RGB

UNSIGNED INT 5 9 9 9 REV uint 4 RGB

FLOAT 32 UNSIGNED INT 24 8 REV n/a 2 DEPTH STENCIL

Table 3.8: Packed pixel formats.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 157

UNSIGNED BYTE 3 3 2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED BYTE 2 3 3 REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.9: UNSIGNED BYTE formats. Bit numbers are indicated for each compo-
nent.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 158

UNSIGNED SHORT 5 6 5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED SHORT 5 6 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED SHORT 4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 4 4 4 4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED SHORT 5 5 5 1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 1 5 5 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.10: UNSIGNED SHORT formats

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 159

UNSIGNED INT 8 8 8 8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 8 8 8 8 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED INT 10 10 10 2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 2 10 10 10 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED INT 24 8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd

UNSIGNED INT 10F 11F 11F REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED INT 5 9 9 9 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.11: UNSIGNED INT formats

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 160

Format First Second Third Fourth
Component Component Component Component

RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha
DEPTH STENCIL depth stencil

Table 3.12: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.12.

Byte swapping, if enabled, is performed before the component are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

Calling DrawPixels with a type of UNSIGNED INT 10F 11F 11F REV and for-
mat of RGB is a special case in which the data are a series of GL uint values. Each
uint value specifies 3 packed components as shown in table 3.11. The 1st, 2nd, and
3rd components are called fred (11 bits), fgreen (11 bits), and fblue (10 bits) re-
spectively.

fred and fgreen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.1.3. fblue is treated as an unsigned 10-bit floating-point value and converted
to a floating-point blue component as described in section 2.1.4.

Calling DrawPixels with a type of UNSIGNED INT 5 9 9 9 REV and format
of RGB is a special case in which the data are a series of GL uint values. Each
uint value specifies 4 packed components as shown in table 3.11. The 1st, 2nd,
3rd, and 4th components are called pred, pgreen, pblue, and pexp respectively and
are treated as unsigned integers. These are then used to compute floating-point
RGB components (ignoring the ”Conversion to floating-point” section below in this
case) as follows:

red = pred2pexp−B−N

green = pgreen2pexp−B−N

blue = pblue2pexp−B−N

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 161

Calling DrawPixels with a type of BITMAP is a special case in which the data
are a series of GL ubyte values. Each ubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value of UNPACK LSB FIRST is FALSE; other-
wise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in each ubyte are not significant.

The first element of the first row is the first bit (as defined above) of the ubyte
pointed to by the pointer passed to DrawPixels. The first element of the second
row is the first bit (again as defined above) of the ubyte at location p+ k, where
k is computed as

k = a

⌈
l

8a

⌉
(3.14)

There is a mechanism for selecting a sub-rectangle of elements from a BITMAP
image as well. Before obtaining the first element from memory, the pointer sup-
plied to DrawPixels is effectively advanced by UNPACK SKIP ROWS ∗ k ubytes.
Then UNPACK SKIP PIXELS 1-bit elements are ignored, and the subsequent width
1-bit elements are obtained, without advancing the ubyte pointer, after which the
pointer is advanced by k ubytes. height sets of width elements are obtained this
way.

Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and
indices, such as DEPTH STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value according to the
appropriate formula in table 2.10 (section 2.19). For packed pixel types, each ele-
ment in the group is converted by computing c / (2N − 1), where c is the unsigned
integer value of the bitfield containing the element and N is the number of bits in
the bitfield.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If the
format is LUMINANCE, then each group of one element is converted to a group of
R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 162

the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A ele-
ment, then A is added and set to 1 for integer components or 1.0 for floating-point
components. If any of R, G, or B is missing from the group, each missing element
is added and assigned a value of 0 for integer components or 0.0 for floating-point
components.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in section 3.7.5. After the processing
described in that section is completed, groups are processed as described in the
following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by 2n − 1, where n is the number of bits in an index buffer.

For integer RGBA components, no conversion is performed. For floating-
point RGBA components, if fragment color clamping is enabled, each element
is clamped to [0, 1], and may be converted to fixed-point according to the rules
given in section 2.19.9. If fragment color clamping is disabled, RGBA compo-
nents are unmodified. Fragment color clamping is controlled using ClampColor,
as described in section 2.19.6, with a target of CLAMP FRAGMENT COLOR.

For a depth component, an element is processed according to the depth buffer’s
representation. For fixed-point depth buffers, the element is first clamped to the
range [0, 1] and then converted to fixed-point as if it were a window z value (see
section 2.12.1). Conversion is not necessary when the depth buffer uses a floating-
point representation, but clamping is.

Stencil indices are masked by 2n − 1, where n is the number of bits in the
stencil buffer.

The state required for fragment color clamping is a three-valued integer. The
initial value of fragment color clamping is FIXED ONLY.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 163

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom(float zx, float zy);

Let (xrp, yrp) be the current raster position (section 2.18). (If the current raster
position is invalid, then DrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (section 4.1.1) or scissor (section 4.1.2)
tests.) If a particular group (index or components) is the nth in a row and belongs to
the mth row, consider the region in window coordinates bounded by the rectangle
with corners

(xrp + zxn, yrp + zym) and (xrp + zx(n+ 1), yrp + zy(m+ 1))

(either zx or zy may be negative). A fragment representing group (n,m) is pro-
duced for each framebuffer pixel inside, or on the bottom or left boundary, of this
rectangle

A fragment arising from a group consisting of color data takes on the color
index or color components of the group and the current raster position’s associated
depth value, while a fragment arising from a depth component takes that compo-
nent’s depth value and the current raster position’s associated color index or color
components. In both cases, the fog coordinate is taken from the current raster posi-
tion’s associated raster distance, the secondary color is taken from the current raster
position’s associated secondary color, and texture coordinates are taken from the
current raster position’s associated texture coordinates. Groups arising from Draw-
Pixels with a format of DEPTH STENCIL or STENCIL INDEX are treated specially
and are described in section 4.3.1.

3.7.5 Pixel Transfer Operations

The GL defines six kinds of pixel groups:

1. Floating-point RGBA component: Each group comprises four color compo-
nents in floating-point format: red, green, blue, and alpha.

2. Integer RGBA component: Each group comprises four color components in
integer format: red, green, blue, and alpha.

3. Depth component: Each group comprises a single depth component.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 164

4. Color index: Each group comprises a single color index.

5. Stencil index: Each group comprises a single stencil index.

6. Depth/stencil: Each group comprises a single depth component and a single
stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of certain
kinds; if an operation is not applicable to a given group, it is skipped. None of the
operations defined in this section affect integer RGBA component pixel groups.

Arithmetic on Components

This step applies only to RGBA component and depth component groups, and to
the depth components in depth/stencil groups. Each component is multiplied by an
appropriate signed scale factor: RED SCALE for an R component, GREEN SCALE

for a G component, BLUE SCALE for a B component, and ALPHA SCALE for an A
component, or DEPTH SCALE for a depth component. Then the result is added to
the appropriate signed bias: RED BIAS, GREEN BIAS, BLUE BIAS, ALPHA BIAS,
or DEPTH BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups, and to the stencil
indices in depth/stencil groups. If the index is a floating-point value, it is converted
to fixed-point, with an unspecified number of bits to the right of the binary point
and at least dlog2(MAX PIXEL MAP TABLE)e bits to the left of the binary point.
Indices that are already integers remain so; any fraction bits in the resulting fixed-
point value are zero.

The fixed-point index is then shifted by |INDEX SHIFT| bits, left if
INDEX SHIFT > 0 and right otherwise. In either case the shift is zero-filled. Then,
the signed integer offset INDEX OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if MAP COLOR is
FALSE. First, each component is clamped to the range [0, 1]. There is a table associ-
ated with each of the R, G, B, and A component elements: PIXEL MAP R TO R for
R, PIXEL MAP G TO G for G, PIXEL MAP B TO B for B, and PIXEL MAP A TO A

for A. Each element is multiplied by an integer one less than the size of the corre-
sponding table, and, for each element, an address is found by rounding this value

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 165

to the nearest integer. For each element, the addressed value in the corresponding
table replaces the element.

Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or

2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR INDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components: PIXEL MAP I TO R,
PIXEL MAP I TO G, PIXEL MAP I TO B, and PIXEL MAP I TO A. Each of these
tables must have 2n entries for some integer value of n (n may be different for
each table). For each table, the index is first rounded to the nearest integer; the
result is ANDed with 2n − 1, and the resulting value used as an address into the
table. The indexed value becomes an R, G, B, or A value, as appropriate. The
group of four elements so obtained replaces the index, changing the group’s type
to RGBA component.

If RGBA component groups are not required, and if MAP COLOR is enabled,
then the index is looked up in the PIXEL MAP I TO I table (otherwise, the index
is not looked up). Again, the table must have 2n entries for some integer n. The
index is first rounded to the nearest integer; the result is ANDed with 2n − 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups, and to the stencil indices in
depth/stencil groups. If MAP STENCIL is enabled, then the index is looked up
in the PIXEL MAP S TO S table (otherwise, the index is not looked up). The table
must have 2n entries for some integer n. The integer index is ANDed with 2n − 1,
and the resulting value used as an address into the table. The integer value in the
table replaces the index.

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 166

Base Internal Format R G B A
ALPHA At

LUMINANCE Lt Lt Lt

LUMINANCE ALPHA Lt Lt Lt At

INTENSITY It It It It
RGB Rt Gt Bt

RGBA Rt Gt Bt At

Table 3.13: Color table lookup. Rt, Gt, Bt, At, Lt, and It are color table values
that are assigned to pixel components R, G, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLOR TABLE is enabled. If a zero-width table is enabled, no lookup is
performed.

The internal format of the table determines which components of the group
will be replaced (see table 3.13). The components to be replaced are converted
to indices by clamping to [0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION 1D

is enabled, the one-dimensional convolution filter is applied only to the one-
dimensional texture images passed to TexImage1D, TexSubImage1D, Copy-
TexImage1D, and CopyTexSubImage1D. If CONVOLUTION 2D is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed to DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubIm-
age2D, CopyTexImage2D, CopyTexSubImage2D, and CopyTexSubImage3D.
If SEPARABLE 2D is enabled, and CONVOLUTION 2D is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 167

Base Filter Format R G B A
ALPHA Rs Gs Bs As ∗Af

LUMINANCE Rs ∗ Lf Gs ∗ Lf Bs ∗ Lf As

LUMINANCE ALPHA Rs ∗ Lf Gs ∗ Lf Bs ∗ Lf As ∗Af

INTENSITY Rs ∗ If Gs ∗ If Bs ∗ If As ∗ If
RGB Rs ∗Rf Gs ∗Gf Bs ∗Bf As

RGBA Rs ∗Rf Gs ∗Gf Bs ∗Bf As ∗Af

Table 3.14: Computation of filtered color components depending on filter image
format. C ∗ F indicates the convolution of image component C with filter F .

green, blue, and alpha, denoted in the equations below as Rs, Gs, Bs, and As.
Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denoted as Rf , Gf , Bf , Af , Lf , and If in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending
on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in table 3.14.

The convolution operation is defined differently for each of the three convolu-
tion filters. The variables Wf and Hf refer to the dimensions of the convolution
filter. The variables Ws and Hs refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, where C refers to the filtered
result, Cf refers to the one- or two-dimensional convolution filter, and Crow and
Ccolumn refer to the two one-dimensional filters comprising the two-dimensional
separable filter. C ′s depends on the source image color Cs and the convolution bor-
der mode as described below. Cr, the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing
nomenclature is decribed in the Convolution Filter Specification subsection of
section 3.7.3.

One-dimensional filter:

C[i′] =
Wf−1∑
n=0

C ′s[i
′ + n] ∗ Cf [n]

Two-dimensional filter:

C[i′, j′] =
Wf−1∑
n=0

Hf−1∑
m=0

C ′s[i
′ + n, j′ +m] ∗ Cf [n,m]

Two-dimensional separable filter:

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 168

C[i′, j′] =
Wf−1∑
n=0

Hf−1∑
m=0

C ′s[i
′ + n, j′ +m] ∗ Crow[n] ∗ Ccolumn[m]

If Wf of a one-dimensional filter is zero, then C[i] is always set to zero. Like-
wise, if either Wf or Hf of a two-dimensional filter is zero, then C[i, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if}(enum target, enum pname,
T param);

where target is the name of the filter, pname is CONVOLUTION BORDER MODE, and
param is one of REDUCE, CONSTANT BORDER or REPLICATE BORDER.

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE are
reduced by Wf − 1 and Hf − 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mode REDUCE are zero through Ws −Wf in width, and zero
through Hs −Hf in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific example is TexImage1D and Tex-
Image2D, which specify constraints for image dimensions. Even if TexImage1D
or TexImage2D is called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode is REDUCE, C ′s equals the source image color Cs and
Cr equals the filtered result C.

For the remaining border modes, define Cw = bWf/2c and Ch = bHf/2c.
The coordinates (Cw, Ch) define the center of the convolution filter.

Border Mode CONSTANT BORDER

If the convolution border mode is CONSTANT BORDER, the output image has the
same dimensions as the source image. The result of the convolution is the same
as if the source image were surrounded by pixels with the same color as the

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 169

current convolution border color. Whenever the convolution filter extends be-
yond one of the edges of the source image, the constant-color border pixels are
used as input to the filter. The current convolution border color is set by call-
ing ConvolutionParameterfv or ConvolutionParameteriv with pname set to
CONVOLUTION BORDER COLOR and params containing four values that comprise
the RGBA color to be used as the image border. Integer color components are inter-
preted linearly such that the largest positive integer maps to 1.0, and the smallest
negative integer maps to -1.0. Floating point color components are not clamped
when they are specified.

For a one-dimensional filter, the result color is defined by

Cr[i] = C[i− Cw]

where C[i′] is computed using the following equation for C ′s[i
′]:

C ′s[i
′] =

{
Cs[i′], 0 ≤ i′ < Ws

Cc, otherwise

and Cc is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is

defined by

Cr[i, j] = C[i− Cw, j − Ch]

where C[i′, j′] is computed using the following equation for C ′s[i
′, j′]:

C ′s[i
′, j′] =

{
Cs[i′, j′], 0 ≤ i′ < Ws, 0 ≤ j′ < Hs

Cc, otherwise

Border Mode REPLICATE BORDER

The convolution border mode REPLICATE BORDER also produces an output im-
age with the same dimensions as the source image. The behavior of this mode is
identical to that of the CONSTANT BORDER mode except for the treatment of pixel
locations where the convolution filter extends beyond the edge of the source im-
age. For these locations, it is as if the outermost one-pixel border of the source
image was replicated. Conceptually, each pixel in the leftmost one-pixel column
of the source image is replicated Cw times to provide additional image data along
the left edge, each pixel in the rightmost one-pixel column is replicated Cw times
to provide additional image data along the right edge, and each pixel value in the
top and bottom one-pixel rows is replicated to create Ch rows of image data along

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 170

the top and bottom edges. The pixel value at each corner is also replicated in order
to provide data for the convolution operation at each corner of the source image.

For a one-dimensional filter, the result color is defined by

Cr[i] = C[i− Cw]

where C[i′] is computed using the following equation for C ′s[i
′]:

C ′s[i
′] = Cs[clamp(i′,Ws)]

and the clamping function clamp(val,max) is defined as

clamp(val,max) =


0, val < 0
val, 0 ≤ val < max
max− 1, val ≥ max

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Cr[i, j] = C[i− Cw, j − Ch]

where C[i′, j′] is computed using the following equation for C ′s[i
′, j′]:

C ′s[i
′, j′] = Cs[clamp(i′,Ws), clamp(j′, Hs)]

If a convolution operation is performed, each component of
the resulting image is scaled by the corresponding PixelTrans-
fer parameters: POST CONVOLUTION RED SCALE for an R com-
ponent, POST CONVOLUTION GREEN SCALE for a G compo-
nent, POST CONVOLUTION BLUE SCALE for a B component, and
POST CONVOLUTION ALPHA SCALE for an A component. The result
is added to the corresponding bias: POST CONVOLUTION RED BIAS,
POST CONVOLUTION GREEN BIAS, POST CONVOLUTION BLUE BIAS, or
POST CONVOLUTION ALPHA BIAS.

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border mode is REDUCE, and the border color is
(0, 0, 0, 0).

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 171

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color
table lookup is enabled or disabled by calling Enable or Disable with
the symbolic constant POST CONVOLUTION COLOR TABLE. The post convo-
lution table is defined by calling ColorTable with a target argument of
POST CONVOLUTION COLOR TABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in section 3.7.5.

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multiplied
by an appropriate signed scale factor: POST COLOR MATRIX RED SCALE

for an R component, POST COLOR MATRIX GREEN SCALE for a G
component, POST COLOR MATRIX BLUE SCALE for a B component,
and POST COLOR MATRIX ALPHA SCALE for an A component. The
result is added to a signed bias: POST COLOR MATRIX RED BIAS,
POST COLOR MATRIX GREEN BIAS, POST COLOR MATRIX BLUE BIAS, or
POST COLOR MATRIX ALPHA BIAS. The resulting components replace each
component of the original group.

That is, if Mc is the color matrix, a subscript of s represents the scale term for
a component, and a subscript of b represents the bias term, then the components

R
G
B
A


are transformed to

R′

G′

B′

A′

 =


Rs 0 0 0
0 Gs 0 0
0 0 Bs 0
0 0 0 As

Mc


R
G
B
A

+


Rb

Gb

Bb

Ab

 .

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calling Enable or Disable

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 172

with the symbolic constant POST COLOR MATRIX COLOR TABLE. The post color
matrix table is defined by calling ColorTable with a target argument of
POST COLOR MATRIX COLOR TABLE. In all other respects, operation is identical
to color table lookup, as defined in section 3.7.5.

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

Histogram

This step applies only to RGBA component groups. Histogram operation is
enabled or disabled by calling Enable or Disable with the symbolic constant
HISTOGRAM.

If the width of the table is non-zero, then indices Ri, Gi, Bi, and Ai are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each component to [0, 1], multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of the HISTOGRAM table includes red or luminance, the red or
luminance component of histogram entry Ri is incremented by one. If the format
of the HISTOGRAM table includes green, the green component of histogram entry
Gi is incremented by one. The blue and alpha components of histogram entries
Bi and Ai are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter is FALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by calling Enable or Disable with the symbolic constant MINMAX.

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-

Version 3.0 (September 23, 2008)

3.7. PIXEL RECTANGLES 173

nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (section 2.1.1). There are no semantics defined for the treatment of
group component values that are outside the representable range.

If the Minmax sink parameter is FALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.7.6 Pixel Rectangle Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE BUFFERS is one, then pixel
rectangles are rasterized using the following algorithm. Let (Xrp, Yrp) be the cur-
rent raster position. (If the current raster position is invalid, then DrawPixels is
ignored.) If a particular group (index or components) is the nth in a row and be-
longs to the mth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xrp + Zx ∗ n, Yrp + Zy ∗m)

and
(Xrp + Zx ∗ (n+ 1), Yrp + Zy ∗ (m+ 1))

where Zx and Zy are the pixel zoom factors specified by PixelZoom, and may each
be either positive or negative. A fragment representing group (n,m) is produced
for each framebuffer pixel with one or more sample points that lie inside, or on
the bottom or left boundary, of this rectangle. Each fragment so produced takes its
associated data from the group and from the current raster position, in a manner
consistent with the discussion in the Conversion to Fragments subsection of sec-
tion 3.7.4. All depth and color sample values are assigned the same value, taken
either from their group (for depth and color component groups) or from the cur-
rent raster position (if they are not). All sample values are assigned the same fog
coordinate and the same set of texture coordinates, taken from the current raster
position.

Version 3.0 (September 23, 2008)

3.8. BITMAPS 174

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.8 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-
ments to be produced. Each of these fragments has the same associated data. These
data are those associated with the current raster position.

Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xbo, float ybo,
float xbi, float ybi, ubyte *data);

w and h comprise the integer width and height of the rectangular bitmap, respec-
tively. (xbo, ybo) gives the floating-point x and y values of the bitmap’s origin.
(xbi, ybi) gives the floating-point x and y increments that are added to the raster
position after the bitmap is rasterized. data is a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in section 3.7.4 for DrawPixels; it is as if the width and height
passed to that command were equal tow and h, respectively, the type were BITMAP,
and the format were COLOR INDEX. The unpacked values (before any conversion
or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(xll, yll) = (bxrp − xboc, byrp − yboc)

and upper right corner at (xll+w, yll+h) wherew and h are the width and height of
the bitmap, respectively. Fragments in the array are produced if the corresponding
bit in the bitmap is 1 and not produced otherwise. The associated data for each
fragment are those associated with the current raster position. Once the fragments
have been produced, the current raster position is updated:

(xrp, yrp)← (xrp + xbi, yrp + ybi).

The z and w values of the current raster position remain unchanged.
Calling Bitmap will result in an INVALID FRAMEBUFFER OPERATION error

if the object bound to DRAW FRAMEBUFFER BINDING is not framebuffer complete
(see section 4.4.4).

Version 3.0 (September 23, 2008)

3.8. BITMAPS 175

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

	 	 	
	 	 	
	 	 	

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � � � � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

! ! !
! ! !
! ! !

" " "
" " "
" " "

#
#
#

$ $ $
$ $ $
$ $ $

% % %
% % %
% % %

& & &
& & &
& & &

' ' '
' ' '
' ' '

h = 12

w = 8

ybo = 1.0

xbo = 2.5

Figure 3.9. A bitmap and its associated parameters. xbi and ybi are not shown.

Bitmap Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE BUFFERS is one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner at (Xrp, Yrp), and its upper
right corner at (Xrp + w, Yrp + h), where w and h are the width and height of
the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 176

3.9 Texturing

Texturing maps a portion of one or more specified images onto each primitive for
which texturing is enabled. This mapping is accomplished by using the color of an
image at the location indicated by a texture coordinate set’s (s, t, r, q) cordinates.

The internal data type of a texture may be fixed-point, floating-point, signed
integer or unsigned integer, depending on the internal format of the texture. The
correspondence between the internal format and the internal data type is given in ta-
bles 3.16-3.18. Fixed-point and floating-point textures return a floating-point value
and integer textures return signed or unsigned integer values. When a fragment
shader is active, the shader is responsible for interpreting the result of a texture
lookup as the correct data type, otherwise the result is undefined. When not us-
ing a fragment shader, floating-point texture values are assumed, and the results of
using integer textures in this case are undefined.

Six types of texture are supported; each is a collection of images built from one-
, two-, or three-dimensional array of image elements referred to as texels. One-,
two-, and three-dimensional textures consist respectively of one-, two-, or three-
dimensional texel arrays. One- and two-dimensional array textures are arrays of
one- or two-dimensional images, consisting of one or more layers. Finally, a cube
map is a special two-dimensional array texture with six layers that represent the
faces of a cube. When accessing a cube map, the texture coordinates are projected
onto one of the six faces of the cube.

Implementations must support texturing using at least two images at a time.
Each fragment or vertex carries multiple sets of texture coordinates (s, t, r, q)
which are used to index separate images to produce color values which are collec-
tively used to modify the resulting transformed vertex or fragment color. Texturing
is specified only for RGBA mode; its use in color index mode is undefined. The
following subsections (up to and including section 3.9.7) specify the GL operation
with a single texture and section 3.9.17 specifies the details of how multiple texture
units interact.

The GL provides two ways to specify the details of how texturing of a primitive
is effected. The first is referred to as fixed-function fragment shading, or simply
fixed-function, and is described in this section. The second is referred to as a
fragment shader, and is described in section 3.12. The specification of the image to
be texture mapped and the means by which the image is filtered when applied to the
primitive are common to both methods and are discussed in this section. The fixed-
function method for determining what RGBA value is produced is also described in
this section. If a fragment shader is active, the method for determining the RGBA
value is specified by an application-supplied fragment shader as described in the
OpenGL Shading Language Specification.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 177

When no fragment shader is active, the coordinates used for texturing are
(s/q, t/q, r/q), derived from the original texture coordinates (s, t, r, q). If the q
texture coordinate is less than or equal to zero, the coordinates used for texturing
are undefined. When a fragment shader is active, the (s, t, r, q) coordinates are
available to the fragment shader. The coordinates used for texturing in a fragment
shader are defined by the OpenGL Shading Language Specification.

3.9.1 Texture Image Specification

The command

void TexImage3D(enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, void *data);

is used to specify a three-dimensional texture image. target must be one of
TEXTURE 3D for a three-dimensional texture or TEXTURE 2D ARRAY for an two-
dimensional array texture. Additionally, target may be either PROXY TEXTURE 3D

for a three-dimensional proxy texture, or PROXY TEXTURE 2D ARRAY for a two-
dimensional proxy array texture, as discussed in section 3.9.11. format, type, and
data match the corresponding arguments to DrawPixels (refer to section 3.7.4);
they specify the format of the image data, the type of those data, and a reference to
the image data in the currently bound pixel unpack buffer or client memory. The
format STENCIL INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are specified by the width and height parameters to TexImage3D.
The values of UNPACK ROW LENGTH and UNPACK ALIGNMENT control the row-to-
row spacing in these images in the same manner as DrawPixels. If the value of
the integer parameter UNPACK IMAGE HEIGHT is not positive, then the number
of rows in each two-dimensional image is height; otherwise the number of rows
is UNPACK IMAGE HEIGHT. Each two-dimensional image comprises an integral
number of rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image re-
lies on the integer parameter UNPACK SKIP IMAGES. If UNPACK SKIP IMAGES

is positive, the pointer is advanced by UNPACK SKIP IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted in the same manner as DrawPixels.

The selected groups are processed exactly as for DrawPixels, stopping just be-
fore final conversion. If the internalformat of the texture is signed or unsigned

Version 3.0 (September 23, 2008)

3.9. TEXTURING 178

integer, the components are clamped to the representable range of the internal for-
mat. For signed formats, this is [−2n−1, 2n−1 − 1] where n is the number of bits
per component; for unsigned formats, the range is [0, 2n − 1]. For color com-
ponent groups, if the internalformat of the texture is fixed-point, the R, G, B, and
A values are clamped to [0, 1]. For depth component groups, the depth value is
clamped to [0, 1]. Otherwise, values are not modified. Stencil index values are
masked by 2n − 1, where n is the number of stencil bits in the internal format res-
olution (see below). If the base internal format is DEPTH STENCIL and format is
not DEPTH STENCIL, then the values of the stencil index texture components are
undefined.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 3.15 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format of
the texture image. internalformat may be specified as one of the internal format
symbolic constants listed in table 3.15, as one of the sized internal format symbolic
constants listed in tables 3.16- 3.18, as one of the generic compressed internal for-
mat symbolic constants listed in table 3.19, or as one of the specific compressed
internal format symbolic constants (if listed in table 3.19). internalformat may (for
backwards compatibility with the 1.0 version of the GL) also take on the integer
values 1, 2, 3, and 4, which are equivalent to symbolic constants LUMINANCE,
LUMINANCE ALPHA, RGB, and RGBA respectively. Specifying a value for internal-
format that is not one of the above values generates the error INVALID VALUE.

Textures with a base internal format of DEPTH COMPONENT or
DEPTH STENCIL are supported by texture image specification com-
mands only if target is TEXTURE 1D, TEXTURE 2D, TEXTURE 1D ARRAY,
TEXTURE 2D ARRAY, TEXTURE CUBE MAP, PROXY TEXTURE 1D,
PROXY TEXTURE 2D, PROXY TEXTURE 1D ARRAY, PROXY TEXTURE 2D ARRAY,
or PROXY TEXTURE CUBE MAP. Using these formats in conjunction with any
other target will result in an INVALID OPERATION error.

Textures with a base internal format of DEPTH COMPONENT or
DEPTH STENCIL require either depth component data or depth/stencil com-
ponent data. Textures with other base internal formats require RGBA component
data. The error INVALID OPERATION is generated if one of the base internal
format and format is DEPTH COMPONENT or DEPTH STENCIL, and the other is
neither of these values.

Textures with integer internal formats tables 3.16- 3.17 require integer data.
The error INVALID OPERATION is generated if the internal format is integer and
format is not one of the integer formats listed in table 3.6; if the internal format is
not integer and format is an integer format; or if format is an integer format and

Version 3.0 (September 23, 2008)

3.9. TEXTURING 179

Base Internal Format RGBA, Depth, and Stencil Values Internal Components
ALPHA A A

DEPTH COMPONENT Depth D

DEPTH STENCIL Depth,Stencil D,S
LUMINANCE R L

LUMINANCE ALPHA R,A L,A
INTENSITY R I

RED R R

RG R,G R,G
RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture, table, or filter components. See section 3.9.13 for a description of the
texture components R, G, B, A, L, I , D, and S.

type is FLOAT.
The GL provides no specific compressed internal formats but does provide a

mechanism to obtain token values for such formats provided by extensions. The
number of specific compressed internal formats supported by the renderer can
be obtained by querying the value of NUM COMPRESSED TEXTURE FORMATS. The
set of specific compressed internal formats supported by the renderer can be ob-
tained by querying the value of COMPRESSED TEXTURE FORMATS. The only val-
ues returned by this query are those corresponding to formats suitable for general-
purpose usage. The renderer will not enumerate formats with restrictions that need
to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borders), internalformat is replaced by the corre-
sponding base internal format and the texture image will not be compressed by the
GL.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 180

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, depth,
and stencil values to texture components is equivalent to the mapping of the cor-
responding base internal format’s components, as specified in table 3.15; the type
(unsigned int, float, etc.) is assigned the same type specified by internalformat;
and the memory allocation per texture component is assigned by the GL to match
the allocations listed in tables 3.16- 3.18 as closely as possible. (The definition of
closely is left up to the implementation. However, a non-zero number of bits must
be allocated for each component whose desired allocation in tables 3.16- 3.18 is
non-zero, and zero bits must be allocated for all other components).

Required Texture Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized in-
ternal formats. Requesting one of these internal formats for any texture type will
allocate exactly the internal component sizes and types shown for that format in
tables 3.16- 3.17:

• Color formats:

– RGBA32F, RGBA32I, RGBA32UI, RGBA16, RGBA16F, RGBA16I,
RGBA16UI, RGBA8, RGBA8I, RGBA8UI, SRGB8 ALPHA8, and
RGB10 A2.

– R11F G11F B10F.

– RG32F, RG32I, RG32UI, RG16, RG16F, RG16I, RG16UI, RG8, RG8I,
and RG8UI.

– R32F, R32I, R32UI, R16F, R16I, R16UI, R16, R8, R8I, and R8UI.

– ALPHA8.

• Color formats (texture-only):

– RGB32F, RGB32I, and RGB32UI.

– RGB16F, RGB16I, RGB16UI, and RGB16.

– RGB8, RGB8I, RGB8UI, and SRGB8.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 181

– RGB9 E5.

– COMPRESSED RG RGTC2 and COMPRESSED SIGNED RG RGTC2.

– COMPRESSED RED RGTC1 and COMPRESSED SIGNED RED RGTC1.

• Depth formats: DEPTH COMPONENT32F, DEPTH COMPONENT24, and
DEPTH COMPONENT16.

• Combined depth+stencil formats: DEPTH32F STENCIL8 and
DEPTH24 STENCIL8.

Encoding of Special Internal Formats

If internalformat is R11F G11F B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.1.3 and 2.1.4.

If internalformat is RGB9 E5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

redc = max(0,min(sharedexpmax, red))
greenc = max(0,min(sharedexpmax, green))
bluec = max(0,min(sharedexpmax, blue))

where

sharedexpmax =
(2N − 1)

2N
2Emax−B.

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and Emax is the maximum allowed biased exponent value (31).

The largest clamped component, maxc, is determined:

maxc = max(redc, greenc, bluec)

A preliminary shared exponent expp is computed:

expp = max(−B − 1, blog2(maxc)c) + 1 +B

A refined shared exponent exps is computed:

maxs =
⌊ maxc

2expp−B−N
+ 0.5

⌋
Version 3.0 (September 23, 2008)

3.9. TEXTURING 182

exps =

{
expp, 0 ≤ maxs < 2N

expp + 1, maxs = 2N

Finally, three integer values in the range 0 to 2N − 1 are computed:

reds =
⌊

redc

2exps−B−N
+ 0.5

⌋
greens =

⌊ greenc

2exps−B−N
+ 0.5

⌋
blues =

⌊
bluec

2exps−B−N
+ 0.5

⌋

The resulting reds, greens, blues, and exps are stored in the red, green, blue,
and shared bits respectively of the texture image.

An implementation accepting pixel data of type UNSIGNED INT 5 9 9 9 REV

with format RGB is allowed to store the components “as is” if the implementation
can determine the current pixel transfer state acts as an identity transform on the
components.

Sized Base R G B A Shared
Internal Format Internal Format bits bits bits bits bits
ALPHA4 ALPHA 4
ALPHA8 ALPHA 8
ALPHA12 ALPHA 12
ALPHA16 ALPHA 16
R8 RED 8
R16 RED 16
RG8 RG 8 8
RG16 RG 16 16
R3 G3 B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGB8 RGB 8 8 8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16

Sized internal color formats continued on next page

Version 3.0 (September 23, 2008)

3.9. TEXTURING 183

Sized internal color formats continued from previous page
Sized Base R G B A Shared
Internal Format Internal Format bits bits bits bits bits
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5 A1 RGBA 5 5 5 1
RGBA8 RGBA 8 8 8 8
RGB10 A2 RGBA 10 10 10 2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16
SRGB8 RGB 8 8 8
SRGB8 ALPHA8 RGBA 8 8 8 8
R16F RED f16
RG16F RG f16 f16
RGB16F RGB f16 f16 f16
RGBA16F RGBA f16 f16 f16 f16
R32F RED f32
RG32F RG f32 f32
RGB32F RGB f32 f32 f32
RGBA32F RGBA f32 f32 f32 f32
R11F G11F B10F RGB f11 f11 f10
RGB9 E5 RGB 9 9 9 5
R8I RED i8
R8UI RED ui8
R16I RED i16
R16UI RED ui16
R32I RED i32
R32UI RED ui32
RG8I RG i8 i8
RG8UI RG ui8 ui8
RG16I RG i16 i16
RG16UI RG ui16 ui16
RG32I RG i32 i32
RG32UI RG ui32 ui32
RGB8I RGB i8 i8 i8
RGB8UI RGB ui8 ui8 ui8
RGB16I RGB i16 i16 i16

Sized internal color formats continued on next page

Version 3.0 (September 23, 2008)

3.9. TEXTURING 184

Sized internal color formats continued from previous page
Sized Base R G B A Shared
Internal Format Internal Format bits bits bits bits bits
RGB16UI RGB ui16 ui16 ui16
RGB32I RGB i32 i32 i32
RGB32UI RGB ui32 ui32 ui32
RGBA8I RGBA i8 i8 i8 i8
RGBA8UI RGBA ui8 ui8 ui8 ui8
RGBA16I RGBA i16 i16 i16 i16
RGBA16UI RGBA ui16 ui16 ui16 ui16
RGBA32I RGBA i32 i32 i32 i32
RGBA32UI RGBA ui32 ui32 ui32 ui32

Table 3.16: Correspondence of sized internal color formats to base
internal formats, internal data type, and desired component reso-
lutions for each sized internal format. The component resolution
prefix indicates the internal data type: f is floating point, i is signed
integer, ui is unsigned integer, and no prefix is fixed-point.

Sized Base A L I
Internal Format Internal Format bits bits bits
LUMINANCE4 LUMINANCE 4
LUMINANCE8 LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4 ALPHA4 LUMINANCE ALPHA 4 4
LUMINANCE6 ALPHA2 LUMINANCE ALPHA 2 6
LUMINANCE8 ALPHA8 LUMINANCE ALPHA 8 8
LUMINANCE12 ALPHA4 LUMINANCE ALPHA 4 12
LUMINANCE12 ALPHA12 LUMINANCE ALPHA 12 12
LUMINANCE16 ALPHA16 LUMINANCE ALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16

Sized internal luminance formats continued on next page

Version 3.0 (September 23, 2008)

3.9. TEXTURING 185

Sized Base D S
Internal Format Internal Format bits bits
DEPTH COMPONENT16 DEPTH COMPONENT 16
DEPTH COMPONENT24 DEPTH COMPONENT 24
DEPTH COMPONENT32 DEPTH COMPONENT 32
DEPTH COMPONENT32F DEPTH COMPONENT f32
DEPTH24 STENCIL8 DEPTH STENCIL 24 8
DEPTH32F STENCIL8 DEPTH STENCIL f32 8

Table 3.18: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and desired component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: f is floating point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point.

Sized internal luminance formats continued from previous page
Sized Base A L I
Internal Format Internal Format bits bits bits
SLUMINANCE LUMINANCE 8
SLUMINANCE ALPHA8 LUMINANCE ALPHA 8 8
Table 3.17: Correspondence of sized internal luminance and inten-
sity formats to base internal formats, internal data type, and desired
component resolutions for each sized internal format. The compo-
nent resolution prefix indicates the internal data type: f is floating
point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point.

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 3.15. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImage1D (see below) parameter (except target), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed

Version 3.0 (September 23, 2008)

3.9. TEXTURING 186

Compressed Internal Format Base Internal Format Type
COMPRESSED ALPHA ALPHA Generic
COMPRESSED LUMINANCE LUMINANCE Generic
COMPRESSED LUMINANCE ALPHA LUMINANCE ALPHA Generic
COMPRESSED INTENSITY INTENSITY Generic
COMPRESSED RED RED Generic
COMPRESSED RG RG Generic
COMPRESSED RGB RGB Generic
COMPRESSED RGBA RGBA Generic
COMPRESSED SRGB RGB Generic
COMPRESSED SRGB ALPHA RGBA Generic
COMPRESSED SLUMINANCE LUMINANCE Generic
COMPRESSED SLUMINANCE ALPHA LUMINANCE ALPHA Generic
COMPRESSED RED RGTC1 RED Specific
COMPRESSED SIGNED RED RGTC1 RED Specific
COMPRESSED RG RGTC2 RG Specific
COMPRESSED SIGNED RG RGTC2 RG Specific

Table 3.19: Generic and specific compressed internal formats. The specific
RGTC formats are described in appendix C.1.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 187

image format may not be affected by the data parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.9.11.

The image itself (referred to by data) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of width width from left to right; height rows are stacked from bottom
to top forming a single two-dimensional image slice; and depth slices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of a texel as described by table 3.15.
Counting from zero, each resulting N th texel is assigned internal integer coordi-
nates (i, j, k), where

i = (N mod width)− wb

j = (b N

width
c mod height)− hb

k = (b N

width× height
c mod depth)− db

and wb, hb, and db are the specified border width, height, and depth. wb and hb are
the specified border value; db is the specified border value if target is TEXTURE 3D,
or zero if target is TEXTURE 2D ARRAY. Thus the last two-dimensional image slice
of the three-dimensional image is indexed with the highest value of k.

Each color component is converted (by rounding to nearest) to a fixed-point
value with n bits, where n is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used
represents each value k/(2n − 1), where k ∈ {0, 1, . . . , 2n − 1}, as k (e.g. 1.0 is
represented in binary as a string of all ones).

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed below, under Mipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID VALUE is generated.

The border argument to TexImage3D is a border width. The significance of
borders is described below. The border width affects the dimensions of the texture
image: let

ws = wt + 2wb

hs = ht + 2hb

ds = dt + 2db

(3.15)

Version 3.0 (September 23, 2008)

3.9. TEXTURING 188

where ws, hs, and ds are the specified image width, depth, and depth, and wt,
ht, and dt are the dimensions of the texture image internal to the border. If wt, ht,
or dt are less than zero, then the error INVALID VALUE is generated.

An image with zero width, height, or depth indicates the null texture. If
the null texture is specified for the level-of-detail specified by texture parameter
TEXTURE BASE LEVEL (see section 3.9.4), it is as if texturing were disabled.

Currently, the maximum border width bt is 1. If border is less than zero, or
greater than bt, then the error INVALID VALUE is generated.

The maximum allowable width, height, or depth of a texel array for a three-
dimensional texture is an implementation dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 2k−lod + 2bt
for image arrays of level-of-detail 0 through k, where k is the log base 2 of
MAX 3D TEXTURE SIZE, lod is the level-of-detail of the image array, and bt is
the maximum border width. It may be zero for image arrays of any level-of-detail
greater than k. The error INVALID VALUE is generated if the specified image is
too large to be stored under any conditions.

If a pixel unpack buffer object is bound and storing texture data would access
memory beyond the end of the pixel unpack buffer, an INVALID OPERATION error
results.

In a similar fashion, the maximum allowable width of a texel array for a one-
or two-dimensional, or one- or two-dimensional array texture, and the maximum
allowable height of a two-dimensional or two-dimensional array texture, must be
at least 2k−lod +2bt for image arrays of level 0 through k, where k is the log base 2
of MAX TEXTURE SIZE. The maximum allowable width and height of a cube map
texture must be the same, and must be at least 2k−lod + 2bt for image arrays level
0 through k, where k is the log base 2 of MAX CUBE MAP TEXTURE SIZE. The
maximum number of layers for one- and two-dimensional array textures (height or
depth, respectively) must be at least MAX ARRAY TEXTURE LAYERS for all levels.

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section 3.9.10.

The command

void TexImage2D(enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);

is used to specify a two-dimensional texture image. target must be one
of TEXTURE 2D for a two-dimensional texture, TEXTURE 1D ARRAY for a
one-dimensional array texture, or one of TEXTURE CUBE MAP POSITIVE X,

Version 3.0 (September 23, 2008)

3.9. TEXTURING 189

TEXTURE CUBE MAP NEGATIVE X, TEXTURE CUBE MAP POSITIVE Y,
TEXTURE CUBE MAP NEGATIVE Y, TEXTURE CUBE MAP POSITIVE Z, or
TEXTURE CUBE MAP NEGATIVE Z for a cube map texture. Additionally, tar-
get may be either PROXY TEXTURE 2D for a two-dimensional proxy texture,
PROXY TEXTURE 1D ARRAY for a one-dimensional proxy array texture, or
PROXY TEXTURE CUBE MAP for a cube map proxy texture in the special case
discussed in section 3.9.11. The other parameters match the corresponding
parameters of TexImage3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that

• The border depth, db, is zero, and the depth of the image is always 1 regard-
less of the value of border.

• The border height, hb, is zero if target is TEXTURE 1D ARRAY, and border
otherwise.

• Convolution will be performed on the image (possibly changing its width
and height) if SEPARABLE 2D or CONVOLUTION 2D is enabled.

• UNPACK SKIP IMAGES is ignored.

A two-dimensional texture consists of a single two-dimensional texture image.
A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. The TEXTURE CUBE MAP * targets listed above up-
date their appropriate cube map face 2D texture image. Note that the six cube map
two-dimensional image tokens such as TEXTURE CUBE MAP POSITIVE X are used
when specifying, updating, or querying one of a cube map’s six two-dimensional
images, but when enabling cube map texturing or binding to a cube map texture
object (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), the TEXTURE CUBE MAP target is specified.

When the target parameter to TexImage2D is one of the six cube map two-
dimensional image targets, the error INVALID VALUE is generated if the width and
height parameters are not equal.

Finally, the command

void TexImage1D(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, void *data);

Version 3.0 (September 23, 2008)

3.9. TEXTURING 190

is used to specify a one-dimensional texture image. target must be either
TEXTURE 1D, or PROXY TEXTURE 1D in the special case discussed in sec-
tion 3.9.11.)

For the purposes of decoding the texture image, TexImage1D is equivalent to
calling TexImage2D with corresponding arguments and height of 1, except that

• The border height and depth (hb and db) are always zero, regardless of the
value of border.

• Convolution will be performed on the image (possibly changing its width)
only if CONVOLUTION 1D is enabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory. This copying effectively places the decoded image in-
side a border of the maximum allowable width bt whether or not a border has been
specified (see figure 3.10) 1. If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the texel
array. A three-dimensional texel array has width, height, and depth ws, hs, and
ds as defined in equation 3.15. A two-dimensional texel array has depth ds = 1,
with height hs and width ws as above, and a one-dimensional texel array has depth
ds = 1, height hs = 1, and width ws as above.

An element (i, j, k) of the texel array is called a texel (for a two-dimensional
texture or one-dimensional array texture, k is irrelevant; for a one-dimensional
texture, j and k are both irrelevant). The texture value used in texturing a frag-
ment is determined by that fragment’s associated (s, t, r) coordinates, but may not
correspond to any actual texel. See figure 3.10.

If the data argument of TexImage1D, TexImage2D, or TexImage3D is a null
pointer (a zero-valued pointer in the C implementation), and the pixel unpack
buffer object is zero, a one-, two-, or three-dimensional texel array is created
with the specified target, level, internalformat, border, width, height, and depth,
but with unspecified image contents. In this case no pixel values are accessed in
client memory, and no pixel processing is performed. Errors are generated, how-
ever, exactly as though the data pointer were valid. Otherwise if the pixel unpack
buffer object is non-zero, the data argument is treatedly normally to refer to the
beginning of the pixel unpack buffer object’s data.

1 Figure 3.10 needs to show a three-dimensional texture image.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 191

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure 3.10. A texture image and the coordinates used to access it. This is a two-
dimensional texture with n = 3 and m = 2. A one-dimensional texture would
consist of a single horizontal strip. α and β, values used in blending adjacent texels
to obtain a texture value, are also shown.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 192

3.9.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

defines a two-dimensional texel array in exactly the manner of TexImage2D, ex-
cept that the image data are taken from the framebuffer rather than from client
memory. Currently, target must be one of TEXTURE 2D, TEXTURE 1D ARRAY,
TEXTURE CUBE MAP POSITIVE X, TEXTURE CUBE MAP NEGATIVE X,
TEXTURE CUBE MAP POSITIVE Y, TEXTURE CUBE MAP NEGATIVE Y,
TEXTURE CUBE MAP POSITIVE Z, or TEXTURE CUBE MAP NEGATIVE Z. x, y,
width, and height correspond precisely to the corresponding arguments to Copy-
Pixels (refer to section 4.3.3); they specify the image’s width and height, and the
lower left (x, y) coordinates of the framebuffer region to be copied. The image is
taken from the framebuffer exactly as if these arguments were passed to CopyP-
ixels with argument type set to COLOR, DEPTH, or DEPTH STENCIL, depending
on internalformat, stopping after pixel transfer processing is complete. RGBA
data is taken from the current color buffer, while depth component and stencil
index data are taken from the depth and stencil buffers, respectively. The er-
ror INVALID OPERATION is generated if depth component data is required and no
depth buffer is present; if stencil index data is required and no stencil buffer is
present; if integer RGBA data is required and the format of the current color buffer
is not integer; or if floating- or fixed-point RGBA data is required and the format
of the current color buffer is integer.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, A, or depth values, and masking of the stencil
index values from the resulting pixel groups. Parameters level, internalformat, and
border are specified using the same values, with the same meanings, as the equiv-
alent arguments of TexImage2D, except that internalformat may not be specified
as 1, 2, 3, or 4. An invalid value specified for internalformat generates the error
INVALID ENUM. The constraints on width, height, and border are exactly those for
the equivalent arguments of TexImage2D.

When the target parameter to CopyTexImage2D is one of the six cube map
two-dimensional image targets, the error INVALID VALUE is generated if the width
and height parameters are not equal.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 193

The command

void CopyTexImage1D(enum target, int level,
enum internalformat, int x, int y, sizei width,
int border);

defines a one-dimensional texel array in exactly the manner of TexImage1D, ex-
cept that the image data are taken from the framebuffer, rather than from client
memory. Currently, target must be TEXTURE 1D. For the purposes of decoding the
texture image, CopyTexImage1D is equivalent to calling CopyTexImage2D with
corresponding arguments and height of 1, except that the height of the image is
always 1, regardless of the value of border. level, internalformat, and border are
specified using the same values, with the same meanings, as the equivalent argu-
ments of TexImage1D, except that internalformat may not be specified as 1, 2,
3, or 4. The constraints on width and border are exactly those of the equivalent
arguments of TexImage1D.

Six additional commands,

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, void *data);

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data);

void TexSubImage1D(enum target, int level, int xoffset,
sizei width, enum format, enum type, void *data);

void CopyTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D(enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

void CopyTexSubImage1D(enum target, int level,
int xoffset, int x, int y, sizei width);

respecify only a rectangular subregion of an existing texel array. No change is
made to the internalformat, width, height, depth, or border parameters of the spec-
ified texel array, nor is any change made to texel values outside the specified
subregion. Currently the target arguments of TexSubImage1D and CopyTex-
SubImage1D must be TEXTURE 1D, the target arguments of TexSubImage2D

Version 3.0 (September 23, 2008)

3.9. TEXTURING 194

and CopyTexSubImage2D must be one of TEXTURE 2D, TEXTURE 1D ARRAY,
TEXTURE CUBE MAP POSITIVE X, TEXTURE CUBE MAP NEGATIVE X,
TEXTURE CUBE MAP POSITIVE Y, TEXTURE CUBE MAP NEGATIVE Y,
TEXTURE CUBE MAP POSITIVE Z, or TEXTURE CUBE MAP NEGATIVE Z, and the
target arguments of TexSubImage3D and CopyTexSubImage3D must be
TEXTURE 3D or TEXTURE 2D ARRAY. The level parameter of each command spec-
ifies the level of the texel array that is modified. If level is less than zero or greater
than the base 2 logarithm of the maximum texture width, height, or depth, the error
INVALID VALUE is generated.

TexSubImage3D arguments width, height, depth, format, type, and data match
the corresponding arguments to TexImage3D, meaning that they are specified us-
ing the same values, and have the same meanings. Likewise, TexSubImage2D
arguments width, height, format, type, and data match the corresponding argu-
ments to TexImage2D, and TexSubImage1D arguments width, format, type, and
data match the corresponding arguments to TexImage1D.

CopyTexSubImage3D and CopyTexSubImage2D arguments x, y, width,
and height match the corresponding arguments to CopyTexImage2D2. CopyTex-
SubImage1D arguments x, y, and width match the corresponding arguments to
CopyTexImage1D. Each of the TexSubImage commands interprets and processes
pixel groups in exactly the manner of its TexImage counterpart, except that the as-
signment of R, G, B, A, depth, and stencil index pixel group values to the texture
components is controlled by the internalformat of the texel array, not by an argu-
ment to the command. The same constraints and errors apply to the TexSubImage
commands’ argument format and the internalformat of the texel array being re-
specified as apply to the format and internalformat arguments of its TexImage
counterparts.

Arguments xoffset, yoffset, and zoffset of TexSubImage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texel array. The depth argument
associated with CopyTexSubImage3D is always 1, because framebuffer memory
is two-dimensional - only a portion of a single s, t slice of a three-dimensional
texture is replaced by CopyTexSubImage3D.

Negative values of xoffset, yoffset, and zoffset correspond to the coordinates of
border texels, addressed as in figure 3.10. Taking ws, hs, ds, wb, hb, and db to
be the specified width, height, depth, and border width, border height, and border
depth of the texel array, and taking x, y, z, w, h, and d to be the xoffset, yoffset,
zoffset, width, height, and depth argument values, any of the following relationships

2 Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 195

generates the error INVALID VALUE:

x < −wb

x+ w > ws − wb

y < −hb

y + h > hs − hb

z < −db

z + d > ds − db

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j, k], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

k = z + (b n

width ∗ height
c mod d

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangular
subregion of the texel array. Negative values of xoffset and yoffset correspond to
the coordinates of border texels, addressed as in figure 3.10. Taking ws, hs, and bs
to be the specified width, height, and border width of the texel array, and taking x,
y, w, and h to be the xoffset, yoffset, width, and height argument values, any of the
following relationships generates the error INVALID VALUE:

x < −bs
x+ w > ws − bs

y < −bs
y + h > hs − bs

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

Version 3.0 (September 23, 2008)

3.9. TEXTURING 196

The xoffset argument of TexSubImage1D and CopyTexSubImage1D speci-
fies the left texel coordinate of a width-wide subregion of the texel array. Negative
values of xoffset correspond to the coordinates of border texels. Taking ws and bs
to be the specified width and border width of the texel array, and x and w to be the
xoffset and width argument values, either of the following relationships generates
the error INVALID VALUE:

x < −bs
x+ w > ws − bs

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i], where

i = x+ (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. Calling TexSubImage3D, CopyTexSubImage3D, TexSubIm-
age2D, CopyTexSubImage2D, TexSubImage1D, or CopyTexSubImage1D will
result in an INVALID OPERATION error if xoffset, yoffset, or zoffset is not equal to
−bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

If the internal format of the texture image being modified is one of the specific
RGTC formats described in table 3.19, the texture is stored using one of the RGTC
texture image encodings (see appendix C.1). Since RGTC images are easily
edited along 4× 4 texel boundaries, the limitations on subimage location and size
are relaxed for TexSubImage2D, TexSubImage3D, CopyTexSubImage2D, and
CopyTexSubImage3D. These commands will generate an INVALID OPERATION

error if one of the following conditions occurs:

• width is not a multiple of four or equal to TEXTURE WIDTH, unless xoffset
and yoffset are both zero.

• height is not a multiple of four or equal to TEXTURE HEIGHT, unless xoffset
and yoffset are both zero.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 197

• xoffset or yoffset is not a multiple of four.

The contents of any 4 × 4 block of texels of an RGTC compressed texture
image that does not intersect the area being modified are preserved during valid
TexSubImage* and CopyTexSubImage* calls.

Calling CopyTexSubImage3D, CopyTex-
Image2D, CopyTexSubImage2D, CopyTexImage1D, or CopyTexSubImage1D
will result in an INVALID FRAMEBUFFER OPERATION error if the object bound to
READ FRAMEBUFFER BINDING is not framebuffer complete (see section 4.4.4).

3.9.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, such as the RGTC formats defined in ap-
pendix C, or additional formats defined by GL extensions.

The commands

void CompressedTexImage1D(enum target, int level,
enum internalformat, sizei width, int border,
sizei imageSize, void *data);

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, void *data);

void CompressedTexImage3D(enum target, int level,
enum internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, void *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. The target, level, internal-
format, width, height, depth, and border parameters have the same meaning as in
TexImage1D, TexImage2D, and TexImage3D. data refers to compressed image
data stored in the specific compressed image format corresponding to internal-
format. If a pixel unpack buffer is bound (as indicated by a non-zero value of
PIXEL UNPACK BUFFER BINDING), data is an offset into the pixel unpack buffer
and the compressed data is read from the buffer relative to this offset; otherwise,
data is a pointer to client memory and the compressed data is read from client
memory relative to the pointer.

internalformat must be a supported specific compressed internal format. An
INVALID ENUM error will be generated if any other values, including any of the six
generic compressed internal formats, is specified.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 198

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining the internalformat token. Com-
pressed texture images are treated as an array of imageSize ubytes relative to
data. If a pixel unpack buffer object is bound and data + imageSize is greater
than the size of the pixel buffer, an INVALID OPERATION error results. All pixel
storage and pixel transfer modes are ignored when decoding a compressed texture
image. If the imageSize parameter is not consistent with the format, dimensions,
and contents of the compressed image, an INVALID VALUE error results. If the
compressed image is not encoded according to the defined image format, the re-
sults of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zero border values. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in an INVALID OPERATION error.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in
compressed form, providing the same image to CompressedTexImage1D,
CompressedTexImage2D, or CompressedTexImage3D will not result in an
INVALID OPERATION error if the following restrictions are satisfied:

• data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

• target, level, and internalformat match the target, level and format parame-
ters provided to the GetCompressedTexImage call returning data.

• width, height, depth, border, internalformat, and image-
Size match the values of TEXTURE WIDTH, TEXTURE HEIGHT,
TEXTURE DEPTH, TEXTURE BORDER, TEXTURE INTERNAL FORMAT,
and TEXTURE COMPRESSED IMAGE SIZE for image level level in effect at
the time of the GetCompressedTexImage call returning data.

This guarantee applies not just to images returned by GetCompressedTexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

If internalformat is one of the specific RGTC or formats described in table 3.19,
the compressed image data is stored using one of the RGTC compressed texture im-
age encodings (see appendix C.1) The RGTC texture compression algorithm sup-
ports only two-dimensional images without borders. If internalformat is an RGTC

Version 3.0 (September 23, 2008)

3.9. TEXTURING 199

format, CompressedTexImage1D will generate an INVALID ENUM error; Com-
pressedTexImage2D will generate an INVALID OPERATION error if border is
non-zero; and CompressedTexImage3D will generate an INVALID OPERATION

error if border is non-zero or target is not TEXTURE 2D ARRAY.
The commands

void CompressedTexSubImage1D(enum target, int level,
int xoffset, sizei width, enum format, sizei imageSize,
void *data);

void CompressedTexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, void *data);

void CompressedTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, void *data);

respecify only a rectangular region of an existing texel array, with incoming data
stored in a known compressed image format. The target, level, xoffset, yoffset, zoff-
set, width, height, and depth parameters have the same meaning as in TexSubIm-
age1D, TexSubImage2D, and TexSubImage3D. data points to compressed im-
age data stored in the compressed image format corresponding to format. Since
the core GL provides no specific image formats, using any of these six generic
compressed internal formats as format will result in an INVALID ENUM error.

The image pointed to by data and the imageSize parameter are interpreted
as though they were provided to CompressedTexImage1D, CompressedTexIm-
age2D, and CompressedTexImage3D. These commands do not provide for im-
age format conversion, so an INVALID OPERATION error results if format does
not match the internal format of the texture image being modified. If the image-
Size parameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data), an INVALID VALUE error results.

As with CompressedTexImage calls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID OPERATION error.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in com-
pressed form, providing the same image to CompressedTexSubImage1D, Com-
pressedTexSubImage2D, CompressedTexSubImage3D will not result in an
INVALID OPERATION error if the following restrictions are satisfied:

Version 3.0 (September 23, 2008)

3.9. TEXTURING 200

• data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

• target, level, and format match the target, level and format parameters pro-
vided to the GetCompressedTexImage call returning data.

• width, height, depth, format, and imageSize match the val-
ues of TEXTURE WIDTH, TEXTURE HEIGHT, TEXTURE DEPTH,
TEXTURE INTERNAL FORMAT, and TEXTURE COMPRESSED IMAGE SIZE

for image level level in effect at the time of the GetCompressedTexImage
call returning data.

• width, height, depth, format match the values of TEXTURE WIDTH,
TEXTURE HEIGHT, TEXTURE DEPTH, and TEXTURE INTERNAL FORMAT

currently in effect for image level level.

• xoffset, yoffset, and zoffset are all −b, where b is the value of
TEXTURE BORDER currently in effect for image level level.

This guarantee applies not just to images returned by GetCompressedTexIm-
age, but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSubImage3D, CompressedTexSubImage2D, or
CompressedTexSubImage1D will result in an INVALID OPERATION error if xoff-
set, yoffset, or zoffset is not equal to −bs (border width), or if width, height,
and depth do not match the values of TEXTURE WIDTH, TEXTURE HEIGHT, or
TEXTURE DEPTH, respectively. The contents of any texel outside the region modi-
fied by the call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

If internalformat is one of the specific RGTC or formats described in ta-
ble 3.19, the texture is stored using one of the RGTC compressed texture image
encodings (see appendix C.1). If internalformat is an RGTC format, Com-
pressedTexSubImage1D will generate an INVALID ENUM error; Compressed-
TexSubImage2D will generate an INVALID OPERATION error if border is non-
zero; and CompressedTexSubImage3D will generate an INVALID OPERATION

error if border is non-zero or target is not TEXTURE 2D ARRAY. Since RGTC im-
ages are easily edited along 4 × 4 texel boundaries, the limitations on subimage
location and size are relaxed for CompressedTexSubImage2D and Compressed-
TexSubImage3D. These commands will result in an INVALID OPERATION error
if one of the following conditions occurs:

• width is not a multiple of four or equal to TEXTURE WIDTH.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 201

• height is not a multiple of four or equal to TEXTURE HEIGHT.

• xoffset or yoffset is not a multiple of four.

The contents of any 4 × 4 block of texels of an RGTC compressed texture
image that does not intersect the area being modified are preserved during valid
TexSubImage* and CopyTexSubImage* calls.

3.9.4 Texture Parameters

Various parameters control how the texel array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname,

T *params);
void TexParameterI{i ui}v(enum target, enum pname,

T *params);

target is
the target, either TEXTURE 1D, TEXTURE 2D, TEXTURE 3D, TEXTURE 1D ARRAY,
TEXTURE 2D ARRAY. or TEXTURE CUBE MAP. pname is a symbolic constant indi-
cating the parameter to be set; the possible constants and corresponding parameters
are summarized in table 3.20. In the first form of the command, param is a value
to which to set a single-valued parameter; in the remaining forms, params is an
array of parameters whose type depends on the parameter being set.

If the value for TEXTURE PRIORITY is specified as an integer, the conversion
for signed integers from table 2.10 is applied to convert this value to floating-point,
followed by clamping the value to lie in [0, 1].

If the values for TEXTURE BORDER COLOR are specified with TexParame-
terIiv or TexParameterIuiv, the values are unmodified and stored with an internal
data type of integer. If specified with TexParameteriv, the conversion for signed
integers from table 2.10 is applied to convert these values to floating-point. Other-
wise the values are unmodified and stored as floating-point.

In the remainder of section 3.9, denote by lodmin, lodmax, levelbase,
and levelmax the values of the texture parameters TEXTURE MIN LOD,
TEXTURE MAX LOD, TEXTURE BASE LEVEL, and TEXTURE MAX LEVEL respec-
tively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 202

Name Type Legal Values
TEXTURE WRAP S enum CLAMP, CLAMP TO EDGE, REPEAT,

CLAMP TO BORDER,
MIRRORED REPEAT

TEXTURE WRAP T enum CLAMP, CLAMP TO EDGE, REPEAT,
CLAMP TO BORDER,
MIRRORED REPEAT

TEXTURE WRAP R enum CLAMP, CLAMP TO EDGE, REPEAT,
CLAMP TO BORDER,
MIRRORED REPEAT

TEXTURE MIN FILTER enum NEAREST,
LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,

TEXTURE MAG FILTER enum NEAREST,
LINEAR

TEXTURE BORDER COLOR 4 floats, any 4 values
integers, or
unsigned
integers

TEXTURE PRIORITY float any value in [0, 1]
TEXTURE MIN LOD float any value
TEXTURE MAX LOD float any value
TEXTURE BASE LEVEL integer any non-negative integer
TEXTURE MAX LEVEL integer any non-negative integer
TEXTURE LOD BIAS float any value
DEPTH TEXTURE MODE enum RED, LUMINANCE, INTENSITY,

ALPHA

TEXTURE COMPARE MODE enum NONE,
COMPARE REF TO TEXTURE

TEXTURE COMPARE FUNC enum LEQUAL, GEQUAL
LESS, GREATER,
EQUAL, NOTEQUAL,
ALWAYS, NEVER

GENERATE MIPMAP boolean TRUE or FALSE

Table 3.20: Texture parameters and their values.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 203

Major Axis Direction Target sc tc ma

+rx TEXTURE CUBE MAP POSITIVE X −rz −ry rx
−rx TEXTURE CUBE MAP NEGATIVE X rz −ry rx
+ry TEXTURE CUBE MAP POSITIVE Y rx rz ry
−ry TEXTURE CUBE MAP NEGATIVE Y rx −rz ry
+rz TEXTURE CUBE MAP POSITIVE Z rx −ry rz
−rz TEXTURE CUBE MAP NEGATIVE Z −rx −ry rz

Table 3.21: Selection of cube map images based on major axis direction of texture
coordinates.

If the value of texture parameter GENERATE MIPMAP is TRUE, specifying or
changing texel arrays may have side effects, which are discussed in the Automatic
Mipmap Generation discussion of section 3.9.7.

3.9.5 Depth Component Textures

Depth textures and the depth components of depth/stencil textures can be treated
as RED, LUMINANCE, INTENSITY or ALPHA textures during texture filtering and
application (see section 3.9.14). The initial state for depth and depth/stencil tex-
tures treats them as LUMINANCE textures except in a forward-compatible context,
where the initial state instead treats them as RED textures.

3.9.6 Cube Map Texture Selection

When cube map texturing is enabled, the
(
s t r

)
texture coordinates are treated

as a direction vector
(
rx ry rz

)
emanating from the center of a cube (the q

coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
magnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on(
rx ry rz

)
. The target column in table 3.21 explains how the major axis direc-

tion maps to the two-dimensional image of a particular cube map target.
Using the sc, tc, and ma determined by the major axis direction as specified in

table 3.21, an updated
(
s t

)
is calculated as follows:

Version 3.0 (September 23, 2008)

3.9. TEXTURING 204

s =
1
2

(
sc

|ma|
+ 1
)

t =
1
2

(
tc
|ma|

+ 1
)

This new
(
s t

)
is used to find a texture value in the determined face’s two-

dimensional texture image using the rules given in sections 3.9.7 through 3.9.8.

3.9.7 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor ρ(x, y) and the level-of-detail parameter
λ(x, y), defined as

λbase(x, y) = log2[ρ(x, y)] (3.16)

λ′(x, y) = λbase(x, y) + clamp(biastexobj + biastexunit + biasshader) (3.17)

λ =


lodmax, λ′ > lodmax

λ′, lodmin ≤ λ′ ≤ lodmax

lodmin, λ′ < lodmin

undefined, lodmin > lodmax

(3.18)

biastexobj is the value of TEXTURE LOD BIAS for the bound texture object (as de-
scribed in section 3.9.4). biastexunit is the value of TEXTURE LOD BIAS for the
current texture unit (as described in section 3.9.13). biasshader is the value of
the optional bias parameter in the texture lookup functions available to fragment
shaders. If the texture access is performed in a fragment shader without a provided

Version 3.0 (September 23, 2008)

3.9. TEXTURING 205

bias, or outside a fragment shader, then biasshader is zero. The sum of these values
is clamped to the range [−biasmax, biasmax] where biasmax is the value of the
implementation defined constant MAX TEXTURE LOD BIAS.

If λ(x, y) is less than or equal to the constant c (see section 3.9.8) the texture
is said to be magnified; if it is greater, the texture is minified. Sampling of minified
textures is described in the remainder of this section, while sampling of magnified
textures is described in section 3.9.8.

The initial values of lodmin and lodmax are chosen so as to never clamp the
normal range of λ. They may be respecified for a specific texture by calling Tex-
Parameter[if] with pname set to TEXTURE MIN LOD or TEXTURE MAX LOD re-
spectively.

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (x, y) that lie within a primitive; define t(x, y) and r(x, y)
analogously. Let

u(x, y) = wt × s(x, y) + δu

v(x, y) = ht × t(x, y) + δv

w(x, y) = dt × r(x, y) + δw

(3.19)

where wt, ht, and dt are as defined by equation 3.15 with ws, hs, and ds equal
to the width, height, and depth of the image array whose level is levelbase. For
a one-dimensional or one-dimensional array texture, define v(x, y) ≡ 0 and
w(x, y) ≡ 0; for a two-dimensional, two-dimensional array, or cube map texture,
define w(x, y) ≡ 0.

(δu, δv, δw) are the texel offsets specified in the OpenGL Shading Lan-
guage texture lookup functions that support offsets. If the texture function
used does not support offsets, or for fixed-function texture accesses, all three
shader offsets are taken to be zero. If any of the offset values are outside the
range of the implementation-defined values MIN PROGRAM TEXEL OFFSET and
MAX PROGRAM TEXEL OFFSET, results of the texture lookup are undefined.

For a polygon, ρ is given at a fragment with window coordinates (x, y) by

ρ = max


√(

∂u

∂x

)2

+
(
∂v

∂x

)2

+
(
∂w

∂x

)2

,

√(
∂u

∂y

)2

+
(
∂v

∂y

)2

+
(
∂w

∂y

)2


(3.20)
where ∂u/∂x indicates the derivative of u with respect to window x, and similarly
for the other derivatives.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 206

For a line, the formula is

ρ =

√(
∂u

∂x
∆x+

∂u

∂y
∆y
)2

+
(
∂v

∂x
∆x+

∂v

∂y
∆y
)2

+
(
∂w

∂x
∆x+

∂w

∂y
∆y
)2/

l,

(3.21)
where ∆x = x2 − x1 and ∆y = y2 − y1 with (x1, y1) and (x2, y2) being the
segment’s window coordinate endpoints and l =

√
∆x2 + ∆y2. For a point, pixel

rectangle, or bitmap, ρ ≡ 1.
While it is generally agreed that equations 3.20 and 3.21 give the best results

when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal ρ with a function f(x, y) subject to these
conditions:

1. f(x, y) is continuous and monotonically increasing in each of |∂u/∂x|,
|∂u/∂y|, |∂v/∂x|, |∂v/∂y|, |∂w/∂x|, and |∂w/∂y|

2. Let

mu = max
{∣∣∣∣∂u∂x

∣∣∣∣ , ∣∣∣∣∂u∂y
∣∣∣∣}

mv = max
{∣∣∣∣∂v∂x

∣∣∣∣ , ∣∣∣∣∂v∂y
∣∣∣∣}

mw = max
{∣∣∣∣∂w∂x

∣∣∣∣ , ∣∣∣∣∂w∂y
∣∣∣∣} .

Then max{mu,mv,mw} ≤ f(x, y) ≤ mu +mv +mw.

Coordinate Wrapping and Texel Selection

After generating u(x, y), v(x, y), and w(x, y), they may be clamped and wrapped
before sampling the texture, depending on the corresponding texture wrap modes.
Let

u′(x, y) =

{
clamp(u(x, y), 0, wt), TEXTURE WRAP S is CLAMP
u(x, y), otherwise

v′(x, y) =

{
clamp(v(x, y), 0, ht), TEXTURE WRAP T is CLAMP
v(x, y), otherwise

w′(x, y) =

{
clamp(w(x, y), 0, ht), TEXTURE WRAP R is CLAMP
w(x, y), otherwise

Version 3.0 (September 23, 2008)

3.9. TEXTURING 207

where clamp(a, b, c) returns b if a < b, c if a > c, and a otherwise.
The value assigned to TEXTURE MIN FILTER is used to determine how the

texture value for a fragment is selected.
When the value of TEXTURE MIN FILTER is NEAREST, the texel in the image

array of level levelbase that is nearest (in Manhattan distance) to (u′, v′, w′) is
obtained. Let (i, j, k) be integers such that

i = wrap(bu′(x, y)c)
j = wrap(bv′(x, y)c)
k = wrap(bw′(x, y)c)

and the value returned by wrap() is defined in table 3.22. For a three-dimensional
texture, the texel at location (i, j, k) becomes the texture value. For two-
dimensional, two-dimensional array, or cube map textures, k is irrelevant, and the
texel at location (i, j) becomes the texture value. For one-dimensional texture or
one-dimensional array textures, j and k are irrelevant, and the texel at location i
becomes the texture value.

For one- and two-dimensional array textures, the texel is obtained from image
layer l, where

l =

{
clamp(bt+ 0.5c, 0, ht − 1), for one-dimensional array textures
clamp(br + 0.5c, 0, dt − 1), for two-dimensional array textures

Wrap mode Result of wrap(coord)

CLAMP

{
clamp(coord, 0, size− 1), for NEAREST filtering
clamp(coord,−1, size), for LINEAR filtering

CLAMP TO EDGE clamp(coord, 0, size− 1)
CLAMP TO BORDER clamp(coord,−1, size)
REPEAT fmod(coord, size)
MIRRORED REPEAT (size− 1)−mirror(fmod(coord, 2× size)− size)

Table 3.22: Texel location wrap mode application. fmod(a, b) returns a − b ×
bab c. mirror(a) returns a if a ≥ 0, and −(1 + a) otherwise. The values
of mode and size are TEXTURE WRAP S and wt, TEXTURE WRAP T and ht, and
TEXTURE WRAP R and dt when wrapping i, j, or k coordinates, respectively.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 208

If the selected (i, j, k), (i, j), or i location refers to a border texel that satisfies
any of the conditions

i < −bs i ≥ wt + bs

j < −bs j ≥ ht + bs

k < −bs k ≥ dt + bs

then the border values defined by TEXTURE BORDER COLOR are used in place of
the non-existent texel. If the texture contains color components, the values of
TEXTURE BORDER COLOR are interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table 3.15. The internal data type of the
border values must be consistent with the type returned by the texture as described
in section 3.9, or the result is undefined. The border values for texture components
stored as fixed-point values are clamped to [0, 1] before they are used. If the tex-
ture contains depth components, the first component of TEXTURE BORDER COLOR

is interpreted as a depth value.
When the value of TEXTURE MIN FILTER is LINEAR, a 2×2×2 cube of texels

in the image array of level levelbase is selected. Let

i0 = wrap(bu′ − 0.5c)
j0 = wrap(bv′ − 0.5c)
k0 = wrap(bw′ − 0.5c)
i1 = wrap(bu′ − 0.5c+ 1)
j1 = wrap(bv′ − 0.5c+ 1)
k1 = wrap(bw′ − 0.5c+ 1)

alpha = frac(u′ − 0.5)
beta = frac(v′ − 0.5)

gamma = frac(w′ − 0.5)

where frac(x) denotes the fractional part of x.
For a three-dimensional texture, the texture value τ is found as

τ = (1− α)(1− β)(1− γ)τi0j0k0 + α(1− β)(1− γ)τi1j0k0

+ (1− α)β(1− γ)τi0j1k0 + αβ(1− γ)τi1j1k0

+ (1− α)(1− β)γτi0j0k1 + α(1− β)γτi1j0k1

+ (1− α)βγτi0j1k1 + αβγτi1j1k1

(3.22)

Version 3.0 (September 23, 2008)

3.9. TEXTURING 209

where τijk is the texel at location (i, j, k) in the three-dimensional texture image.
For a two-dimensional, two-dimensional array, or cube map textures,

τ =(1− α)(1− β)τi0j0 + α(1− β)τi1j0

+ (1− α)βτi0j1 + αβτi1j1

where τij is the texel at location (i, j) in the two-dimensional texture image. For
two-dimensional array textures, all texels are obtained from layer l, where

l = clamp(br + 0.5c, 0, dt − 1).

And for a one-dimensional or one-dimensional array texture,

τ = (1− α)τi0 + ατi1

where τi is the texel at location i in the one-dimensional texture. For one-
dimensional array textures, both texels are obtained from layer l, where

l = clamp(bt+ 0.5c, 0, ht − 1).

For any texel in the equation above that refers to a border texel outside the
defined range of the image, the texel value is taken from the texture border color as
with NEAREST filtering.

If all of the following conditions are satisfied, then the value of the selected τijk,
τij , or τi in the above equations is undefined instead of referring to the value of the
texel at location (i, j, k), (i, j), or (i) respectively. See chapter 4 for discussion of
framebuffer objects and their attachments.

• The current DRAW FRAMEBUFFER BINDING names a framebuffer object F.

• The texture is attached to one of the attachment points, A, of framebuffer
object F.

• The value of TEXTURE MIN FILTER is NEAREST or LINEAR, and the value
of FRAMEBUFFER ATTACHMENT TEXTURE LEVEL for attachment point A is
equal to the value of TEXTURE BASE LEVEL

-or-

The value of TEXTURE MIN FILTER is NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR, LINEAR MIPMAP NEAREST,
or LINEAR MIPMAP LINEAR, and the value of
FRAMEBUFFER ATTACHMENT TEXTURE LEVEL for attachment point A
is within the the inclusive range from TEXTURE BASE LEVEL to q.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 210

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR, LINEAR MIPMAP NEAREST, and
LINEAR MIPMAP LINEAR each require the use of a mipmap. A mipmap is
an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of level levelbase, excluding its
border, has dimensions wt × ht × dt, then there are blog2(maxsize)c + 1 levels
in the mipmap. where

maxsize =


wt, for 1D and 1D array textures
max(wt, ht), for 2D, 2D array, and cube map textures
max(wt, ht, dt), for 3D textures

Numbering the levels such that level levelbase is the 0th level, the ith array has
dimensions

max(1, bwt

wd
c)×max(1, bht

hd
c)×max(1, b dt

dd
c)

where

wd = 2i

hd =

{
1, for 1D and 1D array textures
2i, otherwise

dd =

{
2i, for 3D textures
1, otherwise

until the last array is reached with dimension 1× 1× 1.
Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-

TexImage2D, TexImage1D, or CopyTexImage1D; the array being set is indicated
with the level-of-detail argument level. Level-of-detail numbers proceed from
levelbase for the original texel array through p = blog2(maxsize)c + levelbase

with each unit increase indicating an array of half the dimensions of the previous
one (rounded down to the next integer if fractional) as already described. All ar-
rays from levelbase through q = min{p, levelmax} must be defined, as discussed
in section 3.9.10.

The values of levelbase and levelmax may be respecified for a specific tex-
ture by calling TexParameter[if] with pname set to TEXTURE BASE LEVEL or
TEXTURE MAX LEVEL respectively.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 211

The error INVALID VALUE is generated if either value is negative.
The mipmap is used in conjunction with the level of detail to approximate the

application of an appropriately filtered texture to a fragment. Let c be the value
of λ at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values of λ where
λ > c).

For mipmap filters NEAREST MIPMAP NEAREST and
LINEAR MIPMAP NEAREST, the dth mipmap array is selected, where

d =


levelbase, λ ≤ 1

2

dlevelbase + λ+ 1
2e − 1, λ > 1

2 , levelbase + λ ≤ q + 1
2

q, λ > 1
2 , levelbase + λ > q + 1

2

(3.23)

The rules for NEAREST or LINEAR filtering are then applied to the selected
array. Specifically, the coordinate (u, v, w) is computed as in equation 3.19, with
ws, hs, and ds equal to the width, height, and depth of the image array whose level
is d.

For mipmap filters NEAREST MIPMAP LINEAR and LINEAR MIPMAP LINEAR,
the level d1 and d2 mipmap arrays are selected, where

d1 =

{
q, levelbase + λ ≥ q
blevelbase + λc, otherwise

(3.24)

d2 =

{
q, levelbase + λ ≥ q
d1 + 1, otherwise

(3.25)

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values τ1 and τ2. Specifically,
for level d1, the coordinate (u, v, w) is computed as in equation 3.19, with ws, hs,
and ds equal to the width, height, and depth of the image array whose level is d1.
For level d2 the coordinate (u′, v′, w′) is computed as in equation 3.19, with ws,
hs, and ds equal to the width, height, and depth of the image array whose level is
d2.

The final texture value is then found as

τ = [1− frac(λ)]τ1 + frac(λ)τ2.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 212

Automatic Mipmap Generation

If the value of texture parameter GENERATE MIPMAP is TRUE, and a change is
made to the interior or border texels of the levelbase array of a mipmap by one of the
texture image specification operations defined in sections 3.9.1 through 3.9.3, then
a 3 complete set of mipmap arrays (as defined in section 3.9.10) will be computed.
Array levels levelbase + 1 through p are replaced with arrays derived from the
modified levelbase array, regardless of their previous contents. All other mipmap
arrays, including the levelbase array, are left unchanged by this computation.

The internal formats and border widths of the derived mipmap arrays all match
those of the levelbase array, and the dimensions of the derived arrays follow the
requirements described in section 3.9.10.

The contents of the derived arrays are computed by repeated, filtered reduction
of the levelbase array. For one- and two-dimensional array textures, each layer is
filtered independently. No particular filter algorithm is required, though a box filter
is recommended as the default filter. In some implementations, filter quality may
be affected by hints (section 5.7).

Automatic mipmap generation is available only for non-proxy texture image
targets.

Manual Mipmap Generation

Mipmaps can be generated manually with the command

void GenerateMipmap(enum target);

where target is one of TEXTURE 1D, TEXTURE 2D, TEXTURE 3D,
TEXTURE 1D ARRAY, TEXTURE 2D ARRAY, or TEXTURE CUBE MAP. Mipmap
generation affects the texture image attached to target. For cube map textures, an
INVALID OPERATION error is generated if the texture bound to target is not cube
complete, as defined in section 3.9.10.

Mipmap generation replaces texel array levels levelbase + 1 through q with ar-
rays derived from the levelbase array, as described above for Automatic Mipmap
Generation. All other mipmap arrays, including the levelbase array, are left un-
changed by this computation. For arrays in the range levelbase + 1 through q,
inclusive, automatic and manual mipmap generation generate the same derived ar-
rays, given identical levelbase arrays.

3Automatic mipmap generation is not performed for changes resulting from rendering operations
targeting a texel array bound as a color buffer of a framebuffer object.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 213

3.9.8 Texture Magnification

When λ indicates magnification, the value assigned to TEXTURE MAG FILTER

determines how the texture value is obtained. There are two possible values
for TEXTURE MAG FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE MIN FILTER and LINEAR behaves exactly as LINEAR for
TEXTURE MIN FILTER as described in section 3.9.7, including the texture coordi-
nate wrap modes specified in table 3.22. The level-of-detail levelbase texel array
is always used for magnification.

Finally, there is the choice of c, the minification vs. magnification switch-
over point. If the magnification filter is given by LINEAR and the minification
filter is given by NEAREST MIPMAP NEAREST or NEAREST MIPMAP LINEAR, then
c = 0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise c = 0.

3.9.9 Combined Depth/Stencil Textures

If the texture image has a base internal format of DEPTH STENCIL, then the stencil
index texture component is ignored. The texture value τ does not include a stencil
index component, but includes only the depth component.

3.9.10 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on the texture dimensionality.

For one-, two-, or three-dimensional textures and one- or two-dimensional
array textures, a texture is complete if the following conditions all hold true:

• The set of mipmap arrays levelbase through q (where q is defined in the
Mipmapping discussion of section 3.9.7) were each specified with the same
internal format.

• The border widths of each array are the same.

• The dimensions of the arrays follow the sequence described in the Mipmap-
ping discussion of section 3.9.7.

• levelbase ≤ levelmax

• Each dimension of the levelbase array is positive.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 214

• If the internal format of the arrays is integer (see tables 3.16- 3.17,
TEXTURE MAG FILTER must be NEAREST and TEXTURE MIN FILTER must
be NEAREST or NEAREST MIPMAP NEAREST.

Array levels k where k < levelbase or k > q are insignificant to the definition of
completeness.

For cube map textures, a texture is cube complete if the following conditions
all hold true:

• The levelbase arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

• The levelbase arrays were each specified with the same internal format.

• The levelbase arrays each have the same border width.

Finally, a cube map texture is mipmap cube complete if, in addition to being
cube complete, each of the six texture images considered individually is complete.

Effects of Completeness on Texture Application

If one-, two-, or three-dimensional texturing (but not cube map textur-
ing) is enabled for a texture unit at the time a primitive is rasterized, if
TEXTURE MIN FILTER is one that requires a mipmap, and if the texture image
bound to the enabled texture target is not complete, then it is as if texture mapping
were disabled for that texture unit.

If cube map texturing is enabled for a texture unit at the time a primitive
is rasterized, and if the bound cube map texture is not cube complete, then it
is as if texture mapping were disabled for that texture unit. Additionally, if
TEXTURE MIN FILTER is one that requires a mipmap, and if the texture is not
mipmap cube complete, then it is as if texture mapping were disabled for that tex-
ture unit.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be cre-
ated only if a mipmap complete set of image arrays consistent with the requested
array can be supported. A mipmap complete set of arrays is equivalent to a com-
plete set of arrays where levelbase = 0 and levelmax = 1000, and where, excluding
borders, the dimensions of the image array being created are understood to be half
the corresponding dimensions of the next lower numbered array (rounded down to
the next integer if fractional).

Version 3.0 (September 23, 2008)

3.9. TEXTURING 215

3.9.11 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there are
the nine sets of mipmap arrays (one each for the one-, two-, and three-dimensional
texture targets and six for the cube map texture targets) and their number. Each
array has associated with it a width, height (two- and three-dimensional and cube
map only), and depth (three-dimensional only), a border width, an integer describ-
ing the internal format of the image, eight integer values describing the resolu-
tions of each of the red, green, blue, alpha, luminance, intensity, depth, and
stencil components of the image, eight integer values describing the type (un-
signed normalized, integer, floating-point, etc.) of each of the components, a
boolean describing whether the image is compressed or not, and an integer size
of a compressed image. Each initial texel array is null (zero width, height,
and depth, zero border width, internal format 1, with the compressed flag set to
FALSE, a zero compressed size, and zero-sized components). Next, there are the
four sets of texture properties, corresponding to the one-, two-, three-dimensional,
and cube map texture targets. Each set consists of the selected minification and
magnification filters, the wrap modes for s, t (two- and three-dimensional and
cube map only), and r (three-dimensional only), the TEXTURE BORDER COLOR,
two floating-point numbers describing the minimum and maximum level of de-
tail, two integers describing the base and maximum mipmap array, a boolean
flag indicating whether the texture is resident, a boolean indicating whether au-
tomatic mipmap generation should be performed, three integers describing the
depth texture mode, compare mode, and compare function, and the priority as-
sociated with each set of properties. The value of the resident flag is deter-
mined by the GL and may change as a result of other GL operations. The flag
may only be queried, not set, by applications (see section 3.9.12). In the initial
state, the value assigned to TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR,
and the value for TEXTURE MAG FILTER is LINEAR. s, t, and r wrap modes
are all set to REPEAT. The values of TEXTURE MIN LOD and TEXTURE MAX LOD

are -1000 and 1000 respectively. The values of TEXTURE BASE LEVEL and
TEXTURE MAX LEVEL are 0 and 1000 respectively. TEXTURE PRIORITY is 1.0,
and TEXTURE BORDER COLOR is (0,0,0,0). The value of GENERATE MIPMAP

is false. The values of DEPTH TEXTURE MODE, TEXTURE COMPARE MODE, and
TEXTURE COMPARE FUNC are LUMINANCE, NONE, and LEQUAL respectively. The
initial value of TEXTURE RESIDENT is determined by the GL.

In addition to image arrays for one-, two-, and three-dimensional textures, one-
and two-dimensional array textures, and the six image arrays for the cube map tex-
ture, partially instantiated image arrays are maintained for one-, two-, and three-
dimensional textures and one- and two-dimensional array textures. Additionally,

Version 3.0 (September 23, 2008)

3.9. TEXTURING 216

a single proxy image array is maintained for the cube map texture. Each proxy
image array includes width, height, depth, border width, and internal format state
values, as well as state for the red, green, blue, alpha, luminance, intensity, depth,
and stencil component resolutions and types Proxy arrays do not include image
data nor texture parameters. When TexImage3D is executed with target specified
as PROXY TEXTURE 3D, the three-dimensional proxy state values of the specified
level-of-detail are recomputed and updated. If the image array would not be sup-
ported by TexImage3D called with target set to TEXTURE 3D, no error is gener-
ated, but the proxy width, height, depth, border width, and component resolutions
are set to zero, and the component types are set to NONE. If the image array would
be supported by such a call to TexImage3D, the proxy state values are set exactly
as though the actual image array were being specified. No pixel data are transferred
or processed in either case.

Proxy arrays for one- and two-dimensional textures and one- and two-
dimensional array textures are operated on in the same way when TexImage1D
is executed with target specified as PROXY TEXTURE 1D, TexImage2D is executed
with target specified as PROXY TEXTURE 2D or PROXY TEXTURE 1D ARRAY, or
TexImage3D is executed with target specified as PROXY TEXTURE 2D ARRAY.

The cube map proxy arrays are operated on in the same manner when TexIm-
age2D is executed with the target field specified as PROXY TEXTURE CUBE MAP,
with the addition that determining that a given cube map texture is supported with
PROXY TEXTURE CUBE MAP indicates that all six of the cube map 2D images are
supported. Likewise, if the specified PROXY TEXTURE CUBE MAP is not supported,
none of the six cube map 2D images are supported.

There is no image associated with any of the proxy textures. There-
fore PROXY TEXTURE 1D, PROXY TEXTURE 2D, and PROXY TEXTURE 3D, and
PROXY TEXTURE CUBE MAP cannot be used as textures, and their images must
never be queried using GetTexImage. The error INVALID ENUM is generated if
this is attempted. Likewise, there is no non level-related state associated with a
proxy texture, and GetTexParameteriv or GetTexParameterfv may not be called
with a proxy texture target. The error INVALID ENUM is generated if this is at-
tempted.

3.9.12 Texture Objects

In addition to the default textures TEXTURE 1D, TEXTURE 2D, TEXTURE 3D,
TEXTURE 1D ARRAY, TEXTURE 2D ARRAY, and TEXTURE CUBE MAP, named one-,
two-, and three-dimensional, one- and two-dimensional array, and cube map tex-
ture objects can be created and operated upon. The name space for texture objects
is the unsigned integers, with zero reserved by the GL.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 217

A texture object is created by binding an unused name to TEXTURE 1D,
TEXTURE 2D, TEXTURE 3D, TEXTURE 1D ARRAY, TEXTURE 2D ARRAY, or
TEXTURE CUBE MAP. The binding is effected by calling

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused name.
The resulting texture object is a new state vector, comprising all the state val-
ues listed in section 3.9.11, set to the same initial values. If the new texture ob-
ject is bound to TEXTURE 1D, TEXTURE 2D, TEXTURE 3D, TEXTURE 1D ARRAY,
TEXTURE 2D ARRAY, or TEXTURE CUBE MAP, it is and remains a one-, two-, three-
dimensional, one- or two-dimensional array, or cube map texture respectively until
it is deleted.

BindTexture may also be used to bind an existing texture object
to either TEXTURE 1D, TEXTURE 2D, TEXTURE 3D, TEXTURE 1D ARRAY,
TEXTURE 2D ARRAY, or TEXTURE CUBE MAP. The error INVALID OPERATION is
generated if an attempt is made to bind a texture object of different dimensionality
than the specified target. If the bind is successful no change is made to the state of
the bound texture object, and any previous binding to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

In the initial state, TEXTURE 1D, TEXTURE 2D, TEXTURE 3D,
TEXTURE 1D ARRAY, TEXTURE 2D ARRAY, and TEXTURE CUBE MAP have one-,
two-, three-dimensional, one- and two-dimensional array, and cube map tex-
ture state vectors respectively associated with them. In order that access to
these initial textures not be lost, they are treated as texture objects all of
whose names are 0. The initial one-, two-, three-dimensional, one- and two-
dimensional rray, and cube map texture is therefore operated upon, queried,
and applied as TEXTURE 1D, TEXTURE 2D, TEXTURE 3D, TEXTURE 1D ARRAY,
TEXTURE 2D ARRAY, or TEXTURE CUBE MAP respectively while 0 is bound to the
corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If

Version 3.0 (September 23, 2008)

3.9. TEXTURING 218

a texture that is currently bound to one of the targets TEXTURE 1D, TEXTURE 2D,
TEXTURE 3D, TEXTURE 1D ARRAY, TEXTURE 2D ARRAY, or TEXTURE CUBE MAP

is deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture
if any of the images of the texture are attached to a framebuffer object. See sec-
tion 4.4.2 for details.

Unused names in textures are silently ignored, as is the value zero.
The command

void GenTextures(sizei n, uint *textures);

returns n previously unused texture object names in textures. These names are
marked as used, for the purposes of GenTextures only, but they acquire texture
state and a dimensionality only when they are first bound, just as if they were
unused.

An implementation may choose to establish a working set of texture objects on
which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said to be resident. The command

boolean AreTexturesResident(sizei n, uint *textures,
boolean *residences);

returns TRUE if all of the n texture objects named in textures are resident, or if the
implementation does not distinguish a working set. If at least one of the texture
objects named in textures is not resident, then FALSE is returned, and the residence
of each texture object is returned in residences. Otherwise the contents of resi-
dences are not changed. If any of the names in textures are unused or are zero,
FALSE is returned, the error INVALID VALUE is generated, and the contents of res-
idences are indeterminate. The residence status of a single bound texture object
can also be queried by calling GetTexParameteriv or GetTexParameterfv with
target set to the target to which the texture object is bound, and pname set to
TEXTURE RESIDENT.

AreTexturesResident indicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures(sizei n, uint *textures,
clampf *priorities);

Version 3.0 (September 23, 2008)

3.9. TEXTURING 219

sets the priorities of the n texture objects named in textures to the values in priori-
ties. Each priority value is clamped to the range [0,1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calling TexParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfv with target set to the target to
which the texture object is bound, pname set to TEXTURE PRIORITY, and param
or params specifying the new priority value (which is clamped to the range [0,1]
before being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three-
dimensional, one- and two-dimensional array, and cube map texture objects, is
shared among all texture units. A texture object may be bound to more than one
texture unit simultaneously. After a texture object is bound, any GL operations on
that target object affect any other texture units to which the same texture object is
bound.

Texture binding is affected by the setting of the state ACTIVE TEXTURE.
If a texture object is deleted, it as if all texture units which are bound to that

texture object are rebound to texture object zero.

3.9.13 Texture Environments and Texture Functions

The command

void TexEnv{if}(enum target, enum pname, T param);
void TexEnv{if}v(enum target, enum pname, T params);

sets parameters of the texture environment that specifies how texture values are
interpreted when texturing a fragment, or sets per-texture-unit filtering parameters.

target must be one of POINT SPRITE, TEXTURE ENV or
TEXTURE FILTER CONTROL. pname is a symbolic constant indicating the
parameter to be set. In the first form of the command, param is a value to which to
set a single-valued parameter; in the second form, params is a pointer to an array
of parameters: either a single symbolic constant or a value or group of values to
which the parameter should be set.

When target is POINT SPRITE, point sprite rasterization behavior is affected
as described in section 3.4.

When target is TEXTURE FILTER CONTROL, pname must be
TEXTURE LOD BIAS. In this case the parameter is a single signed floating
point value, biastexunit, that biases the level of detail parameter λ as described in
section 3.9.7.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 220

When target is TEXTURE ENV, the possible environment parameters are
TEXTURE ENV MODE, TEXTURE ENV COLOR, COMBINE RGB, COMBINE ALPHA,
RGB SCALE, ALPHA SCALE, SRCn RGB, SRCn ALPHA, OPERANDn RGB, and
OPERANDn ALPHA, where n = 0, 1, or 2. TEXTURE ENV MODE may be set to one of
REPLACE, MODULATE, DECAL, BLEND, ADD, or COMBINE. TEXTURE ENV COLOR is
set to an RGBA color by providing four single-precision floating-point values. If
integers are provided for TEXTURE ENV COLOR, then they are converted to floating-
point as specified in table 2.10 for signed integers.

The value of TEXTURE ENV MODE specifies a texture function. The result of
this function depends on the fragment and the texel array value. The precise form
of the function depends on the base internal formats of the texel arrays that were
last specified.

Cf and Af
4 are the primary color components of the incoming fragment; Cs

and As are the components of the texture source color, derived from the filtered
texture values Rt, Gt, Bt, At, Lt, and It as shown in table 3.23; Cc and Ac are
the components of the texture environment color; Cp and Ap are the components
resulting from the previous texture environment (for texture environment 0, Cp and
Ap are identical to Cf and Af , respectively); and Cv and Av are the primary color
components computed by the texture function.

If fragment color clamping is enabled, all of these color values, including the
results, are clamped to the range [0, 1]. If fragment color clamping is disabled, the
values are not clamped. The texture functions are specified in tables 3.24, 3.25,
and 3.26.

If the value of TEXTURE ENV MODE is COMBINE, the form of the texture func-
tion depends on the values of COMBINE RGB and COMBINE ALPHA, according to
table 3.26. The RGB and ALPHA results of the texture function are then multiplied
by the values of RGB SCALE and ALPHA SCALE, respectively. If fragment color
clamping is enabled, the arguments and results used in table 3.26 are clamped to
[0, 1]. Otherwise, the results are unmodified.

The arguments Arg0, Arg1, and Arg2 are determined by the values of
SRCn RGB, SRCn ALPHA, OPERANDn RGB and OPERANDn ALPHA, where n = 0,
1, or 2, as shown in tables 3.27 and 3.28. Cs

n and As
n denote the texture source

color and alpha from the texture image bound to texture unit n
The state required for the current texture environment, for each texture unit,

consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating the RGB combiner function and a six-valued integer indicating the

4In the remainder of section 3.9.13, the notation Cx is used to denote each of the three components
Rx, Gx, and Bx of a color specified by x. Operations on Cx are performed independently for each
color component. The A component of colors is usually operated on in a different fashion, and is
therefore denoted separately by Ax.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 221

Texture Base Texture source color
Internal Format Cs As

ALPHA (0, 0, 0) At

LUMINANCE (Lt, Lt, Lt) 1
LUMINANCE ALPHA (Lt, Lt, Lt) At

INTENSITY (It, It, It) It
RED (Rt, 0, 0) 1
RG (Rt, Gt, 0) 1
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.23: Correspondence of filtered texture components to texture source com-
ponents.

Texture Base REPLACE MODULATE DECAL

Internal Format Function Function Function
ALPHA Cv = Cp Cv = Cp undefined

Av = As Av = ApAs

LUMINANCE Cv = Cs Cv = CpCs undefined
(or 1) Av = Ap Av = Ap

LUMINANCE ALPHA Cv = Cs Cv = CpCs undefined
(or 2) Av = As Av = ApAs

INTENSITY Cv = Cs Cv = CpCs undefined
Av = As Av = ApAs

RGB, RG, RED, Cv = Cs Cv = CpCs Cv = Cs

or 3 Av = Ap Av = Ap Av = Ap

RGBA Cv = Cs Cv = CpCs Cv = Cp(1−As) + CsAs

or 4 Av = As Av = ApAs Av = Ap

Table 3.24: Texture functions REPLACE, MODULATE, and DECAL.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 222

Texture Base BLEND ADD

Internal Format Function Function
ALPHA Cv = Cp Cv = Cp

Av = ApAs Av = ApAs

LUMINANCE Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 1) Av = Ap Av = Ap

LUMINANCE ALPHA Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 2) Av = ApAs Av = ApAs

INTENSITY Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

Av = Ap(1−As) +AcAs Av = Ap +As

RGB, RG, RED, Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

or 3 Av = Ap Av = Ap

RGBA Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

or 4 Av = ApAs Av = ApAs

Table 3.25: Texture functions BLEND and ADD.

ALPHA combiner function, six four-valued integers indicating the combiner RGB
and ALPHA source arguments, three four-valued integers indicating the combiner
RGB operands, three two-valued integers indicating the combiner ALPHA operands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are each MODULATE, the combiner RGB and ALPHA sources
are each TEXTURE, PREVIOUS, and CONSTANT for sources 0, 1, and 2 respectively,
the combiner RGB operands for sources 0 and 1 are each SRC COLOR, the combiner
RGB operand for source 2, as well as for the combiner ALPHA operands, are each
SRC ALPHA, and the environment color is (0, 0, 0, 0).

The state required for the texture filtering parameters, for each texture unit,
consists of a single floating-point level of detail bias. The initial value of the bias
is 0.0.

3.9.14 Texture Comparison Modes

Texture values can also be computed according to a specified comparison func-
tion. Texture parameter TEXTURE COMPARE MODE specifies the comparison
operands, and parameter TEXTURE COMPARE FUNC specifies the comparison func-
tion. The format of the resulting texture sample is determined by the value of
DEPTH TEXTURE MODE.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 223

COMBINE RGB Texture Function
REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 +Arg1
ADD SIGNED Arg0 +Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 +Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1
DOT3 RGB 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+

(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

DOT3 RGBA 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+
(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

COMBINE ALPHA Texture Function
REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 +Arg1
ADD SIGNED Arg0 +Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 +Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1

Table 3.26: COMBINE texture functions. The scalar expression computed for the
DOT3 RGB and DOT3 RGBA functions is placed into each of the 3 (RGB) or 4 (RGBA)
components of the output. The result generated from COMBINE ALPHA is ignored
for DOT3 RGBA.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 224

SRCn RGB OPERANDn RGB Argument
TEXTURE SRC COLOR Cs

ONE MINUS SRC COLOR 1− Cs

SRC ALPHA As

ONE MINUS SRC ALPHA 1−As

TEXTUREn SRC COLOR Cs
n

ONE MINUS SRC COLOR 1− Cs
n

SRC ALPHA As
n

ONE MINUS SRC ALPHA 1−As
n

CONSTANT SRC COLOR Cc

ONE MINUS SRC COLOR 1− Cc

SRC ALPHA Ac
ONE MINUS SRC ALPHA 1−Ac

PRIMARY COLOR SRC COLOR Cf

ONE MINUS SRC COLOR 1− Cf

SRC ALPHA Af

ONE MINUS SRC ALPHA 1−Af

PREVIOUS SRC COLOR Cp

ONE MINUS SRC COLOR 1− Cp

SRC ALPHA Ap

ONE MINUS SRC ALPHA 1−Ap

Table 3.27: Arguments for COMBINE RGB functions.

SRCn ALPHA OPERANDn ALPHA Argument
TEXTURE SRC ALPHA As

ONE MINUS SRC ALPHA 1−As

TEXTUREn SRC ALPHA As
n

ONE MINUS SRC ALPHA 1−As
n

CONSTANT SRC ALPHA Ac

ONE MINUS SRC ALPHA 1−Ac

PRIMARY COLOR SRC ALPHA Af

ONE MINUS SRC ALPHA 1−Af

PREVIOUS SRC ALPHA Ap

ONE MINUS SRC ALPHA 1−Ap

Table 3.28: Arguments for COMBINE ALPHA functions.

Version 3.0 (September 23, 2008)

3.9. TEXTURING 225

Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH COMPONENT or
DEPTH STENCIL, then TEXTURE COMPARE MODE, TEXTURE COMPARE FUNC and
DEPTH TEXTURE MODE control the output of the texture unit as described below.
Otherwise, the texture unit operates in the normal manner and texture comparison
is bypassed.

Let Dt be the depth texture value and Dref be the reference value, defined as
follows:

• For fixed-function, non-cubemap texture lookups, Dref is the interpolated r
texture coordinate.

• For fixed-function, cubemap texture lookups, Dref is the interpolated q tex-
ture coordinate.

• For texture lookups generated by an OpenGL Shading Language lookup
function, Dref is the reference value for depth comparisons provided by the
lookup function.

If the texture’s internal format indicates a fixed-point depth texture, then Dt

and Dref are clamped to the range [0, 1]; otherwise no clamping is performed.
Then the effective texture value is computed as follows:

If the value of TEXTURE COMPARE MODE is NONE, then

r = Dt

If the value of TEXTURE COMPARE MODE is COMPARE REF TO TEXTURE, then
r depends on the texture comparison function as shown in table 3.29.

The resulting r is assigned to Rt, Lt, It, or At if the value of
DEPTH TEXTURE MODE is respectively RED, LUMINANCE, INTENSITY, or ALPHA.

If the value of TEXTURE MAG FILTER is not NEAREST, or the value of
TEXTURE MIN FILTER is not NEAREST or NEAREST MIPMAP NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
reference value. The details of this are implementation-dependent, but r should
be a value in the range [0, 1] which is proportional to the number of comparison
passes or failures.

3.9.15 sRGB Texture Color Conversion

If the currently bound texture’s internal format is one of SRGB, SRGB8,
SRGB ALPHA, SRGB8 ALPHA8, SLUMINANCE ALPHA, SLUMINANCE8 ALPHA8,

Version 3.0 (September 23, 2008)

3.9. TEXTURING 226

Texture Comparison Function Computed result r

LEQUAL r =

{
1.0, Dref ≤ Dt

0.0, Dref > Dt

GEQUAL r =

{
1.0, Dref ≥ Dt

0.0, Dref < Dt

LESS r =

{
1.0, Dref < Dt

0.0, Dref ≥ Dt

GREATER r =

{
1.0, Dref > Dt

0.0, Dref ≤ Dt

EQUAL r =

{
1.0, Dref = Dt

0.0, Dref 6= Dt

NOTEQUAL r =

{
1.0, Dref 6= Dt

0.0, Dref = Dt

ALWAYS r = 1.0
NEVER r = 0.0

Table 3.29: Depth texture comparison functions.

SLUMINANCE, SLUMINANCE8, COMPRESSED SRGB, COMPRESSED SRGB ALPHA,
COMPRESSED SLUMINANCE, or COMPRESSED SLUMINANCE ALPHA, the red,
green, and blue components are converted from an sRGB color space to a lin-
ear color space as part of filtering described in sections 3.9.7 and 3.9.8. Any alpha
component is left unchanged. Ideally, implementations should perform this color
conversion on each sample prior to filtering but implementations are allowed to
perform this conversion after filtering (though this post-filtering approach is infe-
rior to converting from sRGB prior to filtering).

The conversion from an sRGB encoded component, cs, to a linear component,
cl, is as follows.

cl =

{
cs

12.92 , cs ≤ 0.04045(
cs+0.055

1.055

)2.4
, cs > 0.04045

(3.26)

Assume cs is the sRGB component in the range [0, 1].

Version 3.0 (September 23, 2008)

3.9. TEXTURING 227

3.9.16 Shared Exponent Texture Color Conversion

If the currently bound texture’s internal format is RGB9 E5, the red, green, blue,
and shared bits are converted to color components (prior to filtering) using shared
exponent decoding. The component reds, greens, blues, and expshared values (see
section 3.9.1) are treated as unsigned integers and are converted to red, green, and
blue as follows:

red = reds2expshared−B

green = greens2expshared−B

blue = blues2expshared−B

3.9.17 Texture Application

Texturing is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constants TEXTURE 1D, TEXTURE 2D,
TEXTURE 3D, or TEXTURE CUBE MAP to enable the one-, two, three-dimensional,
or cube map texture, respectively. If both two- and one-dimensional textures are
enabled, the two-dimensional texture is used. If the three-dimensional and either
of the two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If the cube map texture and any of the three-, two-, or one-dimensional
textures is enabled, then cube map texturing is used.

If all texturing is disabled, a rasterized fragment is passed on unaltered to the
next stage of the GL (although its texture coordinates may be discarded). Other-
wise, a texture value is found according to the parameter values of the currently
bound texture image of the appropriate dimensionality using the rules given in sec-
tions 3.9.6 through 3.9.8. This texture value is used along with the incoming frag-
ment in computing the texture function indicated by the currently bound texture
environment. The result of this function replaces the incoming fragment’s primary
R, G, B, and A values. These are the color values passed to subsequent operations.
Other data associated with the incoming fragment remain unchanged, except that
the texture coordinates may be discarded.

Note that the texture value may contain R, G, B, A, L, I , or D components,
but it does not contain an S component. If the texture’s base internal format is
DEPTH STENCIL, for the purposes of texture application it is as if the base internal
format were DEPTH COMPONENT.

Each texture unit is enabled and bound to texture objects independently from
the other texture units. Each texture unit follows the precedence rules for one-, two-
, three-dimensional, and cube map textures. Thus texture units can be performing

Version 3.0 (September 23, 2008)

3.10. COLOR SUM 228

texture mapping of different dimensionalities simultaneously. Each unit has its
own enable and binding states.

Each texture unit is paired with an environment function, as shown in fig-
ure 3.11. The second texture function is computed using the texture value from
the second texture, the fragment resulting from the first texture function computa-
tion and the second texture unit’s environment function. If there is a third texture,
the fragment resulting from the second texture function is combined with the third
texture value using the third texture unit’s environment function and so on. The tex-
ture unit selected by ActiveTexture determines which texture unit’s environment
is modified by TexEnv calls.

If the value of TEXTURE ENV MODE is COMBINE, the texture function associated
with a given texture unit is computed using the values specified by SRCn RGB,
SRCn ALPHA, OPERANDn RGB and OPERANDn ALPHA. If TEXTUREn is specified as
SRCn RGB or SRCn ALPHA, the texture value from texture unit n will be used in
computing the texture function for this texture unit.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resulting from the previous unit
is passed unaltered to the following unit. Individual texture units beyond those
specified by MAX TEXTURE UNITS are always treated as disabled.

If a texture unit is disabled or has an invalid or incomplete texture (as defined
in section 3.9.10) bound to it, then blending is disabled for that texture unit. If the
texture environment for a given enabled texture unit references a disabled texture
unit, or an invalid or incomplete texture that is bound to another unit, then the
results of texture blending are undefined.

The required state, per texture unit, is four bits indicating whether each of one-,
two-, three-dimensional, or cube map texturing is enabled or disabled. In the intial
state, all texturing is disabled for all texture units.

3.10 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary color
cpri (which texturing, if enabled, may have modified) and a secondary color csec.

If color sum is enabled, the R, G, and B components of these two colors are
summed to produce a single post-texturing RGBA color c. The A component of c
is taken from the A component of cpri; the A component of csec is unused. If color
sum is disabled, then cpri is assigned to c. If fragment color clamping is enabled,
the components of c are then clamped to the range [0, 1].

Color sum is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constant COLOR SUM. If lighting is enabled

Version 3.0 (September 23, 2008)

3.10. COLOR SUM 229

TE0

TE1

TE2

TE3

CT0

CT1

CT2

CT3

C’f

CTi = texture color from texture lookup i

Cf = fragment primary color input to texturing

C’f = fragment color output from texturing

TEi = texture environment i

Cf

Figure 3.11. Multitexture pipeline. Four texture units are shown; however, multi-
texturing may support a different number of units depending on the implementation.
The input fragment color is successively combined with each texture according to
the state of the corresponding texture environment, and the resulting fragment color
passed as input to the next texture unit in the pipeline.

Version 3.0 (September 23, 2008)

3.11. FOG 230

and if a vertex shader is not active, the color sum stage is always applied, ignoring
the value of COLOR SUM.

The state required is a single bit indicating whether color sum is enabled or
disabled. In the initial state, color sum is disabled.

Color sum has no effect in color index mode, or if a fragment shader is active.

3.11 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color
using a blending factor f . Fog is enabled and disabled with the Enable and Disable
commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

f = exp(−d · c), (3.27)

f = exp(−(d · c)2), or (3.28)

f =
e− c
e− s

(3.29)

If a vertex shader is active, or if the fog source, as defined below, is FOG COORD,
then c is the interpolated value of the fog coordinate for this fragment. Otherwise,
if the fog source is FRAGMENT DEPTH, then c is the eye-coordinate distance from
the eye, (0, 0, 0, 1) in eye coordinates, to the fragment center. The equation and the
fog source, along with either d or e and s, is specified with

void Fog{if}(enum pname, T param);
void Fog{if}v(enum pname, T params);

If pname is FOG MODE, then param must be, or params must point to an inte-
ger that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.27, 3.28, or 3.29, respectively, is selected for the fog calculation (if,
when 3.29 is selected, e = s, results are undefined). If pname is FOG COORD SRC,
then param must be, or params must point to an integer that is one of the sym-
bolic constants FRAGMENT DEPTH or FOG COORD. If pname is FOG DENSITY,
FOG START, or FOG END, then param is or params points to a value that is d, s,
or e, respectively. If d is specified less than zero, the error INVALID VALUE re-
sults.

An implementation may choose to approximate the eye-coordinate distance
from the eye to each fragment center by |ze|. Further, f need not be computed at

Version 3.0 (September 23, 2008)

3.12. FRAGMENT SHADERS 231

each fragment, but may be computed at each vertex and interpolated as other data
are.

No matter which equation and approximation is used to compute f , the result
is clamped to [0, 1] to obtain the final f .

f is used differently depending on whether the GL is in RGBA or color index
mode. In RGBA mode, if Cr represents a rasterized fragment’s R, G, or B value,
then the corresponding value produced by fog is

C = fCr + (1− f)Cf .

(The rasterized fragment’s A value is not changed by fog blending.) The R, G, B,
and A values of Cf are specified by calling Fog with pname equal to FOG COLOR;
in this case params points to four values comprising Cf . If these are not floating-
point values, then they are converted to floating-point using the conversion given
in table 2.10 for signed integers. If fragment color clamping is enabled, the
components of Cr and Cf and the result C are clamped to the range [0, 1] before
the fog blend is performed.

In color index mode, the formula for fog blending is

I = ir + (1− f)if

where ir is the rasterized fragment’s color index and if is a single-precision
floating-point value. (1 − f)if is rounded to the nearest fixed-point value with
the same number of bits to the right of the binary point as ir, and the integer por-
tion of I is masked (bitwise ANDed) with 2n− 1, where n is the number of bits in
a color in the color index buffer (buffers are discussed in chapter 4). The value of
if is set by calling Fog with pname set to FOG INDEX and param being or params
pointing to a single value for the fog index. The integer part of if is masked with
2n − 1.

The state required for fog consists of a three valued integer to select the fog
equation, three floating-point values d, e, and s, an RGBA fog color and a fog
color index, a two-valued integer to select the fog coordinate source, and a single
bit to indicate whether or not fog is enabled. In the initial state, fog is disabled,
FOG COORD SRC is FRAGMENT DEPTH, FOG MODE is EXP, d = 1.0, e = 1.0, and
s = 0.0; Cf = (0, 0, 0, 0) and if = 0.

Fog has no effect if a fragment shader is active.

3.12 Fragment Shaders

The sequence of operations that are applied to fragments that result from raster-
izing a point, line segment, polygon, pixel rectangle or bitmap as described in

Version 3.0 (September 23, 2008)

3.12. FRAGMENT SHADERS 232

sections 3.9 through 3.11 is a fixed functionality method for processing such frag-
ments. Applications can more generally describe the operations that occur on such
fragments by using a fragment shader.

A fragment shader is an array of strings containing source code for the opera-
tions that are meant to occur on each fragment that results from rasterizing a point,
line segment, polygon, pixel rectangle or bitmap. The language used for fragment
shaders is described in the OpenGL Shading Language Specification.

A fragment shader only applies when the GL is in RGBA mode. Its operation
in color index mode is undefined.

Fragment shaders are created as described in section 2.20.1 using a type pa-
rameter of FRAGMENT SHADER. They are attached to and used in program objects
as described in section 2.20.2.

When the program object currently in use includes a fragment shader, its frag-
ment shader is considered active, and is used to process fragments. If the program
object has no fragment shader, or no program object is currently in use, the fixed-
function fragment processing operations described in previous sections are used.

Results of rasterization are undefined if any of the selected draw buffers of the
draw framebuffer have an integer format and no fragment shader is active.

3.12.1 Shader Variables

Fragment shaders can access uniforms belonging to the current shader object. The
amount of storage available for fragment shader uniform variables is specified by
the implementation dependent constant MAX FRAGMENT UNIFORM COMPONENTS.
This value represents the number of individual floating-point, integer, or boolean
values that can be held in uniform variable storage for a fragment shader. A
uniform matrix will consume no more than 4×min(r, c) such values, where r and
c are the number of rows and columns in the matrix. A link error will be generated
if an attempt is made to utilize more than the space available for fragment shader
uniform variables.

Fragment shaders can read varying variables that correspond to the attributes
of the fragments produced by rasterization. The OpenGL Shading Language Spec-
ification defines a set of built-in varying variables that can be be accessed by a
fragment shader. These built-in varying variables include the data associated with
a fragment that are used for fixed-function fragment processing, such as the frag-
ment’s position, color, secondary color, texture coordinates, fog coordinate, and
eye z coordinate.

Additionally, when a vertex shader is active, it may define one or more varying
variables (see section 2.20.3 and the OpenGL Shading Language Specification).
These values are, if not flat shaded, interpolated across the primitive being ren-

Version 3.0 (September 23, 2008)

3.12. FRAGMENT SHADERS 233

dered. The results of these interpolations are available when varying variables of
the same name are defined in the fragment shader.

User-defined varying variables are not saved in the current raster position.
When processing fragments generated by the rasterization of a pixel rectangle or
bitmap, that values of user-defined varying variables are undefined. Built-in vary-
ing variables have well-defined values.

A fragment shader can also write to varying out variables. Values written
to these variables are used in the subsequent per-fragment operations. Varying
out variables can be used to write floating-point, integer or unsigned integer val-
ues destined for buffers attached to a framebuffer object, or destined for color
buffers attached to the default framebuffer. The Shader Outputs subsection of
section 3.12.2 describes how to direct these values to buffers.

3.12.2 Shader Execution

If a fragment shader is active, the executable version of the fragment shader is used
to process incoming fragment values that are the result of point, line segment, poly-
gon, pixel rectangle or bitmap rasterization rather than the fixed-function fragment
processing described in sections 3.9 through 3.11. In particular,

• The texture environments and texture functions described in section 3.9.13
are not applied.

• Texture application as described in section 3.9.17 is not applied.

• Color sum as described in section 3.10 is not applied.

• Fog as described in section 3.11 is not applied.

Texture Access

The Shader Only Texturing subsection of section 2.20.4 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to fragment shaders.

When a texture lookup is performed in a fragment shader, the GL computes
the filtered texture value τ in the manner described in sections 3.9.7 and 3.9.8, and
converts it to a texture source color Cs according to table 3.23 (section 3.9.13).
The GL returns a four-component vector (Rs, Gs, Bs, As) to the fragment shader.
For the purposes of level-of-detail calculations, the derivates du

dx , du
dy , dv

dx , dv
dy , dw

dx

and dw
dy may be approximated by a differencing algorithm as detailed in section 8.8

of the OpenGL Shading Language specification.

Version 3.0 (September 23, 2008)

3.12. FRAGMENT SHADERS 234

Texture lookups involving textures with depth component data can either return
the depth data directly or return the results of a comparison with the Dref value
(see section 3.9.14) used to perform the lookup. The comparison operation is re-
quested in the shader by using any of the shadow sampler types and in the texture
using the TEXTURE COMPARE MODE parameter. These requests must be consistent;
the results of a texture lookup are undefined if:

• The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH COMPONENT or
DEPTH STENCIL, and the TEXTURE COMPARE MODE is not NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH COMPONENT or
DEPTH STENCIL, and the TEXTURE COMPARE MODE is NONE.

• The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH COMPONENT or
DEPTH STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH STENCIL.

If a fragment shader uses a sampler whose associated texture object is not com-
plete, as defined in section 3.9.10, the texture image unit will return (R,G,B,A)
= (0, 0, 0, 1).

The number of separate texture units that can be accessed from within a
fragment shader during the rendering of a single primitive is specified by the
implementation- dependent constant MAX TEXTURE IMAGE UNITS.

Shader Inputs

The OpenGL Shading Language specification describes the values that are avail-
able as inputs to the fragment shader.

The built-in variable gl FragCoord holds the window coordinates x, y, z,
and 1

w for the fragment. The z component of gl FragCoord undergoes an im-
plied conversion to floating-point. This conversion must leave the values 0 and
1 invariant. Note that this z component already has a polygon offset added in, if
enabled (see section 3.6.5). The 1

w value is computed from the wc coordinate (see
section 2.12), which is the result of the product of the projection matrix and the
vertex’s eye coordinates.

The built-in variables gl Color and gl SecondaryColor hold the R, G, B,
and A components, respectively, of the fragment color and secondary color. If

Version 3.0 (September 23, 2008)

3.12. FRAGMENT SHADERS 235

the primary color or the secondary color components are represented by the GL as
fixed-point values, they undergo an implied conversion to floating-point. This con-
version must leave the values 0 and 1 invariant. Floating-point color components
(resulting from a disabled vertex color clamp) are unmodified.

The built-in variable gl FrontFacing is set to TRUE if the fragment is gener-
ated from a front facing primitive, and FALSE otherwise. For fragments generated
from polygon, triangle, or quadrilateral primitives (including ones resulting from
polygons rendered as points or lines), the determination is made by examining the
sign of the area computed by equation 2.6 of section 2.19.1 (including the possible
reversal of this sign controlled by FrontFace). If the sign is positive, fragments
generated by the primitive are front facing; otherwise, they are back facing. All
other fragments are considered front facing.

The built-in variable gl PrimitiveID is filled with the number of primitives
processed by the rasterizer since the last time Begin was called (directly or indi-
rectly via vertex array functions). The first primitive generated after a Begin is
numbered zero, and the primitive ID counter is incremented after every individual
point, line, or polygon primitive is processed. For polygons drawn in point or line
mode, the primitive ID counter is incremented only once, even though multiple
points or lines may be drawn. For QUADS and QUAD STRIP primitives that are de-
composed into triangles, the primitive ID is incremented after each complete quad
is processed.

The value of gl PrimitiveID is undefined for fragments generated by
POLYGON primitives or from DrawPixels or Bitmap commands. Additionally,
gl PrimitiveID is only defined under the same conditions that gl VertexID is
defined, as described under “Shader Inputs” in section 2.20.4.

Shader Outputs

The OpenGL Shading Language specification describes the values that may be
output by a fragment shader. These outputs are split into two categories, user-
defined varying out variables and built-in variables. The built-in variables are
gl FragColor, gl FragData[n], and gl FragDepth. If fragment color
clamping is enabled and the color buffer has a fixed- or floating-point format,
the final fragment color, fragment data, or varying out variable values written by
a fragment shader are clamped to the range [0, 1] and are optionally converted to
fixed-point as described in section 2.19.9. Only user-defined varying out variables
declared as a floating-point type are clamped and may be converted. If fragment
color clamping is disabled, or the color buffer has an integer format, the final
fragment color, fragment data, or varying out variable values are not modified. For
fixed-point depth buffers, the final fragment depth written by a fragment shader is

Version 3.0 (September 23, 2008)

3.12. FRAGMENT SHADERS 236

first clamped to [0, 1] and then converted to fixed-point as if it were a window z
value (see section 2.12.1). For floating-point depth buffers, conversion is not per-
formed but clamping is. Note that the depth range computation is not applied here,
only the conversion to fixed-point.

Color values written by a fragment shader may be floating-point, signed inte-
ger, or unsigned integer. If the color buffer has a fixed-point format, color values
are assumed to be floating-point and are converted to fixed-point as described in
section 2.19.9; otherwise no type conversion is applied. If the values written by the
fragment shader do not match the format(s) of the corresponding color buffer(s),
the result is undefined.

Writing to gl FragColor specifies the fragment color (color number
zero) that will be used by subsequent stages of the pipeline. Writing to
gl FragData[n] specifies the value of fragment color number n. Any colors,
or color components, associated with a fragment that are not written by the frag-
ment shader are undefined. A fragment shader may not statically assign values
to more than one of gl FragColor, gl FragData, and any user-defined varying
out variable. In this case, a compile or link error will result. A shader statically
assigns a value to a variable if, after pre-processing, it contains a statement that
would write to the variable, whether or not run-time flow of control will cause that
statement to be executed.

Writing to gl FragDepth specifies the depth value for the fragment being
processed. If the active fragment shader does not statically assign a value to
gl FragDepth, then the depth value generated during rasterization is used by sub-
sequent stages of the pipeline. Otherwise, the value assigned to gl FragDepth is
used, and is undefined for any fragments where statements assigning a value to
gl FragDepth are not executed. Thus, if a shader statically assigns a value to
gl FragDepth, then it is responsible for always writing it.

The binding of a user-defined varying out variable to a fragment color number
can be specified explicitly. The command

void BindFragDataLocation(uint program,
uint colorNumber, const char *name);

specifies that the varying out variable name in program should be bound to frag-
ment color colorNumber when the program is next linked. If name was bound
previously, its assigned binding is replaced with colorNumber. name must be
a null-terminated string. The error INVALID VALUE is generated if colorNum-
ber is equal or greater than MAX DRAW BUFFERS. BindFragDataLocation has no
effect until the program is linked. In particular, it doesn’t modify the bindings
of varying out variables in a program that has already been linked. The error
INVALID OPERATION is generated if name starts with the reserved gl prefix.

Version 3.0 (September 23, 2008)

3.13. ANTIALIASING APPLICATION 237

When a program is linked, any varying out variables without a binding spec-
ified through BindFragDataLocation will automatically be bound to fragment
colors by the GL. Such bindings can be queried using the command GetFrag-
DataLocation. LinkProgram will fail if the assigned binding of a varying out
variable would cause the GL to reference a non-existant fragment color number
(one greater than or equal to MAX DRAW BUFFERS). LinkProgram will also fail
if more than one varying out variable is bound to the same number. This type of
aliasing is not allowed.

BindFragDataLocation may be issued before any shader objects are attached
to a program object. Hence it is allowed to bind any name (except a name starting
with gl) to a color number, including a name that is never used as a varying out
variable in any fragment shader object. Assigned bindings for variables that do not
exist are ignored.

After a program object has been linked successfully, the bindings of varying
out variable names to color numbers can be queried. The command

int GetFragDataLocation(uint program, const char
*name);

returns the number of the fragment color to which the varying out variable
name was bound when the program object program was last linked. name must
be a null-terminated string. If program has not been successfully linked, the error
INVALID OPERATION is generated. If name is not a varying out variable, or if an
error occurs, -1 will be returned.

3.13 Antialiasing Application

If antialiasing is enabled for the primitive from which a rasterized fragment was
produced, then the computed coverage value is applied to the fragment. In RGBA
mode, the value is multiplied by the fragment’s alpha (A) value to yield a final
alpha value. In color index mode, the value is used to set the low order bits of
the color index value as described in section 3.3. The coverage value is applied
separately to each fragment color.

3.14 Multisample Point Fade

Finally, if multisampling is enabled and the rasterized fragment results from a point
primitive, then the computed fade factor from equation 3.2 is applied to the frag-
ment. In RGBA mode, the fade factor is multiplied by the fragment’s alpha value

Version 3.0 (September 23, 2008)

3.14. MULTISAMPLE POINT FADE 238

to yield a final alpha value. In color index mode, the fade factor has no effect. The
fade factor is applied separately to each fragment color.

Version 3.0 (September 23, 2008)

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer, whether it is the default framebuffer or a framebuffer object (see
section 2.1), consists of a set of pixels arranged as a two-dimensional array. For
purposes of this discussion, each pixel in the framebuffer is simply a set of some
number of bits. The number of bits per pixel may vary depending on the GL im-
plementation, the type of framebuffer selected, and parameters specified when the
framebuffer was created. Creation and management of the default framebuffer is
outside the scope of this specification, while creation and management of frame-
buffer objects is described in detail in section 4.4.

Corresponding bits from each pixel in the framebuffer are grouped together
into a bitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into several logical buffers. These are the color, depth, stencil, and
accumulation buffers. The color buffer actually consists of a number of buffers,
and these color buffers serve related but slightly different purposes depending on
whether the GL is bound to the default framebuffer or a framebuffer object.

For the default framebuffer, the color buffers are the front left buffer, the front
right buffer, the back left buffer, the back right buffer, and some number of aux-
iliary buffers. Typically the contents of the front buffers are displayed on a color
monitor while the contents of the back buffers are invisible. (Monoscopic contexts
display only the front left buffer; stereoscopic contexts display both the front left
and the front right buffers.) The contents of the auxiliary buffers are never visible.
All color buffers must have the same number of bitplanes, although an implemen-
tation or context may choose not to provide right buffers, back buffers, or auxiliary
buffers at all. Further, an implementation or context may not provide depth, sten-
cil, or accumulation buffers. If no default framebuffer is associated with the GL

239

240

context, the framebuffer is incomplete except when a framebuffer object is bound
(see sections 4.4.1 and 4.4.4).

Framebuffer objects are not visible, and do not have any of the color buffers
present in the default framebuffer. Instead, the buffers of an framebuffer object
are specified by attaching individual textures or renderbuffers (see section 4.4) to
a set of attachment points. A framebuffer object has an array of color buffer at-
tachment points, numbered zero through n, a depth buffer attachment point, and
a stencil buffer attachment point. In order to be used for rendering, a framebuffer
object must be complete, as described in section 4.4.4. Not all attachments of a
framebuffer object need to be populated.

Each pixel in a color buffer consists of either a single unsigned integer color
index or up to four color components. The four color components are named R,
G, B, and A, in that order; color buffers are not required to have all four color
components. R, G, B, and A components may be represented as unsigned fixed-
point, floating-point, signed integer, or unsigned integer values; all components
must have the same representation. Each pixel in a depth buffer consists of a single
unsigned integer value in the format described in section 2.12.1 or a floating-point
value. Each pixel in a stencil buffer consists of a single unsigned integer value.
Each pixel in an accumulation buffer consists of up to four color components fixed-
point values. If an accumulation buffer is present, it must have at least as many
bitplanes per component as in the color buffers.

The number of bitplanes in the color, depth, stencil, and accumulation buffers
is dependent on the currently bound framebuffer. For the default framebuffer, the
number of bitplanes is fixed. For framebuffer objects, the number of bitplanes
in a given logical buffer may change if the image attached to the corresponding
attachment point changes.

The GL has two active framebuffers; the draw framebuffer is the destination
for rendering operations, and the read framebuffer is the source for readback op-
erations. The same framebuffer may be used for both drawing and reading. Sec-
tion 4.4.2 describes the mechanism for controlling framebuffer usage.

The default framebuffer is initially used as the draw and read framebuffer 1,
and the initial state of all provided bitplanes is undefined. The format and en-
coding of buffers in the draw and read framebuffers can be queried as described in
section 6.1.3.

1The window system binding API may allow associating a GL context with two separate “default
framebuffers” provided by the window system as the draw and read framebuffers, but if so, both
default framebuffers are referred to by the name zero at their respective binding points.

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 241

Fragment
+

Associated
Data

Pixel
Ownership

Test

Scissor
Test

Stencil
Test

Framebuffer

Alpha
Test

Depth buffer
Test

Blending
(RGBA Only)

Dithering

Framebuffer

Framebuffer

Logicop To
Framebuffer

Framebuffer

(RGBA Only)

Figure 4.1. Per-fragment operations.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (xw, yw) mod-
ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
figure 4.1, in the order in which they are performed. Figure 4.1 diagrams these
modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

If the draw framebuffer is a framebuffer object (see section 4.2.1), the pixel
ownership test always passes, since the pixels of framebuffer objects are owned by

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 242

the GL, not the window system. If the draw framebuffer is the default framebuffer,
the window system controls pixel ownership.

4.1.2 Scissor Test

The scissor test determines if (xw, yw) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

If left ≤ xw < left+width and bottom ≤ yw < bottom+height, then the scissor test
passes. Otherwise, the test fails and the fragment is discarded. The test is enabled
or disabled using Enable or Disable using the constant SCISSOR TEST. When
disabled, it is as if the scissor test always passes. If either width or height is less
than zero, then the error INVALID VALUE is generated. The state required consists
of four integer values and a bit indicating whether the test is enabled or disabled.
In the initial state, left = bottom = 0. width and height are set to the width and
height, respectively, of the window into which the GL is to do its rendering. If the
default framebuffer is bound but no default framebuffer is associated with the GL
context (see chapter 4), then width and height are initially set to zero. Initially, the
scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLE ALPHA TO COVERAGE, SAMPLE ALPHA TO ONE, SAMPLE COVERAGE,
SAMPLE COVERAGE VALUE, and SAMPLE COVERAGE INVERT. No changes to the
fragment alpha or coverage values are made at this step if MULTISAMPLE is dis-
abled, or if the value of SAMPLE BUFFERS is not one.

SAMPLE ALPHA TO COVERAGE, SAMPLE ALPHA TO ONE, and
SAMPLE COVERAGE are enabled and disabled by calling Enable and Disable
with cap specified as one of the three token values. All three values are
queried by calling IsEnabled with cap set to the desired token value. If
SAMPLE ALPHA TO COVERAGE is enabled and the color buffer has a fixed-point
or floating-point format, a temporary coverage value is generated where each
bit is determined by the alpha value at the corresponding sample location. The
temporary coverage value is then ANDed with the fragment coverage value.
Otherwise the fragment coverage value is unchanged at this point. If multiple
colors are written by a fragment shader, the alpha value of fragment color zero is
used to determine the temporary coverage value.

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 243

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1’s in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1’s
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. The alpha values used to generate a coverage value are
clamped to the range [0, 1]. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it
does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Next, if SAMPLE ALPHA TO ONE is enabled, each alpha value is replaced by the
maximum representable alpha value. Otherwise, the alpha values are not changed.

Finally, if SAMPLE COVERAGE is enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated
in the same manner as the one described above, but as a function of
the value of SAMPLE COVERAGE VALUE. The function need not be identical,
but it must have the same properties of proportionality and invariance. If
SAMPLE COVERAGE INVERT is TRUE, the temporary coverage is inverted (all bit
values are inverted) before it is ANDed with the fragment coverage.

The values of SAMPLE COVERAGE VALUE and SAMPLE COVERAGE INVERT

are specified by calling

void SampleCoverage(clampf value, boolean invert);

with value set to the desired coverage value, and invert set to TRUE or FALSE.
value is clamped to [0,1] before being stored as SAMPLE COVERAGE VALUE.
SAMPLE COVERAGE VALUE is queried by calling GetFloatv with pname set to
SAMPLE COVERAGE VALUE. SAMPLE COVERAGE INVERT is queried by calling
GetBooleanv with pname set to SAMPLE COVERAGE INVERT.

4.1.4 Alpha Test

This step applies only in RGBA mode, and only if the color buffer has a fixed-
point or floating-point format. In color index mode, or if the color buffer has an
integer format, proceed to the next operation.

The alpha test discards a fragment conditional on the outcome of a compari-
son between the incoming fragment’s alpha value and a constant value. If multiple
colors are written by a fragment shader, the alpha value of fragment color zero is
used to determine the result of the alpha test. The comparison is enabled or dis-
abled with the generic Enable and Disable commands using the symbolic constant

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 244

ALPHA TEST. When disabled, it is as if the comparison always passes. The test is
controlled with

void AlphaFunc(enum func, clampf ref);

func is a symbolic constant indicating the alpha test function; ref is a reference
value. When performing the alpha test, the GL will convert the reference value to
the same representation as the the fragment’s alpha value (floating-point or fixed-
point). For fixed-point, the reference value is converted according to the rules given
for an A component in section 2.19.9 and the fragment’s alpha value is rounded to
the nearest integer.

The possible constants specifying the test function are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning pass the fragment
never, always, if the fragment’s alpha value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the reference value,
respectively.

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the com-
parison is enabled or disabled. The initial state is for the reference value to be 0
and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.5 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location (xw, yw) and a reference
value. The test is enabled or disabled with the Enable and Disable commands,
using the symbolic constant STENCIL TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilFuncSeparate(enum face, enum func, int ref,

uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);
void StencilOpSeparate(enum face, enum sfail, enum dpfail,

enum dppass);

There are two sets of stencil-related state, the front stencil state set and the back
stencil state set. Stencil tests and writes use the front set of stencil state when pro-
cessing fragments rasterized from non-polygon primitives (points, lines, bitmaps,
image rectangles) and front-facing polygon primitives while the back set of stencil

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 245

state is used when processing fragments rasterized from back-facing polygon prim-
itives. For the purposes of stencil testing, a primitive is still considered a polygon
even if the polygon is to be rasterized as points or lines due to the current poly-
gon mode. Whether a polygon is front- or back-facing is determined in the same
manner used for two-sided lighting and face culling (see sections 2.19.1 and 3.6.1).

StencilFuncSeparate and StencilOpSeparate take a face argument which can
be FRONT, BACK, or FRONT AND BACK and indicates which set of state is affected.
StencilFunc and StencilOp set front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails. ref is an integer reference value that is used
in the unsigned stencil comparison. Stencil comparison operations and queries
of ref clamp its value to the range [0, 2s − 1], where s is the number of bits in the
stencil buffer attached to the draw framebuffer. The s least significant bits of mask
are bitwise ANDed with both the reference and the stored stencil value, and the
resulting masked values are those that participate in the comparison controlled by
func. func is a symbolic constant that determines the stencil comparison function;
the eight symbolic constants are NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, and if
the masked reference value is less than, less than or equal to, equal to, greater than
or equal to, greater than, or not equal to the masked stored value in the stencil
buffer.

StencilOp and StencilOpSeparate take three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR WRAP, and DECR WRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at 0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in 0, and decrementing 0 results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (see section 4.1.6) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed to StencilFunc or StencilFuncSeparate
and to StencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 246

back stencil reference value are both zero, the front and back stencil comparison
functions are both ALWAYS, and the front and back stencil mask are both all ones.
Initially, all three front and back stencil operations are KEEP.

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls to StencilFunc.

4.1.6 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the generic Enable and Disable com-
mands using the symbolic constant DEPTH TEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-
fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’s zw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s (xw, yw)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s (xw, yw) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s (xw, yw)
location is set to the fragment’s zw value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

4.1.7 Occlusion Queries

Occlusion queries use query objects to track the number of fragments or samples
that pass the depth test. An occlusion query can be started and finished by calling
BeginQuery and EndQuery, respectively, with a target of SAMPLES PASSED.

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 247

When an occlusion query is started, the samples-passed count maintained by
the GL is set to zero. When an occlusion query is active, the samples-passed
count is incremented for each fragment that passes the depth test. If the value
of SAMPLE BUFFERS is 0, then the samples-passed count is incremented by 1 for
each fragment. If the value of SAMPLE BUFFERS is 1, then the samples-passed
count is incremented by the number of samples whose coverage bit is set. How-
ever, implementations, at their discretion, may instead increase the samples-passed
count by the value of SAMPLES if any sample in the fragment is covered.

When an occlusion query finishes and all fragments generated by commands
issued prior to EndQuery have been generated, the samples-passed count is written
to the corresponding query object as the query result value, and the query result for
that object is marked as available.

If the samples-passed count overflows (exceeds the value 2n − 1, where n is
the number of bits in the samples-passed count), its value becomes undefined. It is
recommended, but not required, that implementations handle this overflow case by
saturating at 2n − 1 and incrementing no further.

The necessary state is a single bit indicating whether an occlusion query is
active, the identifier of the currently active occlusion query, and a counter keeping
track of the number of samples that have passed.

4.1.8 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with
the destination R, G, B, and A values stored in the framebuffer at the fragment’s
(xw, yw) location.

Source and destination values are combined according to the blend equation,
quadruplets of source and destination weighting factors determined by the blend
functions, and a constant blend color to obtain a new set of R, G, B, and A values,
as described below.

If the color buffer is fixed-point, the components of the source and destination
values and blend factors are clamped to [0, 1] prior to evaluating the blend equation.
If the color buffer is floating-point, no clamping occurs. The resulting four values
are sent to the next operation.

Blending is dependent on the incoming fragment’s alpha value and that of the
corresponding currently stored pixel. Blending applies only in RGBA mode; and
only if the color buffer has a fixed-point or floating-point format. In color index
mode, or if the color buffer has an integer format, proceed to the next operation.

Blending is enabled or disabled for an individual draw buffer with the com-
mands

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 248

void Enablei(enum target, uint index);
void Disablei(enum target, uint index);

target is the symbolic constant BLEND and index is an integer i specifying the
draw buffer associated with the symbolic constant DRAW BUFFERi. If the color
buffer associated with DRAW BUFFERi is one of FRONT, BACK, LEFT, RIGHT, or
FRONT AND BACK (specifying multiple color buffers), then the state enabled or dis-
abled is applicable for all of the buffers. Blending can be enabled or disabled for
all draw buffers using Enable or Disable with the symbolic constant BLEND. If
blending is disabled for a particular draw buffer, or if logical operation on color
values is enabled (section 4.1.11), proceed to the next operation.

An INVALID VALUE error is generated if index is greater than the value of
MAX DRAW BUFFERS minus one.

If multiple fragment colors are being written to multiple buffers (see sec-
tion 4.2.1), blending is computed and applied separately for each fragment color
and the corresponding buffer.

Blend Equation

Blending is controlled by the blend equations, defined by the commands

void BlendEquation(enum mode);
void BlendEquationSeparate(enum modeRGB,

enum modeAlpha);

BlendEquationSeparate argument modeRGB determines the RGB blend func-
tion while modeAlpha determines the alpha blend equation. BlendEqua-
tion argument mode determines both the RGB and alpha blend equations.
modeRGB and modeAlpha must each be one of FUNC ADD, FUNC SUBTRACT,
FUNC REVERSE SUBTRACT, MIN, or MAX.

Fixed-point destination (framebuffer) components are taken to be fixed-point
values represented according to the scheme in section 2.19.9 (Final Color Pro-
cessing). Constant color components, floating-point destination components, and
source (fragment) components are taken to be floating point values. If source com-
ponents are represented internally by the GL as fixed-point values, they are also
interpreted according to section 2.19.9.

Prior to blending, each fixed-point color component undergoes an implied con-
version to floating-point. This conversion must leave the values 0 and 1 invariant.
Blending computations are treated as if carried out in floating-point.

If FRAMEBUFFER SRGB is enabled and
the value of FRAMEBUFFER ATTACHMENT COLOR ENCODING for the framebuffer

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 249

attachment corresponding to the destination buffer is SRGB (see section 6.1.3), the
R, G, and B destination color values (after conversion from fixed-point to floating-
point) are considered to be encoded for the sRGB color space and hence must be
linearized prior to their use in blending. Each R, G, and B component is converted
in the same fashion described for sRGB texture components in section 3.9.15.

If FRAMEBUFFER SRGB is disabled or the value of
FRAMEBUFFER ATTACHMENT COLOR ENCODING is not SRGB, no linearization is
performed.

The resulting linearized R, G, and B and unmodified A values are recombined
as the destination color used in blending computations.

Table 4.1 provides the corresponding per-component blend equations for each
mode, whether acting on RGB components for modeRGB or the alpha component
for modeAlpha.

In the table, the s subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, the d subscript
on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and the c subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally, Sr, Sg, Sb, and Sa are the red, green, blue, and alpha com-
ponents of the source weighting factors determined by the source blend function,
and Dr, Dg, Db, and Da are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend
functions are described below.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. Blend functions are specified with the commands

void BlendFuncSeparate(enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);

void BlendFunc(enum src, enum dst);

BlendFuncSeparate arguments srcRGB and dstRGB determine the source and
destination RGB blend functions, respectively, while srcAlpha and dstAlpha deter-
mine the source and destination alpha blend functions. BlendFunc argument src
determines both RGB and alpha source functions, while dst determines both RGB
and alpha destination functions.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table 4.2.

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 250

Mode RGB Components Alpha Component
FUNC ADD R = Rs ∗ Sr +Rd ∗Dr A = As ∗ Sa +Ad ∗Da

G = Gs ∗ Sg +Gd ∗Dg

B = Bs ∗ Sb +Bd ∗Db

FUNC SUBTRACT R = Rs ∗ Sr −Rd ∗Dr A = As ∗ Sa −Ad ∗Da

G = Gs ∗ Sg −Gd ∗Dg

B = Bs ∗ Sb −Bd ∗Db

FUNC REVERSE SUBTRACT R = Rd ∗Dr −Rs ∗ Sr A = Ad ∗Da −As ∗ Sa

G = Gd ∗Dg −Gs ∗ Sg

B = Bd ∗Db −Bs ∗ Sb

MIN R = min(Rs, Rd) A = min(As, Ad)
G = min(Gs, Gd)
B = min(Bs, Bd)

MAX R = max(Rs, Rd) A = max(As, Ad)
G = max(Gs, Gd)
B = max(Bs, Bd)

Table 4.1: RGB and alpha blend equations.

Blend Color

The constant color Cc to be used in blending is specified with the command

void BlendColor(clampf red, clampf green, clampf blue,
clampf alpha);

The constant color can be used in both the source and destination blending
functions

The state required for blending is two integers for the RGB and alpha blend
equations, four integers indicating the source and destination RGB and alpha
blending functions, four floating-point values to store the RGBA constant blend
color, and a bit indicating whether blending is enabled or disabled for each of the
MAX DRAW BUFFERS draw buffers.

The initial blend equations for RGB and alpha are both FUNC ADD. The initial
blending functions are ONE for the source RGB and alpha functions and ZERO

for the destination RGB and alpha functions. The initial constant blend color is
(R,G,B,A) = (0, 0, 0, 0). Initially, blending is disabled for all draw buffers.

The value of the blend enable for draw buffer i can be queried by calling IsEn-
abledi with target BLEND and index i. The value of the blend enable for draw buffer
zero may also be queried by calling IsEnabled with value BLEND.

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 251

Function RGB Blend Factors Alpha Blend Factor
(Sr, Sg, Sb) or (Dr, Dg, Db) Sa or Da

ZERO (0, 0, 0) 0
ONE (1, 1, 1) 1
SRC COLOR (Rs, Gs, Bs) As

ONE MINUS SRC COLOR (1, 1, 1)− (Rs, Gs, Bs) 1−As

DST COLOR (Rd, Gd, Bd) Ad

ONE MINUS DST COLOR (1, 1, 1)− (Rd, Gd, Bd) 1−Ad

SRC ALPHA (As, As, As) As

ONE MINUS SRC ALPHA (1, 1, 1)− (As, As, As) 1−As

DST ALPHA (Ad, Ad, Ad) Ad

ONE MINUS DST ALPHA (1, 1, 1)− (Ad, Ad, Ad) 1−Ad

CONSTANT COLOR (Rc, Gc, Bc) Ac

ONE MINUS CONSTANT COLOR (1, 1, 1)− (Rc, Gc, Bc) 1−Ac

CONSTANT ALPHA (Ac, Ac, Ac) Ac

ONE MINUS CONSTANT ALPHA (1, 1, 1)− (Ac, Ac, Ac) 1−Ac

SRC ALPHA SATURATE1 (f, f, f)2 1

Table 4.2: RGB and ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.
1 SRC ALPHA SATURATE is valid only for source RGB and alpha blending func-
tions.
2 f = min(As, 1−Ad).

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 252

Blending occurs once for each color buffer currently enabled for blending and
for writing (section 4.2.1) using each buffer’s color for Cd. If a color buffer has no
A value, then Ad is taken to be 1.

4.1.9 sRGB Conversion

If FRAMEBUFFER SRGB is enabled and the value of
FRAMEBUFFER ATTACHMENT COLOR ENCODING for the framebuffer attach-
ment corresponding to the destination buffer is SRGB (see section 6.1.3), the R, G,
and B values after blending are converted into the non-linear sRGB color space by
computing

cs =


0.0, cl ≤ 0
12.92cl, 0 < cl < 0.0031308
1.055c0.41666

l − 0.055, 0.0031308 ≤ cl < 1
1.0, cl ≥ 1

(4.1)

where cl is the R, G, or B element and cs is the result (effectively converted into an
sRGB color space).

If FRAMEBUFFER SRGB is disabled or the value of
FRAMEBUFFER ATTACHMENT COLOR ENCODING is not SRGB, then

cs = cl.

The resulting cs values for R, G, and B, and the unmodified A form a new
RGBA color value. If the color buffer is fixed-point, each component is clamped to
the range [0, 1] and then converted to a fixed-point value in the manner described
in section 2.19.9. The resulting four values are sent to the subsequent dithering
operation.

4.1.10 Dithering

Dithering selects between two representable color values or indices. A repre-
sentable value is a value that has an exact representation in the color buffer. In
RGBA mode dithering selects, for each color component, either the largest posi-
tive representable color value (for that particular color component) that is less than
or equal to the incoming color component value, c, or the smallest negative repre-
sentable color value that is greater than or equal to c. The selection may depend on
the xw and yw coordinates of the pixel, as well as on the exact value of c. If one of
the two values does not exist, then the selection defaults to the other value.

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 253

In color index mode dithering selects either the largest representable index that
is less than or equal to the incoming color value, c, or the smallest representable
index that is greater than or equal to c. If one of the two indices does not exist, then
the selection defaults to the other value.

Many dithering selection algorithms are possible, but an individual selection
must depend only on the incoming color index or component value and the frag-
ment’s x and y window coordinates. If dithering is disabled, then each incoming
color component c is replaced with the largest positive representable color value
(for that particular component) that is less than or equal to c, or by the smallest
negative representable value, if no representable value is less than or equal to c; a
color index is rounded to the nearest representable index value.

Dithering is enabled with Enable and disabled with Disable using the symbolic
constant DITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.11 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color or
index values and the color or index values stored at the corresponding location in
the framebuffer. The result replaces the values in the framebuffer at the fragment’s
(xw, yw) coordinates. If the selected draw buffers refer to the same framebuffer-
attachable image more than once, then the values stored in that image are unde-
fined.

The logical operation on color indices is enabled or disabled with Enable or
Disable using the symbolic constant INDEX LOGIC OP. (For compatibility with
GL version 1.0, the symbolic constant LOGIC OP may also be used.) The logical
operation on color values is enabled or disabled with Enable or Disable using
the symbolic constant COLOR LOGIC OP. If the logical operation is enabled for
color values, it is as if blending were disabled, regardless of the value of BLEND. If
multiple fragment colors are being written to multiple buffers (see section 4.2.1),
the logical operation is computed and applied separately for each fragment color
and the corresponding buffer.

Logical operation has no effect on a floating-point destination color buffer.
However, if logical operation is enabled, blending is still disabled.

The logical operation is selected by

void LogicOp(enum op);

op is a symbolic constant; the possible constants and corresponding operations are
enumerated in table 4.3. In this table, s is the value of the incoming fragment and d

Version 3.0 (September 23, 2008)

4.1. PER-FRAGMENT OPERATIONS 254

Argument value Operation
CLEAR 0
AND s ∧ d
AND REVERSE s ∧ ¬d
COPY s
AND INVERTED ¬s ∧ d
NOOP d
XOR s xor d
OR s ∨ d
NOR ¬(s ∨ d)
EQUIV ¬(s xor d)
INVERT ¬d
OR REVERSE s ∨ ¬d
COPY INVERTED ¬s
OR INVERTED ¬s ∨ d
NAND ¬(s ∧ d)
SET all 1’s

Table 4.3: Arguments to LogicOp and their corresponding operations.

is the value stored in the framebuffer. The numeric values assigned to the symbolic
constants are the same as those assigned to the corresponding symbolic values in
the X window system.

Logical operations are performed independently for each color index buffer
that is selected for writing, or for each red, green, blue, and alpha value of each
color buffer that is selected for writing. The required state is an integer indicating
the logical operation, and two bits indicating whether the logical operation is en-
abled or disabled. The initial state is for the logic operation to be given by COPY,
and to be disabled.

4.1.12 Additional Multisample Fragment Operations

If the DrawBuffer mode is NONE, no change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLE is enabled, and the value of SAMPLE BUFFERS is one, the
alpha test, stencil test, depth test, blending, dithering, and logical operations are
performed for each pixel sample, rather than just once for each fragment. Failure
of the alpha, stencil, or depth test results in termination of the processing of that
sample, rather than discarding of the fragment. All operations are performed on the

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 255

color, depth, and stencil values stored in the multisample buffer (to be described
in a following section). The contents of the color buffers are not modified at this
point.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a value of 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLE is disabled, and the value of SAMPLE BUFFERS is one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization is
allowed, however. An implementation may choose to identify a centermost sample,
and to perform alpha, stencil, and depth tests on only that sample. Regardless of
the outcome of the stencil test, all multisample buffer stencil sample values are set
to the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment’s centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the sample
values for each color in the multisample buffer are combined to produce a single
color value, and that value is written into the corresponding color buffers selected
by DrawBuffer or DrawBuffers. An implementation may defer the writing of the
color buffers until a later time, but the state of the framebuffer must behave as if
the color buffers were updated as each fragment was processed. The method of
combination is not specified, though a simple average computed independently for
each color component is recommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the color buffers into which each of the
fragment color values is written. This is accomplished with either DrawBuffer or
DrawBuffers.

The command

void DrawBuffer(enum buf);

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 256

defines the set of color buffers to which fragment color zero is written. buf
must be one of the values from tables 4.4 or 4.5. In addition, accept-
able values for buf depend on whether the GL is using the default frame-
buffer (i.e., DRAW FRAMEBUFFER BINDING is zero), or a framebuffer object (i.e.,
DRAW FRAMEBUFFER BINDING is non-zero). In the initial state, the GL is bound
to the default framebuffer. For more information about framebuffer objects, see
section 4.4.

If the GL is bound to the default framebuffer, then buf must be one of the values
listed in table 4.4, which summarizes the constants and the buffers they indicate.
In this case, buf is a symbolic constant specifying zero, one, two, or four buffers
for writing. These constants refer to the four potentially visible buffers (front left,
front right, back left, and back right), and to the auxiliary buffers. Arguments
other than AUXi that omit reference to LEFT or RIGHT refer to both left and right
buffers. Arguments other than AUXi that omit reference to FRONT or BACK refer
to both front and back buffers. AUXi enables drawing only to auxiliary buffer i.
Each AUXi adheres to AUXi = AUX0 + i, and i must be in the range 0 to the value of
AUX BUFFERS minus one.

If the GL is bound to a framebuffer object, buf must be one of the values
listed in table 4.5, which summarizes the constants and the buffers they indi-
cate. In this case, buf is a symbolic constant specifying a single color buffer for
writing. Specifying COLOR ATTACHMENTi enables drawing only to the image at-
tached to the framebuffer at COLOR ATTACHMENTi. Each COLOR ATTACHMENTi

adheres to COLOR ATTACHMENTi = COLOR ATTACHMENT0 + i. The intial value of
DRAW BUFFER for framebuffer objects is COLOR ATTACHMENT0.

If the GL is bound to the default framebuffer and DrawBuffer is supplied with
a constant (other than NONE) that does not indicate any of the color buffers allocated
to the GL context, the error INVALID OPERATION results.

If the GL is bound to a framebuffer object and buf is one of the con-
stants from table 4.4, then the error INVALID OPERATION results. If buf
is COLOR ATTACHMENTm and m is greater than or equal to the value of
MAX COLOR ATTACHMENTS, then the error INVALID VALUE results.

If DrawBuffer is supplied with a constant that is legal for neither the default
framebuffer nor a framebuffer object, then the error INVALID ENUM results.

DrawBuffer will set the draw buffer for fragment colors other than zero to
NONE.

The command

void DrawBuffers(sizei n, const enum *bufs);

defines the draw buffers to which all fragment colors are written. n specifies the

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 257

Symbolic Front Front Back Back Aux
Constant Left Right Left Right i

NONE

FRONT LEFT •
FRONT RIGHT •
BACK LEFT •
BACK RIGHT •
FRONT • •
BACK • •
LEFT • •
RIGHT • •
FRONT AND BACK • • • •
AUXi •

Table 4.4: Arguments to DrawBuffer(s) and ReadBuffer when the context is
bound to a default framebuffer, and the buffers they indicate.

Symbolic Constant Meaning
NONE No buffer
COLOR ATTACHMENTi (see caption) Output fragment color to image attached

at color attachment point i

Table 4.5: Arguments to DrawBuffer(s) and ReadBuffer when the
context is bound to a framebuffer object, and the buffers they indi-
cate. i in COLOR ATTACHMENTi may range from zero to the value of
MAX COLOR ATTACHMENTS - 1.

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 258

Symbolic Front Front Back Back Aux
Constant Left Right Left Right i

NONE

FRONT LEFT •
FRONT RIGHT •
BACK LEFT •
BACK RIGHT •
AUXi •

Table 4.6: Arguments to DrawBuffers when the context is bound to the default
framebuffer, and the buffers they indicate.

number of buffers in bufs. bufs is a pointer to an array of symbolic constants
specifying the buffer to which each fragment color is written.

Each buffer listed in bufs must be one of the values from tables 4.5 or 4.6.
Otherwise, an INVALID ENUM error is generated. Further, acceptable values
for the constants in bufs depend on whether the GL is using the default frame-
buffer (i.e., DRAW FRAMEBUFFER BINDING is zero), or a framebuffer object (i.e.,
DRAW FRAMEBUFFER BINDING is non-zero). For more information about frame-
buffer objects, see section 4.4.

If the GL is bound to the default framebuffer, then each of the constants must
be one of the values listed in table 4.6.

If the GL is bound to an framebuffer object, then each of the constants must be
one of the values listed in table 4.5.

In both cases, the draw buffers being defined correspond in order to the re-
spective fragment colors. The draw buffer for fragment colors beyond n is set to
NONE.

The maximum number of draw buffers is implementation dependent and must
be at least 1. The number of draw buffers supported can be queried by calling Get-
Integerv with the symbolic constant MAX DRAW BUFFERS. An INVALID VALUE

error is generated if n is greater than MAX DRAW BUFFERS.
Except for NONE, a buffer may not appear more then once in the array

pointed to by bufs. Specifying a buffer more then once will result in the error
INVALID OPERATION.

If fixed-function fragment shading is being performed, DrawBuffers specifies
a set of draw buffers into which the fragment color is written.

If a fragment shader writes to gl FragColor, DrawBuffers specifies a set
of draw buffers into which the single fragment color defined by gl FragColor

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 259

is written. If a fragment shader writes to gl FragData, or a user-defined vary-
ing out variable, DrawBuffers specifies a set of draw buffers into which each of
the multiple output colors defined by these variables are separately written. If a
fragment shader writes to none of gl FragColor, gl FragData, nor any user-
defined varying out variables, the values of the fragment colors following shader
execution are undefined, and may differ for each fragment color.

For both the default framebuffer and framebuffer objects, the constants FRONT,
BACK, LEFT, RIGHT, and FRONT AND BACK are not valid in the bufs array passed to
DrawBuffers, and will result in the error INVALID OPERATION. This restriction
is because these constants may themselves refer to multiple buffers, as shown in
table 4.4.

If the GL is bound to the default framebuffer and DrawBuffers is supplied with
a constant (other than NONE) that does not indicate any of the color buffers allocated
to the GL context by the window system, the error INVALID OPERATION will be
generated.

If the GL is bound to a framebuffer object and DrawBuffers is supplied with a
constant from table 4.6, or COLOR ATTACHMENTmwherem is greater than or equal
to the value of MAX COLOR ATTACHMENTS, then the error INVALID OPERATION

results.
Indicating a buffer or buffers using DrawBuffer or DrawBuffers causes sub-

sequent pixel color value writes to affect the indicated buffers.
Specifying NONE as the draw buffer for a fragment color will inhibit that frag-

ment color from being written to any buffer.
Monoscopic contexts include only left buffers, while stereoscopic contexts in-

clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.

The state required to handle color buffer selection for each framebuffer is
an integer for each supported fragment color. For the default framebuffer, in the
initial state the draw buffer for fragment color zero is BACK if there is a back buffer;
FRONT if there is no back buffer; and NONE no default framebuffer is associated
with the context. For framebuffer objects, in the initial state the draw buffer for
fragment color zero is COLOR ATTACHMENT0. For both the default framebuffer and
framebuffer objects, the initial state of draw buffers for fragment colors other then
zero is NONE.

The value of the draw buffer selected for fragment color i can be queried by
calling GetIntegerv with the symbolic constant DRAW BUFFERi. DRAW BUFFER is
equivalent to DRAW BUFFER0.

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 260

4.2.2 Fine Control of Buffer Updates

Writing of bits to each of the logical framebuffers after all per-fragment operations
have been performed may be masked. The commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, boolean b,

boolean a);
void ColorMaski(uint buf, boolean r, boolean g,

boolean b, boolean a);

control writes to the active draw buffers.
The least significant n bits of mask, where n is the number of bits in a color

index buffer, specify a mask. Where a 1 appears in this mask, the corresponding
bit in the color index buffer (or buffers) is written; where a 0 appears, the bit is not
written. This mask applies only in color index mode.

In RGBA mode, ColorMask and ColorMaski are used to mask the writing
of R, G, B and A values to the draw buffer or buffers. ColorMaski sets the
mask for a particular draw buffer. The mask for DRAW BUFFERi is modified by
passing i as the parameter buf. r, g, b, and a indicate whether R, G, B, or A values,
respectively, are written or not (a value of TRUE means that the corresponding
value is written). The mask specified by r, g, b, and a is applied to the color buffer
associated with DRAW BUFFERi. If DRAW BUFFERi is one of FRONT, BACK, LEFT,
RIGHT, or FRONT AND BACK (specifying multiple color buffers) then the mask is
applied to all of the buffers.

ColorMask sets the mask for all draw buffers to the same values as specified
by r, g, b, and a.

An INVALID VALUE error is generated if index is greater than the value of
MAX DRAW BUFFERS minus one.

In the initial state, all bits (in color index mode) and all color values (in RGBA
mode) are enabled for writing for all draw buffers.

The value of the color writemask for draw buffer i can be queried by calling
GetBooleani v with target COLOR WRITEMASK and index i. The value of the color
writemask for draw buffer zero may also be queried by calling GetBooleanv with
value COLOR WRITEMASK.

The depth buffer can be enabled or disabled for writing zw values using

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.

The commands

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 261

void StencilMask(uint mask);
void StencilMaskSeparate(enum face, uint mask);

control the writing of particular bits into the stencil planes.
The least significant s bits of mask comprise an integer mask (s is the number

of bits in the stencil buffer), just as for IndexMask. The face parameter of Stencil-
MaskSeparate can be FRONT, BACK, or FRONT AND BACK and indicates whether
the front or back stencil mask state is affected. StencilMask sets both front and
back stencil mask state to identical values.

Fragments generated by front facing primitives use the front mask and frag-
ments generated by back facing primitives use the back mask (see section 4.1.5).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is three integers and a
bit: an integer for color indices, an integer for the front and back stencil values,
and a bit for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the integer
masks are all ones, as are the bits controlling depth value and RGBA component
writing.

Fine Control of Multisample Buffer Updates

When the value of SAMPLE BUFFERS is one, ColorMask, DepthMask, and Sten-
cilMask or StencilMaskSeparate control the modification of values in the multi-
sample buffer. The color mask has no effect on modifications to the color buffers.
If the color mask is entirely disabled, the color sample values must still be com-
bined (as described above) and the result used to replace the color values of the
buffers enabled by DrawBuffer.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which buffers are
to be cleared. The values are COLOR BUFFER BIT, DEPTH BUFFER BIT,
STENCIL BUFFER BIT, and ACCUM BUFFER BIT, indicating the buffers currently
enabled for color writing, the depth buffer, the stencil buffer, and the accumulation
buffer (see below), respectively. The value to which each buffer is cleared depends

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 262

on the setting of the clear value for that buffer. If the mask is not a bitwise OR of
the specified values, then the error INVALID VALUE is generated.

void ClearColor(clampf r, clampf g, clampf b,
clampf a);

sets the clear value for fixed- and floating-point color buffers in RGBA mode. The
specified components are stored as floating-point values.

The command

void ClearIndex(float index);

sets the clear color index. index is converted to a fixed-point value with unspecified
precision to the left of the binary point; the integer part of this value is then masked
with 2m − 1, where m is the number of bits in a color index value stored in the
framebuffer.

The command

void ClearDepth(clampd d);

sets the depth value used when clearing the depth buffer. d is clamped to the
range [0, 1]. When clearing a fixed-point depth buffer, d is converted to fixed-point
according to the rules for a window z value given in section 2.12.1. No conversion
is applied when clearing a floating-point depth buffer.

The command

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

The command

void ClearAccum(float r, float g, float b, float a);

takes four floating-point arguments that are the values, in order, to which to set the
R, G, B, and A values of the accumulation buffer (see the next section). These
values are clamped to the range [−1, 1] when they are specified.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking
operations described in section 4.2.2 are also applied. If a buffer is not present,
then a Clear directed at that buffer has no effect. Fixed-point RGBA color buffers

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 263

are cleared to color values derived by clamping each component of the clear color
to [0, 1] and converting to fixed-point according to the rules of section 2.19.9. The
result of clearing integer color buffers is undefined.

The state required for clearing is a clear value for each of the color buffer, the
depth buffer, the stencil buffer, and the accumulation buffer. Initially, the RGBA
color clear value is (0, 0, 0, 0), the clear color index is 0, and the stencil buffer and
accumulation buffer clear values are all 0. The depth buffer clear value is initially
1.0.

Individual buffers of the currently bound draw framebuffer may be cleared with
the command

void ClearBuffer{if ui}v(enum buffer, int drawbuffer,
const T *value);

where buffer and drawbuffer identify a buffer to clear, and value specifies the value
or values to clear it to.

If buffer is COLOR, a particular draw buffer DRAW BUFFERi is specified by pass-
ing i as the parameter drawbuffer, and value points to a four-element vector spec-
ifying the R, G, B, and A color to clear that draw buffer to. If the draw buffer
is one of FRONT, BACK, LEFT, RIGHT, or FRONT AND BACK, identifying multiple
buffers, each selected buffer is cleared to the same value. The ClearBufferfv,
ClearBufferiv, and ClearBufferuiv commands should be used to clear fixed-
and floating-point, signed integer, and unsigned integer color buffers respectively.
Clamping and conversion for fixed-point color buffers are performed in the same
fashion as ClearColor.

If buffer is DEPTH, drawbuffer must be zero, and value points to the single
depth value to clear the depth buffer to. Clamping and type conversion for fixed-
point depth buffers are performed in the same fashion as ClearDepth. Only Clear-
Bufferfv should be used to clear depth buffers.

If buffer is STENCIL, drawbuffer must be zero, and value points to the single
stencil value to clear the stencil buffer to. Masking and type conversion are
performed in the same fashion as ClearStencil. Only ClearBufferiv should be
used to clear stencil buffers.

The command

void ClearBufferfi(enum buffer, int drawbuffer,
float depth, int stencil);

clears both depth and stencil buffers of the currently bound draw framebuffer.
buffer must be DEPTH STENCIL and drawbuffer must be zero. depth and sten-
cil are the values to clear the depth and stencil buffers to, respectively. Clamping

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 264

and type conversion of depth for fixed-point depth buffers is performed in the same
fashion as ClearDepth. Masking of stencil for stencil buffers is performed in the
same fashion as ClearStencil. ClearBufferfi is equivalent to clearing the depth
and stencil buffers separately, but may be faster when a buffer of internal format
DEPTH STENCIL is being cleared.

The result of ClearBuffer is undefined if no conversion between the type of
the specified value and the type of the buffer being cleared is defined (for example,
if ClearBufferiv is called for a fixed- or floating-point buffer, or if ClearBufferfv
is called for a signed or unsigned integer buffer). This is not an error.

When ClearBuffer is called, the same per-fragment and masking operations
defined for Clear are applied.
Errors

ClearBuffer{if ui}v generates an INVALID ENUM error if buffer is not COLOR,
DEPTH, or STENCIL. ClearBufferfi generates an INVALID ENUM error if buffer is
not DEPTH STENCIL.

ClearBuffer generates an INVALID VALUE error if buffer is COLOR and draw-
buffer is less than zero, or greater than the value of MAX DRAW BUFFERS minus one;
or if buffer is DEPTH, STENCIL, or DEPTH STENCIL and drawbuffer is not zero.

ClearBuffer generates an INVALID OPERATION error if buffer is COLOR and
the GL is in color index mode.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by the Clear mask bit COLOR BUFFER BIT and
the DrawBuffer mode. If the DrawBuffer mode is NONE, the color samples of the
multisample buffer cannot be cleared using Clear.

If the Clear mask bits DEPTH BUFFER BIT or STENCIL BUFFER BIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.

The ClearBuffer commands also clear color, depth, or stencil samples of mul-
tisample buffers corresponding to the specified buffer.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one for
each of R, G, B, and A. The accumulation buffer is controlled exclusively through
the use of

void Accum(enum op, float value);

Version 3.0 (September 23, 2008)

4.2. WHOLE FRAMEBUFFER OPERATIONS 265

(except for clearing it). op is a symbolic constant indicating an accumulation buffer
operation, and value is a floating-point value to be used in that operation. The
possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

When the scissor test is enabled (section 4.1.2), then only those pixels within
the current scissor box are updated by any Accum operation; otherwise, all pixels
in the window are updated. The accumulation buffer operations apply identically
to every affected pixel, so we describe the effect of each operation on an individ-
ual pixel. Accumulation buffer values are taken to be signed values in the range
[−1, 1]. Using ACCUM obtains R, G, B, and A components from the buffer cur-
rently selected for reading (section 4.3.2). If the color buffer is fixed-point, each
component is considered as a fixed-point value in [0, 1] (see section 2.19.9) and is
converted to floating-point. Each result is then multiplied by value. The results
of this multiplication are then added to the corresponding color component cur-
rently in the accumulation buffer, and the resulting color value replaces the current
accumulation buffer color value.

The LOAD operation has the same effect as ACCUM, but the computed values
replace the corresponding accumulation buffer components rather than being added
to them.

The RETURN operation takes each color value from the accumulation buffer,
multiplies each of the R, G, B, and A components by value. If fragment color
clamping is enabled, the results are then clamped to the range [0, 1]. The result-
ing color value is placed in the buffers currently enabled for color writing as if
it were a fragment produced from rasterization, except that the only per-fragment
operations that are applied (if enabled) are the pixel ownership test, the scissor test
(section 4.1.2), and dithering (section 4.1.10). Color masking (section 4.2.2) is also
applied.

The MULT operation multiplies each R, G, B, and A in the accumulation buffer
by value and then returns the scaled color components to their corresponding ac-
cumulation buffer locations. ADD is the same as MULT except that value is added to
each of the color components.

The color components operated on by Accum must be clamped only if the
operation is RETURN. In this case, a value sent to the enabled color buffers is first
clamped to [0, 1]. Otherwise, results are undefined if the result of an operation on
a color component is out of the range [−1, 1].

If there is no accumulation buffer; if the DRAW FRAMEBUFFER and
READ FRAMEBUFFER bindings (see section 4.4.4) do not refer to the same
object; or if the GL is in color index mode, Accum generates the error
INVALID OPERATION.

No state (beyond the accumulation buffer itself) is required for accumulation
buffering.

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 266

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer using the DrawPixels and
ReadPixels commands. CopyPixels can be used to copy a block of pixels from
one portion of the framebuffer to another.

4.3.1 Writing to the Stencil or Depth/Stencil Buffers

The operation of DrawPixels was described in section 3.7.4, except if the format
argument was STENCIL INDEX or DEPTH STENCIL. In this case, all operations
described for DrawPixels take place, but window (x, y) coordinates, each with
the corresponding stencil index, or depth value and stencil index, are produced in
lieu of fragments. Each coordinate-data pair is sent directly to the per-fragment
operations, bypassing the texture, fog, and antialiasing application stages of raster-
ization. Each pair is then treated as a fragment for purposes of the pixel ownership
and scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebuffer, subject to the
current front stencil mask (set with StencilMask or StencilMaskSeparate). If a
depth component is present, and the setting of DepthMask is not FALSE, it is also
written to the framebuffer; the setting of DepthTest is ignored.

The error INVALID OPERATION results if the format argument is
STENCIL INDEX and there is no stencil buffer, or if format is DEPTH STENCIL

and there is not both a depth buffer and a stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in pixel pack
buffer or client memory is diagrammed in figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Initially, zero is bound for the PIXEL PACK BUFFER, indicating that image
read and query commands such as ReadPixels return pixels results into client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel pack buffer, then the pointer parameter is treated as an offset into the
designated buffer object.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments after x and y to ReadPixels correspond to those of DrawPixels.
The pixel storage modes that apply to ReadPixels and other commands that query

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 267

post
convolution

convert
to float

RGBA pixel
data in

color index pixel
data in

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale a nd bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
look up

index to RGBA
looku p

color table
lookup

color matrix
scale and bias

post
color matrix

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

pack

convert
RGB to L

clamp
to [0,1]

mask to
(2n − 1)

byte, short, int, o r float pixel
data stream (index or component)

Pixel Storage
Operations

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be enabled
or disabled, except in the case of ”convert RGB to L”, which is only applied when
reading color data in luminosity formats. RGBA and color index pixel paths are
shown; depth and stencil pixel paths are not shown.

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 268

Parameter Name Type Initial Value Valid Range
PACK SWAP BYTES boolean FALSE TRUE/FALSE
PACK LSB FIRST boolean FALSE TRUE/FALSE
PACK ROW LENGTH integer 0 [0,∞)
PACK SKIP ROWS integer 0 [0,∞)
PACK SKIP PIXELS integer 0 [0,∞)
PACK ALIGNMENT integer 4 1,2,4,8
PACK IMAGE HEIGHT integer 0 [0,∞)
PACK SKIP IMAGES integer 0 [0,∞)

Table 4.7: PixelStore parameters pertaining to ReadPixels, GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, GetMinmax, GetPoly-
gonStipple, and GetTexImage.

images (see section 6.1) are summarized in table 4.7.
ReadPixels generates an INVALID OPERATION error

if READ FRAMEBUFFER BINDING (see section 4.4) is non-zero, the read frame-
buffer is framebuffer complete, and the value of SAMPLE BUFFERS for the read
framebuffer is greater than zero.

Obtaining Pixels from the Framebuffer

If the format is DEPTH COMPONENT, then values are obtained from the depth buffer.
If there is no depth buffer, the error INVALID OPERATION occurs.

If there is a multisample buffer (the value of SAMPLE BUFFERS is one), then
values are obtained from the depth samples in this buffer. It is recommended that
the depth value of the centermost sample be used, though implementations may
choose any function of the depth sample values at each pixel.

If the format is DEPTH STENCIL, then values are taken from both the depth
buffer and the stencil buffer. If there is no depth buffer or if there is no sten-
cil buffer, then the error INVALID OPERATION occurs. If the type parameter is
not UNSIGNED INT 24 8 or FLOAT 32 UNSIGNED INT 24 8 REV, then the error
INVALID ENUM occurs.

If there is a multisample buffer, then values are obtained from the depth and
stencil samples in this buffer. It is recommended that the depth and stencil values of
the centermost sample be used, though implementations may choose any function
of the depth and stencil sample values at each pixel.

If the format is STENCIL INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the error INVALID OPERATION occurs.

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 269

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the read buffer from which values are obtained is one of
the color buffers; the selection of color buffer is controlled with ReadBuffer.

The command

void ReadBuffer(enum src);

takes a symbolic constant as argument. src must be one of the values from ta-
bles 4.4 or 4.5. Otherwise, an INVALID ENUM error is generated. Further, the
acceptable values for src depend on whether the GL is using the default frame-
buffer (i.e., READ FRAMEBUFFER BINDING is zero), or a framebuffer object (i.e.,
READ FRAMEBUFFER BINDING is non-zero). For more information about frame-
buffer objects, see section 4.4.

If the object bound to READ FRAMEBUFFER BINDING is not framebuffer
complete (as defined in section 4.4.4), then ReadPixels generates the error
INVALID FRAMEBUFFER OPERATION. If ReadBuffer is supplied with a constant
that is neither legal for the default framebuffer, nor legal for a framebuffer object,
then the error INVALID ENUM results.

When READ FRAMEBUFFER BINDING is zero, i.e. the default framebuffer, src
must be one of the values listed in table 4.4, including NONE. FRONT AND BACK,
FRONT, and LEFT refer to the front left buffer, BACK refers to the back left buffer,
and RIGHT refers to the front right buffer. The other constants correspond directly
to the buffers that they name. If the requested buffer is missing, then the error
INVALID OPERATION is generated. For the default framebuffer, the initial setting
for ReadBuffer is FRONT if there is no back buffer and BACK otherwise.

When the GL is using a framebuffer object, src must be one of the values listed
in table 4.5, including NONE. In a manner analogous to how the DRAW BUFFERs
state is handled, specifying COLOR ATTACHMENTi enables reading from the image
attached to the framebuffer at COLOR ATTACHMENTi. For framebuffer objects, the
initial setting for ReadBuffer is COLOR ATTACHMENT0.

ReadPixels generates an INVALID OPERATION error if it attempts to select a
color buffer while READ BUFFER is NONE.

ReadPixels obtains values from the selected buffer from each pixel with lower
left hand corner at (x + i, y + j) for 0 ≤ i < width and 0 ≤ j < height;
this pixel is said to be the ith pixel in the jth row. If any of these pixels lies
outside of the window allocated to the current GL context, or outside of the image
attached to the currently bound framebuffer object, then the values obtained for

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 270

those pixels are undefined. When READ FRAMEBUFFER BINDING is zero, values
are also undefined for individual pixels that are not owned by the current context.
Otherwise, ReadPixels obtains values from the selected buffer, regardless of how
those values were placed there.

If the GL is in RGBA mode, and format is one of RED, GREEN, BLUE, ALPHA,
RG, RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE ALPHA, then red, green,
blue, and alpha values are obtained from the selected buffer at each pixel loca-
tion. If the framebuffer does not support alpha values then the A that is obtained
is 1.0. If format is COLOR INDEX and the GL is in RGBA mode then the error
INVALID OPERATION occurs. If the GL is in color index mode, and format is not
DEPTH COMPONENT, DEPTH STENCIL, or STENCIL INDEX, then the color index
is obtained at each pixel location.

If format is an integer format and the color buffer is not an integer format;
if the color buffer is an integer format and format is not an integer format; or
if format is an integer format and type is FLOAT or HALF FLOAT, the error
INVALID OPERATION occurs.

When READ FRAMEBUFFER BINDING is non-zero, the red, green, blue, and
alpha values are obtained by first reading the internal component values of the
corresponding value in the image attached to the selected logical buffer. Inter-
nal components are converted to an RGBA color by taking each R, G, B, and A
component present according to the base internal format of the buffer (as shown
in table 3.15). If G, B, or A values are not present in the internal format, they are
taken to be zero, zero, and one respectively.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format is not
STENCIL INDEX, DEPTH COMPONENT, or DEPTH STENCIL. The R, G, B, and A
values form a group of elements. For a fixed-point color buffer, each element is
taken to be a fixed-point value in [0, 1] with m bits, where m is the number of bits
in the corresponding color component of the selected buffer (see section 2.19.9).
For an integer or floating-point color buffer, the elements are unmodified.

Conversion of Depth values

This step applies only if format is DEPTH COMPONENT or DEPTH STENCIL and
the depth buffer uses a fixed-point representation. An element is taken to be a
fixed-point value in [0, 1] with m bits, where m is the number of bits in the depth
buffer (see section 2.12.1). No conversion is necessary if the depth buffer uses a
floating-point representation.

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 271

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in sec-
tion 3.7.5. After the processing described in that section is completed, groups are
processed as described in the following sections.

Conversion to L

This step applies only to RGBA component groups. If the format is either
LUMINANCE or LUMINANCE ALPHA, a value L is computed as

L = R+G+B

where R, G, and B are the values of the R, G, and B components. The single
computed L component replaces the R, G, and B components in the group.

Final Conversion

For an index, if the type is not FLOAT or HALF FLOAT, final conversion consists
of masking the index with the value given in table 4.8; if the type is FLOAT or
HALF FLOAT, then the integer index is converted to a GL float or half, data
value.

For a floating-point RGBA color, if type is not one of
FLOAT, UNSIGNED INT 5 9 9 9 REV, or UNSIGNED INT 10F 11F 11F REV; if
CLAMP READ COLOR is TRUE; or if CLAMP READ COLOR is FIXED ONLY and the
selected color buffer is a fixed-point buffer, each component is first clamped to
[0, 1]. Then the appropriate conversion formula from table 4.9 is applied to the
component.

In the special case of calling ReadPixels with type of
UNSIGNED INT 10F 11F 11F REV and format of RGB, conversion is performed as
follows: the returned data are packed into a series of uint values. The red, green,
and blue components are converted to unsigned 11-bit floating-point, unsigned 11-
bit floating-point, and unsigned 10-bit floating point as described in sections 2.1.3
and 2.1.4. The resulting red 11 bits, green 11 bits, and blue 10 bits are then packed
as the 1st, 2nd, and 3rd components of the UNSIGNED INT 10F 11F 11F REV

format as shown in table 3.11.
In the special case of calling ReadPixels with type

of UNSIGNED INT 5 9 9 9 REV and format RGB, the conversion is performed as
follows: the returned data are packed into a series of uint values. The red, green,
and blue components are converted to reds, greens, blues, and expshared integers
as described in section 3.9.1 when internalformat is RGB9 E5. The reds, greens,

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 272

type Parameter Index Mask
UNSIGNED BYTE 28 − 1
BITMAP 1
BYTE 27 − 1
UNSIGNED SHORT 216 − 1
SHORT 215 − 1
UNSIGNED INT 232 − 1
INT 231 − 1
UNSIGNED INT 24 8 28 − 1
FLOAT 32 UNSIGNED INT 24 8 REV 28 − 1

Table 4.8: Index masks used by ReadPixels. Floating point data are not masked.

blues, and expshared are then packed as the 1st, 2nd, 3rd, and 4th components of
the UNSIGNED INT 5 9 9 9 REV format as shown in table 3.11.

For an integer RGBA color, each component is clamped to the representable
range of type.

Placement in Pixel Pack Buffer or Client Memory

If a pixel pack buffer is bound (as indicated by a non-zero value of
PIXEL PACK BUFFER BINDING), data is an offset into the pixel pack buffer and
the pixels are packed into the buffer relative to this offset; otherwise, data is a
pointer to a block client memory and the pixels are packed into the client memory
relative to the pointer. If a pixel pack buffer object is bound and packing the pixel
data according to the pixel pack storage state would access memory beyond the size
of the pixel pack buffer’s memory size, an INVALID OPERATION error results. If
a pixel pack buffer object is bound and data is not evenly divisible by the number
of basic machine units needed to store in memory the corresponding GL data type
from table 3.5 for the type parameter, an INVALID OPERATION error results.

Groups of elements are placed in memory just as they are taken from memory
for DrawPixels. That is, the ith group of the jth row (corresponding to the ith pixel
in the jth row) is placed in memory just where the ith group of the jth row would
be taken from for DrawPixels. See Unpacking under section 3.7.4. The only
difference is that the storage mode parameters whose names begin with PACK are
used instead of those whose names begin with UNPACK . If the format is RED,
GREEN, BLUE, ALPHA, or LUMINANCE, only the corresponding single element is
written. Likewise if the format is RG, LUMINANCE ALPHA, RGB, or BGR, only the

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 273

type Parameter GL Data Type Component
Conversion Formula

UNSIGNED BYTE ubyte c = (28 − 1)f
BYTE byte c = (28−1)f−1

2

UNSIGNED SHORT ushort c = (216 − 1)f
SHORT short c = (216−1)f−1

2

UNSIGNED INT uint c = (232 − 1)f
INT int c = (232−1)f−1

2

HALF FLOAT half c = f

FLOAT float c = f

UNSIGNED BYTE 3 3 2 ubyte c = (2N − 1)f
UNSIGNED BYTE 2 3 3 REV ubyte c = (2N − 1)f
UNSIGNED SHORT 5 6 5 ushort c = (2N − 1)f
UNSIGNED SHORT 5 6 5 REV ushort c = (2N − 1)f
UNSIGNED SHORT 4 4 4 4 ushort c = (2N − 1)f
UNSIGNED SHORT 4 4 4 4 REV ushort c = (2N − 1)f
UNSIGNED SHORT 5 5 5 1 ushort c = (2N − 1)f
UNSIGNED SHORT 1 5 5 5 REV ushort c = (2N − 1)f
UNSIGNED INT 8 8 8 8 uint c = (2N − 1)f
UNSIGNED INT 8 8 8 8 REV uint c = (2N − 1)f
UNSIGNED INT 10 10 10 2 uint c = (2N − 1)f
UNSIGNED INT 2 10 10 10 REV uint c = (2N − 1)f
UNSIGNED INT 24 8 uint c = (2N − 1)f
UNSIGNED INT 10F 11F 11F REV uint Special
UNSIGNED INT 5 9 9 9 REV uint Special
FLOAT 32 UNSIGNED INT 24 8 REV float c = f (depth only)

Table 4.9: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representation (f) to a datum of the specified GL
data type (c) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
query commands and to components of pixel data returned to client memory. The
equations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See table 2.2.) Equations with N as
the exponent are performed for each bitfield of the packed data type, with N set to
the number of bits in the bitfield.

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 274

corresponding two or three elements are written. Otherwise all the elements of
each group are written.

4.3.3 Copying Pixels

The command

void CopyPixels(int x, int y, sizei width, sizei height,
enum type);

transfers a rectangle of pixel values from one region of the read framebuffer to
another in the draw framebuffer. Pixel copying is diagrammed in figure 4.3.
type is a symbolic constant that must be one of COLOR, STENCIL, DEPTH, or
DEPTH STENCIL, indicating that the values to be transferred are colors, stencil
values, depth values, or depth/stencil values, respectively. The first four arguments
have the same interpretation as the corresponding arguments to ReadPixels.

Values are obtained from the framebuffer, converted (if appropriate), then sub-
jected to the pixel transfer operations described in section 3.7.5, just as if Read-
Pixels were called with the corresponding arguments. If the type is STENCIL

or DEPTH, then it is as if the format for ReadPixels were STENCIL INDEX or
DEPTH COMPONENT, respectively. If the type is DEPTH STENCIL, then it is as
if the format for ReadPixels were specified as described in table 4.10. If the type
is COLOR, then if the GL is in RGBA mode, it is as if the format were RGBA, while
if the GL is in color index mode, it is as if the format were COLOR INDEX.

The groups of elements so obtained are then written to the framebuffer just as
if DrawPixels had been given width and height, beginning with final conversion
of elements. The effective format is the same as that already described.

Finally, the behavior of several GL operations is specified as if the argu-
ments were passed to CopyPixels. These operations include CopyTexImage*,
CopyTexSubImage*, CopyColorTable, CopyColorSubTable, and CopyConvo-
lutionFilter*. An INVALID FRAMEBUFFER OPERATION error will be generated
if an attempt is made to execute one of these operations, or CopyPixels, while
the object bound to READ FRAMEBUFFER BINDING (see section 4.4) is not frame-
buffer complete (as defined in section 4.4.4). An INVALID OPERATION error will
be generated if the object bound to READ FRAMEBUFFER BINDING is framebuffer
complete and the value of SAMPLE BUFFERS is greater than zero.

CopyPixels will generate an INVALID FRAMEBUFFER OPERATION error if the
object bound to DRAW FRAMEBUFFER BINDING (see section 4.4) is not framebuffer
complete.

If the read buffer contains integer or unsigned integer components, an
INVALID OPERATION error is generated.

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 275

post
convolution

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale a nd bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
look up

index to RGBA
looku p

color table
lookup

color matrix
scale and bias

post
color matrix

convert
to float

RGBA pixel
data from framebuff er

color index pixel
data from framebuff er

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be enabled
or disabled. Index-to-RGBA lookup is currently never performed. RGBA and color
index pixel paths are shown; depth and stencil pixel paths are not shown.

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 276

DEPTH BITS STENCIL BITS format

zero zero DEPTH STENCIL

zero non-zero DEPTH COMPONENT

non-zero zero STENCIL INDEX

non-zero non-zero DEPTH STENCIL

Table 4.10: Effective ReadPixels format for DEPTH STENCIL CopyPixels opera-
tion.

Blitting Pixel Rectangles

The command

void BlitFramebuffer(int srcX0, int srcY0, int srcX1,
int srcY1, int dstX0, int dstY0, int dstX1, int dstY1,
bitfield mask, enum filter);

transfers a rectangle of pixel values from one region of the read framebuffer to an-
other in the draw framebuffer. There are some important distinctions from Copy-
Pixels, as described below.

mask is the bitwise OR of a number of values indicating which buffers are
to be copied. The values are COLOR BUFFER BIT, DEPTH BUFFER BIT, and
STENCIL BUFFER BIT, which are described in section 4.2.3. The pixels corre-
sponding to these buffers are copied from the source rectangle bounded by the lo-
cations (srcX0, srcY 0) and (srcX1, srcY 1) to the destination rectangle bounded
by the locations (dstX0, dstY 0) and (dstX1, dstY 1). The lower bounds of the
rectangle are inclusive, while the upper bounds are exclusive.

When the color buffer is transferred, values are taken from the read buffer of the
read framebuffer and written to each of the draw buffers of the draw framebuffer,
just as with CopyPixels.

The actual region taken from the read framebuffer is limited to the intersection
of the source buffers being transferred, which may include the color buffer selected
by the read buffer, the depth buffer, and/or the stencil buffer depending on mask.
The actual region written to the draw framebuffer is limited to the intersection of
the destination buffers being written, which may include multiple draw buffers,
the depth buffer, and/or the stencil buffer depending on mask. Whether or not the
source or destination regions are altered due to these limits, the scaling and offset
applied to pixels being transferred is performed as though no such limits were
present.

Version 3.0 (September 23, 2008)

4.3. DRAWING, READING, AND COPYING PIXELS 277

If the source and destination rectangle dimensions do not match, the source
image is stretched to fit the destination rectangle. filter must be LINEAR or
NEAREST, and specifies the method of interpolation to be applied if the image is
stretched. LINEAR filtering is allowed only for the color buffer; if mask includes
DEPTH BUFFER BIT or STENCIL BUFFER BIT, and filter is not NEAREST, no copy
is performed and an INVALID OPERATION error is generated. If the source and
destination dimensions are identical, no filtering is applied. If either the source or
destination rectangle specifies a negative width or height (X1 < X0 or Y 1 < Y 0),
the image is reversed in the corresponding direction. If both the source and des-
tination rectangles specify a negative width or height for the same direction, no
reversal is performed. If a linear filter is selected and the rules of LINEAR sam-
pling would require sampling outside the bounds of a source buffer, it is as though
CLAMP TO EDGE texture sampling were being performed. If a linear filter is se-
lected and sampling would be required outside the bounds of the specified source
region, but within the bounds of a source buffer, the implementation may choose
to clamp while sampling or not.

If the source and destination buffers are identical, and the source and destina-
tion rectangles overlap, the result of the blit operation is undefined.

Blit operations bypass the fragment pipeline. The only fragment operations
which affect a blit are the pixel ownership test and the scissor test.

If a buffer is specified in mask and does not exist in both the read and draw
framebuffers, the corresponding bit is silently ignored.

If the color formats of the read and draw buffers do not match, and mask in-
cludes COLOR BUFFER BIT, pixel groups are converted to match the destination
format as in CopyPixels. However, no pixel transfer operations are applied,
and clamping behaves as if CLAMP FRAGMENT COLOR is set to FIXED ONLY. For-
mat conversion is not supported for all data types. If the read buffer contains
floating-point values and any draw buffer does not contain floating-point values,
or if the read buffer contains non-floating-point values and any draw buffer con-
tains floating-point values, an INVALID OPERATION error is generated.

Calling BlitFramebuffer will result in an
INVALID FRAMEBUFFER OPERATION error if the objects bound to
DRAW FRAMEBUFFER BINDING and READ FRAMEBUFFER BINDING are not
framebuffer complete (section 4.4.4).

Calling BlitFramebuffer will result in an INVALID OPERATION error if mask
includes DEPTH BUFFER BIT or STENCIL BUFFER BIT, and the source and des-
tination depth and stencil buffer formats do not match.

If SAMPLE BUFFERS for the read framebuffer is greater than zero and
SAMPLE BUFFERS for the draw framebuffer is zero, the samples corresponding
to each pixel location in the source are converted to a single sample before being

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 278

written to the destination.
If SAMPLE BUFFERS for the read framebuffer is zero and SAMPLE BUFFERS

for the draw framebuffer is greater than zero, the value of the source sample is
replicated in each of the destination samples.

If SAMPLE BUFFERS for either the read framebuffer or draw framebuffer is
greater than zero, no copy is performed and an INVALID OPERATION error is gen-
erated if the dimensions of the source and destination rectangles provided to Blit-
Framebuffer are not identical, if the formats of the read and draw framebuffers
are not identical, or if the values of SAMPLES for the read and draw buffers are not
identical.

If SAMPLE BUFFERS for both the read and draw framebuffers are greater than
zero, and the values of SAMPLES for the read and draw framebuffers are identical,
the samples are copied without modification from the read framebuffer to the draw
framebuffer. Otherwise, no copy is performed and an INVALID OPERATION error
is generated. Note that the samples in the draw buffer are not guaranteed to be at
the same sample location as the read buffer, so rendering using this newly created
buffer can potentially have geometry cracks or incorrect antialiasing. This may
occur if the sizes of the framebuffers do not match, if the formats differ, or if
the source and destination rectangles are not defined with the same (X0, Y 0) and
(X1, Y 1) bounds.

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore, PixelTransfer, and PixelMap. This state has been summarized in
tables 3.1, 3.2, and 3.3. Additional state includes the current raster position (sec-
tion 2.18), an integer indicating the current setting of ReadBuffer, and a three-
valued integer controlling clamping during final conversion. For the default
framebuffer, in the initial state the read buffer is BACK if there is a back buffer;
FRONT if there is no back buffer; and NONE if no default framebuffer is associated
with the context. The initial value of read color clamping is FIXED ONLY. State
set with PixelStore is GL client state.

4.4 Framebuffer Objects

As described in chapter 1 and section 2.1, the GL renders into (and reads values
from) a framebuffer. GL defines two classes of framebuffers: window system-
provided and application-created.

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 279

Initially, the GL uses the default framebuffer. The storage, dimensions, allo-
cation, and format of the images attached to this framebuffer are managed entirely
by the window system. Consequently, the state of the default framebuffer, includ-
ing its images, can not be changed by the GL, nor can the default framebuffer be
deleted by the GL.

The routines described in the following sections, however, can be used to cre-
ate, destroy, and modify the state and attachments of framebuffer objects.

Framebuffer objects encapsulate the state of a framebuffer in a similar man-
ner to the way texture objects encapsulate the state of a texture. In particular, a
framebuffer object encapsulates state necessary to describe a collection of color,
depth, and stencil logical buffers (accumulation and auxiliary buffers are not al-
lowed). For each logical buffer, a framebuffer-attachable image can be attached
to the framebuffer to store the rendered output for that logical buffer. Examples
of framebuffer-attachable images include texture images and renderbuffer images.
Renderbuffers are described further in section 4.4.2

By allowing the images of a renderbuffer to be attached to a framebuffer, the
GL provides a mechanism to support off-screen rendering. Further, by allowing the
images of a texture to be attached to a framebuffer, the GL provides a mechanism
to support render to texture.

4.4.1 Binding and Managing Framebuffer Objects

The default framebuffer for rendering and readback operations is provided by the
window system. In addition, named framebuffer objects can be created and oper-
ated upon. The namespace for framebuffer objects is the unsigned integers, with
zero reserved by the GL for the default framebuffer.

A framebuffer object is created by binding a name returned by GenFrame-
buffers (see below) to DRAW FRAMEBUFFER or READ FRAMEBUFFER. The binding
is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to the desired framebuffer target and framebuffer set to the frame-
buffer object name. The resulting framebuffer object is a new state vector, com-
prising all the state values listed in table 6.28, as well as one set of the state values
listed in table 6.29 for each attachment point of the framebuffer, set to the same
initial values. There are MAX COLOR ATTACHMENTS color attachment points, plus
one each for the depth and stencil attachment points.

BindFramebuffer may also be used to bind an existing framebuffer object
to DRAW FRAMEBUFFER and/or READ FRAMEBUFFER. If the bind is successful no

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 280

change is made to the state of the bound framebuffer object, and any previous
binding to target is broken.

BindFramebuffer fails and an INVALID OPERATION error is generated if
framebuffer is not zero or a name returned from a previous call to GenFrame-
buffers, or if such a name has since been deleted with DeleteFramebuffers.

If a framebuffer object is bound to DRAW FRAMEBUFFER or
READ FRAMEBUFFER, it becomes the target for rendering or readback op-
erations, respectively, until it is deleted or another framebuffer is bound to
the corresponding bind point. Calling BindFramebuffer with target set to
FRAMEBUFFER binds framebuffer to both the draw and read targets.

While a framebuffer object is bound, GL operations on the target to which it
is bound affect the images attached to the bound framebuffer object, and queries
of the target to which it is bound return state from the bound object. Queries of
the values specified in tables 6.51 and 6.31 are derived from the framebuffer object
bound to DRAW FRAMEBUFFER.

The initial state of DRAW FRAMEBUFFER and READ FRAMEBUFFER refers to the
default framebuffer. In order that access to the default framebuffer is not lost, it is
treated as a framebuffer object with the name of zero. The default framebuffer
is therefore rendered to and read from while zero is bound to the corresponding
targets. On some implementations, the properties of the default framebuffer can
change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Framebuffer objects (those with a non-zero name) differ from the default
framebuffer in a few important ways. First and foremost, unlike the default frame-
buffer, framebuffer objects have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer-attachable images can be attached to and
detached from these attachment points, which are described further in section 4.4.2.
Also, the size and format of the images attached to framebuffer objectss are con-
trolled entirely within the GL interface, and are not affected by window system
events, such as pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created-
framebuffer object,

• The pixel ownership test always succeeds. In other words, framebuffer ob-
jects own all of their pixels.

• There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back, front, left, or right color bitplanes.

• The only color buffer bitplanes are the ones defined by the frame-
buffer attachment points named COLOR ATTACHMENT0 through

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 281

COLOR ATTACHMENTn.

• The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH ATTACHMENT.

• The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL ATTACHMENT.

• There are no accumulation buffer bitplanes, so the value of
the implementation-dependent state variables ACCUM RED BITS,
ACCUM GREEN BITS, ACCUM BLUE BITS, and ACCUM ALPHA BITS

are all zero.

• There are no AUX buffer bitplanes, so the value of the implementation-
dependent state variable AUX BUFFERS is zero.

• If the attachment sizes are not all identical, rendering will be limited to the
largest area that can fit in all of the attachments (an intersection of rectangles
having a lower left of (0, 0) and an upper right of (width, height) for each
attachment).

• If the attachment sizes are not all identical, the values of pixels outside the
common intersection area after rendering are undefined.

Framebuffer objects are deleted by calling

void DeleteFramebuffers(sizei n, uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a
framebuffer object is deleted, it has no attachments, and its name is again un-
used. If a framebuffer that is currently bound to one or more of the targets
DRAW FRAMEBUFFER or READ FRAMEBUFFER is deleted, it is as though Bind-
Framebuffer had been executed with the corresponding target and framebuffer
zero. Unused names in framebuffers are silently ignored, as is the value zero.

The command

void GenFramebuffers(sizei n, uint *ids);

returns n previously unused framebuffer object names in ids. These names are
marked as used, for the purposes of GenFramebuffers only, but they acquire state
and type only when they are first bound, just as if they were unused.

The names bound to the draw and read framebuffer bindings can be queried by
calling GetIntegerv with the symbolic constants DRAW FRAMEBUFFER BINDING

and READ FRAMEBUFFER BINDING, respectively. FRAMEBUFFER BINDING is
equivalent to DRAW FRAMEBUFFER BINDING.

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 282

4.4.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer
objects. In contrast, the image attachments of the default framebuffer may not be
changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer
objects, potentially avoiding some data copies, and possibly decreasing memory
consumption.

For each logical buffer, a framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to
indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 6.29

There are two types of framebuffer-attachable images: the image of a render-
buffer object, and an image of a texture object.

Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable
internal format. GL provides the methods described below to allocate and delete a
renderbuffer’s image, and to attach a renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero
reserved for the GL. A renderbuffer object is created by binding a name returned
by GenRenderbuffers (see below) to RENDERBUFFER. The binding is effected by
calling

void BindRenderbuffer(enum target, uint renderbuffer);

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name. If renderbuffer is not zero, then the resulting renderbuffer object is a new
state vector, initialized with a zero-sized memory buffer, and comprising the state
values listed in table 6.31. Any previous binding to target is broken.

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

While a renderbuffer object is bound, GL operations on the target to which it
is bound affect the bound renderbuffer object, and queries of the target to which a
renderbuffer object is bound return state from the bound object.

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to target is broken
and the target binding is restored to the initial state.

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 283

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate GL errors, as described in section 6.1.3.

The current RENDERBUFFER binding can be determined by calling GetInte-
gerv with the symbolic constant RENDERBUFFER BINDING.

BindRenderbuffer fails and an INVALID OPERATION error is generated if
renderbuffer is not a name returned from a previous call to GenRenderbuffers, or
if such a name has since been deleted with DeleteRenderbuffers.

Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const
uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After
a renderbuffer object is deleted, it has no contents, and its name is again unused. If
a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
BindRenderbuffer had been executed with the target RENDERBUFFER and name
of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object (see section 4.4.2).
Unused names in renderbuffers are silently ignored, as is the value zero.

The command

void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
acquire renderbuffer state only when they are first bound, just as if they were un-
used.

The command

void RenderbufferStorageMultisample(enum target,
sizei samples, enum internalformat, sizei width,
sizei height);

establishes the data storage, format, dimensions, and number of samples of a ren-
derbuffer object’s image. target must be RENDERBUFFER. internalformat must
be color-renderable, depth-renderable, or stencil-renderable (as defined in sec-
tion 4.4.4). width and height are the dimensions in pixels of the renderbuffer. If
either width or height is greater than MAX RENDERBUFFER SIZE, or if samples is
greater than MAX SAMPLES, then the error INVALID VALUE is generated. If the GL

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 284

Sized Base S
Internal Format Internal Format bits
STENCIL INDEX1 STENCIL INDEX 1
STENCIL INDEX4 STENCIL INDEX 4
STENCIL INDEX8 STENCIL INDEX 8
STENCIL INDEX16 STENCIL INDEX 16

Table 4.11: Correspondence of sized internal formats to base internal formats for
formats that can be used only with renderbuffers.

is unable to create a data store of the requested size, the error OUT OF MEMORY is
generated.

Upon success, RenderbufferStorageMultisample deletes any existing data
store for the renderbuffer image and the contents
of the data store after calling RenderbufferStorageMultisample are undefined.
RENDERBUFFER WIDTH is set to width, RENDERBUFFER HEIGHT is set to height,
and RENDERBUFFER INTERNAL FORMAT is set to internalformat.

If samples is zero, then RENDERBUFFER SAMPLES is set to zero. Otherwise
samples represents a request for a desired minimum number of samples. Since dif-
ferent implementations may support different sample counts for multisampled ren-
dering, the actual number of samples allocated for the renderbuffer image is imple-
mentation dependent. However, the resulting value for RENDERBUFFER SAMPLES

is guaranteed to be greater than or equal to samples and no more than the next
larger sample count supported by the implementation.

A GL implementation may vary its allocation of internal component resolution
based on any RenderbufferStorage parameter (except target), but the allocation
and chosen internal format must not be a function of any other state and cannot be
changed once they are established.

The command

void RenderbufferStorage(enum target, enum internalformat,
sizei width, sizei height);

is equivalent to calling RenderbufferStorageMultisample with samples equal to
zero.

Required Renderbuffer Formats

Implementations are required to support the same internal formats for renderbuffers
as the required formats for textures enumerated in section 3.9.1, with the exception

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 285

of the color formats labelled “texture-only”. Requesting one of these internal for-
mats for a renderbuffer will allocate exactly the internal component sizes and types
shown for that format in tables 3.16- 3.18.

Implementations must support creation of renderbuffers in these required for-
mats with up to the value of MAX SAMPLES multisamples.

Attaching Renderbuffer Images to a Framebuffer

A renderbuffer can be attached as one of the logical buffers of the currently bound
framebuffer object by calling

void FramebufferRenderbuffer(enum target,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

target must be DRAW FRAMEBUFFER, READ FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW FRAMEBUFFER. An INVALID OPERATION

error is generated if the value of the corresponding binding is zero. attachment
should be set to one of the attachment points of the framebuffer listed in table 4.12.

renderbuffertarget must be RENDERBUFFER and renderbuffer should be set to
the name of the renderbuffer object to be attached to the framebuffer. render-
buffer must be either zero or the name of an existing renderbuffer object of type
renderbuffertarget, otherwise an INVALID OPERATION error is generated. If ren-
derbuffer is zero, then the value of renderbuffertarget is ignored.

If renderbuffer is not zero and if FramebufferRenderbuffer is success-
ful, then the renderbuffer named renderbuffer will be used as the logi-
cal buffer identified by attachment of the framebuffer currently bound to
target. The value of FRAMEBUFFER ATTACHMENT OBJECT TYPE for the
specified attachment point is set to RENDERBUFFER and the value of
FRAMEBUFFER ATTACHMENT OBJECT NAME is set to renderbuffer. All other state
values of the attachment point specified by attachment are set to their default values
listed in table 6.29. No change is made to the state of the renderbuffer object and
any previous attachment to the attachment logical buffer of the framebuffer object
bound to framebuffer target is broken. If the attachment is not successful, then
no change is made to the state of either the renderbuffer object or the framebuffer
object.

Calling FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer currently bound
to target. All state values of the attachment point specified by attachment in the
object bound to target are set to their default values listed in table 6.29.

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 286

Setting attachment to the value DEPTH STENCIL ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to renderbuffer, which should have base internal format DEPTH STENCIL.

If a renderbuffer object is deleted while its image is attached to one or more
attachment points in the currently bound framebuffer, then it is as if Framebuf-
ferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
point to which this image was attached in the currently bound framebuffer. In
other words, this renderbuffer image is first detached from all attachment points in
the currently bound framebuffer. Note that the renderbuffer image is specifically
not detached from any non-bound framebuffers. Detaching the image from any
non-bound framebuffers is the responsibility of the application.

Name of attachment
COLOR ATTACHMENTi (see caption)
DEPTH ATTACHMENT

STENCIL ATTACHMENT

DEPTH STENCIL ATTACHMENT

Table 4.12: Framebuffer attachment points. i in COLOR ATTACHMENTi may range
from zero to the value of MAX COLOR ATTACHMENTS - 1.

Attaching Texture Images to a Framebuffer

GL supports copying the rendered contents of the framebuffer into the images of
a texture object through the use of the routines CopyTexImage* and CopyTex-
SubImage*. Additionally, GL supports rendering directly into the images of a
texture object.

To render directly into a texture image, a specified image from a texture object
can be attached as one of the logical buffers of the currently bound framebuffer ob-
ject by calling one of the following routines, depending on the type of the texture:

void FramebufferTexture1D(enum target, enum attachment,
enum textarget, uint texture, int level);

void FramebufferTexture2D(enum target, enum attachment,
enum textarget, uint texture, int level);

void FramebufferTexture3D(enum target, enum attachment,
enum textarget, uint texture, int level, int layer);

In all three routines, target must be
DRAW FRAMEBUFFER, READ FRAMEBUFFER, or FRAMEBUFFER. FRAMEBUFFER is

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 287

equivalent to DRAW FRAMEBUFFER. An INVALID OPERATION error is generated
if the value of the corresponding binding is zero. attachment must be one of the
attachment points of the framebuffer listed in table 4.12.

If texture is zero, the image identified by attachment, if any, will be detached
from the framebuffer currently bound to target. textarget, level, and layer are
ignored. All state values of the attachment point specified by attachment are set to
their default values listed in table 6.29.

If texture is not zero, then texture must either name an existing texture
object with an target of textarget, or texture must name an existing cube
map texture and textarget must be one of TEXTURE CUBE MAP POSITIVE X,
TEXTURE CUBE MAP POSITIVE Y, TEXTURE CUBE MAP POSITIVE Z,
TEXTURE CUBE MAP NEGATIVE X, TEXTURE CUBE MAP NEGATIVE Y, or
TEXTURE CUBE MAP NEGATIVE Z. Otherwise, an INVALID OPERATION error is
generated.

level specifies the mipmap level of the texture image to be attached to the
framebuffer.

If textarget is TEXTURE 3D, then level must be greater than or equal to zero
and less than or equal to log2 of the value of MAX 3D TEXTURE SIZE. If textarget
is one of TEXTURE CUBE MAP POSITIVE X, TEXTURE CUBE MAP POSITIVE Y,
TEXTURE CUBE MAP POSITIVE Z, TEXTURE CUBE MAP NEGATIVE X,
TEXTURE CUBE MAP NEGATIVE Y, or TEXTURE CUBE MAP NEGATIVE Z, then
level must be greater than or equal to zero and less than or equal to log2 of the
value of MAX CUBE MAP TEXTURE SIZE. For all other values of textarget, level
must be greater than or equal to zero and no larger than log2 of the value of
MAX TEXTURE SIZE. Otherwise, an INVALID VALUE error is generated.

layer specifies the layer of a 2-dimensional image within a 3-dimensional tex-
ture. An INVALID VALUE error is generated if layer is larger than the value of
MAX 3D TEXTURE SIZE-1.

For FramebufferTexture1D, if texture is not zero, then textarget must be
TEXTURE 1D.

For FramebufferTexture2D, if texture is not zero, then textarget must be one
of TEXTURE 2D, TEXTURE CUBE MAP POSITIVE X,
TEXTURE CUBE MAP POSITIVE Y, TEXTURE CUBE MAP POSITIVE Z,
TEXTURE CUBE MAP NEGATIVE X, TEXTURE CUBE MAP NEGATIVE Y, or
TEXTURE CUBE MAP NEGATIVE Z.

For FramebufferTexture3D, if texture is not zero, then textarget must be
TEXTURE 3D.

If texture is not zero, and if FramebufferTexture* is success-
ful, then the specified texture image will be used as the logical buffer
identified by attachment of the framebuffer currently bound to tar-

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 288

get. The value of FRAMEBUFFER ATTACHMENT OBJECT TYPE for
the specified attachment point is set to TEXTURE and the value of
FRAMEBUFFER ATTACHMENT OBJECT NAME is set to texture. Additionally,
the value of FRAMEBUFFER ATTACHMENT TEXTURE LEVEL for the named at-
tachment point is set to level. If texture is a cube map texture, then the value
of FRAMEBUFFER ATTACHMENT TEXTURE CUBE MAP FACE for the named at-
tachment point is set to textarget. If texture is a 3D texture, then the value of
FRAMEBUFFER ATTACHMENT TEXTURE LAYER for the named attachment point is
set to layer. All other state values of the attachment point specified by attachment
are set to their default values listed in table 6.29. No change is made to the state of
the texture object, and any previous attachment to the attachment logical buffer of
the framebuffer object bound to framebuffer target is broken. If the attachment is
not successful, then no change is made to the state of either the texture object or
the framebuffer object.

Setting attachment to the value DEPTH STENCIL ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to texture. texture must have base internal format DEPTH STENCIL, or the
depth and stencil framebuffer attachments will be incomplete (see section 4.4.4).

The command

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level, int layer);

operates identically to FramebufferTexture3D, except that it attaches a single
layer of a three-dimensional texture or a one- or two-dimensional array texture.
layer is an integer indicating the layer number, and is treated identically to the
layer parameter in FramebufferTexture3D. The error INVALID VALUE is gener-
ated if layer is negative. The error INVALID OPERATION is generated if texture
is non-zero and is not the name of a three dimensional texture or one- or two-
dimensional array texture. Unlike FramebufferTexture3D, no textarget parameter
is accepted.

If texture is non-zero and the command does not result in an er-
ror, the framebuffer attachment state corresponding to attachment is
updated as in the other FramebufferTexture commands, except that
FRAMEBUFFER ATTACHMENT TEXTURE LAYER is set to layer.

If a texture object is deleted while its image is attached to one or more attach-
ment points in the currently bound framebuffer, then it is as if FramebufferTex-
ture* had been called, with a texture of zero, for each attachment point to which
this image was attached in the currently bound framebuffer. In other words, this
texture image is first detached from all attachment points in the currently bound

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 289

framebuffer. Note that the texture image is specifically not detached from any
other framebuffer objects. Detaching the texture image from any other framebuffer
objects is the responsibility of the application.

4.4.3 Rendering When an Image of a Bound Texture Object is Also
Attached to the Framebuffer

The mechanisms for attaching textures to a framebuffer object do not prevent a
one- or two-dimensional texture level, a face of a cube map texture level, or a layer
of a two-dimensional array or three-dimensional texture from being attached to the
draw framebuffer while the same texture is bound to a texture unit. While any of
these conditions hold, texturing operations accessing that image will produce un-
defined results, as described at the end of section 3.9.7. Conditions resulting in
such undefined behavior are defined in more detail below. Such undefined textur-
ing operations are likely to leave the final results of the shader or fixed-function
fragment processing operations undefined, and should be avoided.

Special precautions need to be taken to avoid attaching a texture image to the
currently bound framebuffer while the texture object is currently bound and en-
abled for texturing. Doing so could lead to the creation of a feedback loop between
the writing of pixels by the GL’s rendering operations and the simultaneous reading
of those same pixels when used as texels in the currently bound texture. In this sce-
nario, the framebuffer will be considered framebuffer complete (see section 4.4.4),
but the values of fragments rendered while in this state will be undefined. The
values of texture samples may be undefined as well, as described at the end of the
Scale Factor and Level of Detail subsection of section 3.9.7.

Specifically, the values of rendered fragments are undefined if all of the fol-
lowing conditions are true:

• an image from texture object T is attached to the currently bound framebuffer
at attachment point A

• the texture object T is currently bound to a texture unit U, and

• the current fixed-function texture state or programmable vertex and/or frag-
ment processing state makes it possible (see below) to sample from the tex-
ture object T bound to texture unit U

while either of the following conditions are true:

• the value of TEXTURE MIN FILTER for texture object T is NEAREST or
LINEAR, and the value of FRAMEBUFFER ATTACHMENT TEXTURE LEVEL

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 290

for attachment point A is equal to the value of TEXTURE BASE LEVEL for
the texture object T

• the value of TEXTURE MIN FILTER for texture ob-
ject T is one of NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST, or LINEAR MIPMAP LINEAR, and the value
of FRAMEBUFFER ATTACHMENT TEXTURE LEVEL for attachment point
A is within the the range specified by the current values of
TEXTURE BASE LEVEL to q, inclusive, for the texture object T. (q is defined
in the Mipmapping discussion of section 3.9.7).

For the purpose of this discussion, it is possible to sample from the texture
object T bound to texture unit U if any of the following are true:

• Programmable fragment processing is disabled and the target of texture ob-
ject T is enabled according to the texture target precedence rules of sec-
tion 3.9.17

• The active fragment or vertex shader contains any instructions that might
sample from the texture object T bound to U, even if those instructions might
only be executed conditionally.

Note that if TEXTURE BASE LEVEL and TEXTURE MAX LEVEL exclude any
levels containing image(s) attached to the currently bound framebuffer, then the
above conditions will not be met (i.e., the above rule will not cause the values of
rendered fragments to be undefined.)

4.4.4 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL.

The default framebuffer is always complete if it exists; however, if no default
framebuffer exists (no window system-provided drawable is associated with the
GL context), it is deemed to be incomplete.

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined
below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation dependent restrictions.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached.

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 291

• The following base internal formats from table 3.15 are color-renderable:
ALPHA, RED, RG, RGB, and RGBA. The sized internal formats from ta-
ble 3.16 that have a color-renderable base internal format are also color-
renderable. No other formats, including compressed internal formats, are
color-renderable.

• An internal format is depth-renderable if it is DEPTH COMPONENT or
one of the formats from table 3.18 whose base internal format is
DEPTH COMPONENT or DEPTH STENCIL. No other formats are depth-
renderable.

• An internal format is stencil-renderable if it is STENCIL INDEX or
DEPTH STENCIL, if it is one of the STENCIL INDEX formats from ta-
ble 4.11, or if it is one of the formats from table 3.18 whose base internal
format is DEPTH STENCIL. No other formats are stencil-renderable.

Framebuffer Attachment Completeness

If the value of FRAMEBUFFER ATTACHMENT OBJECT TYPE for the framebuffer at-
tachment point attachment is not NONE, then it is said that a framebuffer-attachable
image, named image, is attached to the framebuffer at the attachment point. image
is identified by the state in attachment as described in section 4.4.2.

The framebuffer attachment point attachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER ATTACHMENT OBJECT TYPE for at-
tachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

• image is a component of an existing object with the name specified by
FRAMEBUFFER ATTACHMENT OBJECT NAME, and of the type specified by
FRAMEBUFFER ATTACHMENT OBJECT TYPE.

• The width and height of image are non-zero.

• If FRAMEBUFFER ATTACHMENT OBJECT TYPE is TEXTURE and
FRAMEBUFFER ATTACHMENT OBJECT NAME names a three-dimensional
texture, then FRAMEBUFFER ATTACHMENT TEXTURE LAYER must be
smaller than the depth of the texture.

• If FRAMEBUFFER ATTACHMENT OBJECT TYPE is TEXTURE

and FRAMEBUFFER ATTACHMENT OBJECT NAME names
a one- or two-dimensional array texture, then
FRAMEBUFFER ATTACHMENT TEXTURE LAYER must be smaller than
the number of layers in the texture.

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 292

• If attachment is COLOR ATTACHMENTi, then image must have a color-
renderable internal format.

• If attachment is DEPTH ATTACHMENT, then image must have a depth-
renderable internal format.

• If attachment is STENCIL ATTACHMENT, then image must have a stencil-
renderable internal format.

Whole Framebuffer Completeness

Each rule below is followed by an error token enclosed in { brackets }. The
meaning of these errors is explained below and under “Effects of Framebuffer
Completeness on Framebuffer Operations” later in section 4.4.4.

The framebuffer object target is said to be framebuffer complete if all the
following conditions are true:
• target is the default framebuffer, and the default framebuffer exists.

{ FRAMEBUFFER UNDEFINED }

• All framebuffer attachment points are framebuffer attachment complete.

{ FRAMEBUFFER INCOMPLETE ATTACHMENT }

• There is at least one image attached to the framebuffer.

{ FRAMEBUFFER INCOMPLETE MISSING ATTACHMENT }

• The value of FRAMEBUFFER ATTACHMENT OBJECT TYPE must not be NONE
for any color attachment point(s) named by DRAW BUFFERi.

{ FRAMEBUFFER INCOMPLETE DRAW BUFFER }

• If READ BUFFER is not NONE, then the value of
FRAMEBUFFER ATTACHMENT OBJECT TYPE must not be NONE for the
color attachment point named by READ BUFFER.

{ FRAMEBUFFER INCOMPLETE READ BUFFER }

• The combination of internal formats of the attached images does not violate
an implementation-dependent set of restrictions.

{ FRAMEBUFFER UNSUPPORTED }

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 293

• The value of RENDERBUFFER SAMPLES is the same for all attached render-
buffers; and, if the attached images are a mix of renderbuffers and textures,
the value of RENDERBUFFER SAMPLES is zero for all attached renderbuffers.

{ FRAMEBUFFER INCOMPLETE MULTISAMPLE }

The token in brackets after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus (see below) that is gen-
erated when that clause is violated. If more than one clause is violated, it is
implementation-dependent which value will be returned by CheckFramebuffer-
Status.

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete:

• Binding to a different framebuffer with BindFramebuffer.

• Attaching an image to the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Detaching an image from the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Changing the internal format of a texture image that is attached to the frame-
buffer by calling CopyTexImage* or CompressedTexImage*.

• Changing the internal format of a renderbuffer that is attached to the frame-
buffer by calling RenderbufferStorage.

• Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-
ing an image that is attached to a framebuffer object that is bound to the
framebuffer.

• Changing the read buffer or one of the draw buffers.

• Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
those described in section 1.7.2.

Although the GL defines a wide variety of internal formats for framebuffer-
attachable images, such as texture images and renderbuffer images, some imple-
mentations may not support rendering to particular combinations of internal for-
mats. If the combination of formats of the images attached to a framebuffer object

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 294

are not supported by the implementation, then the framebuffer is not complete un-
der the clause labeled FRAMEBUFFER UNSUPPORTED.

Implementations are required to support certain combinations of framebuffer
internal formats as described under “Required Framebuffer Formats” in sec-
tion 4.4.4.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the
set of attached images is modified, it is strongly advised, though not required, that
an application check to see if the framebuffer is complete prior to rendering. The
status of the framebuffer object currently bound to target can be queried by calling

enum CheckFramebufferStatus(enum target);

target must be DRAW FRAMEBUFFER, READ FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW FRAMEBUFFER. If CheckFramebufferSta-
tus is called within a Begin/End pair, an INVALID OPERATION error is generated.
If CheckFramebufferStatus generates an error, zero is returned.

Otherwise, a value is returned that identifies whether or not the framebuffer
bound to target is complete, and if not complete the value identifies one of the
rules of framebuffer completeness that is violated. If the framebuffer is complete,
then FRAMEBUFFER COMPLETE is returned.

The values of SAMPLE BUFFERS and SAMPLES are derived from the
attachments of the currently bound framebuffer object. If the cur-
rent DRAW FRAMEBUFFER BINDING is not framebuffer complete, then both
SAMPLE BUFFERS and SAMPLES are undefined. Otherwise, SAMPLES is equal to
the value of RENDERBUFFER SAMPLES for the attached images (which all must
have the same value for RENDERBUFFER SAMPLES). Further, SAMPLE BUFFERS is
one if SAMPLES is non-zero. Otherwise, SAMPLE BUFFERS is zero.

Required Framebuffer Formats

Implementations must support framebuffer objects with up to
MAX COLOR ATTACHMENTS color attachments, a depth attachment, and a
stencil attachment. Each color attachment may be in any of the required color
formats for textures and renderbuffers described in sections 3.9.1 and 4.4.2. The
depth attachment may be in any of the required depth or combined depth+stencil
formats described in those sections, and the stencil attachment may be in any of
the required combined depth+stencil formats.

There must be at least one default framebuffer format allowing creation of a
default framebuffer supporting front-buffered rendering.

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 295

Effects of Framebuffer Completeness on Framebuffer Operations

Attempting to render to or read from a framebuffer which is not framebuffer com-
plete will generate an INVALID FRAMEBUFFER OPERATION error. This means
that rendering commands such as Begin, RasterPos, any command that per-
forms an implicit Begin, as well as commands that read the framebuffer such
as ReadPixels, CopyTexImage, and CopyTexSubImage, will generate the error
INVALID FRAMEBUFFER OPERATION if called while the framebuffer is not frame-
buffer complete.

4.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 6.51 may change when a change is
made to DRAW FRAMEBUFFER BINDING, to the state of the currently bound frame-
buffer object, or to an image attached to the currently bound framebuffer object.

When DRAW FRAMEBUFFER BINDING is zero, the values of the state variables
listed in table 6.51 are implementation defined.

When DRAW FRAMEBUFFER BINDING is non-zero, if the currently bound
framebuffer object is not framebuffer complete, then the values of the state vari-
ables listed in table 6.51 are undefined.

When DRAW FRAMEBUFFER BINDING is non-zero and the currently bound
framebuffer object is framebuffer complete, then the values of the state variables
listed in table 6.51 are completely determined by DRAW FRAMEBUFFER BINDING,
the state of the currently bound framebuffer object, and the state of the images
attached to the currently bound framebuffer object. The values of RED BITS,
GREEN BITS, BLUE BITS, and ALPHA BITS are defined only if all color attach-
ments of the draw framebuffer have identical formats, in which case the color
component depths of color attachment zero are returned. The values returned for
DEPTH BITS and STENCIL BITS are the depth or stencil component depth of the
corresponding attachment of the draw framebuffer, respectively. The actual sizes
of the color, depth, or stencil bit planes can be obtained by querying an attachment
point using GetFramebufferAttachmentParameteriv, or querying the object at-
tached to that point. If the value of FRAMEBUFFER ATTACHMENT OBJECT TYPE

at a particular attachment point is RENDERBUFFER, the sizes may be determined by
calling GetRenderbufferParameteriv as described in section 6.1.3. If the value
of FRAMEBUFFER ATTACHMENT OBJECT TYPE at a particular attachment point is
TEXTURE, the sizes may be determined by calling GetTexParameter, as described
in section 6.1.3.

Version 3.0 (September 23, 2008)

4.4. FRAMEBUFFER OBJECTS 296

4.4.6 Mapping between Pixel and Element in Attached Image

When DRAW FRAMEBUFFER BINDING is non-zero, an operation that writes to the
framebuffer modifies the image attached to the selected logical buffer, and an oper-
ation that reads from the framebuffer reads from the image attached to the selected
logical buffer.

If the attached image is a renderbuffer image, then the window coordinates
(xw, yw) corresponds to the value in the renderbuffer image at the same coordi-
nates.

If the attached image is a texture image, then the window coordinates (xw, yw)
correspond to the texel (i, j, k) from figure 3.10 as follows:

i = (xw − b)

j = (yw − b)
k = (layer − b)

where b is the texture image’s border width and layer is the value of
FRAMEBUFFER ATTACHMENT TEXTURE LAYER for the selected logical buffer. For
a two-dimensional texture, k and layer are irrelevant; for a one-dimensional tex-
ture, j, k, and layer are irrelevant.

(xw, yw) corresponds to a border texel if xw, yw, or layer is less than the border
width, or if xw, yw, or layer is greater than or equal to the border width plus the
width, height, or depth, respectively, of the texture image.

Conversion to Framebuffer-Attachable Image Components

When an enabled color value is written to the framebuffer while the draw frame-
buffer binding is non-zero, for each draw buffer the R, G, B, and A values are
converted to internal components as described in table 3.15, according to the ta-
ble row corresponding to the internal format of the framebuffer-attachable image
attached to the selected logical buffer, and the resulting internal components are
written to the image attached to logical buffer. The masking operations described
in section 4.2.2 are also effective.

Conversion to RGBA Values

When a color value is read or is used as the source of a logical operation or blending
while the read framebuffer binding is non-zero, the components of the framebuffer-
attachable image that is attached to the logical buffer selected by READ BUFFER

are first converted to R, G, B, and A values according to table 3.23 and the internal
format of the attached image.

Version 3.0 (September 23, 2008)

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of evaluators (used to model
curves and surfaces), selection (used to locate rendered primitives on the screen),
feedback (which returns GL results before rasterization), display lists (used to des-
ignate a group of GL commands for later execution by the GL), flushing and fin-
ishing (used to synchronize the GL command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial mapping
to produce vertex, normal, and texture coordinates, and colors. The values so pro-
duced are sent on to further stages of the GL as if they had been provided directly
by the client. Transformations, lighting, primitive assembly, rasterization, and per-
pixel operations are not affected by the use of evaluators.

Consider the Rk-valued polynomial p(u) defined by

p(u) =
n∑

i=0

Bn
i (u)Ri (5.1)

with Ri ∈ Rk and

Bn
i (u) =

(
n

i

)
ui(1− u)n−i,

the ith Bernstein polynomial of degree n (recall that 00 ≡ 1 and
(
n
0

)
≡ 1). Each

Ri is a control point. The relevant command is

void Map1{fd}(enum target, T u1, T u2, int stride,
int order, T points);

297

5.1. EVALUATORS 298

target k Values
MAP1 VERTEX 3 3 x, y, z vertex coordinates
MAP1 VERTEX 4 4 x, y, z, w vertex coordinates
MAP1 INDEX 1 color index
MAP1 COLOR 4 4 R, G, B, A
MAP1 NORMAL 3 x, y, z normal coordinates
MAP1 TEXTURE COORD 1 1 s texture coordinate
MAP1 TEXTURE COORD 2 2 s, t texture coordinates
MAP1 TEXTURE COORD 3 3 s, t, r texture coordinates
MAP1 TEXTURE COORD 4 4 s, t, r, q texture coordinates

Table 5.1: Values specified by the target to Map1. Values are given in the order in
which they are taken.

target is a symbolic constant indicating the range of the defined polynomial. Its
possible values, along with the evaluations that each indicates, are given in ta-
ble 5.1. order is equal to n+ 1; The error INVALID VALUE is generated if order
is less than one or greater than MAX EVAL ORDER. points is a pointer to a set of
n + 1 blocks of storage. Each block begins with k single-precision floating-point
or double-precision floating-point values, respectively. The rest of the block may
be filled with arbitrary data. Table 5.1 indicates how k depends on target and what
the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate) in
each block of storage. The error INVALID VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

u1 and u2 give two floating-point values that define the endpoints of the pre-
image of the map. When a value u′ is presented for evaluation, the formula used
is

p′(u′) = p(
u′ − u1

u2 − u1
).

The error INVALID VALUE results if u1 = u2.
Map2 is analogous to Map1, except that it describes bivariate polynomials of

the form

p(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)Bm

j (v)Rij .

The form of the Map2 command is

Version 3.0 (September 23, 2008)

5.1. EVALUATORS 299

EvalMesh
EvalPoint

MapGrid Map
EvalCoord

k

l

[u1,u2]

[v1,v2]

[0,1]

[0,1]
ΣBiRiAx+b

Vertices

Normals

Texture Coordinates

Colors

Integers Reals

Figure 5.1. Map Evaluation.

void Map2{fd}(enum target, T u1, T u2, int ustride,
int uorder, T v1, T v2, int vstride, int vorder, T points);

target is a range type selected from the same group as is used for Map1, ex-
cept that the string MAP1 is replaced with MAP2. points is a pointer to (n +
1)(m + 1) blocks of storage (uorder = n + 1 and vorder = m + 1; the er-
ror INVALID VALUE is generated if either uorder or vorder is less than one or
greater than MAX EVAL ORDER). The values comprising Rij are located

(ustride)i+ (vstride)j

values (either single- or double-precision floating-point, as appropriate) past the
first value pointed to by points. u1, u2, v1, and v2 define the pre-image rectangle
of the map; a domain point (u′, v′) is evaluated as

p′(u′, v′) = p(
u′ − u1

u2 − u1
,
v′ − v1
v2 − v1

).

The evaluation of a defined map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above. The
evaluator map generates only coordinates for texture unit TEXTURE0. The error
INVALID VALUE results if either ustride or vstride is less than k, or if u1 is equal
to u2, or if v1 is equal to v2. If the value of ACTIVE TEXTURE is not TEXTURE0,
calling Map{12} generates the error INVALID OPERATION.

Figure 5.1 describes map evaluation schematically; an evaluation of enabled
maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}(T arg);
void EvalCoord{12}{fd}v(T arg);

Version 3.0 (September 23, 2008)

5.1. EVALUATORS 300

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The argu-
ment is the value (or a pointer to the value) that is the domain coordinate, u′. Eval-
Coord2 causes evaluation of the enabled two-dimensional maps. The two values
specify the two domain coordinates, u′ and v′, in that order.

When one of the EvalCoord commands is issued, all currently enabled maps
of the indicated dimension are evaluated. Then, for each enabled map, it is as if a
corresponding GL command were issued with the resulting coordinates, with one
important difference. The difference is that when an evaluation is performed, the
GL uses evaluated values instead of current values for those evaluations that are
enabled (otherwise, the current values are used). The order of the effective com-
mands is immaterial, except that Vertex (for vertex coordinate evaluation) must be
issued last. Use of evaluators has no effect on the current color, normal, or texture
coordinates. If ColorMaterial is enabled, evaluated color values affect the result
of the lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indicated
dimension) is not enabled. If more than one evaluation is enabled for a particu-
lar dimension (e.g. MAP1 TEXTURE COORD 1 and MAP1 TEXTURE COORD 2), then
only the result of the evaluation of the map with the highest number of coordinates
is used.

Finally, if either MAP2 VERTEX 3 or MAP2 VERTEX 4 is enabled, then the nor-
mal to the surface is computed. Analytic computation, which sometimes yields
normals of length zero, is one method which may be used. If automatic normal
generation is enabled, then this computed normal is used as the normal associated
with a generated vertex. Automatic normal generation is controlled with Enable
and Disable with the symbolic constant AUTO NORMAL. If automatic normal gener-
ation is disabled, then a corresponding normal map, if enabled, is used to produce
a normal. If neither automatic normal generation nor a normal map are enabled,
then no normal is sent with a vertex resulting from an evaluation (the effect is that
the current normal is used).

For MAP VERTEX 3, let q = p. For MAP VERTEX 4, let q = (x/w, y/w, z/w),
where (x, y, z, w) = p. Then let

m =
∂q
∂u
× ∂q
∂v
.

Then the generated analytic normal, n, is given by n = m if a vertex shader is
active, or else by n = m

‖m‖ .
The second way to carry out evaluations is to use a set of commands that pro-

vide for efficient specification of a series of evenly spaced values to be mapped.
This method proceeds in two steps. The first step is to define a grid in the domain.

Version 3.0 (September 23, 2008)

5.1. EVALUATORS 301

This is done using

void MapGrid1{fd}(int n, T u′1, T u′2);

for a one-dimensional map or

void MapGrid2{fd}(int nu, T u′1, T u
′
2, int nv, T v′1,

T v′2);

for a two-dimensional map. In the case of MapGrid1 u′1 and u′2 describe an
interval, while n describes the number of partitions of the interval. The error
INVALID VALUE results if n ≤ 0. For MapGrid2, (u′1, v

′
1) specifies one two-

dimensional point and (u′2, v
′
2) specifies another. nu gives the number of partitions

between u′1 and u′2, and nv gives the number of partitions between v′1 and v′2. If
either nu ≤ 0 or nv ≤ 0, then the error INVALID VALUE occurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid may
be carried out by calling

void EvalMesh1(enum mode, int p1, int p2);

mode is either POINT or LINE. The effect is the same as performing the following
code fragment, with ∆u′ = (u′2 − u′1)/n:

Begin(type);
for i = p1 to p2 step 1.0

EvalCoord1(i * ∆u′ + u′1);
End();

where EvalCoord1f or EvalCoord1d is substituted for EvalCoord1 as appro-
priate. If mode is POINT, then type is POINTS; if mode is LINE, then type is
LINE STRIP. The one requirement is that if either i = 0 or i = n, then the value
computed from i ∗∆u′ + u′1 is precisely u′1 or u′2, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int p1, int p2, int q1,
int q2);

mode must be FILL, LINE, or POINT. When mode is FILL, then these commands
are equivalent to the following, with ∆u′ = (u′2−u′1)/n and ∆v′ = (v′2− v′1)/m:

Version 3.0 (September 23, 2008)

5.1. EVALUATORS 302

for i = q1 to q2 − 1 step 1.0
Begin(QUAD STRIP);

for j = p1 to p2 step 1.0
EvalCoord2(j * ∆u′ + u′1 , i * ∆v′ + v′1);
EvalCoord2(j * ∆u′ + u′1 , (i+ 1) * ∆v′ + v′1);

End();

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = q1 to q2 step 1.0
Begin(LINE STRIP);
for j = p1 to p2 step 1.0

EvalCoord2(j * ∆u′ + u′1 , i * ∆v′ + v′1);
End();;

for i = p1 to p2 step 1.0
Begin(LINE STRIP);
for j = q1 to q2 step 1.0

EvalCoord2(i * ∆u′ + u′1 , j * ∆v′ + v′1);
End();

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin(POINTS);
for i = q1 to q2 step 1.0

for j = p1 to p2 step 1.0
EvalCoord2(j * ∆u′ + u′1 , i * ∆v′ + v′1);

End();

Again, in all three cases, there is the requirement that 0∗∆u′+u′1 = u′1, n∗∆u′+
u′1 = u′2, 0 ∗∆v′ + v′1 = v′1, and m ∗∆v′ + v′1 = v′2.

An evaluation of a single point on the grid may also be carried out:

void EvalPoint1(int p);

Calling it is equivalent to the command

EvalCoord1(p * ∆u′ + u′1);

with ∆u′ and u′1 defined as above.

void EvalPoint2(int p, int q);

is equivalent to the command

Version 3.0 (September 23, 2008)

5.2. SELECTION 303

EvalCoord2(p * ∆u′ + u′1 , q * ∆v′ + v′1);

The state required for evaluators potentially consists of 9 one-dimensional map
specifications and 9 two-dimensional map specifications, as well as corresponding
flags for each specification indicating which are enabled. Each map specification
consists of one or two orders, an appropriately sized array of control points, and a
set of two values (for a one-dimensional map) or four values (for a two-dimensional
map) to describe the domain. The maximum possible order, for either u or v, is
implementation dependent (one maximum applies to both u and v), but must be at
least 8. Each control point consists of between one and four floating-point values
(depending on the type of the map). Initially, all maps have order 1 (making them
constant maps). All vertex coordinate maps produce the coordinates (0, 0, 0, 1)
(or the appropriate subset); all normal coordinate maps produce (0, 0, 1); RGBA
maps produce (1, 1, 1, 1); color index maps produce 1.0; and texture coordinate
maps produce (0, 0, 0, 1). In the initial state, all maps are disabled. A flag indi-
cates whether or not automatic normal generation is enabled for two-dimensional
maps. In the initial state, automatic normal generation is disabled. Also required
are two floating-point values and an integer number of grid divisions for the one-
dimensional grid specification and four floating-point values and two integer grid
divisions for the two-dimensional grid specification. In the initial state, the bounds
of the domain interval for 1-D is 0 and 1.0, respectively; for 2-D, they are (0, 0)
and (1.0, 1.0), respectively. The number of grid divisions is 1 for 1-D and 1 in
both directions for 2-D. If any evaluation command is issued when no vertex map
is enabled for the map dimension being evaluated, nothing happens.

5.2 Selection

Selection is used to determine which primitives are drawn into some region of a
window. The region is defined by the current model-view and perspective matrices.

Selection works by returning an array of integer-valued names. This array
represents the current contents of the name stack. This stack is controlled with the
commands

void InitNames(void);
void PopName(void);
void PushName(uint name);
void LoadName(uint name);

InitNames empties (clears) the name stack. PopName pops one name off the top
of the name stack. PushName causes name to be pushed onto the name stack.

Version 3.0 (September 23, 2008)

5.2. SELECTION 304

LoadName replaces the value on the top of the stack with name. Loading a name
onto an empty stack generates the error INVALID OPERATION. Popping a name off
of an empty stack generates STACK UNDERFLOW; pushing a name onto a full stack
generates STACK OVERFLOW. The maximum allowable depth of the name stack is
implementation dependent but must be at least 64.

In selection mode, framebuffer updates as described in chapter 4 are not per-
formed. The GL is placed in selection mode with

int RenderMode(enum mode);

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER is
the default, corresponding to rendering as described until now. SELECT specifies
selection mode, and FEEDBACK specifies feedback mode (described below). Use
of any of the name stack manipulation commands while the GL is not in selection
mode has no effect.

Selection is controlled using

void SelectBuffer(sizei n, uint *buffer);

buffer is a pointer to an array of unsigned integers (called the selection array) to be
potentially filled with names, and n is an integer indicating the maximum number
of values that can be stored in that array. Placing the GL in selection mode before
SelectBuffer has been called results in an error of INVALID OPERATION as does
calling SelectBuffer while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates produced
by a RasterPos command intersects the clip volume (section 2.17) then this prim-
itive (or RasterPos command) causes a selection hit. WindowPos commands al-
ways generate a selection hit, since the resulting raster position is always valid.
In the case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of PolygonMode.
When in selection mode, whenever a name stack manipulation command is exe-
cuted or RenderMode is called and there has been a hit since the last time the stack
was manipulated or RenderMode was called, then a hit record is written into the
selection array.

A hit record consists of the following items in order: a non-negative integer
giving the number of elements on the name stack at the time of the hit, a minimum
depth value, a maximum depth value, and the name stack with the bottommost el-
ement first. The minimum and maximum depth values are the minimum and max-
imum taken over all the window coordinate z values of each (post-clipping) vertex
of each primitive that intersects the clipping volume since the last hit record was

Version 3.0 (September 23, 2008)

5.3. FEEDBACK 305

written. The minimum and maximum (each of which lies in the range [0, 1]) are
each multiplied by 232−1 and rounded to the nearest unsigned integer to obtain the
values that are placed in the hit record. No depth offset arithmetic (section 3.6.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer into that
array. When selection mode is entered, the pointer is initialized to the beginning
of the array. Each time a hit record is copied, the pointer is updated to point at
the array element after the one into which the topmost element of the name stack
was stored. If copying the hit record into the selection array would cause the total
number of values to exceed n, then as much of the record as fits in the array is
written and an overflow flag is set.

Selection mode is exited by calling RenderMode with an argument value other
than SELECT. When called while in selection mode, RenderMode returns the
number of hit records copied into the selection array and resets the SelectBuffer
pointer to its last specified value. Values are not guaranteed to be written into the
selection array until RenderMode is called. If the selection array overflow flag
was set, then RenderMode returns −1 and clears the overflow flag. The name
stack is cleared and the stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection array
and its maximum size, the name stack and its associated pointer, a minimum and
maximum depth value, and several flags. One flag indicates the current Render-
Mode value. In the initial state, the GL is in the RENDER mode. Another flag is
used to indicate whether or not a hit has occurred since the last name stack ma-
nipulation. This flag is reset upon entering selection mode and whenever a name
stack manipulation takes place. One final flag is required to indicate whether the
maximum number of copied names would have been exceeded. This flag is reset
upon entering selection mode. This flag, the address of the selection array, and its
maximum size are GL client state.

5.3 Feedback

The GL is placed in feedback mode by calling RenderMode with FEEDBACK.
When in feedback mode, framebuffer updates as described in chapter 4 are not
performed. Instead, information about primitives that would have otherwise been
rasterized is returned to the application via the feedback buffer.

Feedback is controlled using

void FeedbackBuffer(sizei n, enum type, float *buffer);

Version 3.0 (September 23, 2008)

5.3. FEEDBACK 306

buffer is a pointer to an array of floating-point values into which feedback informa-
tion will be placed, and n is a number indicating the maximum number of values
that can be written to that array. type is a symbolic constant describing the informa-
tion to be fed back for each vertex (see figure 5.2). The error INVALID OPERATION

results if the GL is placed in feedback mode before a call to FeedbackBuffer has
been made, or if a call to FeedbackBuffer is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or bitmap
or call to DrawPixels or CopyPixels, if the raster position is valid) generates a
block of values that get copied into the feedback array. If doing so would cause
the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all). The first block of values gener-
ated after the GL enters feedback mode is placed at the beginning of the feedback
array, with subsequent blocks following. Each block begins with a code indicat-
ing the primitive type, followed by values that describe the primitive’s vertices and
associated data. Entries are also written for bitmaps and pixel rectangles. Feed-
back occurs after polygon culling (section 3.6.1) and PolygonMode interpretation
of polygons (section 3.6.4) has taken place. It may also occur after polygons with
more than three edges are broken up into triangles (if the GL implementation ren-
ders polygons by performing this decomposition). x, y, and z coordinates returned
by feedback are window coordinates; if w is returned, it is in clip coordinates. No
depth offset arithmetic (section 3.6.5) is performed on the z values. In the case
of bitmaps and pixel rectangles, the coordinates returned are those of the current
raster position.

The texture coordinates and colors returned are those resulting from the clip-
ping operations described in section 2.19.8. Only coordinates for texture unit
TEXTURE0 are returned even for implementations which support multiple texture
units. The colors returned are the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL state
and the values to be written to the feedback buffer completed before a subsequent
command may be executed.

Feedback mode is exited by calling RenderMode with an argument value other
than FEEDBACK. When called while in feedback mode, RenderMode returns the
number of values placed in the feedback array and resets the feedback array pointer
to be buffer. The return value never exceeds the maximum number of values passed
to FeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be written
than the specified maximum number of values, then the value is not written and an
overflow flag is set. In this case, RenderMode returns −1 when it is called, after
which the overflow flag is reset. While in feedback mode, values are not guaranteed

Version 3.0 (September 23, 2008)

5.4. DISPLAY LISTS 307

Type coordinates color texture total values
2D x, y – – 2
3D x, y, z – – 3

3D COLOR x, y, z k – 3 + k

3D COLOR TEXTURE x, y, z k 4 7 + k

4D COLOR TEXTURE x, y, z, w k 4 8 + k

Table 5.2: Correspondence of feedback type to number of values per vertex. k is 1
in color index mode and 4 in RGBA mode.

to be written into the feedback buffer before RenderMode is called.
Figure 5.2 gives a grammar for the array produced by feedback. Each primitive

is indicated with a unique identifying value followed by some number of vertices.
A vertex is fed back as some number of floating-point values determined by the
feedback type. Table 5.2 gives the correspondence between feedback buffer and
the number of values returned for each vertex.

The command

void PassThrough(float token);

may be used as a marker in feedback mode. token is returned as if it were a prim-
itive; it is indicated with its own unique identifying value. The ordering of any
PassThrough commands with respect to primitive specification is maintained by
feedback. PassThrough may not occur between Begin and End. It has no effect
when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the maxi-
mum number of values that may be placed there, and the feedback type. An over-
flow flag is required to indicate whether the maximum allowable number of feed-
back values has been written; initially this flag is cleared. These state variables are
GL client state. Feedback also relies on the same mode flag as selection to indicate
whether the GL is in feedback, selection, or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has been
stored for subsequent execution. The GL may be instructed to process a particular
display list (possibly repeatedly) by providing a number that uniquely specifies it.
Doing so causes the commands within the list to be executed just as if they were
given normally. The only exception pertains to commands that rely upon client

Version 3.0 (September 23, 2008)

5.4. DISPLAY LISTS 308

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:
POINT TOKEN vertex

line-segment:
LINE TOKEN vertex vertex
LINE RESET TOKEN vertex vertex

polygon:
POLYGON TOKEN n polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP TOKEN vertex

pixel-rectangle:
DRAW PIXEL TOKEN vertex
COPY PIXEL TOKEN vertex

passthrough:
PASS THROUGH TOKEN f

vertex:
2D:

f f
3D:

f f f
3D COLOR:

f f f color
3D COLOR TEXTURE:

f f f color tex
4D COLOR TEXTURE:

f f f f color tex

color:
f f f f
f

tex:
f f f f

Figure 5.2: Feedback syntax. f is a floating-point number. n is a floating-point in-
teger giving the number of vertices in a polygon. The symbols ending with TOKEN
are symbolic floating-point constants. The labels under the “vertex” rule show the
different data returned for vertices depending on the feedback type. LINE TOKEN

and LINE RESET TOKEN are identical except that the latter is returned only when
the line stipple is reset for that line segment.

Version 3.0 (September 23, 2008)

5.4. DISPLAY LISTS 309

state. When such a command is accumulated into the display list (that is, when
issued, not when executed), the client state in effect at that time applies to the com-
mand. Only server state is affected when the command is executed. As always,
pointers which are passed as arguments to commands are dereferenced when the
command is issued. (Vertex array pointers are dereferenced when the commands
ArrayElement, DrawArrays, DrawElements, or DrawRangeElements are ac-
cumulated into a display list.)

A display list is begun by calling

void NewList(uint n, enum mode);

n is a positive integer to which the display list that follows is assigned, and mode is a
symbolic constant that controls the behavior of the GL during display list creation.
If mode is COMPILE, then commands are not executed as they are placed in the
display list. If mode is COMPILE AND EXECUTE then commands are executed as
they are encountered, then placed in the display list. If n = 0, then the error
INVALID VALUE is generated.

After calling NewList all subsequent GL commands are placed in the display
list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state. It is
only when EndList occurs that the specified display list is actually associated with
the index indicated with NewList. The error INVALID OPERATION is generated
if EndList is called without a previous matching NewList, or if NewList is called
a second time before calling EndList. The error OUT OF MEMORY is generated if
EndList is called and the specified display list cannot be stored because insufficient
memory is available. In this case GL implementations of revision 1.1 or greater
insure that no change is made to the previous contents of the display list, if any,
and that no other change is made to the GL state, except for the state changed by
execution of GL commands when the display list mode is COMPILE AND EXECUTE.

Once defined, a display list is executed by calling

void CallList(uint n);

n gives the index of the display list to be called. This causes the commands saved
in the display list to be executed, in order, just as if they were issued without using
a display list. If n = 0, then the error INVALID VALUE is generated.

The command

Version 3.0 (September 23, 2008)

5.4. DISPLAY LISTS 310

void CallLists(sizei n, enum type, void *lists);

provides an efficient means for executing a number of display lists. n is an in-
teger indicating the number of display lists to be called, and lists is a pointer
that points to an array of offsets. Each offset is constructed as determined by
lists as follows. First, type may be one of the constants BYTE, UNSIGNED BYTE,
SHORT, UNSIGNED SHORT, INT, UNSIGNED INT, or FLOAT indicating that the ar-
ray pointed to by lists is an array of bytes, unsigned bytes, shorts, unsigned shorts,
integers, unsigned integers, or floats, respectively. In this case each offset is found
by simply converting each array element to an integer (floating point values are
truncated to negative infinity). Further, type may be one of 2 BYTES, 3 BYTES,
or 4 BYTES, indicating that the array contains sequences of 2, 3, or 4 unsigned
bytes, in which case each integer offset is constructed according to the following
algorithm:

offset← 0
for i = 1 to b

offset← offset shifted left 8 bits
offset← offset+ byte
advance to next byte in the array

b is 2, 3, or 4, as indicated by type. If n = 0, CallLists does nothing.
Each of the n constructed offsets is taken in order and added to a display list

base to obtain a display list number. For each number, the indicated display list is
executed. The base is set by calling

void ListBase(uint base);

to specify the offset.
Indicating a display list index that does not correspond to any display list has no

effect. CallList or CallLists may appear inside a display list. (If the mode supplied
to NewList is COMPILE AND EXECUTE, then the appropriate lists are executed,
but the CallList or CallLists, rather than those lists’ constituent commands, is
placed in the list under construction.) To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation dependent limit
is placed on the nesting level of display lists during display list execution. This
limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

Version 3.0 (September 23, 2008)

5.5. COMMANDS NOT USABLE IN DISPLAY LISTS 311

returns an integer n such that the indices n, . . . , n+s−1 are previously unused (i.e.
there are s previously unused display list indices starting at n). GenLists also has
the effect of creating an empty display list for each of the indices n, . . . , n+ s− 1,
so that these indices all become used. GenLists returns 0 if there is no group of s
contiguous previously unused display list indices, or if s = 0.

boolean IsList(uint list);

returns TRUE if list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range);

where list is the index of the first display list to be deleted and range is the number
of display lists to be deleted. All information about the display lists is lost, and the
indices become unused. Indices to which no display list corresponds are ignored.
If range = 0, nothing happens.

5.5 Commands Not Usable In Display Lists

Certain commands, when called while compiling a display list, are not compiled
into the display list but are executed immediately. These commands fall in several
categories including

Display lists: GenLists and DeleteLists.
Render modes: FeedbackBuffer, SelectBuffer, and RenderMode.
Vertex arrays: ClientActiveTexture, ColorPointer, EdgeFlagPointer, Fog-

CoordPointer, IndexPointer, InterleavedArrays, NormalPointer, Secondary-
ColorPointer, TexCoordPointer, VertexAttribPointer, VertexAttribIPointer,
VertexPointer, GenVertexArrays, DeleteVertexArrays, and BindVertexArray.

Client state: EnableClientState, DisableClientState, EnableVertexAttrib-
Array, DisableVertexAttribArray, PushClientAttrib, and PopClientAttrib.

Pixels and textures: PixelStore, ReadPixels, GenTextures, DeleteTextures,
AreTexturesResident, and GenerateMipmap.

Occlusion queries: GenQueries and DeleteQueries.
Vertex buffer objects: GenBuffers, DeleteBuffers, BindBuffer, BindBuffer-

Range, BindBufferBase, TransformFeedbackVaryings, BufferData, Buffer-
SubData, MapBuffer, MapBufferRange, FlushBufferRange, and Unmap-
Buffer.

Framebuffer and renderbuffer objects: GenFramebuffers, Bind-
Framebuffer, DeleteFramebuffers, CheckFramebufferStatus, GenRender-
buffers, BindRenderbuffer, DeleteRenderbuffers, RenderbufferStorage,

Version 3.0 (September 23, 2008)

5.6. FLUSH AND FINISH 312

RenderbufferStorageMultisample, FramebufferTexture1D, FramebufferTex-
ture2D, FramebufferTexture3D, FramebufferTextureLayer, Framebuffer-
Renderbuffer, and BlitFramebuffer.

Program and shader objects: CreateProgram, CreateShader, DeletePro-
gram, DeleteShader, AttachShader, DetachShader, BindAttribLocation,
BindFragDataLocation, CompileShader, ShaderSource, LinkProgram, and
ValidateProgram.

GL command stream management: Finish, and Flush.
Other queries: All query commands whose names begin with Get and Is (see

chapter 6).
GL commands that source data from buffer objects dereference the buffer ob-

ject data in question at display list compile time, rather than encoding the buffer
ID and buffer offset into the display list. Only GL commands that are executed
immediately, rather than being compiled into a display list, are permitted to use a
buffer object as a data sink.

TexImage3D, TexImage2D, TexImage1D, Histogram,
and ColorTable are executed immediately when called with
the corresponding proxy arguments PROXY TEXTURE 3D or
PROXY TEXTURE 2D ARRAY; PROXY TEXTURE 2D PROXY TEXTURE 1D ARRAY,
or PROXY TEXTURE CUBE MAP; PROXY TEXTURE 1D; PROXY HISTOGRAM;
and PROXY COLOR TABLE, PROXY POST CONVOLUTION COLOR TABLE, or
PROXY POST COLOR MATRIX COLOR TABLE.

When a program object is in use, a display list may be executed whose vertex
attribute calls do not match up exactly with what is expected by the vertex shader
contained in that program object. Handling of this mismatch is described in sec-
tion 2.20.3.

Display lists require one bit of state to indicate whether a GL command should
be executed immediately or placed in a display list. In the initial state, commands
are executed immediately. If the bit indicates display list creation, an index is
required to indicate the current display list being defined. Another bit indicates,
during display list creation, whether or not commands should be executed as they
are compiled into the display list. One integer is required for the current ListBase
setting; its initial value is zero. Finally, state must be maintained to indicate which
integers are currently in use as display list indices. In the initial state, no indices
are in use.

5.6 Flush and Finish

The command

Version 3.0 (September 23, 2008)

5.7. HINTS 313

void Flush(void);

indicates that all commands that have previously been sent to the GL must complete
in finite time.

The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.7 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enum target, enum hint);

target is a symbolic constant indicating the behavior to be controlled, and hint is a
symbolic constant indicating what type of behavior is desired. The possible targets
are described in table 5.3; for each target, hint must be one of FASTEST, indicating
that the most efficient option should be chosen; NICEST, indicating that the highest
quality option should be chosen; and DONT CARE, indicating no preference in the
matter.

For the texture compression hint, a hint of FASTEST indicates that texture im-
ages should be compressed as quickly as possible, while NICEST indicates that
the texture images be compressed with as little image degradation as possible.
FASTEST should be used for one-time texture compression, and NICEST should
be used if the compression results are to be retrieved by GetCompressedTexIm-
age (section 6.1.4) for reuse.

The interpretation of hints is implementation dependent. An implementation
may ignore them entirely.

The initial value of all hints is DONT CARE.

Version 3.0 (September 23, 2008)

5.7. HINTS 314

Target Hint description
PERSPECTIVE CORRECTION HINT Quality of parameter interpolation
POINT SMOOTH HINT Point sampling quality
LINE SMOOTH HINT Line sampling quality
POLYGON SMOOTH HINT Polygon sampling quality
FOG HINT Fog quality

(calculated per-pixel or per-vertex)
GENERATE MIPMAP HINT Quality and performance of

automatic mipmap level generation
TEXTURE COMPRESSION HINT Quality and performance of

texture image compression
FRAGMENT SHADER DERIVATIVE HINT Derivative accuracy for fragment

processing built-in functions
dFdx, dFdy and fwidth

Table 5.3: Hint targets and descriptions.

Version 3.0 (September 23, 2008)

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2. Most
state is set through the calls described in previous chapters, and can be queried
using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set of Get commands. There are
four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data);
void GetIntegerv(enum value, int *data);
void GetFloatv(enum value, float *data);
void GetDoublev(enum value, double *data);

The commands obtain boolean, integer, floating-point, or double-precision state
variables. value is a symbolic constant indicating the state variable to return. data
is a pointer to a scalar or array of the indicated type in which to place the returned
data.

Indexed simple state variables are queried with the commands

void GetBooleani v(enum target, uint index,
boolean *data);

void GetIntegeri v(enum target, uint index, int *data);

315

6.1. QUERYING GL STATE 316

target is the name of the indexed state and index is the index of the particular
element being queried. data is a pointer to a scalar or array of the indicated type in
which to place the returned data. An INVALID VALUE error is generated if index
is outside the valid range for the indexed state target.

Finally,

boolean IsEnabled(enum value);

can be used to determine if value is currently enabled (as with Enable) or disabled,
and

boolean IsEnabledi(enum target, uint index);

can be used to determine if the indexed state corresponding to target and index is
enabled or disabled. An INVALID VALUE error is generated if index is outside the
valid range for the indexed state target.

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed. If GetBooleanv is called,
a floating-point or integer value converts to FALSE if and only if it is zero (oth-
erwise it converts to TRUE). If GetIntegerv (or any of the Get commands below)
is called, a boolean value is interpreted as either 1 or 0, and a floating-point value
is rounded to the nearest integer, unless the value is an RGBA color component,
a DepthRange value, a depth buffer clear value, or a normal coordinate. In these
cases, the Get command converts the floating-point value to an integer accord-
ing to the INT entry of table 4.9; a value not in [−1, 1] converts to an undefined
value. If GetFloatv is called, a boolean value is interpreted as either 1.0 or 0.0, an
integer is coerced to floating-point, and a double-precision floating-point value is
converted to single-precision. Analogous conversions are carried out in the case of
GetDoublev. If a value is so large in magnitude that it cannot be represented with
the requested type, then the nearest value representable using the requested type is
returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f. Similarly, points for evaluator maps are returned in the order that
they appeared when passed to Map1. Map2 returns Rij in the [(uorder)i + j]th
block of values (see page 298 for i, j, uorder, and Rij).

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 317

Matrices may be queried and returned in transposed form by calling Get-
Booleanv, GetIntegerv, GetFloatv, and GetDoublev with pname set to
one of TRANSPOSE MODELVIEW MATRIX, TRANSPOSE PROJECTION MATRIX,
TRANSPOSE TEXTURE MATRIX, or TRANSPOSE COLOR MATRIX. The effect of

GetFloatv(TRANSPOSE MODELVIEW MATRIX,m);

is the same as the effect of the command sequence

GetFloatv(MODELVIEW MATRIX,m);
m = mT;

Similar conversions occur when querying TRANSPOSE PROJECTION MATRIX,
TRANSPOSE TEXTURE MATRIX, and TRANSPOSE COLOR MATRIX.

If fragment color clamping is enabled, querying of the texture border color,
texture environment color, fog color, alpha test reference value, blend color, and
RGBA clear color will clamp the corresponding state values to [0, 1] before return-
ing them. This behavior provides compatibility with previous versions of the GL
that clamped these values when specified.

Most texture state variables are qualified by the value of ACTIVE TEXTURE

to determine which server texture state vector is queried. Client tex-
ture state variables such as texture coordinate array pointers are qual-
ified by the value of CLIENT ACTIVE TEXTURE. Tables 6.5, 6.6, 6.12,
6.19, 6.22, and 6.47 indicate those state variables which are qualified by
ACTIVE TEXTURE or CLIENT ACTIVE TEXTURE during state queries. Queries
of texture state variables corresponding to texture coordinate processing
units (namely, TexGen state and enables, and matrices) will generate an
INVALID OPERATION error if the value of ACTIVE TEXTURE is greater than or
equal to MAX TEXTURE COORDS. All other texture state queries will result in an
INVALID OPERATION error if the value of ACTIVE TEXTURE is greater than or
equal to MAX COMBINED TEXTURE IMAGE UNITS.

Vertex array state variables are qualified by the value of
VERTEX ARRAY BINDING to determine which vertex array object is queried.
Tables 6.6 through 6.9 define the set of state stored in a vertex array object.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane(enum plane, double eqn[4]);

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 318

void GetLight{if}v(enum light, enum value, T data);
void GetMaterial{if}v(enum face, enum value, T data);
void GetTexEnv{if}v(enum env, enum value, T data);
void GetTexGen{ifd}v(enum coord, enum value, T data);
void GetTexParameter{if}v(enum target, enum value,

T data);
void GetTexParameterI{i ui}v(enum target, enum value,

T data);
void GetTexLevelParameter{if}v(enum target, int lod,

enum value, T data);
void GetPixelMap{ui us f}v(enum map, T data);
void GetMap{ifd}v(enum map, enum value, T data);

GetLightiv, GetMaterialiv, GetTexEnviv, GetTexGeniv, and GetTexparame-
teriv convert floating point state to integer values in the same manner as GetInte-
gerv (see section 6.1.2).

GetClipPlane always returns four double-precision values in eqn; these are the
coefficients of the plane equation of plane in eye coordinates (these coordinates are
those that were computed when the plane was specified).

GetLight places information about value (a symbolic constant) for light (also a
symbolic constant) in data. POSITION or SPOT DIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial, GetTexGen, GetTexEnv, and GetTexParameter are simi-
lar to GetLight, placing information about value for the target indicated by
their first argument into data. The face argument to GetMaterial must be ei-
ther FRONT or BACK, indicating the front or back material, respectively. The
env argument to GetTexEnv must be either POINT SPRITE, TEXTURE ENV, or
TEXTURE FILTER CONTROL. The coord argument to GetTexGen must be one of
S, T, R, or Q. For GetTexGen, EYE LINEAR coefficients are returned in the eye
coordinates that were computed when the plane was specified; OBJECT LINEAR

coefficients are returned in object coordinates.
GetTexParameter parameter target may be one of TEXTURE 1D,

TEXTURE 2D, TEXTURE 3D, TEXTURE 1D ARRAY, TEXTURE 2D ARRAY, or
TEXTURE CUBE MAP, indicating the currently bound one-, two-, three-dimensional,
one- or two-dimensional array, or cube map texture object. GetTexLevelParam-
eter parameter target may be one of TEXTURE 1D, TEXTURE 2D, TEXTURE 3D,
TEXTURE 1D ARRAY, TEXTURE 2D ARRAY, TEXTURE CUBE MAP POSITIVE X,
TEXTURE CUBE MAP NEGATIVE X, TEXTURE CUBE MAP POSITIVE Y,
TEXTURE CUBE MAP NEGATIVE Y, TEXTURE CUBE MAP POSITIVE Z,

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 319

TEXTURE CUBE MAP NEGATIVE Z, PROXY TEXTURE 1D, PROXY TEXTURE 2D,
PROXY TEXTURE 3D, PROXY TEXTURE 1D ARRAY, PROXY TEXTURE 2D ARRAY,
or PROXY TEXTURE CUBE MAP, indicating the one-, two-, or three-dimensional
texture, the one- or two-dimensional array texture, one of the six distinct 2D im-
ages making up the cube map texture object, or the one-, two-, three-dimensional,
one- or two-dimensional array, or cube map proxy state vector. Note that
TEXTURE CUBE MAP is not a valid target parameter for GetTexLevelParameter,
because it does not specify a particular cube map face. value is a symbolic value
indicating which texture parameter is to be obtained. For GetTexParameter,
value must be either TEXTURE RESIDENT, or one of the symbolic values in
table 3.20. Querying value TEXTURE BORDER COLOR with GetTexParameterIiv
or GetTexParameterIuiv returns the border color values as signed integers or
unsigned integers, respectively; otherwise the values are returned as described in
section 6.1.2. If the border color is queried with a type that does not match the
original type with which it was specified, the result is undefined. The lod argument
to GetTexLevelParameter determines which level-of-detail’s state is returned. If
the lod argument is less than zero or if it is larger than the maximum allowable
level-of-detail then the error INVALID VALUE occurs.

For texture images with uncompressed internal formats, queries of
value of TEXTURE RED TYPE, TEXTURE GREEN TYPE, TEXTURE BLUE TYPE,
TEXTURE ALPHA TYPE, TEXTURE LUMINANCE TYPE, TEXTURE DEPTH TYPE,
and TEXTURE INTENSITY TYPE return the data type used to store the compo-
nent. Types NONE, UNSIGNED NORMALIZED, FLOAT, INT, and UNSIGNED INT

respectively indicate missing, unsigned normalized integer, floating-point, signed
unnormalized integer, and unsigned unnormalized integer components. Queries
of value of TEXTURE RED SIZE, TEXTURE GREEN SIZE, TEXTURE BLUE SIZE,
TEXTURE ALPHA SIZE, TEXTURE LUMINANCE SIZE,
TEXTURE INTENSITY SIZE, TEXTURE DEPTH SIZE,
TEXTURE STENCIL SIZE, and TEXTURE SHARED SIZE return the actual resolu-
tions of the stored image array components, not the resolutions specified when the
image array was defined. For texture images with a compressed internal format, the
resolutions returned specify the component resolution of an uncompressed internal
format that produces an image of roughly the same quality as the compressed im-
age in question. Since the quality of the implementation’s compression algorithm
is likely data-dependent, the returned component sizes should be treated only as
rough approximations.

Querying value TEXTURE COMPRESSED IMAGE SIZE returns the
size (in ubytes) of the compressed texture image that would be
returned by GetCompressedTexImage (section 6.1.4). Querying
TEXTURE COMPRESSED IMAGE SIZE is not allowed on texture images with

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 320

an uncompressed internal format or on proxy targets and will result in an
INVALID OPERATION error if attempted.

Queries of value TEXTURE WIDTH, TEXTURE HEIGHT, TEXTURE DEPTH, and
TEXTURE BORDER return the width, height, depth, and border as specified when
the image array was created. The internal format of the image array is queried
as TEXTURE INTERNAL FORMAT, or as TEXTURE COMPONENTS for compatibility
with GL version 1.0.

For GetPixelMap, the map must be a map name from table 3.3. For GetMap,
map must be one of the map types described in section 5.1, and value must be
one of ORDER, COEFF, or DOMAIN. The GetPixelMapfv, GetPixelMapuiv, and
GetPixelMapusv commands write all the values in the named pixel map to data.
GetPixelMapuiv and GetPixelMapusv convert floating point pixel map values
to integers according to the UNSIGNED INT and UNSIGNED SHORT entries, re-
spectively, of table 4.9. If a pixel pack buffer is bound (as indicated by a non-
zero value of PIXEL PACK BUFFER BINDING), data is an offset into the pixel
pack buffer; otherwise, data is a pointer to client memory. All pixel storage
and pixel transfer modes are ignored when returning a pixel map. n machine
units are written where n is the size of the pixel map times the size of FLOAT,
UNSIGNED INT, or UNSIGNED SHORT respectively in basic machine units. If a
pixel pack buffer object is bound and data + n is greater than the size of the
pixel buffer, an INVALID OPERATION error results. If a pixel pack buffer object is
bound and data is not evenly divisible by the number of basic machine units needed
to store in memory a FLOAT, UNSIGNED INT, or UNSIGNED SHORT respectively,
an INVALID OPERATION error results.

6.1.4 Texture Queries

The command

void GetTexImage(enum tex, int lod, enum format,
enum type, void *img);

is used to obtain texture images. It is somewhat different from the other get com-
mands; tex is a symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtained. TEXTURE 1D, TEXTURE 2D,
TEXTURE 3D, TEXTURE 1D ARRAY, and TEXTURE 2D ARRAY indicate a one-,
two-, or three-dimensional or one- or two-dimensional array texture respec-
tively. TEXTURE CUBE MAP POSITIVE X, TEXTURE CUBE MAP NEGATIVE X,
TEXTURE CUBE MAP POSITIVE Y, TEXTURE CUBE MAP NEGATIVE Y,

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 321

TEXTURE CUBE MAP POSITIVE Z, and TEXTURE CUBE MAP NEGATIVE Z indi-
cate the respective face of a cube map texture. lod is a level-of-detail number,
format is a pixel format from table 3.6, type is a pixel type from table 3.5.

Calling GetTexImage with a color format (one of RED, GREEN, BLUE, ALPHA,
RG, RGB, BGR, RGBA, BGRA, LUMINANCE, or LUMINANCE ALPHA) when the base
internal format of the texture image is not a color format; with a format of
DEPTH COMPONENT when the base internal format is not DEPTH COMPONENT or
DEPTH STENCIL; or with a format of DEPTH STENCIL when the base internal for-
mat is not DEPTH STENCIL, causes the error INVALID OPERATION.

GetTexImage obtains component groups from a texture image with the indi-
cated level-of-detail. If format is a color format then the components are assigned
among R, G, B, and A according to table 6.1, starting with the first group in the
first row, and continuing by obtaining groups in order from each row and proceed-
ing from the first row to the last, and from the first image to the last for three-
dimensional textures. One- and two-dimensional array textures are treated as two-
and three-dimensional images, respectively, where the layers are treated as rows or
images. If format is DEPTH COMPONENT, then each depth component is assigned
with the same ordering of rows and images. If format is DEPTH STENCIL, then
each depth component and each stencil index is assigned with the same ordering
of rows and images.

These groups are then packed and placed in client or pixel buffer object
memory. If a pixel pack buffer is bound (as indicated by a non-zero value of
PIXEL PACK BUFFER BINDING), img is an offset into the pixel pack buffer; other-
wise, img is a pointer to client memory. No pixel transfer operations are performed
on this image, but pixel storage modes that are applicable to ReadPixels are ap-
plied.

For three-dimensional and two-dimensional array textures, pixel storage oper-
ations are applied as if the image were two-dimensional, except that the additional
pixel storage state values PACK IMAGE HEIGHT and PACK SKIP IMAGES are ap-
plied. The correspondence of texels to memory locations is as defined for TexIm-
age3D in section 3.9.1.

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). Calling GetTex-
Image with lod less than zero or larger than the maximum allowable causes the
error INVALID VALUE. Calling GetTexImage with a format of COLOR INDEX or
STENCIL INDEX causes the error INVALID ENUM. If a pixel pack buffer object is
bound and packing the texture image into the buffer’s memory would exceed the
size of the buffer, an INVALID OPERATION error results. If a pixel pack buffer
object is bound and img is not evenly divisible by the number of basic machine
units needed to store in memory a FLOAT, UNSIGNED INT, or UNSIGNED SHORT

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 322

Base Internal Format R G B A
ALPHA 0 0 0 Ai

LUMINANCE (or 1) Li 0 0 1
LUMINANCE ALPHA (or 2) Li 0 0 Ai

INTENSITY Ii 0 0 1
RED Ri 0 0 1
RG Ri Gi 0 1

RGB (or 3) Ri Gi Bi 1
RGBA (or 4) Ri Gi Bi Ai

Table 6.1: Texture, table, and filter return values. Ri, Gi, Bi, Ai, Li, and Ii are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

respectively, an INVALID OPERATION error results.
The command

void GetCompressedTexImage(enum target, int lod,
void *img);

is used to obtain texture images stored in compressed form. The parameters tar-
get, lod, and img are interpreted in the same manner as in GetTexImage. When
called, GetCompressedTexImage writes n ubytes of compressed image data to
the pixel pack buffer or client memory pointed to by img, where n is the value of
TEXTURE COMPRESSED IMAGE SIZE for the texture. The compressed image data
is formatted according to the definition of the texture’s internal format. All pixel
storage and pixel transfer modes are ignored when returning a compressed texture
image.

Calling GetCompressedTexImage with an lod value less than zero or greater
than the maximum allowable causes an INVALID VALUE error. Calling GetCom-
pressedTexImage with a texture image stored with an uncompressed internal for-
mat causes an INVALID OPERATION error. If a pixel pack buffer object is bound
and img + n is greater than the size of the buffer, an INVALID OPERATION error
results.

The command

boolean IsTexture(uint texture);

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 323

returns TRUE if texture is the name of a texture object. If texture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE. A name returned by GenTextures, but not yet bound, is
not the name of a texture object.

6.1.5 Stipple Query

The command

void GetPolygonStipple(void *pattern);

obtains the polygon stipple. The pattern is packed into pixel pack buffer or client
memory according to the procedure given in section 4.3.2 for ReadPixels; it is as
if the height and width passed to that command were both equal to 32, the type
were BITMAP, and the format were COLOR INDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried using GetFloatv with pname set
to the appropriate variable name. The top matrix on the color matrix
stack is returned by GetFloatv called with pname set to COLOR MATRIX or
TRANSPOSE COLOR MATRIX. The depth of the color matrix stack, and the maxi-
mum depth of the color matrix stack, are queried with GetIntegerv, setting pname
to COLOR MATRIX STACK DEPTH and MAX COLOR MATRIX STACK DEPTH respec-
tively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,
void *table);

target must be one of the regular color table names listed in table 3.4. format and
type accept the same values as do the corresponding parameters of GetTexImage,
except that a format of DEPTH COMPONENT causes the error INVALID ENUM. The
one-dimensional color table image is returned to pixel pack buffer or client memory
starting at table. No pixel transfer operations are performed on this image, but pixel
storage modes that are applicable to ReadPixels are performed. Color components
that are requested in the specified format, but which are not included in the internal

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 324

format of the color lookup table, are returned as zero. The assignments of internal
color components to the components requested by format are described in table 6.1.

The functions

void GetColorTableParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query.
target must be one of the regular or proxy color table names listed in

table 3.4. pname is one of COLOR TABLE SCALE, COLOR TABLE BIAS,
COLOR TABLE FORMAT, COLOR TABLE WIDTH, COLOR TABLE RED SIZE,
COLOR TABLE GREEN SIZE, COLOR TABLE BLUE SIZE,
COLOR TABLE ALPHA SIZE, COLOR TABLE LUMINANCE SIZE, or
COLOR TABLE INTENSITY SIZE. The value of the specified parameter is
returned in params.

6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the command

void GetConvolutionFilter(enum target, enum format,
enum type, void *image);

target must be CONVOLUTION 1D or CONVOLUTION 2D. format and type accept
the same values as do the corresponding parameters of GetTexImage, except
that a format of DEPTH COMPONENT causes the error INVALID ENUM. The one-
dimensional or two-dimensional images is returned to pixel pack buffer or client
memory starting at image. Pixel processing and component mapping are identical
to those of GetTexImage.

The current contents of a separable filter image are queried using

void GetSeparableFilter(enum target, enum format,
enum type, void *row, void *column, void *span);

target must be SEPARABLE 2D. format and type accept the same values as do the
corresponding parameters of GetTexImage. The row and column images are re-
turned to pixel pack buffer or client memory starting at row and column respec-
tively. span is currently unused. Pixel processing and component mapping are
identical to those of GetTexImage.

The functions

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 325

void GetConvolutionParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query. target must be
CONVOLUTION 1D, CONVOLUTION 2D, or SEPARABLE 2D. pname is
one of CONVOLUTION BORDER COLOR, CONVOLUTION BORDER MODE,
CONVOLUTION FILTER SCALE, CONVOLUTION FILTER BIAS,
CONVOLUTION FORMAT, CONVOLUTION WIDTH, CONVOLUTION HEIGHT,
MAX CONVOLUTION WIDTH, or MAX CONVOLUTION HEIGHT. The value of the
specified parameter is returned in params.

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset,
enum format, enum type, void* values);

target must be HISTOGRAM. type and format accept the same values as do the corre-
sponding parameters of GetTexImage, except that a format of DEPTH COMPONENT

causes the error INVALID ENUM. The one-dimensional histogram table image is re-
turned to pixel pack buffer or client memory starting at type. Pixel processing and
component mapping are identical to those of GetTexImage, except that instead of
applying the Final Conversion pixel storage mode, component values are simply
clamped to the range of the target data type.

If reset is TRUE, then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified if reset is FALSE.
Calling

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. target must be
HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with zero
entries.

The functions

void GetHistogramParameter{if}v(enum target,
enum pname, T params);

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 326

are used for integer and floating point query. target must be HISTOGRAM or
PROXY HISTOGRAM. pname is one of HISTOGRAM FORMAT, HISTOGRAM WIDTH,
HISTOGRAM RED SIZE, HISTOGRAM GREEN SIZE, HISTOGRAM BLUE SIZE,
HISTOGRAM ALPHA SIZE, or HISTOGRAM LUMINANCE SIZE. pname may be
HISTOGRAM SINK only for target HISTOGRAM. The value of the specified
parameter is returned in params.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enum target, boolean reset, enum format,
enum type, void* values);

target must be MINMAX. type and format accept the same values as do the corre-
sponding parameters of GetTexImage, except that a format of DEPTH COMPONENT

causes the error INVALID ENUM. A one-dimensional image of width 2 is returned
to pixel pack buffer or client memory starting at values. Pixel processing and com-
ponent mapping are identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified if reset is FALSE.
Calling

void ResetMinmax(enum target);

resets all minimum and maximum values of target to to their maximum and mini-
mum representable values, respectively, target must be MINMAX.

The functions

void GetMinmaxParameter{if}v(enum target, enum pname,
T params);

are used for integer and floating point query. target must be MINMAX. pname is
MINMAX FORMAT or MINMAX SINK. The value of the specified parameter is re-
turned in params.

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 327

6.1.11 Pointer and String Queries

The command

void GetPointerv(enum pname, void **params);

obtains the pointer or pointers named pname in the array params.
The possible values for pname are SELECTION BUFFER POINTER

and FEEDBACK BUFFER POINTER, which respectively return
the pointers set with SelectBuffer and FeedbackBuffer; and
VERTEX ARRAY POINTER, NORMAL ARRAY POINTER, COLOR ARRAY POINTER,
SECONDARY COLOR ARRAY POINTER, INDEX ARRAY POINTER,
TEXTURE COORD ARRAY POINTER, FOG COORD ARRAY POINTER, and
EDGE FLAG ARRAY POINTER, which respectively return the corresponding
value stored in the currently bound vertex array object. Each pname returns a
single pointer value.

String queries return pointers to UTF-8 encoded, NULL-terminated static
strings describing properties of the current GL context 1. The command

ubyte *GetString(enum name);

accepts name values of VENDOR, RENDERER, VERSION,
SHADING LANGUAGE VERSION, and EXTENSIONS. The format of the RENDERER
and VENDOR strings is implementation dependent. The EXTENSIONS string con-
tains a space separated list of extension names (the extension names themselves do
not contain any spaces). The VERSION and SHADING LANGUAGE VERSION strings
are laid out as follows:

<version number><space><vendor-specific information>

The version number is either of the form major number.minor number or ma-
jor number.minor number.release number, where the numbers all have one or
more digits. The release number and vendor specific information are optional.
However, if present, then they pertain to the server and their format and contents
are implementation dependent.

GetString returns the version number (in the VERSION string) and the exten-
sion names (in the EXTENSIONS string) that can be supported by the current GL

1Applications making copies of these static strings should never use a fixed-length buffer, because
the strings may grow unpredictably between releases, resulting in buffer overflow when copying.
This is particularly true of the EXTENSIONS string, which has become extremely long in some
GL implementations.

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 328

context. Thus, if the client and server support different versions and/or extensions,
a compatible version and list of extensions is returned.

The GL version may also be queried by calling GetIntegerv with values
MAJOR VERSION and MINOR VERSION, which respectively return the same val-
ues as major number and minor number in the VERSION string, and value
CONTEXT FLAGS, which returns a set of flags defining additional proper-
ties of a context. If CONTEXT FLAG FORWARD COMPATIBLE BIT is set in
CONTEXT FLAGS, then the context is a forward-compatible context as defined in
appendix E, and the deprecated features described in that appendix are not sup-
ported; otherwise the context is a full context, and all features described in the
specification are supported.

Indexed strings are queried with the command

ubyte *GetStringi(enum name, uint index);

target is the name of the indexed state and index is the index of the particular ele-
ment being queried. target may only be EXTENSIONS, indicating that the extension
name corresponding to the indexth supported extension should be returned. index
may range from zero to the value of NUM EXTENSIONS minus one. All extension
names, and only the extension names returned in GetString(EXTENSIONS) will be
returned as individual names, but there is no defined relationship between the order
in which names appear in the non-indexed string and the order in which the appear
in the indexed query. There is also no defined relationship between any particu-
lar extension name and the index values; an extension name may correspond to a
different index in different GL contexts and/or implementations.

An INVALID VALUE error is generated if index is outside the valid range for
the indexed state target.

6.1.12 Asynchronous Queries

The command

boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.

Information about a query target can be queried with the command

void GetQueryiv(enum target, enum pname, int *params);

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 329

target identifies the query target, and must
be one of SAMPLES PASSED for occlusion queries or PRIMITIVES GENERATED

and TRANSFORM FEEDBACK PRIMITIVES WRITTEN for primitive queries.
If pname is CURRENT QUERY, the name of the currently active query for target, or
zero if no query is active, will be placed in params.

If pname is QUERY COUNTER BITS, the implementation-dependent number of
bits used to hold the query result for target will be placed in params. The number
of query counter bits may be zero, in which case the counter contains no useful
information.

For primitive queries (PRIMITIVES GENERATED and
TRANSFORM FEEDBACK PRIMITIVES WRITTEN) if the number of bits is
non-zero, the minimum number of bits allowed is 32.

For occlusion queries (SAMPLES PASSED), if the number of bits is non-zero,
the minimum number of bits allowed is a function of the implementation’s max-
imum viewport dimensions (MAX VIEWPORT DIMS). The counter must be able to
represent at least two overdraws for every pixel in the viewport. The formula to
compute the allowable minimum value (where n is the minimum number of bits)
is

n = min{32, dlog2(maxV iewportWidth×maxV iewportHeight× 2)e}.

The state of a query object can be queried with the commands

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

If id is not the name of a query object, or if the query object named by id is currently
active, then an INVALID OPERATION error is generated.

If pname is QUERY RESULT, then the query object’s result value is returned as
a single integer in params. If the value is so large in magnitude that it cannot be
represented with the requested type, then the nearest value representable using the
requested type is returned. If the number of query counter bits for target is zero,
then the result is returned as a single integer with the value zero.

There may be an indeterminate delay before the above query returns. If pname
is QUERY RESULT AVAILABLE, FALSE is returned if such a delay would be re-
quired; otherwise TRUE is returned. It must always be true that if any query object
returns a result available of TRUE, all queries of the same type issued prior to that
query must also return TRUE.

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 330

Querying the state for any given query object forces that occlusion query to
complete within a finite amount of time.

If multiple queries are issued using the same object name prior to calling Get-
QueryObject[u]iv, the result and availability information returned will always be
from the last query issued. The results from any queries before the last one will be
lost if they are not retrieved before starting a new query on the same target and id.

6.1.13 Buffer Object Queries

The command

boolean IsBuffer(uint buffer);

returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

The command

void GetBufferParameteriv(enum target, enum pname,
int *data);

returns information about a bound buffer object. target must
be one of ARRAY BUFFER, ELEMENT ARRAY BUFFER, PIXEL PACK BUFFER, or
PIXEL UNPACK BUFFER. pname must be one of the buffer object parameters in
table 2.6, other than BUFFER MAP POINTER. The value of the specified parameter
of the buffer object bound to target is returned in data.

The command

void GetBufferSubData(enum target, intptr offset,
sizeiptr size, void *data);

queries the data contents of a buffer object. target is ARRAY BUFFER,
ELEMENT ARRAY BUFFER, PIXEL PACK BUFFER, or PIXEL UNPACK BUFFER.
offset and size indicate the range of data in the buffer object that is to be queried, in
terms of basic machine units. data specifies a region of client memory, size basic
machine units in length, into which the data is to be retrieved.

An error is generated if GetBufferSubData is executed for a buffer object that
is currently mapped.

While the data store of a buffer object is mapped, the pointer to the data store
can be queried by calling

void GetBufferPointerv(enum target, enum pname,
void **params);

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 331

with target set to ARRAY BUFFER, ELEMENT ARRAY BUFFER,
PIXEL PACK BUFFER, or PIXEL UNPACK BUFFER and pname set to
BUFFER MAP POINTER. The single buffer map pointer is returned in *params.
GetBufferPointerv returns the NULL pointer value if the buffer’s data store is not
currently mapped, or if the requesting client did not map the buffer object’s data
store, and the implementation is unable to support mappings on multiple clients.

To query which buffer objects are bound to the array of
transform feedback binding points and will be used when trans-
form feedback is active, call GetIntegeri v with param set to
TRANSFORM FEEDBACK BUFFER BINDING. index must be in the range zero
to the value of MAX TRANSFORM FEEDBACK SEPARATE ATTRIBS - 1. The name
of the buffer object bound to index is returned in values. If no buffer object is
bound for index, zero is returned in values.

To query the starting offset or size of the range of each
buffer object binding used for transform feedback, call GetInte-
geri v with param set to TRANSFORM FEEDBACK BUFFER START or
TRANSFORM FEEDBACK BUFFER SIZE respectively. index must be in the
range 0 to the value of MAX TRANSFORM FEEDBACK SEPARATE ATTRIBS - 1. If
the parameter (starting offset or size) was not specified when the buffer object was
bound, zero is returned. If no buffer object is bound to index, -1 is returned.

6.1.14 Vertex Array Object Queries

The command

boolean IsVertexArray(uint array);

returns TRUE if array is the name of a vertex array object previously returned by
GenVertexArrays. If array is zero, or a non-zero value that is not the name of a
vertex array object, IsVertexArray returns FALSE. No error is generated if array
is not a valid vertex array object name.

6.1.15 Shader and Program Queries

State stored in shader or program objects can be queried by commands that ac-
cept shader or program object names. These commands will generate the error
INVALID VALUE if the provided name is not the name of either a shader or pro-
gram object, and INVALID OPERATION if the provided name identifies an object
of the other type. If an error is generated, variables used to hold return values are
not modified.

The command

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 332

boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

The command

void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER TYPE, VERTEX SHADER is returned if shader is a ver-
tex shader object, and FRAGMENT SHADER is returned if shader is a fragment
shader object. If pname is DELETE STATUS, TRUE is returned if the shader
has been flagged for deletion and FALSE is returned otherwise. If pname is
COMPILE STATUS, TRUE is returned if the shader was last compiled successfully,
and FALSE is returned otherwise. If pname is INFO LOG LENGTH, the length of
the info log, including a null terminator, is returned. If there is no info log, zero
is returned. If pname is SHADER SOURCE LENGTH, the length of the concatenation
of the source strings making up the shader source, including a null terminator, is
returned. If no source has been defined, zero is returned.

The command

boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero,
or a non-zero value that is not the name of a program object, IsProgram returns
FALSE. No error is generated if program is not a valid program object name.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

If pname is DELETE STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise. If pname is LINK STATUS, TRUE
is returned if the program was last compiled successfully, and FALSE is returned
otherwise. If pname is VALIDATE STATUS, TRUE is returned if the last call to Val-
idateProgram with program was successful, and FALSE is returned otherwise. If
pname is INFO LOG LENGTH, the length of the info log, including a null terminator,

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 333

is returned. If there is no info log, 0 is returned. If pname is ATTACHED SHADERS,
the number of objects attached is returned. If pname is ACTIVE ATTRIBUTES, the
number of active attributes in program is returned. If no active attributes exist,
0 is returned. If pname is ACTIVE ATTRIBUTE MAX LENGTH, the length of the
longest active attribute name, including a null terminator, is returned. If no ac-
tive attributes exist, 0 is returned. If pname is ACTIVE UNIFORMS, the number of
active uniforms is returned. If no active uniforms exist, 0 is returned. If pname
is ACTIVE UNIFORM MAX LENGTH, the length of the longest active uniform name,
including a null terminator, is returned. If no active uniforms exist, 0 is returned.
If pname is TRANSFORM FEEDBACK BUFFER MODE, the buffer mode used when
transform feedback is active is returned. It can be one of SEPARATE ATTRIBS

or INTERLEAVED ATTRIBS. If pname is TRANSFORM FEEDBACK VARYINGS, the
number of varying variables to capture in transform feedback mode for the pro-
gram is returned. If pname is TRANSFORM FEEDBACK VARYING MAX LENGTH, the
length of the longest varying name specified to be used for transform feedback,
including a null terminator, is returned. If no varyings are used for transform feed-
back, zero is returned.

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizei *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders are
attached, count is set to zero. If count is NULL then it is ignored. The maximum
number of shader names that may be written into shaders is specified by maxCount.
The number of objects attached to program is given by can be queried by calling
GetProgramiv with ATTACHED SHADERS.

A string that contains information about the last compilation attempt on a
shader object or last link or validation attempt on a program object, called the
info log, can be obtained with the commands

void GetShaderInfoLog(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramInfoLog(uint program, sizei bufSize,
sizei *length, char *infoLog);

These commands return the info log string in infoLog. This string will be null
terminated. The actual number of characters written into infoLog, excluding the
null terminator, is returned in length. If length is NULL, then no length is returned.

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 334

The maximum number of characters that may be written into infoLog, including
the null terminator, is specified by bufSize. The number of characters in the info
log can be queried with GetShaderiv or GetProgramiv with INFO LOG LENGTH.
If shader is a shader object, the returned info log will either be an empty string
or it will contain information about the last compilation attempt for that object. If
program is a program object, the returned info log will either be an empty string or
it will contain information about the last link attempt or last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.
The string source will be null terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is
a concatenation of the strings passed to the GL using ShaderSource. The length
of this concatenation is given by SHADER SOURCE LENGTH, which can be queried
with GetShaderiv.

The commands

void GetVertexAttribdv(uint index, enum pname,
double *params);

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

void GetVertexAttribIiv(uint index, enum pname,
int *params);

void GetVertexAttribIuiv(uint index, enum pname,
uint *params);

obtain the vertex attribute state named by pname for the generic vertex attribute
numbered index and places the information in the array params. pname must be
one of

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 335

VERTEX ATTRIB ARRAY BUFFER BINDING, VERTEX ATTRIB ARRAY ENABLED,
VERTEX ATTRIB ARRAY SIZE, VERTEX ATTRIB ARRAY STRIDE,
VERTEX ATTRIB ARRAY TYPE, VERTEX ATTRIB ARRAY NORMALIZED,
VERTEX ATTRIB ARRAY INTEGER, or CURRENT VERTEX ATTRIB. Note that all
the queries except CURRENT VERTEX ATTRIB return values stored in the currently
bound vertex array object (the value of VERTEX ARRAY BINDING). If the zero ob-
ject is bound, these values are client state. The error INVALID VALUE is generated
if index is greater than or equal to MAX VERTEX ATTRIBS.

All but CURRENT VERTEX ATTRIB return information about generic vertex at-
tribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type, normalized flag, and unconverted integer flag are set by the
commands VertexAttribPointer and VertexAttribIPointer. The normalized flag
is always set to FALSE by VertexAttribIPointer. The unconverted integer flag is
always set to FALSE by VertexAttribPointer and TRUE by VertexAttribIPointer.

The query CURRENT VERTEX ATTRIB returns the current value for the generic
attribute index. GetVertexAttribdv and GetVertexAttribfv read and return the
current attribute values as floating-point values; GetVertexAttribiv reads them
as floating-point values and converts them to integer values; GetVertexAttribIiv
reads and returns them as integers; GetVertexAttribIuiv reads and returns them
as unsigned integers. The results of the query are undefined if the current attribute
values are read using one data type but were specified using a different one. The
error INVALID OPERATION is generated if index is zero, as there is no current
value for generic attribute zero.

The command

void GetVertexAttribPointerv(uint index, enum pname,
void **pointer);

obtains the pointer named pname for the vertex attribute numbered in-
dex and places the information in the array pointer. pname must be
VERTEX ATTRIB ARRAY POINTER. The value returned is queried from the cur-
rently bound vertex array object. If the zero object is bound, the value is queried
from client state. An INVALID VALUE error is generated if index is greater than or
equal to the value of MAX VERTEX ATTRIBS.

The commands

void GetUniformfv(uint program, int location,
float *params);

void GetUniformiv(uint program, int location,
int *params);

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 336

void GetUniformuiv(uint program, int location,
uint *params);

return the value or values of the uniform at location location for program object
program in the array params. The type of the uniform at location determines the
number of values returned. The error INVALID OPERATION is generated if pro-
gram has not been linked successfully, or if location is not a valid location for
program. In order to query the values of an array of uniforms, a GetUniform*
command needs to be issued for each array element. If the uniform queried is a
matrix, the values of the matrix are returned in column major order. If an error
occurred, the return parameter params will be unmodified.

6.1.16 Framebuffer Object Queries

The command

boolean IsFramebuffer(uint framebuffer);

returns TRUE if framebuffer is the name of an framebuffer object. If framebuffer is
zero, or if framebuffer is a non-zero value that is not the name of an framebuffer
object, IsFramebuffer return FALSE.

The command

void GetFramebufferAttachmentParameteriv(enum target,
enum attachment, enum pname, int *params);

returns information about attachments of a bound framebuffer object. target must
be DRAW FRAMEBUFFER, READ FRAMEBUFFER, or FRAMEBUFFER. FRAMEBUFFER
is equivalent to DRAW FRAMEBUFFER.

If the default framebuffer is bound to target, then attachment must be one of
FRONT LEFT, FRONT RIGHT, BACK LEFT, BACK RIGHT, or AUXi, identifying a
color buffer; DEPTH, identifying the depth buffer; or STENCIL, identifying the
stencil buffer.

If a framebuffer object is bound to target, then attachment must be one of the
attachment points of the framebuffer listed in table 4.12.

If attachment is DEPTH STENCIL ATTACHMENT, and different objects are
bound to the depth and stencil attachment points of target, the query will fail and
generate an INVALID OPERATION error. If the same object is bound to both at-
tachment points, information about that object will be returned.

Upon successful return from GetFramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER ATTACHMENT OBJECT TYPE, then param will contain

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 337

one of NONE, FRAMEBUFFER DEFAULT, TEXTURE, or RENDERBUFFER, identify-
ing the type of object which contains the attached image. Other values accepted
for pname depend on the type of object, as described below.

If the value of FRAMEBUFFER ATTACHMENT OBJECT TYPE is NONE,
no framebuffer is bound to target. In this case querying pname
FRAMEBUFFER ATTACHMENT OBJECT NAME will return zero, and all other
queries will generate an INVALID OPERATION error.

If the value of FRAMEBUFFER ATTACHMENT OBJECT TYPE is not NONE, these
queries apply to all other framebuffer types:

• If pname is FRAMEBUFFER ATTACHMENT RED SIZE,
FRAMEBUFFER ATTACHMENT GREEN SIZE,
FRAMEBUFFER ATTACHMENT BLUE SIZE, FRAMEBUFFER ATTACHMENT ALPHA SIZE,
FRAMEBUFFER ATTACHMENT DEPTH SIZE, or
FRAMEBUFFER ATTACHMENT STENCIL SIZE, then param will con-
tain the number of bits in the corresponding red, green, blue, alpha, depth,
or stencil component of the specified attachment. Zero is returned if the
requested component is not present in attachment.

• If pname is FRAMEBUFFER ATTACHMENT COMPONENT TYPE, param will
contain the format of components of the specified attachment, one of FLOAT,
INT, UNSIGNED INT, UNSIGNED NORMALIZED, or INDEX for floating-
point, signed integer, unsigned integer, unsigned fixed-point, or index com-
ponents respectively. Only color buffers may have index or integer compo-
nents.

• If pname is FRAMEBUFFER ATTACHMENT COLOR ENCODING, param will
contain the encoding of components of the specified attachment, one of
LINEAR or SRGB for linear or sRGB-encoded components, respectively.
Only color buffer components may be sRGB-encoded; such components
are treated as described in sections 4.1.8 and 4.1.9. For the default frame-
buffer, color encoding is determined by the implementation. For framebuffer
objects, components are sRGB-encoded if the internal format of a color
attachment is one of the color-renderable SRGB formats described in sec-
tion 3.9.15.

If the value of FRAMEBUFFER ATTACHMENT OBJECT TYPE is
RENDERBUFFER, then

• If pname is FRAMEBUFFER ATTACHMENT OBJECT NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 338

If the value of FRAMEBUFFER ATTACHMENT OBJECT TYPE is TEXTURE, then

• If pname is FRAMEBUFFER ATTACHMENT OBJECT NAME, then params will
contain the name of the texture object which contains the attached image.

• If pname is FRAMEBUFFER ATTACHMENT TEXTURE LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

• If pname is FRAMEBUFFER ATTACHMENT TEXTURE CUBE MAP FACE and
the texture object named FRAMEBUFFER ATTACHMENT OBJECT NAME is a
cube map texture, then params will contain the cube map face of the cube-
map texture object which contains the attached image. Otherwise params
will contain the value zero.

• If pname is FRAMEBUFFER ATTACHMENT TEXTURE LAYER and the tex-
ture object named FRAMEBUFFER ATTACHMENT OBJECT NAME is a three-
dimensional texture or a one- or two-dimensional array texture, then params
will contain the number of the texture layer which contains the attached im-
age. Otherwise params will contain the value zero.

Any combinations of framebuffer type and pname not described above will
generate an INVALID ENUM error.

6.1.17 Renderbuffer Object Queries

The command

boolean IsRenderbuffer(uint renderbuffer);

returns TRUE if renderbuffer is the name of a renderbuffer object. If renderbuffer
is zero, or if renderbuffer is a non-zero value that is not the name of a renderbuffer
object, IsRenderbuffer return FALSE.

The command

void GetRenderbufferParameteriv(enum target, enum pname,
int* params);

returns information about a bound renderbuffer object. target must be
RENDERBUFFER and pname must be one of the symbolic values in table 6.31. If
the renderbuffer currently bound to target is zero, then an INVALID OPERATION

error is generated.

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 339

Upon successful return from GetRenderbufferParameteriv,
if pname is RENDERBUFFER WIDTH, RENDERBUFFER HEIGHT,
RENDERBUFFER INTERNAL FORMAT, or RENDERBUFFER SAMPLES, then params
will contain the width in pixels, height in pixels, internal format, or number of
samples, respectively, of the image of the renderbuffer currently bound to target.

If pname is RENDERBUFFER RED SIZE, RENDERBUFFER GREEN SIZE,
RENDERBUFFER BLUE SIZE, RENDERBUFFER ALPHA SIZE,
RENDERBUFFER DEPTH SIZE, or RENDERBUFFER STENCIL SIZE, then params
will contain the actual resolutions, (not the resolutions specified when the image
array was defined), for the red, green, blue, alpha depth, or stencil components,
respectively, of the image of the renderbuffer currently bound to target.

Otherwise, an INVALID ENUM error is generated.

6.1.18 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. The PushAttrib,
PushClientAttrib, PopAttrib and PopClientAttrib commands are used for this
purpose. The commands

void PushAttrib(bitfield mask);
void PushClientAttrib(bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state variables
to push onto an attribute stack. PushAttrib uses a server attribute stack while
PushClientAttrib uses a client attribute stack. Each constant refers to a group
of state variables. The classification of each variable into a group is indicated
in the following tables of state variables. The error STACK OVERFLOW is gener-
ated if PushAttrib or PushClientAttrib is executed while the corresponding stack
depth is MAX ATTRIB STACK DEPTH or MAX CLIENT ATTRIB STACK DEPTH re-
spectively. Bits set in mask that do not correspond to an attribute group are ignored.
The special mask values ALL ATTRIB BITS and CLIENT ALL ATTRIB BITS may
be used to push all stackable server and client state, respectively.

The commands

void PopAttrib(void);
void PopClientAttrib(void);

reset the values of those state variables that were saved with the last corresponding
PushAttrib or PopClientAttrib. Those not saved remain unchanged. The er-
ror STACK UNDERFLOW is generated if PopAttrib or PopClientAttrib is executed
while the respective stack is empty.

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 340

Table 6.2 shows the attribute groups with their corresponding symbolic con-
stant names and stacks.

When PushAttrib is called with TEXTURE BIT set, the priorities, border col-
ors, filter modes, wrap modes, and other state of the currently bound texture objects
(see table 6.20), as well as the current texture bindings and enables, are pushed onto
the attribute stack. (Unbound texture objects are not pushed or restored.) When an
attribute set that includes texture information is popped, the bindings and enables
are first restored to their pushed values, then the bound texture object’s parameters
are restored to their pushed values.

Operations on attribute groups push or pop texture state within that group for
all texture units. When state for a group is pushed, all state corresponding to
TEXTURE0 is pushed first, followed by state corresponding to TEXTURE1, and so
on up to and including the state corresponding to TEXTUREk where k + 1 is the
value of MAX TEXTURE UNITS. When state for a group is popped, texture state is
restored in the opposite order that it was pushed, starting with state corresponding
to TEXTUREk and ending with TEXTURE0. Identical rules are observed for client
texture state push and pop operations. Matrix stacks are never pushed or popped
with PushAttrib, PushClientAttrib, PopAttrib, or PopClientAttrib.

The depth of each attribute stack is implementation dependent but must be at
least 16. The state required for each attribute stack is potentially 16 copies of each
state variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, both attribute stacks
are empty.

In the tables that follow, a type is indicated for each variable. Table 6.3 ex-
plains these types. The type actually identifies all state associated with the indi-
cated description; in certain cases only a portion of this state is returned. This
is the case with all matrices, where only the top entry on the stack is returned;
with clip planes, where only the selected clip plane is returned, with parameters
describing lights, where only the value pertaining to the selected light is returned;
with textures, where only the selected texture or texture parameter is returned; and
with evaluator maps, where only the selected map is returned. Finally, a “–” in the
attribute column indicates that the indicated value is not included in any attribute
group (and thus can not be pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib).

The M and m entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 341

Stack Attribute Constant
server accum-buffer ACCUM BUFFER BIT

server color-buffer COLOR BUFFER BIT

server current CURRENT BIT

server depth-buffer DEPTH BUFFER BIT

server enable ENABLE BIT

server eval EVAL BIT

server fog FOG BIT

server hint HINT BIT

server lighting LIGHTING BIT

server line LINE BIT

server list LIST BIT

server multisample MULTISAMPLE BIT

server pixel PIXEL MODE BIT

server point POINT BIT

server polygon POLYGON BIT

server polygon-stipple POLYGON STIPPLE BIT

server scissor SCISSOR BIT

server stencil-buffer STENCIL BUFFER BIT

server texture TEXTURE BIT

server transform TRANSFORM BIT

server viewport VIEWPORT BIT

server ALL ATTRIB BITS

client vertex-array CLIENT VERTEX ARRAY BIT

client pixel-store CLIENT PIXEL STORE BIT

client select can’t be pushed or pop’d
client feedback can’t be pushed or pop’d
client CLIENT ALL ATTRIB BITS

Table 6.2: Attribute groups

Version 3.0 (September 23, 2008)

6.1. QUERYING GL STATE 342

Type code Explanation
B Boolean

BMU Basic machine units
C Color (floating-point R, G, B, and A values)
CI Color index (floating-point index value)
T Texture coordinates (floating-point (s, t, r, q) val-

ues)
N Normal coordinates (floating-point (x, y, z) val-

ues)
V Vertex, including associated data
Z Integer
Z+ Non-negative integer

Zk, Zk∗ k-valued integer (k∗ indicates k is minimum)
R Floating-point number
R+ Non-negative floating-point number
R[a,b] Floating-point number in the range [a, b]
Rk k-tuple of floating-point numbers
P Position ((x, y, z, w) floating-point coordinates)
D Direction ((x, y, z) floating-point coordinates)
M4 4× 4 floating-point matrix
S NULL-terminated string
I Image
A Attribute stack entry, including mask
Y Pointer (data type unspecified)

n× type n copies of type type (n∗ indicates n is minimum)

Table 6.3: State Variable Types

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 343

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any of GetBooleanv,
GetIntegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands – the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained using IsEnabled. However, state vari-
ables for which IsEnabled is listed as the query command can also be obtained
using GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev. State variables
for which any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see sec-
tion 3.7.2) are typeset against a gray background .

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 344

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
–

Z
1
1

–
0

W
he

n
6=

0,
in

di
ca

te
s

be
gi

n/
en

d
ob

-
je

ct

2.
6.

1
–

–
V

–
–

Pr
ev

io
us

ve
rt

ex
in

B
eg

in
/E

nd
lin

e
2.

6.
1

–

–
B

–
–

In
di

ca
te

s
if

lin
e-

ve
rt

ex
is

th
e

fir
st

2.
6.

1
–

–
V

–
–

Fi
rs

t
ve

rt
ex

of
a

B
eg

in
/E

nd
lin

e
lo

op

2.
6.

1
–

–
Z

+
–

–
L

in
e

st
ip

pl
e

co
un

te
r

3.
5

–

–
n
×
V

–
–

V
er

tic
es

in
si

de
of

B
eg

in
/E

nd
po

ly
-

go
n

2.
6.

1
–

–
Z

+
–

–
N

um
be

ro
fp

ol
yg

on
-v

er
tic

es
2.

6.
1

–

–
2
×
V

–
–

Pr
ev

io
us

tw
o

ve
rt

ic
es

in
a

B
e-

gi
n/

E
nd

tr
ia

ng
le

st
ri

p

2.
6.

1
–

–
Z

3
–

–
N

um
be

ro
fv

er
tic

es
so

fa
ri

n
tr

ia
ng

le
st

ri
p:

0,
1,

or
m

or
e

2.
6.

1
–

–
Z

2
–

–
Tr

ia
ng

le
st

ri
p

A
/B

ve
rt

ex
po

in
te

r
2.

6.
1

–

–
3
×
V

–
–

V
er

tic
es

of
th

e
qu

ad
un

de
rc

on
st

ru
c-

tio
n

2.
6.

1
–

–
Z

4
–

–
N

um
be

r
of

ve
rt

ic
es

so
fa

r
in

qu
ad

st
ri

p:
0,

1,
2,

or
m

or
e

2.
6.

1
–

Table 6.4. GL Internal begin-end state variables (inaccessible)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 345

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

U
R

R
E

N
T

C
O

L
O

R
C

G
et

Fl
oa

tv
1,

1,
1,

1
C

ur
re

nt
co

lo
r

2.
7

cu
rr

en
t

C
U

R
R

E
N

T
SE

C
O

N
D

A
RY

C
O

L
O

R
C

G
et

Fl
oa

tv
0,

0,
0,

1
C

ur
re

nt
se

co
nd

ar
y

co
lo

r
2.

7
cu

rr
en

t

C
U

R
R

E
N

T
IN

D
E

X
C
I

G
et

In
te

ge
rv

1
C

ur
re

nt
co

lo
ri

nd
ex

2.
7

cu
rr

en
t

C
U

R
R

E
N

T
T

E
X

T
U

R
E

C
O

O
R

D
S

2
∗
×
T

G
et

Fl
oa

tv
0,

0,
0,

1
C

ur
re

nt
te

xt
ur

e
co

or
di

na
te

s
2.

7
cu

rr
en

t

C
U

R
R

E
N

T
N

O
R

M
A

L
N

G
et

Fl
oa

tv
0,

0,
1

C
ur

re
nt

no
rm

al
2.

7
cu

rr
en

t

C
U

R
R

E
N

T
FO

G
C

O
O

R
D

R
G

et
Fl

oa
tv

0
C

ur
re

nt
fo

g
co

or
di

na
te

2.
7

cu
rr

en
t

–
C

–
-

C
ol

or
as

so
ci

at
ed

w
ith

la
st

ve
rt

ex
2.

6
–

–
C
I

–
-

C
ol

or
in

de
x

as
so

ci
at

ed
w

ith
la

st
ve

r-
te

x

2.
6

–

–
T

–
-

Te
xt

ur
e

co
or

di
na

te
s

as
so

ci
at

ed
w

ith
la

st
ve

rt
ex

2.
6

–

C
U

R
R

E
N

T
R

A
ST

E
R

PO
SI

T
IO

N
R

4
G

et
Fl

oa
tv

0,
0,

0,
1

C
ur

re
nt

ra
st

er
po

si
tio

n
2.

18
cu

rr
en

t

C
U

R
R

E
N

T
R

A
ST

E
R

D
IS

TA
N

C
E

R
+

G
et

Fl
oa

tv
0

C
ur

re
nt

ra
st

er
di

st
an

ce
2.

18
cu

rr
en

t

C
U

R
R

E
N

T
R

A
ST

E
R

C
O

L
O

R
C

G
et

Fl
oa

tv
1,

1,
1,

1
C

ol
or

as
so

ci
at

ed
w

ith
ra

st
er

po
si

tio
n

2.
18

cu
rr

en
t

C
U

R
R

E
N

T
R

A
ST

E
R

SE
C

O
N

D
A

RY
C

O
L

O
R

C
G

et
Fl

oa
tv

0,
0,

0,
1

Se
co

nd
ar

y
co

lo
r

as
so

ci
at

ed
w

ith
ra

st
er

po
si

tio
n

2.
18

cu
rr

en
t

C
U

R
R

E
N

T
R

A
ST

E
R

IN
D

E
X

C
I

G
et

In
te

ge
rv

1
C

ol
or

in
de

x
as

so
ci

at
ed

w
ith

ra
st

er
po

si
tio

n

2.
18

cu
rr

en
t

C
U

R
R

E
N

T
R

A
ST

E
R

T
E

X
T

U
R

E
C

O
O

R
D

S
2
∗
×
T

G
et

Fl
oa

tv
0,

0,
0,

1
Te

xt
ur

e
co

or
di

na
te

s
as

so
ci

at
ed

w
ith

ra
st

er
po

si
tio

n

2.
18

cu
rr

en
t

C
U

R
R

E
N

T
R

A
ST

E
R

PO
SI

T
IO

N
VA

L
ID

B
G

et
B

oo
le

an
v

T
R
U
E

R
as

te
rp

os
iti

on
va

lid
bi

t
2.

18
cu

rr
en

t

E
D

G
E

FL
A

G
B

G
et

B
oo

le
an

v
T
R
U
E

E
dg

e
fla

g
2.

6.
2

cu
rr

en
t

Table 6.5. Current Values and Associated Data

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 346

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
V

E
R

T
E

X
A

R
R

A
Y

B
Is

E
na

bl
ed

F
A
L
S
E

V
er

te
x

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
SI

Z
E

Z
+

G
et

In
te

ge
rv

4
C

oo
rd

in
at

es
pe

rv
er

te
x

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
T

Y
PE

Z
4

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
ve

rt
ex

co
or

di
na

te
s

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
ST

R
ID

E
Z

+
G

et
In

te
ge

rv
0

St
ri

de
be

tw
ee

n
ve

rt
ic

es
2.

8
ve

rt
ex

-a
rr

ay

V
E

R
T

E
X

A
R

R
A

Y
PO

IN
T

E
R

Y
G

et
Po

in
te

rv
0

Po
in

te
rt

o
th

e
ve

rt
ex

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay

N
O

R
M

A
L

A
R

R
A

Y
B

Is
E

na
bl

ed
F
A
L
S
E

N
or

m
al

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

N
O

R
M

A
L

A
R

R
A

Y
T

Y
PE

Z
5

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
no

rm
al

co
or

di
na

te
s

2.
8

ve
rt

ex
-a

rr
ay

N
O

R
M

A
L

A
R

R
A

Y
ST

R
ID

E
Z

+
G

et
In

te
ge

rv
0

St
ri

de
be

tw
ee

n
no

rm
al

s
2.

8
ve

rt
ex

-a
rr

ay

N
O

R
M

A
L

A
R

R
A

Y
PO

IN
T

E
R

Y
G

et
Po

in
te

rv
0

Po
in

te
rt

o
th

e
no

rm
al

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay

FO
G

C
O

O
R

D
A

R
R

A
Y

B
Is

E
na

bl
ed

F
A
L
S
E

Fo
g

co
or

d
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay

FO
G

C
O

O
R

D
A

R
R

A
Y

T
Y

PE
Z

2
G

et
In

te
ge

rv
F
L
O
A
T

Ty
pe

of
fo

g
co

or
d

co
m

po
ne

nt
s

2.
8

ve
rt

ex
-a

rr
ay

FO
G

C
O

O
R

D
A

R
R

A
Y

ST
R

ID
E

Z
+

G
et

In
te

ge
rv

0
St

ri
de

be
tw

ee
n

fo
g

co
or

ds
2.

8
ve

rt
ex

-a
rr

ay

FO
G

C
O

O
R

D
A

R
R

A
Y

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Po

in
te

rt
o

th
e

fo
g

co
or

d
ar

ra
y

2.
8

ve
rt

ex
-a

rr
ay

C
O

L
O

R
A

R
R

A
Y

B
Is

E
na

bl
ed

F
A
L
S
E

C
ol

or
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay

C
O

L
O

R
A

R
R

A
Y

SI
Z

E
Z

+
G

et
In

te
ge

rv
4

C
ol

or
co

m
po

ne
nt

s
pe

rv
er

te
x

2.
8

ve
rt

ex
-a

rr
ay

C
O

L
O

R
A

R
R

A
Y

T
Y

PE
Z

8
G

et
In

te
ge

rv
F
L
O
A
T

Ty
pe

of
co

lo
rc

om
po

ne
nt

s
2.

8
ve

rt
ex

-a
rr

ay

C
O

L
O

R
A

R
R

A
Y

ST
R

ID
E

Z
+

G
et

In
te

ge
rv

0
St

ri
de

be
tw

ee
n

co
lo

rs
2.

8
ve

rt
ex

-a
rr

ay

C
O

L
O

R
A

R
R

A
Y

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Po

in
te

rt
o

th
e

co
lo

ra
rr

ay
2.

8
ve

rt
ex

-a
rr

ay

Table 6.6. Vertex Array Object State

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 347

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
SE

C
O

N
D

A
RY

C
O

L
O

R
A

R
R

A
Y

B
Is

E
na

bl
ed

F
A
L
S
E

Se
co

nd
ar

y
co

lo
r

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
SI

Z
E

Z
+

G
et

In
te

ge
rv

3
Se

co
nd

ar
y

co
lo

r
co

m
po

-
ne

nt
s

pe
rv

er
te

x

2.
8

ve
rt

ex
-a

rr
ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
T

Y
PE

Z
8

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
se

co
nd

ar
y

co
lo

r
co

m
po

ne
nt

s

2.
8

ve
rt

ex
-a

rr
ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
ST

R
ID

E
Z

+

G
et

In
te

ge
rv

0
St

ri
de

be
tw

ee
n

se
c-

on
da

ry
co

lo
rs

2.
8

ve
rt

ex
-a

rr
ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
PO

IN
T

E
R

Y
G

et
Po

in
te

rv
0

Po
in

te
r

to
th

e
se

co
nd

ar
y

co
lo

ra
rr

ay

2.
8

ve
rt

ex
-a

rr
ay

IN
D

E
X

A
R

R
A

Y
B

Is
E

na
bl

ed
F
A
L
S
E

In
de

x
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay

IN
D

E
X

A
R

R
A

Y
T

Y
PE

Z
4

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
in

di
ce

s
2.

8
ve

rt
ex

-a
rr

ay

IN
D

E
X

A
R

R
A

Y
ST

R
ID

E
Z

+

G
et

In
te

ge
rv

0
St

ri
de

be
tw

ee
n

in
di

ce
s

2.
8

ve
rt

ex
-a

rr
ay

IN
D

E
X

A
R

R
A

Y
PO

IN
T

E
R

Y
G

et
Po

in
te

rv
0

Po
in

te
rt

o
th

e
in

de
x

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
2
∗
×
B

Is
E

na
bl

ed
F
A
L
S
E

Te
xt

ur
e

co
or

di
na

te
ar

ra
y

en
ab

le

2.
8

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
SI

Z
E

2
∗
×
Z

+

G
et

In
te

ge
rv

4
C

oo
rd

in
at

es
pe

re
le

m
en

t
2.

8
ve

rt
ex

-a
rr

ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
T

Y
PE

2
∗
×
Z

4
G

et
In

te
ge

rv
F
L
O
A
T

Ty
pe

of
te

xt
ur

e
co

or
di

-
na

te
s

2.
8

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
ST

R
ID

E
2
∗
×
Z

+

G
et

In
te

ge
rv

0
St

ri
de

be
tw

ee
n

te
xt

ur
e

co
or

di
na

te
s

2.
8

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
PO

IN
T

E
R

2
∗
×
Y

G
et

Po
in

te
rv

0
Po

in
te

r
to

th
e

te
xt

ur
e

co
-

or
di

na
te

ar
ra

y

2.
8

ve
rt

ex
-a

rr
ay

Table 6.7. Vertex Array Object State (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 348

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
V

E
R

T
E

X
A

T
T

R
IB

A
R

R
A

Y
E

N
A

B
L

E
D

16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

SI
Z

E
16
∗
×
Z

G
et

Ve
rt

ex
A

tt
ri

bi
v

4
V

er
te

x
at

tr
ib

ar
ra

y
si

ze
2.

8
ve

rt
ex

-a
rr

ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

ST
R

ID
E

16
∗
×
Z

+

G
et

Ve
rt

ex
A

tt
ri

bi
v

0
V

er
te

x
at

tr
ib

ar
ra

y
st

ri
de

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

T
Y

PE
16
∗
×
Z

4
G

et
Ve

rt
ex

A
tt

ri
bi

v
F
L
O
A
T

V
er

te
x

at
tr

ib
ar

ra
y

ty
pe

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

N
O

R
M

A
L

IZ
E

D
16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

no
r-

m
al

iz
ed

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

IN
T

E
G

E
R

16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

ha
s

un
co

nv
er

te
d

in
te

ge
rs

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

PO
IN

T
E

R
16
∗
×
Y

G
et

Ve
rt

ex
-

A
tt

ri
bP

oi
nt

er
v

N
U
L
L

V
er

te
x

at
tr

ib
ar

ra
y

po
in

te
r

2.
8

ve
rt

ex
-a

rr
ay

E
D

G
E

FL
A

G
A

R
R

A
Y

B
Is

E
na

bl
ed

F
A
L
S
E

E
dg

e
fla

g
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay

E
D

G
E

FL
A

G
A

R
R

A
Y

ST
R

ID
E

Z
+

G
et

In
te

ge
rv

0
St

ri
de

be
tw

ee
n

ed
ge

fla
gs

2.
8

ve
rt

ex
-a

rr
ay

E
D

G
E

FL
A

G
A

R
R

A
Y

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Po

in
te

r
to

th
e

ed
ge

fla
g

ar
ra

y

2.
8

ve
rt

ex
-a

rr
ay

Table 6.8. Vertex Array Object State (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 349

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
V

E
R

T
E

X
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
V

er
te

x
ar

ra
y

bu
ff

er
bi

nd
-

in
g

2.
9

ve
rt

ex
-a

rr
ay

N
O

R
M

A
L

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+

G
et

In
te

ge
rv

0
N

or
m

al
ar

ra
y

bu
ff

er
bi

nd
in

g

2.
9

ve
rt

ex
-a

rr
ay

C
O

L
O

R
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
C

ol
or

ar
ra

y
bu

ff
er

bi
nd

-
in

g

2.
9

ve
rt

ex
-a

rr
ay

IN
D

E
X

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+

G
et

In
te

ge
rv

0
In

de
x

ar
ra

y
bu

ff
er

bi
nd

-
in

g

2.
9

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
2
∗
×
Z

+

G
et

In
te

ge
rv

0
Te

xc
oo

rd
ar

ra
y

bu
ff

er
bi

nd
in

g

2.
9

ve
rt

ex
-a

rr
ay

E
D

G
E

FL
A

G
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
E

dg
e

fla
g

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+

G
et

In
te

ge
rv

0
Se

co
nd

ar
y

co
lo

r
ar

ra
y

bu
ff

er
bi

nd
in

g

2.
9

ve
rt

ex
-a

rr
ay

FO
G

C
O

O
R

D
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
Fo

g
co

or
di

na
te

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

E
L

E
M

E
N

T
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
E

le
m

en
t

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9.

3
ve

rt
ex

-a
rr

ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

16
∗
×
Z

+

G
et

Ve
rt

ex
A

tt
ri

bi
v

0
A

ttr
ib

ut
e

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
C

ur
re

nt
ve

rt
ex

ar
ra

y
ob

-
je

ct
bi

nd
in

g

2.
10

ve
rt

ex
-a

rr
ay

Table 6.9. Vertex Array Object State (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 350

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

L
IE

N
T

A
C

T
IV

E
T

E
X

T
U

R
E

Z
2
∗

G
et

In
te

ge
rv

T
E
X
T
U
R
E
0

C
lie

nt
ac

tiv
e

te
xt

ur
e

un
it

se
le

ct
or

2.
7

ve
rt

ex
-a

rr
ay

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+

G
et

In
te

ge
rv

0
C

ur
re

nt
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

Table 6.10. Vertex Array Data (not in Vertex Array objects)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 351

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
–

n
×
B
M
U

G
et

B
uf

fe
rS

ub
D

at
a

-
bu

ff
er

da
ta

2.
9

-

B
U

FF
E

R
SI

Z
E

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
iv

0
B

uf
fe

rd
at

a
si

ze
2.

9
-

B
U

FF
E

R
U

SA
G

E
n
×
Z

9
G

et
B

uf
fe

rP
ar

am
et

er
iv

S
T
A
T
I
C
D
R
A
W

B
uf

fe
ru

sa
ge

pa
tte

rn
2.

9
-

B
U

FF
E

R
A

C
C

E
SS

n
×
Z

3
G

et
B

uf
fe

rP
ar

am
et

er
iv

R
E
A
D
W
R
I
T
E

B
uf

fe
ra

cc
es

s
fla

g
2.

9
-

B
U

FF
E

R
A

C
C

E
SS

FL
A

G
S

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
iv

0
E

xt
en

de
d

bu
ff

er
ac

ce
ss

fla
g

2.
9

-

B
U

FF
E

R
M

A
PP

E
D

n
×
B

G
et

B
uf

fe
rP

ar
am

et
er

iv
F
A
L
S
E

B
uf

fe
rm

ap
fla

g
2.

9
-

B
U

FF
E

R
M

A
P

PO
IN

T
E

R
n
×
Y

G
et

B
uf

fe
rP

oi
nt

er
v

N
U
L
L

M
ap

pe
d

bu
ff

er
po

in
te

r
2.

9
-

B
U

FF
E

R
M

A
P

O
FF

SE
T

n
×
Z

+
G

et
B

uf
fe

rP
oi

nt
er

v
0

St
ar

to
fm

ap
pe

d
bu

ff
er

ra
ng

e
2.

9
-

B
U

FF
E

R
M

A
P

L
E

N
G

T
H

n
×
Z

+
G

et
B

uf
fe

rP
oi

nt
er

v
0

Si
ze

of
m

ap
pe

d
bu

ff
er

ra
ng

e
2.

9
-

Table 6.11. Buffer Object State

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 352

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

C
O

L
O

R
M

A
T

R
IX

(T
R

A
N

SP
O

SE
C

O
L

O
R

M
A

T
R

IX
)

2
∗
×
M

4
G

et
Fl

oa
tv

Id
en

tit
y

C
ol

or
m

at
ri

x
st

ac
k

3.
7.

3
–

M
O

D
E

LV
IE

W
M

A
T

R
IX

(T
R

A
N

SP
O

SE
M

O
D

E
LV

IE
W

M
A

T
R

IX
)

32
∗
×
M

4
G

et
Fl

oa
tv

Id
en

tit
y

M
od

el
-v

ie
w

m
at

ri
x

st
ac

k
2.

12
.2

–

PR
O

JE
C

T
IO

N
M

A
T

R
IX

(T
R

A
N

SP
O

SE
PR

O
JE

C
T

IO
N

M
A

T
R

IX
)

2
∗
×
M

4
G

et
Fl

oa
tv

Id
en

tit
y

Pr
oj

ec
tio

n
m

at
ri

x
st

ac
k

2.
12

.2
–

T
E

X
T

U
R

E
M

A
T

R
IX

(T
R

A
N

SP
O

SE
T

E
X

T
U

R
E

M
A

T
R

IX
)

2
∗
×

2
∗
×
M

4
G

et
Fl

oa
tv

Id
en

tit
y

Te
xt

ur
e

m
at

ri
x

st
ac

k
2.

12
.2

–

V
IE

W
PO

R
T

4
×
Z

G
et

In
te

ge
rv

se
e

2.
12

.1
V

ie
w

po
rt

or
ig

in
&

ex
te

nt
2.

12
.1

vi
ew

po
rt

D
E

PT
H

R
A

N
G

E
2
×
R

+
G

et
Fl

oa
tv

0,
1

D
ep

th
ra

ng
e

ne
ar

&
fa

r
2.

12
.1

vi
ew

po
rt

C
O

L
O

R
M

A
T

R
IX

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

1
C

ol
or

m
at

ri
x

st
ac

k
po

in
te

r

3.
7.

3
–

M
O

D
E

LV
IE

W
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
1

M
od

el
-v

ie
w

m
at

ri
x

st
ac

k
po

in
te

r

2.
12

.2
–

PR
O

JE
C

T
IO

N
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
1

Pr
oj

ec
tio

n
m

at
ri

x
st

ac
k

po
in

te
r

2.
12

.2
–

T
E

X
T

U
R

E
ST

A
C

K
D

E
PT

H
2
∗
×
Z

+
G

et
In

te
ge

rv
1

Te
xt

ur
e

m
at

ri
x

st
ac

k
po

in
te

r

2.
12

.2
–

M
A

T
R

IX
M

O
D

E
Z

4
G

et
In

te
ge

rv
M
O
D
E
L
V
I
E
W

C
ur

re
nt

m
at

ri
x

m
od

e
2.

12
.2

tr
an

sf
or

m

N
O

R
M

A
L

IZ
E

B
Is

E
na

bl
ed

F
A
L
S
E

C
ur

re
nt

no
rm

al
no

rm
al

-
iz

at
io

n
on

/o
ff

2.
12

.3
tr

an
sf

or
m

/e
na

bl
e

R
E

SC
A

L
E

N
O

R
M

A
L

B
Is

E
na

bl
ed

F
A
L
S
E

C
ur

re
nt

no
rm

al
re

sc
al

in
g

on
/o

ff

2.
12

.3
tr

an
sf

or
m

/e
na

bl
e

C
L

IP
PL

A
N

E
i

6
∗
×
R

4
G

et
C

lip
Pl

an
e

0,
0,

0,
0

U
se

rc
lip

pi
ng

pl
an

e
co

ef
-

fic
ie

nt
s

2.
17

tr
an

sf
or

m

C
L

IP
PL

A
N

E
i

6
∗
×
B

Is
E

na
bl

ed
F
A
L
S
E

it
h

us
er

cl
ip

pi
ng

pl
an

e
en

ab
le

d

2.
17

tr
an

sf
or

m
/e

na
bl

e

Table 6.12. Transformation stateVersion 3.0 (September 23, 2008)

6.2. STATE TABLES 353

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
FO

G
C

O
L

O
R

C
G

et
Fl

oa
tv

0,
0,

0,
0

Fo
g

co
lo

r
3.

11
fo

g

FO
G

IN
D

E
X

C
I

G
et

Fl
oa

tv
0

Fo
g

in
de

x
3.

11
fo

g

FO
G

D
E

N
SI

T
Y

R
G

et
Fl

oa
tv

1.
0

E
xp

on
en

tia
lf

og
de

ns
ity

3.
11

fo
g

FO
G

ST
A

R
T

R
G

et
Fl

oa
tv

0.
0

L
in

ea
rf

og
st

ar
t

3.
11

fo
g

FO
G

E
N

D
R

G
et

Fl
oa

tv
1.

0
L

in
ea

rf
og

en
d

3.
11

fo
g

FO
G

M
O

D
E

Z
3

G
et

In
te

ge
rv

E
X
P

Fo
g

m
od

e
3.

11
fo

g

FO
G

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
fo

g
en

ab
le

d
3.

11
fo

g/
en

ab
le

FO
G

C
O

O
R

D
SR

C
Z

2
G

et
In

te
ge

rv
F
R
A
G
M
E
N
T
D
E
P
T
H

So
ur

ce
of

co
or

di
na

te
fo

r
fo

g
ca

lc
u-

la
tio

n

3.
11

fo
g

C
O

L
O

R
SU

M
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
co

lo
rs

um
en

ab
le

d
3.

10
fo

g/
en

ab
le

SH
A

D
E

M
O

D
E

L
Z

+
G

et
In

te
ge

rv
S
M
O
O
T
H

Sh
ad

eM
od

el
se

tti
ng

2.
19

.7
lig

ht
in

g

C
L

A
M

P
V

E
R

T
E

X
C

O
L

O
R

Z
3

G
et

In
te

ge
rv

T
R
U
E

V
er

te
x

co
lo

rc
la

m
pi

ng
2.

19
.6

lig
ht

in
g/

en
ab

le

C
L

A
M

P
FR

A
G

M
E

N
T

C
O

L
O

R
Z

3
G

et
In

te
ge

rv
F
I
X
E
D
O
N
L
Y

Fr
ag

m
en

tc
ol

or
cl

am
pi

ng
3.

8
co

lo
r-

bu
ff

er
/e

na
bl

e

C
L

A
M

P
R

E
A

D
C

O
L

O
R

Z
3

G
et

In
te

ge
rv

F
I
X
E
D
O
N
L
Y

R
ea

d
co

lo
rc

la
m

pi
ng

4.
2

co
lo

r-
bu

ff
er

/e
na

bl
e

Table 6.13. Coloring

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 354

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
L

IG
H

T
IN

G
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
lig

ht
in

g
is

en
ab

le
d

2.
19

.1
lig

ht
in

g/
en

ab
le

C
O

L
O

R
M

A
T

E
R

IA
L

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
co

lo
r

tr
ac

ki
ng

is
en

-
ab

le
d

2.
19

.3
lig

ht
in

g/
en

ab
le

C
O

L
O

R
M

A
T

E
R

IA
L

PA
R

A
M

E
T

E
R

Z
5

G
et

In
te

ge
rv

A
M
B
I
E
N
T
A
N
D
D
I
F
F
U
S
E

M
at

er
ia

l
pr

op
-

er
tie

s
tr

ac
ki

ng
cu

rr
en

tc
ol

or

2.
19

.3
lig

ht
in

g

C
O

L
O

R
M

A
T

E
R

IA
L

FA
C

E
Z

3
G

et
In

te
ge

rv
F
R
O
N
T
A
N
D
B
A
C
K

Fa
ce

(s
)

af
fe

ct
ed

by
co

lo
rt

ra
ck

in
g

2.
19

.3
lig

ht
in

g

A
M

B
IE

N
T

2
×
C

G
et

M
at

er
ia

lfv
(0

.2
,0

.2
,0

.2
,1

.0
)

A
m

bi
en

t
m

at
er

ia
l

co
lo

r

2.
19

.1
lig

ht
in

g

D
IF

FU
SE

2
×
C

G
et

M
at

er
ia

lfv
(0

.8
,0

.8
,0

.8
,1

.0
)

D
iff

us
e

m
at

er
ia

l
co

lo
r

2.
19

.1
lig

ht
in

g

SP
E

C
U

L
A

R
2
×
C

G
et

M
at

er
ia

lfv
(0

.0
,0

.0
,0

.0
,1

.0
)

Sp
ec

ul
ar

m
at

er
ia

l
co

lo
r

2.
19

.1
lig

ht
in

g

E
M

IS
SI

O
N

2
×
C

G
et

M
at

er
ia

lfv
(0

.0
,0

.0
,0

.0
,1

.0
)

E
m

is
si

ve
m

at
.

co
lo

r

2.
19

.1
lig

ht
in

g

SH
IN

IN
E

SS
2
×
R

G
et

M
at

er
ia

lfv
0.

0
Sp

ec
ul

ar
ex

po
-

ne
nt

of
m

at
er

ia
l

2.
19

.1
lig

ht
in

g

L
IG

H
T

M
O

D
E

L
A

M
B

IE
N

T
C

G
et

Fl
oa

tv
(0

.2
,0

.2
,0

.2
,1

.0
)

A
m

bi
en

t
sc

en
e

co
lo

r

2.
19

.1
lig

ht
in

g

L
IG

H
T

M
O

D
E

L
L

O
C

A
L

V
IE

W
E

R
B

G
et

B
oo

le
an

v
F
A
L
S
E

V
ie

w
er

is
lo

ca
l

2.
19

.1
lig

ht
in

g

L
IG

H
T

M
O

D
E

L
T

W
O

SI
D

E
B

G
et

B
oo

le
an

v
F
A
L
S
E

U
se

tw
o-

si
de

d
lig

ht
in

g

2.
19

.1
lig

ht
in

g

L
IG

H
T

M
O

D
E

L
C

O
L

O
R

C
O

N
T

R
O

L
Z

2
G

et
In

te
ge

rv
S
I
N
G
L
E
C
O
L
O
R

C
ol

or
co

nt
ro

l
2.

19
.1

lig
ht

in
g

Table 6.14. Lighting (see also table 2.11 for defaults)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 355

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
A

M
B

IE
N

T
8
∗
×
C

G
et

L
ig

ht
fv

(0
.0

,0
.0

,0
.0

,1
.0

)
A

m
bi

en
ti

nt
en

si
ty

of
lig

ht
i

2.
19

.1
lig

ht
in

g

D
IF

FU
SE

8
∗
×
C

G
et

L
ig

ht
fv

se
e

ta
bl

e
2.

11
D

iff
us

e
in

te
ns

ity
of

lig
ht
i

2.
19

.1
lig

ht
in

g

SP
E

C
U

L
A

R
8
∗
×
C

G
et

L
ig

ht
fv

se
e

ta
bl

e
2.

11
Sp

ec
ul

ar
in

te
ns

ity
of

lig
ht
i

2.
19

.1
lig

ht
in

g

PO
SI

T
IO

N
8
∗
×
P

G
et

L
ig

ht
fv

(0
.0

,0
.0

,1
.0

,0
.0

)
Po

si
tio

n
of

lig
ht
i

2.
19

.1
lig

ht
in

g

C
O

N
ST

A
N

T
A

T
T

E
N

U
A

T
IO

N
8
∗
×
R

+
G

et
L

ig
ht

fv
1.

0
C

on
st

an
ta

tte
n.

fa
ct

or
2.

19
.1

lig
ht

in
g

L
IN

E
A

R
A

T
T

E
N

U
A

T
IO

N
8
∗
×
R

+
G

et
L

ig
ht

fv
0.

0
L

in
ea

ra
tte

n.
fa

ct
or

2.
19

.1
lig

ht
in

g

Q
U

A
D

R
A

T
IC

A
T

T
E

N
U

A
T

IO
N

8
∗
×
R

+
G

et
L

ig
ht

fv
0.

0
Q

ua
dr

at
ic

at
te

n.
fa

ct
or

2.
19

.1
lig

ht
in

g

SP
O

T
D

IR
E

C
T

IO
N

8
∗
×
D

G
et

L
ig

ht
fv

(0
.0

,0
.0

,-1
.0

)
Sp

ot
lig

ht
di

re
ct

io
n

of
lig

ht
i

2.
19

.1
lig

ht
in

g

SP
O

T
E

X
PO

N
E

N
T

8
∗
×
R

+
G

et
L

ig
ht

fv
0.

0
Sp

ot
lig

ht
ex

po
ne

nt
of

lig
ht
i

2.
19

.1
lig

ht
in

g

SP
O

T
C

U
TO

FF
8
∗
×
R

+
G

et
L

ig
ht

fv
18

0.
0

Sp
ot

.a
ng

le
of

lig
ht
i

2.
19

.1
lig

ht
in

g

L
IG

H
T
i

8
∗
×
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
lig

ht
i

en
ab

le
d

2.
19

.1
lig

ht
in

g/
en

ab
le

C
O

L
O

R
IN

D
E

X
E

S
2
×

3
×
R

G
et

M
at

er
ia

lfv
0,

1,
1

a
m

,
d

m
,

an
d
s m

fo
r

co
lo

r
in

de
x

lig
ht

in
g

2.
19

.1
lig

ht
in

g

Table 6.15. Lighting (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 356

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
PO

IN
T

SI
Z

E
R

+
G

et
Fl

oa
tv

1.
0

Po
in

ts
iz

e
3.

4
po

in
t

PO
IN

T
SM

O
O

T
H

B
Is

E
na

bl
ed

F
A
L
S
E

Po
in

ta
nt

ia
lia

si
ng

on
3.

4
po

in
t/e

na
bl

e

PO
IN

T
SP

R
IT

E
B

Is
E

na
bl

ed
F
A
L
S
E

Po
in

ts
pr

ite
en

ab
le

3.
4

po
in

t/e
na

bl
e

PO
IN

T
SI

Z
E

M
IN

R
+

G
et

Fl
oa

tv
0.

0
A

tte
nu

at
ed

m
in

im
um

po
in

ts
iz

e
3.

4
po

in
t

PO
IN

T
SI

Z
E

M
A

X
R

+
G

et
Fl

oa
tv

1

A
tte

nu
at

ed
m

ax
im

um
po

in
t

si
ze

.
1

M
ax

.
of

th
e

im
pl

.
de

pe
nd

en
t

m
ax

.
al

ia
se

d
an

d
sm

oo
th

po
in

ts
iz

es
.

3.
4

po
in

t

PO
IN

T
FA

D
E

T
H

R
E

SH
O

L
D

SI
Z

E
R

+
G

et
Fl

oa
tv

1.
0

T
hr

es
ho

ld
fo

ra
lp

ha
at

te
nu

at
io

n
3.

4
po

in
t

PO
IN

T
D

IS
TA

N
C

E
A

T
T

E
N

U
A

T
IO

N
3
×
R

+
G

et
Fl

oa
tv

1,
0,

0
A

tte
nu

at
io

n
co

ef
fic

ie
nt

s
3.

4
po

in
t

PO
IN

T
SP

R
IT

E
C

O
O

R
D

O
R

IG
IN

Z
2

G
et

In
te

ge
rv

U
P
P
E
R
L
E
F
T

O
ri

gi
n

or
ie

nt
at

io
n

fo
rp

oi
nt

sp
ri

te
s

3.
4

po
in

t

L
IN

E
W

ID
T

H
R

+
G

et
Fl

oa
tv

1.
0

L
in

e
w

id
th

3.
5

lin
e

L
IN

E
SM

O
O

T
H

B
Is

E
na

bl
ed

F
A
L
S
E

L
in

e
an

tia
lia

si
ng

on
3.

5
lin

e/
en

ab
le

L
IN

E
ST

IP
PL

E
PA

T
T

E
R

N
Z

+
G

et
In

te
ge

rv
1’

s
L

in
e

st
ip

pl
e

3.
5.

2
lin

e

L
IN

E
ST

IP
PL

E
R

E
PE

A
T

Z
+

G
et

In
te

ge
rv

1
L

in
e

st
ip

pl
e

re
pe

at
3.

5.
2

lin
e

L
IN

E
ST

IP
PL

E
B

Is
E

na
bl

ed
F
A
L
S
E

L
in

e
st

ip
pl

e
en

ab
le

3.
5.

2
lin

e/
en

ab
le

Table 6.16. Rasterization

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 357

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

U
L

L
FA

C
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

cu
lli

ng
en

ab
le

d
3.

6.
1

po
ly

go
n/

en
ab

le

C
U

L
L

FA
C

E
M

O
D

E
Z

3
G

et
In

te
ge

rv
B
A
C
K

C
ul

lf
ro

nt
/b

ac
k

fa
ci

ng
po

ly
go

ns
3.

6.
1

po
ly

go
n

FR
O

N
T

FA
C

E
Z

2
G

et
In

te
ge

rv
C
C
W

Po
ly

go
n

fr
on

tfa
ce

C
W

/C
C

W
in

di
ca

-
to

r

3.
6.

1
po

ly
go

n

PO
LY

G
O

N
SM

O
O

T
H

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

an
tia

lia
si

ng
on

3.
6

po
ly

go
n/

en
ab

le

PO
LY

G
O

N
M

O
D

E
2
×
Z

3
G

et
In

te
ge

rv
F
I
L
L

Po
ly

go
n

ra
st

er
iz

at
io

n
m

od
e

(f
ro

nt
&

ba
ck

)

3.
6.

4
po

ly
go

n

PO
LY

G
O

N
O

FF
SE

T
FA

C
TO

R
R

G
et

Fl
oa

tv
0

Po
ly

go
n

of
fs

et
fa

ct
or

3.
6.

5
po

ly
go

n

PO
LY

G
O

N
O

FF
SE

T
U

N
IT

S
R

G
et

Fl
oa

tv
0

Po
ly

go
n

of
fs

et
un

its
3.

6.
5

po
ly

go
n

PO
LY

G
O

N
O

FF
SE

T
PO

IN
T

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

of
fs

et
en

ab
le

fo
r
P
O
I
N
T

m
od

e
ra

st
er

iz
at

io
n

3.
6.

5
po

ly
go

n/
en

ab
le

PO
LY

G
O

N
O

FF
SE

T
L

IN
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

of
fs

et
en

ab
le

fo
r
L
I
N
E

m
od

e
ra

st
er

iz
at

io
n

3.
6.

5
po

ly
go

n/
en

ab
le

PO
LY

G
O

N
O

FF
SE

T
FI

L
L

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

of
fs

et
en

ab
le

fo
r
F
I
L
L

m
od

e
ra

st
er

iz
at

io
n

3.
6.

5
po

ly
go

n/
en

ab
le

–
I

G
et

Po
ly

go
nS

tip
pl

e
1’

s
Po

ly
go

n
st

ip
pl

e
3.

6
po

ly
go

n-
st

ip
pl

e

PO
LY

G
O

N
ST

IP
PL

E
B

Is
E

na
bl

ed
F
A
L
S
E

Po
ly

go
n

st
ip

pl
e

en
ab

le
3.

6.
2

po
ly

go
n/

en
ab

le

Table 6.17. Rasterization (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 358

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
M

U
LT

IS
A

M
PL

E
B

Is
E

na
bl

ed
T
R
U
E

M
ul

tis
am

pl
e

ra
st

er
iz

at
io

n
3.

3.
1

m
ul

tis
am

pl
e/

en
ab

le

SA
M

PL
E

A
L

PH
A

TO
C

O
V

E
R

A
G

E
B

Is
E

na
bl

ed
F
A
L
S
E

M
od

if
y

co
ve

ra
ge

fr
om

al
ph

a
4.

1.
3

m
ul

tis
am

pl
e/

en
ab

le

SA
M

PL
E

A
L

PH
A

TO
O

N
E

B
Is

E
na

bl
ed

F
A
L
S
E

Se
ta

lp
ha

to
m

ax
im

um
4.

1.
3

m
ul

tis
am

pl
e/

en
ab

le

SA
M

PL
E

C
O

V
E

R
A

G
E

B
Is

E
na

bl
ed

F
A
L
S
E

M
as

k
to

m
od

if
y

co
ve

ra
ge

4.
1.

3
m

ul
tis

am
pl

e/
en

ab
le

SA
M

PL
E

C
O

V
E

R
A

G
E

VA
L

U
E

R
+

G
et

Fl
oa

tv
1

C
ov

er
ag

e
m

as
k

va
lu

e
4.

1.
3

m
ul

tis
am

pl
e

SA
M

PL
E

C
O

V
E

R
A

G
E

IN
V

E
R

T
B

G
et

B
oo

le
an

v
F
A
L
S
E

In
ve

rt
co

ve
ra

ge
m

as
k

va
lu

e
4.

1.
3

m
ul

tis
am

pl
e

Table 6.18. Multisampling

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 359

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

T
E

X
T

U
R

E
x

D
2
∗
×

3
×
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
x

D
te

xt
ur

in
g

is
en

ab
le

d;
x

is
1

,2
,o

r3

3.
9.

17
te

xt
ur

e/
en

ab
le

T
E

X
T

U
R

E
C

U
B

E
M

A
P

2
∗
×
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
cu

be
m

ap
te

xt
ur

-
in

g
is

en
ab

le
d

3.
9.

13
te

xt
ur

e/
en

ab
le

T
E

X
T

U
R

E
B

IN
D

IN
G

x
D

2
∗
×

3
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
x
D

3.
9.

12
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

1D
A

R
R

A
Y

2
∗
×

3
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
1
D
A
R
R
A
Y

3.
9.

12
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

2D
A

R
R

A
Y

2
∗
×

3
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
2
D
A
R
R
A
Y

3.
9.

12
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

C
U

B
E

M
A

P
2
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
C
U
B
E
M
A
P

3.
9.

11
te

xt
ur

e

T
E

X
T

U
R

E
x

D
n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9
x

D
te

xt
ur

e
im

ag
e

at
l.o

.d
.

i

3.
9

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

PO
SI

T
IV

E
X

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
1

+
x

fa
ce

cu
be

m
ap

te
x-

tu
re

im
ag

e
at

l.o
.d

.i

3.
9.

1
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
A

T
IV

E
X

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
1
−
x

fa
ce

cu
be

m
ap

te
x-

tu
re

im
ag

e
at

l.o
.d

.i

3.
9.

1
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

PO
SI

T
IV

E
Y

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
1

+
y

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i

3.
9.

1
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
A

T
IV

E
Y

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
1
−
y

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i

3.
9.

1
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

PO
SI

T
IV

E
Z

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
1

+
z

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i

3.
9.

1
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
A

T
IV

E
Z

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
1
−
z

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i

3.
9.

1
–

Table 6.19. Textures (state per texture unit and binding point)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 360

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

T
E

X
T

U
R

E
B

O
R

D
E

R
C

O
L

O
R

n
×
C

G
et

Te
xP

ar
am

et
er

0,
0,

0,
0

B
or

de
rc

ol
or

3.
9

te
xt

ur
e

T
E

X
T

U
R

E
M

IN
FI

LT
E

R
n
×
Z

6
G

et
Te

xP
ar

am
et

er
se

e
3.

9
M

in
ifi

ca
tio

n
fu

nc
tio

n
3.

9.
7

te
xt

ur
e

T
E

X
T

U
R

E
M

A
G

FI
LT

E
R

n
×
Z

2
G

et
Te

xP
ar

am
et

er
se

e
3.

9
M

ag
ni

fic
at

io
n

fu
nc

tio
n

3.
9.

8
te

xt
ur

e

T
E

X
T

U
R

E
W

R
A

P
S

n
×
Z

5
G

et
Te

xP
ar

am
et

er
R
E
P
E
A
T

Te
xc

oo
rd
s

w
ra

p
m

od
e

3.
9.

7
te

xt
ur

e

T
E

X
T

U
R

E
W

R
A

P
T

n
×
Z

5
G

et
Te

xP
ar

am
et

er
R
E
P
E
A
T

Te
xc

oo
rd

t
w

ra
p

m
od

e
(2

D
,

3D
,

cu
be

m
ap

te
x-

tu
re

s
on

ly
)

3.
9.

7
te

xt
ur

e

T
E

X
T

U
R

E
W

R
A

P
R

n
×
Z

5
G

et
Te

xP
ar

am
et

er
R
E
P
E
A
T

Te
xc

oo
rd

r
w

ra
p

m
od

e
(3

D
te

xt
ur

es
on

ly
)

3.
9.

7
te

xt
ur

e

T
E

X
T

U
R

E
PR

IO
R

IT
Y

n
×
R

[0
,1

]
G

et
Te

xP
ar

am
et

er
fv

1
Te

xt
ur

e
ob

je
ct

pr
io

ri
ty

3.
9.

12
te

xt
ur

e

T
E

X
T

U
R

E
R

E
SI

D
E

N
T

n
×
B

G
et

Te
xP

ar
am

et
er

iv
se

e
3.

9.
12

Te
xt

ur
e

re
si

de
nc

y
3.

9.
12

te
xt

ur
e

T
E

X
T

U
R

E
M

IN
L

O
D

n
×
R

G
et

Te
xP

ar
am

et
er

fv
-1

00
0

M
in

im
um

le
ve

lo
fd

et
ai

l
3.

9
te

xt
ur

e

T
E

X
T

U
R

E
M

A
X

L
O

D
n
×
R

G
et

Te
xP

ar
am

et
er

fv
10

00
M

ax
im

um
le

ve
lo

fd
et

ai
l

3.
9

te
xt

ur
e

T
E

X
T

U
R

E
B

A
SE

L
E

V
E

L
n
×
Z

+
G

et
Te

xP
ar

am
et

er
fv

0
B

as
e

te
xt

ur
e

ar
ra

y
3.

9
te

xt
ur

e

T
E

X
T

U
R

E
M

A
X

L
E

V
E

L
n
×
Z

+
G

et
Te

xP
ar

am
et

er
fv

10
00

M
ax

.t
ex

tu
re

ar
ra

y
le

ve
l

3.
9

te
xt

ur
e

T
E

X
T

U
R

E
L

O
D

B
IA

S
n
×
R

G
et

Te
xP

ar
am

et
er

fv
0.

0
Te

xt
ur

e
le

ve
l

of
de

ta
il

bi
as

(b
ia
s t

e
x
o
b
j
)

3.
9.

7
te

xt
ur

e

D
E

PT
H

T
E

X
T

U
R

E
M

O
D

E
n
×
Z

3
G

et
Te

xP
ar

am
et

er
iv

L
U
M
I
N
A
N
C
E

D
ep

th
te

xt
ur

e
m

od
e

3.
9.

5
te

xt
ur

e

T
E

X
T

U
R

E
C

O
M

PA
R

E
M

O
D

E
n
×
Z

2
G

et
Te

xP
ar

am
et

er
iv

N
O
N
E

C
om

pa
ri

so
n

m
od

e
3.

9.
14

te
xt

ur
e

T
E

X
T

U
R

E
C

O
M

PA
R

E
FU

N
C

n
×
Z

8
G

et
Te

xP
ar

am
et

er
iv

L
E
Q
U
A
L

C
om

pa
ri

so
n

fu
nc

tio
n

3.
9.

14
te

xt
ur

e

G
E

N
E

R
A

T
E

M
IP

M
A

P
n
×
B

G
et

Te
xP

ar
am

et
er

F
A
L
S
E

A
ut

om
at

ic
m

ip
m

ap
ge

n-
er

at
io

n
en

ab
le

d

3.
9.

7
te

xt
ur

e

Table 6.20. Textures (state per texture object)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 361

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

T
E

X
T

U
R

E
W

ID
T

H
n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sp

ec
ifi

ed
w

id
th

3.
9

–

T
E

X
T

U
R

E
H

E
IG

H
T

n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sp

ec
ifi

ed
he

ig
ht

(2
D

/3
D

)
3.

9
–

T
E

X
T

U
R

E
D

E
PT

H
n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sp

ec
ifi

ed
de

pt
h

(3
D

)
3.

9
–

T
E

X
T

U
R

E
B

O
R

D
E

R
n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sp

ec
ifi

ed
bo

rd
er

w
id

th
3.

9
–

T
E

X
T

U
R

E
IN

T
E

R
N

A
L

FO
R

M
A

T

(T
E

X
T

U
R

E
C

O
M

PO
N

E
N

T
S)

n
×
Z

6
8
∗

G
et

Te
xL

ev
el

Pa
ra

m
et

er
1

In
te

rn
al

fo
rm

at
3.

9
–

T
E

X
T

U
R

E
x

SI
Z

E
n
×

8
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
C

om
po

ne
nt

re
so

lu
tio

n
(x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
L
U
M
I
N
A
N
C
E

,
I
N
T
E
N
S
I
T
Y

,
D
E
P
T
H

,
or
S
T
E
N
C
I
L

)

3.
9

–

T
E

X
T

U
R

E
SH

A
R

E
D

SI
Z

E
n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sh

ar
ed

ex
po

ne
nt

fie
ld

re
so

lu
tio

n

3.
9

–

T
E

X
T

U
R

E
x

T
Y

PE
n
×
Z

5
G

et
Te

xL
ev

el
Pa

ra
m

et
er

N
O
N
E

C
om

po
ne

nt
ty

pe
(x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
L
U
M
I
N
A
N
C
E

,
I
N
T
E
N
S
I
T
Y

,
or

D
E
P
T
H

)

6.
1.

3
–

T
E

X
T

U
R

E
C

O
M

PR
E

SS
E

D
n
×
B

G
et

Te
xL

ev
el

Pa
ra

m
et

er
F
A
L
S
E

Tr
ue

if
im

ag
e

ha
s

a
co

m
-

pr
es

se
d

in
te

rn
al

fo
rm

at

3.
9.

3
-

T
E

X
T

U
R

E
C

O
M

PR
E

SS
E

D
IM

A
G

E
SI

Z
E

n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
si

ze
(i

n
u
b
y
t
e

s)
of

co
m

-
pr

es
se

d
im

ag
e

3.
9.

3
-

Table 6.21. Textures (state per texture image)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 362

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

O
O

R
D

R
E

PL
A

C
E

2
∗
×
B

G
et

Te
xE

nv
iv

F
A
L
S
E

C
oo

rd
in

at
e

re
pl

ac
em

en
te

na
bl

e
3.

4
po

in
t

A
C

T
IV

E
T

E
X

T
U

R
E

Z
2
∗

G
et

In
te

ge
rv

T
E
X
T
U
R
E
0

A
ct

iv
e

te
xt

ur
e

un
it

se
le

ct
or

2.
7

te
xt

ur
e

T
E

X
T

U
R

E
E

N
V

M
O

D
E

2
∗
×
Z

6
G

et
Te

xE
nv

iv
M
O
D
U
L
A
T
E

Te
xt

ur
e

ap
pl

ic
at

io
n

fu
nc

tio
n

3.
9.

13
te

xt
ur

e

T
E

X
T

U
R

E
E

N
V

C
O

L
O

R
2
∗
×
C

G
et

Te
xE

nv
fv

0,
0,

0,
0

Te
xt

ur
e

en
vi

ro
nm

en
tc

ol
or

3.
9.

13
te

xt
ur

e

T
E

X
T

U
R

E
L

O
D

B
IA

S
2
∗
×
R

G
et

Te
xE

nv
fv

0.
0

Te
xt

ur
e

le
ve

l
of

de
ta

il
bi

as
bi
a
s t

e
x
u

n
it

3.
9.

7
te

xt
ur

e

T
E

X
T

U
R

E
G

E
N

x
2
∗
×

4
×
B

Is
E

na
bl

ed
F
A
L
S
E

Te
xg

en
en

ab
le

d
(x

is
S,

T,
R

,o
rQ

)
2.

12
.4

te
xt

ur
e/

en
ab

le

E
Y

E
PL

A
N

E
2
∗
×

4
×
R

4
G

et
Te

xG
en

fv
se

e
2.

12
.4

Te
xg

en
pl

an
e

eq
ua

tio
n

co
ef

fic
ie

nt
s

(f
or

S,
T,

R
,a

nd
Q

)

2.
12

.4
te

xt
ur

e

O
B

JE
C

T
PL

A
N

E
2
∗
×

4
×
R

4
G

et
Te

xG
en

fv
se

e
2.

12
.4

Te
xg

en
ob

je
ct

lin
ea

r
co

ef
fic

ie
nt

s
(f

or
S,

T,
R

,a
nd

Q
)

2.
12

.4
te

xt
ur

e

T
E

X
T

U
R

E
G

E
N

M
O

D
E

2
∗
×

4
×
Z

5
G

et
Te

xG
en

iv
E
Y
E
L
I
N
E
A
R

Fu
nc

tio
n

us
ed

fo
r

te
xg

en
(f

or
S,

T,
R

,a
nd

Q

2.
12

.4
te

xt
ur

e

C
O

M
B

IN
E

R
G

B
2
∗
×
Z

8
G

et
Te

xE
nv

iv
M
O
D
U
L
A
T
E

R
G

B
co

m
bi

ne
rf

un
ct

io
n

3.
9.

13
te

xt
ur

e

C
O

M
B

IN
E

A
L

PH
A

2
∗
×
Z

6
G

et
Te

xE
nv

iv
M
O
D
U
L
A
T
E

A
lp

ha
co

m
bi

ne
rf

un
ct

io
n

3.
9.

13
te

xt
ur

e

Table 6.22. Texture Environment and Generation

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 363

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
SR

C
0

R
G

B
2
∗
×
Z

3
G

et
Te

xE
nv

iv
T
E
X
T
U
R
E

R
G

B
so

ur
ce

0
3.

9.
13

te
xt

ur
e

SR
C

1
R

G
B

2
∗
×
Z

3
G

et
Te

xE
nv

iv
P
R
E
V
I
O
U
S

R
G

B
so

ur
ce

1
3.

9.
13

te
xt

ur
e

SR
C

2
R

G
B

2
∗
×
Z

3
G

et
Te

xE
nv

iv
C
O
N
S
T
A
N
T

R
G

B
so

ur
ce

2
3.

9.
13

te
xt

ur
e

SR
C

0
A

L
PH

A
2
∗
×
Z

3
G

et
Te

xE
nv

iv
T
E
X
T
U
R
E

A
lp

ha
so

ur
ce

0
3.

9.
13

te
xt

ur
e

SR
C

1
A

L
PH

A
2
∗
×
Z

3
G

et
Te

xE
nv

iv
P
R
E
V
I
O
U
S

A
lp

ha
so

ur
ce

1
3.

9.
13

te
xt

ur
e

SR
C

2
A

L
PH

A
2
∗
×
Z

3
G

et
Te

xE
nv

iv
C
O
N
S
T
A
N
T

A
lp

ha
so

ur
ce

2
3.

9.
13

te
xt

ur
e

O
PE

R
A

N
D

0
R

G
B

2
∗
×
Z

4
G

et
Te

xE
nv

iv
S
R
C
C
O
L
O
R

R
G

B
op

er
an

d
0

3.
9.

13
te

xt
ur

e

O
PE

R
A

N
D

1
R

G
B

2
∗
×
Z

4
G

et
Te

xE
nv

iv
S
R
C
C
O
L
O
R

R
G

B
op

er
an

d
1

3.
9.

13
te

xt
ur

e

O
PE

R
A

N
D

2
R

G
B

2
∗
×
Z

4
G

et
Te

xE
nv

iv
S
R
C
A
L
P
H
A

R
G

B
op

er
an

d
2

3.
9.

13
te

xt
ur

e

O
PE

R
A

N
D

0
A

L
PH

A
2
∗
×
Z

2
G

et
Te

xE
nv

iv
S
R
C
A
L
P
H
A

A
lp

ha
op

er
an

d
0

3.
9.

13
te

xt
ur

e

O
PE

R
A

N
D

1
A

L
PH

A
2
∗
×
Z

2
G

et
Te

xE
nv

iv
S
R
C
A
L
P
H
A

A
lp

ha
op

er
an

d
1

3.
9.

13
te

xt
ur

e

O
PE

R
A

N
D

2
A

L
PH

A
2
∗
×
Z

2
G

et
Te

xE
nv

iv
S
R
C
A
L
P
H
A

A
lp

ha
op

er
an

d
2

3.
9.

13
te

xt
ur

e

R
G

B
SC

A
L

E
2
∗
×
R

3
G

et
Te

xE
nv

fv
1.

0
R

G
B

po
st

-c
om

bi
ne

rs
ca

lin
g

3.
9.

13
te

xt
ur

e

A
L

PH
A

SC
A

L
E

2
∗
×
R

3
G

et
Te

xE
nv

fv
1.

0
A

lp
ha

po
st

-c
om

bi
ne

rs
ca

lin
g

3.
9.

13
te

xt
ur

e

Table 6.23. Texture Environment and Generation (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 364

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
SC

IS
SO

R
T

E
ST

B
Is

E
na

bl
ed

F
A
L
S
E

Sc
is

so
ri

ng
en

ab
le

d
4.

1.
2

sc
is

so
r/

en
ab

le

SC
IS

SO
R

B
O

X
4
×
Z

G
et

In
te

ge
rv

se
e

4.
1.

2
Sc

is
so

rb
ox

4.
1.

2
sc

is
so

r

A
L

PH
A

T
E

ST
B

Is
E

na
bl

ed
F
A
L
S
E

A
lp

ha
te

st
en

ab
le

d
4.

1.
4

co
lo

r-
bu

ff
er

/e
na

bl
e

A
L

PH
A

T
E

ST
FU

N
C

Z
8

G
et

In
te

ge
rv

A
L
W
A
Y
S

A
lp

ha
te

st
fu

nc
tio

n
4.

1.
4

co
lo

r-
bu

ff
er

A
L

PH
A

T
E

ST
R

E
F

R
+

G
et

In
te

ge
rv

0
A

lp
ha

te
st

re
fe

re
nc

e
va

lu
e

4.
1.

4
co

lo
r-

bu
ff

er

ST
E

N
C

IL
T

E
ST

B
Is

E
na

bl
ed

F
A
L
S
E

St
en

ci
lin

g
en

ab
le

d
4.

1.
5

st
en

ci
l-

bu
ff

er
/e

na
bl

e

ST
E

N
C

IL
FU

N
C

Z
8

G
et

In
te

ge
rv

A
L
W
A
Y
S

Fr
on

ts
te

nc
il

fu
nc

tio
n

4.
1.

5
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
VA

L
U

E
M

A
SK

Z
+

G
et

In
te

ge
rv

1’
s

Fr
on

ts
te

nc
il

m
as

k
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
R

E
F

Z
+

G
et

In
te

ge
rv

0
Fr

on
ts

te
nc

il
re

fe
re

nc
e

va
lu

e
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
FA

IL
Z

8
G

et
In

te
ge

rv
K
E
E
P

Fr
on

ts
te

nc
il

fa
il

ac
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
PA

SS
D

E
PT

H
FA

IL
Z

8
G

et
In

te
ge

rv
K
E
E
P

Fr
on

ts
te

nc
il

de
pt

h
bu

ff
er

fa
il

ac
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
PA

SS
D

E
PT

H
PA

SS
Z

8
G

et
In

te
ge

rv
K
E
E
P

Fr
on

t
st

en
ci

l
de

pt
h

bu
ff

er
pa

ss
ac

-
tio

n

4.
1.

5
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
B

A
C

K
FU

N
C

Z
8

G
et

In
te

ge
rv

A
L
W
A
Y
S

B
ac

k
st

en
ci

lf
un

ct
io

n
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
B

A
C

K
VA

L
U

E
M

A
SK

Z
+

G
et

In
te

ge
rv

1’
s

B
ac

k
st

en
ci

lm
as

k
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
B

A
C

K
R

E
F

Z
+

G
et

In
te

ge
rv

0
B

ac
k

st
en

ci
lr

ef
er

en
ce

va
lu

e
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
B

A
C

K
FA

IL
Z

8
G

et
In

te
ge

rv
K
E
E
P

B
ac

k
st

en
ci

lf
ai

la
ct

io
n

4.
1.

5
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
B

A
C

K
PA

SS
D

E
PT

H
FA

IL
Z

8
G

et
In

te
ge

rv
K
E
E
P

B
ac

k
st

en
ci

ld
ep

th
bu

ff
er

fa
il

ac
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
B

A
C

K
PA

SS
D

E
PT

H
PA

SS
Z

8
G

et
In

te
ge

rv
K
E
E
P

B
ac

k
st

en
ci

ld
ep

th
bu

ff
er

pa
ss

ac
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

Table 6.24. Pixel Operations

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 365

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

D
E

PT
H

T
E

ST
B

Is
E

na
bl

ed
F
A
L
S
E

D
ep

th
bu

ff
er

en
ab

le
d

4.
1.

6
de

pt
h-

bu
ff

er
/e

na
bl

e

D
E

PT
H

FU
N

C
Z

8
G

et
In

te
ge

rv
L
E
S
S

D
ep

th
bu

ff
er

te
st

fu
nc

-
tio

n

4.
1.

6
de

pt
h-

bu
ff

er

B
L

E
N

D
1
∗
×
B

Is
E

na
bl

ed
i

F
A
L
S
E

B
le

nd
in

g
en

ab
le

d
fo

r
dr

aw
bu

ff
er
i

4.
1.

8
co

lo
r-

bu
ff

er
/e

na
bl

e

B
L

E
N

D
SR

C
R

G
B

(v
1.

3:
B

L
E

N
D

SR
C

)
Z

1
5

G
et

In
te

ge
rv

O
N
E

B
le

nd
in

g
so

ur
ce

R
G

B
fu

nc
tio

n

4.
1.

8
co

lo
r-

bu
ff

er

B
L

E
N

D
SR

C
A

L
PH

A
Z

1
5

G
et

In
te

ge
rv

O
N
E

B
le

nd
in

g
so

ur
ce

A
fu

nc
-

tio
n

4.
1.

8
co

lo
r-

bu
ff

er

B
L

E
N

D
D

ST
R

G
B

(v
1.

3:
B

L
E

N
D

D
ST

)
Z

1
4

G
et

In
te

ge
rv

Z
E
R
O

B
le

nd
in

g
de

st
.

R
G

B
fu

nc
tio

n

4.
1.

8
co

lo
r-

bu
ff

er

B
L

E
N

D
D

ST
A

L
PH

A
Z

1
4

G
et

In
te

ge
rv

Z
E
R
O

B
le

nd
in

g
de

st
.

A
fu

nc
-

tio
n

4.
1.

8
co

lo
r-

bu
ff

er

B
L

E
N

D
E

Q
U

A
T

IO
N

R
G

B

(v
1.

5:
B

L
E

N
D

E
Q

U
A

T
IO

N
)

Z
5

G
et

In
te

ge
rv

F
U
N
C
A
D
D

R
G

B
bl

en
di

ng
eq

ua
tio

n
4.

1.
8

co
lo

r-
bu

ff
er

B
L

E
N

D
E

Q
U

A
T

IO
N

A
L

PH
A

Z
5

G
et

In
te

ge
rv

F
U
N
C
A
D
D

A
lp

ha
bl

en
di

ng
eq

ua
tio

n
4.

1.
8

co
lo

r-
bu

ff
er

B
L

E
N

D
C

O
L

O
R

C
G

et
Fl

oa
tv

0,
0,

0,
0

C
on

st
an

tb
le

nd
co

lo
r

4.
1.

8
co

lo
r-

bu
ff

er

FR
A

M
E

B
U

FF
E

R
SR

G
B

B
Is

E
na

bl
ed

F
A
L
S
E

sR
G

B
up

da
te

an
d

bl
en

d-
in

g
en

ab
le

4.
1.

8
co

lo
r-

bu
ff

er
/e

na
bl

e

D
IT

H
E

R
B

Is
E

na
bl

ed
T
R
U
E

D
ith

er
in

g
en

ab
le

d
4.

1.
10

co
lo

r-
bu

ff
er

/e
na

bl
e

IN
D

E
X

L
O

G
IC

O
P

(v
1.

0:
L

O
G

IC
O

P)
B

Is
E

na
bl

ed
F
A
L
S
E

In
de

x
lo

gi
c

op
en

ab
le

d
4.

1.
11

co
lo

r-
bu

ff
er

/e
na

bl
e

C
O

L
O

R
L

O
G

IC
O

P
B

Is
E

na
bl

ed
F
A
L
S
E

C
ol

or
lo

gi
c

op
en

ab
le

d
4.

1.
11

co
lo

r-
bu

ff
er

/e
na

bl
e

L
O

G
IC

O
P

M
O

D
E

Z
1
6

G
et

In
te

ge
rv

C
O
P
Y

L
og

ic
op

fu
nc

tio
n

4.
1.

11
co

lo
r-

bu
ff

er

Table 6.25. Pixel Operations (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 366

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
IN

D
E

X
W

R
IT

E
M

A
SK

Z
+

G
et

In
te

ge
rv

1’
s

C
ol

or
in

de
x

w
ri

te
m

as
k

4.
2.

2
co

lo
r-

bu
ff

er

C
O

L
O

R
W

R
IT

E
M

A
SK

1
∗
×

4
×
B

G
et

B
oo

le
an

iv
(T
R
U
E

,T
R
U
E

,T
R
U
E

,T
R
U
E

)
C

ol
or

w
ri

te
en

-
ab

le
s

(R
,G

,B
,A

)
fo

rd
ra

w
bu

ff
er
i

4.
2.

2
co

lo
r-

bu
ff

er

D
E

PT
H

W
R

IT
E

M
A

SK
B

G
et

B
oo

le
an

v
T
R
U
E

D
ep

th
bu

ff
er

en
-

ab
le

d
fo

rw
ri

tin
g

4.
2.

2
de

pt
h-

bu
ff

er

ST
E

N
C

IL
W

R
IT

E
M

A
SK

Z
+

G
et

In
te

ge
rv

1’
s

Fr
on

t
st

en
ci

l
bu

ff
er

w
ri

te
m

as
k

4.
2.

2
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
B

A
C

K
W

R
IT

E
M

A
SK

Z
+

G
et

In
te

ge
rv

1’
s

B
ac

k
st

en
ci

l
bu

ff
er

w
ri

te
m

as
k

4.
2.

2
st

en
ci

l-
bu

ff
er

C
O

L
O

R
C

L
E

A
R

VA
L

U
E

C
G

et
Fl

oa
tv

0,
0,

0,
0

C
ol

or
bu

ff
er

cl
ea

r
va

lu
e

(R
G

B
A

m
od

e)

4.
2.

3
co

lo
r-

bu
ff

er

IN
D

E
X

C
L

E
A

R
VA

L
U

E
C
I

G
et

Fl
oa

tv
0

C
ol

or
bu

ff
er

cl
ea

r
va

lu
e

(c
ol

or
in

de
x

m
od

e)

4.
2.

3
co

lo
r-

bu
ff

er

D
E

PT
H

C
L

E
A

R
VA

L
U

E
R

+
G

et
In

te
ge

rv
1

D
ep

th
bu

ff
er

cl
ea

r
va

lu
e

4.
2.

3
de

pt
h-

bu
ff

er

ST
E

N
C

IL
C

L
E

A
R

VA
L

U
E

Z
+

G
et

In
te

ge
rv

0
St

en
ci

l
cl

ea
r

va
lu

e

4.
2.

3
st

en
ci

l-
bu

ff
er

A
C

C
U

M
C

L
E

A
R

VA
L

U
E

4
×
R

+
G

et
Fl

oa
tv

0
A

cc
um

ul
at

io
n

bu
ff

er
cl

ea
rv

al
ue

4.
2.

3
ac

cu
m

-b
uf

fe
r

Table 6.26. Framebuffer Control

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 367

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
D

R
A

W
FR

A
M

E
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

fr
am

eb
uf

fe
r

ob
je

ct
bo

un
d

to
D
R
A
W
F
R
A
M
E
B
U
F
F
E
R

4.
4.

1
–

R
E

A
D

FR
A

M
E

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
fr

am
eb

uf
fe

r
ob

je
ct

bo
un

d
to

R
E
A
D
F
R
A
M
E
B
U
F
F
E
R

4.
4.

1
–

Table 6.27. Framebuffer (state per target binding point)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 368

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
D

R
A

W
B

U
FF

E
R

i
1
∗
×
Z

1
1
∗

G
et

In
te

ge
rv

se
e

4.
2.

1
D

ra
w

bu
ff

er
se

le
ct

ed
fo

r
co

lo
r

ou
t-

pu
ti

4.
2.

1
co

lo
r-

bu
ff

er

R
E

A
D

B
U

FF
E

R
Z

1
1
∗

G
et

In
te

ge
rv

se
e

4.
3.

2
R

ea
d

so
ur

ce
bu

ff
er

4.
3.

2
pi

xe
l

Table 6.28. Framebuffer (state per framebuffer object)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 369

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

-

O
B

JE
C

T
T

Y
PE

Z
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv

N
O
N
E

Ty
pe

of
im

ag
e

at
ta

ch
ed

to
fr

am
eb

uf
fe

r
at

ta
ch

-
m

en
tp

oi
nt

4.
4.

2
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

-

O
B

JE
C

T
N

A
M

E

Z
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv

0
N

am
e

of
ob

je
ct

at
-

ta
ch

ed
to

fr
am

eb
uf

fe
r

at
ta

ch
m

en
tp

oi
nt

4.
4.

2
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

-

T
E

X
T

U
R

E
L

E
V

E
L

Z
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv

0
M

ip
m

ap
le

ve
l

of
te

xt
ur

e
im

ag
e

at
ta

ch
ed

,
if

ob
je

ct
at

ta
ch

ed
is

te
xt

ur
e

4.
4.

2
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

-

T
E

X
T

U
R

E
C

U
B

E
M

A
P

FA
C

E

Z
+

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

T
E
X
T
U
R
E
C
U
B
E
-

M
A
P
P
O
S
I
T
I
V
E
X

C
ub

em
ap

fa
ce

of
te

xt
ur

e
im

ag
e

at
ta

ch
ed

,
if

ob
je

ct
at

ta
ch

ed
is

cu
be

m
ap

te
x-

tu
re

4.
4.

2
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

-

T
E

X
T

U
R

E
L

A
Y

E
R

Z
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv

0
L

ay
er

of
te

xt
ur

e
im

ag
e

at
ta

ch
ed

,
if

ob
je

ct
at

-
ta

ch
ed

is
3D

te
xt

ur
e

4.
4.

2
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

-

C
O

L
O

R
E

N
C

O
D

IN
G

Z
2

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-
E

nc
od

in
g

of
co

m
po

ne
nt

s
in

th
e

at
ta

ch
ed

im
ag

e

6.
1.

3
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

-

C
O

M
PO

N
E

N
T

T
Y

PE

Z
4

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-
D

at
a

ty
pe

of
co

m
po

ne
nt

s
in

th
e

at
ta

ch
ed

im
ag

e

6.
1.

3
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

-

x
SI

Z
E

Z
+

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-
Si

ze
in

bi
ts

of
at

ta
ch

ed
im

ag
e’

s
x

co
m

po
ne

nt
;
x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
D
E
P
T
H

,
or

S
T
E
N
C
I
L

6.
1.

3
–

Table 6.29. Framebuffer (state per attachment point)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 370

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
R

E
N

D
E

R
B

U
FF

E
R

B
IN

D
IN

G
Z

G
et

In
te

ge
rv

0
re

nd
er

bu
ff

er
ob

je
ct

bo
un

d
to

R
E
N
D
E
R
B
U
F
F
E
R

4.
4.

2
–

Table 6.30. Renderbuffer (state per target and binding point)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 371

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
R

E
N

D
E

R
B

U
FF

E
R

W
ID

T
H

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
W

id
th

of
re

nd
er

bu
ff

er
4.

4.
2

–

R
E

N
D

E
R

B
U

FF
E

R
H

E
IG

H
T

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
H

ei
gh

to
fr

en
de

rb
uf

fe
r

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
IN

T
E

R
N

A
L

FO
R

M
A

T
Z

+
G

et
R

en
de

rb
uf

fe
rP

ar
am

et
er

iv
R
G
B
A

In
te

rn
al

fo
rm

at
of

re
nd

er
bu

ff
er

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
R

E
D

SI
Z

E
Z

+
G

et
R

en
de

rb
uf

fe
rP

ar
am

et
er

iv
0

Si
ze

in
bi

ts
of

re
nd

er
bu

ff
er

im
ag

e’
s

re
d

co
m

po
ne

nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
G

R
E

E
N

SI
Z

E
Z

+
G

et
R

en
de

rb
uf

fe
rP

ar
am

et
er

iv
0

Si
ze

in
bi

ts
of

re
nd

er
bu

ff
er

im
ag

e’
s

gr
ee

n
co

m
po

ne
nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
B

L
U

E
SI

Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
bl

ue
co

m
po

ne
nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
A

L
PH

A
SI

Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
al

ph
a

co
m

po
ne

nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
D

E
PT

H
SI

Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
de

pt
h

co
m

po
ne

nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
ST

E
N

C
IL

SI
Z

E
Z

+
G

et
R

en
de

rb
uf

fe
rP

ar
am

et
er

iv
0

Si
ze

in
bi

ts
of

re
nd

er
bu

ff
er

im
ag

e’
s

st
en

ci
lc

om
po

ne
nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
SA

M
PL

E
S

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
N

um
be

ro
fs

am
pl

es
4.

4.
2

–

Table 6.31. Renderbuffer (state per renderbuffer object)
Version 3.0 (September 23, 2008)

6.2. STATE TABLES 372

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
U

N
PA

C
K

SW
A

P
B

Y
T

E
S

B
G

et
B

oo
le

an
v

F
A
L
S
E

V
al

ue
of
U
N
P
A
C
K
S
W
A
P
B
Y
T
E
S

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
L

SB
FI

R
ST

B
G

et
B

oo
le

an
v

F
A
L
S
E

V
al

ue
of
U
N
P
A
C
K
L
S
B
F
I
R
S
T

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
IM

A
G

E
H

E
IG

H
T

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
SK

IP
IM

A
G

E
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
S
K
I
P
I
M
A
G
E
S

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
R

O
W

L
E

N
G

T
H

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
R
O
W
L
E
N
G
T
H

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
SK

IP
R

O
W

S
Z

+
G

et
In

te
ge

rv
0

V
al

ue
of
U
N
P
A
C
K
S
K
I
P
R
O
W
S

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
SK

IP
PI

X
E

L
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
S
K
I
P
P
I
X
E
L
S

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
A

L
IG

N
M

E
N

T
Z

+
G

et
In

te
ge

rv
4

V
al

ue
of
U
N
P
A
C
K
A
L
I
G
N
M
E
N
T

3.
7.

1
pi

xe
l-

st
or

e

PA
C

K
SW

A
P

B
Y

T
E

S
B

G
et

B
oo

le
an

v
F
A
L
S
E

V
al

ue
of
P
A
C
K
S
W
A
P
B
Y
T
E
S

4.
3.

2
pi

xe
l-

st
or

e

PA
C

K
L

SB
FI

R
ST

B
G

et
B

oo
le

an
v

F
A
L
S
E

V
al

ue
of
P
A
C
K
L
S
B
F
I
R
S
T

4.
3.

2
pi

xe
l-

st
or

e

PA
C

K
IM

A
G

E
H

E
IG

H
T

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4.
3.

2
pi

xe
l-

st
or

e

PA
C

K
SK

IP
IM

A
G

E
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
P
A
C
K
S
K
I
P
I
M
A
G
E
S

4.
3.

2
pi

xe
l-

st
or

e

PA
C

K
R

O
W

L
E

N
G

T
H

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
P
A
C
K
R
O
W
L
E
N
G
T
H

4.
3.

2
pi

xe
l-

st
or

e

PA
C

K
SK

IP
R

O
W

S
Z

+
G

et
In

te
ge

rv
0

V
al

ue
of
P
A
C
K
S
K
I
P
R
O
W
S

4.
3.

2
pi

xe
l-

st
or

e

PA
C

K
SK

IP
PI

X
E

L
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
P
A
C
K
S
K
I
P
P
I
X
E
L
S

4.
3.

2
pi

xe
l-

st
or

e

PA
C

K
A

L
IG

N
M

E
N

T
Z

+
G

et
In

te
ge

rv
4

V
al

ue
of
P
A
C
K
A
L
I
G
N
M
E
N
T

4.
3.

2
pi

xe
l-

st
or

e

PI
X

E
L

PA
C

K
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

Pi
xe

lp
ac

k
bu

ff
er

bi
nd

in
g

4.
3.

2
pi

xe
l-

st
or

e

PI
X

E
L

U
N

PA
C

K
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

Pi
xe

lu
np

ac
k

bu
ff

er
bi

nd
in

g
6.

1.
13

pi
xe

l-
st

or
e

Table 6.32. Pixels

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 373

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
M

A
P

C
O

L
O

R
B

G
et

B
oo

le
an

v
F
A
L
S
E

Tr
ue

if
co

lo
rs

ar
e

m
ap

pe
d

3.
7.

3
pi

xe
l

M
A

P
ST

E
N

C
IL

B
G

et
B

oo
le

an
v

F
A
L
S
E

Tr
ue

if
st

en
ci

lv
al

ue
s

ar
e

m
ap

pe
d

3.
7.

3
pi

xe
l

IN
D

E
X

SH
IF

T
Z

G
et

In
te

ge
rv

0
V

al
ue

of
I
N
D
E
X
S
H
I
F
T

3.
7.

3
pi

xe
l

IN
D

E
X

O
FF

SE
T

Z
G

et
In

te
ge

rv
0

V
al

ue
of
I
N
D
E
X
O
F
F
S
E
T

3.
7.

3
pi

xe
l

x
SC

A
L

E
R

G
et

Fl
oa

tv
1

V
al

ue
of

x
S
C
A
L
E

;
x

is
R
E
D

,
G
R
E
E
N

,B
L
U
E

,A
L
P
H
A

,o
rD
E
P
T
H

3.
7.

3
pi

xe
l

x
B

IA
S

R
G

et
Fl

oa
tv

0
V

al
ue

of
x
B
I
A
S

3.
7.

3
pi

xe
l

Table 6.33. Pixels (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 374

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

O
L

O
R

TA
B

L
E

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
co

lo
rt

ab
le

lo
ok

up
is

do
ne

3.
7.

3
pi

xe
l/e

na
bl

e

PO
ST

C
O

N
V

O
L

U
T

IO
N

C
O

L
O

R
TA

B
L

E
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
po

st
co

nv
ol

u-
tio

n
co

lo
r

ta
bl

e
lo

ok
up

is
do

ne

3.
7.

3
pi

xe
l/e

na
bl

e

PO
ST

C
O

L
O

R
M

A
T

R
IX

C
O

L
O

R
TA

B
L

E
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
po

st
co

lo
r

m
a-

tr
ix

co
lo

r
ta

bl
e

lo
ok

up
is

do
ne

3.
7.

3
pi

xe
l/e

na
bl

e

C
O

L
O

R
TA

B
L

E
I

G
et

C
ol

or
Ta

bl
e

em
pt

y
C

ol
or

ta
bl

e
3.

7.
3

–

PO
ST

C
O

N
V

O
L

U
T

IO
N

C
O

L
O

R
TA

B
L

E
I

G
et

C
ol

or
Ta

bl
e

em
pt

y
Po

st
co

nv
ol

ut
io

n
co

lo
r

ta
bl

e

3.
7.

3
–

PO
ST

C
O

L
O

R
M

A
T

R
IX

C
O

L
O

R
TA

B
L

E
I

G
et

C
ol

or
Ta

bl
e

em
pt

y
Po

st
co

lo
r

m
at

ri
x

co
lo

r
ta

bl
e

3.
7.

3
–

C
O

L
O

R
TA

B
L

E
FO

R
M

A
T

2
×

3
×
Z

4
2

G
et

C
ol

or
Ta

bl
e-

Pa
ra

m
et

er
iv

R
G
B
A

C
ol

or
ta

bl
es

’i
nt

er
na

li
m

-
ag

e
fo

rm
at

3.
7.

3
–

C
O

L
O

R
TA

B
L

E
W

ID
T

H
2
×

3
×
Z

+

G
et

C
ol

or
Ta

bl
e-

Pa
ra

m
et

er
iv

0
C

ol
or

ta
bl

es
’

sp
ec

ifi
ed

w
id

th

3.
7.

3
–

C
O

L
O

R
TA

B
L

E
x

SI
Z

E
6
×

2
×

3
×
Z

+

G
et

C
ol

or
Ta

bl
e-

Pa
ra

m
et

er
iv

0
C

ol
or

ta
bl

e
co

m
po

-
ne

nt
re

so
lu

tio
n;

x
is

R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
L
U
M
I
N
A
N
C
E

,
or
I
N
T
E
N
S
I
T
Y

3.
7.

3
–

C
O

L
O

R
TA

B
L

E
SC

A
L

E
3
×
R

4

G
et

C
ol

or
Ta

bl
e-

Pa
ra

m
et

er
fv

1,
1,

1,
1

Sc
al

e
fa

ct
or

s
ap

pl
ie

d
to

co
lo

rt
ab

le
en

tr
ie

s

3.
7.

3
pi

xe
l

C
O

L
O

R
TA

B
L

E
B

IA
S

3
×
R

4

G
et

C
ol

or
Ta

bl
e-

Pa
ra

m
et

er
fv

0,
0,

0,
0

B
ia

s
fa

ct
or

s
ap

pl
ie

d
to

co
lo

rt
ab

le
en

tr
ie

s

3.
7.

3
pi

xe
l

Table 6.34. Pixels (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 375

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

O
N

V
O

L
U

T
IO

N
1D

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
1D

co
nv

ol
ut

io
n

is
do

ne

3.
7.

3
pi

xe
l/e

na
bl

e

C
O

N
V

O
L

U
T

IO
N

2D
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
2D

co
nv

ol
ut

io
n

is
do

ne

3.
7.

3
pi

xe
l/e

na
bl

e

SE
PA

R
A

B
L

E
2D

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
se

pa
ra

bl
e

2D
co

n-
vo

lu
tio

n
is

do
ne

3.
7.

3
pi

xe
l/e

na
bl

e

C
O

N
V

O
L

U
T

IO
N

x
D

2
×
I

G
et

C
on

vo
lu

tio
n-

Fi
lte

r

em
pt

y
C

on
vo

lu
tio

n
fil

te
rs

;x
is

1
or

2

3.
7.

3
–

SE
PA

R
A

B
L

E
2D

2
×
I

G
et

Se
pa

ra
bl

e-
Fi

l-
te

r

em
pt

y
Se

pa
ra

bl
e

co
nv

ol
ut

io
n

fil
te

r

3.
7.

3
–

C
O

N
V

O
L

U
T

IO
N

B
O

R
D

E
R

C
O

L
O

R
3
×
C

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
fv

0,
0,

0,
0

C
on

vo
lu

tio
n

bo
rd

er
co

lo
r

3.
7.

5
pi

xe
l

C
O

N
V

O
L

U
T

IO
N

B
O

R
D

E
R

M
O

D
E

3
×
Z

4
G

et
C

on
vo

lu
tio

n-
Pa

ra
m

et
er

iv

R
E
D
U
C
E

C
on

vo
lu

tio
n

bo
rd

er
m

od
e

3.
7.

5
pi

xe
l

C
O

N
V

O
L

U
T

IO
N

FI
LT

E
R

SC
A

L
E

3
×
R

4

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
fv

1,
1,

1,
1

Sc
al

e
fa

ct
or

s
ap

pl
ie

d
to

co
nv

ol
ut

io
n

fil
te

re
nt

ri
es

3.
7.

3
pi

xe
l

C
O

N
V

O
L

U
T

IO
N

FI
LT

E
R

B
IA

S
3
×
R

4

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
fv

0,
0,

0,
0

B
ia

s
fa

ct
or

s
ap

pl
ie

d
to

co
nv

ol
ut

io
n

fil
te

re
nt

ri
es

3.
7.

3
pi

xe
l

C
O

N
V

O
L

U
T

IO
N

FO
R

M
A

T
3
×
Z

4
2

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
iv

R
G
B
A

C
on

vo
lu

tio
n

fil
te

r
in

te
r-

na
lf

or
m

at

3.
7.

5
–

C
O

N
V

O
L

U
T

IO
N

W
ID

T
H

3
×
Z

+

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
iv

0
C

on
vo

lu
tio

n
fil

te
rw

id
th

3.
7.

5
–

C
O

N
V

O
L

U
T

IO
N

H
E

IG
H

T
2
×
Z

+

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
iv

0
C

on
vo

lu
tio

n
fil

te
rh

ei
gh

t
3.

7.
5

–

Table 6.35. Pixels (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 376

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
PO

ST
C

O
N

V
O

L
U

T
IO

N
x

SC
A

L
E

R
G

et
Fl

oa
tv

1
C

om
po

ne
nt

sc
al

e
fa

ct
or

s
af

te
r

co
nv

ol
ut

io
n;

x
is

R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
or

A
L
P
H
A

3.
7.

3
pi

xe
l

PO
ST

C
O

N
V

O
L

U
T

IO
N

x
B

IA
S

R
G

et
Fl

oa
tv

0
C

om
po

ne
nt

bi
as

fa
ct

or
s

af
te

rc
on

vo
lu

tio
n

3.
7.

3
pi

xe
l

PO
ST

C
O

L
O

R
M

A
T

R
IX

x
SC

A
L

E
R

G
et

Fl
oa

tv
1

C
om

po
ne

nt
sc

al
e

fa
ct

or
s

af
te

rc
ol

or
m

at
ri

x

3.
7.

3
pi

xe
l

PO
ST

C
O

L
O

R
M

A
T

R
IX

x
B

IA
S

R
G

et
Fl

oa
tv

0
C

om
po

ne
nt

bi
as

fa
ct

or
s

af
te

rc
ol

or
m

at
ri

x

3.
7.

3
pi

xe
l

H
IS

TO
G

R
A

M
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
hi

st
og

ra
m

m
in

g
is

en
ab

le
d

3.
7.

3
pi

xe
l/e

na
bl

e

H
IS

TO
G

R
A

M
I

G
et

H
is

to
gr

am
em

pt
y

H
is

to
gr

am
ta

bl
e

3.
7.

3
–

H
IS

TO
G

R
A

M
W

ID
T

H
2
×
Z

+

G
et

H
is

to
gr

am
-

Pa
ra

m
et

er
iv

0
H

is
to

gr
am

ta
bl

e
w

id
th

3.
7.

3
–

H
IS

TO
G

R
A

M
FO

R
M

A
T

2
×
Z

4
2

G
et

H
is

to
gr

am
-

Pa
ra

m
et

er
iv

R
G
B
A

H
is

to
gr

am
ta

bl
e

in
te

rn
al

fo
rm

at

3.
7.

3
–

H
IS

TO
G

R
A

M
x

SI
Z

E
5
×

2
×
Z

+

G
et

H
is

to
gr

am
-

Pa
ra

m
et

er
iv

0
H

is
to

gr
am

ta
bl

e
co

m
po

-
ne

nt
re

so
lu

tio
n;
x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
or
L
U
M
I
N
A
N
C
E

3.
7.

3
–

H
IS

TO
G

R
A

M
SI

N
K

B
G

et
H

is
to

gr
am

-
Pa

ra
m

et
er

iv

F
A
L
S
E

Tr
ue

if
hi

st
og

ra
m

m
in

g
co

ns
um

es
pi

xe
lg

ro
up

s

3.
7.

3
–

Table 6.36. Pixels (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 377

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
M

IN
M

A
X

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
m

in
m

ax
is

en
-

ab
le

d

3.
7.

3
pi

xe
l/e

na
bl

e

M
IN

M
A

X
R

n

G
et

M
in

m
ax

(M
,M

,M
,M

),(
m

,m
,m

,m
)

M
in

m
ax

ta
bl

e
3.

7.
3

–

M
IN

M
A

X
FO

R
M

A
T

Z
4
2

G
et

M
in

m
ax

-
Pa

ra
m

et
er

iv

R
G
B
A

M
in

m
ax

ta
bl

e
in

te
rn

al
fo

rm
at

3.
7.

3
–

M
IN

M
A

X
SI

N
K

B
G

et
M

in
m

ax
-

Pa
ra

m
et

er
iv

F
A
L
S
E

Tr
ue

if
m

in
m

ax
co

n-
su

m
es

pi
xe

lg
ro

up
s

3.
7.

3
–

Z
O

O
M

X
R

G
et

Fl
oa

tv
1.

0
x

zo
om

fa
ct

or
3.

7.
4

pi
xe

l

Z
O

O
M

Y
R

G
et

Fl
oa

tv
1.

0
y

zo
om

fa
ct

or
3.

7.
4

pi
xe

l

x
8
×

32
∗
×
R

G
et

Pi
xe

lM
ap

0’
s

R
G

B
A

Pi
xe

lM
ap

tr
an

s-
la

tio
n

ta
bl

es
;
x

is
a

m
ap

na
m

e
fr

om
ta

bl
e

3.
3

3.
7.

3
–

x
2
×

32
∗
×
Z

G
et

Pi
xe

lM
ap

0’
s

In
de

x
Pi

xe
lM

ap
tr

an
sl

a-
tio

n
ta

bl
es

;
x

is
a

m
ap

na
m

e
fr

om
ta

bl
e

3.
3

3.
7.

3
–

x
SI

Z
E

Z
+

G
et

In
te

ge
rv

1
Si

ze
of

ta
bl

e
x

3.
7.

3
–

Table 6.37. Pixels (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 378

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
O

R
D

E
R

9
×
Z

8
∗

G
et

M
ap

iv
1

1d
m

ap
or

de
r

5.
1

–

O
R

D
E

R
9
×

2
×
Z

8
∗

G
et

M
ap

iv
1,

1
2d

m
ap

or
de

rs
5.

1
–

C
O

E
FF

9
×

8
∗
×
R

n
G

et
M

ap
fv

se
e

5.
1

1d
co

nt
ro

lp
oi

nt
s

5.
1

–

C
O

E
FF

9
×

8
∗
×

8
∗
×
R

n
G

et
M

ap
fv

se
e

5.
1

2d
co

nt
ro

lp
oi

nt
s

5.
1

–

D
O

M
A

IN
9
×

2
×
R

G
et

M
ap

fv
se

e
5.

1
1d

do
m

ai
n

en
dp

oi
nt

s
5.

1
–

D
O

M
A

IN
9
×

4
×
R

G
et

M
ap

fv
se

e
5.

1
2d

do
m

ai
n

en
dp

oi
nt

s
5.

1
–

M
A

P1
x

9
×
B

Is
E

na
bl

ed
F
A
L
S
E

1d
m

ap
en

ab
le

s:
x

is
m

ap
ty

pe
5.

1
ev

al
/e

na
bl

e

M
A

P2
x

9
×
B

Is
E

na
bl

ed
F
A
L
S
E

2d
m

ap
en

ab
le

s:
x

is
m

ap
ty

pe
5.

1
ev

al
/e

na
bl

e

M
A

P1
G

R
ID

D
O

M
A

IN
2
×
R

G
et

Fl
oa

tv
0,

1
1d

gr
id

en
dp

oi
nt

s
5.

1
ev

al

M
A

P2
G

R
ID

D
O

M
A

IN
4
×
R

G
et

Fl
oa

tv
0,

1;
0,

1
2d

gr
id

en
dp

oi
nt

s
5.

1
ev

al

M
A

P1
G

R
ID

SE
G

M
E

N
T

S
Z

+
G

et
Fl

oa
tv

1
1d

gr
id

di
vi

si
on

s
5.

1
ev

al

M
A

P2
G

R
ID

SE
G

M
E

N
T

S
2
×
Z

+
G

et
Fl

oa
tv

1,
1

2d
gr

id
di

vi
si

on
s

5.
1

ev
al

A
U

TO
N

O
R

M
A

L
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
au

to
m

at
ic

no
rm

al
ge

ne
ra

tio
n

en
ab

le
d

5.
1

ev
al

/e
na

bl
e

Table 6.38. Evaluators (GetMap takes a map name)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 379

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
SH

A
D

E
R

T
Y

PE
Z

2
G

et
Sh

ad
er

iv
-

Ty
pe

of
sh

ad
er

(v
er

te
x

or
fr

ag
m

en
t)

2.
20

.1
–

D
E

L
E

T
E

ST
A

T
U

S
B

G
et

Sh
ad

er
iv

F
A
L
S
E

Sh
ad

er
fla

gg
ed

fo
rd

el
et

io
n

2.
20

.1
–

C
O

M
PI

L
E

ST
A

T
U

S
B

G
et

Sh
ad

er
iv

F
A
L
S
E

L
as

tc
om

pi
le

su
cc

ee
de

d
2.

20
.1

–

-
S

G
et

Sh
ad

er
In

fo
L

og
em

pt
y

st
ri

ng
In

fo
lo

g
fo

rs
ha

de
ro

bj
ec

ts
6.

1.
15

–

IN
FO

L
O

G
L

E
N

G
T

H
Z

+
G

et
Sh

ad
er

iv
0

L
en

gt
h

of
in

fo
lo

g
6.

1.
15

–

-
S

G
et

Sh
ad

er
So

ur
ce

em
pt

y
st

ri
ng

So
ur

ce
co

de
fo

ra
sh

ad
er

2.
20

.1
–

SH
A

D
E

R
SO

U
R

C
E

L
E

N
G

T
H

Z
+

G
et

Sh
ad

er
iv

0
L

en
gt

h
of

so
ur

ce
co

de
6.

1.
15

–

Table 6.39. Shader Object State

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 380

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

C
U

R
R

E
N

T
PR

O
G

R
A

M
Z

+
G

et
In

te
ge

rv
0

N
am

e
of

cu
rr

en
tp

ro
gr

am
ob

je
ct

2.
20

.2
–

D
E

L
E

T
E

ST
A

T
U

S
B

G
et

Pr
og

ra
m

iv
F
A
L
S
E

Pr
og

ra
m

ob
je

ct
de

le
te

d
2.

20
.2

–

L
IN

K
ST

A
T

U
S

B
G

et
Pr

og
ra

m
iv

F
A
L
S
E

L
as

t
lin

k
at

te
m

pt
su

c-
ce

ed
ed

2.
20

.2
–

VA
L

ID
A

T
E

ST
A

T
U

S
B

G
et

Pr
og

ra
m

iv
F
A
L
S
E

L
as

tv
al

id
at

e
at

te
m

pt
su

c-
ce

ed
ed

2.
20

.2
–

A
T

TA
C

H
E

D
SH

A
D

E
R

S
Z

+
G

et
Pr

og
ra

m
iv

0
N

um
be

r
of

at
ta

ch
ed

sh
ad

er
ob

je
ct

s

6.
1.

15
–

-
0
∗
×
Z

+
G

et
A

tt
ac

he
dS

ha
de

rs
em

pt
y

Sh
ad

er
ob

je
ct

s
at

ta
ch

ed
6.

1.
15

–

-
S

G
et

Pr
og

ra
m

In
fo

L
og

em
pt

y
In

fo
lo

g
fo

r
pr

og
ra

m
ob

-
je

ct

6.
1.

15
–

IN
FO

L
O

G
L

E
N

G
T

H
Z

+
G

et
Pr

og
ra

m
iv

0
L

en
gt

h
of

in
fo

lo
g

2.
20

.3
–

A
C

T
IV

E
U

N
IF

O
R

M
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
ac

tiv
e

un
i-

fo
rm

s

2.
20

.3
–

-
0
∗
×
Z

G
et

U
ni

fo
rm

L
oc

at
io

n
–

L
oc

at
io

n
of

ac
tiv

e
un

i-
fo

rm
s

6.
1.

15
–

-
0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

–
Si

ze
of

ac
tiv

e
un

if
or

m
2.

20
.3

–

-
0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

–
Ty

pe
of

ac
tiv

e
un

if
or

m
2.

20
.3

–

-
0
∗
×
c
h
a
r

G
et

A
ct

iv
eU

ni
fo

rm
em

pt
y

N
am

e
of

ac
tiv

e
un

if
or

m
2.

20
.3

–

A
C

T
IV

E
U

N
IF

O
R

M
M

A
X

L
E

N
G

T
H

Z
+

G
et

Pr
og

ra
m

iv
0

M
ax

im
um

ac
tiv

e
un

if
or

m
na

m
e

le
ng

th

6.
1.

15
–

51
2
∗
×
R

G
et

U
ni

fo
rm

0
U

ni
fo

rm
va

lu
e

2.
20

.3
–

A
C

T
IV

E
A

T
T

R
IB

U
T

E
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
ac

tiv
e

at
-

tr
ib

ut
es

2.
20

.3
–

Table 6.40. Program Object State

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 381

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

-
0
∗
×
Z

G
et

A
tt

ri
bL

oc
at

io
n

–
L

oc
at

io
n

of
ac

tiv
e

ge
ne

ri
c

at
tr

ib
ut

e

2.
20

.3
–

-
0
∗
×
Z

+

G
et

A
ct

iv
eA

tt
ri

b
–

Si
ze

of
ac

tiv
e

at
-

tr
ib

ut
e

2.
20

.3
–

-
0
∗
×
Z

+

G
et

A
ct

iv
eA

tt
ri

b
–

Ty
pe

of
ac

tiv
e

at
-

tr
ib

ut
e

2.
20

.3
–

-
0
∗
×
c
h
a
r

G
et

A
ct

iv
eA

tt
ri

b
em

pt
y

N
am

e
of

ac
tiv

e
at

-
tr

ib
ut

e

2.
20

.3
–

A
C

T
IV

E
A

T
T

R
IB

U
T

E
M

A
X

L
E

N
G

T
H

Z
+

G
et

Pr
og

ra
m

iv
0

M
ax

im
um

ac
tiv

e
at

-
tr

ib
ut

e
na

m
e

le
ng

th

6.
1.

15
–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
-

B
U

FF
E

R
M

O
D

E

Z
2

G
et

Pr
og

ra
m

iv
I
N
T
E
R
L
E
A
V
E
D
-

A
T
T
R
I
B
S

Tr
an

sf
or

m
fe

ed
ba

ck
m

od
e

fo
rt

he
pr

og
ra

m

6.
1.

15
–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
-

VA
RY

IN
G

S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
va

ry
in

gs
to

st
re

am
to

bu
ff

er
ob

je
ct

(s
)

6.
1.

15
–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
-

VA
RY

IN
G

M
A

X
L

E
N

G
T

H

Z
+

G
et

Pr
og

ra
m

iv
0

M
ax

im
um

tr
an

sf
or

m
fe

ed
ba

ck
va

ry
in

g
na

m
e

le
ng

th

6.
1.

15
–

-
Z

+

G
et

Tr
an

sf
or

m
-

Fe
ed

ba
ck

Va
ry

in
g

-
Si

ze
of

ea
ch

tr
an

s-
fo

rm
fe

ed
ba

ck
va

ry
-

in
g

va
ri

ab
le

2.
20

.3
–

-
Z

+

G
et

Tr
an

sf
or

m
-

Fe
ed

ba
ck

Va
ry

in
g

-
Ty

pe
of

ea
ch

tr
an

s-
fo

rm
fe

ed
ba

ck
va

ry
-

in
g

va
ri

ab
le

2.
20

.3
–

-
0+
×
c
h
a
r

G
et

Tr
an

sf
or

m
-

Fe
ed

ba
ck

Va
ry

in
g

-
N

am
e

of
ea

ch
tr

an
s-

fo
rm

fe
ed

ba
ck

va
ry

-
in

g
va

ri
ab

le

2.
20

.3
–

Table 6.41. Program Object State (cont.)
Version 3.0 (September 23, 2008)

6.2. STATE TABLES 382

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
V

E
R

T
E

X
PR

O
G

R
A

M
T

W
O

SI
D

E
B

Is
E

na
bl

ed
F
A
L
S
E

Tw
o-

si
de

d
co

lo
rm

od
e

2.
19

.1
en

ab
le

C
U

R
R

E
N

T
V

E
R

T
E

X
A

T
T

R
IB

16
∗
×
R

4
G

et
Ve

rt
ex

A
tt

ri
bf

v
0,

0,
0,

1
G

en
er

ic
ve

rt
ex

at
tr

ib
ut

e
2.

7
cu

rr
en

t

V
E

R
T

E
X

PR
O

G
R

A
M

PO
IN

T
SI

Z
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
in

ts
iz

e
m

od
e

3.
4

en
ab

le

Table 6.42. Vertex Shader State

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 383

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
Q

U
E

RY
R

E
SU

LT
Z

+
G

et
Q

ue
ry

O
bj

ec
tu

iv
0

Q
ue

ry
ob

je
ct

re
su

lt
6.

1.
12

–

Q
U

E
RY

R
E

SU
LT

AV
A

IL
A

B
L

E
B

G
et

Q
ue

ry
O

bj
ec

tiv
F
A
L
S
E

Is
th

e
qu

er
y

ob
je

ct
re

su
lt

av
ai

la
bl

e?
6.

1.
12

–

Table 6.43. Query Object State

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 384

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
T

R
A

N
SF

O
R

M
FE

E
D

B
A

C
K

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

ge
ne

ri
c

bi
nd

po
in

t
fo

r
tr

an
sf

or
m

fe
ed

ba
ck

6.
1.

13
–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
B

U
FF

E
R

B
IN

D
IN

G
n
x
Z

+
G

et
In

te
ge

ri
v

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

ea
ch

tr
an

sf
or

m
fe

ed
ba

ck
at

tr
ib

ut
e

st
re

am

6.
1.

13
–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
B

U
FF

E
R

ST
A

R
T

n
x
Z

+
G

et
In

te
ge

ri
v

0
St

ar
t

of
fs

et
of

bi
nd

in
g

ra
ng

e
fo

r
ea

ch
tr

an
sf

or
m

fe
ed

ba
ck

at
tr

ib
.s

tr
ea

m

6.
1.

13
–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
B

U
FF

E
R

SI
Z

E
n
×
Z

+
G

et
In

te
ge

ri
v

0
Si

ze
of

bi
nd

in
g

ra
ng

e
fo

r
ea

ch
tr

an
sf

or
m

fe
ed

ba
ck

at
tr

ib
.s

tr
ea

m

6.
1.

13
–

M
A

X
T

R
A

N
SF

O
R

M
FE

E
D

B
A

C
K

IN
T

E
R

L
E

AV
E

D
C

O
M

PO
N

E
N

T
S

Z
+

G
et

In
te

ge
rv

64
M

ax
nu

m
be

r
of

co
m

po
-

ne
nt

s
to

w
ri

te
to

a
si

ng
le

bu
ff

er
in

in
te

rl
ea

ve
d

m
od

e

2.
15

–

M
A

X
T

R
A

N
SF

O
R

M
FE

E
D

B
A

C
K

SE
PA

R
A

T
E

A
T

T
R

IB
S

Z
+

G
et

In
te

ge
rv

4
M

ax
nu

m
be

ro
fs

ep
ar

at
e

at
-

tr
ib

ut
es

or
va

yi
ng

s
th

at
ca

n
be

ca
pt

ur
ed

in
tr

an
sf

or
m

fe
ed

ba
ck

2.
15

–

M
A

X
T

R
A

N
SF

O
R

M
FE

E
D

B
A

C
K

SE
PA

R
A

T
E

C
O

M
PO

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
4

M
ax

nu
m

be
r

of
co

m
po

-
ne

nt
s

pe
r

at
tr

ib
ut

e
or

va
ry

-
in

g
in

se
pa

ra
te

m
od

e

2.
15

–

Table 6.44. Transform Feedback State

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 385

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
PE

R
SP

E
C

T
IV

E
C

O
R

R
E

C
T

IO
N

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
C
A
R
E

Pe
rs

pe
ct

iv
e

co
rr

ec
tio

n
hi

nt
5.

7
hi

nt

PO
IN

T
SM

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
C
A
R
E

Po
in

ts
m

oo
th

hi
nt

5.
7

hi
nt

L
IN

E
SM

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
C
A
R
E

L
in

e
sm

oo
th

hi
nt

5.
7

hi
nt

PO
LY

G
O

N
SM

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
C
A
R
E

Po
ly

go
n

sm
oo

th
hi

nt
5.

7
hi

nt

FO
G

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
C
A
R
E

Fo
g

hi
nt

5.
7

hi
nt

G
E

N
E

R
A

T
E

M
IP

M
A

P
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O
N
T
C
A
R
E

M
ip

m
ap

ge
ne

ra
tio

n
hi

nt
5.

7
hi

nt

T
E

X
T

U
R

E
C

O
M

PR
E

SS
IO

N
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O
N
T
C
A
R
E

Te
xt

ur
e

co
m

pr
es

si
on

qu
al

ity
hi

nt
5.

7
hi

nt

FR
A

G
M

E
N

T
SH

A
D

E
R

D
E

R
IV

A
T

IV
E

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
C
A
R
E

Fr
ag

m
en

t
sh

ad
er

de
riv

at
iv

e
ac

cu
-

ra
cy

hi
nt

5.
7

hi
nt

Table 6.45. Hints

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 386

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
L

IG
H

T
S

Z
+

G
et

In
te

ge
rv

8
M

ax
im

um
nu

m
be

ro
fl

ig
ht

s
2.

19
.1

–

M
A

X
C

L
IP

PL
A

N
E

S
Z

+
G

et
In

te
ge

rv
6

M
ax

im
um

nu
m

be
r

of
us

er
cl

ip
pi

ng
pl

an
es

2.
17

–

M
A

X
C

O
L

O
R

M
A

T
R

IX
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
2

M
ax

im
um

co
lo

rm
at

ri
x

st
ac

k
de

pt
h

3.
7.

3
–

M
A

X
M

O
D

E
LV

IE
W

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

32
M

ax
im

um
m

od
el

-v
ie

w
st

ac
k

de
pt

h
2.

12
.2

–

M
A

X
PR

O
JE

C
T

IO
N

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

2
M

ax
im

um
pr

oj
ec

tio
n

m
at

ri
x

st
ac

k
de

pt
h

2.
12

.2
–

M
A

X
T

E
X

T
U

R
E

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

2
M

ax
im

um
nu

m
be

r
de

pt
h

of
te

xt
ur

e
m

at
ri

x
st

ac
k

2.
12

.2
–

SU
B

PI
X

E
L

B
IT

S
Z

+
G

et
In

te
ge

rv
4

N
um

be
ro

fb
its

of
su

bp
ix

el
pr

ec
is

io
n

in
sc

re
en
x

w
an

d
y w

3
–

M
A

X
3D

T
E

X
T

U
R

E
SI

Z
E

Z
+

G
et

In
te

ge
rv

25
6

M
ax

im
um

3D
te

xt
ur

e
im

ag
e

di
m

en
-

si
on

3.
9.

1
–

M
A

X
T

E
X

T
U

R
E

SI
Z

E
Z

+
G

et
In

te
ge

rv
10

24
M

ax
im

um
2D

/1
D

te
xt

ur
e

im
ag

e
di

-
m

en
si

on

3.
9.

1
–

M
A

X
A

R
R

A
Y

T
E

X
T

U
R

E
L

A
Y

E
R

S
Z

+
G

et
In

te
ge

rv
25

6
M

ax
im

um
nu

m
be

ro
fl

ay
er

s
fo

rt
ex

-
tu

re
ar

ra
ys

3.
9.

1
–

M
A

X
T

E
X

T
U

R
E

L
O

D
B

IA
S

R
+

G
et

Fl
oa

tv
2.

0
M

ax
im

um
ab

so
lu

te
te

xt
ur

e
le

ve
l

of
de

ta
il

bi
as

3.
9.

7
–

M
A

X
C

U
B

E
M

A
P

T
E

X
T

U
R

E
SI

Z
E

Z
+

G
et

In
te

ge
rv

10
24

M
ax

im
um

cu
be

m
ap

te
xt

ur
e

im
ag

e
di

m
en

si
on

3.
9.

1
–

M
A

X
R

E
N

D
E

R
B

U
FF

E
R

SI
Z

E
Z

+
G

et
In

te
ge

rv
10

24
M

ax
im

um
w

id
th

an
d

he
ig

ht
of

re
n-

de
rb

uf
fe

rs

4.
4.

2
–

Table 6.46. Implementation Dependent Values

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 387

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
PI

X
E

L
M

A
P

TA
B

L
E

Z
+

G
et

In
te

ge
rv

32
M

ax
im

um
si

ze
of

a
Pi

x-
el

M
ap

tr
an

sl
at

io
n

ta
bl

e

3.
7.

3
–

M
A

X
N

A
M

E
ST

A
C

K
D

E
PT

H
Z

+

G
et

In
te

ge
rv

64
M

ax
im

um
se

le
ct

io
n

na
m

e
st

ac
k

de
pt

h

5.
2

–

M
A

X
L

IS
T

N
E

ST
IN

G
Z

+

G
et

In
te

ge
rv

64
M

ax
im

um
di

sp
la

y
lis

t
ca

ll
ne

st
in

g

5.
4

–

M
A

X
E

VA
L

O
R

D
E

R
Z

+

G
et

In
te

ge
rv

8
M

ax
im

um
ev

al
ua

to
r

po
ly

-
no

m
ia

lo
rd

er

5.
1

–

M
A

X
V

IE
W

PO
R

T
D

IM
S

2
×
Z

+

G
et

In
te

ge
rv

se
e

2.
12

.1
M

ax
im

um
vi

ew
po

rt
di

m
en

si
on

s

2.
12

.1
–

M
A

X
A

T
T

R
IB

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

16
M

ax
im

um
de

pt
h

of
th

e
se

rv
er

at
tr

ib
ut

e
st

ac
k

6
–

M
A

X
C

L
IE

N
T

A
T

T
R

IB
ST

A
C

K
D

E
PT

H
Z

+

G
et

In
te

ge
rv

16
M

ax
im

um
de

pt
h

of
th

e
cl

ie
nt

at
tr

ib
ut

e
st

ac
k

6
–

–
3
×
Z

+

-
32

M
ax

.s
iz

e
of

a
co

lo
rt

ab
le

3.
7.

3
–

–
Z

+

-
32

M
ax

.
si

ze
of

th
e

hi
st

og
ra

m
ta

bl
e

3.
7.

3
–

A
L

IA
SE

D
PO

IN
T

SI
Z

E
R

A
N

G
E

2
×
R

+

G
et

Fl
oa

tv
1,

1
R

an
ge

(l
o

to
hi

)
of

al
ia

se
d

po
in

ts
iz

es

3.
4

–

SM
O

O
T

H
PO

IN
T

SI
Z

E
R

A
N

G
E

(v
1.

1:
PO

IN
T

SI
Z

E
R

A
N

G
E

)

2
×
R

+

G
et

Fl
oa

tv
1,

1
R

an
ge

(l
o

to
hi

)
of

an
-

tia
lia

se
d

po
in

ts
iz

es

3.
4

–

SM
O

O
T

H
PO

IN
T

SI
Z

E
G

R
A

N
U

L
A

R
IT

Y

(v
1.

1:
PO

IN
T

SI
Z

E
G

R
A

N
U

L
A

R
IT

Y
)

R
+

G
et

Fl
oa

tv
–

A
nt

ia
lia

se
d

po
in

t
si

ze
gr

an
ul

ar
ity

3.
4

–

Table 6.47. Implementation Dependent Values (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 388

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

A
L

IA
SE

D
L

IN
E

W
ID

T
H

R
A

N
G

E
2
×
R

+

G
et

Fl
oa

tv
1,

1
R

an
ge

(l
o

to
hi

)o
fa

lia
se

d
lin

e
w

id
th

s

3.
5

–

SM
O

O
T

H
L

IN
E

W
ID

T
H

R
A

N
G

E

(v
1.

1:
L

IN
E

W
ID

T
H

R
A

N
G

E
)

2
×
R

+

G
et

Fl
oa

tv
1,

1
R

an
ge

(l
o

to
hi

)
of

an
-

tia
lia

se
d

lin
e

w
id

th
s

3.
5

–

SM
O

O
T

H
L

IN
E

W
ID

T
H

G
R

A
N

U
L

A
R

IT
Y

(v
1.

1:
L

IN
E

W
ID

T
H

G
R

A
N

U
L

A
R

IT
Y

)

R
+

G
et

Fl
oa

tv
–

A
nt

ia
lia

se
d

lin
e

w
id

th
gr

an
ul

ar
ity

3.
5

–

M
A

X
C

O
N

V
O

L
U

T
IO

N
W

ID
T

H
3
×
Z

+

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
iv

3
M

ax
im

um
w

id
th

of
co

n-
vo

lu
tio

n
fil

te
r

4.
3

–

M
A

X
C

O
N

V
O

L
U

T
IO

N
H

E
IG

H
T

2
×
Z

+

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
iv

3
M

ax
im

um
he

ig
ht

of
co

n-
vo

lu
tio

n
fil

te
r

4.
3

–

M
A

X
E

L
E

M
E

N
T

S
IN

D
IC

E
S

Z
+

G
et

In
te

ge
rv

–
R

ec
om

m
en

de
d

m
ax

.
nu

m
be

r
of

D
ra

w
R

an
ge

E
le

m
en

ts
in

di
ce

s

2.
8

–

M
A

X
E

L
E

M
E

N
T

S
V

E
R

T
IC

E
S

Z
+

G
et

In
te

ge
rv

–
R

ec
om

m
en

de
d

m
ax

.
nu

m
be

r
of

D
ra

w
R

an
ge

E
le

m
en

ts
ve

rt
ic

es

2.
8

–

C
O

M
PR

E
SS

E
D

T
E

X
T

U
R

E
FO

R
M

A
T

S
0
×
Z

G
et

In
te

ge
rv

-
E

nu
m

er
at

ed
co

m
pr

es
se

d
te

xt
ur

e
fo

rm
at

s

3.
9.

3
–

N
U

M
C

O
M

PR
E

SS
E

D
T

E
X

T
U

R
E

FO
R

M
A

T
S

Z
G

et
In

te
ge

rv
0

N
um

be
r

of
co

m
pr

es
se

d
te

xt
ur

e
fo

rm
at

s

3.
9.

3
–

Table 6.48. Implementation Dependent Values (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 389

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

Q
U

E
RY

C
O

U
N

T
E

R
B

IT
S

2
×
Z

+

G
et

Q
ue

ry
iv

se
e

6.
1.

12
A

sy
nc

hr
on

ou
s

qu
er

y
co

un
te

rb
its

6.
1.

12
–

E
X

T
E

N
SI

O
N

S
0
∗
×
S

G
et

St
ri

ng
i

–
Su

pp
or

te
d

in
di

vi
du

al
ex

-
te

ns
io

n
na

m
es

6.
1.

11
–

N
U

M
E

X
T

E
N

SI
O

N
S

Z
+

G
et

In
te

ge
rv

–
N

um
be

ro
fi

nd
iv

id
ua

le
x-

te
ns

io
n

na
m

es

6.
1.

11
–

M
A

JO
R

V
E

R
SI

O
N

Z
+

G
et

In
te

ge
rv

–
M

aj
or

ve
rs

io
n

nu
m

be
r

su
pp

or
te

d

6.
1.

11
–

M
IN

O
R

V
E

R
SI

O
N

Z
+

G
et

In
te

ge
rv

–
M

in
or

ve
rs

io
n

nu
m

be
r

su
pp

or
te

d

6.
1.

11
–

C
O

N
T

E
X

T
FL

A
G

S
Z

+

G
et

In
te

ge
rv

–
C

on
te

xt
fu

ll/
fo

rw
ar

d-
co

m
pa

tib
le

fla
g

6.
1.

11
–

E
X

T
E

N
SI

O
N

S
S

G
et

St
ri

ng
–

Su
pp

or
te

d
ex

te
ns

io
n

na
m

es

6.
1.

11
–

R
E

N
D

E
R

E
R

S
G

et
St

ri
ng

–
R

en
de

re
rs

tr
in

g
6.

1.
11

–

SH
A

D
IN

G
L

A
N

G
U

A
G

E
V

E
R

SI
O

N
S

G
et

St
ri

ng
–

Sh
ad

in
g

L
an

gu
ag

e
ve

r-
si

on
su

pp
or

te
d

6.
1.

11
–

V
E

N
D

O
R

S
G

et
St

ri
ng

–
V

en
do

rs
tr

in
g

6.
1.

11
–

V
E

R
SI

O
N

S
G

et
St

ri
ng

–
O

pe
nG

L
ve

rs
io

n
su

p-
po

rt
ed

6.
1.

11
–

Table 6.49. Implementation Dependent Values (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 390

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
T

E
X

T
U

R
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

2
N

um
be

r
of

fix
ed

-
fu

nc
tio

n
te

xt
ur

e
un

its

2.
6

–

M
A

X
V

E
R

T
E

X
A

T
T

R
IB

S
Z

+

G
et

In
te

ge
rv

16
N

um
be

r
of

ac
tiv

e
ve

rt
ex

at
tr

ib
ut

es

2.
7

–

M
A

X
V

E
R

T
E

X
U

N
IF

O
R

M
C

O
M

PO
N

E
N

T
S

Z
+

G
et

In
te

ge
rv

10
24

N
um

be
r

of
co

m
po

ne
nt

s
fo

rv
er

te
x

sh
ad

er
un

if
or

m
va

ri
ab

le
s

2.
20

.3
–

M
A

X
VA

RY
IN

G
C

O
M

PO
N

E
N

T
S

Z
+

G
et

In
te

ge
rv

64
N

um
be

r
of

co
m

po
ne

nt
s

fo
rv

ar
yi

ng
va

ri
ab

le
s

2.
20

.3
–

M
A

X
C

O
M

B
IN

E
D

T
E

X
T

U
R

E
IM

A
G

E
U

N
IT

S
Z

+

G
et

In
te

ge
rv

16
To

ta
l

nu
m

be
r

of
te

xt
ur

e
un

its
ac

ce
ss

ib
le

by
th

e
G

L

2.
20

.4
–

M
A

X
V

E
R

T
E

X
T

E
X

T
U

R
E

IM
A

G
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

16
N

um
be

ro
ft

ex
tu

re
im

ag
e

un
its

ac
ce

ss
ib

le
by

a
ve

r-
te

x
sh

ad
er

2.
20

.4
–

M
A

X
T

E
X

T
U

R
E

IM
A

G
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

16
N

um
be

ro
ft

ex
tu

re
im

ag
e

un
its

ac
ce

ss
ib

le
by

fr
ag

-
m

en
tp

ro
ce

ss
in

g

2.
20

.4
–

M
A

X
T

E
X

T
U

R
E

C
O

O
R

D
S

Z
+

G
et

In
te

ge
rv

8
N

um
be

r
of

te
xt

ur
e

co
or

-
di

na
te

se
ts

2.
7

–

M
A

X
FR

A
G

M
E

N
T

U
N

IF
O

R
M

C
O

M
PO

N
E

N
T

S
Z

+

G
et

In
te

ge
rv

10
24

N
um

be
r

of
co

m
po

ne
nt

s
fo

r
fr

ag
.

sh
ad

er
un

if
or

m
va

ri
ab

le
s

3.
12

.1
–

M
IN

PR
O

G
R

A
M

T
E

X
E

L
O

FF
SE

T
Z

G
et

In
te

ge
rv

-8
M

an
im

um
te

xe
lo

ff
se

ta
l-

lo
w

ed
in

lo
ok

up

2.
20

.4
–

M
A

X
PR

O
G

R
A

M
T

E
X

E
L

O
FF

SE
T

Z
G

et
In

te
ge

rv
7

M
ax

im
um

te
xe

lo
ff

se
ta

l-
lo

w
ed

in
lo

ok
up

2.
20

.4
–

Table 6.50. Implementation Dependent Values (cont.)

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 391

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

A
U

X
B

U
FF

E
R

S
Z

+
G

et
In

te
ge

rv
0

N
um

be
ro

fa
ux

ili
ar

y
bu

ff
er

s
4.

2.
1

–

M
A

X
D

R
A

W
B

U
FF

E
R

S
Z

+
G

et
In

te
ge

rv
8*

M
ax

im
um

nu
m

be
r

of
ac

tiv
e

dr
aw

bu
ff

er
s

4.
2.

1
–

R
G

B
A

M
O

D
E

B
G

et
B

oo
le

an
v

–
Tr

ue
if

co
lo

rb
uf

fe
rs

st
or

e
R

G
B

A
2.

7
–

IN
D

E
X

M
O

D
E

B
G

et
B

oo
le

an
v

–
Tr

ue
if

co
lo

rb
uf

fe
rs

st
or

e
in

de
xe

s
2.

7
–

D
O

U
B

L
E

B
U

FF
E

R
B

G
et

B
oo

le
an

v
–

Tr
ue

if
fr

on
t&

ba
ck

bu
ff

er
s

ex
is

t
4.

2.
1

–

ST
E

R
E

O
B

G
et

B
oo

le
an

v
–

Tr
ue

if
le

ft
&

ri
gh

tb
uf

fe
rs

ex
is

t
6

–

SA
M

PL
E

B
U

FF
E

R
S

Z
+

G
et

In
te

ge
rv

0
N

um
be

ro
fm

ul
tis

am
pl

e
bu

ff
er

s
3.

3.
1

–

SA
M

PL
E

S
Z

+
G

et
In

te
ge

rv
0

C
ov

er
ag

e
m

as
k

si
ze

3.
3.

1
–

M
A

X
C

O
L

O
R

A
T

TA
C

H
M

E
N

T
S

Z
+

G
et

In
te

ge
rv

8
M

ax
im

um
nu

m
be

r
of

FB
O

at
ta

ch
-

m
en

tp
oi

nt
s

fo
rc

ol
or

bu
ff

er
s

4.
4.

2
–

M
A

X
SA

M
PL

E
S

Z
+

G
et

In
te

ge
rv

4
M

ax
im

um
nu

m
be

r
of

sa
m

pl
es

su
p-

po
rt

ed
fo

rm
ul

tis
am

pl
in

g

4.
4.

2
–

x
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

bi
ts

in
x

co
lo

r
bu

ff
er

co
m

po
ne

nt
.

x
is

on
e

of
R
E
D

,
G
R
E
E
N

,B
L
U
E

,A
L
P
H
A

,o
rI
N
D
E
X

4
–

D
E

PT
H

B
IT

S
Z

+
G

et
In

te
ge

rv
-

N
um

be
ro

fd
ep

th
bu

ff
er

pl
an

es
4

–

ST
E

N
C

IL
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

ro
fs

te
nc

il
pl

an
es

4
–

A
C

C
U

M
x

B
IT

S
Z

+
G

et
In

te
ge

rv
-

N
um

be
r

of
bi

ts
in

x
ac

cu
m

ul
a-

tio
n

bu
ff

er
co

m
po

ne
nt

(x
is
R
E
D

,
G
R
E
E
N

,B
L
U
E

,o
rA
L
P
H
A

4
–

Table 6.51. Framebuffer Dependent Values

Version 3.0 (September 23, 2008)

6.2. STATE TABLES 392

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
L

IS
T

B
A

SE
Z

+
G

et
In

te
ge

rv
0

Se
tti

ng
of

L
is

tB
as

e
5.

4
lis

t

L
IS

T
IN

D
E

X
Z

+
G

et
In

te
ge

rv
0

N
um

be
r

of
di

sp
la

y
lis

t
un

de
r

co
n-

st
ru

ct
io

n;
0

if
no

ne

5.
4

–

L
IS

T
M

O
D

E
Z

+
G

et
In

te
ge

rv
0

M
od

e
of

di
sp

la
y

lis
tu

nd
er

co
ns

tr
uc

-
tio

n;
un

de
fin

ed
if

no
ne

5.
4

–

–
16
∗
×
A

–
em

pt
y

Se
rv

er
at

tr
ib

ut
e

st
ac

k
6

–

A
T

T
R

IB
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
0

Se
rv

er
at

tr
ib

ut
e

st
ac

k
po

in
te

r
6

–

–
16
∗
×
A

–
em

pt
y

C
lie

nt
at

tr
ib

ut
e

st
ac

k
6

–

C
L

IE
N

T
A

T
T

R
IB

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

0
C

lie
nt

at
tr

ib
ut

e
st

ac
k

po
in

te
r

6
–

N
A

M
E

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

0
N

am
e

st
ac

k
de

pt
h

5.
2

–

R
E

N
D

E
R

M
O

D
E

Z
3

G
et

In
te

ge
rv

R
E
N
D
E
R

R
en

de
rM

od
e

se
tti

ng
5.

2
–

SE
L

E
C

T
IO

N
B

U
FF

E
R

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Se

le
ct

io
n

bu
ff

er
po

in
te

r
5.

2
se

le
ct

SE
L

E
C

T
IO

N
B

U
FF

E
R

SI
Z

E
Z

+
G

et
In

te
ge

rv
0

Se
le

ct
io

n
bu

ff
er

si
ze

5.
2

se
le

ct

FE
E

D
B

A
C

K
B

U
FF

E
R

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Fe

ed
ba

ck
bu

ff
er

po
in

te
r

5.
3

fe
ed

ba
ck

FE
E

D
B

A
C

K
B

U
FF

E
R

SI
Z

E
Z

+
G

et
In

te
ge

rv
0

Fe
ed

ba
ck

bu
ff

er
si

ze
5.

3
fe

ed
ba

ck

FE
E

D
B

A
C

K
B

U
FF

E
R

T
Y

PE
Z

5
G

et
In

te
ge

rv
2
D

Fe
ed

ba
ck

ty
pe

5.
3

fe
ed

ba
ck

–
n
×
Z

8
G

et
E

rr
or

0
C

ur
re

nt
er

ro
rc

od
e(

s)
2.

5
–

–
n
×
B

–
F
A
L
S
E

Tr
ue

if
th

er
e

is
a

co
rr

es
po

nd
in

g
er

ro
r

2.
5

–

B
–

F
A
L
S
E

O
cc

lu
si

on
qu

er
y

ac
tiv

e
4.

1.
7

–

C
U

R
R

E
N

T
Q

U
E

RY
3
×
Z

+
G

et
Q

ue
ry

iv
0

A
ct

iv
e

qu
er

y
ob

je
ct

na
m

es
6.

1.
12

–

Table 6.52. Miscellaneous

Version 3.0 (September 23, 2008)

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer state vector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

393

A.2. MULTI-PASS ALGORITHMS 394

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

• Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

• Framebuffer contents (all bitplanes)

• The color buffers enabled for writing

• The values of matrices other than the top-of-stack matrices

Version 3.0 (September 23, 2008)

A.3. INVARIANCE RULES 395

• Scissor parameters (other than enable)

• Writemasks (color, index, depth, stencil)

• Clear values (color, index, depth, stencil, accumulation)

◦ Current values (color, index, normal, texture coords, edgeflag)

◦ Current raster color, index and texture coordinates.

◦ Material properties (ambient, diffuse, specular, emission, shininess)

Strongly suggested:

• Matrix mode

• Matrix stack depths

• Alpha test parameters (other than enable)

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

• Pixel storage and transfer state

• Evaluator state (except as it affects the vertex data generated by the
evaluators)

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with • in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments are also
invariant with respect to

Required:

• Current values (color, color index, normal, texture coords, edgeflag)

• Current raster color, color index, and texture coordinates

• Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha test function, and the alpha
test reference value).

Version 3.0 (September 23, 2008)

A.4. WHAT ALL THIS MEANS 396

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

Rule 4 The same vertex or fragment shader will produce the same result when
run multiple times with the same input. The wording ’the same shader’ means a
program object that is populated with the same source strings, which are compiled
and then linked, possibly multiple times, and which program object is then executed
using the same GL state vector.

Rule 5 All fragment shaders that either conditionally or unconditionally assign
gl FragCoord.z to gl FragDepth are depth-invariant with respect to each
other, for those fragments where the assignment to gl FragDepth actually is
done.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent command always is executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.

Version 3.0 (September 23, 2008)

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The CURRENT RASTER TEXTURE COORDS must be maintained correctly at
all times, including periods while texture mapping is not enabled, and when
the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are always
valid, including periods while texture mapping is not enabled, and when the
GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may change.
Otherwise, only additions can be made to upward compatible revisions.

4. GL query commands are not required to satisfy the semantics of the Flush
or the Finish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

5. Application specified point size and line width must be returned as specified
when queried. Implementation dependent clamping affects the values only
while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

7. The mask specified as the third argument to StencilFunc affects the operands
of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified by StencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

397

398

8. Polygon shading is completed before the polygon mode is interpreted. If the
shade model is FLAT, all of the points or lines generated by a single polygon
will have the same color.

9. A display list is just a group of commands and arguments, so errors generated
by commands in a display list must be generated when the list is executed.
If the list is created in COMPILE mode, errors should not be generated while
the list is being created.

10. RasterPos does not change the current raster index from its default value
in an RGBA mode GL context. Likewise, RasterPos does not change the
current raster color from its default value in a color index GL context. Both
the current raster index and the current raster color can be queried, however,
regardless of the color mode of the GL context.

11. A material property that is attached to the current color via ColorMaterial
always takes the value of the current color. Attempts to change that material
property via Material calls have no effect.

12. Material and ColorMaterial can be used to modify the RGBA material
properties, even in a color index context. Likewise, Material can be used to
modify the color index material properties, even in an RGBA context.

13. There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

14. Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

15. OpenGL does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1) the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix are Scale (with positive scaling values only), Rotate, and
Translate; (3) exactly one of either Frustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far value for DepthRange.
If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

16. ColorMaterial has no effect on color index lighting.

Version 3.0 (September 23, 2008)

399

17. (No pixel dropouts or duplicates.) Let two polygons share an identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

18. OpenGL state continues to be modified in FEEDBACK mode and in SELECT

mode. The contents of the framebuffer are not modified.

19. The current raster position, the user defined clip planes, the spot directions
and the light positions for LIGHTi, and the eye planes for texgen are trans-
formed when they are specified. They are not transformed during a PopAt-
trib, or when copying a context.

20. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

21. For any GL and framebuffer state, and for any group of GL commands and
arguments, the resulting GL and framebuffer state is identical whether the
GL commands and arguments are executed normally or from a display list.

Version 3.0 (September 23, 2008)

Appendix C

Compressed Texture Image
Formats

C.1 RGTC Compressed Texture Image Formats

Compressed texture images stored using the RGTC compressed image encodings
are represented as a collection of 4 × 4 texel blocks, where each block contains
64 or 128 bits of texel data. The image is encoded as a normal 2D raster image
in which each 4 × 4 block is treated as a single pixel. If an RGTC image has a
width or height less than four, the data corresponding to texels outside the image
are irrelevant and undefined.

When an RGTC image with a width of w, height of h, and block size of block-
size (8 or 16 bytes) is decoded, the corresponding image size (in bytes) is:

dw
4
e × dh

4
e × blocksize.

When decoding an RGTC image, the block containing the texel at offset (x, y)
begins at an offset (in bytes) relative to the base of the image of:

blocksize×
(
dw

4
e × by

4
c+ bx

4
c
)
.

The data corresponding to a specific texel (x, y) are extracted from a 4×4 texel
block using a relative (x, y) value of

(x mod 4, y mod 4).

There are four distinct RGTC image formats:

400

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 401

C.1.1 Format COMPRESSED RED RGTC1

Each 4× 4 block of texels consists of 64 bits of unsigned red image data.
Each red image data block is encoded as a sequence of 8 bytes, called (in order

of increasing address):

red0, red1, bits0, bits1, bits2, bits3, bits4, bits5

The 6 bits∗ bytes of the block are decoded into a 48-bit bit vector:

bits = bits0+256×(bits1 + 256× (bits2 + 256× (bits3 + 256× (bits4 + 256× bits5))))

red0 and red1 are 8-bit unsigned integers that are unpacked to red values
RED0 and RED1 as though they were pixels with a format of LUMINANCE and a
type of UNSIGNED BYTE.

bits is a 48-bit unsigned integer, from which a three-bit control code is ex-
tracted for a texel at location (x, y) in the block using:

code(x, y) = bits [3× (4× y + x) + 2 . . . 3× (4× y + x) + 0]

where bit 47 is the most significant and bit 0 is the least significant bit.
The red value R for a texel at location (x, y) in the block is given by:

Version 3.0 (September 23, 2008)

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 402

R =



RED0, red0 > red1, code(x, y) = 0
RED1, red0 > red1, code(x, y) = 1
6RED0+RED1

7, red0 > red1, code(x, y) = 2
5RED0+2RED1

7, red0 > red1, code(x, y) = 3
4RED0+3RED1

7, red0 > red1, code(x, y) = 4
3RED0+4RED1

7, red0 > red1, code(x, y) = 5
2RED0+5RED1

7, red0 > red1, code(x, y) = 6
RED0+6RED1

7, red0 > red1, code(x, y) = 7

RED0, red0 ≤ red1, code(x, y) = 0
RED1, red0 ≤ red1, code(x, y) = 1
4RED0+RED1

5, red0 ≤ red1, code(x, y) = 2
3RED0+2RED1

5, red0 ≤ red1, code(x, y) = 3
2RED0+3RED1

5, red0 ≤ red1, code(x, y) = 4
RED0+4RED1

5, red0 ≤ red1, code(x, y) = 5

REDmin, red0 ≤ red1, code(x, y) = 6
REDmax, red0 ≤ red1, code(x, y) = 7

REDmin and REDmax are 0.0 and 1.0 respectively.
Since the decoded texel has a red format, the resulting RGBA value for the

texel is (R, 0, 0, 1).

C.1.2 Format COMPRESSED SIGNED RED RGTC1

Each 4 × 4 block of texels consists of 64 bits of signed red image data. The red
values of a texel are extracted in the same way as COMPRESSED RED RGTC1 except
red0, red1, RED0, RED1, REDmin, and REDmax are signed values defined as
follows:

red0 and red1 are 8-bit signed (two’s complement) integers.

RED0 =

{
red0
127.0, red0 > −128

−1.0, red0 = −128

RED1 =

{
red1
127.0, red1 > −128

−1.0, red1 = −128

REDmin = −1.0

Version 3.0 (September 23, 2008)

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 403

REDmax = 1.0

CAVEAT for signed red0 and red1 values: the expressions red0 > red1 and
red0 ≤ red1 above are considered undefined (read: may vary by implementation)
when red0 = −127 and red1 = −128. This is because if red0 were remapped to
-127 prior to the comparison to reduce the latency of a hardware decompressor, the
expressions would reverse their logic. Encoders for the signed red-green formats
should avoid encoding blocks where red0 = −127 and red1 = −128.

C.1.3 Format COMPRESSED RG RGTC2

Each 4 × 4 block of texels consists of 64 bits of compressed unsigned red image
data followed by 64 bits of compressed unsigned green image data.

The first 64 bits of compressed red are decoded exactly like
COMPRESSED RED RGTC1 above.

The second 64 bits of compressed green are decoded exactly like
COMPRESSED RED RGTC1 above except the decoded value R for this second block
is considered the resulting green value G.

Since the decoded texel has a red-green format, the resulting RGBA value for
the texel is (R,G, 0, 1).

C.1.4 Format COMPRESSED SIGNED RG RGTC2

Each 4× 4 block of texels consists of 64 bits of compressed signed red image data
followed by 64 bits of compressed signed green image data.

The first 64 bits of compressed red are decoded exactly like
COMPRESSED SIGNED RED RGTC1 above.

The second 64 bits of compressed green are decoded exactly like
COMPRESSED SIGNED RED RGTC1 above except the decoded value R for this sec-
ond block is considered the resulting green value G.

Since this image has a red-green format, the resulting RGBA value is
(R,G, 0, 1).

Version 3.0 (September 23, 2008)

Appendix D

Shared Objects and Multiple
Contexts

State that can be shared between contexts includes display lists, pixel and vertex
buffer objects, program and shader objects, and texture objects (except for the tex-
ture objects named zero).

Framebuffer and vertex array objects are not shared.

D.1 Object Deletion Behavior

After an object is deleted, its name is immediately marked unused. Caution should
be taken when deleting an object attached to a container object (such as a buffer
object attached to a vertex array object, or a renderbuffer or texture attached to a
framebuffer object), or a shared object bound in multiple contexts. Following its
deletion, the object’s name can be used by any context to create a new object, or be
returned by Gen* commands, even though the underlying object state and data may
still be referred to by container objects, or in use by contexts other than the one
in which the object was deleted. Such a container or other context may continue
using the object, and may still contain state identifying its name as being currently
bound, until such time as the container object is deleted, the attachment point of
the container object is changed to refer to another object, or another attempt to
bind or attach the name is made in that context. Since the name is marked unused,
binding the name will create a new object with the same name, and attaching the
name will generate an error. The underlying storage backing a deleted object will
not be reclaimed by the GL until all references to the object from container object
attachment points or context binding points are removed,

404

Appendix E

The Deprecation Model

OpenGL 3.0 introduces a deprecation model in which certain features may be
marked as deprecated. Deprecated features are expected to be completely removed
from a future version of OpenGL. Deprecated features are summarized in sec-
tion E.1.

To aid developers in writing applications which will run on such future ver-
sions, it is possible to create an OpenGL 3.0 context which does not support dep-
recated features. Such a context is called a forward compatible context, while a
context supporting all OpenGL 3.0 features is called a full context. Forward com-
patible contexts cannot restore deprecated functionality through extensions, but
they may support additional, non-deprecated functionality through extensions.

Profiles allow defining subsets of OpenGL functionality targeted to specific ap-
plication domains. While OpenGL 3.0 only defines a single profile, future versions
may introduce profiles addressing domains such as workstation, gaming, and em-
bedded. Implementations are not required to support all defined profiles, but must
support at least one profile.

To enable application control of deprecation and profiles, new context creation
APIs have been defined as extensions to GLX and WGL. These APIs allow spec-
ifying a particular version, profile, and full or forward compatible status, and will
either create a context compatible with the request, or fail (if, for example, request-
ing an OpenGL version or profile not supported by the implementation),

Only the ARB may define OpenGL profiles and deprecated features.

E.1 Profiles and Deprecated Features of OpenGL 3.0

OpenGL 3.0 defines a single profile, and all OpenGL 3.0 implementations must
support that profile.

405

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 406

The features deprecated in OpenGL 3.0 are summarized below, together with
the sections of the specification in which they are defined. Functions which are
completely deprecated will generate an INVALID OPERATION error if called in
a forward-compatible context. Functions which are partially deprecated (e.g. no
longer accept some parameter values) will generate the errors appropriate for any
other unrecognized value of that parameter when a deprecated value is passed in a
forward-compatible context.

• Application-generated object names - the names of all object types, such as
buffer, query, and texture objects, must be generated using the corresponding
Gen* commands. Trying to bind an object name not returned by a Gen*
command will result in an INVALID OPERATION error. This behavior is
already the case for framebuffer, renderbuffer, and vertex array objects.

• Color index mode - No color index visuals are supplied by the window
system-binding APIs such as GLX and WGL, so the default framebuffer
is always in RGBA mode. All language and state related to color index
mode vertex, rasterization, and fragment processing behavior is removed.
COLOR INDEX formats are also deprecated.

• OpenGL Shading Language versions 1.10 and 1.20. These versions of the
shading language depend on many API features that have also been depre-
cated.

• Begin / End primitive specification - Begin, End, and EdgeFlag* (sec-
tion 2.6.1); Color*, FogCoord*, Index*, Normal3*, SecondaryColor3*,
TexCoord*, Vertex* (section 2.7); and all associated state in tables 6.4
and 6.5. Vertex arrays and array drawing commands must be used to draw
primitives. However, VertexAttrib* and the current vertex attribute state
are retained in order to provide default attribute values for disabled attribute
arrays.

• Edge flags and fixed-function vertex processing - ColorPointer, EdgeFlag-
Pointer, FogCoordPointer, IndexPointer, NormalPointer, Secondary-
ColorPointer, TexCoordPointer, VertexPointer, EnableClientState, Dis-
ableClientState, and ClientActiveTexture (section 2.8); Frustum, Loa-
dIdentity, LoadMatrix, LoadTransposeMatrix, MatrixMode, Mult-
Matrix, MultTransposeMatrix, Ortho, PopMatrix, PushMatrix, Ro-
tate, Scale, and Translate (section 2.12.2; Enable/Disable tar-
gets RESCALE NORMAL and NORMALIZE (section 2.12.3); TexGen*
and Enable/Disable targets TEXTURE GEN * (section 2.12.4, Material*

Version 3.0 (September 23, 2008)

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 407

Light*, LightModel*, and ColorMaterial, and Enable/Disable targets
LIGHTING. VERTEX PROGRAM TWO SIDE, LIGHTi, and COLOR MATERIAL

(sections 2.19.2 and 2.19.3; and all associated fixed-function vertex array,
multitexture, matrix and matrix stack, normal and texture coordinate, and
lighting state. A vertex shader must be defined in order to draw primitives.

Language referring to edge flags in the current specification is modified as
though all edge flags are TRUE.

Note that the FrontFace, ClampColor, and ShadeModel commands in sec-
tion 2.19 are not deprecated, as they still affect other non-deprecated func-
tionality;

• Client vertex arrays - all vertex array attribute pointers must refer to buffer
objects (section 2.9.2). The default vertex array object (the name zero) is
also deprecated. Calling VertexAttribPointer when no buffer object or no
vertex array object is bound will generate an INVALID OPERATION error,
as will calling any array drawing command when no vertex array object is
bound.

• Rectangles - Rect* (section 2.11).

• Current raster position - RasterPos* and WindowPos* (section 2.18), and
all associated state.

• Two-sided color selection (section 2.19.1) - Enable target
VERTEX PROGRAM TWO SIDE; OpenGL Shading Language builtins
gl BackColor and gl BackSecondaryColor; and all associated state.

• Non-sprite points (section 3.4) - Enable/Disable targets POINT SMOOTH and
POINT SPRITE, and all associated state. Point rasterization is always per-
formed as though POINT SPRITE were enabled.

• Wide lines and line stipple - LineWidth is not deprecated, but values greater
than 1.0 will generate an INVALID VALUE error; LineStipple and En-
able/Disable target LINE STIPPLE (section 3.5.2, and all associated state.

• Quadrilateral and polygon primitives - vertex array drawing modes
POLYGON, QUADS, and QUAD STRIP (section 2.6.1, related descriptions of
rasterization of non-triangle polygons in section 3.6, and all associated state.

• Separate polygon draw mode - PolygonMode face values of FRONT and
BACK; polygons are always drawn in the same mode, no matter which face
is being rasterized.

Version 3.0 (September 23, 2008)

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 408

• Polygon Stipple - PolygonStipple and Enable/Disable target
POLYGON STIPPLE (section 3.6.2, and all associated state.

• Pixel transfer modes and operations - all pixel transfer modes, including
pixel maps, shift and bias, color table lookup, color matrix, and convolu-
tion commands and state (sections 3.7.2, 3.7.3, and 3.7.5), and all associated
state and commands defining that state.

• Pixel drawing - DrawPixels and PixelZoom (section 3.7.4). However, the
language describing pixel rectangles in section 3.7 is retained as it is required
for TexImage* and ReadPixels.

• Bitmaps - Bitmap (section 3.8).

• Legacy OpenGL 1.0 pixel formats - the values 1, 2, 3, and 4 are no longer
accepted as internal formats by TexImage* or any other command taking an
internal format argument.

• Legacy pixel formats - all ALPHA LUMINANCE, LUMINANCE ALPHA, and
INTENSITY external and internal formats, including compressed, floating-
point, and integer variants (see tables 3.6, 3.15, 3.17, 3.19, 3.23, and 6.1); all
references to luminance and intensity formats elsewhere in the specification,
including conversion to and from those formats; and all associated state. in-
cluding state describing the allocation or format of luminance and intensity
texture or framebuffer components.

• Depth texture mode - DEPTH TEXTURE MODE. Section 3.9.14 is to be
changed so that r is returned to texture samplers directly, and the OpenGL
Shading Language 1.30 Specification is to be changed so that (r, r, r, 1) is
always returned from depth texture samplers in this case.

• Texture wrap mode CLAMP - CLAMP is no longer accepted as a value of tex-
ture parameters TEXTURE WRAP S, TEXTURE WRAP T, or TEXTURE WRAP R.

• Texture borders - the border value to TexImage* must always be zero, or
an INVALID VALUE error is generated (section 3.9.1); all language in sec-
tion 3.9 referring to nonzero border widths during texture image specification
and texture sampling; and all associated state.

• Automatic mipmap generation - TexParameter* target GENERATE MIPMAP

(section 3.9.7), and all associated state

Version 3.0 (September 23, 2008)

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 409

• Fixed-function fragment processing - AreTexturesResident, Pri-
oritizeTextures, and TexParameter target TEXTURE PRIORITY;
TexEnv target TEXTURE ENV, and all associated parameters; Tex-
Env target TEXTURE FILTER CONTROL, and parameter name
TEXTURE LOD BIAS; Enable targets of all dimensionalities (TEXTURE 1D,
TEXTURE 2D, TEXTURE 3D, TEXTURE 1D ARRAY, TEXTURE 2D ARRAY,
and TEXTURE CUBE MAP); Enable target COLOR SUM; Enable target FOG,
Fog, and all associated parameters; and all associated state.

• Alpha test - AlphaFunc and Enable/Disable target ALPHA TEST (sec-
tion 4.1.4), and all associated state.

• Accumulation buffers - ClearAccum, and ACCUM BUFFER BIT is not valid
as a bit in the argument to Clear (section 4.2.3); Accum (section 4.2.4); the
ACCUM * BITS framebuffer state describing the size of accumulation buffer
components (table 6.51); and all associated state.

Window system-binding APIs such as GLX and WGL may choose to either
not expose window configs containing accumulation buffers, or to ignore
accumulation buffers when the default framebuffer bound to a GL context
contains them.

• Context framebuffer size queries - RED BITS, GREEN BITS, BLUE BITS,
ALPHA BITS, DEPTH BITS, and STENCIL BITS.

• Evaluators - Map*, EvalCoord*, MapGrid*, EvalMesh*, EvalPoint*, and
all evaluator map enables in table 5.1 (section 5.1, and all associated state.

• Selection and feedback modes - RenderMode, InitNames, PopName,
PushName, LoadName, and SelectBuffer (section 5.2); FeedbackBuffer
and PassThrough (section 5.3); and all associated state.

• Display lists - NewList, EndList, CallList, CallLists, ListBase, GenLists,
IsList, and DeleteLists (section 5.4); all references to display lists and be-
havior when compiling commands into display lists elsewhere in the speci-
fication; and all associated state.

• Hints - the PERSPECTIVE CORRECTION HINT, FOG HINT, and
GENERATE MIPMAP HINT targets to Hint (section 5.7).

• Attribute stacks - PushAttrib, PushClientAttrib, PopAttrib, PopClien-
tAt-
trib, the MAX ATTRIB STACK DEPTH, MAX CLIENT ATTRIB STACK DEPTH

Version 3.0 (September 23, 2008)

E.1. PROFILES AND DEPRECATED FEATURES OF OPENGL 3.0 410

state, and the values ALL ATTRIB BITS and CLIENT ALL ATTRIB BITS

(section 6.1.18).

• Unified extension string - EXTENSIONS target to GetString (section 6.1.11).

• Token names and queries - all token names and queries not otherwise men-
tioned above for deprecated state, as well as all query entry points where all
valid targets of that query are deprecated state (chapter 6 and the state tables)

Version 3.0 (September 23, 2008)

Appendix F

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was released
on 1 July 1992. Version 1.1 is upward compatible with version 1.0, meaning that
any program that runs with a 1.0 GL implementation will also run unchanged with
a 1.1 GL implementation. Several additions were made to the GL, especially to
the texture mapping capabilities, but also to the geometry and fragment operations.
Following are brief descriptions of each addition.

F.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer commands
than were previously necessary. Six arrays are defined, one each storing vertex
positions, normal coordinates, colors, color indices, texture coordinates, and edge
flags. The arrays may be specified and enabled independently, or one of the pre-
defined configurations may be selected with a single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was to
improve the efficiency of the transfer; especially to allow direct memory access
(DMA) hardware to be used to effect the transfer. The additions match those of
the GL EXT vertex array extension, except that static array data are not sup-
ported (because they complicated the interface, and were not being used), and the
pre-defined configurations are added (both to reduce subroutine count even further,
and to allow for efficient transfer of array data).

411

F.2. POLYGON OFFSET 412

F.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an affine function of the window coor-
dinate depth slope of the polygon. Shifted depth values allow coplanar geometry,
especially facet outlines, to be rendered without depth buffer artifacts. They may
also be used by future shadow generation algorithms.

The additions match those of the GL EXT polygon offset extension, with
two exceptions. First, the offset is enabled separately for POINT, LINE, and FILL

rasterization modes, all sharing a single affine function definition. (Shifting the
depth values of the outline fragments, instead of the fill fragments, allows the con-
tents of the depth buffer to be maintained correctly.) Second, the offset bias is
specified in units of depth buffer resolution, rather than in the [0,1] depth range.

F.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the framebuffer
using a logical operation, just as color index fragments are in GL version 1.0.
Blending is disabled during such operation because it is rarely desired, be-
cause many systems could not support it, and to match the semantics of the
GL EXT blend logic op extension, on which this addition is loosely based.

F.4 Texture Image Formats

Stored texture arrays have a format, known as the internal format, rather than a
simple count of components. The internal format is represented as a single enu-
merated value, indicating both the organization of the image data (LUMINANCE,
RGB, etc.) and the number of bits of storage for each image component. Clients
can use the internal format specification to suggest the desired storage precision
of texture images. New base internal formats, ALPHA and INTENSITY, provide
new texture environment operations. These additions match those of a subset of
the GL EXT texture extension.

F.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated
fragments with texture color data. This could be specified only indirectly in GL
version 1.0, which required that client specified “white” geometry be modulated

Version 3.0 (September 23, 2008)

F.6. TEXTURE PROXIES 413

by a texture. GL version 1.1 allows such replacement to be specified explicitly,
possibly improving performance. These additions match those of a subset of the
GL EXT texture extension.

F.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum tex-
ture image sizes as a function of some other texture parameters, especially of the
internal image format. Clients may use the proxy query mechanism to tailor their
use of texture resources at run time. The proxy interface is designed to allow such
queries without adding new routines to the GL interface. These additions match
those of a subset of the GL EXT texture extension, except that implementations
return allocation information consistent with support for complete mipmap arrays.

F.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as from
client memory, and rectangular subregions of texture arrays can be redefined either
from client or framebuffer memory. These additions match those defined by the
GL EXT copy texture and GL EXT subtexture extensions.

F.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a single
object. Such treatment allows for greater implementation efficiency when multi-
ple arrays are used. In conjunction with the subtexture capability, it also allows
clients to make gradual changes to existing texture arrays, rather than completely
redefining them. These additions match those of the GL EXT texture object

extension, with slight additions to the texture residency semantics.

F.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

2. Texture coordinates s, t, and r are divided by q during the rasterization of
points, pixel rectangles, and bitmaps. This division was documented only
for lines and polygons in the 1.0 version.

Version 3.0 (September 23, 2008)

F.10. ACKNOWLEDGEMENTS 414

3. The line rasterization algorithm was changed so that vertical lines on pixel
borders rasterize correctly.

4. Separate pixel transfer discussions in chapter 3 and chapter 4 were combined
into a single discussion in chapter 3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel in the
texture array. This behavior was unspecified in the 1.0 version, and was
incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation if Col-
orMaterial is enabled.

F.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics
Bill Armstrong, Evans & Sutherland
Andy Bigos, 3Dlabs
Pat Brown, IBM
Jim Cobb, Evans & Sutherland
Dick Coulter, Digital Equipment
Bruce D’Amora, GE Medical Systems
John Dennis, Digital Equipment
Fred Fisher, Accel Graphics
Chris Frazier, Silicon Graphics
Todd Frazier, Evans & Sutherland
Tim Freese, NCD
Ken Garnett, NCD
Mike Heck, Template Graphics Software
Dave Higgins, IBM
Phil Huxley, 3Dlabs
Dale Kirkland, Intergraph
Hock San Lee, Microsoft
Kevin LeFebvre, Hewlett Packard
Jim Miller, IBM
Tim Misner, SunSoft

Version 3.0 (September 23, 2008)

F.10. ACKNOWLEDGEMENTS 415

Jeremy Morris, 3Dlabs
Israel Pinkas, Intel
Bimal Poddar, IBM
Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics
Igor Sinyak, Intel
Jeff Stevenson, Hewlett Packard
Bill Sweeney, SunSoft
Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs
Linas Vepstas, IBM
Andy Vesper, Digital Equipment
Henri Warren, Megatek
Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

Version 3.0 (September 23, 2008)

Appendix G

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1, meaning
that any program that runs with a 1.1 GL implementation will also run unchanged
with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping capa-
bilities and the pixel processing pipeline. Following are brief descriptions of each
addition.

G.1 Three-Dimensional Texturing

Three-dimensional textures can be defined and used. In-memory formats for three-
dimensional images, and pixel storage modes to support them, are also defined.
The additions match those of the GL EXT texture3D extension.

One important application of three-dimensional textures is rendering volumes
of image data.

G.2 BGRA Pixel Formats

BGRA extends the list of client memory color formats. Specifically, it provides
a component order matching file and framebuffer formats common on Windows
platforms. The additions match those of the GL EXT bgra extension.

416

G.3. PACKED PIXEL FORMATS 417

G.3 Packed Pixel Formats

Packed pixels in client memory are represented entirely by one unsigned byte, one
unsigned short, or one unsigned integer. The fields with the packed pixel are not
proper machine types, but the pixel as a whole is. Thus the pixel storage modes
and their unpacking counterparts all work correctly with packed pixels.

The additions match those of the GL EXT packed pixels extension, with the
further addition of reversed component order packed formats.

G.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the model-view matrix.
Rescaling can operate faster than renormalization in many cases, while resulting in
the same unit normals.

The additions are based on the GL EXT rescale normal extension.

G.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of emis-
sive, ambient and diffuse terms of the usual GL lighting equation, and a secondary
color consisting of the specular term. Only the primary color is modified by the
texture environment; the secondary color is added to the result of texturing to pro-
duce a single post-texturing color. This allows highlights whose color is based on
the light source creating them, rather than surface properties.

The additions match those of the GL EXT separate specular color exten-
sion.

G.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly the
range [0, 1]. When a texture coordinate is clamped using this algorithm, the texture
sampling filter straddles the edge of the texture image, taking half its sample values
from within the texture image, and the other half from the texture border. It is
sometimes desirable to clamp a texture without requiring a border, and without
using the constant border color.

A new texture clamping algorithm, CLAMP TO EDGE, clamps texture coordi-
nates at all mipmap levels such that the texture filter never samples a border texel.
The color returned when clamping is derived only from texels at the edge of the
texture image.

Version 3.0 (September 23, 2008)

G.7. TEXTURE LEVEL OF DETAIL CONTROL 418

The additions match those of the GL SGIS texture edge clamp extension.

G.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameter λ are added. One
constraint clamps λ to a specified floating point range. The other limits the se-
lection of mipmap image arrays to a subset of the arrays that would otherwise be
considered.

Together these constraints allow a large texture to be loaded and used initially
at low resolution, and to have its resolution raised gradually as more resolution is
desired or available. Image array specification is necessarily integral, rather than
continuous. By providing separate, continuous clamping of the λ parameter, it is
possible to avoid ”popping” artifacts when higher resolution images are provided.

The additions match those of the GL SGIS texture lod extension.

G.8 Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the range of
vertices referred to by the index set is added. Implementations can take advantage
of this additional information to process vertex data without having to scan the
index data to determine which vertices are referenced.

The additions match those of the GL EXT draw range elements extension.

G.9 Imaging Subset

The remaining new features are primarily intended for advanced image processing
applications, and may not be present in all GL implementations. The are collec-
tively referred to as the imaging subset.

G.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel transfer pro-
cess, providing additional lookup capabilities beyond the existing lookup. The key
difference is that the new lookup tables are treated as one-dimensional images with
internal formats, like texture images and convolution filter images. Thus the new
tables can operate on a subset of the components of passing pixel groups. For ex-
ample, a table with internal format ALPHA modifies only the A component of each
pixel group, leaving the R, G, and B components unmodified.

Version 3.0 (September 23, 2008)

G.9. IMAGING SUBSET 419

Three independent lookups may be performed: prior to convolution; after con-
volution and prior to color matrix transformation; after color matrix transformation
and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in addition
to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing the
entire table. The affected portions may be specified either from client memory or
from the framebuffer.

The additions match those of the GL EXT color table and
GL EXT color subtable extensions.

G.9.2 Convolution

One- or two-dimensional convolution operations are executed following the first
color table lookup in the pixel transfer process. The convolution kernels are them-
selves treated as one- and two-dimensional images, which can be loaded from ap-
plication memory or from the framebuffer.

The convolution framework is designed to accommodate three-dimensional
convolution, but that API is left for a future extension.

The additions match those of the GL EXT convolution and
GL HP convolution border modes extensions.

G.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the pixel
transfer path. The matrix operates on RGBA pixel groups, using the equation

C ′ = MC,

where

C =


R
G
B
A


andM is the 4×4 matrix on the top of the color matrix stack. After the matrix mul-
tiplication, each resulting color component is scaled and biased by a programmed
amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components. It
can also be used to implement simple color space conversions.

The additions match those of the GL SGI color matrix extension.

Version 3.0 (September 23, 2008)

G.10. ACKNOWLEDGEMENTS 420

G.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values (his-
togram) and that track the minimum and maximum color component values (min-
max) are performed at the end of the pixel transfer pipeline. An optional mode
allows pixel data to be discarded after the histogram and/or minmax operations are
completed. Otherwise the pixel data continues on to the next operation unaffected.

The additions match those of the GL EXT histogram extension.

G.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be defined.
A typical usage is blending two RGB images. Without the constant blend factor,
one image must have an alpha channel with each pixel set to the desired blend
factor.

The additions match those of the GL EXT blend color extension.

G.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and destination
components may be used.

Two of the new equations produce the minimum (or maximum) color com-
ponents of the source and destination colors. Taking the maximum is useful for
applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation, but pro-
duce the difference of its left and right hand sides, rather than the sum. Image
differences are useful in many image processing applications.

The additions match those of the GL EXT blend minmax and
GL EXT blend subtract extensions.

G.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics
Bill Armstrong, Evans & Sutherland
Otto Berkes, Microsoft
Pierre-Luc Bisaillon, Matrox Graphics
Drew Bliss, Microsoft

Version 3.0 (September 23, 2008)

G.10. ACKNOWLEDGEMENTS 421

David Blythe, Silicon Graphics
Jon Brewster, Hewlett Packard
Dan Brokenshire, IBM
Pat Brown, IBM
Newton Cheung, S3
Bill Clifford, Digital
Jim Cobb, Parametric Technology
Bruce D’Amora, IBM
Kevin Dallas, Microsoft
Mahesh Dandapani, Rendition
Daniel Daum, AccelGraphics
Suzy Deffeyes, IBM
Peter Doyle, Intel
Jay Duluk, Raycer
Craig Dunwoody, Silicon Graphics
Dave Erb, IBM
Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics
Allen Gallotta, ATI
Ken Garnett, NCD
Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link
Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics
Paul Ho, Silicon Graphics
Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel
Phil Huxley, 3Dlabs
Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx
Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics
Tim Kelley, Real3D
Jon Khazam, Intel
Louis Khouw, Sun
Dale Kirkland, Intergraph
Chris Kitrick, Raycer
Don Kuo, S3
Herb Kuta, Quantum 3D

Version 3.0 (September 23, 2008)

G.10. ACKNOWLEDGEMENTS 422

Phil Lacroute, Silicon Graphics
Prakash Ladia, S3
Jon Leech, Silicon Graphics
Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics
Kent Lin, S3
Dan McCabe, S3
Jack Middleton, Sun
Tim Misner, Intel
Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs
Gene Munce, Intel
William Newhall, Real3D
Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter Pfister, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel
Rob Putney, IBM
Mike Quinlan, Real3D
Nate Robins, University of Utah
Detlef Roettger, Elsa
Randi Rost, Hewlett Packard
Kevin Rushforth, Sun
Richard S. Wright, Real3D
Hock San Lee, Microsoft
John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA
Mark Segal, Silicon Graphics
Bob Seitsinger, S3
Min-Zhi Shao, S3
Colin Sharp, Rendition
Igor Sinyak, Intel
Bill Sweeney, Sun
William Sweeney, Sun
Nathan Tuck, Raycer
Doug Twillenger, Sun
John Tynefeld, 3dfx
Kartik Venkataraman, Intel
Andy Vesper, Digital Equipment

Version 3.0 (September 23, 2008)

G.10. ACKNOWLEDGEMENTS 423

Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics
Steve Wright, Microsoft
David Yu, Silicon Graphics
Randy Zhao, S3

Version 3.0 (September 23, 2008)

Appendix H

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB extensions
(see Appendix O). The only ARB extension defined in this version is multitex-
ture, allowing application of multiple textures to a fragment in one rendering pass.
Multitexture is based on the GL SGIS multitexture extension, simplified by
removing the ability to route texture coordinate sets to arbitrary texture units.

A new corollary discussing display list and immediate mode invariance was
added to Appendix B on April 1, 1999.

424

Appendix I

Version 1.3

OpenGL version 1.3, released on August 14, 2001, is the third revision since the
original version 1.0. Version 1.3 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.2, 1.1, or 1.0 GL implementation will also
run unchanged with a 1.3 GL implementation.

Several additions were made to the GL, especially texture mapping capabilities
previously defined by ARB extensions. Following are brief descriptions of each
addition.

I.1 Compressed Textures

Compressing texture images can reduce texture memory utilization and improve
performance when rendering textured primitives. The GL provides a framework
upon which extensions providing specific compressed image formats can be built,
and a set of generic compressed internal formats that allow applications to specify
that texture images should be stored in compressed form without needing to code
for specific compression formats (specific compressed formats, such as S3TC or
FXT1, are supported by extensions).

Texture compression was promoted from the
GL ARB texture compression extension.

I.2 Cube Map Textures

Cube map textures provide a new texture generation scheme for looking up textures
from a set of six two-dimensional images representing the faces of a cube. The
(str) texture coordinates are treated as a direction vector emanating from the center
of a cube. At texture generation time, the interpolated per-fragment (str) selects

425

I.3. MULTISAMPLE 426

one cube face two-dimensional image based on the largest magnitude coordinate
(the major axis). A new (st) is calculated by dividing the two other coordinates
(the minor axes values) by the major axis value, and the new (st) is used to lookup
into the selected two-dimensional texture image face of the cube map.

Two new texture coordinate generation modes are provided for use in con-
junction with cube map texturing. The REFLECTION MAP mode generates tex-
ture coordinates (str) matching the vertex’s eye-space reflection vector, useful for
environment mapping without the singularity inherent in SPHERE MAP mapping.
The NORMAL MAP mode generates texture coordinates matching the vertex’s trans-
formed eye-space normal, useful for texture-based diffuse lighting models.

Cube mapping was promoted from the GL ARB texture cube map extension.

I.3 Multisample

Multisampling provides a antialiasing mechanism which samples all primitives
multiple times at each pixel. The color sample values are resolved to a single, dis-
playable color each time a pixel is updated, so antialiasing appears to be automatic
at the application level. Because each sample includes depth and stencil infor-
mation, the depth and stencil functions perform equivalently to the single-sample
mode.

When multisampling is supported, an additional buffer, called the multisample
buffer, is added to the framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer.

Multisampling is usually an expensive operation, so it is usually not supported
on all contexts. Applications must obtain a multisample-capable context using the
new interfaces provided by GLX 1.4 or by the WGL ARB multisample extension.

Multisampling was promoted from the GL ARB multisample extension; The
definition of the extension was changed slightly to support both multisampling and
supersampling implementations.

I.4 Multitexture

Multitexture adds support for multiple texture units. The capabilities of the mul-
tiple texture units are identical, except that evaluation and feedback are supported
only for texture unit 0. Each texture unit has its own state vector which includes
texture vertex array specification, texture image and filtering parameters, and tex-
ture environment application.

The texture environments of the texture units are applied in a pipelined fashion
whereby the output of one texture environment is used as the input fragment color

Version 3.0 (September 23, 2008)

I.5. TEXTURE ADD ENVIRONMENT MODE 427

for the next texture environment. Changes to texture client state and texture server
state are each routed through one of two selectors which control which instance of
texture state is affected.

Multitexture was promoted from the GL ARB multitexture extension.

I.5 Texture Add Environment Mode

The TEXTURE ENV MODE texture environment function ADD provides a texture
function to add incoming fragment and texture source colors.

Texture add mode was promoted from the GL ARB texture env add exten-
sion.

I.6 Texture Combine Environment Mode

The TEXTURE ENV MODE texture environment function COMBINE provides a wide
range of programmable combiner functions using the incoming fragment color,
texture source color, texture constant color, and the result of the previous texture
environment stage as possible parameters.

Combiner operations include passthrough, multiplication, addition and biased
addition, subtraction, and linear interpolation of specified parameters. Different
combiner operations may be selected for RGB and A components, and the final
result may be scaled by 1, 2, or 4.

Texture combine was promoted from the GL ARB texture env combine ex-
tension.

I.7 Texture Dot3 Environment Mode

The TEXTURE ENV MODE COMBINE operations also provide three-component dot
products of specified parameters, with the resulting scalar value replicated into the
RGB or RGBA components of the output color. The dot product is performed
using pseudo-signed arithmetic to enable per-pixel lighting computations.

Texture DOT3 mode was promoted from the GL ARB texture env dot3 ex-
tension.

I.8 Texture Border Clamp

The texture wrap parameter CLAMP TO BORDER mode clamps texture coordinates
at all mipmap levels such that when the texture filter straddles an edge of the texture

Version 3.0 (September 23, 2008)

I.9. TRANSPOSE MATRIX 428

image, the color returned is derived only from border texels. This behavior mirrors
the behavior of the texture edge clamp mode introduced by OpenGL 1.2.

Texture border clamp was promoted from the
GL ARB texture border clamp extension.

I.9 Transpose Matrix

New functions and tokens are added allowing application matrices stored in row
major order rather than column major order to be transferred to the implementa-
tion. This allows an application to use standard C-language 2-dimensional arrays
and have the array indices match the expected matrix row and column indexes.
These arrays are referred to as transpose matrices since they are the transpose of
the standard matrices passed to OpenGL.

Transpose matrix adds an interface for transfering data to and from the OpenGL
pipeline. It does not change any OpenGL processing or imply any changes in state
representation.

Transpose matrix was promoted from the GL ARB transpose matrix exten-
sion.

I.10 Acknowledgements

OpenGL 1.3 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time of
their contribution:

Adrian Muntianu, ATI
Al Reyes, 3dfx
Alain Bouchard, Matrox
Alan Commike, SGI
Alan Heirich, Compaq
Alex Herrera, SP3D
Allen Akin, VA Linux
Allen Gallotta, ATI
Alligator Descartes, Arcane
Andy Vesper, MERL
Andy Wolf, Diamond Multimedia
Axel Schildan, S3
Barthold Lichtenbelt, 3Dlabs
Benj Lipchak, Compaq
Bill Armstrong, Evans & Sutherland

Version 3.0 (September 23, 2008)

I.10. ACKNOWLEDGEMENTS 429

Bill Clifford, Intel
Bill Mannel, SGI
Bimal Poddar, Intel
Bob Beretta, Apple
Brent Insko, NVIDIA
Brian Goldiez, UCF
Brian Greenstone, Apple
Brian Paul, VA Linux
Brian Sharp, GLSetup
Bruce D’Amora, IBM
Bruce Stockwell, Compaq
Chris Brady, Alt.software
Chris Frazier, Raycer
Chris Hall, 3dlabs
Chris Hecker, GLSetup
Chris Lane, Intel
Chris Thornborrow, PixelFusion
Christopher Fraser, IMG
Chuck Smith, Intelligraphics
Craig Dunwoody, SGI
Dairsie Latimer, PixelFusion
Dale Kirkland, 3Dlabs / Intergraph
Dan Brokenshire, IBM
Dan Ginsburg, ATI
Dan McCabe, S3
Dave Aronson, Microsoft
Dave Gosselin, ATI
Dave Shreiner, SGI
Dave Zenz, Dell
David Aronson, Microsoft
David Blythe, SGI
David Kirk, NVIDIA
David Story, SGI
David Yu, SGI
Deanna Hohn, 3dfx
Dick Coulter, Silicon Magic
Don Mullis, 3dfx
Eamon O Dea, PixelFusion
Edward (Chip) Hill, Pixelfusion
Eiji Obata, NEC

Version 3.0 (September 23, 2008)

I.10. ACKNOWLEDGEMENTS 430

Elio Del Giudice, Matrox
Eric Young, S3
Evan Hart, ATI
Fred Fisher, 3dLabs
Garry Paxinos, Metro Link
Gary Tarolli, 3dfx
George Kyriazis, NVIDIA
Graham Connor, IMG
Herb Kuta, Quantum3D
Howard Miller, Apple
Igor Sinyak, Intel
Jack Middleton, Sun
James Bowman, 3dfx
Jan C. Hardenbergh, MERL
Jason Mitchell, ATI
Jeff Weyman, ATI
Jeffrey Newquist, 3dfx
Jens Owen, Precision Insight
Jeremy Morris, 3Dlabs
Jim Bushnell, Pyramid Peak
John Dennis, Sharp Eye
John Metcalfe, IMG
John Stauffer, Apple
John Tynan, PixelFusion
John W. Polick, NEC
Jon Khazam, Intel
Jon Leech, SGI
Jon Paul Schelter, Matrox
Karl Hilleslad, NVIDIA
Kelvin Thompson
Ken Cameron, Pixelfusion
Ken Dyke, Apple
Ken Nicholson, SGI
Kent Lin, Intel
Kevin Lefebvre, HP
Kevin Martin, VA Linux
Kurt Akeley, SGI
Les Silvern, NEC
Mahesh Dandipani, Rendition
Mark Kilgard, NVIDIA

Version 3.0 (September 23, 2008)

I.10. ACKNOWLEDGEMENTS 431

Martin Amon, 3dfx
Martina Sourada, ATI
Matt Lavoie, Pixelfusion
Matt Russo, Matrox
Matthew Papakipos, NVIDIA
Michael Gold, NVIDIA
Miriam Geller, SGI
Morgan Von Essen, Metro Link
Naruki Aruga, PFU
Nathan Tuck, Raycer Graphics
Neil Trevett, 3Dlabs
Newton Cheung, S3
Nick Triantos, NVIDIA
Patrick Brown, Intel
Paul Jensen, 3dfx
Paul Keller, NVIDIA
Paul Martz, HP
Paula Womack, 3dfx
Peter Doenges, Evans & Sutherland
Peter Graffagnino, Apple
Phil Huxley, 3Dlabs
Ralf Biermann, Elsa AG
Randi Rost, 3Dlabs
Renee Rashid, Micron
Rich Johnson, HP
Richard Pimentel, PTC
Richard Schlein, Apple
Rick Hammerstone, ATI
Rik Faith, VA Linux
Rob Glidden, Sun
Rob Wheeler, 3dfx
Shari Petersen, Rendition
Shawn Hopwood, SGI
Steve Glickman, Silicon Magic
Steve McGuigan, SGI
Steve Wright, Microsoft
Stuart Anderson, Metro Link
T. C. Zhao, MERL
Teri Morrison, HP
Thomas Fox, IBM

Version 3.0 (September 23, 2008)

I.10. ACKNOWLEDGEMENTS 432

Tim Kelley, Real 3D
Tom Frisinger, ATI
Victor Vedovato, Micron
Vikram Simha, MERL
Yanjun Zhang, Sun
Zahid Hussain, TI

Version 3.0 (September 23, 2008)

Appendix J

Version 1.4

OpenGL version 1.4, released on July 24, 2002, is the fourth revision since the
original version 1.0. Version 1.4 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.4 GL implementation.

In addition to numerous additions to the classical fixed-function GL pipeline
in OpenGL 1.4, the OpenGL ARB also approved the GL ARB vertex program

extension, which supports programmable vertex processing. Following are brief
descriptions of each addition to OpenGL 1.4; see Chapter O for a description of
GL ARB vertex program.

J.1 Automatic Mipmap Generation

Setting the texture parameter GENERATE MIPMAP to TRUE introduces a side effect
to any modification of the levelbase of a mipmap array, wherein all higher levels of
the mipmap pyramid are recomputed automatically by successive filtering of the
base level array.

Automatic
mipmap generation was promoted from the GL SGIS generate mipmap exten-
sion.

J.2 Blend Squaring

Blend squaring extends the set of supported source and destination blend functions
to permit squaring RGB and alpha values during blending. Functions SRC COLOR

and ONE MINUS SRC COLOR are added to the allowed source blending functions,

433

J.3. CHANGES TO THE IMAGING SUBSET 434

and DST COLOR and ONE MINUS DST COLOR are added to the allowed destination
blending functions.

Blend squaring was promoted from the GL NV blend square extension.

J.3 Changes to the Imaging Subset

The subset of blending features described by BlendEquation, BlendColor,
and the BlendFunc modes CONSTANT COLOR, ONE MINUS CONSTANT COLOR,
CONSTANT ALPHA, and ONE MINUS CONSTANT ALPHA are now supported. These
feature were available only in the optional imaging subset in versions 1.2 and 1.3
of the GL.

J.4 Depth Textures and Shadows

Depth textures define a new texture internal format, DEPTH, normally used to repre-
sent depth values. Applications include image-based shadow casting, displacement
mapping, and image-based rendering.

Image-based shadowing is enabled with a new texture application mode de-
fined by the parameter TEXTURE COMPARE MODE. This mode enables comparing
texture r coordinates to depth texture values to generate a boolean result.

Depth textures and shadows were promoted from the GL ARB depth texture

and GL ARB shadow extensions.

J.5 Fog Coordinate

A new associated vertex and fragment datum, the fog coordinate may be used
in computing fog for a fragment, instead of using eye distance to the frag-
ment, by specifying the coordinate with the FogCoord commands and setting the
FOG COORDINATE SOURCE fog parameter. Fog coordinates are particularly useful
in computing more complex fog models.

Fog coordinate was promoted from the GL EXT fog coord extension.

J.6 Multiple Draw Arrays

Multiple primitives may be drawn in a single call using the MultiDrawArrays and
MultiDrawElements comments.

Multiple draw arrays was promoted from the GL EXT multi draw arrays

extension.

Version 3.0 (September 23, 2008)

J.7. POINT PARAMETERS 435

J.7 Point Parameters

Point parameters defined by the PointParameter commands support additional
geometric characteristics of points, allowing the size of a point to be affected by
linear or quadratic distance attenuation, and increasing control of the mapping from
point size to raster point area and point transparency. This effect may be used for
distance attenuation in rendering particles or light points.

Point parameters was promoted from the GL ARB point parameters exten-
sion.

J.8 Secondary Color

The secondary color may be varied even when lighting is disabled by specifying it
as a vertex parameter with the SecondaryColor commands.

Secondary color was promoted from the GL EXT secondary color exten-
sion.

J.9 Separate Blend Functions

Blending capability is extended with BlendFuncSeparate to allow independent
setting of the RGB and alpha blend functions for blend operations that require
source and destination blend factors.

Separate blend functions was promoted from the
GL EXT blend func separate extension.

J.10 Stencil Wrap

New stencil operations INCR WRAP and DECR WRAP allow the stencil value to wrap
around the range of stencil values instead of saturating to the minimum or maxi-
mum values on decrement or increment. Stencil wrapping is needed for algorithms
that use the stencil buffer for per-fragment inside-outside primitive computations.

Stencil wrap was promoted from the GL EXT stencil wrap extension.

J.11 Texture Crossbar Environment Mode

Texture crossbar extends the texture combine environment mode COMBINE by al-
lowing use of the texture color from different texture units as sources to the texture
combine function.

Version 3.0 (September 23, 2008)

J.12. TEXTURE LOD BIAS 436

Texture
environment crossbar was promoted from the GL ARB texture env crossbar

extension.

J.12 Texture LOD Bias

The texture filter control parameter TEXTURE LOD BIAS may be set to bias the
computed λ parameter used in texturing for mipmap level of detail selection, pro-
viding a means to blur or sharpen textures. LOD bias may be used for depth of field
and other special visual effects, as well as for some types of image processing.

Texture LOD bias was based on the GL EXT texture lod bias extension,
with the addition of a second per-texture object bias term.

J.13 Texture Mirrored Repeat

Texture mirrored repeat extends the set of texture wrap modes with the mode
MIRRORED REPEAT. This effectively defines a texture map twice as large as the
original texture image in which the additional half, for each mirrored texture co-
ordinate, is a mirror image of the original texture. Mirrored repeat can be used
seamless tiling of a surface.

Texture mirrored repeat was promoted from the
GL ARB texture mirrored repeat extension.

J.14 Window Raster Position

The raster position may be set directly to specified window coordinates with the
WindowPos commands, bypassing the transformation applied to RasterPos. Win-
dow raster position is particularly useful for imaging and other 2D operations.

Window raster position was promoted from the GL ARB window pos exten-
sion.

J.15 Acknowledgements

OpenGL 1.4 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time of
their contribution. The editor especially thanks Bob Beretta and Pat Brown for
their sustained efforts in leading the GL ARB vertex program working group,

Version 3.0 (September 23, 2008)

J.15. ACKNOWLEDGEMENTS 437

without which this critical extension could not have been defined and approved in
conjunction with OpenGL 1.4.

Kurt Akeley, NVIDIA
Allen Akin
Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel
Chris Bentley, ATI
Bob Beretta, Apple
Daniel Brokenshire, IBM
Pat Brown, NVIDIA
Bill Clifford, Intel
Graham Connor, Videologic
Matt Craighead, NVIDIA
Suzy Deffeyes, IBM
Jean-Luc Dery, Discreet
Kenneth Dyke, Apple
Cass Everitt, NVIDIA
Allen Gallotta, ATI
Lee Gross, IBM
Evan Hart, ATI
Chris Hecker, Definition 6
Alan Heirich, Compaq / HP
Gareth Hughes, VA Linux
Michael I Gold, NVIDIA
Rich Johnson, HP
Mark Kilgard, NVIDIA
Dale Kirkland, 3Dlabs
David Kirk, NVIDIA
Christian Laforte, Alias—Wavefront
Luc Leblanc, Discreet
Jon Leech, SGI
Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Jack Middleton, Sun
Howard Miller, Apple
Jeremy Morris, 3Dlabs
Jon Paul Schelter, Matrox
Brian Paul, VA Linux / Tungsten Graphics
Bimal Poddar, Intel
Thomas Roell, Xi Graphics

Version 3.0 (September 23, 2008)

J.15. ACKNOWLEDGEMENTS 438

Randi Rost, 3Dlabs
Jeremy Sandmel, ATI
John Stauffer, Apple
Nick Triantos, NVIDIA
Daniel Vogel, Epic Games
Mason Woo, World Wide Woo
Dave Zenz, Dell

Version 3.0 (September 23, 2008)

Appendix K

Version 1.5

OpenGL version 1.5, released on July 29, 2003, is the fifth revision since the orig-
inal version 1.0. Version 1.5 is upward compatible with earlier versions, meaning
that any program that runs with a 1.4, 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.5 GL implementation.

In addition to additions to the classical fixed-function GL pipeline in OpenGL
1.5, the OpenGL ARB also approved a related set of ARB extensions including
the OpenGL Shading Language specification and the GL ARB shader objects,
GL ARB vertex shader, and GL ARB fragment shader extensions through
which high-level shading language programs can be loaded and used in place of
the fixed-function pipeline.

Following are brief descriptions of each addition to OpenGL 1.5. The low-
level and high-level shading languages are important adjuncts to the OpenGL core.
They are described in more detail in appendix O, and their corresponding ARB
extension specifications are available online as described in that appendix.

K.1 Buffer Objects

Buffer objects allow various types of data (especially vertex array data) to be
cached in high-performance graphics memory on the server, thereby increasing
the rate of data transfers to the GL.

Buffer objects were promoted from the GL ARB vertex buffer object ex-
tension.

439

K.2. OCCLUSION QUERIES 440

K.2 Occlusion Queries

An occlusion query is a mechanism whereby an application can query the number
of pixels (or, more precisely, samples) drawn by a primitive or group of primitives.
The primary purpose of occlusion queries is to determine the visibility of an object.

Occlusion query was promoted from the GL ARB occlusion query exten-
sion.

K.3 Shadow Functions

Texture comparison functions are generalized to support all eight binary functions
rather than just LEQUAL and GEQUAL.

Texture comparison functions were promoted from the
GL EXT shadow funcs extension.

K.4 Changed Tokens

To achieve consistency with the syntax guidelines for OpenGL function and token
names, new token names are introduced to be used in place of old, inconsistent
names. However, the old token names continue to be supported, for backwards
compatibility with code written for previous versions of OpenGL. The new names,
and the old names they replace, are shown in table K.1.

K.5 Acknowledgements

OpenGL 1.5 is the result of the contributions of many people. The editor especially
thanks the following individuals for their sustained efforts in leading ARB working
groups essential to the success of OpenGL 1.5 and of ARB extensions approved in
conjunction with OpenGL 1.5:

Matt Craighead led the working group
which created the GL ARB vertex buffer object extension and OpenGL 1.5
core feature. Kurt Akeley wrote the initial specification for the group.

Daniel Ginsburg and Matt Craighead led the working group which created the
GL ARB occlusion query extension and OpenGL 1.5 core feature.

Benjamin Lipchak led the fragment program working group which created the
GL ARB fragment program extension, completing the low-level programmable
shading interface.

Bill Licea-Kane led the GL2 working group which created the high-
level programmable shading interface, including the GL ARB fragment shader,

Version 3.0 (September 23, 2008)

K.5. ACKNOWLEDGEMENTS 441

New Token Name Old Token Name
FOG COORD SRC FOG COORDINATE SOURCE

FOG COORD FOG COORDINATE

CURRENT FOG COORD CURRENT FOG COORDINATE

FOG COORD ARRAY TYPE FOG COORDINATE ARRAY TYPE

FOG COORD ARRAY STRIDE FOG COORDINATE ARRAY STRIDE

FOG COORD ARRAY POINTER FOG COORDINATE ARRAY POINTER

FOG COORD ARRAY FOG COORDINATE ARRAY

FOG COORD ARRAY BUFFER BINDING FOG COORDINATE ARRAY BUFFER BINDING

SRC0 RGB SOURCE0 RGB

SRC1 RGB SOURCE1 RGB

SRC2 RGB SOURCE2 RGB

SRC0 ALPHA SOURCE0 ALPHA

SRC1 ALPHA SOURCE1 ALPHA

SRC2 ALPHA SOURCE2 ALPHA

Table K.1: New token names and the old names they replace.

GL ARB shader objects, and GL ARB vertex shader extensions and the
OpenGL Shading Language.

John Kessenich was the principal editor of the OpenGL Shading Language
specification for the GL2 working group, starting from the initial glslang proposal
written by John, Dave Baldwin, and Randi Rost.

A partial list of other contributors, including the company that they represented
at the time of their contribution, follows:

Kurt Akeley, NVIDIA
Allen Akin
Chad Anson, Dell Computer
Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel
Dave Baldwin, 3Dlabs
Chris Bentley, ATI
Bob Beretta, Apple
David Blythe
Alain Bouchard, Matrox
Daniel Brokenshire, IBM
Pat Brown, NVIDIA
John Carmack, Id Software

Version 3.0 (September 23, 2008)

K.5. ACKNOWLEDGEMENTS 442

Paul Carmichael, NVIDIA
Bob Carwell, IBM
Paul Clarke, IBM
Bill Clifford, Intel
Roger Cloud, SGI
Graham Connor, Power VR
Matt Craighead, NVIDIA
Doug Crisman, SGI
Matt Cruikshank, Vital Images
Deron Dann Johnson, Sun
Suzy Deffeyes, IBM
Steve Demlow, Vital Images
Joe Deng, SiS
Jean-Luc Dery, Discreet
Kenneth Dyke, Apple
Brian Emberling, Sun
Cass Everitt, NVIDIA
Brandon Fliflet, Intel
Allen Gallotta, ATI
Daniel Ginsburg, ATI
Steve Glanville, NVIDIA
Peter Graffagnino, Apple
Lee Gross, IBM
Rick Hammerstone, ATI
Evan Hart, ATI
Chris Hecker, Definition 6
Alan Heirich, HP
Gareth Hughes, NVIDIA
Michael I Gold, NVIDIA
John Jarvis, Alt.software
Rich Johnson, HP
John Kessenich, 3Dlabs
Mark Kilgard, NVIDIA
Dale Kirkland, 3Dlabs
Raymond Klassen, Intel
Jason Knipe, Bioware
Jayant Kolhe, NVIDIA
Steve Koren, 3Dlabs
Bob Kuehne, SGI
Christian Laforte, Alias

Version 3.0 (September 23, 2008)

K.5. ACKNOWLEDGEMENTS 443

Luc Leblanc, Discreet
Jon Leech, SGI
Kevin Lefebvre, HP
Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Kent Lin, Intel
Benjamin Lipchak, ATI
Rob Mace, ATI
Bill Mark, NVIDIA
Michael McCool, U. Waterloo
Jack Middleton, Sun
Howard Miller, Apple
Teri Morrison, HP / 3Dlabs
Marc Olano, SGI / U. Maryland
Jean-Francois Panisset, Discreet
Jon Paul Schelter, Matrox
Brian Paul, Tungsten Graphics
Scott Peterson, HP
Bimal Poddar, Intel
Thomas Roell, Xi Graphics
Phil Rogers, ATI
Ian Romanick, IBM
John Rosasco, Apple
Randi Rost, 3Dlabs
Matt Russo, Matrox
Jeremy Sandmel, ATI
Paul Sargent, 3Dlabs
Folker Schamel, Spinor GMBH
Michael Schulman, Sun
John Scott, Raven Software
Avinash Seetharamaiah, Intel
John Spitzer, NVIDIA
Vlad Stamate, Power VR
Michelle Stamnes, Intel
John Stauffer, Apple
Eskil Steenberg, Obsession
Bruce Stockwell, HP
Christopher Tan, IBM
Ray Tice, Avid
Pierre P. Tremblay, Discreet

Version 3.0 (September 23, 2008)

K.5. ACKNOWLEDGEMENTS 444

Neil Trevett, 3Dlabs
Nick Triantos, NVIDIA
Douglas Twilleager, Sun
Shawn Underwood, SGI
Steve Urquhart, Intelligraphics
Victor Vedovato, ATI
Daniel Vogel, Epic Games
Mik Wells, Softimage
Helene Workman, Apple
Dave Zenz, Dell
Karel Zuiderveld, Vital Images

Version 3.0 (September 23, 2008)

Appendix L

Version 2.0

OpenGL version 2.0, released on September 7, 2004, is the sixth revision since the
original version 1.0. Despite incrementing the major version number (to indicate
support for high-level programmable shaders), version 2.0 is upward compatible
with earlier versions, meaning that any program that runs with a 1.5, 1.4, 1.3, 1.2,
1.1, or 1.0 GL implementation will also run unchanged with a 2.0 GL implemen-
tation.

Following are brief descriptions of each addition to OpenGL 2.0.

L.1 Programmable Shading

The OpenGL Shading Language, and the related APIs to create, manage, and use
programmable shaders written in the Shading Language, were promoted to core
features in OpenGL 2.0. The complete list of features related to programmable
shading includes:

L.1.1 Shader Objects

Shader objects provides mechanisms necessary to manage shader and program ob-
jects. Shader objects were promoted from the GL ARB shader objects exten-
sion.

L.1.2 Shader Programs

Vertex and fragment shader programs may be written in the high-level OpenGL
Shading Language, replacing fixed-functionality vertex and fragment process-
ing respectively. Vertex and fragment shader programs were promoted from the
GL ARB vertex shader and GL ARB fragment shader extensions.

445

L.2. MULTIPLE RENDER TARGETS 446

L.1.3 OpenGL Shading Language

The OpenGL Shading Language is a high-level, C-like language used to program
the vertex and fragment pipelines. The Shading Language Specification defines
the language proper, while OpenGL API features control how vertex and fragment
programs interact with the fixed-function OpenGL pipeline and how applications
manage those programs.

OpenGL 2.0 implementations must support at least revision 1.10
of the OpenGL Shading Language. Implementations may query the
SHADING LANGUAGE VERSION string to determine the exact version of the
language supported. The OpenGL Shading Language was promoted from the
GL ARB shading language 100 extension (the shading language itself is
specified in a companion document; due to the way it’s written, that document did
not need to be changed as a consequence of promoting programmable shading to
the OpenGL core).

L.1.4 Changes To Shader APIs

Small changes to the APIs for managing shader and program objects were made
in the process of promoting the shader extensions to the OpenGL 2.0 core. These
changes do not affect the functionality of the shader APIs, but include use of the
existing uint core GL type rather than the new handleARB type introduced by
the extensions, and changes in some function names, for example mapping the ex-
tension function CreateShaderObjectARB into the core function CreateShader.

L.2 Multiple Render Targets

Programmable shaders may write different colors to multiple output color
buffers in a single pass. Multiple render targets was promoted from the
GL ARB draw buffers extension.

L.3 Non-Power-Of-Two Textures

The restriction of textures to power-of-two dimensions has been relaxed for
all texture targets, so that non-power-of-two textures may be specified with-
out generating errors. Non-power-of-two textures was promoted from the
GL ARB texture non power of two extension.

Version 3.0 (September 23, 2008)

L.4. POINT SPRITES 447

L.4 Point Sprites

Point sprites replace point texture coordinates with texture coordinates interpolated
across the point. This allows drawing points as customized textures, useful for
particle systems.

Point sprites were promoted from the GL ARB point sprite extension, with
the further addition of the POINT SPRITE COORD ORIGIN parameter controlling
the direction in which the t texture coordinate increases.

L.5 Separate Blend Equation

Blending capability is extended with BlendEquationSeparate to allow indepen-
dent setting of the RGB and alpha blend equations for blend operations.

Separate blend functions was pro-
moted from the GL EXT blend equation separate extension. Note that blend
equation LOGIC OP is not supported unless the GL EXT blend logic op exten-
sion is supported; LOGIC OP was inadvertently included in the initial release of the
OpenGL 2.0 Specification.

L.6 Separate Stencil

Separate stencil functionality may be defined for the front and back faces of primi-
tives, improving performance of shadow volume and Constructive Solid Geometry
rendering algorithms.

Separate stencil was based on the the
API of the GL ATI separate stencil extension, with additional state defined
by the similar GL EXT stencil two side extension.

L.7 Other Changes

Several minor revisions and corrections to the OpenGL 1.5 specification were
made:

• In section 2.7, SecondaryColor3 was changed to set A to 1.0 (previously
0.0), so the initial GL state can be restored.

• In section 2.18, transformation was added to the list of steps not performed
by WindowPos.

Version 3.0 (September 23, 2008)

L.7. OTHER CHANGES 448

• Section 3.9.1 was clarified to mandate that selection of texture internal for-
mat must allocate a non-zero number of bits for all components named by
the internal format, and zero bits for all other components.

• Tables 3.24 and 3.25 were generalized to multiple textures by replacing Cf

with Cp.

• In section 6.1.9, GetHistogram was clarified to note that the Final Conver-
sion pixel storage mode is not applied when storing histogram counts.

• The FOG COORD ARRAY BUFFER BINDING enumerant alias was added to ta-
ble K.1.

After the initial version of the OpenGL 2.0 was released, several more minor
corrections were made in the specification revision approved on October 22, 2004:

• Corrected name of the fog source from FOG COORD SRC to FOG COORD in
section 2.18.

• Corrected last parameter type in the declaration of the UniformMatrix*
commands to const float *value, in section 2.20.3.

• Changed the end of the second paragraph of the Conversion to Fragments
subsection of section 3.7.4, to more clearly describe the set of generated
fragments.

• Changed from the older FOG COORDINATE to the newer FOG COORD notation
in section 3.11.

• Added POINT SPRITE COORD ORIGIN state to table 6.16.

• Changed the description of MAX TEXTURE UNITS in table 6.48 to reflect its
legacy status (referring to the number of fixed-function texture units), and
moved it into table 6.49.

• Removed duplicated table entries for MAX TEXTURE IMAGE UNITS and
MAX TEXTURE COORDS from table 6.49.

• Added Victor Vedovato to the OpenGL 2.0 Acknowledgements section.

• Miscellaneous typographical corrections.

Additional minor corrections were made in the specification revision approved
on February 9, 2005:

Version 3.0 (September 23, 2008)

L.8. ACKNOWLEDGEMENTS 449

• Restored missing language from the depth texture extension in section 6.1.4,
allowing DEPTH COMPONENT as a format for texture readbacks.

• Added separate blend equation to the feature list in appendix L. The feature
has been in the actual OpenGL 2.0 specification all along, but was omitted
from the feature list in the initial specification release.

• Removed LOGIC OP from the allowed blend equations in section 4.1.8 and
table 4.1, and adjusted the type of the blend equation state in table 6.25
accordingly.

• Restored missing VERTEX ATTRIB ARRAY BUFFER BINDING state from ta-
ble 6.8.

• Miscellaneous typographical corrections.

L.8 Acknowledgements

OpenGL 2.0 is the result of the contributions of many people. The editors espe-
cially thank the ongoing work of the ARB GL2 working group, led by Bill Licea-
Kane and with specifications edited by John Kessenich and Barthold Lichtenbelt,
in performing work necessary to promote the OpenGL Shading Language to a core
OpenGL feature.

A partial list of other contributors, including the company that they represented
at the time of their contribution, follows:

Kurt Akeley, NVIDIA
Allen Akin
Dave Baldwin, 3Dlabs
Bob Beretta, Apple
Pat Brown, NVIDIA
Matt Craighead, NVIDIA
Suzy Deffeyes, IBM
Ken Dyke, Apple
Cass Everitt, NVIDIA
Steve Glanville, NVIDIA
Michael I. Gold, NVIDIA
Evan Hart, ATI
Phil Huxley, 3Dlabs
Deron Dann Johnson, Sun
John Kessenich, 3Dlabs
Mark Kilgard, NVIDIA

Version 3.0 (September 23, 2008)

L.8. ACKNOWLEDGEMENTS 450

Dale Kirkland, 3Dlabs
Steve Koren, 3Dlabs
Jon Leech, SGI
Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Kent Lin, Intel
Benjamin Lipchak, ATI
Rob Mace, ATI
Michael McCool, U. Waterloo
Jack Middleton, Sun
Jeremy Morris, 3Dlabs
Teri Morrison, 3Dlabs
Marc Olano, SGI / U. Maryland
Glenn Ortner, ATI
Brian Paul, Tungsten Graphics
Bimal Poddar, Intel
Phil Rogers, ATI
Ian Romanick, IBM
Randi Rost, 3Dlabs
Jeremy Sandmel, ATI
Folker Schamel, Spinor GMBH
Geoff Stahl, Apple
Eskil Steenberg, Obsession
Neil Trevett, 3Dlabs
Victor Vedovato, ATI
Mik Wells, Softimage
Esen Yilmaz, Intel
Dave Zenz, Dell

Version 3.0 (September 23, 2008)

Appendix M

Version 2.1

OpenGL version 2.1, released on August 2, 2006, is the seventh revision since the
original version 1.0. Despite incrementing the major version number (to indicate
support for high-level programmable shaders), version 2.1 is upward compatible
with earlier versions, meaning that any program that runs with a 2.0, 1.5, 1.4,
1.3, 1.2, 1.1, or 1.0 GL implementation will also run unchanged with a 2.0 GL
implementation.

Following are brief descriptions of each addition to OpenGL 2.1.

M.1 OpenGL Shading Language

OpenGL 2.1 implementations must support at least revision 1.20 of
the OpenGL Shading Language. Implementations may query the
SHADING LANGUAGE VERSION string to determine the exact version of the
language supported. Refer to the OpenGL Shading Language Specification for
details of the changes between revision 1.10 and 1.20.

M.2 Non-Square Matrices

Added the UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv commands in sec-
tion 2.20.3, allowing specification of non-square uniform matrices.

M.3 Pixel Buffer Objects

Pixel buffer objects expand on the interface provided by the vertex buffer objects,
allowing buffer objects to be used with both vertex array and pixel data. This allows

451

M.4. SRGB TEXTURES 452

more acceleration opportunities for OpenGL pixel commands.
When a buffer object is bound to the PIXEL PACK BUFFER target, commands

such as ReadPixels write their data into a buffer object. When a buffer object is
bound to the PIXEL UNPACK BUFFER target, commands such as DrawPixels and
TexImage2D read their data from a buffer object.

Pixel buffer objects was promoted from the GL ARB pixel buffer object

extension. The specification was tightened to consistently require error be gener-
ated when read or write operations to a pixel buffer object would run past the end
of the buffer, or would be misaligned with respect to the data type being read or
written.

M.4 sRGB Textures

New uncompressed and compressed color texture formats with sRGB color com-
ponents are defined. The sRGB color space is based on typical (non-linear) monitor
characteristics expected in a dimly lit office. It has been standardized by the Inter-
national Electrotechnical Commission (IEC) as IEC 61966-2-1. The sRGB color
space roughly corresponds to 2.2 gamma correction.

sRGB textures was promoted from the GL EXT texture sRGB extension.
Specific compressed sRGB internal formats defined by the extension were not in-
cluded in OpenGL 2.1, while the generic uncompressed and compressed formats
were retained.

M.5 Other Changes

Several minor revisions and corrections to the OpenGL 2.0 specification were
made:

• Note that the information log for program objects can include both link and
validation information, in section 2.20.2.

• Noted in section 3.7.4 that there is a current raster secondary color, and added
the CURRENT RASTER SECONDARY COLOR query.

• Required perspective-correct interpolation for
all fragment attributes except depth in sections 3.5.1 and 3.6.1, effectively
making GL PERSPECTIVE CORRECT HINT a no-op.

• Merged specific and generic compressed internal texture format tables into
the single table 3.19.

Version 3.0 (September 23, 2008)

M.5. OTHER CHANGES 453

• Changed the type of texture wrap mode and min/mag filter parameters from
integer to enum in table 3.20.

• Removed mention of compressed texture depth components from sec-
tion 3.9.1, since no compressed depth formats are currently defined.

• Added forward reference from section 3.9.5 to section 3.9.14, which defines
how depth textures are actually used.

• Remove c notation in table 4.1, and fixed blend equations for
FUNC REVERSE SUBTRACT.

• Noted in section 6.1.18 that all texture object parameters are pushed and
popped by PushAttrib and PopAttrib when TEXTURE BIT is set in the at-
tribute mask.

• Miscellaneous typographical corrections.

Additional minor corrections were made in a specification revision approved on
August 10, 2006, with a few additional fixes and omissions corrected on December
1, 2006:

• Noted in section 2.5 that INVALID VALUE is generated for negative
sizeiptr values.

• Noted in section 2.7 that VertexAttrib* can be used to load attributes for
any supported matrix type, not just square matrices.

• Removed the description of generating multiple connected components
when clipping vertices with wc values of different signs, at the end of sec-
tion 2.17. Implementations should not render in the wc < 0 region.

• Added FLOAT MAT2x3, FLOAT MAT2x4, FLOAT MAT3x2, FLOAT MAT3x4,
FLOAT MAT4x2, and FLOAT MAT4x3 tokens for non-square matrix types to
GetActiveAttrib and GetActiveUniform in section 2.20.3, and expanded
the description of how attribute components are mapped to matrix elements
to match.

• Clarified in section 3.9.12 that the texture object passed to BindTexture must
match the specified target, not just the dimensionality of target.

• Added missing TexEnv targets RGB SCALE, ALPHA SCALE, SRCn RGB,
SRCn ALPHA, OPERANDn RGB, and OPERANDn ALPHA in section 3.9.13.

Version 3.0 (September 23, 2008)

M.6. ACKNOWLEDGEMENTS 454

• Noted that POINT SPRITE is a possible env parameter to GetTexEnv in sec-
tion 6.1.3.

• Miscellaneous typographical corrections.

Additional minor corrections (in process) were made after December 1, 2006:

• Corrected spelling of ACTIVE ATTRIBUTE MAX LENGTH in table 6.40.

• Clarified in section 4.1.12 that logical operations are also performed for each
sample when multisampling is active (Khronos internal bug 1022, Bill Licea-
Kane).

• Added missing QUERY RESULT and QUERY RESULT AVAILABLE to state ta-
ble 6.52.

• Specified in section 3.7.3 that floating-point PixelMap entries are clamped
to the range [0, 1] when specified (bug 3379, Mark Kilgard).

• Corrected description of type of TEXTURE MIN LOD and TEXTURE MAX LOD

in section 3.9.11 (bug 2861, Bill Licea-Kane).

• Changed number of sets of texture state from two to four in section 3.9.11
(bug 2862, Bill Licea-Kane).

• Specified in section 5.4 that floating-point offsets to CallLists are truncated
towards negative infinity (bug 3379, Mark Kilgard).

• Specified that the data conversion rules for integer queries of floating-point
state defined in section 6.1.2 also apply to the enumerated queries in sec-
tion 6.1.3 (bug 3379, Mark Kilgard).

• Removed DRAW BUFFER state from table 6.26 and added descriptions of
DRAW BUFFERi and DRAW BUFFER in section 4.2.1 (bug 1029, Jeff Juliano).

M.6 Acknowledgements

OpenGL 2.1 is the result of the contributions of many people. The editor especially
thanks the ongoing work of the ARB GLSL working group, led by Bill Licea-Kane
and with specifications edited by John Kessenich and Barthold Lichtenbelt, in up-
dating the OpenGL Shading Language to revision 1.20. Ralf Biermann, Derek Cor-
nish, Matt Craighead, and Mark Kilgard edited the EXT pixel buffer object

Version 3.0 (September 23, 2008)

M.6. ACKNOWLEDGEMENTS 455

proposal later adopted and developed by the ARB Pixel Buffer Object working
group, and Mark Kilgard edited the EXT texture sRGB extension.

A partial list of other contributors, including the company that they represented
at the time of their contribution, follows:

Aaftab Munshi, ATI
Avi Shapira, Graphic Remedy
Barthold Lichtenbelt, 3Dlabs / NVIDIA
Benjamin Lipchak, ATI
Benji Bowman, Imagination Technologies
Bill Armstrong, Evans and Sutherland
Bill Licea-Kane, ATI
Bimal Poddar, Intel
Bob Beretta, Apple
Brian Paul, Tungsten Graphics
Cass Everitt, NVIDIA
Chris Dodd, NVIDIA
Chris Starkey, 3Dlabs
Dale Kirkland, 3Dlabs
Daniel Vogel, Epic Games
Dave Shreiner, SGI
Derek Cornish, NVIDIA
Eskil Steenberg, Obsession
Evan Hart, ATI
Folker Schamel, Spinor GMBH
Geoff Stahl, Apple
Howard Miller, Apple
Ian Romanick, IBM
James A. McCombe, Apple
Jeff Juliano, NVIDIA
Jeff Weyman, ATI
Jeremy Sandmel, Apple / ATI
John Kessenich, 3Dlabs / Intel
John Rosasco, Apple
John Scott
Jon Leech, SGI / Independent
Jon Trulson, Xi Graphics
Ken Severson, NVIDIA
Kenneth Dyke, Apple
Kenneth Russell, Sun
Kent Lin, Intel

Version 3.0 (September 23, 2008)

M.6. ACKNOWLEDGEMENTS 456

Marc Olano, U. Maryland
Mark Kilgard, NVIDIA
Michael Gold, NVIDIA
Neeraj Srivastava, Dell
Neil Trevett, 3Dlabs / NVIDIA
Nick Burns, Apple
Pat Brown, NVIDIA
Paul Martz, SimAuthor
Paul Ramsey, Sun
Pierre Boudier, ATI
Ralf Biermann, NVIDIA
Randi Rost, 3Dlabs
Rob Mace, ATI
Robert Simpson, Bitboys / ATI
Saifuddin Fakhruddin, Intel
Shawn Underwood, SGI
Steve Demlow, Vital Images
Steve Koren, 3Dlabs
Steven Zhu, Intel
Thomas Roell, NVIDIA
Tom Lanzoni, Dell
Travis Bryson, Sun
Yaki Tebeka, Graphic Remedy

Version 3.0 (September 23, 2008)

Appendix N

Version 3.0

OpenGL version 3.0, released on August 11, 2008, is the eighth revision since
the original version 1.0. When using a full 3.0 context, OpenGL 3.0 is upward
compatible with earlier versions, meaning that any program that runs with a 2.1 or
earlier GL implementation will also run unchanged with a 3.0 GL implementation.
OpenGL 3.0 context creation is done using a window system binding API, and
on most platforms a new command, defined by extensions introduced along with
OpenGL 3.0, must be called to create a 3.0 context. Calling the older context
creation commands will return an OpenGL 2.1 context. When using a forward
compatible context, many OpenGL 2.1 features are not supported.

Following are brief descriptions of changes and additions to OpenGL 3.0.

N.1 New Features

New features in OpenGL 3.0, including the extension or extensions if any on which
they were based, include:

• API support for the new texture lookup, texture format, and integer and un-
signed integer capabilities of the OpenGL Shading Language 1.30 specifica-
tion (GL EXT gpu shader4).

• Conditional rendering (GL NV conditional render).

• Fine control over mapping buffer subranges into client space and flushing
modified data (GL APPLE flush buffer range).

• Floating-point color and depth internal formats for textures and renderbuffers
(GL ARB color buffer float, GL NV depth buffer float,

457

N.2. DEPRECATION MODEL 458

GL ARB texture float, GL EXT packed float, and
GL EXT texture shared exponent).

• Framebuffer objects (GL EXT framebuffer object).

• Half-float (16-bit) vertex array and pixel data formats
(GL NV half float and GL ARB half float pixel).

• Multisample stretch blit functionality (GL EXT framebuffer multisample
and GL EXT framebuffer blit).

• Non-normalized integer color internal formats for textures and renderbuffers
(GL EXT texture integer).

• One- and two-dimensional layered texture targets
(GL EXT texture array).

• Packed depth/stencil internal formats for combined depth+stencil textures
and renderbuffers (GL EXT packed depth stencil).

• Per-color-attachment blend enables and color writemasks
(GL EXT draw buffers2).

• RGTC specific internal compressed formats
(GL EXT texture compression rgtc).

• Single- and double-channel (R and RG) internal formats for textures and ren-
derbuffers.

• Transform feedback (GL EXT transform feedback).

• Vertex array objects (GL APPLE vertex array object).

• sRGB framebuffer mode (GL EXT framebuffer sRGB)

N.2 Deprecation Model

OpenGL 3.0 introduces a deprecation model in which certain features may be
marked as deprecated. The deprecation model is described in detail in appendix E,
together with a summary of features deprecated in OpenGL 3.0.

Version 3.0 (September 23, 2008)

N.3. CHANGED TOKENS 459

New Token Name Old Token Name
COMPARE REF TO TEXTURE COMPARE R TO TEXTURE

MAX VARYING COMPONENTS MAX VARYING FLOATS

MAX CLIP DISTANCES MAX CLIP PLANES

CLIP DISTANCEi CLIP PLANEi

Table N.1: New token names and the old names they replace.

N.3 Changed Tokens

New token names are introduced to be used in place of old, inconsistent names.
However, the old token names continue to be supported, for backwards compati-
bility with code written for previous versions of OpenGL. The new names, and the
old names they replace, are shown in table N.1.

N.4 Change Log

Minor corrections to the OpenGL 3.0 Specification were made after its initial re-
lease.

Changes in the draft of September 23, 2008:

• Changed ClearBuffer* in section 4.2.3 to use DEPTH and STENCIL

buffer names. Changed GetFramebufferAttachmentParameteriv in sec-
tion 6.1.16 to accept only DEPTH and STENCIL to identify default
framebuffer depth and stencil buffers, and only DEPTH ATTACHMENT and
STENCIL ATTACMENT to identify framebuffer object depth and stencil
buffers (bug 3744).

Changes in the draft of September 18, 2008:

• Added missing close-brace to ArrayElement pseudocode in section 2.8
(bug 3897).

• Noted in section 2.13 that BeginQuery will generate
an INVALID OPERATION error when called with an existing query object
name whose type does not match the specified target (bug 3712).

• Add description of gl ClipDistance to shader outputs in section 2.20.4
and note that only one of gl ClipVertex and gl ClipDistance should
be written by a shader (bug 3898).

Version 3.0 (September 23, 2008)

N.4. CHANGE LOG 460

• Changed ClearBuffer* in section 4.2.3 to indirect through the draw
buffer state by specifying the buffer type and draw buffer number, rather
than the attachment name; also changed to accept DEPTH BUFFER /
DEPTH ATTACHMENT and STENCIL BUFFER / STENCIL ATTACHMENT in-
terchangeably, to reduce inconsistency between clearing the default frame-
buffer and framebuffer objects. Likewise changed GetFramebuffer-
AttachmentParameteriv in section 6.1.16 to accept DEPTH BUFFER /
DEPTH ATTACHMENT and STENCIL BUFFER / STENCIL ATTACMENT inter-
changeably (bug 3744).

• Add proper type suffix to query commands in tables 6.8 and 6.42 (Mark
Kilgard).

• Update deprecation list in section E.1 to itemize deprecated state for two-
sided color selection and include per-texture-unit LOD bias (bug 3735).

Changes in the draft of August 28, 2008:

• Sections 2.9, 2.9.1; tables 2.6, 2.7, and 6.11 - move buffer map/unmap calls
into their own subsection and rewrite MapBuffer in terms of MapBuffer-
Range. Add buffer state BUFFER ACCESS FLAGS, BUFFER MAP OFFSET,
BUFFER MAP LENGTH. Make MapBuffer and MapBufferRange errors con-
sistent (bug 3601).

• Section 2.10 - Extend INVALID OPERATION error to any array pointer-
setting command called to specify a client array while a vertex array object
is bound, not just VertexAttrib*Pointer (bug 3696).

• Sections 2.12.1, 4.1.2, 4.2.1, and 4.3.4 - define initial state when a context is
bound with no default framebuffer - null viewport and scissor region, draw
buffer = read buffer = NONE, max viewport dims = max(display size - if any,
max renderbuffer size). Viewport/scissor language added to the GLX and
WGL create context extension specs as well (bug 2941).

• Section 2.15 - define “word-aligned” to be a multiple of 4 (e.g. 32 bits) (bug
3624).

• Section 5.5 - add MapBufferRange and FlushBufferRange to commands
not compiled in display lists (bug 3704).

• Section 6.1.13 - Moved GetBufferParameteriv query from section 6.1.3
and changed formal argument specifying the parameter name from value to
pname (side effect of bug 3697).

Version 3.0 (September 23, 2008)

N.5. CREDITS AND ACKNOWLEDGEMENTS 461

• Section 6.1.16 - Moved GetFramebufferAttachmentiv query from sec-
tion 6.1.3. Querying framebuffer attachment parameters other than object
type and name when no attachment is present is an INVALID ENUM error.
Querying texture parameters (level, cube map face, or layer) for a render-
buffer attachment is also an INVALID ENUM error (note that this was allowed
in previous versions of the extension but the return values were not specified;
it should clearly be an error as are other parameters that don’t exist for the
type of attachment present). Also reorganized the description of this com-
mand quite a bit to improve readability and remove redundancy and internal
inconsistencies (bug 3697).

• Section 6.1.17 - Moved GetRenderbufferParameteriv query from sec-
tion 6.1.3 (side effect of bug 3697).

• Appendix D.1 - add language to clarify that attachments to an object affect
its reference count, and that object storage doesn’t go away until there are no
references remaining (bug 3725).

• Appendix E.1 - remove TEXTURE BORDER COLOR and CLAMP TO BORDER

mode from the deprecated feature list; they were put in by accident (bug
3750).

• Appendix N - Cite EXT texture array instead of
EXT geometry shader4 as the source of 1D/2D array texture
functionality. Fix a typo. Add change log relative to initial 3.0 spec
release.

N.5 Credits and Acknowledgements

OpenGL 3.0 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ARB Working Group during the development
of OpenGL 3.0, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed to-
gether with their name, including specific functionality developed in the form of
new ARB extensions together with OpenGL 3.0. In addition, many people partic-
ipated in developing earlier vendor and EXT extensions on which the OpenGL 3.0
functionality is based in part; those individuals are listed in the respective extension
specifications in the OpenGL Extension Registry.

Aaftab Munshi, Apple
Alain Bouchard, Matrox

Version 3.0 (September 23, 2008)

N.5. CREDITS AND ACKNOWLEDGEMENTS 462

Alexis Mather, AMD (Chair, ARB Marketing TSG)
Andreas Wolf, AMD
Avi Shapira, Graphic Remedy
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Benjamin Lipchak, AMD
Benji Bowman, Imagination Technologies
Bill Licea-Kane, AMD (Chair, ARB Shading Language TSG)
Bob Beretta, Apple
Brent Insko, Intel
Brian Paul, Tungsten Graphics
Bruce Merry, ARM (Detailed specification review)
Cass Everitt, NVIDIA
Chris Dodd, NVIDIA
Daniel Horowitz, NVIDIA
Daniel Koch, Transgaming (Framebuffer objects, half float vertex formats, and

instanced rendering)
Daniel Omachi, Apple
Dave Shreiner, ARM
Eric Boumaour, AMD
Eskil Steenberg, Obsession
Evan Hart, NVIDIA
Folker Schamel, Spinor GMBH
Gavriel State, Transgaming
Geoff Stahl, Apple
Georg Kolling, Imagination Technologies
Gregory Prisament, NVIDIA
Guillaume Portier, HI Corp
Ian Romanick, IBM / Intel (Vertex array objects; GLX protocol)
James Helferty, Transgaming (Instanced rendering)
James Jones, NVIDIA
Jamie Gennis, NVIDIA
Jason Green, Transgaming
Jeff Bolz, NVIDIA
Jeff Juliano, NVIDIA
Jeremy Sandmel, Apple (Chair, ARB Nextgen (OpenGL 3.0) TSG)
John Kessenich, Intel (OpenGL Shading Language Specification Editor; depre-

cation model)
John Rosasco, Apple
Jon Leech, Independent (Chair, ARB Ecosystem TSG; OpenGL API Specifica-

tion Editor; R/RG image formats and new context creation APIs)

Version 3.0 (September 23, 2008)

N.5. CREDITS AND ACKNOWLEDGEMENTS 463

Marc Olano, U. Maryland
Mark Callow, HI Corp
Mark Kilgard, NVIDIA (Many extensions on which OpenGL 3.0 features were

based)
Matti Paavola, Nokia
Michael Gold, NVIDIA (Framebuffer objects and instanced rendering)
Neil Trevett, NVIDIA (President, Khronos Group)
Nick Burns, Apple
Nick Haemel, AMD
Pat Brown, NVIDIA (Many extensions on which OpenGL 3.0 features were

based; detailed specification review)
Paul Martz, SimAuthor
Paul Ramsey, Sun
Pierre Boudier, AMD (Floating-point depth buffers)
Rob Barris, Blizzard (Framebuffer object and map buffer range)
Robert Palmer, Symbian
Robert Simpson, AMD
Steve Demlow, Vital Images
Thomas Roell, NVIDIA
Timo Suoranta, Futuremark
Tom Longo, AMD
Tom Olson, TI (Chair, Khronos OpenGL ES Working Group)
Travis Bryson, Sun
Yaki Tebeka, Graphic Remedy
Yanjun Zhang, S3 Graphics
Zack Rusin, Tungsten Graphics

The ARB gratefully acknowledges administrative support by the members of
Gold Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Freder-
icks, and Michelle Clark, and technical support from James Riordon, webmaster
of Khronos.org and OpenGL.org.

Version 3.0 (September 23, 2008)

Appendix O

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are described in this chapter. These extensions are not required to be
supported by a conformant OpenGL implementation, but are expected to be widely
available; they define functionality that is likely to move into the required feature
set in a future revision of the specification.

In order not to compromise the readability of the core specification, ARB ex-
tensions are not integrated into the core language; instead, they are made available
online in the OpenGL Extension Registry (as are a much larger number of vendor-
specific extensions, as well as extensions to window system binding APIs, such as
GLX and WGL). Extensions are documented as changes to the Specification. The
Registry is available on the World Wide Web at URL

http://www.opengl.org/registry/

Brief descriptions of ARB extensions are provided below.

O.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

• A unique name string of the form "GL ARB name" is associated with each
extension. If the extension is supported by an implementation, this string
will be present in the EXTENSIONS string described in section 6.1.11.

• All functions defined by the extension will have names of the form Func-
tionARB

464

http://www.opengl.org/registry/

O.2. PROMOTING EXTENSIONS TO CORE FEATURES 465

• All enumerants defined by the extension will have names of the form
NAME ARB.

• In additional to OpenGL extensions, there are also ARB extensions to the
related GLX and WGL APIs. Such extensions have name strings prefixed by
"GLX " and "WGL " respectively. Not all GLX and WGL ARB extensions
are described here, but all such extensions are included in the registry.

O.2 Promoting Extensions to Core Features

ARB extensions can be promoted to required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have the ARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in the EXTENSIONS string, and continue to support
the ARB-affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
beyond, see appendices I, J, K, and L respectively.

O.3 Multitexture

The name string for multitexture is GL ARB multitexture. It was promoted to a
core feature in OpenGL 1.3.

O.4 Transpose Matrix

The name string for transpose matrix is GL ARB transpose matrix. It was pro-
moted to a core feature in OpenGL 1.3.

O.5 Multisample

The name string for multisample is GL ARB multisample. It was promoted to a
core feature in OpenGL 1.3.

Version 3.0 (September 23, 2008)

O.6. TEXTURE ADD ENVIRONMENT MODE 466

O.6 Texture Add Environment Mode

The name string for texture add mode is GL ARB texture env add. It was pro-
moted to a core feature in OpenGL 1.3.

O.7 Cube Map Textures

The name string for cube mapping is GL ARB texture cube map. It was pro-
moted to a core feature in OpenGL 1.3.

O.8 Compressed Textures

The name string for compressed textures is GL ARB texture compression. It
was promoted to a core feature in OpenGL 1.3.

O.9 Texture Border Clamp

The name string for texture border clamp is GL ARB texture border clamp. It
was promoted to a core feature in OpenGL 1.3.

O.10 Point Parameters

The name string for point parameters is GL ARB point parameters. It was pro-
moted to a core features in OpenGL 1.4.

O.11 Vertex Blend

Vertex blending replaces the single model-view transformation with multiple ver-
tex units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the model-view matrices.

The name string for vertex blend is GL ARB vertex blend.

Version 3.0 (September 23, 2008)

O.12. MATRIX PALETTE 467

O.12 Matrix Palette

Matrix palette extends vertex blending to include a palette of model-view matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette is GL ARB matrix palette.

O.13 Texture Combine Environment Mode

The name string for texture combine mode is GL ARB texture env combine. It
was promoted to a core feature in OpenGL 1.3.

O.14 Texture Crossbar Environment Mode

The name string for texture crossbar is GL ARB texture env crossbar. It was
promoted to a core features in OpenGL 1.4.

O.15 Texture Dot3 Environment Mode

The name string for DOT3 is GL ARB texture env dot3. It was promoted to a
core feature in OpenGL 1.3.

O.16 Texture Mirrored Repeat

The name string for texture mirrored repeat is
GL ARB texture mirrored repeat. It was promoted to a core feature in
OpenGL 1.4.

O.17 Depth Texture

The name string for depth texture is GL ARB depth texture. It was promoted to
a core feature in OpenGL 1.4.

O.18 Shadow

The name string for shadow is GL ARB shadow. It was promoted to a core feature
in OpenGL 1.4.

Version 3.0 (September 23, 2008)

O.19. SHADOW AMBIENT 468

O.19 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by the TEXTURE COMPARE FAIL VALUE ARB texture pa-
rameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambient is GL ARB shadow ambient.

O.20 Window Raster Position

The name string for window raster position is GL ARB window pos. It was pro-
moted to a core feature in OpenGL 1.4.

O.21 Low-Level Vertex Programming

Application-defined vertex programs may be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipelines that will be
fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programming is
GL ARB vertex program.

O.22 Low-Level Fragment Programming

Application-defined fragment programs may be specified in the same low-level lan-
guage as GL ARB vertex program, replacing the standard fixed-function vertex
texturing, fog, and color sum operations.

The name string for low-level fragment programming is
GL ARB fragment program.

O.23 Buffer Objects

The name string for buffer objects is GL ARB vertex buffer object. It was
promoted to a core feature in OpenGL 1.5.

Version 3.0 (September 23, 2008)

O.24. OCCLUSION QUERIES 469

O.24 Occlusion Queries

The name string for occlusion queries is GL ARB occlusion query. It was pro-
moted to a core feature in OpenGL 1.5.

O.25 Shader Objects

The name string for shader objects is GL ARB shader objects. It was promoted
to a core feature in OpenGL 2.0.

O.26 High-Level Vertex Programming

The name string for high-level vertex programming is GL ARB vertex shader.
It was promoted to a core feature in OpenGL 2.0.

O.27 High-Level Fragment Programming

The name string for high-level fragment
programming is GL ARB fragment shader. It was promoted to a core feature
in OpenGL 2.0.

O.28 OpenGL Shading Language

The name string for the OpenGL Shading Language is
GL ARB shading language 100. The presence of this extension string in-
dicates that programs written in version 1 of the Shading Language are accepted
by OpenGL.

It was promoted to a core feature in OpenGL 2.0.

O.29 Non-Power-Of-Two Textures

The name string for non-power-of-two textures is
GL ARB texture non power of two. It was promoted to a core feature in
OpenGL 2.0.

Version 3.0 (September 23, 2008)

O.30. POINT SPRITES 470

O.30 Point Sprites

The name string for point sprites is GL ARB point sprite. It was promoted to a
core feature in OpenGL 2.0.

O.31 Fragment Program Shadow

Fragment program shadow extends low-level fragment programs defined with
GL ARB fragment program to add shadow 1D, 2D, and 3D texture targets, and
remove the interaction with GL ARB shadow.

The name string for fragment program shadow is
GL ARB fragment program shadow.

O.32 Multiple Render Targets

The name string for multiple render targets is GL ARB draw buffers. It was
promoted to a core feature in OpenGL 2.0.

O.33 Rectangular Textures

Rectangular textures define a new texture target TEXTURE RECTANGLE ARB that
supports 2D textures without requiring power-of-two dimensions. Rectangular
textures are useful for storing video images that do not have power-of-two sizes
(POTS). Resampling artifacts are avoided and less texture memory may be re-
quired. They are are also useful for shadow maps and window-space texturing.
These textures are accessed by dimension-dependent (aka non-normalized) texture
coordinates.

Rectangular textures are a restricted version of non-power-of-two textures. The
differences are that rectangular textures are supported only for 2D; they require a
new texture target; and the new target uses non-normalizes texture coordinates

The name string for texture rectangles is GL ARB texture rectangle.

O.34 Floating-Point Color Buffers

Floating-point color buffers can represent values outside the normal [0, 1] range
of colors in the fixed-function OpenGL pipeline. This group of related exten-
sions enables controlling clamping of vertex colors, fragment colors throughout the
pipeline, and pixel data read back to client memory, and also includes WGL and

Version 3.0 (September 23, 2008)

O.35. HALF-PRECISION FLOATING POINT 471

GLX extensions for creating frame buffers with floating-point color components
(referred to in GLX as framebuffer configurations, and in WGL as pixel formats).

The name strings for floating-point color buffers are
GL ARB color buffer float, GLX ARB fbconfig float, and
WGL ARB pixel format float.

O.35 Half-Precision Floating Point

This extension defines the representation of a 16-bit floating point data format, and
a corresponding type argument which may be used to specify and read back pixel
and texture images stored in this format in client memory. Half-precision floats are
smaller than full precision floats, but provide a larger dynamic range than similarly
sized (short) data types.

The name string for half-precision floating point is
GL ARB half float pixel.

O.36 Floating-Point Textures

Floating-point textures stored in both 32- and 16-bit formats may be defined using
new internalformat arguments to commands which specify and read back texture
images.

The name string for floating-point textures is GL ARB texture float.

O.37 Pixel Buffer Objects

The buffer object interface is expanded by adding two new binding targets for
buffer objects, the pixel pack and unpack buffers. This permits buffer objects to be
used to store pixel data as well as vertex array data. Pixel-drawing and -reading
commands using data in pixel buffer objects may operate at greatly improved per-
formance compared to data in client memory.

The name string for pixel buffer objects is GL ARB pixel buffer object. It
was promoted to a core feature in OpenGL 2.1.

Version 3.0 (September 23, 2008)

Index

x BIAS, 139, 373
x SCALE, 139, 373
2D, 307, 308, 392
2 BYTES, 310
3D, 307, 308
3D COLOR, 307, 308
3D COLOR TEXTURE, 307, 308
3 BYTES, 310
4D COLOR TEXTURE, 307, 308
4 BYTES, 310

1, 178, 192, 193, 215, 322, 359
2, 178, 192, 193, 322, 359
3, 178, 192, 193, 322, 359
4, 178, 192, 193, 322

ACCUM, 265
Accum, 63, 114, 264, 265, 409
ACCUM * BITS, 409
ACCUM ALPHA BITS, 281
ACCUM BLUE BITS, 281
ACCUM BUFFER BIT, 261, 341, 409
ACCUM GREEN BITS, 281
ACCUM RED BITS, 281
ACTIVE ATTRIBUTE MAX LENGTH,

94, 333, 454
ACTIVE ATTRIBUTES, 94, 333
ACTIVE TEXTURE, 25, 56, 71, 219,

299, 317
ACTIVE UNIFORM MAX LENGTH,

98, 333
ACTIVE UNIFORMS, 97, 333
ActiveTexture, 56, 101, 228
ADD, 220, 222, 223, 265, 427
ADD SIGNED, 223
ALL ATTRIB BITS, 339, 341, 410

ALPHA, 139, 153, 166, 167, 179, 182,
186, 202, 203, 220–222, 225,
251, 270, 272, 291, 321, 322,
361, 369, 373, 374, 376, 391,
408, 412, 418

ALPHA12, 182
ALPHA16, 182
ALPHA4, 182
ALPHA8, 180, 182
ALPHA BIAS, 164
ALPHA BITS, 295, 409
ALPHA INTEGER, 153
ALPHA SCALE, 164, 220, 453
ALPHA TEST, 244, 409
AlphaFunc, 244, 409
ALWAYS, 202, 226, 244–246, 364
AMBIENT, 82, 84
AMBIENT AND DIFFUSE, 82, 84
AND, 254
AND INVERTED, 254
AND REVERSE, 254
Antialiasing, 129
AreTexturesResident, 218, 311, 409
ARRAY BUFFER, 38, 40–42, 45–48,

330, 331
ARRAY BUFFER BINDING, 46
ArrayElement, 24, 32–34, 46, 107, 309,

459
ATTACHED SHADERS, 333
AttachShader, 91, 312
AUTO NORMAL, 104, 300
AUXi, 256–258, 336
AUX0, 256
AUX BUFFERS, 256, 281

BACK, 81, 83, 84, 130, 131, 133, 245,

472

INDEX 473

248, 256, 257, 259–261, 263,
269, 278, 318, 357, 407

BACK LEFT, 257, 258, 336
BACK RIGHT, 257, 258, 336
Begin, 16, 19–24, 33, 34, 49, 63, 65,

81, 84, 87, 109, 123, 127, 130,
133, 235, 294, 295, 301, 302,
307, 406

BeginConditionalRender, 63, 64
BeginQuery, 62, 67, 246, 459
BeginTransformFeedback, 64–67
BGR, 153, 270, 272, 321
BGR INTEGER, 153
BGRA, 153, 156, 160, 270, 321, 416
BGRA INTEGER, 153
BindAttribLocation, 95, 312
BindBuffer, 38, 47, 65, 311
BindBufferBase, 65, 67, 311
BindBufferRange, 65–67, 311
BindFragDataLocation, 236, 237, 312
BindFramebuffer, 279–281, 293, 311
BindRenderbuffer, 282, 283, 311
BindTexture, 56, 101, 217, 218, 453
BindVertexArray, 48, 311
BITMAP, 132, 141, 144, 151, 152, 161,

174, 272, 323
Bitmap, 63, 114, 174, 235, 408
BITMAP TOKEN, 308
BLEND, 220, 222, 248, 250, 253
BlendColor, 250, 434
BlendEquation, 248, 434
BlendEquationSeparate, 248, 447
BlendFunc, 249, 434
BlendFuncSeparate, 249, 435
BlitFramebuffer, 276–278, 312
BLUE, 139, 153, 270, 272, 321, 361,

369, 373, 374, 376, 391
BLUE BIAS, 164
BLUE BITS, 295, 409
BLUE INTEGER, 153
BLUE SCALE, 164
BOOL, 98
BOOL VEC2, 98
BOOL VEC3, 98
BOOL VEC4, 98

BUFFER ACCESS, 39, 41, 44
BUFFER ACCESS FLAGS, 39, 41, 44,

45, 460
BUFFER MAP LENGTH, 39, 41, 44,

45, 460
BUFFER MAP OFFSET, 39, 41, 44, 45,

460
BUFFER MAP POINTER, 39, 41, 44,

45, 330, 331
BUFFER MAPPED, 39, 41, 44, 45
BUFFER SIZE, 39, 41, 42, 44, 65
BUFFER USAGE, 39, 41, 43
BufferData, 40, 41, 311
BufferSubData, 41, 311
bvec2, 100
BYTE, 29, 152, 272, 273, 310

C3F V3F, 36, 37
C4F N3F V3F, 36, 37
C4UB V2F, 36, 37
C4UB V3F, 36, 37
CallList, 24, 309, 310, 409
CallLists, 24, 310, 409, 454
CCW, 80, 357
CheckFramebufferStatus, 293, 294, 311
CLAMP, 202, 206, 207, 408
CLAMP FRAGMENT COLOR, 162,

277
CLAMP READ COLOR, 271
CLAMP TO BORDER, 202, 207, 427,

461
CLAMP TO EDGE, 202, 207, 277, 417
CLAMP VERTEX COLOR, 86
ClampColor, 86, 162, 407
CLEAR, 254
Clear, 63, 114, 261, 262, 264, 409
ClearAccum, 262, 409
ClearBuffer, 264
ClearBuffer*, 459, 460
ClearBuffer{if ui}v, 263, 264
ClearBufferfi, 263, 264
ClearBufferfv, 263, 264
ClearBufferiv, 263, 264
ClearBufferuiv, 263
ClearColor, 262, 263

Version 3.0 (September 23, 2008)

INDEX 474

ClearDepth, 262–264
ClearIndex, 262
ClearStencil, 262–264
CLIENT ACTIVE TEXTURE, 31, 317
CLIENT ALL ATTRIB BITS, 339,

341, 410
CLIENT PIXEL STORE BIT, 341
CLIENT VERTEX ARRAY BIT, 341
ClientActiveTexture, 24, 31, 311, 406
CLIP DISTANCEi, 459
CLIP PLANEi, 68, 69, 459
CLIP PLANE0, 69
ClipPlane, 68
COEFF, 320
COLOR, 52, 56, 57, 142, 146, 147, 192,

263, 264, 274
Color, 24, 26, 63, 73, 84, 88, 93
Color*, 406
Color3, 26
Color4, 26
Color[size][type]v, 32
COLOR ARRAY, 31, 36
COLOR ARRAY POINTER, 327
COLOR ATTACHMENTi, 256, 257,

269, 286, 292
COLOR ATTACHMENTm, 256, 259
COLOR ATTACHMENTn, 281
COLOR ATTACHMENT0, 256, 259,

269, 280
COLOR BUFFER BIT, 261, 264, 276,

277, 341
COLOR INDEX, 132, 141, 144, 151,

153, 165, 174, 270, 274, 321,
323, 406

COLOR INDEXES, 82, 85
COLOR LOGIC OP, 253
COLOR MATERIAL, 84, 407
COLOR MATRIX, 323
COLOR MATRIX STACK DEPTH,

323
COLOR SUM, 228, 230, 409
COLOR TABLE, 141, 144, 166
COLOR TABLE ALPHA SIZE, 324
COLOR TABLE BIAS, 141, 142, 324
COLOR TABLE BLUE SIZE, 324

COLOR TABLE FORMAT, 324
COLOR TABLE GREEN SIZE, 324
COLOR TABLE INTENSITY SIZE,

324
COLOR TABLE LUMINANCE SIZE,

324
COLOR TABLE RED SIZE, 324
COLOR TABLE SCALE, 141, 142, 324
COLOR TABLE WIDTH, 324
COLOR WRITEMASK, 260
ColorMask, 260, 261
ColorMaski, 260
ColorMaterial, 83, 84, 300, 398, 407,

414
ColorPointer, 24, 29, 30, 36, 311, 406
ColorSubTable, 137, 143
ColorTable, 137, 141–144, 148, 149,

171, 172, 312
ColorTableParameter, 142
ColorTableParameterfv, 141
Colorub, 88
Colorui, 88
Colorus, 88
COMBINE, 220, 223, 228, 427, 435
COMBINE ALPHA, 220, 223, 224
COMBINE RGB, 220, 223, 224
COMPARE R TO TEXTURE, 459
COMPARE REF TO TEXTURE, 202,

225, 459
COMPILE, 309, 398
COMPILE AND EXECUTE, 309, 310
COMPILE STATUS, 90, 332
CompileShader, 90, 312
COMPRESSED ALPHA, 186
COMPRESSED INTENSITY, 186
COMPRESSED LUMINANCE, 186
COMPRESSED LUMINANCE ALPHA,

186
COMPRESSED RED, 186
COMPRESSED RED RGTC1, 181,

186, 401–403
COMPRESSED RG, 186
COMPRESSED RG RGTC2, 181, 186,

403
COMPRESSED RGB, 186

Version 3.0 (September 23, 2008)

INDEX 475

COMPRESSED RGBA, 186
COMPRESSED SIGNED RED RGTC1,

181, 186, 402, 403
COMPRESSED SIGNED RG RGTC2,

181, 186, 403
COMPRESSED SLUMINANCE, 186,

226
COMPRESSED SLUMINANCE ALPHA,

186, 226
COMPRESSED SRGB, 186, 226
COMPRESSED SRGB ALPHA, 186,

226
COMPRESSED TEXTURE FORMATS,

179
CompressedTexImage, 199
CompressedTexImage*, 293
CompressedTexImage1D, 197–199
CompressedTexImage2D, 197–199
CompressedTexImage3D, 197–199
CompressedTexSubImage1D, 199, 200
CompressedTexSubImage2D, 199, 200
CompressedTexSubImage3D, 199, 200
CONSTANT, 222, 224, 363
CONSTANT ALPHA, 251, 434
CONSTANT ATTENUATION, 82
CONSTANT BORDER, 168, 169
CONSTANT COLOR, 251, 434
CONTEXT FLAG FORWARD COMPATIBLE BIT,

328
CONTEXT FLAGS, 328
CONVOLUTION 1D, 145, 147, 166,

190, 324, 325
CONVOLUTION 2D, 144–146, 166,

189, 324, 325
CONVOLUTION BORDER COLOR,

169, 325
CONVOLUTION BORDER MODE,

168, 325
CONVOLUTION FILTER BIAS, 144–

146, 325
CONVOLUTION FILTER SCALE,

144–147, 325
CONVOLUTION FORMAT, 325
CONVOLUTION HEIGHT, 325
CONVOLUTION WIDTH, 325

ConvolutionFilter1D, 137, 145–147
ConvolutionFilter2D, 137, 144–147
ConvolutionParameter, 145, 168
ConvolutionParameterfv, 144, 145, 169
ConvolutionParameteriv, 146, 169
COORD REPLACE, 119, 122
COPY, 254, 365
COPY INVERTED, 254
COPY PIXEL TOKEN, 308
CopyColorSubTable, 143, 274
CopyColorTable, 142, 143, 274
CopyConvolutionFilter*, 274
CopyConvolutionFilter1D, 146, 147
CopyConvolutionFilter2D, 146, 147
CopyPixels, 63, 114, 136, 138, 142, 146,

147, 166, 192, 266, 274–277,
306

CopyTexImage, 295
CopyTexImage*, 274, 286, 293
CopyTexImage1D, 166, 193, 194, 197,

210
CopyTexImage2D, 166, 192–194, 197,

210
CopyTexImage3D, 194
CopyTexSubImage, 295
CopyTexSubImage*, 197, 201, 274, 286
CopyTexSubImage1D, 166, 193, 194,

196, 197
CopyTexSubImage2D, 166, 193–197
CopyTexSubImage3D, 166, 193, 194,

196, 197
CreateProgram, 91, 312
CreateShader, 89, 312, 446
CreateShaderObjectARB, 446
CULL FACE, 130
CullFace, 130, 131, 135
CURRENT BIT, 341
CURRENT FOG COORD, 441
CURRENT FOG COORDINATE, 441
CURRENT QUERY, 329
CURRENT RASTER SECONDARY COLOR,

452
CURRENT RASTER TEXTURE COORDS,

71, 397
CURRENT TEXTURE COORDS, 25

Version 3.0 (September 23, 2008)

INDEX 476

CURRENT VERTEX ATTRIB, 335
CW, 80

DECAL, 220, 221
DECR, 245
DECR WRAP, 245, 435
DELETE STATUS, 90, 332
DeleteBuffers, 39, 40, 311
DeleteFramebuffers, 280, 281, 311
DeleteLists, 311, 409
DeleteProgram, 92, 312
DeleteQueries, 62, 311
DeleteRenderbuffers, 283, 293, 311
DeleteShader, 90, 312
DeleteTextures, 217, 293, 311
DeleteVertexArrays, 48, 311
DEPTH, 192, 263, 264, 274, 336, 361,

369, 373, 434, 459
DEPTH24 STENCIL8, 181, 185
DEPTH32F STENCIL8, 181, 185
DEPTH ATTACHMENT, 281, 286, 292,

459, 460
DEPTH BIAS, 139, 164
DEPTH BITS, 276, 295, 409
DEPTH BUFFER, 460
DEPTH BUFFER BIT, 261, 264, 276,

277, 341
DEPTH COMPONENT, 107, 141, 144,

151, 153, 178, 179, 185, 225,
227, 234, 268, 270, 274, 276,
291, 321, 323–326, 449

DEPTH COMPONENT16, 181, 185
DEPTH COMPONENT24, 181, 185
DEPTH COMPONENT32, 185
DEPTH COMPONENT32F, 181, 185
DEPTH SCALE, 139, 164
DEPTH STENCIL, 107, 141, 144, 151,

153, 156, 160, 161, 163, 178,
179, 185, 192, 213, 225, 227,
234, 263, 264, 266, 268, 270,
274, 276, 286, 288, 291, 321

DEPTH STENCIL ATTACHMENT,
286, 288, 336

DEPTH TEST, 246

DEPTH TEXTURE MODE, 202, 215,
222, 225, 408

DepthFunc, 246
DepthMask, 260, 261, 266
DepthRange, 51, 73, 316, 398
DepthTest, 266
DetachShader, 91, 312
dFdx, 314
dFdy, 314
DIFFUSE, 82, 84
Disable, 56, 57, 61, 69, 75, 80, 81, 84,

114, 116, 118, 124, 126, 130,
132, 135, 171, 172, 227, 228,
230, 242–244, 246, 248, 253,
299, 300, 406–409

DisableClientState, 24, 31, 36, 38, 311,
406

Disablei, 248
DisableVertexAttribArray, 31, 311, 335
DITHER, 253
DOMAIN, 320
DONT CARE, 313, 385
DOT3 RGB, 223
DOT3 RGBA, 223
DOUBLE, 29, 32
DRAW BUFFER, 256, 259, 269, 454
DRAW BUFFERi, 248, 259, 260, 263,

292, 454
DRAW BUFFER0, 259
DRAW FRAMEBUFFER, 265, 279–

281, 285–287, 294, 336, 367
DRAW FRAMEBUFFER BINDING,

23, 151, 174, 209, 256, 258,
274, 277, 281, 294–296

DRAW PIXEL TOKEN, 308
DrawArrays, 33, 34, 46, 48, 108, 309
DrawBuffer, 254–257, 259, 261, 264
DrawBuffers, 255, 256, 258, 259
DrawElements, 34, 35, 46–48, 65, 108,

309, 418
DrawPixels, 63, 67, 114, 132, 136–138,

141, 144, 149–155, 160, 161,
163, 166, 173, 174, 177, 235,
266, 272, 274, 306, 408, 452

DrawRangeElements, 35, 46, 47, 108,

Version 3.0 (September 23, 2008)

INDEX 477

309, 388
DST ALPHA, 251
DST COLOR, 251, 434
DYNAMIC COPY, 39, 41
DYNAMIC DRAW, 39, 40
DYNAMIC READ, 39, 41

EDGE FLAG ARRAY, 31, 36
EDGE FLAG ARRAY POINTER, 327
EdgeFlag, 23, 24
EdgeFlag*, 406
EdgeFlagPointer, 24, 29, 30, 311, 406
EdgeFlagv, 23, 32
ELEMENT ARRAY BUFFER, 38, 40,

42, 45, 47, 330, 331
EMISSION, 82, 84
Enable, 56, 57, 61, 69, 75, 80, 81, 84,

114, 116, 118, 124, 126, 130,
132, 135, 171, 172, 227, 228,
230, 242–244, 246, 248, 253,
299, 300, 316, 406–409

ENABLE BIT, 341
EnableClientState, 24, 31, 36, 38, 311,

406
Enablei, 248
EnableVertexAttribArray, 31, 48, 311,

335
End, 16, 19–24, 33, 34, 49, 63, 81, 84,

87, 123, 130, 133, 294, 301,
302, 307, 406

EndConditionalRender, 63, 64
EndList, 309, 409
EndQuery, 62, 246, 247
EndTransformFeedback, 64
EQUAL, 202, 226, 244–246
EQUIV, 254
EVAL BIT, 341
EvalCoord, 24, 299, 300
EvalCoord*, 409
EvalCoord1, 300–302
EvalCoord1d, 301
EvalCoord1f, 301
EvalCoord2, 300, 302, 303
EvalMesh*, 409
EvalMesh1, 63, 301

EvalMesh2, 63, 301, 302
EvalPoint, 24
EvalPoint*, 409
EvalPoint1, 302
EvalPoint2, 302
EXP, 230, 231, 353
EXP2, 230
EXT pixel buffer object, 454
EXT texture sRGB, 455
EXTENSIONS, 138, 327, 328, 410, 464,

465
EYE LINEAR, 59–61, 318, 362
EYE PLANE, 59, 60

FALSE, 23, 39, 41, 46, 77, 79, 86, 90–
92, 99, 100, 110, 111, 119,
137, 139, 148, 149, 161, 164,
172, 173, 202, 215, 218, 235,
243, 266, 268, 316, 323, 325,
326, 328–332, 335, 336, 338,
346–348, 351–362, 364, 365,
372–380, 382, 383, 392

FASTEST, 313
FEEDBACK, 304–306, 399
FEEDBACK BUFFER POINTER, 327
FeedbackBuffer, 305, 306, 311, 327, 409
FILL, 133, 135, 136, 301, 357, 398, 412
Finish, 312, 313, 397
FIXED ONLY, 86, 162, 271, 277, 278,

353
FLAT, 86, 398
flat, 86
FLOAT, 29, 32, 36–38, 94, 98, 103, 151,

152, 179, 270, 271, 273, 310,
319–321, 337, 346–348

float, 93
FLOAT 32 UNSIGNED INT 24 8 REV,

151, 152, 155, 156, 268, 272,
273

FLOAT MAT2, 94, 98, 103
FLOAT MAT2x3, 94, 98, 453
FLOAT MAT2x4, 94, 98, 453
FLOAT MAT3, 94, 98, 103
FLOAT MAT3x2, 94, 98, 453
FLOAT MAT3x4, 94, 98, 453

Version 3.0 (September 23, 2008)

INDEX 478

FLOAT MAT4, 94, 98, 103
FLOAT MAT4x2, 94, 98, 453
FLOAT MAT4x3, 94, 98, 453
FLOAT VEC2, 94, 98, 103
FLOAT VEC3, 94, 98, 103
FLOAT VEC4, 94, 98, 103
Flush, 312, 313, 397
FlushBufferRange, 311, 460
FlushMappedBufferRange, 43, 45
FOG, 230, 409
Fog, 230, 231, 409
FOG BIT, 341
FOG COLOR, 231
FOG COORD, 71, 230, 441, 448
FOG COORD ARRAY, 31, 36, 441
FOG COORD ARRAY BUFFER BINDING,

441, 448
FOG COORD ARRAY POINTER,

327, 441
FOG COORD ARRAY STRIDE, 441
FOG COORD ARRAY TYPE, 441
FOG COORD SRC, 73, 230, 231, 441,

448
FOG COORDINATE, 441, 448
FOG COORDINATE ARRAY, 441
FOG COORDINATE ARRAY BUFFER BINDING,

441
FOG COORDINATE ARRAY POINTER,

441
FOG COORDINATE ARRAY STRIDE,

441
FOG COORDINATE ARRAY TYPE,

441
FOG COORDINATE SOURCE, 434,

441
FOG DENSITY, 230
FOG END, 230
FOG HINT, 314, 409
FOG INDEX, 231
FOG MODE, 230, 231
FOG START, 230
FogCoord, 24, 25, 434
FogCoord*, 406
FogCoord[type]v, 32
FogCoordPointer, 24, 29, 30, 311, 406

FRAGMENT DEPTH, 230, 231, 353
FRAGMENT SHADER, 232, 332
FRAGMENT SHADER DERIVATIVE HINT,

314
FRAMEBUFFER, 280, 285, 286, 294,

336
FRAMEBUFFER ATTACHMENT ALPHA SIZE,

337
FRAMEBUFFER ATTACHMENT BLUE SIZE,

337
FRAMEBUFFER ATTACHMENT COLOR ENCODING,

248, 249, 252, 337
FRAMEBUFFER ATTACHMENT COMPONENT TYPE,

337
FRAMEBUFFER ATTACHMENT DEPTH SIZE,

337
FRAMEBUFFER ATTACHMENT GREEN SIZE,

337
FRAMEBUFFER ATTACHMENT OBJECT NAME,

285, 288, 291, 337, 338
FRAMEBUFFER ATTACHMENT OBJECT TYPE,

285, 288, 291, 292, 295, 336–
338

FRAMEBUFFER ATTACHMENT RED SIZE,
337

FRAMEBUFFER ATTACHMENT STENCIL SIZE,
337

FRAMEBUFFER ATTACHMENT
TEXTURE CUBE MAP
FACE, 288, 338

FRAMEBUFFER ATTACHMENT TEXTURE LAYER,
288, 291, 296, 338

FRAMEBUFFER ATTACHMENT TEXTURE LEVEL,
209, 288–290, 338

FRAMEBUFFER BINDING, 281
FRAMEBUFFER COMPLETE, 294
FRAMEBUFFER DEFAULT, 337
FRAMEBUFFER INCOMPLETE ATTACHMENT,

292
FRAMEBUFFER INCOMPLETE DRAW BUFFER,

292
FRAMEBUFFER INCOMPLETE MISSING ATTACHMENT,

292
FRAMEBUFFER INCOMPLETE MULTISAMPLE,

293

Version 3.0 (September 23, 2008)

FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE
FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE
FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE

INDEX 479

FRAMEBUFFER INCOMPLETE READ BUFFER,
292

FRAMEBUFFER SRGB, 248, 249, 252
FRAMEBUFFER UNDEFINED, 292
FRAMEBUFFER UNSUPPORTED,

292, 294
FramebufferRenderbuffer, 285, 286,

293, 312
FramebufferTexture, 288
FramebufferTexture*, 287, 288, 293
FramebufferTexture1D, 286, 287, 312
FramebufferTexture2D, 286, 287, 312
FramebufferTexture3D, 286–288, 312
FramebufferTextureLayer, 288, 312
FRONT, 81, 84, 130, 131, 133, 245, 248,

256, 257, 259–261, 263, 269,
278, 318, 407

FRONT AND BACK, 81, 83, 84, 130,
133, 245, 248, 257, 259–261,
263, 269

FRONT LEFT, 257, 258, 336
FRONT RIGHT, 257, 258, 336
FrontFace, 80, 130, 235, 407
Frustum, 53, 55, 398, 406
ftransform, 108, 109
FUNC ADD, 248, 250, 365
FUNC REVERSE SUBTRACT, 248,

250, 453
FUNC SUBTRACT, 248, 250
fwidth, 314

Gen*, 404, 406
GenBuffers, 39, 311
GENERATE MIPMAP, 202, 203, 212,

215, 408, 433
GENERATE MIPMAP HINT, 314, 409
GenerateMipmap, 212, 311
GenFramebuffers, 279–281, 311
GenLists, 310, 311, 409
GenQueries, 62, 311
GenRenderbuffers, 282, 283, 311
GenTextures, 218, 311, 323
GenVertexArrays, 48, 311, 331
GEQUAL, 202, 226, 244–246, 440
Get, 25, 51, 71, 312, 315, 316

GetActiveAttrib, 93, 94, 453
GetActiveUniform, 97, 98, 100, 453
GetAttachedShaders, 333
GetAttribLocation, 94, 95
GetBooleani v, 260, 315
GetBooleanv, 243, 260, 315–317, 343
GetBufferParameteriv, 330, 460
GetBufferPointerv, 330, 331
GetBufferSubData, 330
GetClipPlane, 317, 318
GetColorTable, 144, 268, 323
GetColorTableParameter, 324
GetCompressedTexImage, 198, 200,

313, 319, 322
GetConvolutionFilter, 268, 324
GetConvolutionParameter, 325
GetConvolutionParameteriv, 145
GetDoublev, 315–317, 343
GetError, 15
GetFloatv, 243, 315–317, 323, 343
GetFragDataLocation, 237
GetFramebufferAttachmentiv, 461
GetFramebufferAttachmentParameteriv,

295, 336, 459, 460
GetHistogram, 149, 268, 325, 448
GetHistogramParameter, 325
GetIntegeri v, 315, 331
GetIntegerv, 35, 116, 258, 259, 281, 283,

315–318, 323, 328, 343
GetLight, 318
GetLightiv, 318
GetMap, 318, 320
GetMaterial, 318
GetMaterialiv, 318
GetMinmax, 268, 326
GetMinmaxParameter, 326
GetPixelMap, 318, 320
GetPixelMapfv, 320
GetPixelMapuiv, 320
GetPixelMapusv, 320
GetPointerv, 327
GetPolygonStipple, 268, 323
GetProgramInfoLog, 92, 333
GetProgramiv, 91, 94, 97, 98, 103, 110,

332–334

Version 3.0 (September 23, 2008)

INDEX 480

GetQueryiv, 328
GetQueryObject[u]iv, 330
GetQueryObjectiv, 329
GetQueryObjectuiv, 329
GetRenderbufferParameteriv, 295, 338,

339, 461
GetSeparableFilter, 268, 324
GetShaderInfoLog, 90, 333
GetShaderiv, 90, 332, 334
GetShaderSource, 334
GetString, 327, 328, 410
GetStringi, 328
GetTexEnv, 318, 454
GetTexEnviv, 318
GetTexGen, 318
GetTexGeniv, 318
GetTexImage, 216, 268, 320–326
GetTexLevelParameter, 318, 319
GetTexParameter, 295, 318, 319
GetTexParameterfv, 216, 218
GetTexParameterI, 318
GetTexParameterIiv, 319
GetTexParameterIuiv, 319
GetTexParameteriv, 216, 218
GetTexparameteriv, 318
GetTransformFeedbackVarying, 103,

104
GetUniform*, 336
GetUniformfv, 335
GetUniformiv, 335
GetUniformLocation, 97, 98, 101
GetUniformuiv, 336
GetVertexAttribdv, 334, 335
GetVertexAttribfv, 334, 335
GetVertexAttribIiv, 334, 335
GetVertexAttribIuiv, 334, 335
GetVertexAttribiv, 334, 335
GetVertexAttribPointerv, 335
gl , 103, 236, 237
GL ARB color buffer float, 471
GL ARB depth texture, 434, 467
GL ARB draw buffers, 446, 470
GL ARB fragment program, 440, 468,

470

GL ARB fragment program shadow,
470

GL ARB fragment shader, 439, 440,
445, 469

GL ARB half float pixel, 471
GL ARB matrix palette, 467
GL ARB multisample, 426, 465
GL ARB multitexture, 427, 465
GL ARB occlusion query, 440, 469
GL ARB pixel buffer object, 452, 471
GL ARB point parameters, 435, 466
GL ARB point sprite, 447, 470
GL ARB shader objects, 439, 441, 445,

469
GL ARB shading language 100, 446,

469
GL ARB shadow, 434, 467, 470
GL ARB shadow ambient, 468
GL ARB texture border clamp, 428,

466
GL ARB texture compression, 425, 466
GL ARB texture cube map, 426, 466
GL ARB texture env add, 427, 466
GL ARB texture env combine, 427,

467
GL ARB texture env crossbar, 436, 467
GL ARB texture env dot3, 427, 467
GL ARB texture float, 471
GL ARB texture mirrored repeat, 436,

467
GL ARB texture non power of two,

446, 469
GL ARB texture rectangle, 470
GL ARB transpose matrix, 428, 465
GL ARB vertex blend, 466
GL ARB vertex buffer object, 439,

440, 468
GL ARB vertex program, 433, 436, 468
GL ARB vertex shader, 439, 441, 445,

469
GL ARB window pos, 436, 468
GL ATI separate stencil, 447
gl BackColor, 79, 86, 108, 407
gl BackSecondaryColor, 79, 86, 108,

407

Version 3.0 (September 23, 2008)

INDEX 481

gl ClipDistance, 108, 459
gl ClipDistance[], 69
gl ClipVertex, 69, 108, 459
gl Color, 234
GL EXT bgra, 416
GL EXT blend color, 420
GL EXT blend equation separate, 447
GL EXT blend func separate, 435
GL EXT blend logic op, 412, 447
GL EXT blend minmax, 420
GL EXT blend subtract, 420
GL EXT color subtable, 419
GL EXT color table, 419
GL EXT convolution, 419
GL EXT copy texture, 413
GL EXT draw range elements, 418
GL EXT fog coord, 434
GL EXT histogram, 420
GL EXT multi draw arrays, 434
GL EXT packed pixels, 417
GL EXT polygon offset, 412
GL EXT rescale normal, 417
GL EXT secondary color, 435
GL EXT separate specular color, 417
GL EXT shadow funcs, 440
GL EXT stencil two side, 447
GL EXT stencil wrap, 435
GL EXT subtexture, 413
GL EXT texture, 412, 413
GL EXT texture3D, 416
GL EXT texture lod bias, 436
GL EXT texture object, 413
GL EXT texture sRGB, 452
GL EXT vertex array, 411
gl FogFragCoord, 71, 108
gl FragColor, 235, 236, 258, 259
gl FragCoord, 234
gl FragCoord.z, 396
gl FragData, 236, 259
gl FragData[n], 235, 236
gl FragDepth, 235, 236, 396
gl FrontColor, 79, 86, 108
gl FrontFacing, 235
gl FrontSecondaryColor, 79, 86, 108
GL HP convolution border modes, 419

GL NV blend square, 434
GL PERSPECTIVE CORRECT HINT,

452
gl PointSize, 108, 118
gl Position, 102, 108
gl PrimitiveID, 235
gl SecondaryColor, 234
GL SGI color matrix, 419
GL SGIS generate mipmap, 433
GL SGIS multitexture, 424
GL SGIS texture edge clamp, 418
GL SGIS texture lod, 418
gl TexCoord, 108
gl VertexID, 107, 108, 235
gl |hyperpage, 102
GLX ARB fbconfig float, 471
GREATER, 202, 226, 244–246
GREEN, 139, 153, 270, 272, 321, 361,

369, 373, 374, 376, 391
GREEN BIAS, 164
GREEN BITS, 295, 409
GREEN INTEGER, 153
GREEN SCALE, 164

HALF FLOAT, 29, 152, 270, 271, 273
Hint, 313, 409
HINT BIT, 341
HISTOGRAM, 148, 172, 325, 326
Histogram, 147, 148, 172, 312
HISTOGRAM ALPHA SIZE, 326
HISTOGRAM BLUE SIZE, 326
HISTOGRAM FORMAT, 326
HISTOGRAM GREEN SIZE, 326
HISTOGRAM LUMINANCE SIZE,

326
HISTOGRAM RED SIZE, 326
HISTOGRAM SINK, 326
HISTOGRAM WIDTH, 326

INCR, 245
INCR WRAP, 245, 435
INDEX, 337, 391
Index, 24, 26
Index*, 406
Index[type]v, 32

Version 3.0 (September 23, 2008)

gl_|hyperpage

INDEX 482

INDEX ARRAY, 31, 36
INDEX ARRAY POINTER, 327
INDEX LOGIC OP, 253
INDEX OFFSET, 139, 164, 373
INDEX SHIFT, 139, 164, 373
IndexMask, 260, 261
IndexPointer, 24, 29, 30, 311, 406
INFO LOG LENGTH, 332, 334
InitNames, 303, 409
INT, 29, 94, 98, 103, 152, 272, 273, 310,

319, 337
INT SAMPLER 1D, 98
INT SAMPLER 1D ARRAY, 98
INT SAMPLER 2D, 98
INT SAMPLER 2D ARRAY, 98
INT SAMPLER 3D, 98
INT SAMPLER CUBE, 98
INT VEC2, 94, 98, 103
INT VEC3, 94, 98, 103
INT VEC4, 94, 98, 103
INTENSITY, 149, 166, 167, 179, 184,

186, 202, 203, 221, 222, 225,
322, 361, 374, 408, 412

INTENSITY12, 184
INTENSITY16, 184
INTENSITY4, 184
INTENSITY8, 184
INTERLEAVED ATTRIBS, 66, 102,

103, 333
INTERLEAVED ATTRIBS, 381
InterleavedArrays, 24, 36, 37, 311
INTERPOLATE, 223
INVALID ENUM, 16, 17, 31, 45, 56,

60, 81, 138, 144, 149, 151,
192, 197, 199, 200, 216, 256,
258, 264, 268, 269, 321, 323–
326, 338, 339, 461

INVALID FRAMEBUFFER OPERATION,
17, 23, 143, 147, 151, 174,
197, 269, 274, 277, 295

INVALID OPERATION, 17, 24, 39, 42,
44–46, 48, 56, 62, 64–67, 89,
91, 92, 95, 97, 100, 101, 109,
110, 138, 140, 151, 155, 178,
188, 192, 196, 198–200, 212,

217, 236, 237, 256, 258, 259,
264–266, 268–270, 272, 274,
277, 278, 280, 283, 285, 287,
288, 294, 299, 304, 306, 309,
317, 320–322, 329, 331, 335–
338, 406, 407, 459, 460

INVALID VALUE, 16, 17, 27, 29, 31,
33–35, 41, 44, 45, 52, 55, 64,
65, 81, 89, 94, 95, 97, 102,
103, 117, 118, 124, 137, 139,
140, 142, 143, 145, 148, 178,
187–189, 192, 194–196, 198,
199, 211, 218, 230, 236, 242,
248, 256, 258, 260, 262, 264,
283, 287, 288, 298, 299, 301,
309, 316, 319, 321, 322, 328,
331, 335, 407, 408, 453

INVERT, 245, 254
Is, 312
IsBuffer, 330
IsEnabled, 242, 250, 316, 343
IsEnabledi, 250, 316
IsFramebuffer, 336
IsList, 311, 409
IsProgram, 332
IsQuery, 328
IsRenderbuffer, 338
IsShader, 332
IsTexture, 322, 323
IsVertexArray, 331

KEEP, 245, 246, 364

LEFT, 248, 256, 257, 259, 260, 263, 269
LEQUAL, 202, 215, 226, 244–246, 360,

440
LESS, 202, 226, 244–246, 365
Light, 80–82
LIGHTi, 81, 399, 407
Light*, 407
LIGHT0, 81
LIGHT MODEL AMBIENT, 82
LIGHT MODEL COLOR CONTROL,

82
LIGHT MODEL LOCAL VIEWER,

82

Version 3.0 (September 23, 2008)

INDEX 483

LIGHT MODEL TWO SIDE, 82
LIGHTING, 76, 407
LIGHTING BIT, 341
LightModel, 80, 82
LightModel*, 407
LINE, 133, 135, 136, 301, 302, 357, 412
LINE BIT, 341
LINE LOOP, 20, 65
LINE RESET TOKEN, 308
LINE SMOOTH, 124, 129
LINE SMOOTH HINT, 314
LINE STIPPLE, 126, 407
LINE STRIP, 20, 65, 301
LINE TOKEN, 308
LINEAR, 105, 202, 207–209, 211, 213,

215, 230, 277, 289, 337
LINEAR ATTENUATION, 82
LINEAR MIPMAP LINEAR, 202,

209–211, 290
LINEAR MIPMAP NEAREST, 202,

209–211, 290
LINES, 20, 64, 65, 127
LineStipple, 126, 407
LineWidth, 124, 407
LINK STATUS, 91, 332
LinkProgram, 67, 91, 92, 94, 95, 97,

101–103, 237, 312
LIST BIT, 341
ListBase, 310, 312, 409
LOAD, 265
LoadIdentity, 53, 406
LoadMatrix, 52, 53, 406
LoadMatrix[fd], 53
LoadName, 303, 304, 409
LoadTransposeMatrix, 53, 406
LoadTransposeMatrix[fd], 53
LOGIC OP, 253, 447, 449
LogicOp, 253, 254
LOWER LEFT, 119, 122
LUMINANCE, 153, 161, 166, 167, 178,

179, 184–186, 202, 203, 215,
221, 222, 225, 270–272, 321,
322, 360, 361, 374, 376, 401,
408, 412

LUMINANCE12, 184

LUMINANCE12 ALPHA12, 184
LUMINANCE12 ALPHA4, 184
LUMINANCE16, 184
LUMINANCE16 ALPHA16, 184
LUMINANCE4, 184
LUMINANCE4 ALPHA4, 184
LUMINANCE6 ALPHA2, 184
LUMINANCE8, 184
LUMINANCE8 ALPHA8, 184
LUMINANCE ALPHA, 153, 161, 166,

167, 178, 179, 184–186, 221,
222, 270–272, 321, 322, 408

MAJOR VERSION, 328
Map*, 409
Map1, 297–299, 316
MAP1 COLOR 4, 298
MAP1 INDEX, 298
MAP1 NORMAL, 298
MAP1 TEXTURE COORD 1, 298, 300
MAP1 TEXTURE COORD 2, 298, 300
MAP1 TEXTURE COORD 3, 298
MAP1 TEXTURE COORD 4, 298
MAP1 VERTEX 3, 298
MAP1 VERTEX 4, 298
Map2, 298, 299, 316
MAP2 VERTEX 3, 300
MAP2 VERTEX 4, 300
MAP COLOR, 139, 164, 165
MAP FLUSH EXPLICIT BIT, 43–45
MAP INVALIDATE BUFFER BIT, 43,

44
MAP INVALIDATE RANGE BIT, 43,

44
MAP READ BIT, 42–45
MAP STENCIL, 139, 165
MAP UNSYNCHRONIZED BIT, 43,

44
MAP VERTEX 3, 300
MAP VERTEX 4, 300
MAP WRITE BIT, 42–45
Map{12}, 299
MapBuffer, 42, 44, 65, 67, 311, 460
MapBufferRange, 42–45, 311, 460
MapGrid*, 409

Version 3.0 (September 23, 2008)

INDEX 484

MapGrid1, 301
MapGrid2, 301
mat2, 93
mat2x3, 93
mat2x4, 93
mat3, 93
mat3x2, 93
mat3x4, 93
mat4, 93
mat4x2, 93
mat4x3, 93
Material, 24, 80–82, 85, 398
Material*, 406
MATRIX MODE, 56
MatrixMode, 52, 406
MAX, 248, 250
MAX 3D TEXTURE SIZE, 188, 287
MAX ARRAY TEXTURE LAYERS,

188
MAX ATTRIB STACK DEPTH, 339,

409
MAX CLIENT ATTRIB STACK DEPTH,

339, 409
MAX CLIP DISTANCES, 459
MAX CLIP PLANES, 459
MAX COLOR ATTACHMENTS, 256,

257, 259, 279, 286, 294
MAX COLOR MATRIX STACK DEPTH,

323
MAX COMBINED TEXTURE IMAGE UNITS,

56, 106, 317
MAX CONVOLUTION HEIGHT, 145,

325
MAX CONVOLUTION WIDTH, 145,

325
MAX CUBE MAP TEXTURE SIZE,

188, 287
MAX DRAW BUFFERS,

236, 237, 248, 250, 258, 260,
264

MAX ELEMENTS INDICES, 35
MAX ELEMENTS VERTICES, 35
MAX EVAL ORDER, 298, 299
MAX FRAGMENT UNIFORM COMPONENTS,

232

MAX PIXEL MAP TABLE, 140, 164
MAX PROGRAM TEXEL OFFSET,

205
MAX RENDERBUFFER SIZE, 283
MAX SAMPLES, 283, 285
MAX TEXTURE COORDS, 25, 28,

38, 56, 317, 448
MAX TEXTURE IMAGE UNITS,

106, 234, 448
MAX TEXTURE LOD BIAS, 205
MAX TEXTURE SIZE, 188, 287
MAX TEXTURE UNITS, 17, 56, 228,

340, 448
MAX TRANSFORM FEEDBACK

INTERLEAVED
COMPONENTS, 103

MAX TRANSFORM FEEDBACK SEPARATE ATTRIBS,
65, 66, 102, 331

MAX TRANSFORM FEEDBACK SEPARATE COMPONENTS,
103

MAX VARYING COMPONENTS,
101, 102, 459

MAX VARYING FLOATS, 459
MAX VERTEX ATTRIBS, 26–29, 31,

38, 93, 95, 335
MAX VERTEX TEXTURE IMAGE UNITS,

106
MAX VERTEX UNIFORM COMPONENTS,

96
MAX VIEWPORT DIMS, 329
MIN, 248, 250
MIN PROGRAM TEXEL OFFSET,

205
MINMAX, 149, 172, 326
Minmax, 149, 173
MINMAX FORMAT, 326
MINMAX SINK, 326
MINOR VERSION, 328
MIRRORED REPEAT, 202, 207, 436
MODELVIEW, 52, 56, 57
MODELVIEW MATRIX, 317
MODULATE, 220–223, 362
MULT, 265
MultiDrawArrays, 34, 46, 108, 434
MultiDrawElements, 35, 46, 47, 108,

Version 3.0 (September 23, 2008)

MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS

INDEX 485

434
MULTISAMPLE, 117, 123, 129, 135,

173, 175, 242, 254, 255
MULTISAMPLE BIT, 341
MultiTexCoord, 24, 25, 31
MultiTexCoord[size][type]v, 32
MultMatrix, 52, 53, 406
MultMatrix[fd], 53
MultTransposeMatrix, 53, 406
MultTransposeMatrix[fd], 53

N3F V3F, 36, 37
NAND, 254
NEAREST, 105, 202, 207, 209, 211,

213, 214, 225, 277, 289
NEAREST MIPMAP LINEAR, 202,

209–211, 213, 215, 290
NEAREST MIPMAP NEAREST, 202,

209–211, 213, 214, 225, 290
NEVER, 202, 226, 244–246
NewList, 309, 310, 409
NICEST, 313
NO ERROR, 15
NONE, 107, 202, 215, 216, 225, 234,

254, 256–259, 264, 269, 278,
291, 292, 319, 337, 360, 361,
369, 460

NOOP, 254
noperspective, 88
NOR, 254
Normal, 24, 25, 93
Normal3, 12, 25
Normal3*, 406
Normal3[type]v, 32
Normal3d, 12
Normal3dv, 13
Normal3f, 12
Normal3fv, 13
NORMAL ARRAY, 31, 36, 38
NORMAL ARRAY BUFFER BINDING,

46
NORMAL ARRAY POINTER, 327
NORMAL MAP, 59, 60, 426
NORMALIZE, 58, 406

NormalPointer, 24, 28–30, 36, 46, 311,
406

NOTEQUAL, 202, 226, 244–246
NULL, 38, 39, 41, 43, 47, 90, 94, 98,

103, 331, 333, 334, 342, 348,
351

NUM COMPRESSED TEXTURE FORMATS,
179

NUM EXTENSIONS, 328

OBJECT LINEAR, 59, 61, 318
OBJECT PLANE, 59, 60
ONE, 250, 251, 365
ONE MINUS CONSTANT ALPHA,

251, 434
ONE MINUS CONSTANT COLOR,

251, 434
ONE MINUS DST ALPHA, 251
ONE MINUS DST COLOR, 251, 434
ONE MINUS SRC ALPHA, 224, 251
ONE MINUS SRC COLOR, 224, 251,

433
OPERANDn ALPHA, 220, 224, 228,

453
OPERANDn RGB, 220, 224, 228, 453
OR, 254
OR INVERTED, 254
OR REVERSE, 254
ORDER, 320
Ortho, 53, 55, 398, 406
OUT OF MEMORY, 16, 17, 41, 44,

284, 309

PACK ALIGNMENT, 268, 372
PACK IMAGE HEIGHT, 268, 321, 372
PACK LSB FIRST, 268, 372
PACK ROW LENGTH, 268, 372
PACK SKIP IMAGES, 268, 321, 372
PACK SKIP PIXELS, 268, 372
PACK SKIP ROWS, 268, 372
PACK SWAP BYTES, 268, 372
PASS THROUGH TOKEN, 308
PassThrough, 307, 409
PERSPECTIVE CORRECTION HINT,

314, 409

Version 3.0 (September 23, 2008)

INDEX 486

PIXEL MAP A TO A, 140, 164
PIXEL MAP B TO B, 140, 164
PIXEL MAP G TO G, 140, 164
PIXEL MAP I TO A, 140, 165
PIXEL MAP I TO B, 140, 165
PIXEL MAP I TO G, 140, 165
PIXEL MAP I TO I, 140, 165
PIXEL MAP I TO R, 140, 165
PIXEL MAP R TO R, 140, 164
PIXEL MAP S TO S, 140, 165
PIXEL MODE BIT, 341
PIXEL PACK BUFFER, 38, 40, 42, 45,

137, 266, 330, 331, 452
PIXEL PACK BUFFER BINDING,

272, 320, 321
PIXEL UNPACK BUFFER, 38, 40, 42,

45, 137, 330, 331, 452
PIXEL UNPACK BUFFER BINDING,

140, 151, 197
PixelMap, 136, 139, 140, 278, 454
PixelStore, 24, 136, 137, 139, 268, 278,

311
PixelTransfer, 136, 139, 170, 278
PixelZoom, 163, 173, 408
POINT, 133, 135, 136, 301, 302, 357,

412
POINT BIT, 341
POINT DISTANCE ATTENUATION,

118
POINT FADE THRESHOLD SIZE,

118
POINT SIZE MAX, 118
POINT SIZE MIN, 118
POINT SMOOTH, 118, 123, 407
POINT SMOOTH HINT, 314
POINT SPRITE, 118, 119, 123, 219,

318, 407, 454
POINT SPRITE COORD ORIGIN,

119, 122, 447, 448
POINT TOKEN, 308
Pointer, 48
PointParameter, 118, 435
PointParameter*, 119
POINTS, 20, 64, 65, 301
PointSize, 117

POLYGON, 20, 23, 65, 235, 407
POLYGON BIT, 341
POLYGON OFFSET FILL, 135
POLYGON OFFSET LINE, 135
POLYGON OFFSET POINT, 135
POLYGON SMOOTH, 130, 135
POLYGON SMOOTH HINT, 314
POLYGON STIPPLE, 132, 408
POLYGON STIPPLE BIT, 341
POLYGON TOKEN, 308
PolygonMode, 129, 133, 136, 304, 306,

407
PolygonOffset, 134
PolygonStipple, 132, 137, 408
PopAttrib, 339, 340, 399, 409, 453
PopClientAttrib, 24, 311, 339, 340, 409
PopMatrix, 57, 406
PopName, 303, 409
POSITION, 82, 318
POST COLOR MATRIX x BIAS, 139
POST COLOR MATRIX x SCALE,

139
POST COLOR MATRIX ALPHA BIAS,

171
POST COLOR MATRIX ALPHA SCALE,

171
POST COLOR MATRIX BLUE BIAS,

171
POST COLOR MATRIX BLUE SCALE,

171
POST COLOR MATRIX COLOR TABLE,

141, 172
POST COLOR MATRIX GREEN BIAS,

171
POST COLOR MATRIX GREEN SCALE,

171
POST COLOR MATRIX RED BIAS,

171
POST COLOR MATRIX RED SCALE,

171
POST CONVOLUTION x BIAS, 139
POST CONVOLUTION x SCALE,

139
POST CONVOLUTION ALPHA BIAS,

170

Version 3.0 (September 23, 2008)

INDEX 487

POST CONVOLUTION ALPHA SCALE,
170

POST CONVOLUTION BLUE BIAS,
170

POST CONVOLUTION BLUE SCALE,
170

POST CONVOLUTION COLOR TABLE,
141, 171

POST CONVOLUTION GREEN BIAS,
170

POST CONVOLUTION GREEN SCALE,
170

POST CONVOLUTION RED BIAS,
170

POST CONVOLUTION RED SCALE,
170

PREVIOUS, 222, 224, 363
PRIMARY COLOR, 224
PRIMITIVES GENERATED, 67, 329
PrioritizeTextures, 218, 219, 409
PROJECTION, 52, 56, 57
PROXY COLOR TABLE, 141, 144,

312
PROXY HISTOGRAM, 148, 149, 312,

326
PROXY POST COLOR MATRIX COLOR TABLE,

141, 312
PROXY POST CONVOLUTION COLOR TABLE,

141, 312
PROXY TEXTURE 1D, 178, 190, 216,

312, 319
PROXY TEXTURE 1D ARRAY, 178,

189, 216, 312, 319
PROXY TEXTURE 2D, 178, 189, 216,

312, 319
PROXY TEXTURE 2D ARRAY, 177,

178, 216, 312, 319
PROXY TEXTURE 3D, 177, 216, 312,

319
PROXY TEXTURE CUBE MAP, 178,

189, 216, 312, 319
PushAttrib, 339, 340, 409, 453
PushClientAttrib, 24, 311, 339, 340, 409
PushMatrix, 57, 406
PushName, 303, 409

Q, 59, 60, 318
QUAD STRIP, 22, 65, 235, 407
QUADRATIC ATTENUATION, 82
QUADS, 23, 65, 235, 407
QUERY BY REGION NO WAIT, 63
QUERY BY REGION WAIT, 63, 64
QUERY COUNTER BITS, 329
QUERY NO WAIT, 63
QUERY RESULT, 329, 454
QUERY RESULT AVAILABLE, 329,

454
QUERY WAIT, 63

R, 59, 60, 318, 458
R11F G11F B10F, 180, 181, 183
R16, 180, 182
R16F, 180, 183
R16I, 180, 183
R16UI, 180, 183
R32F, 180, 183
R32I, 180, 183
R32UI, 180, 183
R3 G3 B2, 182
R8, 180, 182
R8I, 180, 183
R8UI, 180, 183
RASTERIZER DISCARD, 114
RasterPos, 70, 109, 295, 304, 398, 436
RasterPos*, 407
RasterPos2, 71
RasterPos3, 71
RasterPos4, 71
READ BUFFER, 269, 292, 296
READ FRAMEBUFFER, 265, 279–

281, 285, 286, 294, 336, 367
READ FRAMEBUFFER BINDING,

143, 147, 197, 268–270, 274,
277, 281

READ ONLY, 39, 44, 45
READ WRITE, 39, 41, 44, 45, 351
ReadBuffer, 257, 269, 278
ReadPixels, 67, 136, 138, 152, 153, 155,

166, 266–272, 274, 276, 295,
311, 321, 323, 408, 452

Rect, 49, 130

Version 3.0 (September 23, 2008)

INDEX 488

Rect*, 407
RED, 139, 141, 153, 179, 182, 183, 186,

202, 203, 221, 222, 225, 270,
272, 291, 321, 322, 361, 369,
373, 374, 376, 391

RED BIAS, 164
RED BITS, 295, 409
RED INTEGER, 153
RED SCALE, 164
REDUCE, 168, 170, 375
REFLECTION MAP, 59, 60, 426
RENDER, 304, 305, 392
RENDERBUFFER, 282, 283, 285, 295,

337, 338, 370
RENDERBUFFER ALPHA SIZE, 339
RENDERBUFFER BINDING, 283
RENDERBUFFER BLUE SIZE, 339
RENDERBUFFER DEPTH SIZE, 339
RENDERBUFFER GREEN SIZE, 339
RENDERBUFFER HEIGHT, 284, 339
RENDERBUFFER INTERNAL FORMAT,

284, 339
RENDERBUFFER RED SIZE, 339
RENDERBUFFER SAMPLES, 284,

293, 294, 339
RENDERBUFFER STENCIL SIZE,

339
RENDERBUFFER WIDTH, 284, 339
RenderbufferStorage, 284, 293, 311
RenderbufferStorageMultisample, 283,

284, 312
RENDERER, 327
RenderMode, 304–307, 311, 409
REPEAT, 202, 207, 215, 360
REPLACE, 220, 221, 223, 245
REPLICATE BORDER, 168, 169
RESCALE NORMAL, 58, 406
ResetHistogram, 325
ResetMinmax, 326
RETURN, 265
RG, 141, 153, 179, 182, 183, 186, 221,

222, 270, 272, 291, 321, 322,
458

RG16, 180, 182
RG16F, 180, 183

RG16I, 180, 183
RG16UI, 180, 183
RG32F, 180, 183
RG32I, 180, 183
RG32UI, 180, 183
RG8, 180, 182
RG8I, 180, 183
RG8UI, 180, 183
RG INTEGER, 153
RGB, 153, 156, 160, 166, 167, 178, 179,

182–184, 186, 220–222, 251,
270–272, 291, 321, 322, 412

RGB10, 182
RGB10 A2, 180, 183
RGB12, 182
RGB16, 180, 182
RGB16F, 180, 183
RGB16I, 180, 183
RGB16UI, 180, 184
RGB32F, 180, 183
RGB32I, 180, 184
RGB32UI, 180, 184
RGB4, 182
RGB5, 182
RGB5 A1, 183
RGB8, 180, 182
RGB8I, 180, 183
RGB8UI, 180, 183
RGB9 E5, 141, 181, 183, 227, 271
RGB INTEGER, 153
RGB SCALE, 220, 453
RGBA, 142, 143, 146–149, 153, 156,

160, 166, 167, 178, 179, 183,
184, 186, 221, 222, 270, 274,
291, 321, 322, 371, 374–377

RGBA12, 183
RGBA16, 180, 183
RGBA16F, 180, 183
RGBA16I, 180, 184
RGBA16UI, 180, 184
RGBA2, 183
RGBA32F, 180, 183
RGBA32I, 180, 184
RGBA32UI, 180, 184
RGBA4, 183

Version 3.0 (September 23, 2008)

INDEX 489

RGBA8, 180, 183
RGBA8I, 180, 184
RGBA8UI, 180, 184
RGBA INTEGER, 153
RIGHT, 248, 256, 257, 259, 260, 263,

269
Rotate, 53, 54, 398, 406

S, 59, 60, 318
SAMPLE ALPHA TO COVERAGE,

242
SAMPLE ALPHA TO ONE, 242, 243
SAMPLE BUFFERS, 116, 123, 129,

135, 173, 175, 242, 247, 254,
255, 261, 268, 274, 277, 278,
294

SAMPLE COVERAGE, 242, 243
SAMPLE COVERAGE INVERT, 242,

243
SAMPLE COVERAGE VALUE, 242,

243
SampleCoverage, 243
sampler2D, 101
SAMPLER 1D, 98
SAMPLER 1D ARRAY, 98
SAMPLER 1D ARRAY SHADOW, 98
SAMPLER 1D SHADOW, 98
SAMPLER 2D, 98
SAMPLER 2D ARRAY, 98
SAMPLER 2D ARRAY SHADOW, 98
SAMPLER 2D SHADOW, 98
SAMPLER 3D, 98
SAMPLER CUBE, 98
SAMPLER CUBE SHADOW, 98
SAMPLES, 116, 117, 247, 278, 294
SAMPLES PASSED, 63, 64, 246, 329
Scale, 53, 54, 398, 406
Scissor, 242
SCISSOR BIT, 341
SCISSOR TEST, 242
SECONDARY COLOR ARRAY, 31,

36
SECONDARY COLOR ARRAY POINTER,

327
SecondaryColor, 24, 26, 435

SecondaryColor3, 26, 447
SecondaryColor3*, 406
SecondaryColor3[type]v, 32
SecondaryColorPointer, 24, 29, 30, 311,

406
SELECT, 304, 305, 399
SelectBuffer, 304, 305, 311, 327, 409
SELECTION BUFFER POINTER, 327
SEPARABLE 2D, 146, 166, 189, 324,

325
SeparableFilter2D, 137, 146
SEPARATE ATTRIBS, 66, 102, 103,

333
SEPARATE SPECULAR COLOR, 78
SET, 254
ShadeModel, 86, 407
SHADER SOURCE LENGTH, 332,

334
SHADER TYPE, 110, 332
ShaderSource, 89, 90, 312, 334
SHADING LANGUAGE VERSION,

327, 446, 451
SHININESS, 82
SHORT, 29, 152, 272, 273, 310
SINGLE COLOR, 77, 78, 354
SLUMINANCE, 185, 226
SLUMINANCE8, 226
SLUMINANCE8 ALPHA8, 225
SLUMINANCE ALPHA, 225
SLUMINANCE ALPHA8, 185
SMOOTH, 86, 353
SOURCE0 ALPHA, 441
SOURCE0 RGB, 441
SOURCE1 ALPHA, 441
SOURCE1 RGB, 441
SOURCE2 ALPHA, 441
SOURCE2 RGB, 441
SPECULAR, 82, 84
SPHERE MAP, 59–61, 426
SPOT CUTOFF, 82
SPOT DIRECTION, 82, 318
SPOT EXPONENT, 82
SRC0 ALPHA, 441
SRC0 RGB, 441
SRC1 ALPHA, 441

Version 3.0 (September 23, 2008)

INDEX 490

SRC1 RGB, 441
SRC2 ALPHA, 441
SRC2 RGB, 441
SRC ALPHA, 222, 224, 251, 363
SRC ALPHA SATURATE, 251
SRC COLOR, 222, 224, 251, 363, 433
SRCn ALPHA, 220, 224, 228, 453
SRCn RGB, 220, 224, 228, 453
SRGB, 225, 249, 252, 337
SRGB8, 180, 183, 225
SRGB8 ALPHA8, 180, 183, 225
SRGB ALPHA, 225
STACK OVERFLOW, 17, 57, 304, 339
STACK UNDERFLOW, 17, 57, 304,

339
STATIC COPY, 39, 40
STATIC DRAW, 39, 40, 351
STATIC READ, 39, 40
STENCIL, 263, 264, 274, 336, 361, 369,

459
STENCIL ATTACHMENT, 281, 286,

292, 460
STENCIL ATTACMENT, 459, 460
STENCIL BITS, 276, 295, 409
STENCIL BUFFER, 460
STENCIL BUFFER BIT, 261, 264, 276,

277, 341
STENCIL INDEX, 141, 144, 151, 153,

163, 177, 266, 268, 270, 274,
276, 284, 291, 321

STENCIL INDEX1, 284
STENCIL INDEX16, 284
STENCIL INDEX4, 284
STENCIL INDEX8, 284
STENCIL TEST, 244
StencilFunc, 244–246, 397
StencilFuncSeparate, 244, 245
StencilMask, 261, 266, 397
StencilMaskSeparate, 261, 266
StencilOp, 244, 245
StencilOpSeparate, 244, 245
STREAM COPY, 39, 40
STREAM DRAW, 39, 40
STREAM READ, 39, 40
SUBTRACT, 223

T, 59, 318
T2F C3F V3F, 36, 37
T2F C4F N3F V3F, 36, 37
T2F C4UB V3F, 36, 37
T2F N3F V3F, 36, 37
T2F V3F, 36, 37
T4F C4F N3F V4F, 36, 37
T4F V4F, 36, 37
TABLE TOO LARGE, 17, 142, 148
TexCoord, 24, 25
TexCoord*, 406
TexCoord1, 25
TexCoord2, 25
TexCoord3, 25
TexCoord4, 25
TexCoordPointer, 24, 29–31, 36, 311,

406
TexEnv, 56, 219, 228, 409, 453
TexEnv*, 119
TexGen, 56, 59, 60, 317
TexGen*, 406
TexImage, 56, 194
TexImage*, 408
TexImage1D, 137, 166, 168, 185, 189,

190, 193, 194, 197, 210, 216,
312

TexImage2D, 137, 166, 168, 185, 188–
190, 192, 194, 197, 210, 216,
312, 452

TexImage3D, 137, 177, 185, 187, 189,
190, 194, 197, 210, 216, 312,
321

TexParameter, 56, 201, 409
TexParameter*, 408
TexParameter[if], 205, 210
TexParameterf, 219
TexParameterfv, 219
TexParameterI, 201
TexParameteri, 219
TexParameterIiv, 201
TexParameterIuiv, 201
TexParameteriv, 201, 219
TexSubImage, 194
TexSubImage*, 197, 201

Version 3.0 (September 23, 2008)

INDEX 491

TexSubImage1D, 137, 166, 193, 194,
196, 199

TexSubImage2D, 137, 166, 193–196,
199

TexSubImage3D, 137, 193, 194, 196,
199

TEXTURE, 52, 55–57, 222, 224, 288,
291, 295, 337, 338, 363

TEXTUREi, 25, 56
TEXTURE0, 25, 32, 38, 56, 57, 299,

306, 340, 350, 362
TEXTURE1, 340
TEXTURE xD, 359
TEXTURE 1D, 178, 190, 193, 201, 212,

216–218, 227, 287, 318, 320,
409

TEXTURE 1D ARRAY, 178, 188, 189,
192, 194, 201, 212, 216–218,
318, 320, 359, 409

TEXTURE 2D, 56, 101, 178, 188, 192,
194, 201, 212, 216–218, 227,
287, 318, 320, 409

TEXTURE 2D ARRAY, 177, 178, 187,
194, 199–201, 212, 216–218,
318, 320, 359, 409

TEXTURE 3D, 177, 187, 194, 201, 212,
216–218, 227, 287, 318, 320,
409

TEXTURE ALPHA SIZE, 319
TEXTURE ALPHA TYPE, 319
TEXTURE BASE LEVEL, 188, 201,

202, 209, 210, 215, 290
TEXTURE BIT, 340, 341, 453
TEXTURE BLUE SIZE, 319
TEXTURE BLUE TYPE, 319
TEXTURE BORDER, 198, 200, 320
TEXTURE BORDER COLOR, 201,

202, 208, 215, 319, 461
TEXTURE COMPARE FAIL VALUE ARB,

468
TEXTURE COMPARE FUNC, 202,

215, 222, 225
TEXTURE COMPARE MODE,

107, 202, 215, 222, 225, 234,
434

TEXTURE COMPONENTS, 320
TEXTURE COMPRESSED IMAGE SIZE,

198, 200, 319, 322
TEXTURE COMPRESSION HINT,

314
TEXTURE COORD ARRAY, 31, 36
TEXTURE COORD ARRAY POINTER,

327
TEXTURE CUBE MAP, 178, 189, 201,

212, 216–218, 227, 318, 319,
359, 409

TEXTURE CUBE MAP *, 189
TEXTURE CUBE MAP NEGATIVE X,

189, 192, 194, 203, 287, 318,
320

TEXTURE CUBE MAP NEGATIVE Y,
189, 192, 194, 203, 287, 318,
320

TEXTURE CUBE MAP NEGATIVE Z,
189, 192, 194, 203, 287, 319,
321

TEXTURE CUBE MAP POSITIVE X,
188, 189, 192, 194, 203, 287,
318, 320

TEXTURE CUBE MAP POSITIVE Y,
189, 192, 194, 203, 287, 318,
320

TEXTURE CUBE MAP POSITIVE Z,
189, 192, 194, 203, 287, 318,
321

TEXTURE CUBE MAP POSITIVE X,
369

TEXTURE DEPTH, 198, 200, 320
TEXTURE DEPTH SIZE, 319
TEXTURE DEPTH TYPE, 319
TEXTURE ENV, 219, 220, 318, 409
TEXTURE ENV COLOR, 220
TEXTURE ENV MODE, 220, 228, 427
TEXTURE FILTER CONTROL, 219,

318, 409
TEXTURE GEN *, 406
TEXTURE GEN MODE, 59–61
TEXTURE GEN Q, 61
TEXTURE GEN R, 61
TEXTURE GEN S, 61

Version 3.0 (September 23, 2008)

INDEX 492

TEXTURE GEN T, 61
TEXTURE GREEN SIZE, 319
TEXTURE GREEN TYPE, 319
TEXTURE HEIGHT, 196, 198, 200,

201, 320
TEXTURE INTENSITY SIZE, 319
TEXTURE INTENSITY TYPE, 319
TEXTURE INTERNAL FORMAT,

198, 200, 320
TEXTURE LOD BIAS, 202, 204, 219,

409, 436
TEXTURE LUMINANCE SIZE, 319
TEXTURE LUMINANCE TYPE, 319
TEXTURE MAG FILTER, 202, 213–

215, 225
TEXTURE MAX LEVEL, 201, 202,

210, 215, 290
TEXTURE MAX LOD, 201, 202, 205,

215, 454
TEXTURE MIN FILTER, 202, 207–

210, 213–215, 225, 289, 290
TEXTURE MIN LOD, 201, 202, 205,

215, 454
TEXTURE PRIORITY, 201, 202, 215,

219, 409
TEXTURE RECTANGLE ARB, 470
TEXTURE RED SIZE, 319
TEXTURE RED TYPE, 319
TEXTURE RESIDENT, 215, 218, 319
TEXTURE SHARED SIZE, 319
TEXTURE STENCIL SIZE, 319
TEXTURE WIDTH, 196, 198, 200, 320
TEXTURE WRAP R, 202, 206, 207,

408
TEXTURE WRAP S, 202, 206, 207,

408
TEXTURE WRAP T, 202, 206, 207,

408
TEXTUREn, 224, 228
TRANSFORM BIT, 341
TRANSFORM FEEDBACK BUFFER,

65, 67
TRANSFORM FEEDBACK BUFFER BINDING,

331
TRANSFORM FEEDBACK BUFFER MODE,

333
TRANSFORM FEEDBACK BUFFER SIZE,

331
TRANSFORM FEEDBACK BUFFER START,

331
TRANSFORM FEEDBACK PRIMITIVES WRITTEN,

66, 67, 329
TRANSFORM FEEDBACK VARYING MAX LENGTH,

103, 333
TRANSFORM FEEDBACK VARYINGS,

103, 333
TransformFeedbackVaryings, 66, 102,

103, 311
Translate, 53, 54, 398, 406
TRANSPOSE COLOR MATRIX, 317,

323
TRANSPOSE MODELVIEW MATRIX,

317
TRANSPOSE PROJECTION MATRIX,

317
TRANSPOSE TEXTURE MATRIX,

317
TRIANGLE FAN, 22, 65
TRIANGLE STRIP, 21, 65
TRIANGLES, 22, 23, 64–66
TRUE, 23, 29, 39, 44, 45, 70, 77, 79,

86, 90, 91, 100, 110, 119, 122,
137, 139, 148, 149, 202, 203,
212, 218, 235, 243, 260, 268,
271, 311, 316, 323, 325, 326,
328–332, 335, 336, 338, 345,
353, 358, 365, 366, 407, 433

Uniform, 99
Uniform*, 96, 100, 101
Uniform*f{v}, 99
Uniform*i{v}, 99
Uniform*ui{v}, 99
Uniform1i{v}, 99, 101
Uniform1iv, 100
Uniform2{if ui}*, 100
Uniform4f{v}, 100
Uniform4i{v}, 100
Uniform{1,2,3,4}ui, 99
Uniform{1,2,3,4}uiv, 99

Version 3.0 (September 23, 2008)

INDEX 493

UniformMatrix*, 448
UniformMatrix2x4fv, 99
UniformMatrix3fv, 100
UniformMatrix{234}fv, 99
UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv,

99, 451
UnmapBuffer, 43, 45, 46, 311
UNPACK ALIGNMENT, 137, 154,

177, 372
UNPACK IMAGE HEIGHT, 137, 177,

372
UNPACK LSB FIRST, 137, 161, 372
UNPACK ROW LENGTH, 137, 154,

177, 372
UNPACK SKIP IMAGES, 137, 177,

189, 372
UNPACK SKIP PIXELS, 137, 154,

161, 372
UNPACK SKIP ROWS, 137, 154, 161,

372
UNPACK SWAP BYTES, 137, 151,

154, 372
UNSIGNED BYTE, 29, 34, 37, 152,

157, 272, 273, 310, 401
UNSIGNED BYTE 2 3 3 REV, 152,

156, 157, 273
UNSIGNED BYTE 3 3 2, 152, 156,

157, 273
UNSIGNED INT, 29, 34, 94, 98, 103,

152, 159, 272, 273, 310, 319–
321, 337

UNSIGNED INT 10 10 10 2, 152, 156,
159, 273

UNSIGNED INT 10F 11F 11F REV,
152, 156, 159, 160, 271, 273

UNSIGNED INT 24 8, 151, 152, 156,
159, 268, 272, 273

UNSIGNED INT 2 10 10 10 REV,
152, 156, 159, 273

UNSIGNED INT 5 9 9 9 REV, 152,
156, 159, 160, 182, 271–273

UNSIGNED INT 8 8 8 8, 152, 156,
159, 273

UNSIGNED INT 8 8 8 8 REV, 152,
156, 159, 273

UNSIGNED INT SAMPLER 1D, 98
UNSIGNED INT SAMPLER 1D ARRAY,

98
UNSIGNED INT SAMPLER 2D, 98
UNSIGNED INT SAMPLER 2D ARRAY,

98
UNSIGNED INT SAMPLER 3D, 98
UNSIGNED INT SAMPLER CUBE,

98
UNSIGNED INT VEC2, 94, 98, 103
UNSIGNED INT VEC3, 94, 98, 103
UNSIGNED INT VEC4, 94, 98, 103
UNSIGNED NORMALIZED, 319, 337
UNSIGNED SHORT, 29, 34, 152, 158,

272, 273, 310, 320, 321
UNSIGNED SHORT 1 5 5 5 REV,

152, 156, 158, 273
UNSIGNED SHORT 4 4 4 4, 152,

156, 158, 273
UNSIGNED SHORT 4 4 4 4 REV,

152, 156, 158, 273
UNSIGNED SHORT 5 5 5 1, 152,

156, 158, 273
UNSIGNED SHORT 5 6 5, 152, 156,

158, 273
UNSIGNED SHORT 5 6 5 REV, 152,

156, 158, 273
UPPER LEFT, 119, 122, 356
UseProgram, 67, 92, 104

V2F, 36, 37
V3F, 36, 37
VALIDATE STATUS, 109, 332
ValidateProgram, 109, 110, 312, 332
vec2, 93
vec3, 93
vec4, 93, 100
VENDOR, 327
VERSION, 327, 328
Vertex, 11, 24, 71, 93, 300
Vertex*, 406
Vertex2, 24, 27, 49
Vertex2sv, 11
Vertex3, 24, 27
Vertex3f, 11

Version 3.0 (September 23, 2008)

INDEX 494

Vertex4, 24, 27
Vertex[size][type]v, 33
VERTEX ARRAY, 31, 38
VERTEX ARRAY BINDING, 317, 335
VERTEX ARRAY POINTER, 327
VERTEX ATTRIB ARRAY BUFFER BINDING,

335, 449
VERTEX ATTRIB ARRAY ENABLED,

335
VERTEX ATTRIB ARRAY INTEGER,

335
VERTEX ATTRIB ARRAY NORMALIZED,

335
VERTEX ATTRIB ARRAY POINTER,

335
VERTEX ATTRIB ARRAY SIZE, 335
VERTEX ATTRIB ARRAY STRIDE,

335
VERTEX ATTRIB ARRAY TYPE,

335
VERTEX PROGRAM POINT SIZE,

118
VERTEX PROGRAM TWO SIDE, 79,

80, 407
VERTEX SHADER, 89, 332
VertexAttrib, 24, 26, 63
VertexAttrib*, 27, 28, 93, 406, 453
VertexAttrib1*, 27
VertexAttrib2*, 27
VertexAttrib3*, 27
VertexAttrib4, 26
VertexAttrib4*, 27
VertexAttrib4N, 27
VertexAttrib4Nub, 27
VertexAttrib[size][type]v, 32
VertexAttrib[size]N[type]v, 32
VertexAttribI, 27
VertexAttribI4, 27
VertexAttribI[size][type]v, 32
VertexAttribIPointer, 29, 30, 311, 335
VertexAttribPointer, 24, 29, 30, 48, 311,

335, 407
VertexPointer, 24, 28, 30, 38, 311, 406
Viewport, 51
VIEWPORT BIT, 341

WGL ARB multisample, 426
WGL ARB pixel format float, 471
WindowPos, 71, 73, 304, 436, 447
WindowPos*, 407
WindowPos2, 71
WindowPos3, 71
WRITE ONLY, 39, 44, 45

XOR, 254

ZERO, 245, 250, 251, 365

Version 3.0 (September 23, 2008)

	Introduction
	Formatting of Optional Features
	What is the OpenGL Graphics System?
	Programmer's View of OpenGL
	Implementor's View of OpenGL
	Our View
	The Deprecation Model
	Companion Documents
	OpenGL Shading Language
	Window System Bindings

	OpenGL Operation
	OpenGL Fundamentals
	Floating-Point Computation
	16-Bit Floating-Point Numbers
	Unsigned 11-Bit Floating-Point Numbers
	Unsigned 10-Bit Floating-Point Numbers

	GL State
	Shared Object State

	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Begin and End
	Polygon Edges
	GL Commands within Begin/End

	Vertex Specification
	Vertex Arrays
	Buffer Objects
	Mapping and Unmapping Buffer Data
	Vertex Arrays in Buffer Objects
	Array Indices in Buffer Objects
	Buffer Object State

	Vertex Array Objects
	Rectangles
	Coordinate Transformations
	Controlling the Viewport
	Matrices
	Normal Transformation
	Generating Texture Coordinates

	Asynchronous Queries
	Conditional Rendering
	Transform Feedback
	Primitive Queries
	Clipping
	Current Raster Position
	Colors and Coloring
	Lighting
	Lighting Parameter Specification
	ColorMaterial
	Lighting State
	Color Index Lighting
	Clamping or Masking
	Flatshading
	Color and Associated Data Clipping
	Final Color Processing

	Vertex Shaders
	Shader Objects
	Program Objects
	Shader Variables
	Shader Execution
	Required State

	Rasterization
	Discarding Primitives Before Rasterization
	Invariance
	Antialiasing
	Multisampling

	Points
	Basic Point Rasterization
	Point Rasterization State
	Point Multisample Rasterization

	Line Segments
	Basic Line Segment Rasterization
	Other Line Segment Features
	Line Rasterization State
	Line Multisample Rasterization

	Polygons
	Basic Polygon Rasterization
	Stippling
	Antialiasing
	Options Controlling Polygon Rasterization
	Depth Offset
	Polygon Multisample Rasterization
	Polygon Rasterization State

	Pixel Rectangles
	Pixel Storage Modes and Pixel Buffer Objects
	The Imaging Subset
	Pixel Transfer Modes
	Rasterization of Pixel Rectangles
	Pixel Transfer Operations
	Pixel Rectangle Multisample Rasterization

	Bitmaps
	Texturing
	Texture Image Specification
	Alternate Texture Image Specification Commands
	Compressed Texture Images
	Texture Parameters
	Depth Component Textures
	Cube Map Texture Selection
	Texture Minification
	Texture Magnification
	Combined Depth/Stencil Textures
	Texture Completeness
	Texture State and Proxy State
	Texture Objects
	Texture Environments and Texture Functions
	Texture Comparison Modes
	sRGB Texture Color Conversion
	Shared Exponent Texture Color Conversion
	Texture Application

	Color Sum
	Fog
	Fragment Shaders
	Shader Variables
	Shader Execution

	Antialiasing Application
	Multisample Point Fade

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Pixel Ownership Test
	Scissor Test
	Multisample Fragment Operations
	Alpha Test
	Stencil Test
	Depth Buffer Test
	Occlusion Queries
	Blending
	sRGB Conversion
	Dithering
	Logical Operation
	Additional Multisample Fragment Operations

	Whole Framebuffer Operations
	Selecting a Buffer for Writing
	Fine Control of Buffer Updates
	Clearing the Buffers
	The Accumulation Buffer

	Drawing, Reading, and Copying Pixels
	Writing to the Stencil or Depth/Stencil Buffers
	Reading Pixels
	Copying Pixels
	Pixel Draw/Read State

	Framebuffer Objects
	Binding and Managing Framebuffer Objects
	Attaching Images to Framebuffer Objects
	Rendering When an Image of a Bound Texture Object is Also Attached to the Framebuffer
	Framebuffer Completeness
	Effects of Framebuffer State on Framebuffer Dependent Values
	Mapping between Pixel and Element in Attached Image

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Commands Not Usable In Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	Simple Queries
	Data Conversions
	Enumerated Queries
	Texture Queries
	Stipple Query
	Color Matrix Query
	Color Table Query
	Convolution Query
	Histogram Query
	Minmax Query
	Pointer and String Queries
	Asynchronous Queries
	Buffer Object Queries
	Vertex Array Object Queries
	Shader and Program Queries
	Framebuffer Object Queries
	Renderbuffer Object Queries
	Saving and Restoring State

	State Tables

	Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	What All This Means

	Corollaries
	Compressed Texture Image Formats
	RGTC Compressed Texture Image Formats
	Format COMPRESSED_RED_RGTC1COMPRESSED_RED_RGTC1
	Format COMPRESSED_SIGNED_RED_RGTC1COMPRESSED_SIGNED_RED_RGTC1
	Format COMPRESSED_RG_RGTC2COMPRESSED_RG_RGTC2
	Format COMPRESSED_SIGNED_RG_RGTC2COMPRESSED_SIGNED_RG_RGTC2

	Shared Objects and Multiple Contexts
	Object Deletion Behavior

	The Deprecation Model
	Profiles and Deprecated Features of OpenGL 3.0

	Version 1.1
	Vertex Array
	Polygon Offset
	Logical Operation
	Texture Image Formats
	Texture Replace Environment
	Texture Proxies
	Copy Texture and Subtexture
	Texture Objects
	Other Changes
	Acknowledgements

	Version 1.2
	Three-Dimensional Texturing
	BGRA Pixel Formats
	Packed Pixel Formats
	Normal Rescaling
	Separate Specular Color
	Texture Coordinate Edge Clamping
	Texture Level of Detail Control
	Vertex Array Draw Element Range
	Imaging Subset
	Color Tables
	Convolution
	Color Matrix
	Pixel Pipeline Statistics
	Constant Blend Color
	New Blending Equations

	Acknowledgements

	Version 1.2.1
	Version 1.3
	Compressed Textures
	Cube Map Textures
	Multisample
	Multitexture
	Texture Add Environment Mode
	Texture Combine Environment Mode
	Texture Dot3 Environment Mode
	Texture Border Clamp
	Transpose Matrix
	Acknowledgements

	Version 1.4
	Automatic Mipmap Generation
	Blend Squaring
	Changes to the Imaging Subset
	Depth Textures and Shadows
	Fog Coordinate
	Multiple Draw Arrays
	Point Parameters
	Secondary Color
	Separate Blend Functions
	Stencil Wrap
	Texture Crossbar Environment Mode
	Texture LOD Bias
	Texture Mirrored Repeat
	Window Raster Position
	Acknowledgements

	Version 1.5
	Buffer Objects
	Occlusion Queries
	Shadow Functions
	Changed Tokens
	Acknowledgements

	Version 2.0
	Programmable Shading
	Shader Objects
	Shader Programs
	OpenGL Shading Language
	Changes To Shader APIs

	Multiple Render Targets
	Non-Power-Of-Two Textures
	Point Sprites
	Separate Blend Equation
	Separate Stencil
	Other Changes
	Acknowledgements

	Version 2.1
	OpenGL Shading Language
	Non-Square Matrices
	Pixel Buffer Objects
	sRGB Textures
	Other Changes
	Acknowledgements

	Version 3.0
	New Features
	Deprecation Model
	Changed Tokens
	Change Log
	Credits and Acknowledgements

	ARB Extensions
	Naming Conventions
	Promoting Extensions to Core Features
	Multitexture
	Transpose Matrix
	Multisample
	Texture Add Environment Mode
	Cube Map Textures
	Compressed Textures
	Texture Border Clamp
	Point Parameters
	Vertex Blend
	Matrix Palette
	Texture Combine Environment Mode
	Texture Crossbar Environment Mode
	Texture Dot3 Environment Mode
	Texture Mirrored Repeat
	Depth Texture
	Shadow
	Shadow Ambient
	Window Raster Position
	Low-Level Vertex Programming
	Low-Level Fragment Programming
	Buffer Objects
	Occlusion Queries
	Shader Objects
	High-Level Vertex Programming
	High-Level Fragment Programming
	OpenGL Shading Language
	Non-Power-Of-Two Textures
	Point Sprites
	Fragment Program Shadow
	Multiple Render Targets
	Rectangular Textures
	Floating-Point Color Buffers
	Half-Precision Floating Point
	Floating-Point Textures
	Pixel Buffer Objects

	Index

