

The OpenGL R© Graphics System:
A Specification

(Version 4.5 (Core Profile) - October 24, 2016)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-4.5): Jon Leech

Editor (version 2.0): Pat Brown

Copyright c© 2006-2016 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1

1.1.1 Formatting of the Compatibility Profile 1
1.1.2 Formatting of Optional Features 1
1.1.3 Formatting of Changes 2

1.2 What is the OpenGL Graphics System? 2
1.2.1 Programmer’s View of OpenGL 2
1.2.2 Implementor’s View of OpenGL 3
1.2.3 Our View . 3
1.2.4 Fixed-function Hardware and the Compatibility Profile . . 3
1.2.5 The Deprecation Model 4

1.3 Related APIs . 4
1.3.1 OpenGL Shading Language 4
1.3.2 OpenGL ES . 5
1.3.3 OpenGL ES Shading Language 5
1.3.4 WebGL . 6
1.3.5 Window System Bindings 6
1.3.6 OpenCL . 7

1.4 Filing Bug Reports . 7

2 OpenGL Fundamentals 8
2.1 Execution Model . 8
2.2 Command Syntax . 10

2.2.1 Data Conversion For State-Setting Commands 12
2.2.2 Data Conversions For State Query Commands 14

2.3 Command Execution . 15
2.3.1 Errors . 16
2.3.2 Graphics Reset Recovery 18
2.3.3 Flush and Finish . 20

i

CONTENTS ii

2.3.4 Numeric Representation and Computation 20
2.3.5 Fixed-Point Data Conversions 24

2.4 Rendering Commands . 25
2.5 Context State . 26

2.5.1 Generic Context State Queries 26
2.6 Objects and the Object Model 26

2.6.1 Object Management . 27
2.6.2 Buffer Objects . 28
2.6.3 Shader Objects . 29
2.6.4 Program Objects . 29
2.6.5 Program Pipeline Objects 29
2.6.6 Texture Objects . 29
2.6.7 Sampler Objects . 30
2.6.8 Renderbuffer Objects . 30
2.6.9 Framebuffer Objects . 30
2.6.10 Vertex Array Objects . 30
2.6.11 Transform Feedback Objects 31
2.6.12 Query Objects . 31
2.6.13 Sync Objects . 31
2.6.14 Display Lists . 31

3 Dataflow Model 32

4 Event Model 35
4.1 Sync Objects and Fences . 35

4.1.1 Waiting for Sync Objects 37
4.1.2 Signaling . 39
4.1.3 Sync Object Queries . 40

4.2 Query Objects and Asynchronous Queries 41
4.2.1 Query Object Queries 45

4.3 Time Queries . 48

5 Shared Objects and Multiple Contexts 50
5.1 Object Deletion Behavior . 51

5.1.1 Side Effects of Shared Context Destruction 51
5.1.2 Automatic Unbinding of Deleted Objects 51
5.1.3 Deleted Object and Object Name Lifetimes 51

5.2 Sync Objects and Multiple Contexts 52
5.3 Propagating Changes to Objects 52

5.3.1 Determining Completion of Changes to an object 53

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS iii

5.3.2 Definitions . 54
5.3.3 Rules . 54

6 Buffer Objects 56
6.1 Creating and Binding Buffer Objects 57

6.1.1 Binding Buffer Objects to Indexed Targets 59
6.2 Creating and Modifying Buffer Object Data Stores 62

6.2.1 Clearing Buffer Object Data Stores 68
6.3 Mapping and Unmapping Buffer Data 70

6.3.1 Unmapping Buffers . 75
6.3.2 Effects of Mapping Buffers on Other GL Commands . . . 76

6.4 Effects of Accessing Outside Buffer Bounds 76
6.5 Invalidating Buffer Data . 76
6.6 Copying Between Buffers . 77
6.7 Buffer Object Queries . 78

6.7.1 Indexed Buffer Object Limits and Binding Queries 80
6.8 Buffer Object State . 82

7 Programs and Shaders 83
7.1 Shader Objects . 84
7.2 Shader Binaries . 87
7.3 Program Objects . 88

7.3.1 Program Interfaces . 95
7.4 Program Pipeline Objects . 114

7.4.1 Shader Interface Matching 118
7.4.2 Program Pipeline Object State 121

7.5 Program Binaries . 121
7.6 Uniform Variables . 124

7.6.1 Loading Uniform Variables In The Default Uniform Block 131
7.6.2 Uniform Blocks . 135
7.6.3 Uniform Buffer Object Bindings 138

7.7 Atomic Counter Buffers . 139
7.7.1 Atomic Counter Buffer Object Storage 140
7.7.2 Atomic Counter Buffer Bindings 140

7.8 Shader Buffer Variables and Shader Storage Blocks 141
7.9 Subroutine Uniform Variables 143
7.10 Samplers . 147
7.11 Images . 148
7.12 Shader Memory Access . 148

7.12.1 Shader Memory Access Ordering 149

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS iv

7.12.2 Shader Memory Access Synchronization 151
7.13 Shader, Program, and Program Pipeline Queries 156
7.14 Required State . 164

8 Textures and Samplers 167
8.1 Texture Objects . 168
8.2 Sampler Objects . 172
8.3 Sampler Object Queries . 177
8.4 Pixel Rectangles . 177

8.4.1 Pixel Storage Modes and Pixel Buffer Objects 178
8.4.2 The Imaging Subset . 179
8.4.3 Pixel Transfer Modes . 179
8.4.4 Transfer of Pixel Rectangles 179
8.4.5 Pixel Transfer Operations 192

8.5 Texture Image Specification . 192
8.5.1 Required Texture Formats 195
8.5.2 Encoding of Special Internal Formats 196
8.5.3 Texture Image Structure 200

8.6 Alternate Texture Image Specification Commands 207
8.6.1 Texture Copying Feedback Loops 214

8.7 Compressed Texture Images . 214
8.8 Multisample Textures . 222
8.9 Buffer Textures . 223
8.10 Texture Parameters . 227
8.11 Texture Queries . 230

8.11.1 Active Texture . 230
8.11.2 Texture Parameter Queries 230
8.11.3 Texture Level Parameter Queries 232
8.11.4 Texture Image Queries 234

8.12 Depth Component Textures . 241
8.13 Cube Map Texture Selection . 241

8.13.1 Seamless Cube Map Filtering 242
8.14 Texture Minification . 242

8.14.1 Scale Factor and Level of Detail 243
8.14.2 Coordinate Wrapping and Texel Selection 245
8.14.3 Mipmapping . 250
8.14.4 Manual Mipmap Generation 252
8.14.5 Automatic Mipmap Generation 253

8.15 Texture Magnification . 253
8.16 Combined Depth/Stencil Textures 254

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS v

8.17 Texture Completeness . 254
8.17.1 Effects of Sampler Objects on Texture Completeness . . . 255
8.17.2 Effects of Completeness on Texture Application 256
8.17.3 Effects of Completeness on Texture Image Specification . 256

8.18 Texture Views . 256
8.19 Immutable-Format Texture Images 260

8.19.1 Behavior of Immutable-Format Texture Images 266
8.20 Invalidating Texture Image Data 267
8.21 Clearing Texture Image Data . 268
8.22 Texture State and Proxy State . 270
8.23 Texture Comparison Modes . 273

8.23.1 Depth Texture Comparison Mode 273
8.24 sRGB Texture Color Conversion 273
8.25 Shared Exponent Texture Color Conversion 274
8.26 Texture Image Loads and Stores 275

8.26.1 Image Unit Queries . 284

9 Framebuffers and Framebuffer Objects 285
9.1 Framebuffer Overview . 285
9.2 Binding and Managing Framebuffer Objects 287

9.2.1 Framebuffer Object Parameters 291
9.2.2 Attaching Images to Framebuffer Objects 292
9.2.3 Framebuffer Object Queries 293
9.2.4 Renderbuffer Objects . 298
9.2.5 Required Renderbuffer Formats 302
9.2.6 Renderbuffer Object Queries 303
9.2.7 Attaching Renderbuffer Images to a Framebuffer 303
9.2.8 Attaching Texture Images to a Framebuffer 305

9.3 Feedback Loops Between Textures and the Framebuffer 311
9.3.1 Rendering Feedback Loops 311
9.3.2 Texture Copying Feedback Loops 312

9.4 Framebuffer Completeness . 312
9.4.1 Framebuffer Attachment Completeness 313
9.4.2 Whole Framebuffer Completeness 314
9.4.3 Required Framebuffer Formats 317
9.4.4 Effects of Framebuffer Completeness on Framebuffer Op-

erations . 317
9.4.5 Effects of Framebuffer State on Framebuffer Dependent

Values . 318
9.5 Mapping between Pixel and Element in Attached Image 319

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS vi

9.6 Conversion to Framebuffer-Attachable Image Components 319
9.7 Conversion to RGBA Values . 320
9.8 Layered Framebuffers . 320

10 Vertex Specification and Drawing Commands 322
10.1 Primitive Types . 324

10.1.1 Points . 324
10.1.2 Line Strips . 324
10.1.3 Line Loops . 324
10.1.4 Separate Lines . 324
10.1.5 Polygons . 325
10.1.6 Triangle Strips . 325
10.1.7 Triangle Fans . 326
10.1.8 Separate Triangles . 326
10.1.9 Quadrilateral (quad) strips 326
10.1.10 Separate Quadrilaterals 326
10.1.11 Lines with Adjacency 326
10.1.12 Line Strips with Adjacency 328
10.1.13 Triangles with Adjacency 328
10.1.14 Triangle Strips with Adjacency 329
10.1.15 Separate Patches . 330
10.1.16 General Considerations For Polygon Primitives 331
10.1.17 Polygon Edges . 331

10.2 Current Vertex Attribute Values 331
10.2.1 Current Generic Attributes 331
10.2.2 Current Conventional Attributes 334
10.2.3 Vertex Attribute Queries 334
10.2.4 Required State . 334

10.3 Vertex Arrays . 334
10.3.1 Vertex Array Objects . 334
10.3.2 Specifying Arrays for Generic Vertex Attributes 336
10.3.3 Specifying Arrays for Fixed-Function Attributes 343
10.3.4 Vertex Attribute Divisors 344
10.3.5 Transferring Array Elements 345
10.3.6 Primitive Restart . 345
10.3.7 Robust Buffer Access . 346
10.3.8 Packed Vertex Data Formats 346
10.3.9 Vertex Arrays in Buffer Objects 347
10.3.10 Array Indices in Buffer Objects 348
10.3.11 Indirect Commands in Buffer Objects 349

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS vii

10.4 Drawing Commands Using Vertex Arrays 349
10.4.1 Interleaved Arrays . 360

10.5 Vertex Array and Vertex Array Object Queries 360
10.6 Required State . 363
10.7 Drawing Commands Using Begin and End 363
10.8 Rectangles . 363
10.9 Conditional Rendering . 364

11 Programmable Vertex Processing 366
11.1 Vertex Shaders . 366

11.1.1 Vertex Attributes . 366
11.1.2 Vertex Shader Variables 372
11.1.3 Shader Execution . 377

11.2 Tessellation . 389
11.2.1 Tessellation Control Shaders 391
11.2.2 Tessellation Primitive Generation 396
11.2.3 Tessellation Evaluation Shaders 405

11.3 Geometry Shaders . 410
11.3.1 Geometry Shader Input Primitives 411
11.3.2 Geometry Shader Output Primitives 412
11.3.3 Geometry Shader Variables 413
11.3.4 Geometry Shader Execution Environment 413

12 Fixed-Function Vertex Processing 420

13 Fixed-Function Vertex Post-Processing 421
13.1 Clamping or Masking . 421
13.2 Transform Feedback . 422

13.2.1 Transform Feedback Objects 422
13.2.2 Transform Feedback Primitive Capture 424
13.2.3 Transform Feedback Draw Operations 430

13.3 Primitive Queries . 431
13.4 Flatshading . 432
13.5 Primitive Clipping . 432

13.5.1 Clipping Shader Outputs 435
13.5.2 Clip Plane Queries . 436

13.6 Coordinate Transformations . 436
13.6.1 Controlling the Viewport 437

13.7 Final Color Processing . 440

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS viii

14 Fixed-Function Primitive Assembly and Rasterization 441
14.1 Discarding Primitives Before Rasterization 443
14.2 Invariance . 443
14.3 Antialiasing . 444

14.3.1 Multisampling . 445
14.4 Points . 447

14.4.1 Basic Point Rasterization 449
14.4.2 Point Rasterization State 450
14.4.3 Point Multisample Rasterization 450

14.5 Line Segments . 450
14.5.1 Basic Line Segment Rasterization 451
14.5.2 Other Line Segment Features 453
14.5.3 Line Rasterization State 455
14.5.4 Line Multisample Rasterization 455

14.6 Polygons . 456
14.6.1 Basic Polygon Rasterization 456
14.6.2 Stippling . 459
14.6.3 Antialiasing . 459
14.6.4 Options Controlling Polygon Rasterization 459
14.6.5 Depth Offset . 460
14.6.6 Polygon Multisample Rasterization 461
14.6.7 Polygon Rasterization State 462

14.7 Current Raster Position . 462
14.8 Bitmaps . 462
14.9 Early Per-Fragment Tests . 462

14.9.1 Pixel Ownership Test . 463
14.9.2 Scissor Test . 463
14.9.3 Multisample Fragment Operations 465
14.9.4 The Early Fragment Test Qualifier 466

15 Programmable Fragment Processing 467
15.1 Fragment Shader Variables . 467
15.2 Shader Execution . 468

15.2.1 Texture Access . 469
15.2.2 Shader Inputs . 469
15.2.3 Shader Outputs . 472
15.2.4 Early Fragment Tests . 476

16 Fixed-Function Fragment Processing 477

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS ix

17 Writing Fragments and Samples to the Framebuffer 478
17.1 Antialiasing Application . 478
17.2 Multisample Point Fade . 478
17.3 Per-Fragment Operations . 479

17.3.1 Alpha To Coverage . 479
17.3.2 Alpha Test . 481
17.3.3 Stencil Test . 481
17.3.4 Depth Buffer Test . 482
17.3.5 Occlusion Queries . 483
17.3.6 Blending . 484
17.3.7 sRGB Conversion . 491
17.3.8 Dithering . 492
17.3.9 Logical Operation . 492
17.3.10 Additional Multisample Fragment Operations 493

17.4 Whole Framebuffer Operations 494
17.4.1 Selecting Buffers for Writing 495
17.4.2 Fine Control of Buffer Updates 499
17.4.3 Clearing the Buffers . 501
17.4.4 Invalidating Framebuffer Contents 504
17.4.5 The Accumulation Buffer 506

18 Reading and Copying Pixels 507
18.1 Drawing Pixels . 507
18.2 Reading Pixels . 507

18.2.1 Selecting Buffers for Reading 507
18.2.2 ReadPixels . 509
18.2.3 Obtaining Pixels from the Framebuffer 510
18.2.4 Conversion of RGBA values 512
18.2.5 Conversion of Depth values 512
18.2.6 Pixel Transfer Operations 512
18.2.7 Conversion to L . 512
18.2.8 Final Conversion . 513
18.2.9 Placement in Pixel Pack Buffer or Client Memory 515

18.3 Copying Pixels . 516
18.3.1 Blitting Pixel Rectangles 516
18.3.2 Copying Between Images 519

18.4 Pixel Draw and Read State . 522

19 Compute Shaders 523
19.1 Compute Shader Variables . 525

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS x

20 Debug Output 526
20.1 Debug Messages . 527
20.2 Debug Message Callback . 529
20.3 Debug Message Log . 530
20.4 Controlling Debug Messages . 530
20.5 Externally Generated Messages 532
20.6 Debug Groups . 532
20.7 Debug Labels . 534
20.8 Asynchronous and Synchronous Debug Output 535
20.9 Debug Output Queries . 536

21 Special Functions 539
21.1 Evaluators . 539
21.2 Selection . 539
21.3 Feedback . 539
21.4 Display Lists . 539
21.5 Hints . 539
21.6 Saving and Restoring State . 540

22 Context State Queries 541
22.1 Simple Queries . 541
22.2 Pointer, String, and Related Context Queries 543
22.3 Internal Format Queries . 546

22.3.1 Supported Operation Queries 546
22.3.2 Other Internal Format Queries 550

22.4 Transform Feedback State Queries 557
22.5 Indexed Binding State Queries 558

23 State Tables 559

A Invariance 634
A.1 Repeatability . 634
A.2 Multi-pass Algorithms . 635
A.3 Invariance Rules . 635
A.4 Tessellation Invariance . 637
A.5 Atomic Counter Invariance . 639
A.6 What All This Means . 640

B Corollaries 641

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS xi

C Compressed Texture Image Formats 643
C.1 RGTC Compressed Texture Image Formats 643
C.2 BPTC Compressed Texture Image Formats 644
C.3 ETC Compressed Texture Image Formats 644

D Profiles and the Deprecation Model 646
D.1 Core and Compatibility Profiles 647
D.2 Deprecated and Removed Features 647

D.2.1 Deprecated But Still Supported Features 647
D.2.2 Removed Features . 648

E Version 4.2 653
E.1 New Features . 653
E.2 Deprecation Model . 654
E.3 Changed Tokens . 654
E.4 Change Log for Released Specifications 655
E.5 Credits and Acknowledgements 657

F Version 4.3 660
F.1 Restructuring . 660
F.2 New Features . 661
F.3 Deprecation Model . 662
F.4 Changed Tokens . 662
F.5 Change Log for Released Specifications 663
F.6 Credits . 670
F.7 Acknowledgements . 672

G Version 4.4 673
G.1 New Features . 673
G.2 Deprecation Model . 674
G.3 Change Log for Released Specifications 674
G.4 Credits . 685
G.5 Acknowledgements . 686

H Version 4.5 687
H.1 New Features . 687
H.2 Deprecation Model . 688
H.3 Change Log for Released Specifications 688
H.4 Credits . 699
H.5 Acknowledgements . 700

OpenGL 4.5 (Core Profile) - October 24, 2016

CONTENTS xii

I OpenGL Registry, Header Files, and ARB Extensions 701
I.1 OpenGL Registry . 701
I.2 Header Files . 701
I.3 ARB and Khronos Extensions 702

I.3.1 Naming Conventions . 703
I.3.2 Promoting Extensions to Core Features 703
I.3.3 Extension Summaries 703
I.3.4 Bindless Textures . 727
I.3.5 Compute Variable Group Size 727
I.3.6 Indirect Parameters . 727
I.3.7 Seamless Cubemap per Texture 727
I.3.8 Shader Draw Parameters 727
I.3.9 Shader Group Vote . 727
I.3.10 Sparse Textures . 728

Index 729

OpenGL 4.5 (Core Profile) - October 24, 2016

List of Figures

3.1 Block diagram of the GL pipeline. 33

8.1 Transfer of pixel rectangles. 179
8.2 Selecting a subimage from an image 184
8.3 A texture image and the coordinates used to access it. 205
8.4 Example of the components returned for textureGather. 248

10.1 Vertex processing and primitive assembly. 322
10.2 Triangle strips, fans, and independent triangles. 325
10.3 Lines with adjacency. 326
10.4 Triangles with adjacency. 328
10.5 Triangle strips with adjacency. 329

11.1 Domain parameterization for tessellation. 396
11.2 Inner triangle tessellation. 400
11.3 Inner quad tessellation. 403
11.4 Isoline tessellation. 405

14.1 Rasterization. 441
14.2 Visualization of Bresenham’s algorithm. 451
14.3 Rasterization of non-antialiased wide lines. 454
14.4 The region used in rasterizing an antialiased line segment. 455

17.1 Per-fragment operations. 479

18.1 Operation of ReadPixels. 507

xiii

List of Tables

1.1 OpenGL ES to OpenGL version relationship. 5

2.1 GL command suffixes . 12
2.2 GL data types . 13
2.3 Summary of GL errors . 18

4.1 Initial properties of a sync object created with FenceSync. 36

6.1 Buffer object binding targets. 58
6.2 Buffer object parameters and their values. 58
6.3 Buffer object state. 65
6.4 Buffer object state set by MapBufferRange and MapNamedBuf-

ferRange. 72
6.5 Indexed buffer object limits and binding queries 81

7.1 CreateShader type values and the corresponding shader stages. . 85
7.2 GetProgramResourceiv properties and supported interfaces . . . 105
7.3 OpenGL Shading Language type tokens 112
7.4 Query targets for default uniform block storage, in components. . 125
7.5 Query targets for combined uniform block storage, in components. 125
7.6 GetProgramResourceiv properties used by GetActiveUniformsiv. 129
7.7 GetProgramResourceiv properties used by GetActiveUniform-

Blockiv. 130
7.8 GetProgramResourceiv properties used by GetActiveAtomic-

CounterBufferiv. 131
7.9 Interfaces for active subroutines 144
7.10 Interfaces for active subroutine uniforms 145

8.1 PixelStore* parameters. 178
8.2 Pixel data types. 182

xiv

LIST OF TABLES xv

8.3 Pixel data formats. 183
8.4 Swap Bytes bit ordering. 184
8.5 Packed pixel formats. 186
8.6 UNSIGNED_BYTE formats. Bit numbers are indicated for each

component. 187
8.7 UNSIGNED_SHORT formats . 188
8.8 UNSIGNED_INT formats . 189
8.9 FLOAT_UNSIGNED_INT formats 190
8.10 Packed pixel field assignments. 191
8.11 Conversion from RGBA, depth, and stencil pixel components to

internal texture components. 194
8.12 Sized internal color formats. 199
8.13 Sized internal depth and stencil formats. 200
8.14 Generic and specific compressed internal formats. 201
8.15 Valid texture target parameters 210
8.16 Internal formats for buffer textures 226
8.17 Texture parameters and their values. 229
8.18 Texture return values. 237
8.19 Selection of cube map images. 241
8.20 Texel location wrap mode application. 246
8.21 Legal texture targets for TextureView. 258
8.22 Compatible internal formats for TextureView 259
8.23 Depth texture comparison functions. 274
8.24 sRGB texture internal formats. 275
8.25 Mapping of image load, store, and atomic texel coordinate compo-

nents to texel numbers. 279
8.26 Supported image unit formats, with equivalent format layout

qualifiers. 282
8.27 Texel sizes, compatibility classes, and pixel format/type combina-

tions for each image format. 284

9.1 Buffer selection for default framebuffer attachment queries 295
9.2 Framebuffer attachment points. 305
9.3 Layer numbers for cube map texture faces. 321

10.1 Triangles generated by triangle strips with adjacency. 330
10.2 Vertex array sizes (values per vertex) and data types for generic

vertex attributes . 338
10.3 Packed component layout for non-BGRA formats. 347
10.4 Packed component layout for BGRA format. 347

OpenGL 4.5 (Core Profile) - October 24, 2016

LIST OF TABLES xvi

10.5 Packed component layout for UNSIGNED_INT_10F_11F_11F_-
REV format. 347

10.6 Indirect commands and corresponding indirect buffer targets. . . . 349

11.1 Generic attribute components accessed by attribute variables. . . . 367
11.2 Generic attributes and vector types used by column vectors of ma-

trix variables bound to generic attribute index i. 368
11.3 Scalar and vector vertex attribute types 368

13.1 Transform feedback modes . 426
13.2 Provoking vertex selection. 433

15.1 Correspondence of filtered texture components to texture base
components. 470

17.1 RGB and alpha blend equations. 487
17.2 Blending functions. 489
17.3 Logical operations . 493
17.4 Buffer selection for the default framebuffer 496
17.5 Buffer selection for a framebuffer object 496
17.6 DrawBuffers buffer selection for the default framebuffer 497

18.1 PixelStore parameters. 510
18.2 ReadPixels GL data types and reversed component conversion for-

mulas. 514
18.3 ReadPixels index masks. 515
18.4 Compatible internal formats for copying 521

20.1 Sources of debug output messages 527
20.2 Types of debug output messages 528
20.3 Severity levels of messages . 528
20.4 Object namespace identifiers . 534

21.1 Hint targets and descriptions . 540

22.1 Context profile bits . 544
22.2 Internal format targets . 547

23.1 State Variable Types . 560
23.2 Current Values and Associated Data 561
23.3 Vertex Array Object State (cont.) 562
23.4 Vertex Array Object State (cont.) 563

OpenGL 4.5 (Core Profile) - October 24, 2016

LIST OF TABLES xvii

23.5 Vertex Array Data (not in Vertex Array objects) 564
23.6 Buffer Object State . 565
23.7 Transformation state . 566
23.8 Coloring . 567
23.9 Rasterization . 568
23.10Rasterization (cont.) . 569
23.11Multisampling . 570
23.12Textures (state per texture unit) 571
23.13Textures (state per texture unit (cont.) 572
23.14Textures (state per texture object) 573
23.15Textures (state per texture object) (cont.) 574
23.16Textures (state per texture image) 575
23.17Textures (state per texture image) (cont.) 576
23.18Textures (state per sampler object) 577
23.19Texture Environment and Generation 578
23.20Pixel Operations . 579
23.21Pixel Operations (cont.) . 580
23.22Framebuffer Control . 581
23.23Framebuffer (state per target binding point) 582
23.24Framebuffer (state per framebuffer object) 583
23.25Framebuffer (state per attachment point) 584
23.26Renderbuffer (state per target and binding point) 585
23.27Renderbuffer (state per renderbuffer object) 586
23.28Pixels . 587
23.29Pixels (cont.) . 588
23.30Shader Object State . 589
23.31Program Pipeline Object State 590
23.32Program Object State . 591
23.33Program Object State (cont.) . 592
23.34Program Object State (cont.) . 593
23.35Program Object State (cont.) . 594
23.36Program Object State (cont.) . 595
23.37Program Object State (cont.) . 596
23.38Program Object State (cont.) . 597
23.39Program Object State (cont.) . 598
23.40Program Interface State . 599
23.41Program Object Resource State 600
23.42Program Object Resource State (cont.) 601
23.43Vertex and Geometry Shader State 602
23.44Query Object State . 603

OpenGL 4.5 (Core Profile) - October 24, 2016

LIST OF TABLES xviii

23.45Image State (state per image unit) 604
23.46Atomic Counter Buffer Binding State 605
23.47Shader Storage Buffer Binding State 606
23.48Transform Feedback State . 607
23.49Uniform Buffer Binding State 608
23.50Sync Object State . 609
23.51Hints . 610
23.52Compute Dispatch State . 611
23.53Implementation Dependent Values 612
23.54Implementation Dependent Values (cont.) 613
23.55Implementation Dependent Values (cont.) 614
23.56Implementation Dependent Version and Extension Support 615
23.57Implementation Dependent Vertex Shader Limits 616
23.58Implementation Dependent Tessellation Shader Limits 617
23.59Implementation Dependent Tessellation Shader Limits (cont.) . . 618
23.60Implementation Dependent Geometry Shader Limits 619
23.61Implementation Dependent Fragment Shader Limits 620
23.62Implementation Dependent Compute Shader Limits 621
23.63Implementation Dependent Aggregate Shader Limits 622
23.64Implementation Dependent Aggregate Shader Limits (cont.) . . . 623
23.65Implementation Dependent Aggregate Shader Limits (cont.) . . . 624
23.66Implementation Dependent Aggregate Shader Limits (cont.) . . . 625
23.67Debug Output State . 626
23.68Implementation Dependent Debug Output State 627
23.69Implementation Dependent Values (cont.)

† These queries return the maximum no. of samples for all internal
formats required to support multisampled rendering. 628

23.70Implementation Dependent Values (cont.) 629
23.71Internal Format Dependent Values 630
23.72Implementation Dependent Transform Feedback Limits 631
23.73Framebuffer Dependent Values 632
23.74Miscellaneous . 633

C.1 Mapping of OpenGL RGTC formats to descriptions. 644
C.2 Mapping of OpenGL BPTC formats to descriptions. 644
C.3 Mapping of OpenGL ETC formats to descriptions. 645

E.1 New token names . 655

F.1 New token names . 663

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 1

Introduction

This document, referred to as the “OpenGL Specification” or just “Specification”
hereafter, describes the OpenGL graphics system: what it is, how it acts, and what
is required to implement it. We assume that the reader has at least a rudimentary
understanding of computer graphics. This means familiarity with the essentials
of computer graphics algorithms and terminology as well as with modern GPUs
(Graphic Processing Units).

The canonical version of the Specification is available in the official OpenGL
Registry, located at URL

http://www.opengl.org/registry/

1.1 Formatting of the OpenGL Specification

Starting with version 4.3, the OpenGL Specification has undergone major restruc-
turing to focus on programmable shading, and to describe important concepts and
objects in the context of the entire API before describing details of their use in the
graphics pipeline.

1.1.1 Formatting of the Compatibility Profile

This subsection is only defined in the compatibility profile.

1.1.2 Formatting of Optional Features

This subsection is only defined in the compatibility profile.

1

http://www.opengl.org/registry/

1.2. WHAT IS THE OPENGL GRAPHICS SYSTEM? 2

1.1.3 Formatting of Changes

This version of the OpenGL 4.5 Specification marks changes relative to the first
public release of the OpenGL 4.5 Specification by typesetting them in color, like
this paragraph. Details of these changes are also described in appendix H.3.

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is an API (Application Programming Inter-
face) to graphics hardware. The API consists of a set of several hundred procedures
and functions that allow a programmer to specify the shader programs, objects, and
operations involved in producing high-quality graphical images, specifically color
images of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls control drawing geometric objects such as points, lines, and
polygons, but the way that some of this drawing occurs (such as when antialiasing
or multisampling is in use) relies on the existence of a framebuffer and its proper-
ties. Some commands explicitly manage the framebuffer.

1.2.1 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
shader programs or shaders, data used by shaders, and state controlling aspects of
OpenGL outside the scope of shaders. Typically the data represent geometry in two
or three dimensions and texture images, while the shaders control the geometric
processing, rasterization of geometry and the lighting and shading of fragments
generated by rasterization, resulting in rendering geometry into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
an OpenGL context and associate it with the window. Once a context is allocated,
OpenGL commands to define shaders, geometry, and textures are made, followed
by commands which draw geometry by transferring specified portions of the geom-
etry to the shaders. Drawing commands specify simple geometric objects such as
points, line segments, and polygons, which can be further manipulated by shaders.
There are also commands which directly control the framebuffer by reading and
writing pixels.

OpenGL 4.5 (Core Profile) - October 24, 2016

1.2. WHAT IS THE OPENGL GRAPHICS SYSTEM? 3

1.2.2 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that control the operation of
the GPU. Modern GPUs accelerate almost all OpenGL operations, storing data
and framebuffer images in GPU memory and executing shaders in dedicated GPU
processors. However, OpenGL may be implemented on less capable GPUs, or even
without a GPU, by moving some or all operations into the host CPU.

The implementor’s task is to provide a software library on the CPU which
implements the OpenGL API, while dividing the work for each OpenGL command
between the CPU and the graphics hardware as appropriate for the capabilities of
the GPU.

OpenGL contains a considerable amount of information including many types
of objects representing programmable shaders and the data they consume and
generate, as well as other context state controlling non-programmable aspects of
OpenGL. Most of these objects and state are available to the programmer, who can
set, manipulate, and query their values through OpenGL commands. Some of it,
however, is derived state visible only by the effect it has on how OpenGL oper-
ates. One of the main goals of this Specification is to describe OpenGL objects
and context state explicitly, to elucidate how they change in response to OpenGL
commands, and to indicate what their effects are.

1.2.3 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven fixed-function stages that are invoked by a set of specific drawing opera-
tions. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.2.4 Fixed-function Hardware and the Compatibility Profile

Older generations of graphics hardware were not programmable using shaders,
although they were configurable by setting state controlling specific details of their
operation. The compatibility profile of OpenGL continues to support the legacy
OpenGL commands developed for such fixed-function hardware, although they
are typically implemented by writing shaders which reproduce the operation of
such hardware. Fixed-function OpenGL commands and operations are described
as alternative interfaces following descriptions of the corresponding shader stages.

OpenGL 4.5 (Core Profile) - October 24, 2016

1.3. RELATED APIS 4

1.2.5 The Deprecation Model

Features marked as deprecated in one version of the Specification are expected to
be removed in a future version, allowing applications time to transition away from
use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix D.

1.3 Related APIs

Other APIs related to OpenGL are described below. Most of the specifications for
these APIs are available on the Khronos Group websites, although some vendor-
specific APIs are documented on that vendor’s developer website.

1.3.1 OpenGL Shading Language

The OpenGL Specification should be read together with a companion document
titled The OpenGL Shading Language. The latter document (referred to as the
OpenGL Shading Language Specification hereafter) defines the syntax and seman-
tics of the programming language used to write shaders (see chapter 7). Descrip-
tions of shaders later in this document may include references to concepts and
terms (such as shading language variable types) defined in the OpenGL Shading
Language Specification.

OpenGL 4.5 implementations are guaranteed to support version 4.50 of the
OpenGL Shading Language. All references to sections of that specification refer to
that version. The latest supported version of the shading language may be queried
as described in section 22.2.

The core profile of OpenGL 4.5 is also guaranteed to support all previous ver-
sions of the OpenGL Shading Language back to version 1.40. In some implemen-
tations the core profile may also support earlier versions of the OpenGL Shading
Language, and may support compatibility profile versions of the OpenGL Shading
Language for versions 1.40 and earlier. In this case, errors will be generated when
using language features such as compatibility profile built-ins not supported by the
core profile API. The #version strings for all supported versions of the OpenGL
Shading Language may be queried as described in section 22.2.

The OpenGL Shading Language Specification is available in the OpenGL Reg-
istry.

OpenGL 4.5 (Core Profile) - October 24, 2016

1.3. RELATED APIS 5

OpenGL ES Version OpenGL Version it subsets
OpenGL ES 1.1 OpenGL 1.5
OpenGL ES 2.0 OpenGL 2.0
OpenGL ES 3.0 OpenGL 3.3
OpenGL ES 3.1 OpenGL 4.3

Table 1.1: OpenGL ES to OpenGL version relationship.

1.3.2 OpenGL ES

OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D
graphics on embedded systems such as mobile phones, game consoles, and ve-
hicles. It consists of well-defined subsets of OpenGL. Each version of OpenGL ES
implements a subset of a corresponding OpenGL version as shown in table 1.1.

OpenGL ES versions also include some additional functionality taken from
later OpenGL versions or specific to OpenGL ES. It is straightforward to port code
written for OpenGL ES to corresponding versions of OpenGL.

OpenGL and OpenGL ES are developed in parallel within the Khronos Group,
which controls both standards.

OpenGL 4.3 and 4.5 include additional functionality initially defined in
OpenGL ES 3.0 and OpenGL ES 3.1, respectively, for increased compatibility be-
tween OpenGL and OpenGL ES implementations.

The OpenGL ES Specifications are available in the Khronos API Registry at
URL

http://www.khronos.org/registry/

1.3.3 OpenGL ES Shading Language

The Specification should also be read together with companion documents titled
The OpenGL ES Shading Language. Versions 1.00, 3.00, and 3.10 should be read.
These documents define versions of the OpenGL Shading Language designed for
implementations of OpenGL ES 2.0, 3.0, and 3.1 respectively, but also supported
by OpenGL implementations. References to the OpenGL Shading Language Spec-
ification hereafter include both OpenGL and OpenGL ES versions of the Shading
Language; references to specific sections are to those sections in version 4.50 of
the OpenGL Shading Language Specification.

OpenGL 4.5 implementations are guaranteed to support versions 1.00, 3.00,
and 3.10 of the OpenGL ES Shading Language.

OpenGL 4.5 (Core Profile) - October 24, 2016

http://www.khronos.org/registry/

1.3. RELATED APIS 6

The #version strings for all supported versions of the OpenGL Shading Lan-
guage may be queried as described in section 22.2.

The OpenGL ES Shading Language Specifications are available in the Khronos
API Registry.

1.3.4 WebGL

WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics
API based on OpenGL ES. Developers familiar with OpenGL ES will recognize
WebGL as a shader-based API using the OpenGL Shading Language, with con-
structs that are semantically similar to those of the underlying OpenGL ES API. It
stays very close to the OpenGL ES specification, with some concessions made for
what developers expect out of memory-managed languages such as JavaScript.

The WebGL Specification and related documentation are available in the
Khronos API Registry.

1.3.5 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

1.3.5.1 GLX - X Window System Bindings

OpenGL Graphics with the X Window System, referred to as the GLX Specification
hereafter, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is available.
The GLX Specification is available in the OpenGL Registry.

1.3.5.2 WGL - Microsoft Windows Bindings

The WGL API supports use of OpenGL with Microsoft Windows. WGL is docu-
mented in Microsoft’s MSDN system, although no full specification exists.

1.3.5.3 MacOS X Window System Bindings

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X window
system, including CGL, AGL, and NSOpenGLView. These APIs are documented
on Apple’s developer website.

OpenGL 4.5 (Core Profile) - October 24, 2016

1.4. FILING BUG REPORTS 7

1.3.5.4 EGL - Mobile and Embedded Device Bindings

The Khronos Native Platform Graphics Interface or “EGL Specification” describes
the EGL API for use of OpenGL ES on mobile and embedded devices. EGL im-
plementations supporting OpenGL may be available on some desktop platforms as
well. The EGL Specification is available in the Khronos API Registry.

1.3.6 OpenCL

OpenCL is an open, royalty-free standard for cross-platform, general-purpose par-
allel programming of processors found in personal computers, servers, and mobile
devices, including GPUs. OpenCL defines interop methods to share OpenCL mem-
ory and image objects with corresponding OpenGL buffer and texture objects, and
to coordinate control of and transfer of data between OpenCL and OpenGL. This
allows applications to split processing of data between OpenCL and OpenGL; for
example, by using OpenCL to implement a physics model and then rendering and
interacting with the resulting dynamic geometry using OpenGL.

The OpenCL Specification is available in the Khronos API Registry.

1.4 Filing Bug Reports

Bug reports on the OpenGL and OpenGL Shading Language Specifications can be
filed in the Khronos Public Bugzilla, located at URL

http://www.khronos.org/bugzilla/
Please file bugs against Product: OpenGL, Component: Specification, and the

appropriate version of the specification. It is best to file bugs against the most re-
cently released versions, since older versions are usually not updated for bugfixes.

OpenGL 4.5 (Core Profile) - October 24, 2016

http://www.khronos.org/bugzilla/

Chapter 2

OpenGL Fundamentals

This chapter introduces fundamental concepts including the OpenGL execution
model, API syntax, contexts and threads, numeric representation, context state and
state queries, and the different types of objects and shaders. It provides a frame-
work for interpreting more specific descriptions of commands and behavior in the
remainder of the Specification.

2.1 Execution Model

OpenGL (henceforth, “the GL”) is concerned only with processing data in GPU
memory, including rendering into a framebuffer and reading values stored in that
framebuffer. There is no support for other input or output devices. Programmers
must rely on other mechanisms to obtain user input.

The GL draws primitives processed by a variety of shader programs and fixed-
function processing units controlled by context state. Each primitive is a point,
line segment, patch, or polygon. Context state may be changed independently; the
setting of one piece of state does not affect the settings of others (although state and
shader all interact to determine what eventually ends up in the framebuffer). State
is set, primitives drawn, and other GL operations described by sending commands
in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of a line segment, or a corner of a polygon where two edges
meet. Data such as positional coordinates, colors, normals, texture coordinates, etc.
are associated with a vertex and each vertex is processed independently, in order,
and in the same way. The only exception to this rule is if the group of vertices
must be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping

8

2.1. EXECUTION MODEL 9

depends on which primitive the group of vertices represents.
Commands are always processed in the order in which they are received, al-

though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL state or the framebuffer must
be complete before any subsequent command can have any such effects.

Data binding occurs on call. This means that data passed to a GL command
are interpreted when that command is received. Even if the command requires a
pointer to data, those data are interpreted when the call is made, and any subsequent
changes to the data have no effect on the GL (unless the same pointer is used in a
subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects, although
shaders can be written to generate such objects. In other words, OpenGL provides
mechanisms to describe how complex geometric objects are to be rendered, rather
than mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer or in the same address space as the client. In this sense, the GL is net-
work transparent. A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state and objects. A client may choose to be
made current to any one of these contexts.

Issuing GL commands when a program is not current to a context results in
undefined behavior.

There are two classes of framebuffers: a window system-provided framebuffer
associated with a context when the context is made current, and application-created
framebuffers. The window system-provided framebuffer is referred to as the de-
fault framebuffer. Application-created framebuffers, referred to as framebuffer ob-
jects, may be created as desired, A context may be associated with two frame-
buffers, one for each of reading and drawing operations. The default framebuffer
and framebuffer objects are distinguished primarily by the interfaces for configur-
ing and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-

OpenGL 4.5 (Core Profile) - October 24, 2016

2.2. COMMAND SYNTAX 10

trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.3.5.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can be associated with different default framebuffers, and some
context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

OpenGL is designed to be run on a range of platforms with varying capabilities,
memory, and performance. To accommodate this variety, we specify ideal behavior
instead of actual behavior for certain GL operations. In cases where deviation from
the ideal is allowed, we also specify the rules that an implementation must obey
if it is to approximate the ideal behavior usefully. This allowed variation in GL
behavior implies that two distinct GL implementations may not agree pixel for
pixel when presented with the same input, even when run on identical framebuffer
configurations.

Finally, command names, constants, and types are prefixed in the C language
binding to OpenGL (by gl, GL_, and GL, respectively), to reduce name clashes with
other packages. The prefixes are omitted in this document for clarity.

2.2 Command Syntax

The Specification describes OpenGL commands as functions or procedures using
ANSI C syntax. Languages such as C++ and Javascript which allow passing
of argument type information permit language bindings with simpler declarations
and fewer entry points.

Various groups of GL commands perform the same operation but differ in how
arguments are supplied to them. To conveniently accommodate this variation, we
adopt a notation for describing commands and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the

OpenGL 4.5 (Core Profile) - October 24, 2016

2.2. COMMAND SYNTAX 11

command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniform4f(int location, float v0, float v1,
float v2, float v3);

and

void GetFloatv(enum pname, float *data);

In general, a command declaration has the form

rtype Name{ε1234}{ε b s i i64 f d ub us ui ui64}{εv}
([args ,] T arg1, . . ., T argN [, args]);

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. ε indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments arg1 through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then N is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg1 is present and it is an array of N values of
the indicated type.

For example,

void Uniform{1234}{if}(int location, T value);

indicates the eight declarations

void Uniform1i(int location, int value);
void Uniform1f(int location, float value);
void Uniform2i(int location, int v0, int v1);
void Uniform2f(int location, float v0, float v1);
void Uniform3i(int location, int v0, int v1, int v2);
void Uniform3f(int location, float v0, float v1,

float v3);

OpenGL 4.5 (Core Profile) - October 24, 2016

2.2. COMMAND SYNTAX 12

Type Descriptor Corresponding GL Type
b byte
s short
i int

i64 int64
f float
d double

ub ubyte
us ushort
ui uint

ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

void Uniform4i(int location, int v0, int v1, int v2,
int v3);

void Uniform4f(int location, float v0, float v1,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

The types clampf and clampd are no longer used, replaced by float
and double respectively together with specification language requiring param-
eter clamping1.

2.2.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using

1 These changes are backwards-compatible at the compilation and linking levels, and are being
propagated to man pages and header files as well.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.2. COMMAND SYNTAX 13

GL Type Description
Bit Width

boolean 8 Boolean
byte 8 Signed two’s complement binary inte-

ger
ubyte 8 Unsigned binary integer
char 8 Characters making up strings
short 16 Signed two’s complement binary inte-

ger
ushort 16 Unsigned binary integer
int 32 Signed two’s complement binary inte-

ger
uint 32 Unsigned binary integer
fixed 32 Signed two’s complement 16.16

scaled integer
int64 64 Signed two’s complement binary inte-

ger
uint64 64 Unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed twos complement binary inte-

ger
sizeiptr ptrbits Non-negative binary integer size
sync ptrbits Sync object handle (see section 4.1)
bitfield 32 Bit field
half 16 Half-precision floating-point value

encoded in an unsigned scalar
float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value
clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.
ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be large enough to store any CPU ad-
dress. sync is defined as an anonymous struct pointer in the C language bindings
while intptr and sizeiptr are defined as integer types large enough to hold
a pointer.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.2. COMMAND SYNTAX 14

a different parameter type than the actual type of that state, data conversions are
performed as follows:

• When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

• When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer. If the resulting value is so large in magnitude
that it cannot be represented by the internal state variable, the internal state
value is undefined.

• When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point, with or without normalization as described for spe-
cific commands.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.2.2 Data Conversions For State Query Commands

Query commands (commands whose name begins with Get) return a value or val-
ues to which GL state has been set. Some of these commands exist in multiple
versions returning different data types. When a query command is issued that re-
turns data types different from the actual type of that state, data conversions are
performed as follows. If more than one step is applicable, all relevant steps are
applied in the following order:

• If a command returning boolean data is called, such as GetBooleanv, a
floating-point or integer value converts to FALSE if and only if it is zero.
Otherwise it converts to TRUE.

• If a command returning unsigned integer data is called, such as GetSam-
plerParameterIuiv, negative values are clamped to zero.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 15

• If a command returning signed or unsigned integer data is called, such as
GetIntegerv or GetInteger64v, a boolean value of TRUE or FALSE is in-
terpreted as one or zero, respectively. A floating-point value is rounded
to the nearest integer, unless the value is an RGBA color component, a
DepthRange value, or a depth buffer clear value. In these cases, the query
command converts the floating-point value to an integer according to the
INT entry of table 18.2; a value not in [−1, 1] converts to an undefined value.

• If a command returning floating-point data is called, such as GetFloatv or
GetDoublev, a boolean value of TRUE or FALSE is interpreted as 1.0 or
0.0, respectively. An integer value is coerced to floating-point. Single- and
double-precision floating-point values are converted as necessary.

Following these steps, if a value is so large in magnitude that it cannot be
represented by the returned data type, then the nearest value representable using
that type is returned.

When querying bitmasks (such as SAMPLE_MASK_VALUE or STENCIL_-

WRITEMASK) with GetIntegerv, the mask value is treated as a signed integer, so
that mask values with the high bit set will not be clamped when returned as signed
integers.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f.

2.3 Command Execution

Most of the Specification discusses the behavior of a single context bound to a
single CPU thread. It is also possible for multiple contexts to share GL objects
and for each such context to be bound to a different thread. This section introduces
concepts related to GL command execution including error reporting, command
queue flushing, and synchronization between command streams. Using these tools
can increase performance and utilization of the GPU by separating loosely related
tasks into different contexts.

Methods to create, manage, and destroy CPU threads are defined by the host
CPU operating system and are not described in the Specification. Binding of GL
contexts to CPU threads is controlled through a window system binding layer such
as those described in section 1.3.5.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 16

2.3.1 Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results
of GL operation are undefined only if an OUT_OF_MEMORY error has occurred. In
other cases, there are no side effects unless otherwise noted; the command which
generates the error is ignored so that it has no effect on GL state or framebuffer
contents. Except as otherwise noted, if the generating command returns a value, it
returns zero. If the generating command modifies values through a pointer argu-
ment, no change is made to these values.

These error semantics apply only to GL errors, not to system errors such as
memory access errors. This behavior is the current behavior; the action of the
GL in the presence of errors is subject to change, and extensions to OpenGL may
define behavior currently considered as an error.

Several error generation conditions are implicit in the description of every GL
command.

• If the GL context has been reset as a result of previous GL command, or if
the context is reset as a side effect of execution of a command, a CONTEXT_-
LOST error is generated.

• If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, an

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 17

INVALID_ENUM error is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value or values pointed to are not
allowable for the given command.

• If a negative number is provided where an argument of type sizei or
sizeiptr is specified, an INVALID_VALUE error is generated.

• If memory is exhausted as a side effect of the execution of a command, an
OUT_OF_MEMORY error may be generated.

The Specification attempts to explicitly describe these implicit error conditions
(with the exception of CONTEXT_LOST2 and OUT_OF_MEMORY3 wherever they ap-
ply. However, they apply even if not explicitly described, unless a specific com-
mand describes different behavior. For example, certain commands use a sizei
parameter to indicate the length of a string, and also use negative values of the pa-
rameter to indicate a null-terminated string. These commands do not generate an
INVALID_VALUE error, because they explicitly describe different behavior.

Otherwise, errors are generated only for conditions that are explicitly described
in the Specification.

When a command could potentially generate several different errors (for ex-
ample, when it is passed separate enum and numeric parameters which are both
out of range), the GL implementation may choose to generate any of the applicable
errors.

When an error is generated, the GL may also generate a debug output message
describing its cause (see chapter 20). The message has source DEBUG_SOURCE_-
API, type DEBUG_TYPE_ERROR, and an implementation-dependent ID.

Most commands include a complete summary of errors at the end of their de-
scription, including even the implicit errors described above.

Such error summaries are set in a distinct style, like this sentence.

In some cases, however, errors may be generated for a single command for
reasons not directly related to that command. One such example is that deferred
processing for shader programs may result in link errors detected only when at-
tempting to draw primitives using vertex specification commands. In such cases,
errors generated by a command may be described elsewhere in the specification
than the command itself.

2 CONTEXT_LOST is not described because it can potentially be generated by almost all GL
commands, and occurs for reasons not directly related to the affected commands.

3 OUT_OF_MEMORY is not described because it can potentially be generated by any GL com-
mand, even those which do not explicitly allocate GPU memory.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 18

Error Description Offending com-
mand ignored?

CONTEXT_LOST Context has been lost and reset
by the driver

Except as noted
for specific
commands

INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range Yes
INVALID_OPERATION Operation illegal in current state Yes
INVALID_FRAMEBUFFER_OPERATION Framebuffer object is not com-

plete
Yes

OUT_OF_MEMORY Not enough memory left to exe-
cute command

Unknown

STACK_OVERFLOW Command would cause a stack
overflow

Yes

STACK_UNDERFLOW Command would cause a stack
underflow

Yes

Table 2.3: Summary of GL errors

2.3.2 Graphics Reset Recovery

Certain events can result in a reset of the GL context. After such an event, it is
referred to as a lost context and is unusable for almost all purposes. Recovery re-
quires creating a new context and recreating all relevant state from the lost context.
The current status of the graphics reset state is returned by

enum GetGraphicsResetStatus(void);

The value returned indicates if the GL context has been in a reset state at any
point since the last call to GetGraphicsResetStatus:

• NO_ERROR indicates that the GL context has not been in a reset state since
the last call.

• GUILTY_CONTEXT_RESET indicates that a reset has been detected that is
attributable to the current GL context.

• INNOCENT_CONTEXT_RESET indicates a reset has been detected that is not
attributable to the current GL context.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 19

• UNKNOWN_CONTEXT_RESET indicates a detected graphics reset whose cause
is unknown.

If a reset status other than NO_ERROR is returned and subsequent calls return
NO_ERROR, the context reset was encountered and completed. If a reset status is
repeatedly returned, the context may be in the process of resetting.

Reset notification behavior is determined at context creation time, and may be
queried by calling GetIntegerv with pname RESET_NOTIFICATION_STRATEGY.

If the reset notification behavior is NO_RESET_NOTIFICATION, then the im-
plementation will never deliver notification of reset events, and GetGraphicsRe-
setStatus will always return NO_ERROR4.

If the behavior is LOSE_CONTEXT_ON_RESET, a graphics reset will result in
the loss of all context state, requiring the recreation of all associated objects. In
this case GetGraphicsResetStatus may return any of the values described above.

If a graphics reset notification occurs in a context, a notification must also occur
in all other contexts which share objects with that context5.

After a graphics reset has occurred on a context, subsequent GL commands
on that context (or any context which shares with that context) will generate a
CONTEXT_LOST error. Such commands will not have side effects (in particular,
they will not modify memory passed by pointer for query results), and may not
block indefinitely or cause termination of the application. Exceptions to this be-
havior include:

• GetError and GetGraphicsResetStatus behave normally following a
graphics reset, so that the application can determine a reset has occurred,
and when it is safe to destroy and re-create the context.

• Any commands which might cause a polling application to block indefinitely
will generate a CONTEXT_LOST error, but will also return a value indicating
completion to the application. Such commands include:

– GetSynciv with pname SYNC_STATUS ignores the other parameters
and returns SIGNALED in values.

– GetQueryObjectuiv with pname QUERY_RESULT_AVAILABLE ig-
nores the other parameters and returns TRUE in params.

4In this case, it is recommended that implementations should not allow loss of context state no
matter what events occur. However, this is only a recommendation, and cannot be relied upon by
applications.

5The values returned by GetGraphicsResetStatus in the different contexts may differ.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 20

2.3.3 Flush and Finish

Implementations may buffer multiple commands in a command queue before send-
ing them to the GL server for execution. This may happen in places such as the
network stack (for network transparent implementations), CPU code executing as
part of the GL client or the GL server, or internally to the GPU hardware. Coarse
control over command queues is available using the command

void Flush(void);

which causes all previously issued GL commands to complete in finite time (al-
though such commands may still be executing when Flush returns).

The command

void Finish(void);

forces all previously issued GL commands to complete. Finish does not return
until all effects from such commands on GL client and server state and the frame-
buffer are fully realized.

Finer control over command execution can be expressed using fence commands
and sync objects, as discussed in section 4.1.

2.3.4 Numeric Representation and Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations normally perform computations in floating-point, and must
meet the range and precision requirements defined under ”Floating-Point Com-
putation” below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and sampling, and
per-fragment operations. Range and precision requirements during shader execu-
tion differ and are specified by the OpenGL Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

2.3.4.1 Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the details
of how operations on them are performed.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 21

We require simply that numbers’ floating-point parts contain enough bits and
that their exponent fields are large enough so that individual results of floating-
point operations are accurate to about 1 part in 105. The maximum representable
magnitude for all floating-point values must be at least 232. x · 0 = 0 · x = 0 for
any non-infinite and non-NaN x. 1 · x = x · 1 = x. x + 0 = 0 + x = x. 00 =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

The special values Inf and −Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 0

0 . Implementations are permitted,
but not required, to support Inf s and NaN s in their floating-point computations.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

2.3.4.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S), a 5-bit exponent (E), and a
10-bit mantissa (M). The value V of a 16-bit floating-point number is determined
by the following:

V =

(−1)S × 0.0, E = 0,M = 0

(−1)S × 2−14 × M
210
, E = 0,M 6= 0

(−1)S × 2E−15 ×
(
1 + M

210

)
, 0 < E < 31

(−1)S × Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 16-bit integerN , then

S =

⌊
N mod 65536

32768

⌋
E =

⌊
N mod 32768

1024

⌋
M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 22

floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

2.3.4.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 6-bit mantissa (M). The value V of an unsigned 11-bit floating-point number is
determined by the following:

V =

0.0, E = 0,M = 0

2−14 × M
64 , E = 0,M 6= 0

2E−15 ×
(
1 + M

64

)
, 0 < E < 31

Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 11-bit integerN , then

E =

⌊
N

64

⌋
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.3.4.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 5-bit mantissa (M). The value V of an unsigned 10-bit floating-point number is
determined by the following:

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 23

V =

0.0, E = 0,M = 0

2−14 × M
32 , E = 0,M 6= 0

2E−15 ×
(
1 + M

32

)
, 0 < E < 31

Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 10-bit integerN , then

E =

⌊
N

32

⌋
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.3.4.5 Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed repre-
sentation with 16 bits to the right of the binary point (fraction bits).

2.3.4.6 General Requirements

Some calculations require division. In such cases (including implied divisions re-
quired by vector normalizations), a division by zero produces an unspecified result
but must not lead to GL interruption or termination.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.3. COMMAND EXECUTION 24

2.3.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point inte-
ger representation. When the integer is one of the types defined in table 2.2, b is
the required bit width of that type. When the integer is a texture or renderbuffer
color or depth component (see section 8.5), b is the number of bits allocated to that
component in the internal format of the texture or renderbuffer. When the integer is
a framebuffer color or depth component (see section 9), b is the number of bits allo-
cated to that component in the framebuffer. For framebuffer and renderbuffer alpha
components, bmust be at least 2 if the buffer does not contain an alpha component,
or if there is only one bit of alpha in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively.

2.3.5.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

f =
c

2b − 1
. (2.1)

Signed normalized fixed-point integers represent numbers in the range [−1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f is performed using

f = max

{
c

2b−1 − 1
,−1.0

}
. (2.2)

Only the range [−2b−1 + 1, 2b−1 − 1] is used to represent signed fixed-point
values in the range [−1, 1]. For example, if b = 8, then the integer value−127 cor-
responds to−1.0 and the value 127 corresponds to 1.0. Note that while zero can be
exactly expressed in this representation, one value (−128 in the example) is outside
the representable range, and must be clamped before use. This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such

OpenGL 4.5 (Core Profile) - October 24, 2016

2.4. RENDERING COMMANDS 25

as vertex attribute values6, as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

2.3.5.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f ′ = convert float uint(f × (2b − 1), b) (2.3)

where convert float uint(r, b) returns one of the two unsigned binary integer
values with exactly b bits which are closest to the floating-point value r (where
rounding to nearest is preferred).

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value c is performed by clamping f to the range [−1, 1], then
computing

f ′ = convert float int(f × (2b−1 − 1), b) (2.4)

where convert float int(r, b) returns one of the two signed two’s-complement
binary integer values with exactly b bits which are closest to the floating-point
value r (where rounding to nearest is preferred).

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see
section 2.2.2) and returning integers7, as well as for specifying signed normalized
texture or framebuffer values using floating-point.

2.4 Rendering Commands

GL commands performing rendering into a framebuffer are sometimes treated spe-
cially by other GL operations such as conditional rendering (see section 10.9).
Such commands are called rendering commands, and include the drawing com-
mands *Draw* (see section 10.4), as well as these additional commands:

6 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which −128 mapped to −1.0, 127 mapped to 1.0, and 0.0 was not
exactly representable.

7 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which −1.0 mapped to −128, 1.0 mapped to 127, and 0.0 was not
exactly representable.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.5. CONTEXT STATE 26

• BlitFramebuffer (see section 18.3.1)

• Clear (see section 17.4.3)

• ClearBuffer* (see section 17.4.3.1)

• DispatchCompute* (see section 19)

2.5 Context State

Context state is state that belongs to the GL context as a whole, rather than to
instances of the different object types described in section 2.6. Context state con-
trols fixed-function stages of the GPU, such as clipping, primitive rasterization, and
framebuffer clears, and also specifies bindings of objects to the context specifying
which objects are used during command execution.

The Specification describes all visible context state variables and describes how
each one can be changed. State variables are grouped somewhat arbitrarily by their
function. Although we describe operations that the GL performs on the frame-
buffer, the framebuffer is not a part of GL state.

There are two types of context state. Server state resides in the GL server;
the majority of GL state falls into this category. Client state resides in the GL
client. Unless otherwise specified, all state is server state; client state is specifically
identified. Each instance of a context includes a complete set of server state; each
connection from a client to a server also includes a complete set of client state.

While an implementation of OpenGL may be hardware dependent, the Specifi-
cation is independent of any specific hardware on which it is implemented. We are
concerned with the state of graphics hardware only when it corresponds precisely
to GL state.

2.5.1 Generic Context State Queries

Context state queries are described in detail in chapter 22.

2.6 Objects and the Object Model

Many types of objects are defined in the remainder of the Specification. Applica-
tions may create, modify, query, and destroy many instances of each of these object
types, limited in most cases only by available graphics memory. Specific instances
of different object types are bound to a context. The set of bound objects define
the shaders which are invoked by GL drawing operations; specify the buffer data,

OpenGL 4.5 (Core Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 27

texture image, and framebuffer memory that is accessed by shaders and directly
by GL commands; and contain the state used by other operations such as fence
synchronization and timer queries.

Each object type corresponds to a distinct set of commands which manage ob-
jects of that type. However, there is an object model describing how most types
of objects are managed, described below. Exceptions to the object model for spe-
cific object types are described later in the Specification together with those object
types.

Following the description of the object model, each type of object is briefly
described below, together with forward references to full descriptions of that ob-
ject type in later chapters of the Specification. Objects are described in an order
corresponding to the structure of the remainder of the Specification.

2.6.1 Object Management

2.6.1.1 Name Spaces, Name Generation, and Object Creation

Each object type has a corresponding name space. Names of objects are repre-
sented by unsigned integers of type uint. The name zero is reserved by the GL;
for some object types, zero names a default object of that type, and in others zero
will never correspond to an actual instance of that object type.

Names of most types of objects are created by generating unused names us-
ing commands starting with Gen followed by the object type. For example, the
command GenBuffers returns one or more previously unused buffer object names.

Generated names are marked by the GL as used, for the purpose of name gener-
ation only. Object names marked in this fashion will not be returned by additional
calls to generate names of the same type until the names are marked unused again
by deleting them (see below).

Generated names do not initially correspond to an instance of an object. Ob-
jects with generated names are created by binding a generated name to the context.
For example, a buffer object is created by calling the command BindBuffer with
a name returned by GenBuffers, which allocates resources for the buffer object
and its state, and associate the name with that object. Sampler objects may also be
created by commands in addition to BindSampler, as described in section 8.2.

Objects may also be created directly by functions that return a new name or
names representing a freshly initialized object. Some functions return a single ob-
ject name directly whereas others are able to create a large number of new objects,
returning their names in an array. Examples of the former are CreateProgram
for program objects and FenceSync for fence sync objects. Examples of the latter
are CreateBuffers, CreateTextures and CreateVertexArrays for buffers, textures

OpenGL 4.5 (Core Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 28

and vertex arrays, respectively.

2.6.1.2 Name Deletion and Object Deletion

Objects are deleted by calling deletion commands specific to that object type. For
example, the command DeleteBuffers is passed an array of buffer object names
to delete. After an object is deleted it has no contents, and its name is once again
marked unused for the purpose of name generation. If names are deleted that do not
correspond to an object, but have been marked for the purpose of name generation,
such names are marked as unused again. If unused and unmarked names are deleted
they are silently ignored, as is the name zero.

If an object is deleted while it is currently in use by a GL context, its name
is immediately marked as unused, and some types of objects are automatically
unbound from binding points in the current context, as described in section 5.1.2.
However, the actual underlying object is not deleted until it is no longer in use.
This situation is discussed in more detail in section 5.1.3.

2.6.1.3 Shared Object State

It is possible for groups of contexts to share some server state. Enabling such shar-
ing between contexts is done through window system binding APIs such as those
described in section 1.3.5. These APIs are responsible for creation and manage-
ment of contexts, and are not discussed further here. More detailed discussion of
the behavior of shared objects is included in chapter 5. Except as defined below
for specific object types, all state in a context is specific to that context only.

2.6.2 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is desirable to store other types of frequently used
client data, such as vertex array and pixel data, in server memory for performance
reasons, even if the option to store it in client memory exists.

Buffer objects contain a data store holding a fixed-sized allocation of server
memory, and provide a mechanism to allocate, initialize, read from, and write to
such memory. Under certain circumstances, the data store of a buffer object may
be shared between the client and server and accessed simultaneously by both.

Buffer objects may be shared. They are described in detail in chapter 6.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 29

2.6.3 Shader Objects

The source and/or binary code representing part or all of a shader program that is
executed by one of the programmable stages defined by the GL (such as a vertex
or fragment shader) is encapsulated in one or more shader objects.

Shader objects may be shared. They are described in detail in chapter 7.

2.6.4 Program Objects

Shader objects that are to be used by one or more of the programmable stages of
the GL are linked together to form a program object. The shader programs that
are executed by these programmable stages are called executables. All information
necessary for defining each executable is encapsulated in a program object.

Program objects may be shared. They are described in detail in chapter 7.

2.6.5 Program Pipeline Objects

Program pipeline objects contain a separate program object binding point for each
programmable stage. They allow a primitive to be processed by independent pro-
grams in each programmable stage, instead of requiring a single program object
for each combination of shader operations. They allow greater flexibility when
combining different shaders in various ways, without requiring a program object
for each such combination.

Program pipeline objects are container objects including references to program
objects, and are not shared. They are described in detail in chapter 7.

2.6.6 Texture Objects

Texture objects or textures include a collection of texture images built from arrays
of image elements. The image elements are referred to as texels. There are many
types of texture objects varying by dimensionality and structure; the different tex-
ture types are described in detail in the introduction to chapter 8.

Texture objects also include state describing the image parameters of the tex-
ture images, and state describing how sampling is performed when a shader ac-
cesses a texture.

Shaders may sample a texture at a location indicated by specified texture co-
ordinates, with details of sampling determined by the sampler state of the texture.
The resulting texture samples are typically used to modify a fragment’s color, in
order to map an image onto a geometric primitive being drawn, but may be used
for any purpose in a shader.

Texture objects may be shared. They are described in detail in chapter 8.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 30

2.6.7 Sampler Objects

Sampler objects contain the subset of texture object state controlling how sampling
is performed when a shader accesses a texture. Sampler and texture objects may be
bound together so that the sampler object state is used by shaders when sampling
the texture, overriding equivalent state in the texture object. Separating texture
image data from the method of sampling that data allows reuse of the same sampler
state with many different textures without needing to set the sampler state in each
texture.

Sampler objects may be shared. They are described in detail in chapter 8.

2.6.8 Renderbuffer Objects

Renderbuffer objects contain a single image in a format which can be rendered
to. Renderbuffer objects are attached to framebuffer objects (see below) when
performing off-screen rendering.

Renderbuffer objects may be shared. They are described in detail in chapter 9.

2.6.9 Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer, including a collection of
color, depth, and stencil buffers. Each such buffer is represented by a renderbuffer
object or texture object attached to the framebuffer object.

Framebuffer objects are container objects including references to renderbuffer
and/or texture objects, and are not shared8. They are described in detail in chap-
ter 9.

2.6.10 Vertex Array Objects

Vertex array objects represent a collection of sets of vertex attributes. Each set
is stored as an array in a buffer object data store, with each element of the array
having a specified format and component count. The attributes of the currently
bound vertex array object are used as inputs to the vertex shader when executing
drawing commands.

Vertex array objects are container objects including references to buffer objects,
and are not shared. They are described in detail in chapter 10.

8 Framebuffer objects created with the commands defined by the GL_EXT_-
framebuffer_object extension are defined to be shared, while FBOs created with
commands defined by the OpenGL core or GL_ARB_framebuffer_object extension are
defined to not be shared. Undefined behavior results when using FBOs created by EXT commands
through non-EXT interfaces, or vice-versa.

OpenGL 4.5 (Core Profile) - October 24, 2016

2.6. OBJECTS AND THE OBJECT MODEL 31

2.6.11 Transform Feedback Objects

Transform feedback objects are used to capture attributes of the vertices of trans-
formed primitives passed to the transform feedback stage when transform feedback
mode is active. They include state required for transform feedback together with
references to buffer objects in which attributes are captured.

Transform feedback objects are container objects including references to buffer
objects, and are not shared. They are described in detail in section 13.2.1.

2.6.12 Query Objects

Query objects return information about the processing of a sequence of GL com-
mands, such as the number of primitives processed by drawing commands; the
number of primitives written to transform feedback buffers; the number of sam-
ples that pass the depth test during fragment processing; and the amount of time
required to process commands.

Query objects are not shared. They are described in detail in section 4.2.

2.6.13 Sync Objects

A sync object acts as a synchronization primitive – a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects may be shared. They are described in detail in section 4.1.

2.6.14 Display Lists

This subsection is only defined in the compatibility profile.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 3

Dataflow Model

Figure 3.1 shows a block diagram of the GL. Some commands specify geometric
objects to be drawn while others specify state controlling how objects are han-
dled by the various stages, or specify data contained in textures and buffer objects.
Commands are effectively sent through a processing pipeline. Different stages of
the pipeline use data contained in different types of buffer objects.

The first stage assembles vertices to form geometric primitives such as points,
line segments, and polygons. In the next stage vertices may be transformed, fol-
lowed by assembly into geometric primitives. Tessellation and geometry shaders
may then generate multiple primitives from a single input primitive. Optionally, the
results of these pipeline stages may be fed back into buffer objects using transform
feedback.

The final resulting primitives are clipped to a clip volume in preparation for the
next stage, rasterization. The rasterizer produces a series of framebuffer addresses
and values using a two-dimensional description of a point, line segment, or poly-
gon. Each fragment so produced is fed to the next stage that performs operations
on individual fragments before they finally alter the framebuffer. These operations
include conditional updates into the framebuffer based on incoming and previously
stored depth values (to effect depth buffering), blending of incoming fragment col-
ors with stored colors, as well as masking, stenciling, and other logical operations
on fragment values.

Pixels may also be read back from the framebuffer or copied from one portion
of the framebuffer to another. These transfers may include some type of decoding
or encoding.

Finally, compute shaders which may read from and write to buffer objects may
be executed independently of the pipeline shown in figure 3.1.

This ordering is meant only as a tool for describing the GL, not as a strict rule

32

33

of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL.

OpenGL 4.5 (Core Profile) - October 24, 2016

34

F
ra

m
e

b
u

ff
e

r

V
e

rt
e

x
 P

u
ll

e
r

V
e

rt
e

x
 S

h
a

d
e

r

T
e

s
s
e

ll
a

ti
o

n
 C

o
n

tr
o

l
S

h
a

d
e

r

T
e

s
s
e

ll
a

ti
o

n
 P

ri
m

it
iv

e
 G

e
n

.

G
e

o
m

e
tr

y
 S

h
a

d
e

r

T
ra

n
s
fo

rm
 F

e
e

d
b

a
c
k

R
a

s
te

ri
z
a

ti
o

n

F
ra

g
m

e
n

t
S

h
a

d
e

r

D
is

p
a

tc
h

 I
n

d
ir

e
c
t

B
u

ff
e

r
b

P
ix

e
l
A

s
s
e

m
b

ly

P
ix

e
l
O

p
e

ra
ti

o
n

s

P
ix

e
l
P

a
c
k

P
e

r-
F
ra

g
m

e
n

t
O

p
e

ra
ti

o
n

s

I
m

a
g

e
 L

o
a

d
 /

 S
to

re
 t

/
b

A
to

m
ic

 C
o

u
n

te
r

b

S
h

a
d

e
r

S
to

ra
g

e
 b

T
e

x
tu

re
 F

e
tc

h
 t

/
b

U
n

if
o

rm
 B

lo
c
k

 b

P
ix

e
l
U

n
p

a
c
k

 B
u

ff
e

r
b

T
e

x
tu

re
 I

m
a

g
e

 t

P
ix

e
l
P

a
c
k

 B
u

ff
e

r
b

E
le

m
e

n
t

A
rr

a
y
 B

u
ff

e
r

b

D
ra

w
 I

n
d

ir
e

c
t

B
u

ff
e

r
b

V
e

rt
e

x
 B

u
ff

e
r

O
b

je
c
t

b

T
ra

n
s
fo

rm
 F

e
e

d
b

a
c
k

B

u
ff

e
r

b

F
ro

m
 A

p
p

li
c
a

ti
o

n

F
ro

m
 A

p
p

li
c
a

ti
o

n

t
–

 T
e

x
tu

re
 B

in
d

in
g

b
 –

 B
u

ff
e

r
B

in
d

in
g

P
ro

g
ra

m
m

a
b

le
 S

ta
g

e

F
ix

e
d

 F
u

n
c
ti

o
n

 S
ta

g
e

T
e

s
s
e

ll
a

ti
o

n
 E

v
a

l.
 S

h
a

d
e

r

D
is

p
a

tc
h

C
o

m
p

u
te

 S
h

a
d

e
r

F
ro

m
 A

p
p

li
c
a

ti
o

n

L
e

g
e

n
d

Figure 3.1. Block diagram of the GL pipeline.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 4

Event Model

4.1 Sync Objects and Fences

A sync object acts as a synchronization primitive – a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync(enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.

35

4.1. SYNC OBJECTS AND FENCES 36

Property Name Property Value
OBJECT_TYPE SYNC_FENCE

SYNC_CONDITION condition
SYNC_STATUS UNSIGNALED

SYNC_FLAGS flags

Table 4.1: Initial properties of a sync object created with FenceSync.

condition must be SYNC_GPU_COMMANDS_COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until some time after the fence
command completes.

flags must be zero.
Each sync object contains a number of properties which determine the state of

the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 4.1.

Properties of a sync object may be queried with GetSynciv (see section 4.1.3).
The SYNC_STATUS property will be changed to SIGNALED when condition is sat-
isfied.

Errors

If FenceSync fails to create a sync object, zero will be returned and a GL
error is generated.

An INVALID_ENUM error is generated if condition is not SYNC_GPU_-
COMMANDS_COMPLETE.

An INVALID_VALUE error is generated if flags is not zero.

A sync object can be deleted by passing its name to the command

void DeleteSync(sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the
object is deleted immediately. Otherwise, sync is flagged for deletion and will be

OpenGL 4.5 (Core Profile) - October 24, 2016

4.1. SYNC OBJECTS AND FENCES 37

deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero.

Errors

An INVALID_VALUE error is generated if sync is neither zero nor the name
of a sync object.

4.1.1 Waiting for Sync Objects

The command

enum ClientWaitSync(sync sync, bitfield flags,
uint64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds
for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 4.1.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WAIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.

OpenGL 4.5 (Core Profile) - October 24, 2016

4.1. SYNC OBJECTS AND FENCES 38

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if flags contains any bits other than
SYNC_FLUSH_COMMANDS_BIT.

The command

void WaitSync(sync sync, bitfield flags,
uint64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block1 until sync is signaled2.

sync has the same meaning as for ClientWaitSync.
timeout must currently be the special value TIMEOUT_IGNORED, and is not

used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with pname MAX_SERVER_WAIT_TIMEOUT. There is
currently no way to determine whether WaitSync unblocked because the timeout
expired or because the sync object being waited on was signaled.

flags must be zero.
If an error occurs, WaitSync generates a GL error as specified below, and does

not cause the GL server to block.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if timeout is not TIMEOUT_-
IGNORED or flags is not zeroa.

a flags and timeout are placeholders for anticipated future extensions of sync object capa-
bilities. They must have these reserved values in order that existing code calling WaitSync
operate properly in the presence of such extensions.

1 The GL server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

2 WaitSync allows applications to continue to queue commands from the client in anticipation of
the sync being signaled, increasing client-server parallelism.

OpenGL 4.5 (Core Profile) - October 24, 2016

4.1. SYNC OBJECTS AND FENCES 39

4.1.1.1 Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See section 5.2 for more information about blocking on a sync object in multi-
ple GL contexts.

4.1.2 Signaling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior3, if ClientWaitSync is called and all of the following are true:

• the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,

• sync is unsignaled when ClientWaitSync is called,

• and the calls to ClientWaitSync and FenceSync were issued from the same
context,

then the GL will behave as if the equivalent of Flush were inserted immediately
after the creation of sync.

Additional constraints on the use of sync objects are discussed in chapter 5.
State must be maintained to indicate which sync object names are currently

in use. The state required for each sync object in use is an integer for the specific
type, an integer for the condition, and a bit indicating whether the object is signaled
or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

3 The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.

OpenGL 4.5 (Core Profile) - October 24, 2016

4.1. SYNC OBJECTS AND FENCES 40

4.1.3 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv(sync sync, enum pname, sizei bufSize,
sizei *length, int *values);

The value or values being queried are returned in the parameters length and
values.

On success, GetSynciv replaces up to bufSize integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_-
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_ENUM error is generated if pname is not one of the values
described above.

An INVALID_VALUE error is generated if bufSize is negative.

The command

boolean IsSync(sync sync);

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 4.1 and 5.2, but the underlying sync object will not be deleted
until it is no longer associated with any fence command and no longer blocking
any *WaitSync command.

OpenGL 4.5 (Core Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 41

4.2 Query Objects and Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. Query types supported by the GL include

• Primitive queries with a target of PRIMITIVES_GENERATED (see sec-
tion 13.3) return information on the number of primitives processed by
the GL. There may be at most the value of MAX_VERTEX_STREAMS active
queries of this type.

• Primitive queries with a target of TRANSFORM_FEEDBACK_PRIMITIVES_-
WRITTEN (see section 13.3) return information on the number of primitives
written to one or more buffer objects. There may be at most the value of
MAX_VERTEX_STREAMS active queries of this type.

• Occlusion queries with a target of SAMPLES_PASSED, ANY_SAMPLES_-
PASSED or ANY_SAMPLES_PASSED_CONSERVATIVE (see section 17.3.5)
count the number of fragments or samples that pass the depth test, or set a
boolean to true when any fragments or samples pass the depth test. There
may be at most one active query of this type.

• Time elapsed queries with a target of TIME_ELAPSED (see section 4.3)
record the amount of time needed to fully process a sequence of commands.
There may be at most one active query of this type.

• Timer queries with a target of TIMESTAMP (see section 4.3) record the cur-
rent time of the GL. There may be at most one active query of this type.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 4.2.1 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, for the purposes of GenQueries only, but no object is associated with
them until the first time they are used by BeginQuery, BeginQueryIndexed, or
QueryCounter (see section 4.3).

OpenGL 4.5 (Core Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 42

Errors

An INVALID_VALUE error is generated if n is negative.

Query objects may also be created with the command

void CreateQueries(enum target, sizei n, uint *ids);

CreateQueries returns n previously unused query object names in ids, each
representing a new query object with the specified target. target may be
one of SAMPLES_PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_-
CONSERVATIVE, TIME_ELAPSED, TIMESTAMP, PRIMITIVES_GENERATED, and
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN.

The initial state of the resulting query object is that the result is marked avail-
able (the value of QUERY_RESULT_AVAILABLE for the query object is TRUE) and
the result value (the value of QUERY_RESULT) is zero.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_VALUE error is generated if n is negative.

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section 5.1). Unused names in ids that have been marked as used for the
purposes of GenQueries are marked as unused again. Unused names in ids are
silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

Each type of query, other than timer queries of type TIMESTAMP, supported by
the GL has an active query object name for each of the possible active queries. If
an active query object name is non-zero, the GL is currently tracking the corre-
sponding information, and the query results will be written into that query object.
If an active query object name is zero, no such information is being tracked.

A query object may be created and made active with the command

OpenGL 4.5 (Core Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 43

void BeginQueryIndexed(enum target, uint index,
uint id);

target indicates the type of query to be performed. The valid values of target are
discussed in more detail in subsequent sections.

If id is an unused query object name, the name is marked as used and associated
with a new query object of the type specified by target. Otherwise id must be the
name of an existing query object of that type. Note that occlusion query objects
specified by either of the two targets ANY_SAMPLES_PASSED or ANY_SAMPLES_-
PASSED_CONSERVATIVEmay be reused for either target in future queries. Objects
specified with target SAMPLES_PASSED may only be reused for that target.

index is the index of the query, and must be between zero and a target-specific
maximum. The state of the query object named id, whether newly created or not,
is that the result is marked unavailable (the flag is FALSE), and the result value is
zero.

The active query object name for target and index is set to id.

Errors

An INVALID_ENUM error is generated if target is not SAMPLES_PASSED,
ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE, for an
occlusion query; TIME_ELAPSED, for a timer query; PRIMITIVES_-

GENERATED for a primitives generated query; or TRANSFORM_FEEDBACK_-
PRIMITIVES_WRITTEN. for a primitives written query.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_SAMPLES_PASSED,
ANY_SAMPLES_PASSED_CONSERVATIVE, or TIME_ELAPSED, and index is
not zero.

An INVALID_VALUE error is generated if target is PRIMITIVES_-

GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_OPERATION error is generated if id is not a name returned
from a previous call to GenQueries or CreateQueries, or if such a name has
since been deleted with DeleteQueries.

An INVALID_OPERATION error is generated if id is any of:

• zero

• the name of an existing query object whose type does not match target

OpenGL 4.5 (Core Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 44

• an active query object name for any target and index

• the active query object for conditional rendering (see section 10.9).

An INVALID_OPERATION error is generated if the active query object
name for target and index is non-zero.

The command

void BeginQuery(enum target, uint id);

is equivalent to

BeginQueryIndexed(target, 0, id);

The command

void EndQueryIndexed(enum target, uint index);

marks the end of the sequence of commands to be tracked for the active query
specified by target and index. target and index have the same meaning as for Be-
ginQueryIndexed.

The corresponding active query object is updated to indicate that query results
are not available, and the active query object name for target and index is reset to
zero. When the commands issued prior to EndQueryIndexed have completed and
a final query result is available, the query object active when EndQueryIndexed
was called is updated to contain the query result and to indicate that the query result
is available.

Errors

An INVALID_ENUM error is generated if target is not SAMPLES_-

PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE
TIME_ELAPSED, PRIMITIVES_GENERATED, or TRANSFORM_FEEDBACK_-
PRIMITIVES_WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_SAMPLES_PASSED,
ANY_SAMPLES_PASSED_CONSERVATIVE, or TIME_ELAPSED, and index is
not zero.

An INVALID_VALUE error is generated if target is PRIMITIVES_-

GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_OPERATION error is generated if the active query object

OpenGL 4.5 (Core Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 45

name for target and index is zero.

The command

void EndQuery(enum target);

is equivalent to

EndQueryIndexed(target, 0);

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result is implementation-dependent
and may be determined as described in section 4.2.1. The initial state of a query
object depends on whether it was created with CreateQueries or BeginQueryIn-
dexed, as described above.

If the query result overflows (exceeds the value 2n − 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2n − 1 and incrementing no further.

The necessary state for each possible active query target and index is an un-
signed integer holding the active query object name (zero if no query object is ac-
tive), and any state necessary to keep the current results of an asynchronous query
in progress. Only a single type of occlusion query can be active at one time, so the
required state for occlusion queries is shared.

4.2.1 Query Object Queries

The command

boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.

Information about an active query object may be queried with the command

void GetQueryIndexediv(enum target, uint index,
enum pname, int *params);

target and index specify the active query, and have the same meaning as for Begin-
QueryIndexed.

OpenGL 4.5 (Core Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 46

If pname is CURRENT_QUERY, the name of the currently active query object for
target and index, or zero if no query is active, will be placed in params. If target is
TIMESTAMP, zero is always returned.

If pname is QUERY_COUNTER_BITS, index is ignored and the implementation-
dependent number of bits used to hold the query result for target will be placed in
params. The number of query counter bits may be zero, in which case the counter
contains no useful information.

For primitive queries (PRIMITIVES_GENERATED and TRANSFORM_-

FEEDBACK_PRIMITIVES_WRITTEN) if the number of bits is non-zero, the
minimum number of bits allowed is 32.

For occlusion queries with target ANY_SAMPLES_PASSED or ANY_-

SAMPLES_PASSED_CONSERVATIVE, if the number of bits is non-zero, the min-
imum number of bits is 1. For occlusion queries with target SAMPLES_PASSED, if
the number of bits is non-zero, the minimum number of bits allowed is 32.

For timer queries (target TIME_ELAPSED and TIMESTAMP), if the number of
bits is non-zero, the minimum number of bits allowed is 30. This will allow at least
one second of timing.

Errors

An INVALID_ENUM error is generated if target is not SAMPLES_-

PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE
TIMESTAMP, TIME_ELAPSED, PRIMITIVES_GENERATED, or TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_-

SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE, TIMESTAMP,
or TIME_ELAPSED, and index is not zero.

An INVALID_VALUE error is generated if target is PRIMITIVES_-

GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_ENUM error is generated if pname is not CURRENT_QUERY
or QUERY_COUNTER_BITS.

The command

void GetQueryiv(enum target, enum pname, int *params);

is equivalent to

GetQueryIndexediv(target, 0, pname, params);

OpenGL 4.5 (Core Profile) - October 24, 2016

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 47

The state of a query object may be queried with the commands

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

void GetQueryObjecti64v(uint id, enum pname,
int64 *params);

void GetQueryObjectui64v(uint id, enum pname,
uint64 *params);

void GetQueryBufferObjectiv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectuiv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjecti64v(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectui64v(uint id, uint buffer,
enum pname, intptr offset);

id is the name of a query object.
For GetQueryBufferObject*, buffer is the name of a buffer object and offset

is an offset into buffer at which the queried value is written.
For GetQueryObject*, the queried value may be returned either in client

memory or in a buffer object. If zero is bound to the current query result buffer
binding point (see QUERY_RESULT in section 6.1), then params is treated as a
pointer into client memory at which the queried value is written. Otherwise,
params is treated as an offset into the query result buffer object at which the queried
value is written.

There may be an indeterminate delay before a query object’s result value is
available. If pname is QUERY_RESULT_AVAILABLE, FALSE is returned if such a
delay would be required; otherwise TRUE is returned. It must always be true that
if any query object returns a result available of TRUE, all queries of the same type
issued prior to that query must also return TRUE. Repeatedly querying QUERY_-

RESULT_AVAILABLE for any given query object is guaranteed to return TRUE

eventually.
If pname is QUERY_TARGET, then the target of the query object is returned as

a single integer.
If pname is QUERY_RESULT, then the query object’s result value is returned as

a single integer. If the value is so large in magnitude that it cannot be represented
with the requested type, then the nearest value representable using the requested

OpenGL 4.5 (Core Profile) - October 24, 2016

4.3. TIME QUERIES 48

type is returned. If the number of query counter bits for target is zero, then the
result is returned as a single integer with the value zero. Querying QUERY_RESULT
for any given query object forces that query to complete within a finite amount of
time.

If pname is QUERY_RESULT_NO_WAIT, then the query object’s result value is
returned as a single integer if the result is available at the time of the state query. If
the result is not available then the query return value is not written.

If multiple queries are issued using the same object name prior to calling these
query commands, the result and availability information returned will always be
from the last query issued. The results from any queries before the last one will be
lost if they are not retrieved before starting a new query on the same target and id.

Errors

An INVALID_OPERATION error is generated if id is not the name of a
query object, or if the query object named by id is currently active.

An INVALID_OPERATION error is generated by GetQueryBufferOb-
ject* if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not QUERY_RESULT,
QUERY_RESULT_AVAILABLE, QUERY_RESULT_NO_WAIT, or
QUERY_TARGET.

An INVALID_OPERATION error is generated if the query writes to a buffer
object, and the specified buffer offset would cause data to be written beyond
the bounds of that buffer object.

An INVALID_VALUE error is generated by GetQueryBufferObject* if
offset is negative.

4.3 Time Queries

Query objects may also be used to track the amount of time needed to fully com-
plete a set of GL commands (a time elapsed query), or to determine the current
time of the GL (a timer query).

When BeginQuery and EndQuery are called with a target of TIME_ELAPSED,
the GL prepares to start and stop the timer used for time elapsed queries. The timer
is started or stopped when the effects from all previous commands on the GL client
and server state and the framebuffer have been fully realized. The BeginQuery and
EndQuery commands may return before the timer is actually started or stopped.
When the time elapsed query timer is finally stopped, the elapsed time (in nanosec-
onds) is written to the corresponding query object as the query result value, and the

OpenGL 4.5 (Core Profile) - October 24, 2016

4.3. TIME QUERIES 49

query result for that object is marked as available.
A timer query object is created with the command

void QueryCounter(uint id, enum target);

target must be TIMESTAMP. If id is an unused query object name, the name is
marked as used and associated with a new query object of type TIMESTAMP. Oth-
erwise id must be the name of an existing query object of that type.

Alternatively, TIMESTAMP query objects can be created by calling Create-
Queries with target set to TIMESTAMP.

When QueryCounter is called, the GL records the current time into the cor-
responding query object. The time is recorded after all previous commands on
the GL client and server state and the framebuffer have been fully realized. When
the time is recorded, the query result for that object is marked available. Timer
queries can be used within a BeginQuery / EndQuery block where the target is
TIME_ELAPSED, and it does not affect the result of that query object.

The current time of the GL may be queried by calling GetIntegerv or Get-
Integer64v with the symbolic constant TIMESTAMP. This will return the GL time
after all previous commands have reached the GL server but have not yet neces-
sarily executed. By using a combination of this synchronous get command and the
asynchronous timestamp query object target, applications can measure the latency
between when commands reach the GL server and when they are realized in the
framebuffer.

Errors

An INVALID_ENUM error is generated if target is not TIMESTAMP.
An INVALID_OPERATION error is generated if id is not a name returned

from a previous call to GenQueries, or if such a name has since been deleted
with DeleteQueries.

An INVALID_OPERATION error is generated if id is the name of an exist-
ing query object whose type is not TIMESTAMP.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 5

Shared Objects and Multiple
Contexts

This chapter describes special considerations for objects shared between multiple
OpenGL contexts, including deletion behavior and how changes to shared objects
are propagated between contexts.

Objects that may be shared between contexts include buffer objects, program
and shader objects, renderbuffer objects, sampler objects, sync objects, and texture
objects (except for the texture objects named zero).

Some of these objects may contain views (alternate interpretations) of part or
all of the data store of another object. Examples are texture buffer objects, which
contain a view of a buffer object’s data store, and texture views, which contain a
view of another texture object’s data store. Views act as references on the object
whose data store is viewed.

Objects which contain references to other objects include framebuffer, program
pipeline, query, transform feedback, and vertex array objects. Such objects are
called container objects and are not shared.

Implementations may allow sharing between contexts implementing differ-
ent OpenGL versions or different profiles of the same OpenGL version (see ap-
pendix D). However, implementation-dependent behavior may result when aspects
and/or behaviors of such shared objects do not apply to, and/or are not described
by more than one version or profile.

50

5.1. OBJECT DELETION BEHAVIOR 51

5.1 Object Deletion Behavior

5.1.1 Side Effects of Shared Context Destruction

The share list is the group of all contexts which share objects. If a shared object
is not explicitly deleted, then destruction of any individual context has no effect
on that object unless it is the only remaining context in the share list. Once the
last context on the share list is destroyed, all shared objects, and all other resources
allocated for that context or share list, will be deleted and reclaimed by the imple-
mentation as soon as possible.

5.1.2 Automatic Unbinding of Deleted Objects

When a buffer, texture, or renderbuffer object is deleted, it is unbound from any
bind points it is bound to in the current context, and detached from any attachments
of container objects that are bound to the current context, as described for Delete-
Buffers, DeleteTextures, and DeleteRenderbuffers. If the object binding was
established with other related state (such as a buffer range in BindBufferRange or
selected level and layer information in FramebufferTexture or BindImageTex-
ture), all such related state are restored to default values by the automatic unbind.
Bind points in other contexts are not affected. Attachments to unbound container
objects, such as deletion of a buffer attached to a vertex array object which is not
bound to the context, are not affected and continue to act as references on the
deleted object, as described in the following section.

5.1.3 Deleted Object and Object Name Lifetimes

When a buffer, texture, sampler, renderbuffer, query, or sync object is deleted, its
name immediately becomes invalid (e.g. is marked unused), but the underlying
object will not be deleted until it is no longer in use.

A buffer, texture, sampler, or renderbuffer object is in use if any of the follow-
ing conditions are satisfied:

• the object is attached to any container object

• the object is bound to a context bind point in any context

• any other object contains a view of the data store of the object.

A sync object is in use while there is a corresponding fence command which
has not yet completed and signaled the sync object, or while there are any GL

OpenGL 4.5 (Core Profile) - October 24, 2016

5.2. SYNC OBJECTS AND MULTIPLE CONTEXTS 52

clients and/or servers blocked on the sync object as a result of ClientWaitSync or
WaitSync commands.

Query objects are in use so long as they are active, as described in section 4.2.
When a shader object or program object is deleted, it is flagged for deletion, but

its name remains valid until the underlying object can be deleted because it is no
longer in use. A shader object is in use while it is attached to any program object.
A program object is in use while it is attached to any program pipeline object or is
a current program in any context.

Caution should be taken when deleting an object while it is in use (as defined
above). Following its deletion, the object’s name may be returned by Gen* or
Create* commands. The underlying object state and data for such a deleted, but
still in use object may still be read and written by the GL, but cannot be accessed
by name. The underlying storage backing a deleted object will not be reclaimed by
the GL until all references to the object from container object attachment points,
context binding points, views, fence commands, active queries, etc. are removed.
Since the name is marked unused, binding the name will create a new object with
the same name, and attaching the name will generate an error.

5.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signaled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

5.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

• Pixels in the framebuffer.

• The contents of the data stores of buffer objects, renderbuffers, and textures.

State determines the configuration of the rendering pipeline, and the GL imple-
mentation does have to inspect it.

OpenGL 4.5 (Core Profile) - October 24, 2016

5.3. PROPAGATING CHANGES TO OBJECTS 53

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

• State-setting commands, such as TexParameter.

• Data-setting commands, such as TexSubImage* or BufferSubData.

• Data-setting through rendering to renderbuffers or textures attached to a
framebuffer object.

• Data-setting through transform feedback operations followed by an End-
TransformFeedback command.

• Commands that affect both state and data, such as TexImage* and Buffer-
Data.

• Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

• Rendering commands that trigger shader invocations, where the shader per-
forms image or buffer variable stores or atomic operations, or built-in atomic
counter functions.

When T is a texture, the contents of T are construed to include the contents of
the data store of T, even if T’s data store was modified via a different view of the
data store.

5.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section 5.3 has completed. Completion of a command 1 may
be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context. In cases where a feed-
back loop has been established (see sections 8.6.1, 8.14.2.1, and 9.3, as well as the

1The GL already specifies that a single context processes commands in the order they are received.
This means that a change to an object in a context at time t must be completed by the time a command
issued in the same context at time t+ 1 uses the result of that change.

OpenGL 4.5 (Core Profile) - October 24, 2016

5.3. PROPAGATING CHANGES TO OBJECTS 54

discussion of rule 1 below in section 5.3.3) the resulting contents of an object may
be undefined.

5.3.2 Definitions

In the remainder of this section, the following terminology is used:

• An object T is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

• T is indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

• An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which T is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

5.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 If the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with updates via GL commands. Once EndTransformFeedback has been issued,
any subsequent command in the same context that uses the results of the trans-
form feedback operation will see the results. If a feedback loop is setup between
rendering and transform feedback (see section 13.2.3), results will be undefined.

OpenGL 4.5 (Core Profile) - October 24, 2016

5.3. PROPAGATING CHANGES TO OBJECTS 55

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee see-
ing changes made in another context to objects attached to C, such changes must be
completed in that other context (see section 5.3.1) prior to C being bound. Changes
made in another context but not determined to have completed as described in sec-
tion 5.3.1, or after C is bound in the current context, are not guaranteed to be
seen.

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.

Rule 4 If the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context, or at least one attachment point of a currently bound container
object C, in order to guarantee that the new contents of T are visible in the current
context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached.

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 6

Buffer Objects

Buffer objects contain a data store holding a fixed-sized allocation of server mem-
ory. This chapter specifies commands to create, manage, and destroy buffer objects.
Specific types of buffer objects and their uses are briefly described together with
references to their full specification.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Errors

An INVALID_VALUE error is generated if n is negative.

In addition to generating an unused name and then binding it to a target with
BindBuffer, a buffer object may also be created with the command

void CreateBuffers(sizei n, uint *buffers);

CreateBuffers returns n previously unused buffer names in buffers, each rep-
resenting a new buffer object initialized as if it had been bound to an unspecified
target.

56

6.1. CREATING AND BINDING BUFFER OBJECTS 57

Errors

An INVALID_VALUE error is generated if n is negative.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. If any portion of a buffer
object being deleted is mapped in the current context or any context current to
another thread, it is as though UnmapBuffer (see section 6.3.1) is executed in
each such context prior to deleting the data store of the buffer.

Unused names in buffers that have been marked as used for the purposes of
GenBuffers are marked as unused again. Unused names in buffers are silently
ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsBuffer(uint buffer);

returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

6.1 Creating and Binding Buffer Objects

A buffer object is created by binding a name returned by GenBuffers to a buffer
target. The binding is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of the targets listed in table 6.1. If the buffer object named buffer
has not been previously bound, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial
values listed in table 6.2.

Buffer objects created by binding a name returned by GenBuffers to any of the
valid targets are formally equivalent, but the GL may make different choices about
storage location and layout based on the initial binding.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.1. CREATING AND BINDING BUFFER OBJECTS 58

Target name Purpose Described in
section(s)

ARRAY_BUFFER Vertex attributes 10.3.9
ATOMIC_COUNTER_BUFFER Atomic counter storage 7.7
COPY_READ_BUFFER Buffer copy source 6.6
COPY_WRITE_BUFFER Buffer copy destination 6.6
DISPATCH_INDIRECT_BUFFER Indirect compute dispatch commands 19
DRAW_INDIRECT_BUFFER Indirect command arguments 10.3.11
ELEMENT_ARRAY_BUFFER Vertex array indices 10.3.10
PIXEL_PACK_BUFFER Pixel read target 18.2, 22
PIXEL_UNPACK_BUFFER Texture data source 8.4
QUERY_BUFFER Query result buffer 4.2.1
SHADER_STORAGE_BUFFER Read-write storage for shaders 7.8
TEXTURE_BUFFER Texture data buffer 8.9
TRANSFORM_FEEDBACK_BUFFER Transform feedback buffer 13.2
UNIFORM_BUFFER Uniform block storage 7.6.2

Table 6.1: Buffer object binding targets.

Name Type Initial Value Legal Values
BUFFER_SIZE int64 0 any non-negative integer
BUFFER_USAGE enum STATIC_DRAW STREAM_DRAW, STREAM_READ,

STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE READ_ONLY, WRITE_ONLY,
READ_WRITE

BUFFER_ACCESS_FLAGS int 0 See section 6.3
BUFFER_IMMUTABLE_STORAGE boolean FALSE TRUE, FALSE
BUFFER_MAPPED boolean FALSE TRUE, FALSE
BUFFER_MAP_POINTER void* NULL address
BUFFER_MAP_OFFSET int64 0 any non-negative integer
BUFFER_MAP_LENGTH int64 0 any non-negative integer
BUFFER_STORAGE_FLAGS int 0 See section 6.2

Table 6.2: Buffer object parameters and their values.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.1. CREATING AND BINDING BUFFER OBJECTS 59

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in section 5.1.

Initially, each buffer object target is bound to zero.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_OPERATION error is generated if buffer is not zero or a name
returned from a previous call to GenBuffers, or if such a name has since been
deleted with DeleteBuffers.

An INVALID_OPERATION error is generated by client attempts to modify
or query buffer object state for a target bound to zero, since there is no buffer
object corresponding to the name zero,

6.1.1 Binding Buffer Objects to Indexed Targets

Buffer objects may be created and bound to indexed targets by calling one of the
commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);

void BindBufferBase(enum target, uint index, uint buffer);

target must be one of ATOMIC_COUNTER_BUFFER, SHADER_STORAGE_BUFFER,
TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Additional language
specific to each target is included in sections referred to for each target in table 6.1.

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manip-
ulation functions, such as BindBuffer or MapBuffer. Both commands bind the

OpenGL 4.5 (Core Profile) - October 24, 2016

6.1. CREATING AND BINDING BUFFER OBJECTS 60

buffer object named by buffer to both the general binding point, and to the binding
point in the array given by index. If the binds are successful no change is made
to the state of the bound buffer object, and any previous bindings to the general
binding point or to the binding point in the array are broken.

If the buffer object named buffer has not been previously bound, the GL creates
a new state vector, initialized with a zero-sized memory buffer and comprising all
the state and with the same initial values listed in table 6.2.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from or written to
the buffer object while used as an indexed target. Both offset and size are in basic
machine units.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. The starting offset is zero, and the amount
of data that can be read from or written to the buffer is determined by the size of
the bound buffer at the time the binding is used.

Regardless of the size specified with BindBufferRange, the GL will never read
or write beyond the end of a bound buffer. In some cases this constraint may result
in visibly different behavior when a buffer overflow would otherwise result, such
as described for transform feedback operations in section 13.2.2.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of target-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_OPERATION error is generated if buffer is not zero or a name
returned from a previous call to GenBuffers, or if such a name has since been
deleted with DeleteBuffers.

An INVALID_VALUE error is generated by BindBufferRange if offset is
negative.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and size is less than or equal to zero.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and offset or size do not respectively satisfy the constraints described
for those parameters for the specified target, as described in section 6.7.1.

The commands

OpenGL 4.5 (Core Profile) - October 24, 2016

6.1. CREATING AND BINDING BUFFER OBJECTS 61

void BindBuffersBase(enum target, uint first, sizei count,
const uint *buffers);

void BindBuffersRange(enum target, uint first,
sizei count, const uint *buffers, const
intptr *offsets, const sizeiptr *sizes);

bind count existing buffer objects to bindings numbered first through first +
count − 1 in the array of buffer binding points corresponding to target. If buffers
is not NULL, it specifies an array of count values, each of which must be zero or
the name of an existing buffer object. For BindBuffersRange, offsets and sizes
specify arrays of count values indicating the range of each buffer to bind. If buffers
is NULL, all bindings from first to first + count − 1 are reset to their unbound
(zero) state. In this case, the offsets and sizes associated with the binding points
are set to default values, ignoring offsets and sizes.

BindBuffersBase is equivalent (assuming no errors are generated) to:

for (i = 0; i < count; i++) {
if (buffers == NULL) {

BindBufferBase(target, first + i, 0);
} else {

BindBufferBase(target, first + i, buffers[i]);
}

}

except that the single general buffer binding corresponding to target is unmodified,
and that buffers will not be created if they do not exist.

BindBuffersRange is equivalent (assuming no errors are generated) to:

for (i = 0; i < count; i++) {
if (buffers == NULL) {

BindBufferRange(target, first + i, 0, 0, 0);
} else {

BindBufferRange(target, first + i, buffers[i],
offsets[i], sizes[i]);

}
}

except that the single general buffer binding corresponding to target is unmodified,
and that buffers will not be created if they do not exist.

The values specified in buffers, offsets, and sizes will be checked separately for
each binding point. When values for a specific binding point are invalid, the state

OpenGL 4.5 (Core Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 62

for that binding point will be unchanged and an error will be generated. When
such an error occurs, state for other binding points will still be changed if their
corresponding values are valid.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_OPERATION error is generated if first + count is greater
than the number of target-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_OPERATION error is generated if any value in buffers is not
zero or the name of an existing buffer object.

An INVALID_VALUE error is generated by BindBuffersRange if any
value in offsets is less than zero (per binding).

An INVALID_VALUE error is generated by BindBuffersRange if any
value in sizes is less than or equal to zero (per binding).

An INVALID_VALUE error is generated by BindBuffersRange if any pair
of values in offsets and sizes does not respectively satisfy the constraints
described for those parameters for the specified target, as described in sec-
tion 6.7.1 (per binding).

6.2 Creating and Modifying Buffer Object Data Stores

The data store of a buffer object is created by calling one of

void BufferStorage(enum target, sizeiptr size, const
void *data, bitfield flags);

void NamedBufferStorage(uint buffer, sizeiptr size,
const void *data, bitfield flags);

For BufferStorage, the buffer object is that bound to target, which must be one
of the values listed in table 6.1. For NamedBufferStorage, buffer is the name of
the buffer object. size is the size of the data store in basic machine units, and flags
containing a bitfield describing the intended usage of the data store.

The data store of the buffer object is allocated as a result of these commands,
and cannot be de-allocated until the buffer is deleted with a call to DeleteBuffers.
Such a store may not be re-allocated through further calls to *BufferStorage or
BufferData.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 63

data specifies the address in client memory of the data that should be used to
initialize the buffer object’s data store. If data is NULL, the data store of the buffer
object is created, but contains undefined data. Otherwise, data should point to an
array of at least size basic machine units.

flags is the bitwise OR of flags describing the intended usage of the buffer
object’s data store by the application. Valid flags and their meanings are as follows:

DYNAMIC_STORAGE_BIT The contents of the data store may be updated after cre-
ation through calls to BufferSubData. If this bit is not set, the buffer content
may not be directly updated by the client. The data argument may be used
to specify the initial content of the buffer’s data store regardless of the pres-
ence of the DYNAMIC_STORAGE_BIT. Regardless of the presence of this bit,
buffers may always be updated with server-side calls such as CopyBuffer-
SubData and ClearBufferSubData.

MAP_READ_BIT The data store may be mapped by the client for read access and a
pointer in the client’s address space obtained that may be read from.

MAP_WRITE_BIT The data store may be mapped by the client for write access and
a pointer in the client’s address space obtained that may be written to.

MAP_PERSISTENT_BIT The client may request that the server read from or write
to the buffer while it is mapped. The client’s pointer to the data store remains
valid so long as the data store is mapped, even during execution of drawing
or dispatch commands.

MAP_COHERENT_BIT Shared access to buffers that are simultaneously mapped for
client access and are used by the server will be coherent, so long as that map-
ping is performed using MapBufferRange or MapNamedBufferRange.
That is, data written to the store by either the client or server will be visible
to any subsequently issued GL commands with no further action taken by
the application. In particular,

• If MAP_COHERENT_BIT is not set and the client performs a write fol-
lowed by a call to one of the FlushMapped*BufferRange commands
with a range including the written range, MemoryBarrier command
with the CLIENT MAPPED BUFFER BARRIER BIT set, then in
subsequent commands the server will see the writes.

• If MAP_COHERENT_BIT is set and the client performs a write, then in
subsequent commands the server will see the writes.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 64

• If MAP_COHERENT_BIT is not set and the server performs a write, the
application must call MemoryBarrier with the CLIENT_MAPPED_-

BUFFER_BARRIER_BIT set and then call FenceSync with SYNC_-

GPU_COMMANDS_COMPLETE (or Finish). Then the CPU will see the
writes after the sync is complete.

• If MAP_COHERENT_BIT is set and the server does a write, the applica-
tion must call FenceSync with SYNC_GPU_COMMANDS_COMPLETE (or
Finish). Then the CPU will see the writes after the sync is complete.

CLIENT_STORAGE_BIT When all other criteria for the buffer storage allocation
are met, this bit may be used by an implementation to determine whether to
use storage that is local to the server or to the client to serve as the backing
store for the buffer.

If flags contains MAP_PERSISTENT_BIT, it must also contain at least one of
MAP_READ_BIT or MAP_WRITE_BIT.

It is an error to specify MAP_COHERENT_BIT without also specifying MAP_-

PERSISTENT_BIT.
BufferStorage and NamedBufferStorage delete any existing data store, and

set the values of the buffer object’s state variables as shown in table 6.3.
If any portion of the buffer object is mapped in the current context or any

context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

Errors

An INVALID_OPERATION error is generated by BufferStorage if zero is
bound to target.

An INVALID_OPERATION error is generated by NamedBufferStorage if
buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if size is less than or equal to zero.
An INVALID_VALUE error is generated if flags has any bits set other than

those defined above.
An INVALID_VALUE error is generated if flags contains MAP_-

PERSISTENT_BIT but does not contain at least one of MAP_READ_BIT or
MAP_WRITE_BIT.

An INVALID_VALUE error is generated if flags contains MAP_-

COHERENT_BIT, but does not also contain MAP_PERSISTENT_BIT.
An INVALID_OPERATION error is generated if the BUFFER_-

OpenGL 4.5 (Core Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 65

Name Value for Value for
BufferData *BufferStorage

BUFFER_SIZE size size
BUFFER_USAGE usage DYNAMIC_DRAW

BUFFER_ACCESS READ_WRITE READ_WRITE

BUFFER_ACCESS_FLAGS 0 0
BUFFER_IMMUTABLE_STORAGE FALSE TRUE

BUFFER_MAPPED FALSE FALSE

BUFFER_MAP_POINTER NULL NULL

BUFFER_MAP_OFFSET 0 0
BUFFER_MAP_LENGTH 0 0
BUFFER_STORAGE_FLAGS MAP_READ_BIT | flags

MAP_WRITE_BIT |
DYNAMIC_STORAGE_BIT

Table 6.3: Buffer object state after calling BufferData, BufferStorage, or Named-
BufferStorage.

IMMUTABLE_STORAGE flag of the buffer bound to target is TRUE.

A mutable data store may be allocated for a buffer object with the commands

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

void NamedBufferData(uint buffer, sizeiptr size, const
void *data, enum usage);

For BufferData, the buffer object is that bound to target, which must be one
of the targets listed in table 6.1. For NamedBufferData, buffer is the name of the
buffer object.

size is the size of the data store in basic machine units, data points to the source
data in client memory, and usage indicates the expected application usage pattern
of the data store.

If data is non-NULL, then the source data is copied to the buffer object’s data
store. If data is NULL, then the contents of the buffer object’s data store are unde-
fined.

usage is specified as one of nine enumerated values. In the following descrip-
tions, a buffer’s data store is sourced when if is read from as a result of GL com-
mands which specify images, or invoke shaders accessing buffer data as a result of
drawing commands or compute shader dispatch.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 66

The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and sourced at most a few times.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and sourced at most a few times

STATIC_DRAW The data store contents will be specified once by the application,
and sourced many times.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and sourced many times.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and sourced many times.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_COPY The data store contents will be respecified repeatedly by reading
data from the GL, and sourced many times.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData and NamedBufferData delete any existing data store, and set the
values of the buffer object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising N basic machine units be a multiple of N .

Calling *BufferData is equivalent to calling BufferStorage with target, size
and data as specified, and flags set to the logical OR of DYNAMIC_STORAGE_BIT,
MAP_READ_BIT and MAP_WRITE_BIT. The GL will use the value of the usage pa-
rameter to *BufferData as a hint to further determine the intended use of the buffer.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 67

However, BufferStorage allocates immutable storage whereas *BufferData allo-
cates mutable storage. Thus, when a buffer’s data store is allocated through a call
to *BufferData, the buffer’s BUFFER_IMMUTABLE_STORAGE flag is set to FALSE.

Errors

An INVALID_OPERATION error is generated by BufferData if zero is
bound to target.

An INVALID_OPERATION error is generated by NamedBufferData if
buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if size is negative.
An INVALID_ENUM error is generated by BufferData if target is not one

of the targets listed in table 6.1.
An INVALID_OPERATION error is generated if the BUFFER_-

IMMUTABLE_STORAGE flag of the buffer object is TRUE.
An INVALID_ENUM error is generated if usage is not one of the nine us-

ages described above.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the commands

void BufferSubData(enum target, intptr offset,
sizeiptr size, const void *data);

void NamedBufferSubData(uint buffer, intptr offset,
sizeiptr size, const void *data);

For BufferSubData, target specifies the target to which the buffer object is
bound, and must be one of the values listed in table 6.1. For NamedBufferSub-
Data, buffer is the name of the buffer object.

offset and size indicate the range of data in the buffer object that is to be re-
placed, in terms of basic machine units. data specifies a region of client memory
size basic machine units in length, containing the data that replace the specified
buffer range.

Errors

An INVALID_OPERATION error is generated by BufferSubData if zero is
bound to target.

An INVALID_OPERATION error is generated by NamedBufferSubData
if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated by BufferSubData if target is not

OpenGL 4.5 (Core Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 68

one of the targets listed in table 6.1.
An INVALID_VALUE error is generated if offset or size is negative, or if

offset + size is greater than the value of BUFFER_SIZE for the buffer object.
An INVALID_OPERATION error is generated if any part of the speci-

fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 6.3), unless it was mapped with MAP_PERSISTENT_BIT set in the Map-
BufferRange access flags.

An INVALID_OPERATION error is generated if the BUFFER_-

IMMUTABLE_STORAGE flag of the buffer object is TRUE and the value of
BUFFER_STORAGE_FLAGS for the buffer does not have the DYNAMIC_-

STORAGE_BIT set.

6.2.1 Clearing Buffer Object Data Stores

To fill all or part of a buffer object’s data store with constant values, use the com-
mands

void ClearBufferSubData(enum target, enum internalformat,
intptr offset, sizeiptr size, enum format, enum type,
const void *data);

void ClearNamedBufferSubData(uint buffer,
enum internalformat, intptr offset, sizeiptr size,
enum format, enum type, const void *data);

For ClearBufferSubData, the buffer object is that bound to target, which must
be one of the values listed in table 6.1. For ClearNamedBufferSubData, buffer is
the name of the buffer object.

internalformat must be set to one of the format tokens listed in table 8.16.
format and type specify the format and type of the source data and are interpreted
as described in section 8.4.4.

offset is the offset, measured in basic machine units, into the buffer object’s
data store from which to begin filling, and size is the size, also in basic machine
units, of the range to fill.

data is a pointer to an array of between one and four components containing
the data to be used as the source of the constant fill value. The elements of data
are converted by the GL into the format specified by internalformat in the manner
described in section 2.2.1, and then used to fill the specified range of the destination
buffer. If data is NULL, then the pointer is ignored and the sub-range of the buffer
is filled with zeros.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 69

Errors

An INVALID_ENUM error is generated by ClearBufferSubData if target
is not one of the targets listed in table 6.1.

An INVALID_VALUE error is generated by ClearBufferSubData if zero
is bound to target.

An INVALID_OPERATION error is generated by ClearNamedBufferData
if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if internalformat is not one of the
format tokens listed in table 8.16.

An INVALID_VALUE error is generated if offset or size are not multiples
of the number of basic machine units for the internal format specified by inter-
nalformat. This value may be computed by multiplying the number of com-
ponents for internalformat from table 8.16 by the size of the base type from
that table.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the buffer object.

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 6.3), unless it was mapped with MAP_PERSISTENT_BIT set in the Map-
BufferRange access flags.

An INVALID_VALUE error is generated if type is not one of the types in
table 8.2.

An INVALID_VALUE error is generated if format is not one of the formats
in table 8.3.

The commands

void ClearBufferData(enum target, enum internalformat,
enum format, enum type, const void *data);

void ClearNamedBufferData(uint buffer,
enum internalformat, enum format, enum type, const
void *data);

are respectively equivalent to

ClearBufferSubData(target, internalformat, 0, size, format, type, data);

and

ClearNamedBufferSubData(buffer, internalformat, 0, size, format, type, data);

where size is the value of BUFFER_SIZE for the destination buffer object.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 70

6.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space with the commands

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield acesss);

void *MapNamedBufferRange(uint buffer, intptr offset,
sizeiptr length, bitfield access);

For MapBufferRange, the buffer object is that bound to target, which must be
one of the values listed in table 6.1. For MapNamedBufferRange, buffer is the
name of the buffer object.

offset and length indicate the range of data in the buffer object that is to be
mapped, in terms of basic machine units. access is a bitfield containing flags which
describe the requested mapping. These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

• MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

• MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

• MAP_PERSISTENT_BIT indicates that it is not an error for the GL to read
data from or write data to the buffer while it is mapped (see section 6.3.2).
If this bit is set, the value of BUFFER_STORAGE_FLAGS for the buffer being
mapped must include MAP_PERSISTENT_BIT.

• MAP_COHERENT_BIT indicates that the mapping should be performed co-
herently. That is, such a mapping follows the rules set forth in section 6.2.
If this bit is set, the value of BUFFER_STORAGE_FLAGS for the buffer being
mapped must include MAP_COHERENT_BIT.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 71

If no error occurs, the pointer values returned by Map*BufferRange must
reflect an allocation aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic
machine units. Subtracting offset basic machine units from the returned pointer
will always produce a multiple of the value of MIN_MAP_BUFFER_ALIGNMENT.

The returned pointer values may not be passed as parameter values to GL com-
mands. For example, they may not be used to specify array pointers, or to specify or
query pixel or texture image data; such actions produce undefined results, although
implementations may not check for such behavior for performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

• MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

• MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

• MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 72

Name Value
BUFFER_ACCESS Depends on access1

BUFFER_ACCESS_FLAGS access
BUFFER_MAPPED TRUE

BUFFER_MAP_POINTER pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 6.4: Buffer object state set by MapBufferRange and MapNamedBuffer-
Range.
1 BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ_BIT, MAP_-
WRITE_BIT, or MAP_READ_BIT|MAP_WRITE_BIT.

• MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt
to synchronize pending operations on the buffer prior to returning from
Map*BufferRange. No GL error is generated if pending operations which
source or modify the buffer overlap the mapped region, but the result of such
previous and any subsequent operations is undefined.

A successful Map*BufferRange sets buffer object state values as shown in
table 6.4.

Errors

If an error occurs, a NULL pointer is returned.
An INVALID_ENUM error is generated by MapBufferRange if target is

not one of the valid targets listed above.
An INVALID_OPERATION error is generated by MapBufferRange if zero

is bound to target.
An INVALID_OPERATION error is generated by MapNamedBuffer-

Range if buffer is not the name of an existing buffer object.
An INVALID_VALUE error is generated if offset or length is negative, if

offset + length is greater than the value of BUFFER_SIZE, or if access has
any bits set other than those defined above.

An INVALID_OPERATION error is generated for any of the following con-
ditions:

OpenGL 4.5 (Core Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 73

• length is zero.

• The buffer is already in a mapped state.

• Neither MAP_READ_BIT nor MAP_WRITE_BIT is set.

• MAP_READ_BIT is set and any of MAP_INVALIDATE_RANGE_BIT,
MAP_INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_BIT is
set.

• MAP_FLUSH_EXPLICIT_BIT is set and MAP_WRITE_BIT is not set.

• Any of MAP_READ_BIT, MAP_WRITE_BIT, MAP_PERSISTENT_BIT,
or MAP_COHERENT_BIT are set, but the same bit is not set in the buffer’s
storage flags.

No error is generated if memory outside the mapped range is modified
or queried, but the result is undefined and system errors (possibly including
program termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space with the commands

void *MapBuffer(enum target, enum access);
void *MapNamedBuffer(uint buffer, enum access);

These commands are respectively equivalent to

MapBufferRange(target, 0, length, flags);

and

MapNamedBufferRange(buffer, 0, length, flags);

where length is equal to the value of BUFFER_SIZE for the target buffer and
flags is equal to

• MAP_READ_BIT, if access is READ_ONLY

• MAP_WRITE_BIT, if access is WRITE_ONLY

• MAP_READ_BIT | MAP_WRITE_BIT, if access is READ_WRITE.

The pointer value returned by MapBuffer and MapNamedBuffer must be
aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic machine units.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 74

Errors

An INVALID_ENUM error is generated if access is not READ_ONLY,
WRITE_ONLY, or READ_WRITE.

Other errors are generated as described above for MapBufferRange and
MapNamedBufferRange.

If a buffer object is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, mod-
ifications to the mapped range may be indicated with the commands

void FlushMappedBufferRange(enum target, intptr offset,
sizeiptr length);

void FlushMappedNamedBufferRange(uint buffer,
intptr offset, sizeiptr length);

For FlushMappedBufferRange, the buffer object is that bound to target,
which must be one of the targets listed in table 6.1. For FlushMappedNamed-
BufferRange, buffer is the name of the buffer object.

offset and length indicate a modified subrange of the mapping, in basic machine
units. The specified subrange to flush is relative to the start of the currently mapped
range of the buffer object. FlushMapped*BufferRange may be called multiple
times to indicate distinct subranges of the mapping which require flushing.

If a buffer range is mapped with both MAP_PERSISTENT_BIT and MAP_-

FLUSH_EXPLICIT_BIT set, then FlushMapped*BufferRange may be called to
ensure that data written by the client into the flushed region becomes visible to the
server. Data written to a coherent store will always become visible to the server
after an unspecified period of time.

Errors

An INVALID_ENUM error is generated by FlushMappedBufferRange if
target is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by FlushMappedBuffer-
Range if zero is bound to target.

An INVALID_OPERATION error is generated by FlushMappedNamed-
BufferRange if buffer is not the name of an existing buffer object.

An INVALID_OPERATION error is generated if the buffer object is not
mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.3. MAPPING AND UNMAPPING BUFFER DATA 75

6.3.1 Unmapping Buffers

After the client has specified the contents of a mapped range of a buffer object, and
before the data in that range are dereferenced by any GL commands, the mapping
must be relinquished with one of the commands

boolean UnmapBuffer(enum target);
boolean UnmapNamedBuffer(uint buffer);

For UnmapBuffer, the buffer object is that bound to target, which must be one
of the targets listed in table 6.1. For UnmapNamedBuffer, buffer is the name of
the buffer object.

Unmapping a mapped buffer object invalidates the pointer to its data store and
sets the object’s BUFFER_MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_-
FLAGS, BUFFER_MAP_OFFSET, and BUFFER_MAP_LENGTH state variables to the
initial values shown in table 6.3.

Unmap*Buffer returns TRUE unless data values in the buffer object’s data store
have become corrupted during the period that the buffer object was mapped. Such
corruption can be the result of a screen resolution change or other window system-
dependent event that causes system heaps such as those for high-performance
graphics memory to be discarded. GL implementations must guarantee that such
corruption can occur only during the periods that a buffer object’s data store is
mapped. If such corruption has occurred, Unmap*Buffer return FALSE, and the
contents of the data store become undefined.

Unmapping that occurs as a side effect of buffer deletion (see section 5.1.2) or
reinitialization by BufferData is not an error.

Buffer mappings are buffer object state, and are not affected by whether or not
a context owing a buffer object is current.

If an error is generated, FALSE is returned.

Errors

An INVALID_ENUM error is generated by UnmapBuffer if target is not
one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by UnmapBuffer if zero is
bound to target.

An INVALID_OPERATION error is generated by UnmapNamedBuffer if
buffer is not the name of an existing buffer object.

An INVALID_OPERATION error is generated if the buffer object’s data
store is already in the unmapped state.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.4. EFFECTS OF ACCESSING OUTSIDE BUFFER BOUNDS 76

6.3.2 Effects of Mapping Buffers on Other GL Commands

Any GL command which attempts to read from, write to, or change the state of
a buffer object may generate an INVALID_OPERATION error if all or part of the
buffer object is mapped, unless it was allocated by a call to *BufferStorage with
the MAP_PERSISTENT_BIT included in flags. However, only commands which
explicitly describe this error are required to do so. If an error is not generated,
such commands will have undefined results and may result in GL interruption or
termination.

6.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error is generated. Any command which does not detect these attempts, and
performs such an invalid read or write, has undefined results, and may result in GL
interruption or termination.

Robust buffer access can be enabled by creating a context with robust access
enabled through the window system binding APIs. When enabled, any command
unable to generate a GL error as described above, such as buffer object accesses
from the active program, will not read or modify memory outside of the data store
of the buffer object and will not result in GL interruption or termination. Out-
of-bounds reads may return values from within the buffer object or zero values.
Out-of-bounds writes may modify values within the buffer object or be discarded.
Accesses made through resources attached to binding points are only protected
within the buffer object from which the binding point is declared. For example,
for an out-of-bounds access to a member variable of a uniform block, the access
protection is provided within the uniform buffer object, and not for the bound buffer
range for this uniform block.

6.5 Invalidating Buffer Data

All or part of the data store of a buffer object may be invalidated by calling

void InvalidateBufferSubData(uint buffer, intptr offset,
sizeiptr length);

with buffer set to the name of the buffer whose data store is being invalidated. offset
and length specify the range of the data in the buffer object that is to be invalidated.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.6. COPYING BETWEEN BUFFERS 77

Data in the specified range have undefined values after calling InvalidateBuffer-
SubData.

Errors

An INVALID_VALUE error is generated if buffer is zero or is not the name
of an existing buffer object.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length is greater than the value of BUFFER_SIZE for buffer.

An INVALID_OPERATION error is generated if buffer is currently mapped
by MapBuffer or if the invalidate range intersects the range currently mapped
by MapBufferRange, unless it was mapped with MAP_PERSISTENT_BIT set
in the MapBufferRange access flags.

The command

void InvalidateBufferData(uint buffer);

is equivalent to calling InvalidateBufferSubData with offset equal to zero and
length equal to the value of BUFFER_SIZE for buffer.

6.6 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object with the commands

void CopyBufferSubData(enum readTarget, enum writeTarget,
intptr readOffset, intptr writeOffset, sizeiptr size);

void CopyNamedBufferSubData(uint readBuffer,
uint writeBuffer, intptr readOffset, intptr writeOffset,
sizeiptr size);

For CopyBufferSubData, readTarget and writeTarget are the targets to which
the source and destination buffers are bound, and each must be one of the targets
listed in table 6.1. For CopyNamedBufferSubData, readBuffer and writeBuffer
are the names of the source and destination buffers, respectively.

While any of these targets may be used, the COPY_READ_BUFFER and COPY_-
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use.

writeOffset and size specify the range of data in the destination buffer object
that is to be replaced, in terms of basic machine units. readOffset and size specify

OpenGL 4.5 (Core Profile) - October 24, 2016

6.7. BUFFER OBJECT QUERIES 78

the range of data in the source buffer object that is to be copied to the corresponding
region of writeTarget.

Errors

An INVALID_OPERATION error is generated by CopyBufferSubData if
zero is bound to readTarget or writeTarget.

An INVALID_ENUM error is generated by CopyBufferSubData if read-
Target or writeTarget is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by CopyNamedBufferSub-
Data if readBuffer or writeBuffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if any of readOffset, writeOffset,
or size are negative, if readOffset + size exceeds the size of the source buffer
object, or if writeOffset+size exceeds the size of the destination buffer object.

An INVALID_VALUE error is generated if the source and destination are
the same buffer object, and the ranges [readOffset , readOffset + size) and
[writeOffset ,writeOffset + size) overlap.

An INVALID_OPERATION error is generated if either the source or des-
tination buffer objects is mapped, unless they were mapped with MAP_-

PERSISTENT_BIT set in the Map*BufferRange access flags.

6.7 Buffer Object Queries

To query information about a buffer object, use the commands

void GetBufferParameteriv(enum target, enum pname,
int *data);

void GetBufferParameteri64v(enum target, enum pname,
int64 *data);

void GetNamedBufferParameteriv(uint buffer,
enum pname, int *data);

void GetNamedBufferParameteri64v(uint buffer,
enum pname, int64 *data);

For GetBufferParameter*, the buffer object is that bound to target, which must
be one of the targets listed in table 6.1. For GetNamedBufferParameter*, buffer
is the name of the buffer object.

pname must be one of the buffer object parameters in table 6.2, other than
BUFFER_MAP_POINTER. The value of the specified parameter of the buffer object
bound to target is returned in data.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.7. BUFFER OBJECT QUERIES 79

Errors

An INVALID_ENUM error is generated by GetBufferParameter* if target
is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferParameter* if
zero is bound to target.

An INVALID_OPERATION error is generated by GetNamedBufferPa-
rameter* if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not one of the buffer
object parameters other than BUFFER_MAP_POINTER.

To query the data store of a buffer object, use the commands

void GetBufferSubData(enum target, intptr offset,
sizeiptr size, void *data);

void GetNamedBufferSubData(uint buffer, intptr offset,
sizeiptr size, void *data);

For GetBufferSubData, target specifies the target to which the source buffer ob-
ject is bound, and must be one of the values listed in table 6.1. For GetNamed-
BufferSubData, buffer specifies the name of the source buffer object.

offset and size indicate the range of data in the source buffer object that is to be
queried, in terms of basic machine units. data specifies a region of client memory,
size basic machine units in length, into which the data is to be retrieved.

Errors

An INVALID_ENUM error is generated by GetBufferSubData if target is
not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferSubData if
zero is bound to target.

An INVALID_OPERATION error is generated by GetNamedBufferSub-
Data if buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the source buffer
object.

An INVALID_OPERATION error is generated if the source buffer object is
currently mapped, unless it was mapped with MAP_PERSISTENT_BIT set in
the Map*BufferRange access flags.

While part or all of the data store of a buffer object is mapped, the pointer to
the mapped range of the data store may be queried with the commands

OpenGL 4.5 (Core Profile) - October 24, 2016

6.7. BUFFER OBJECT QUERIES 80

void GetBufferPointerv(enum target, enum pname, const
void **params);

void GetNamedBufferPointerv(uint buffer, enum pname,
const void **params);

For GetBufferPointerv, the buffer object is that bound to target, which must
be one of the targets listed in table 6.1. For GetNamedBufferPointerv, buffer is
the name of the buffer object.

pname must be BUFFER_MAP_POINTER. The single buffer map pointer is re-
turned in params. A NULL pointer value is returned if the buffer object’s data store
is not currently mapped; or if the requesting context did not map the buffer ob-
ject’s data store, and the implementation is unable to support mappings on multiple
clients.

Errors

An INVALID_ENUM error is generated by GetBufferPointerv if target is
not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferPointerv if
zero is bound to target.

An INVALID_OPERATION error is generated by GetNamedBufferPoint-
erv if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not BUFFER_MAP_-
POINTER.

6.7.1 Indexed Buffer Object Limits and Binding Queries

Several types of buffer bindings support an indexed array of binding points for
specific use by the GL, in addition to a single generic binding point for general
management of buffers of that type. Each type of binding is described in table 6.5
together with the token names used to refer to each buffer in the array of binding
points, the starting offset of the binding for each buffer in the array, any constraints
on the corresponding offset value passed to BindBufferRange (see section 6.1.1),
the size of the binding for each buffer in the array, any constraints on the corre-
sponding size value passed to BindBufferRange, and the size of the array (the
number of bind points supported).

To query which buffer objects are bound to an indexed array, call GetIntegeri -
v with target set to the name of the array of binding points. index must be in the
range zero to the number of bind points supported minus one. The name of the
buffer object bound to index is returned in values. If no buffer object is bound for
index, zero is returned in values.

OpenGL 4.5 (Core Profile) - October 24, 2016

6.7. BUFFER OBJECT QUERIES 81

Atomic counter array bindings (see sec. 7.7.2)
binding points ATOMIC_COUNTER_BUFFER_BINDING

starting offset ATOMIC_COUNTER_BUFFER_START

offset restriction multiple of 4
binding size ATOMIC_COUNTER_BUFFER_SIZE

size restriction none
no. of bind points value of MAX_ATOMIC_COUNTER_BUFFER_-

BINDINGS

Shader storage array bindings (see sec. 7.8)
binding points SHADER_STORAGE_BUFFER_BINDING

starting offset SHADER_STORAGE_BUFFER_START

offset restriction multiple of value of SHADER_STORAGE_-

BUFFER_OFFSET_ALIGNMENT

binding size SHADER_STORAGE_BUFFER_SIZE

size restriction none
no. of bind points value of MAX_SHADER_STORAGE_BUFFER_-

BINDINGS

Transform feedback array bindings (see sec. 13.2.2)
binding points TRANSFORM_FEEDBACK_BUFFER_BINDING

starting offset TRANSFORM_FEEDBACK_BUFFER_START

offset restriction multiple of 4
binding size TRANSFORM_FEEDBACK_BUFFER_SIZE

size restriction multiple of 4
no. of bind points value of MAX_TRANSFORM_FEEDBACK_BUFFERS

Uniform buffer array bindings (see sec. 7.6.3)
binding points UNIFORM_BUFFER_BINDING

starting offset UNIFORM_BUFFER_START

offset restriction multiple of value of UNIFORM_BUFFER_-

OFFSET_ALIGNMENT

binding size UNIFORM_BUFFER_SIZE

size restriction none
no. of bind points value of MAX_UNIFORM_BUFFER_BINDINGS

Table 6.5: Indexed buffer object limits and binding queries

OpenGL 4.5 (Core Profile) - October 24, 2016

6.8. BUFFER OBJECT STATE 82

To query the starting offset or size of the range of a buffer object binding in
an indexed array, call GetInteger64i v with target set to respectively the starting
offset or binding size name from table 6.5 for that array. index must be in the range
zero to the number of bind points supported minus one. If the starting offset or
size was not specified when the buffer object was bound (e.g. if it was bound with
BindBufferBase), or if no buffer object is bound to the target array at index, zero
is returned1.

Errors

An INVALID_VALUE error is generated by GetIntegeri v and GetInte-
ger64i v if target is one of the array binding point names, starting offset
names, or binding size names from table 6.5 and index is greater than or equal
to the number of binding points for target as described in the same table.

6.8 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 6.1, and for each of the indexed buffer targets in sec-
tion 6.1.1. The state required for index buffer targets for atomic counters, shader
storage, transform feedback, and uniform buffer array bindings is summarized in
tables 23.46, 23.47, 23.48, and 23.49 respectively.

Additionally, each vertex array has an associated binding so there is a buffer
object binding for each of the vertex attribute arrays. The initial values for all
buffer object bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, an boolean indicating whether or not buffer
storage is immutable, an unsigned integer storing the flags with which it was allo-
cated, a mapped boolean, two integers for the offset and size of the mapped region,
a pointer to the mapped buffer (NULL if unmapped), and the sized array of basic
machine units for the buffer data.

1A zero size is a sentinel value indicating that the actual binding range size is determined by the
size of the bound buffer at the time the binding is used.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 7

Programs and Shaders

This chapter specifies commands to create, manage, and destroy program and
shader objects. Commands and functionality applicable only to specific shader
stages (for example, vertex attributes used as inputs by vertex shaders) are de-
scribed together with those stages in chapters 10 and 15.

A shader specifies operations that are meant to occur on data as it moves
through different programmable stages of the OpenGL processing pipeline, start-
ing with vertices specified by the application and ending with fragments prior to
being written to the framebuffer. The programming language used for shaders is
described in the OpenGL Shading Language Specification.

To use a shader, shader source code is first loaded into a shader object and then
compiled. A shader object corresponds to a stage in the rendering pipeline referred
to as its shader stage or shader type.

Alternatively, pre-compiled shader binary code may be directly loaded into a
shader object. An implementation must support shader compilation (the boolean
value SHADER_COMPILER must be TRUE). If the integer value of NUM_SHADER_-
BINARY_FORMATS is greater than zero, then shader binary loading is supported.

One or more shader objects are attached to a program object. The program
object is then linked, which generates executable code from all the compiled shader
objects attached to the program. Alternatively, pre-compiled program binary code
may be directly loaded into a program object (see section 7.5).

When program objects are bound to a shader stage, they become the current
program object for that stage. When the current program object for a shader stage
includes a shader of that type, it is considered the active program object for that
stage.

The current program object for all stages may be set at once using a single
unified program object, or the current program object may be set for each stage

83

7.1. SHADER OBJECTS 84

individually using a separable program object where different separable program
objects may be current for other stages. The set of separable program objects
current for all stages are collected in a program pipeline object that must be bound
for use. When a linked program object is made active for one of the stages, the
corresponding executable code is used to perform processing for that stage.

Shader stages including vertex shaders, tessellation control shaders, tessella-
tion evaluation shaders, geometry shaders, fragment shaders, and compute shaders
can be created, compiled, and linked into program objects.

Vertex shaders describe the operations that occur on vertex attributes. Tessel-
lation control and evaluation shaders are used to control the operation of the tes-
sellator, and are described in section 11.2. Geometry shaders affect the processing
of primitives assembled from vertices (see section 11.3). Fragment shaders affect
the processing of fragments during rasterization (see section 15). A single program
object can contain all of these shaders, or any subset thereof.

Compute shaders perform general-purpose computation for dispatched arrays
of shader invocations (see section 19), but do not operate on primitives processed
by the other shader types.

Shaders can reference several types of variables as they execute. Uniforms
are per-program variables that are constant during program execution (see sec-
tion 7.6). Buffer variables (see section 7.8) are similar to uniforms, but are stored
in buffer object memory which may be written to, and is persistent across multiple
shader invocations. Subroutine uniform variables (see section 7.9) are similar to
uniforms but are context state, rather than program object state. Samplers (see sec-
tion 7.10) are a special form of uniform used for texturing (see chapter 8). Images
(see section 7.11) are a special form of uniform identifying a level of a texture to
be accessed using built-in shader functions as described in section 8.26. Output
variables hold the results of shader execution that are used later in the pipeline.
Each of these variable types is described in more detail below.

7.1 Shader Objects

The name space for shader objects is the unsigned integers, with zero reserved for
the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The type argument specifies the type
of shader object to be created and must be one of the values in table 7.1 indicating

OpenGL 4.5 (Core Profile) - October 24, 2016

7.1. SHADER OBJECTS 85

type Shader Stage
VERTEX_SHADER Vertex shader

TESS_CONTROL_SHADER Tessellation control shader
TESS_EVALUATION_SHADER Tessellation evaluation shader

GEOMETRY_SHADER Geometry shader
FRAGMENT_SHADER Fragment shader
COMPUTE_SHADER Compute shader

Table 7.1: CreateShader type values and the corresponding shader stages.

the corresponding shader stage. A non-zero name that can be used to reference the
shader object is returned.

Errors

An INVALID_ENUM error is generated and zero is returned if type is not
one of the values in table 7.1.

The command

void ShaderSource(uint shader, sizei count, const
char * const *string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.1. SHADER OBJECTS 86

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if count is negative.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status may be queried with GetShaderiv (see sec-
tion 7.13). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log may be queried with Get-
ShaderInfoLog to obtain more information about the compilation attempt (see
section 7.13).

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

Resources allocated by the shader compiler may be released with the command

void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 7.13).

Shader objects can be deleted with the command

OpenGL 4.5 (Core Profile) - October 24, 2016

7.2. SHADER BINARIES 87

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS may be
queried with GetShaderiv (see section 7.13). DeleteShader will silently ignore
the value zero.

Errors

An INVALID_VALUE error is generated if shader is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if shader is not zero and is
the name of a program object.

The command

boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

7.2 Shader Binaries

Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type, and may correspond to any of the shader stages in table 7.1.
binary points to length bytes of pre-compiled binary shader code in client memory,
and binaryformat denotes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL defines no specific binary formats,
but does provide a mechanism to obtain token values for such formats provided
by extensions. The number of shader binary formats supported can be obtained by
querying the value of NUM_SHADER_BINARY_FORMATS. The list of specific binary

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 88

formats supported can be obtained by querying the value of SHADER_BINARY_-
FORMATS.

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary shaders, or load an executable binary that contains an op-
timized set of shaders stored in the same binary.

Errors

An INVALID_VALUE error is generated if count or length is negative.
An INVALID_ENUM error is generated if binaryformat is not a supported

format returned in SHADER_BINARY_FORMATS.
An INVALID_VALUE error is generated if the data pointed to by binary

does not match the specified binaryformat.
An INVALID_VALUE error is generated if any of the handles in shaders is

not the name of either a program or shader object.
An INVALID_OPERATION error is generated if any of the handles in

shaders is the name of a program object.
An INVALID_OPERATION error is generated if more than one of the han-

dles in shaders refers to the same type of shader object.
Additional errors corresponding to specific binary formats may be gener-

ated as specified by the extensions defining those formats.

If ShaderBinary fails, the old state of shader objects for which the binary was
being loaded will not be restored.

Note that if shader binary interfaces are supported, then a GL implementation
may require that an optimized set of shader binaries that were compiled together be
specified to LinkProgram. Not specifying an optimized set may cause LinkPro-
gram to fail.

7.3 Program Objects

A program object is created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 89

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is already attached
to program.

To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is not attached to
program.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 90

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status may be
queried with GetProgramiv (see section 7.13). This status will be set to TRUE if a
valid executable is created, and FALSE otherwise.

Linking can fail for a variety of reasons as specified in the OpenGL Shading
Language Specification, as well as any of the following reasons:

• No shader objects are attached to program.

• One or more of the shader objects attached to program are not compiled
successfully.

• More active uniform or active sampler variables are used in program than
allowed (see sections 7.6, 7.10, and 11.3.3).

• program contains objects to form a tessellation control shader (see sec-
tion 11.2.1), and

– the program is not separable and contains no objects to form a vertex
shader;

– the output patch vertex count is not specified in any compiled tessella-
tion control shader object; or

– the output patch vertex count is specified differently in multiple tessel-
lation control shader objects.

• program contains objects to form a tessellation evaluation shader (see sec-
tion 11.2.3), and

– the program is not separable and contains no objects to form a vertex
shader;

– the tessellation primitive mode is not specified in any compiled tessel-
lation evaluation shader object; or

– the tessellation primitive mode, spacing, vertex order, or point mode is
specified differently in multiple tessellation evaluation shader objects.

• program contains objects to form a geometry shader (see section 11.3), and

– the program is not separable and contains no objects to form a vertex
shader;

– the input primitive type, output primitive type, or maximum output ver-
tex count is not specified in any compiled geometry shader object; or

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 91

– the input primitive type, output primitive type, or maximum output ver-
tex count is specified differently in multiple geometry shader objects.

• program contains objects to form a compute shader (see section 19) and,

– program also contains objects to form any other type of shader.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

When program objects which have been linked successfully are used for ren-
dering operations, they may access GL state and interface with other stages of the
GL pipeline through active variables and active interface blocks. The GL provides
various commands allowing applications to enumerate and query properties of ac-
tive variables and interface blocks for a specified program. If one of these com-
mands is called with a program for which LinkProgram succeeded, the informa-
tion recorded when the program was linked is returned. If one of these commands is
called with a program for which LinkProgram failed, no error is generated unless
otherwise noted. Implementations may return information on variables and inter-
face blocks that would have been active had the program been linked successfully.
In cases where the link failed because the program required too many resources,
these commands may help applications determine why limits were exceeded. How-
ever, the information returned in this case is implementation-dependent and may be
incomplete. If one of these commands is called with a program for which LinkPro-
gram had never been called, no error is generated unless otherwise noted, and the
program object is considered to have no active variables or interface blocks.

Each program object has an information log that is overwritten as a result of a
link operation. This information log may be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 7.13).

If a program has been linked successfully by LinkProgram or loaded by Pro-
gramBinary (see section 7.5), it can be made part of the current rendering state
for all shader stages with the command

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 92

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for each
shader stage present when the program was last linked successfully. If UsePro-
gram is called with program set to zero, then there is no current program object.
The command

The executable code for an individual shader stage is taken from the current
program for that stage. If there is a current program object established by Use-
Program, that program is considered current for all stages. Otherwise, if there is
a bound program pipeline object (see section 7.4), the program bound to the ap-
propriate stage of the pipeline object is considered current. If there is no current
program object or bound program pipeline object, no program is current for any
stage. The current program for a stage is considered active if it contains exe-
cutable code for that stage; otherwise, no program is considered active for that
stage. If there is no active program for the vertex or fragment shader stages, the
results of vertex and/or fragment processing will be undefined. However, this is
not an error. If there is no active program for the tessellation control, tessellation
evaluation, or geometry shader stages, those stages are ignored. If there is no active
program for the compute shader stage, compute dispatches will generate an error.
The active program for the compute shader stage has no effect on the processing of
vertices, geometric primitives, and fragments, and the active program for all other
shader stages has no effect on compute dispatches.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully. The current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If LinkProgram or ProgramBinary successfully re-links a program object
that is active for any shader stage, then the newly generated executable code will
be installed as part of the current rendering state for all shader stages where the

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 93

program is active. Additionally, the newly generated executable code is made part
of the state of any program pipeline for all stages where the program is attached.

If a program object that is active for any shader stage is re-linked unsuccess-
fully, the link status will be set to FALSE, but any existing executables and associ-
ated state will remain part of the current rendering state until a subsequent call to
UseProgram, UseProgramStages, or BindProgramPipeline removes them from
use. If such a program is attached to any program pipeline object, the existing exe-
cutables and associated state will remain part of the program pipeline object until a
subsequent call to UseProgramStages removes them from use. A program which
has not been linked successfully may not be made part of the current rendering state
by UseProgram or added to program pipeline objects by UseProgramStages until
it is re-linked successfully. If such a program was attached to a program pipeline
at the time of a failed link, its existing executable may still be made part of the
current rendering state indirectly by BindProgramPipeline.

To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

pname identifies which parameter to set for program. value holds the value
being set.

If pname is PROGRAM_SEPARABLE, value must be TRUE or FALSE, and indi-
cates whether program can be bound for individual pipeline stages using UsePro-
gramStages after it is next linked.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, value must be TRUE or
FALSE, and indicates whether a program binary is likely to be retrieved later, as
described for ProgramBinary in section 7.5.

State set with this command does not take effect until after the next time
LinkProgram or ProgramBinary is called successfully.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not PROGRAM_-

SEPARABLE or PROGRAM_BINARY_RETRIEVABLE_HINT.
An INVALID_VALUE error is generated if value is not TRUE or FALSE.

Program objects can be deleted with the command

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 94

void DeleteProgram(uint program);

If program is not current for any GL context, is not the active program for any pro-
gram pipeline object, and is not the current program for any stage of any program
pipeline object, it is deleted immediately. Otherwise, program is flagged for dele-
tion and will be deleted after all of these conditions become true. When a program
object is deleted, all shader objects attached to it are detached. DeleteProgram
will silently ignore the value zero.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

The command

boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

uint CreateShaderProgramv(enum type, sizei count,
const char * const *strings);

creates a stand-alone program from an array of null-terminated source code strings
for a single shader type. CreateShaderProgramv is equivalent (assuming no er-
rors are generated) to:

const uint shader = CreateShader(type);
if (shader) {

ShaderSource(shader, count, strings, NULL);
CompileShader(shader);
const uint program = CreateProgram();
if (program) {

int compiled = FALSE;
GetShaderiv(shader, COMPILE_STATUS, &compiled);
ProgramParameteri(program, PROGRAM_SEPARABLE, TRUE);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 95

if (compiled) {
AttachShader(program, shader);
LinkProgram(program);
DetachShader(program, shader);

}
append-shader-info-log-to-program-info-log

}
DeleteShader(shader);
return program;

} else {
return 0;

}

Because no shader is returned by CreateShaderProgramv and the shader that
is created is deleted in the course of the command sequence, the info log of the
shader object is copied to the program so the shader’s failed info log for the failed
compilation is accessible to the application.

If an error is generated, zero is returned.

Errors

An INVALID_ENUM error is generated if type is not one of the values in
table 7.1.

An INVALID_VALUE error is generated if count is negative.
Other errors are generated if the supplied shader code fails to compile

and link, as described for the commands in the pseudocode sequence above,
but all such errors are generated without any side effects of executing those
commands.

7.3.1 Program Interfaces

When a program object is made part of the current rendering state, its executable
code may communicate with other GL pipeline stages or application code through
a variety of interfaces. When a program is linked, the GL builds a list of active
resources for each interface. Examples of active resources include variables, inter-
face blocks, and subroutines used by shader code. Resources referenced in shader
code are considered active unless the compiler and linker can conclusively deter-
mine that they have no observable effect on the results produced by the executable
code of the program. For example, variables might be considered inactive if they
are declared but not used in executable code, used only in a clause of an if state-
ment that would never be executed, used only in functions that are never called, or

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 96

used only in computations of temporary variables having no effect on any shader
output. In cases where the compiler or linker cannot make a conclusive determina-
tion, any resource referenced by shader code will be considered active. The set of
active resources for any interface is implementation-dependent because it depends
on various analysis and optimizations performed by the compiler and linker.

If a program is linked successfully, the GL will generate lists of active resources
based on the executable code produced by the link. If a program is not linked suc-
cessfully, the link may have failed for a number of reasons, including cases where
the program required more resources than supported by the implementation. Imple-
mentations are permitted, but not required, to record lists of resources that would
have been considered active had the program linked successfully. If an implemen-
tation does not record information for any given interface, the corresponding list of
active resources is considered empty. If a program has never been linked, all lists
of active resources are considered empty.

The GL provides a number of commands to query properties of the interfaces of
a program object. Each such command accepts a programInterface token, identify-
ing a specific interface. The supported values for programInterface are as follows:

• UNIFORM corresponds to the set of active uniform variables (see section 7.6)
used by program.

• UNIFORM_BLOCK corresponds to the set of active uniform blocks (see sec-
tion 7.6) used by program.

• ATOMIC_COUNTER_BUFFER corresponds to the set of active atomic counter
buffer binding points (see section 7.6) used by program.

• PROGRAM_INPUT corresponds to the set of active input variables used by the
first shader stage of program. If program includes multiple shader stages,
input variables from any shader stage other than the first will not be enumer-
ated.

• PROGRAM_OUTPUT corresponds to the set of active output variables (see sec-
tion 11.1.2.1) used by the last shader stage of program. If program includes
multiple shader stages, output variables from any shader stage other than the
last will not be enumerated.

• VERTEX_SUBROUTINE, TESS_CONTROL_SUBROUTINE, TESS_-

EVALUATION_SUBROUTINE, GEOMETRY_SUBROUTINE, FRAGMENT_-

SUBROUTINE, and COMPUTE_SUBROUTINE correspond to the set of active

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 97

subroutines for the vertex, tessellation control, tessellation evaluation, ge-
ometry, fragment, and compute shader stages of program, respectively (see
section 7.9).

• VERTEX_SUBROUTINE_UNIFORM, TESS_CONTROL_SUBROUTINE_-

UNIFORM, TESS_EVALUATION_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_SUBROUTINE_UNIFORM,
and COMPUTE_SUBROUTINE_UNIFORM correspond to the set of active sub-
routine uniform variables used by the vertex, tessellation control, tessellation
evaluation, geometry, fragment, and compute shader stages of program, re-
spectively (see section 7.9).

• TRANSFORM_FEEDBACK_VARYING corresponds to the set of output vari-
ables in the last non-fragment stage of program that would be captured when
transform feedback is active (see section 13.2.3). The resources enumerated
by this query are listed as specified by the most recent call to Transform-
FeedbackVaryings before the last call to LinkProgram. When the resource
names an output array variable either a single element of the array or the
whole array is captured. If the variable name is specified with an array in-
dex syntax "name[x]", name is the name of the array resource and x is
the constant-integer index of the element captured. If the resource name is
an array and has no array index and square bracket, then the whole array is
captured.

• TRANSFORM_FEEDBACK_BUFFER corresponds to the set of active buffer
binding points to which output variables in the TRANSFORM_FEEDBACK_-

VARYING interface are written.

• BUFFER_VARIABLE corresponds to the set of active buffer variables used by
program (see section 7.8).

• SHADER_STORAGE_BLOCK corresponds to the set of active shader storage
blocks used by program (see section 7.8)

7.3.1.1 Naming Active Resources

When building a list of active variable or interface blocks, resources with ag-
gregate types (such as arrays or structures) may produce multiple entries in the
active resource list for the corresponding interface. Additionally, each active vari-
able, interface block, or subroutine in the list is assigned an associated name string
that can be used by applications to refer to the resource. For interfaces involving

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 98

variables, interface blocks, or subroutines, the entries of active resource lists are
generated as follows:
• For an active variable declared as a single instance of a basic type, a single

entry will be generated, using the variable name from the shader source.

• For an active variable declared as an array of basic types (e.g. not an array
of stuctures or an array of arrays), a single entry will be generated, with its
name string formed by concatenating the name of the array and the string
"[0]".

• For an active variable declared as a structure, a separate entry will be gener-
ated for each active structure member. The name of each entry is formed by
concatenating the name of the structure, the "." character, and the name of
the structure member. If a structure member to enumerate is itself a structure
or array, these enumeration rules are applied recursively.

• For an active variable declared as an array of an aggregate data type (struc-
tures or arrays), a separate entry will be generated for each active array el-
ement, unless noted immediately below. The name of each entry is formed
by concatenating the name of the array, the "[" character, an integer identi-
fying the element number, and the "]" character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active variable.

• For an active shader storage block member declared as an array of an ag-
gregate type, an entry will be generated only for the first array element, re-
gardless of its type. Such block members are referred to as top-level arrays.
If the block member is an aggregate type, the enumeration rules are then
applied recursively.

• For an active interface block not declared as an array of block instances, a
single entry will be generated, using the block name from the shader source.

• For an active interface block declared as an array of arrays, a separate en-
try will be generated for each active instance. The name of each instance is
formed by concatenating the block name, the "[" character, an integer iden-
tifying the instance number, and the "]" character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active interface block.

• For an active subroutine, a single entry will be generated, using the subrou-
tine name from the shader source.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 99

When an integer array element or block instance number is part of the name
string, it will be specified in decimal form without a "+" or "-" sign or any
extra leading zeroes. Additionally, the name string will not include white space
anywhere in the string.

The order of the active resource list is implementation-dependent for all
interfaces except for TRANSFORM_FEEDBACK_VARYING. If variables in the
TRANSFORM_FEEDBACK_VARYING interface were specified using the Transform-
FeedbackVaryings command, the active resource list will be arranged in the vari-
able order specified in the most recent call to TransformFeedbackVaryings be-
fore the last call to LinkProgram. If variables in the TRANSFORM_FEEDBACK_-
VARYING interface were specified using layout qualifiers in shader code, the or-
der of the active resource list is implementation-dependent.

For the ATOMIC_COUNTER_BUFFER interface, the list of active buffer binding
points is built by identifying each unique binding point associated with one or more
active atomic counter uniform variables. Active atomic counter buffers do not have
an associated name string.

For the UNIFORM, PROGRAM_INPUT, PROGRAM_OUTPUT, and TRANSFORM_-

FEEDBACK_VARYING interfaces, the active resource list will include all active vari-
ables for the interface, including any active built-in variables.

For PROGRAM_INPUT and PROGRAM_OUTPUT interfaces for shaders that re-
cieve or produce patch primitves, the active resource list will include both per-
vertex and per-patch inputs and outputs.

For the TRANSFORM_FEEDBACK_BUFFER interface, the list of active buffer
binding points is built by identifying each unique binding point to which one or
more active output variables will be written in transform feedback mode. Active
transform feedback buffers do not have an associated name string.

For the TRANSFORM_FEEDBACK_VARYING interface, the active resource
list will include entries for the special variable names gl_NextBuffer,
gl_SkipComponents1, gl_SkipComponents2, gl_SkipComponents3, and
gl_SkipComponents4 (see section 11.1.2.1). These variables are used to control
how output values are written to transform feedback buffers. When enumerating
the properties of such resources, these variables are considered to have a TYPE of
NONE and an ARRAY_SIZE of 0 (gl_NextBuffer), 1, 2, 3, and 4, respectively.

When a program is linked successfully, active variables in the UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT, or any of the subroutine uniform interfaces,
are assigned one or more signed integer locations. These locations can be used
by commands to assign values to uniforms and subroutine uniforms, to identify
generic vertex attributes associated with vertex shader inputs, or to identify frag-
ment color output numbers and indices associated with fragment shader outputs.
For such variables declared as arrays, separate locations will be assigned to each ac-

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 100

tive array element and are not required to be sequential. The location for "a[1]"
may or may not be equal to the location for "a[0]" +1. Furthermore, since un-
used elements at the end of uniform arrays may be trimmed, (see the discussion
of the GetProgramResourceiv ARRAY SIZE query), the location of the i + 1’th
array element may not be valid even if the location of the i’th element is valid.
As a direct consequence, the value of the location of "a[0]" +1 may refer to a
different uniform entirely. Applications that wish to set individual array elements
should query the locations of each element separately.

Not all active variables are assigned valid locations; the following variables
will have an effective location of -1:

• uniforms declared as atomic counters

• members of a uniform block

• built-in inputs, outputs, and uniforms (starting with gl_)

• inputs (except for vertex shader inputs) not declared with a location

layout qualifier

• outputs (except for fragment shader outputs) not declared with a location
layout qualifier

If a program has not been linked successfully, no locations will be assigned.
The command

void GetProgramInterfaceiv(uint program,
enum programInterface, enum pname, int *params);

queries a property of the interface programInterface in program program, returning
its value in params. The property to return is specified by pname.

If pname is ACTIVE_RESOURCES, the value returned is the number of re-
sources in the active resource list for programInterface. If the list of active re-
sources for programInterface is empty, zero is returned.

If pname is MAX_NAME_LENGTH, the value returned is the length of the longest
active name string for an active resource in programInterface. This length includes
an extra character for the null terminator. If the list of active resources for pro-
gramInterface is empty, zero is returned.

If pname is MAX_NUM_ACTIVE_VARIABLES, the value returned is the num-
ber of active variables belonging to the interface block or atomic counter buffer
resource in programInterface with the most active variables. If the list of active
resources for programInterface is empty, zero is returned.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 101

If pname is MAX_NUM_COMPATIBLE_SUBROUTINES, the value returned is the
number of compatible subroutines for the active subroutine uniform in program-
Interface with the most compatible subroutines. If the list of active resources for
programInterface is empty, zero is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is
generated if pname is not ACTIVE_RESOURCES, MAX_NAME_LENGTH, MAX_-
NUM_ACTIVE_VARIABLES, or MAX_NUM_COMPATIBLE_SUBROUTINES.

An INVALID_OPERATION error is generated if pname is MAX_-

NAME_LENGTH and programInterface is ATOMIC_COUNTER_BUFFER or
TRANSFORM_FEEDBACK_BUFFER, since active atomic counter and transform
feedback buffer resources are not assigned name strings.

An INVALID_OPERATION error is generated if pname is MAX_NUM_-

ACTIVE_VARIABLES and programInterface is not ATOMIC_COUNTER_-

BUFFER, SHADER_STORAGE_BLOCK, TRANSFORM_FEEDBACK_BUFFER, or
UNIFORM_BLOCK.

An INVALID_OPERATION error is generated if pname is MAX_-

NUM_COMPATIBLE_SUBROUTINES and programInterface is not VERTEX_-
SUBROUTINE_-

UNIFORM, TESS_CONTROL_SUBROUTINE_UNIFORM, TESS_EVALUATION_-
SUBROUTINE_UNIFORM, GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_-
SUBROUTINE_UNIFORM, or COMPUTE_SUBROUTINE_UNIFORM.

Each entry in the active resource list for an interface is assigned a unique un-
signed integer index in the range zero to N − 1, where N is the number of entries
in the active resource list. The command

uint GetProgramResourceIndex(uint program,
enum programInterface, const char *name);

returns the unsigned integer index assigned to a resource named name in the inter-
face type programInterface of program object program.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 102

If name exactly matches the name string of one of the active resources for
programInterface, the index of the matched resource is returned.

• For TRANSFORM_FEEDBACK_VARYING resources, name must match one of
the variables to be captured as specified by a previous call to Transform-
FeedbackVaryings, other than the special names gl_NextBuffer, gl_-
SkipComponents1, gl_SkipComponents2, gl_SkipComponents3,
and gl_SkipComponents4 (see section 11.1.2.1). Otherwise, INVALID_-
INDEX is returned.

• For all other resource types, if name would exactly match the name string
of an active resource if "[0]" were appended to name, the index of the
matched resource is returned. Otherwise, name is considered not to be the
name of an active resource, and INVALID_INDEX is returned. Note that if an
interface enumerates a single active resource list entry for an array variable
(e.g., "a[0]"), a name identifying any array element other than the first
(e.g., "a[1]") is not considered to match.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programInterface is ATOMIC_-
COUNTER_BUFFER or TRANSFORM_FEEDBACK_BUFFER, since active atomic
counter and transform feedback buffer resources are not assigned name strings.

If name does not match a resource as described above, the value
INVALID_INDEX is returned, but no GL error is generated.

The command

void GetProgramResourceName(uint program,
enum programInterface, uint index, sizei bufSize,
sizei *length, char *name);

returns the name string assigned to the single active resource with an index of index
in the interface programInterface of program object program.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 103

The name string assigned to the active resource identified by index is returned
as a null-terminated string in name. The actual number of characters written into
name, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written
into name, including the null terminator, is specified by bufSize. If the length of
the name string (including the null terminator) is greater than bufSize, the first
bufSize − 1 characters of the name string will be written to name, followed by a
null terminator. If bufSize is zero, no error is generated but no characters will be
written to name. The length of the longest name string for programInterface, in-
cluding a null terminator, may be queried by calling GetProgramInterfaceiv with
a pname of MAX_NAME_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programInterface is ATOMIC_-
COUNTER_BUFFER or TRANSFORM_FEEDBACK_BUFFER, since active atomic
counter and transform feedback buffer resources are not assigned name strings.

An INVALID_VALUE error is generated if index is greater than or equal to
the number of entries in the active resource list for programInterface.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetProgramResourceiv(uint program,
enum programInterface, uint index, sizei propCount,
const enum *props, sizei bufSize, sizei *length,
int *params);

returns values for multiple properties of a single active resource with an index of
index in the interface programInterface of program object program. Values for
propCount properties specified by the array props are returned.

The values associated with the properties of the active resource are written to
consecutive entries in params, in increasing order according to position in props. If
no error is generated, only the first bufSize integer values will be written to params;

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 104

any extra values will not be written. If length is not NULL, the actual number of
values written to params will be written to length.

Property Supported Interfaces
ACTIVE_VARIABLES, BUFFER_-

BINDING, NUM_ACTIVE_VARIABLES
ATOMIC_COUNTER_BUFFER, SHADER_-
STORAGE_BLOCK, TRANSFORM_-

FEEDBACK_BUFFER, UNIFORM_BLOCK
ARRAY_SIZE BUFFER_VARIABLE, COMPUTE_-

SUBROUTINE_UNIFORM, FRAGMENT_-

SUBROUTINE_UNIFORM, GEOMETRY_-

SUBROUTINE_UNIFORM, PROGRAM_-

INPUT, PROGRAM_OUTPUT, TESS_-

CONTROL_SUBROUTINE_UNIFORM,
TESS_EVALUATION_SUBROUTINE_-

UNIFORM, TRANSFORM_FEEDBACK_-

VARYING, UNIFORM, VERTEX_-

SUBROUTINE_UNIFORM

ARRAY_STRIDE, BLOCK_INDEX, IS_-

ROW_MAJOR, MATRIX_STRIDE
BUFFER_VARIABLE, UNIFORM

ATOMIC_COUNTER_BUFFER_INDEX UNIFORM

BUFFER_DATA_SIZE ATOMIC_COUNTER_BUFFER, SHADER_-
STORAGE_BLOCK, UNIFORM_BLOCK

NUM_COMPATIBLE_SUBROUTINES,
COMPATIBLE_SUBROUTINES

COMPUTE_SUBROUTINE_UNIFORM,
FRAGMENT_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM,
TESS_CONTROL_SUBROUTINE_-

UNIFORM, TESS_EVALUATION_-

SUBROUTINE_UNIFORM, VERTEX_-

SUBROUTINE_UNIFORM

IS_PER_PATCH PROGRAM_INPUT, PROGRAM_OUTPUT
LOCATION COMPUTE_SUBROUTINE_UNIFORM,

FRAGMENT_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT,
TESS_CONTROL_SUBROUTINE_-

UNIFORM, TESS_EVALUATION_-

SUBROUTINE_UNIFORM, UNIFORM,
VERTEX_SUBROUTINE_UNIFORM

GetProgramResourceiv properties continued on next page

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 105

GetProgramResourceiv properties continued from previous page
Property Supported Interfaces
LOCATION_COMPONENT PROGRAM_INPUT, PROGRAM_OUTPUT
LOCATION_INDEX PROGRAM_OUTPUT

NAME_LENGTH all but ATOMIC_COUNTER_BUFFER and
TRANSFORM_FEEDBACK_BUFFER

OFFSET BUFFER_VARIABLE, TRANSFORM_-

FEEDBACK_VARYING, UNIFORM
REFERENCED_BY_VERTEX_-

SHADER, REFERENCED_BY_TESS_-

CONTROL_SHADER, REFERENCED_-

BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_GEOMETRY_SHADER,
REFERENCED_BY_FRAGMENT_SHADER,
REFERENCED_BY_COMPUTE_SHADER

ATOMIC_COUNTER_BUFFER, BUFFER_-
VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, SHADER_-

STORAGE_BLOCK, UNIFORM,
UNIFORM_BLOCK

TRANSFORM_FEEDBACK_BUFFER_-

INDEX

TRANSFORM_FEEDBACK_VARYING

TRANSFORM_FEEDBACK_BUFFER_-

STRIDE

TRANSFORM_FEEDBACK_BUFFER

TOP_LEVEL_ARRAY_SIZE, TOP_-

LEVEL_ARRAY_STRIDE

BUFFER_VARIABLE

TYPE BUFFER_VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, TRANSFORM_-

FEEDBACK_VARYING, UNIFORM
Table 7.2: GetProgramResourceiv properties and supported in-
terfaces

For the property ACTIVE_VARIABLES, an array of active variable indices as-
sociated with an atomic counter buffer, active uniform block, shader storage block,
or transform feedback buffer is written to params. The number of values written to
params for an active resource is given by the value of the property NUM_ACTIVE_-
VARIABLES for the resource.

For the property ARRAY_SIZE, a single integer identifying the number of active
array elements of an active variable is written to params. The array size returned
is in units of the type associated with the property TYPE. For active variables not
corresponding to an array of basic types, the value one is written to params. If the

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 106

variable is an array whose size is not declared or determined when the program is
linked, the value zero is written to params.

For the property ARRAY_STRIDE, a single integer identifying the stride be-
tween array elements in an active variable is written to params. For active variables
declared as an array of basic types, the value written is the difference, in basic ma-
chine units, between the offsets of consecutive elements in an array. For active
variables not declared as an array of basic types, zero is written to params. For
active variables not backed by a buffer object, -1 is written to params, regardless
of the variable type.

For the property ATOMIC_COUNTER_BUFFER_INDEX, a single integer identi-
fying the index of the active atomic counter buffer containing an active variable is
written to params. If the variable is not an atomic counter uniform, the value -1 is
written to params.

For the property BLOCK_INDEX, a single integer identifying the index of the
active interface block containing an active variable is written to params. The
index written for a member of an interface block declared as an array of block
instances is the index of the first block of the array. If the variable is not the
member of an interface block, the value -1 is written to params.

For the property BUFFER_BINDING, the index of the buffer binding point asso-
ciated with the active uniform block, atomic counter buffer, shader storage block,
or transform feedback buffer is written to params.

For the property BUFFER_DATA_SIZE, the implementation-dependent mini-
mum total buffer object size is written to params. This value is the size, in basic
machine units, required to hold all active variables associated with an active uni-
form block, shader storage block, or atomic counter buffer. If the final member of
an active shader storage block is an array with no declared size, the minimum buffer
size is computed assuming the array was declared as an array with one element.

For the property IS_PER_PATCH, a single integer identifying whether the input
or output is a per-patch attribute is written to params. If the active variable is a
per-patch attribute (declared with the patch qualifier), the value one is written to
params; otherwise, the value zero is written to params.

For the property IS_ROW_MAJOR, a single integer identifying whether an active
variable is a row-major matrix is written to params. For active variables backed by
a buffer object, declared as a single matrix or array of matrices, and stored in row-
major order, one is written to params. For all other active variables, zero is written
to params.

For the property LOCATION, a single integer identifying the assigned location
for an active uniform, input, output, or subroutine uniform variable is written to
params. For input, output, or uniform variables with locations specified by a
layout qualifier, the specified location is used. For vertex shader input, frag-

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 107

ment shader output, or uniform variables without a layout qualifier, the location
assigned when a program is linked is written to params. For all other input and
output variables, the value -1 is written to params. For atomic counter uniforms
and uniforms in uniform blocks, the value -1 is written to params.

For the property LOCATION_COMPONENT, a single integer indicating the first
component of the location assigned to an active input or output variable is writ-
ten to params. For input and output variables with a component specified by a
layout qualifier, the specified component is written. For all other input and output
variables, the value zero is written.

For the property LOCATION_INDEX, a single integer identifying the fragment
color index of an active fragment shader output variable is written to params. If the
active variable is not an output for a fragment shader, the value -1 will be written
to params.

For the property MATRIX_STRIDE, a single integer identifying the stride be-
tween columns of a column-major matrix or rows of a row-major matrix is written
to params. For active variables declared a single matrix or array of matrices, the
value written is the difference, in basic machine units, between the offsets of con-
secutive columns or rows in each matrix. For active variables not declared as a
matrix or array of matrices, zero is written to params. For active variables not
backed by a buffer object, -1 is written to params, regardless of the variable type.

For the property NAME_LENGTH, a single integer identifying the length of the
name string associated with an active variable, interface block, or subroutine is
written to params. The name length includes a terminating null character.

For the property NUM_ACTIVE_VARIABLES, the number of active variables as-
sociated with an active uniform block, atomic counter buffer, shader storage block,
or transform feedback buffer is written to params.

For the property OFFSET, a single integer identifying the offset of an ac-
tive variable is written to params. For variables in the BUFFER_VARIABLE and
UNIFORM interfaces that are backed by a buffer object, the value written is the
offset of that variable relative to the base of the buffer range holding its value.
For variables in the TRANSFORM_FEEDBACK_VARYING interface, the value writ-
ten is the offset in the transform feedback buffer storage assigned to each ver-
tex captured in transform feedback mode where the value of the variable will
be stored. Such offsets are specified via the xfb_offset layout qualifier
or assigned according to the variables position in the list of strings passed to
TransformFeedbackVaryings. Offsets are expressed in basic machine units.
For all variables not recorded in transform feedback mode, including the spe-
cial names gl_NextBuffer, gl_SkipComponents1, gl_SkipComponents2,
gl_SkipComponents3, and gl_SkipComponents4, -1 is written to params.

For the properties REFERENCED_BY_VERTEX_SHADER, REFERENCED_-

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 108

BY_TESS_CONTROL_SHADER, REFERENCED_BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_GEOMETRY_SHADER, REFERENCED_BY_FRAGMENT_SHADER,
and REFERENCED_BY_COMPUTE_SHADER, a single integer is written to params,
identifying whether the active resource is referenced by the vertex, tessellation con-
trol, tessellation evaluation, geometry, fragment, or compute shaders, respectively,
in the program object. The value one is written to params if an active variable is
referenced by the corresponding shader, or if an active uniform block, shader stor-
age block, or atomic counter buffer contains at least one variable referenced by the
corresponding shader. Otherwise, the value zero is written to params.

For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
number of active array elements of the top-level shader storage block member con-
taining the active variable is written to params. If the top-level block member is
not declared as an array of an aggregate type, the value one is written to params.
If the top-level block member is an array of an aggregate type whose size is not
declared or determined when the program is linked, the value zero is written to
params.

For the property TOP_LEVEL_ARRAY_STRIDE, a single integer identifying the
stride between array elements of the top-level shader storage block member con-
taining the active variable is written to params. For top-level block members de-
clared as arrays of an aggregate type, the value written is the difference, in basic
machine units, between the offsets of the active variable for consecutive elements
in the top-level array. For top-level block members not declared as an array of an
aggregate type, zero is written to params.

For the property TRANSFORM_FEEDBACK_BUFFER_INDEX, a single integer
identifying the index of the active transform feedback buffer associated with an
active variable is written to params. For variables corresponding to the spe-
cial names gl_NextBuffer, gl_SkipComponents1, gl_SkipComponents2,
gl_SkipComponents3, and gl_SkipComponents4, -1 is written to params.

For the property TRANSFORM_FEEDBACK_BUFFER_STRIDE, a single integer
identifying the stride, in basic machine units, between consecutive vertices written
to the transform feedback buffer is written to params.

For the property TYPE, a single integer identifying the type of an active variable
is written to params. The integer returned is one of the values found in table 7.3.

Type Name Token Keyword Attrib Xfb Buffer
FLOAT float • • •
FLOAT_VEC2 vec2 • • •
FLOAT_VEC3 vec3 • • •

(Continued on next page)

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 109

OpenGL Shading Language Type Tokens (continued)
Type Name Token Keyword Attrib Xfb Buffer
FLOAT_VEC4 vec4 • • •
DOUBLE double • • •
DOUBLE_VEC2 dvec2 • • •
DOUBLE_VEC3 dvec3 • • •
DOUBLE_VEC4 dvec4 • • •
INT int • • •
INT_VEC2 ivec2 • • •
INT_VEC3 ivec3 • • •
INT_VEC4 ivec4 • • •
UNSIGNED_INT uint • • •
UNSIGNED_INT_VEC2 uvec2 • • •
UNSIGNED_INT_VEC3 uvec3 • • •
UNSIGNED_INT_VEC4 uvec4 • • •
BOOL bool •
BOOL_VEC2 bvec2 •
BOOL_VEC3 bvec3 •
BOOL_VEC4 bvec4 •
FLOAT_MAT2 mat2 • • •
FLOAT_MAT3 mat3 • • •
FLOAT_MAT4 mat4 • • •
FLOAT_MAT2x3 mat2x3 • • •
FLOAT_MAT2x4 mat2x4 • • •
FLOAT_MAT3x2 mat3x2 • • •
FLOAT_MAT3x4 mat3x4 • • •
FLOAT_MAT4x2 mat4x2 • • •
FLOAT_MAT4x3 mat4x3 • • •
DOUBLE_MAT2 dmat2 • • •
DOUBLE_MAT3 dmat3 • • •
DOUBLE_MAT4 dmat4 • • •
DOUBLE_MAT2x3 dmat2x3 • • •
DOUBLE_MAT2x4 dmat2x4 • • •
DOUBLE_MAT3x2 dmat3x2 • • •
DOUBLE_MAT3x4 dmat3x4 • • •
DOUBLE_MAT4x2 dmat4x2 • • •
DOUBLE_MAT4x3 dmat4x3 • • •

(Continued on next page)

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 110

OpenGL Shading Language Type Tokens (continued)
Type Name Token Keyword Attrib Xfb Buffer
SAMPLER_1D sampler1D

SAMPLER_2D sampler2D

SAMPLER_3D sampler3D

SAMPLER_CUBE samplerCube

SAMPLER_1D_SHADOW sampler1DShadow

SAMPLER_2D_SHADOW sampler2DShadow

SAMPLER_1D_ARRAY sampler1DArray

SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_CUBE_MAP_ARRAY samplerCubeArray

SAMPLER_1D_ARRAY_SHADOW sampler1DArrayShadow

SAMPLER_2D_ARRAY_SHADOW sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE sampler2DMS

SAMPLER_2D_MULTISAMPLE_-

ARRAY

sampler2DMSArray

SAMPLER_CUBE_SHADOW samplerCubeShadow

SAMPLER_CUBE_MAP_ARRAY_-

SHADOW

samplerCube-

ArrayShadow

SAMPLER_BUFFER samplerBuffer

SAMPLER_2D_RECT sampler2DRect

SAMPLER_2D_RECT_SHADOW sampler2DRectShadow

INT_SAMPLER_1D isampler1D

INT_SAMPLER_2D isampler2D

INT_SAMPLER_3D isampler3D

INT_SAMPLER_CUBE isamplerCube

INT_SAMPLER_1D_ARRAY isampler1DArray

INT_SAMPLER_2D_ARRAY isampler2DArray

INT_SAMPLER_CUBE_MAP_-

ARRAY

isamplerCubeArray

INT_SAMPLER_2D_-

MULTISAMPLE

isampler2DMS

INT_SAMPLER_2D_-

MULTISAMPLE_ARRAY

isampler2DMSArray

INT_SAMPLER_BUFFER isamplerBuffer

INT_SAMPLER_2D_RECT isampler2DRect

UNSIGNED_INT_SAMPLER_1D usampler1D

(Continued on next page)

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 111

OpenGL Shading Language Type Tokens (continued)
Type Name Token Keyword Attrib Xfb Buffer
UNSIGNED_INT_SAMPLER_2D usampler2D

UNSIGNED_INT_SAMPLER_3D usampler3D

UNSIGNED_INT_SAMPLER_-

CUBE

usamplerCube

UNSIGNED_INT_SAMPLER_-

1D_ARRAY

usampler1DArray

UNSIGNED_INT_SAMPLER_-

2D_ARRAY

usampler2DArray

UNSIGNED_INT_SAMPLER_-

CUBE_MAP_ARRAY

usamplerCubeArray

UNSIGNED_INT_SAMPLER_-

2D_MULTISAMPLE

usampler2DMS

UNSIGNED_INT_SAMPLER_-

2D_MULTISAMPLE_ARRAY

usampler2DMSArray

UNSIGNED_INT_SAMPLER_-

BUFFER

usamplerBuffer

UNSIGNED_INT_SAMPLER_-

2D_RECT

usampler2DRect

IMAGE_1D image1D

IMAGE_2D image2D

IMAGE_3D image3D

IMAGE_2D_RECT image2DRect

IMAGE_CUBE imageCube

IMAGE_BUFFER imageBuffer

IMAGE_1D_ARRAY image1DArray

IMAGE_2D_ARRAY image2DArray

IMAGE_CUBE_MAP_ARRAY imageCubeArray

IMAGE_2D_MULTISAMPLE image2DMS

IMAGE_2D_MULTISAMPLE_-

ARRAY

image2DMSArray

INT_IMAGE_1D iimage1D

INT_IMAGE_2D iimage2D

INT_IMAGE_3D iimage3D

INT_IMAGE_2D_RECT iimage2DRect

INT_IMAGE_CUBE iimageCube

(Continued on next page)

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 112

OpenGL Shading Language Type Tokens (continued)
Type Name Token Keyword Attrib Xfb Buffer
INT_IMAGE_BUFFER iimageBuffer

INT_IMAGE_1D_ARRAY iimage1DArray

INT_IMAGE_2D_ARRAY iimage2DArray

INT_IMAGE_CUBE_MAP_ARRAY iimageCubeArray

INT_IMAGE_2D_MULTISAMPLE iimage2DMS

INT_IMAGE_2D_-

MULTISAMPLE_ARRAY

iimage2DMSArray

UNSIGNED_INT_IMAGE_1D uimage1D

UNSIGNED_INT_IMAGE_2D uimage2D

UNSIGNED_INT_IMAGE_3D uimage3D

UNSIGNED_INT_IMAGE_2D_-

RECT

uimage2DRect

UNSIGNED_INT_IMAGE_CUBE uimageCube

UNSIGNED_INT_IMAGE_-

BUFFER

uimageBuffer

UNSIGNED_INT_IMAGE_1D_-

ARRAY

uimage1DArray

UNSIGNED_INT_IMAGE_2D_-

ARRAY

uimage2DArray

UNSIGNED_INT_IMAGE_-

CUBE_MAP_ARRAY

uimageCubeArray

UNSIGNED_INT_IMAGE_2D_-

MULTISAMPLE

uimage2DMS

UNSIGNED_INT_IMAGE_2D_-

MULTISAMPLE_ARRAY

uimage2DMSArray

UNSIGNED_INT_ATOMIC_-

COUNTER

atomic_uint

Table 7.3: OpenGL Shading Language type tokens, and corre-
sponding shading language keywords declaring each such type.
Types whose “Attrib” column is marked may be declared as ver-
tex attributes (see section 11.1.1). Types whose “Xfb” column
is marked may be the types of variables returned by transform
feedback (see section 11.1.2.1). Types whose “Buffer” column is
marked may be declared as buffer variables (see section 7.8).

OpenGL 4.5 (Core Profile) - October 24, 2016

7.3. PROGRAM OBJECTS 113

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_VALUE error is generated if propCount is less than or equal
to zero, or if bufSize is negative.

An INVALID_ENUM error is generated if any value in props is not one of
the properties described above.

An INVALID_OPERATION error is generated if any value in props is not
allowed for programInterface. The set of allowed programInterface values for
each property can be found in table 7.2.

The commands

int GetProgramResourceLocation(uint program,
enum programInterface, const char *name);

int GetProgramResourceLocationIndex(uint program,
enum programInterface, const char *name);

return the location or the fragment color index, respectively, assigned to the
variable named name in interface programInterface of program object program.
For GetProgramResourceLocation, programInterface must be one of UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT, VERTEX_SUBROUTINE_UNIFORM,
TESS_CONTROL_SUBROUTINE_UNIFORM, TESS_EVALUATION_SUBROUTINE_-
UNIFORM, GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_SUBROUTINE_-

UNIFORM, or COMPUTE_SUBROUTINE_UNIFORM. For GetProgramResourceLo-
cationIndex, programInterface must be PROGRAM_OUTPUT. The value -1 will be
returned by either command if an error occurs, if name does not identify an ac-
tive variable on programInterface, or if name identifies an active variable that does
not have a valid location assigned, as described above. The locations returned by
these commands are the same locations returned when querying the LOCATION and
LOCATION_INDEX resource properties.

A string provided to GetProgramResourceLocation or GetProgramRe-
sourceLocationIndex is considered to match an active variable if

• the string exactly matches the name of the active variable;

OpenGL 4.5 (Core Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 114

• if the string identifies the base name of an active array, where the string
would exactly match the name of the variable if the suffix "[0]" were ap-
pended to the string; or

• if the string identifies an active element of the array, where the string ends
with the concatenation of the "[" character, an integer (with no "+" sign,
extra leading zeroes, or whitespace) identifying an array element, and the
"]" character, the integer is less than the number of active elements of the
array variable, and where the string would exactly match the enumerated
name of the array if the decimal integer were replaced with zero.

Any other string is considered not to identify an active variable. If the string
specifies an element of an array variable, GetProgramResourceLocation and
GetProgramResourceLocationIndex return the location or fragment color index
assigned to that element. If it specifies the base name of an array, it identifies the
resources associated with the first element of the array.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces named above.

7.4 Program Pipeline Objects

Instead of packaging all shader stages into a single program object, shader types
might be contained in multiple program objects each consisting of part of the com-
plete pipeline. A program object may even contain only a single shader stage.
This facilitates greater flexibility when combining different shaders in various ways
without requiring a program object for each combination.

A program pipeline object contains bindings for each shader type associating
that shader type with a program object.

The command

void GenProgramPipelines(sizei n, uint *pipelines);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 115

returns n previously unused program pipeline object names in pipelines. These
names are marked as used, for the purposes of GenProgramPipelines only, but
they acquire state only when they are first bound.

Errors

An INVALID_VALUE error is generated if n is negative.

Program pipeline objects are deleted by calling

void DeleteProgramPipelines(sizei n, const
uint *pipelines);

pipelines contains n names of program pipeline objects to be deleted. Once a
program pipeline object is deleted, it has no contents and its name becomes un-
used. If an object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current. Unused names in
pipelines that have been marked as used for the purposes of GenProgramPipelines
are marked as unused again. Unused names in pipelines are silently ignored, as is
the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsProgramPipeline(uint pipeline);

returns TRUE if pipeline is the name of a program pipeline object. If pipeline
is zero, or a non-zero value that is not the name of a program pipeline object,
IsProgramPipeline returns FALSE. No error is generated if pipeline is not a valid
program pipeline object name.

A program pipeline object is created by binding a name returned by GenPro-
gramPipelines with the command

void BindProgramPipeline(uint pipeline);

pipeline is the program pipeline object name. The resulting program pipeline
object is a new state vector, comprising all the state and with the same initial values
listed in table 23.31.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 116

BindProgramPipeline may also be used to bind an existing program pipeline
object. If the bind is successful, no change is made to the state of the bound
program pipeline object, and any previous binding is broken. If BindPro-
gramPipeline is called with pipeline set to zero, then there is no current program
pipeline object.

If no current program object has been established by UseProgram, the pro-
gram objects used for each shader stage and for uniform updates are taken from
the bound program pipeline object, if any. If there is a current program object
established by UseProgram, the bound program pipeline object has no effect on
rendering or uniform updates. When a bound program pipeline object is used for
rendering, individual shader executables are taken from its program objects as de-
scribed in the discussion of UseProgram in section 7.3).

Errors

An INVALID_OPERATION error is generated if pipeline is not zero or a
name returned from a previous call to GenProgramPipelines, or if such a
name has since been deleted with DeleteProgramPipelines.

Program pipeline objects may also be created with the command

void CreateProgramPipelines(sizei n, uint *pipelines);

CreateProgramPipelines returns n previously unused program pipeline names
in pipelines, each representing a new program pipeline object which is a state vec-
tor comprising all the state and with the same initial values listed in table 23.31.

Errors

An INVALID_VALUE error is generated if n is negative.

The executables in a program object associated with one or more shader stages
can be made part of the program pipeline state for those shader stages with the
command

void UseProgramStages(uint pipeline, bitfield stages,
uint program);

where pipeline is the program pipeline object to be updated, stages is the bitwise
OR of accepted constants representing shader stages, and program identifies the
program from which the executables are taken.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 117

The bits set in stages indicate the program stages for which the pro-
gram object named by program becomes current. These stages may in-
clude compute, vertex, tessellation control, tessellation evaluation, geome-
try, or fragment, indicated respectively by COMPUTE_SHADER_BIT, VERTEX_-
SHADER_BIT, TESS_CONTROL_SHADER_BIT, TESS_EVALUATION_SHADER_-

BIT, GEOMETRY_SHADER_BIT, or FRAGMENT_SHADER_BIT. The constant ALL_-
SHADER_BITS indicates program is to be made current for all shader stages.

If program refers to a program object with a valid shader attached for an indi-
cated shader stage, this call installs the executable code for that stage in the indi-
cated program pipeline object state. If UseProgramStages is called with program
set to zero or with a program object that contains no executable code for any stage
in stages, it is as if the pipeline object has no programmable stage configured for
that stage.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_VALUE error is generated if stages is not the special value
ALL_SHADER_BITS, and has any bits set other than VERTEX_SHADER_BIT,
COMPUTE_SHADER_BIT, TESS_-

CONTROL_SHADER_BIT, TESS_EVALUATION_SHADER_BIT, GEOMETRY_-
SHADER_BIT, and FRAGMENT_SHADER_BIT.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
was linked without the PROGRAM_SEPARABLE parameter set, or has not been
linked successfully. The corresponding shader stages in pipeline are not mod-
ified.

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

The command

void ActiveShaderProgram(uint pipeline, uint program);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 118

sets the linked program named by program to be the active program (see sec-
tion 7.6.1) used for uniform updates for the program pipeline object pipeline. If
program is zero, then it is as if there is no active program for pipeline.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
has not been linked successfully. The active program is not modified.

7.4.1 Shader Interface Matching

When multiple shader stages are active, the outputs of one stage form an interface
with the inputs of the next stage. At each such interface, shader inputs are matched
up against outputs from the previous stage:

• An output block is considered to match an input block in the subsequent
shader if the two blocks have the same block name, and the members of the
block match exactly in name, type, qualification, and declaration order.

• An output variable is considered to match an input variable in the subsequent
shader if:

– the two variables match in name, type, and qualification, and neither
has a location qualifier, or

– the two variables are declared with the same location and
component layout qualifiers and match in type and qualification.

For the purposes of interface matching, variables declared with a location

layout qualifier but without a component layout qualifier are considered to

OpenGL 4.5 (Core Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 119

have declared a component layout qualifier of zero. Variables or block mem-
bers declared as structures are considered to match in type if and only if structure
members match in name, type, qualification, and declaration order. Variables or
block members declared as arrays are considered to match in type only if both
declarations specify the same element type and array size. The rules for determin-
ing if variables or block members match in qualification are found in the OpenGL
Shading Language Specification.

Tessellation control shader per-vertex output variables and blocks and tessella-
tion control, tessellation evaluation, and geometry shader per-vertex input variables
and blocks are required to be declared as arrays, with each element representing
input or output values for a single vertex of a multi-vertex primitive. For the pur-
poses of interface matching, such variables and blocks are treated as though they
were not declared as arrays.

For program objects containing multiple shaders, LinkProgram will check
for mismatches on interfaces between shader stages in the program being linked
and generate a link error if a mismatch is detected. A link error is generated if
any statically referenced input variable or block does not have a matching out-
put. If either shader redeclares the built-in arrays gl_ClipDistance[] or gl_-
CullDistance[], the array must have the same size in both shaders.

With separable program objects, interfaces between shader stages may involve
the outputs from one program object and the inputs from a second program object.
For such interfaces, it is not possible to detect mismatches at link time, because the
programs are linked separately. When each such program is linked, all inputs or
outputs interfacing with another program stage are treated as active. The linker will
generate an executable that assumes the presence of a compatible program on the
other side of the interface. If a mismatch between programs occurs, no GL error is
generated, but some or all of the inputs on the interface will be undefined.

At an interface between program objects, the set of inputs and outputs are con-
sidered to match exactly if and only if:

• Every declared input block or variable must have a matching output, as de-
scribed above.

• There are no output blocks or user-defined output variables declared without
a matching input block or variable declaration.

When the set of inputs and outputs on an interface between programs matches
exactly, all inputs are well-defined except when the corresponding outputs were
not written in the previous shader. However, any mismatch between inputs and
outputs results in all inputs being undefined except for cases noted below. Even
if an input has a corresponding output that matches exactly, mismatches on other

OpenGL 4.5 (Core Profile) - October 24, 2016

7.4. PROGRAM PIPELINE OBJECTS 120

inputs or outputs may adversely affect the executable code generated to read or
write the matching variable.

The inputs and outputs on an interface between programs need not match ex-
actly when input and output location qualifiers (sections 4.4.1(“Input Layout Qual-
ifiers”) and 4.4.2(“Output Layout Qualifiers”) of the OpenGL Shading Language
Specification) are used. When using location qualifiers, any input with an input
location qualifier will be well-defined as long as the other program writes to a
matching output, as described above. The names of variables need not match when
matching by location.

Additionally, scalar and vector inputs with location layout qualifiers will
be well-defined if there is a corresponding output satisfying all of the following
conditions:

• the input and output match exactly in qualification, including in the
location layout qualifier;

• the output is a vector with the same basic component type and has more
components than the input; and

• the common component type of the input and output is int, uint, or float
(scalars, vectors, and matrices with double component type are excluded).

In this case, the components of the input will be taken from the first components
of the matching output, and the extra components of the output will be ignored.

To use any built-in input or output in the gl_PerVertex block in separable
program objects, shader code must redeclare that block prior to use. A separable
program will fail to link if:

• it contains multiple shaders of a single type with different redeclarations of
this built-in block; or

• any shader uses a built-in block member not found in the redeclaration of
that block.

There is one exception to this rule described below.
As described above, an exact interface match requires matching built-in input

and output blocks. At an interface between two non-fragment shader stages, the
gl_PerVertex input and output blocks are considered to match if and only if the
block members match exactly in name, type, qualification, and declaration order.
At an interface involving the fragment shader stage, the presence or absence of any
built-in output does not affect interface matching.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.5. PROGRAM BINARIES 121

Built-in inputs or outputs not found in blocks do not affect interface match-
ing. Any such built-in inputs are well-defined unless they are derived from built-in
outputs not written by the previous shader stage.

7.4.2 Program Pipeline Object State

The state required to support program pipeline objects consists of a single binding
name of the current program pipeline object. This binding is initially zero indicat-
ing no program pipeline object is bound.

The state of each program pipeline object consists of:

• Unsigned integers holding the names of the active program and each of the
current vertex, tessellation control, tessellation evaluation, geometry, frag-
ment, and compute stage programs. Each integer is initially zero.

• A boolean holding the status of the last validation attempt, initially false.

• An array of type char containing the information log (see section 7.13),
initially empty.

• An integer holding the length of the information log.

7.5 Program Binaries

The command

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum number
of bytes that may be written into binary is specified by bufSize. The actual num-
ber of bytes written into binary is returned in length and its format is returned in
binaryFormat. If length is NULL, then no length is returned.

The number of bytes in the program binary may be queried by calling GetPro-
gramiv with pname PROGRAM_BINARY_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a

OpenGL 4.5 (Core Profile) - October 24, 2016

7.5. PROGRAM BINARIES 122

shader object.
An INVALID_OPERATION error is generated if program has not been

linked successfully. In this case its program binary length is zero.
An INVALID_VALUE error is generated if bufSize is negative.
An INVALID_OPERATION error is generated if bufSize is less than the

number of bytes in the program binary.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful to avoid online compilation, while still using OpenGL
Shading Language source shaders as a portable initial format. binaryFormat and
binary must be those returned by a previous call to GetProgramBinary, and length
must be the length of the program binary as returned by GetProgramBinary or
GetProgramiv with pname PROGRAM_BINARY_LENGTH. Loading the program bi-
nary will fail, setting the LINK_STATUS of program to FALSE, if these conditions
are not met.

Loading a program binary may also fail if the implementation determines that
there has been a change in hardware or software configuration from when the pro-
gram binary was produced such as having been compiled with an incompatible
or outdated version of the compiler. In this case the application should fall back
to providing the original OpenGL Shading Language source shaders, and perhaps
again retrieve the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,
as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfoLog, to provide details about warnings
or errors.

A successful call to ProgramBinary will reset all uniform variables in the
default uniform block, all uniform block buffer bindings, and all shader storage
block buffer bindings to their initial values. The initial value is either the value
of the variable’s initializer as specified in the original shader source, or zero if no
initializer was present.

Additionally, all vertex shader input and fragment shader output assignments
and atomic counter binding, offset and stride assignments that were in effect when

OpenGL 4.5 (Core Profile) - October 24, 2016

7.5. PROGRAM BINARIES 123

the program was linked before saving are restored when ProgramBinary is called
successfully.

If ProgramBinary fails to load a binary, no error is generated, but any infor-
mation about a previous link or load of that program object is lost. Thus, a failed
load does not restore the old state of program. The failure does not alter other
program state not affected by linking such as the attached shaders, and the vertex
attribute and fragment data location bindings as set by BindAttribLocation and
BindFragDataLocation.

OpenGL defines no specific binary formats. Queries of values NUM_-

PROGRAM_BINARY_FORMATS and PROGRAM_BINARY_FORMATS return the num-
ber of program binary formats and the list of program binary format values sup-
ported by an implementation. The binaryFormat returned by GetProgramBinary
must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector.

If an implementation needs to recompile or otherwise modify program exe-
cutables based on GL state outside the program, GetProgramBinary is required
to save enough information to allow such recompilation.

To indicate that a program binary is likely to be retrieved, ProgramParameteri
should be called with pname set to PROGRAM_BINARY_RETRIEVABLE_HINT and
value set to TRUE. This setting will not be in effect until the next time LinkPro-
gram or ProgramBinary has been called successfully. Additionally, the appli-
cation may defer GetProgramBinary calls until after using the program with all
non-program state vectors that it is likely to encounter. Such deferral may allow
implementations to save additional information in the program binary that would
minimize recompilation in future uses of the program binary.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if binaryFormat is not a binary for-
mat present in the list of specific binary formats supported.

An INVALID_VALUE error is generated if length is negative.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 124

7.6 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. A uniform is considered an active uniform if the compiler
and linker determine that the uniform will actually be accessed when the executable
code is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms, except for atomic counters, images, samplers, and subroutine
uniforms, can be grouped into uniform blocks.

Named uniform blocks, as described in the OpenGL Shading Language Speci-
fication, store uniform values in the data store of a buffer object corresponding to
the uniform block. Such blocks are assigned a uniform block index.

Uniforms that are declared outside of a named uniform block are part of the
default uniform block. The default uniform block has no name or uniform block
index. Uniforms in the default uniform block, except for subroutine uniforms, are
program object-specific state. They retain their values once loaded, and their values
are restored whenever a program object is used, as long as the program object has
not been re-linked.

Like uniforms, uniform blocks can be active or inactive. Active uniform blocks
are those that contain active uniforms after a program has been compiled and
linked. Uniform blocks declared in an array are considered active if any member
of the array would otherwise be considered active.

All members of a named uniform block declared with a shared or std140
layout qualifier are considered active, even if they are not referenced in any shader
in the program. The uniform block itself is also considered active, even if no
member of the block is referenced.

The implementation-dependent amount of storage available for uniform vari-
ables, except for subroutine uniforms and atomic counters, in the default uniform
block accessed by a shader for a particular shader stage may be queried by calling
GetIntegerv with pname as specified in table 7.4 for that stage.

The implementation-dependent constants MAX_VERTEX_UNIFORM_VECTORS

and MAX_FRAGMENT_UNIFORM_VECTORS have values respectively equal to
the values of MAX_VERTEX_UNIFORM_COMPONENTS and MAX_FRAGMENT_-

UNIFORM_COMPONENTS divided by four.
The total amount of combined storage available for uniform variables in all

uniform blocks accessed by a shader for a particular shader stage can be queried
by calling GetIntegerv with pname as specified in table 7.5 for that stage.

These values represent the numbers of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a shader. For uni-
forms with boolean, integer, or floating-point components,

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 125

Shader Stage pname for querying default uniform
block storage, in components

Vertex (see section 11.1.2) MAX_VERTEX_UNIFORM_COMPONENTS

Tessellation control (see section 11.2.1.1) MAX_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation (see section 11.2.3.1) MAX_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry (see section 11.3.3) MAX_GEOMETRY_UNIFORM_COMPONENTS

Fragment (see section 15.1) MAX_FRAGMENT_UNIFORM_COMPONENTS

Compute (see section 19.1) MAX_COMPUTE_UNIFORM_COMPONENTS

Table 7.4: Query targets for default uniform block storage, in components.

Shader Stage pname for querying combined uniform
block storage, in components

Vertex MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS

Tessellation control MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS

Fragment MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS

Compute MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS

Table 7.5: Query targets for combined uniform block storage, in components.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 126

• A scalar uniform will consume no more than 1 component

• A vector uniform will consume no more than n components, where n is the
vector component count

• A matrix uniform will consume no more than 4 × min(r, c) components,
where r and c are the number of rows and columns in the matrix.

Scalar, vector, and matrix uniforms with double-precision components will
consume no more than twice the number of components of equivalent uniforms
with floating-point components.

Errors

A link error is generated if an attempt is made to utilize more than the
space available for uniform variables in a shader stage.

When a program is linked successfully, all active uniforms, except for atomic
counters, belonging to the program object’s default uniform block are initialized
as defined by the version of the OpenGL Shading Language used to compile the
program. A successful link will also generate a location for each active uniform in
the default uniform block which doesn’t already have an explicit location defined
in the shader. The generated locations will never take the location of a uniform
with an explicit location defined in the shader, even if that uniform is determined
to be inactive. The values of active uniforms in the default uniform block can be
changed using this location and the appropriate Uniform* or ProgramUniform*
command (see section 7.6.1). These generated locations are invalidated and new
ones assigned after each successful re-link. The explicitly defined locations and the
generated locations must be in the range of zero to the value of MAX_UNIFORM_-
LOCATIONS minus one.

Similarly, when a program is linked successfully, all active atomic counters
are assigned bindings, offsets (and strides for arrays of atomic counters) according
to layout rules described in section 7.6.2.2. Atomic counter uniform buffer objects
provide the storage for atomic counters, so the values of atomic counters may be
changed by modifying the contents of the buffer object using the commands in
sections 6.2, 6.2.1, 6.3, 6.5, and 6.6. Atomic counters are not assigned a location
and may not be modified using the Uniform* commands. The bindings, offsets,
and strides belonging to atomic counters of a program object are invalidated and
new ones assigned after each successful re-link.

Similarly, when a program is linked successfully, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 127

array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object. Uniforms in a named uniform
block are not assigned a location and may not be modified using the Uniform*
commands. The offsets and strides of all active uniforms belonging to named uni-
form blocks of a program object are invalidated and new ones assigned after each
successful re-link.

To determine the set of active uniform variables used by a program, applica-
tions can query the properties and active resources of the UNIFORM interface of a
program.

Additionally, several dedicated commands are provided to query properties of
active uniforms. The command

int GetUniformLocation(uint program, const
char *name);

is equivalent to

GetProgramResourceLocation(program, UNIFORM, name);

The command

void GetActiveUniformName(uint program,
uint uniformIndex, sizei bufSize, sizei *length,
char *uniformName);

is equivalent to

GetProgramResourceName(program, UNIFORM, uniformIndex,
bufSize, length, uniformName);

The command

void GetUniformIndices(uint program,
sizei uniformCount, const char * const
*uniformNames, uint *uniformIndices);

is equivalent (assuming no errors are generated) to:

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 128

for (int i = 0; i < uniformCount; i++) {
uniformIndices[i] = GetProgramResourceIndex(program,

UNIFORM, uniformNames[i]);
}

The command

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

is equivalent (assuming no errors are generated) to:

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName(program, UNIFORM, index,

bufSize, length, name);
GetProgramResourceiv(program, UNIFORM, index,

1, &props[0], 1, NULL, size);
GetProgramResourceiv(program, UNIFORM, index,

1, &props[1], 1, NULL, (int *)type);

The command

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformIndices,
enum pname, int *params);

is equivalent (assuming no errors are generated) to:

GLenum prop;
for (int i = 0; i < uniformCount; i++) {

GetProgramResourceiv(program, UNIFORM, uniformIndices[i],
1, &prop, 1, NULL, ¶ms[i]);

}

where the value of prop is taken from table 7.6, based on the value of pname.
To determine the set of active uniform blocks used by a program, applications

can query the properties and active resources of the UNIFORM_BLOCK interface.
Additionally, several commands are provided to query properties of active uni-

form blocks. The command

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 129

pname prop

UNIFORM_TYPE TYPE

UNIFORM_SIZE ARRAY_SIZE

UNIFORM_NAME_LENGTH NAME_LENGTH

UNIFORM_BLOCK_INDEX BLOCK_INDEX

UNIFORM_OFFSET OFFSET

UNIFORM_ARRAY_STRIDE ARRAY_STRIDE

UNIFORM_MATRIX_STRIDE MATRIX_STRIDE

UNIFORM_IS_ROW_MAJOR IS_ROW_MAJOR

UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX ATOMIC_COUNTER_BUFFER_INDEX

Table 7.6: GetProgramResourceiv properties used by GetActiveUniformsiv.

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

is equivalent to

GetProgramResourceIndex(program, UNIFORM_BLOCK, uniformBlockName);

The command

void GetActiveUniformBlockName(uint program,
uint uniformBlockIndex, sizei bufSize, sizei length,
char *uniformBlockName);

is equivalent to

GetProgramResourceName(program, UNIFORM_BLOCK,
uniformBlockIndex, bufSize, length, uniformBlockName);

The command

void GetActiveUniformBlockiv(uint program,
uint uniformBlockIndex, enum pname, int *params);

is equivalent to

GLenum prop;
GetProgramResourceiv(program, UNIFORM_BLOCK,

uniformBlockIndex, 1, &prop, maxSize, NULL, params);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 130

pname prop

UNIFORM_BLOCK_BINDING BUFFER_BINDING

UNIFORM_BLOCK_DATA_SIZE BUFFER_DATA_SIZE

UNIFORM_BLOCK_NAME_LENGTH NAME_LENGTH

UNIFORM_BLOCK_ACTIVE_UNIFORMS NUM_ACTIVE_VARIABLES

UNIFORM_BLOCK_ACTIVE_UNIFORM_-

INDICES

ACTIVE_VARIABLES

UNIFORM_BLOCK_REFERENCED_BY_-

VERTEX_SHADER

REFERENCED_BY_VERTEX_SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

TESS_CONTROL_SHADER

REFERENCED_BY_TESS_CONTROL_-

SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

TESS_EVALUATION_SHADER

REFERENCED_BY_TESS_-

EVALUATION_SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

GEOMETRY_SHADER

REFERENCED_BY_GEOMETRY_SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

FRAGMENT_SHADER

REFERENCED_BY_FRAGMENT_SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

COMPUTE_SHADER

REFERENCED_BY_COMPUTE_SHADER

Table 7.7: GetProgramResourceiv properties used by GetActiveUniform-
Blockiv.

where the value of prop is taken from table 7.7, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that
would be written to params.

To determine the set of active atomic counter buffer binding points used
by a program, applications can query the properties and active resources of the
ATOMIC_COUNTER_BUFFER interface of a program.

Additionally, the command

void GetActiveAtomicCounterBufferiv(uint program,
uint bufferIndex, enum pname, int *params);

can be used to determine properties of active atomic counter buffer bindings used
by program and is equivalent to

GLenum prop;
GetProgramResourceiv(program, ATOMIC_COUNTER_BUFFER,

bufferIndex, 1, &prop, maxSize, NULL, params);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 131

pname prop

ATOMIC_COUNTER_BUFFER_BINDING BUFFER_BINDING

ATOMIC_COUNTER_BUFFER_DATA_-

SIZE

BUFFER_DATA_SIZE

ATOMIC_COUNTER_BUFFER_ACTIVE_-

ATOMIC_COUNTERS

NUM_ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER_ACTIVE_-

ATOMIC_COUNTER_INDICES

ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER_-

REFERENCED_BY_VERTEX_SHADER

REFERENCED_BY_VERTEX_SHADER

ATOMIC_COUNTER_BUFFER_-

REFERENCED_BY_TESS_CONTROL_-

SHADER

REFERENCED_BY_TESS_CONTROL_-

SHADER

ATOMIC_COUNTER_BUFFER_-

REFERENCED_BY_TESS_-

EVALUATION_SHADER

REFERENCED_BY_TESS_-

EVALUATION_SHADER

ATOMIC_COUNTER_BUFFER_-

REFERENCED_BY_GEOMETRY_SHADER

REFERENCED_BY_GEOMETRY_SHADER

ATOMIC_COUNTER_BUFFER_-

REFERENCED_BY_FRAGMENT_SHADER

REFERENCED_BY_FRAGMENT_SHADER

ATOMIC_COUNTER_BUFFER_-

REFERENCED_BY_COMPUTE_SHADER

REFERENCED_BY_COMPUTE_SHADER

Table 7.8: GetProgramResourceiv properties used by GetActiveAtomicCoun-
terBufferiv.

where the value of prop is taken from table 7.8, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that
would be written to params.

7.6.1 Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables except for subroutine uniforms and
atomic counters, of the default uniform block of the active program object, use
the commands

void Uniform{1234}{ifd ui}(int location, T value);
void Uniform{1234}{ifd ui}v(int location, sizei count,

const T *value);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 132

void UniformMatrix{234}{fd}v(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}{fd}v(
int location, sizei count, boolean transpose, const
float *value);

If a non-zero program object is bound by UseProgram, it is the active pro-
gram object whose uniforms are updated by these commands. If no program ob-
ject is bound using UseProgram, the active program object of the current program
pipeline object set by ActiveShaderProgram is the active program object. If the
current program pipeline object has no active program or there is no current pro-
gram pipeline object, then there is no active program.

The given values are loaded into the default uniform block uniform variable
location identified by location and associated with a uniform variable.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform defined as a float, a floating-point vector, or an array of either
of these types.

The Uniform*d{v} commands will load count sets of one to four double-
precision floating-point values into a uniform defined as a double, a double vector,
or an array of either of these types.

The Uniform*i{v} commands will load count sets of one to four integer values
into a uniform defined as a sampler, an image, an integer, an integer vector, or an
array of any of these types. Only the Uniform1i{v} commands can be used to load
sampler and image values (see sections 7.10 and 7.11).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform defined as a unsigned integer, an unsigned integer
vector, or an array of either of these types.

The UniformMatrix{234}fv and UniformMatrix{234}dv commands will
load count 2 × 2, 3 × 3, or 4 × 4 matrices (corresponding to 2, 3, or 4 in the
command name) of single- or double-precision floating-point values, respectively,
into a uniform defined as a matrix or an array of matrices. If transpose is FALSE,
the matrix is specified in column major order, otherwise in row major order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv and UniformMa-
trix{2x3,3x2,2x4,4x2,3x4,4x3}dv commands will load count 2× 3, 3× 2, 2× 4,
4 × 2, 3 × 4, or 4 × 3 matrices (corresponding to the numbers in the command
name) of single- or double-precision floating-point values, respectively, into a
uniform defined as a matrix or an array of matrices. The first number in the
command name is the number of columns; the second is the number of rows.
For example, UniformMatrix2x4fv is used to load a single-precision matrix
consisting of two columns and four rows. If transpose is FALSE, the matrix is

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 133

specified in column major order, otherwise in row major order.
When loading values for a uniform declared as a boolean, a boolean vector,

or an array of either of these types, any of the Uniform*i{v}, Uniform*ui{v},
and Uniform*f{v} commands can be used. Type conversion is done by the GL.
Boolean values are set to FALSE if the corresponding input value is 0 or 0.0f, and
set to TRUE otherwise. The Uniform* command used must match the size of the
uniform, as declared in the shader. For example, to load a uniform declared as a
bvec2, any of the Uniform2{if ui}* commands may be used.

For all other uniform types loadable with Uniform* commands, the command
used must match the size and type of the uniform, as declared in the shader, and
no type conversions are done. For example, to load a uniform declared as a vec4,
Uniform4f{v} must be used, and to load a uniform declared as a dmat3, Unifor-
mMatrix3dv must be used.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through k + N − 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

Errors

An INVALID_VALUE error is generated if count is negative.
An INVALID_VALUE error is generated if Uniform1i{v} is used to set a

sampler uniform to a value less than zero or greater than or equal to the value
of MAX_COMBINED_TEXTURE_IMAGE_UNITS.

An INVALID_VALUE error is generated if Uniform1i{v} is used to set an
image uniform to a value less than zero or greater than or equal to the value of
MAX_IMAGE_UNITS.

An INVALID_OPERATION error is generated if any of the following con-
ditions occur:

• the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

• the component type and count indicated in the name of the Uniform*
command used does not match the type of the uniform declared in
the shader, where a boolean uniform component type is considered
to match any of the Uniform*i{v}, Uniform*ui{v}, or Uniform*f{v}

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 134

commands.

• count is greater than one, and the uniform declared in the shader is not
an array variable,

• no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

• a sampler or image uniform is loaded with any of the Uniform* com-
mands other than Uniform1i{v}.

• there is no active program object in use.

To load values into the uniform variables of the default uniform block of a
program which may not necessarily be bound, use the commands

void ProgramUniform{1234}{ifd}(uint program,
int location, T value);

void ProgramUniform{1234}{ifd}v(uint program,
int location, sizei count, const T *value);

void ProgramUniform{1234}ui(uint program, int location,
T value);

void ProgramUniform{1234}uiv(uint program,
int location, sizei count, const T *value);

void ProgramUniformMatrix{234}{fd}v(uint program,
int location, sizei count, boolean transpose, const
T *value);

void ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}{fd}v(
uint program, int location, sizei count,
boolean transpose, const T *value);

These commands operate identically to the corresponding commands above
without Program in the command name except, rather than updating the cur-
rently active program object, these Program commands update the program ob-
ject named by the initial program parameter. The remaining parameters following
the initial program parameter match the parameters for the corresponding non-
Program uniform command.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 135

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

In addition, all errors described for the corresponding Uniform* com-
mands apply.

7.6.2 Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of active
uniform blocks used by each shader stage. If the number of uniform blocks used
by any shader stage in the program exceeds its corresponding limit, the program
will fail to link. The limits for vertex, tessellation control, tessellation evaluation,
geometry, fragment, and compute shaders can be obtained by calling GetIntegerv
with pname values of MAX_VERTEX_UNIFORM_BLOCKS, MAX_TESS_CONTROL_-
UNIFORM_BLOCKS, MAX_TESS_EVALUATION_UNIFORM_BLOCKS, MAX_-

GEOMETRY_UNIFORM_BLOCKS, MAX_FRAGMENT_UNIFORM_BLOCKS, and MAX_-

COMPUTE_UNIFORM_BLOCKS, respectively.
Additionally, there is an implementation-dependent limit on the sum of the

number of active uniform blocks used by each shader stage of a program. If a
uniform block is used by multiple shader stages, each such use counts separately
against this combined limit. The combined uniform block use limit can be obtained
by calling GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

Finally, the total amount of buffer object storage available for any given uni-
form block is subject to an implementation-dependent limit. The maximum amount
of available space, in basic machine units, can be queried by calling GetIntegerv
with a pname of MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required
for a uniform block exceeds this limit, a program will fail to link.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names, types and layout qualifiers, and in the same
order. If a program contains multiple shaders with different declarations for the
same named uniform block, the program will fail to link.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 136

7.6.2.1 Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

• Members of type bool, int, uint, float, and double are respectively
extracted from a buffer object by reading a single uint, int, uint, float,
or double value at the specified offset.

• Vectors with N elements with basic data types of bool, int, uint, float,
or double are extracted as N values in consecutive memory locations be-
ginning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

• Column-major matrices with C columns and R rows (using the types
dmatCxR and matCxR for double-precision and floating-point components
respectively, or simply dmatC and matC respectively if C = R) are treated
as an array of C column vectors, each consisting of R double-precision or
floating-point components. The column vectors will be stored in order, with
column zero at the lowest offset. The difference in offsets between consecu-
tive columns of the matrix will be referred to as the column stride, and is con-
stant across the matrix. The column stride is an implementation-dependent
function of the matrix type, and may be determined after a program is linked
by querying the MATRIX_STRIDE property using GetProgramResourceiv
(see section 7.3.1).

• Row-major matrices with C columns andR rows (using the types dmatCxR
and matCxR for double-precision and floating-point components respec-
tively, or simply dmatC and matC respectively if C = R) are treated as
an array ofR row vectors, each consisting of C double-precision or floating-
point components. The row vectors will be stored in order, with row zero at
the lowest offset. The difference in offsets between consecutive rows of the
matrix will be referred to as the row stride, and is constant across the matrix.
The row stride is an implementation-dependent function of the matrix type,
and may be determined after a program is linked by querying the MATRIX_-
STRIDE property using GetProgramResourceiv (see section 7.3.1).

• Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 137

UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

7.6.2.2 Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

When using the std140 storage layout, structures will be laid out in buffer
storage with their members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is N .

2. If the member is a two- or four-component vector with components consum-
ing N basic machine units, the base alignment is 2N or 4N , respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4N .

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.6. UNIFORM VARIABLES 138

5. If the member is a column-major matrix with C columns and R rows, the
matrix is stored identically to an array of C column vectors with R compo-
nents each, according to rule (4).

6. If the member is an array of S column-major matrices with C columns and
R rows, the matrix is stored identically to a row of S × C column vectors
with R components each, according to rule (4).

7. If the member is a row-major matrix with C columns andR rows, the matrix
is stored identically to an array of R row vectors with C components each,
according to rule (4).

8. If the member is an array of S row-major matrices with C columns and R
rows, the matrix is stored identically to a row of S × R row vectors with C
components each, according to rule (4).

9. If the member is a structure, the base alignment of the structure is N , where
N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

10. If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Shader storage blocks (see section 7.8) also support the std140 layout qual-
ifier, as well as a std430 qualifier not supported for uniform blocks. When using
the std430 storage layout, shader storage blocks will be laid out in buffer storage
identically to uniform and shader storage blocks using the std140 layout, except
that the base alignment and stride of arrays of scalars and vectors in rule 4 and of
structures in rule 9 are not rounded up a multiple of the base alignment of a vec4.

7.6.3 Uniform Buffer Object Bindings

The value of an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points may be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.7. ATOMIC COUNTER BUFFERS 139

Regions of buffer objects are bound as storage for uniform blocks by calling
BindBuffer* commands (see section 6) with target set to UNIFORM_BUFFER.

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. The binding is established when a program is linked or re-
linked, and the initial value of the binding is specified by a layout qualifier (if
present), or zero otherwise. The binding point can be assigned by calling

void UniformBlockBinding(uint program,
uint uniformBlockIndex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution may be undefined or modified, as described in section 6.4. Shaders may
be executed to process the primitives and vertices specified by any command that
transfers vertices to the GL.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if uniformBlockIndex is not an
active uniform block index of program, or if uniformBlockBinding is greater
than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS.

7.7 Atomic Counter Buffers

The values of atomic counters are backed by buffer object storage. The mecha-
nisms for accessing individual atomic counters in a buffer object and connecting to
an atomic counter are described in this section.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.7. ATOMIC COUNTER BUFFERS 140

There is a set of implementation-dependent maximums for the number of active
atomic counter buffers referenced by each shader. If the number of atomic counter
buffer bindings referenced by any shader in the program exceeds the corresponding
limit, the program will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be obtained by
calling GetIntegerv with pname values of MAX_VERTEX_ATOMIC_COUNTER_-
BUFFERS, MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS, MAX_-

TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS, MAX_GEOMETRY_ATOMIC_-
COUNTER_BUFFERS, MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS, and MAX_-

COMPUTE_ATOMIC_COUNTER_BUFFERS, respectively.
Additionally, there is an implementation-dependent limit on the sum of the

number of active atomic counter buffers used by each shader stage of a program.
If an atomic counter buffer is used by multiple shader stages, each such use counts
separately against this combined limit. The combined atomic counter buffer use
limit can be obtained by calling GetIntegerv with a pname of MAX_COMBINED_-
ATOMIC_COUNTER_BUFFERS.

7.7.1 Atomic Counter Buffer Object Storage

Atomic counters stored in buffer objects are represented in memory as follows:

• Members of type atomic_uint are extracted from a buffer object by read-
ing a single uint-typed value at the specified offset.

• Arrays of type atomic_uint are stored in memory by element order, with
array element member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

7.7.2 Atomic Counter Buffer Bindings

The value of an active atomic counter is extracted from or written to the data store
of a buffer object bound to one of an array of atomic counter buffer binding points.
The number of binding points may be queried by calling GetIntegerv with a pname
of MAX_ATOMIC_COUNTER_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for atomic counters by calling
one of the BindBuffer* commands (see section 6) with target set to ATOMIC_-

COUNTER_BUFFER.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS141

Each of a program’s active atomic counter buffer bindings has a corresponding
atomic counter buffer binding point. This binding point is established with the
layout qualifier in the shader text, either explicitly or implicitly, as described in
the OpenGL Shading Language Specification.

When executing shaders that access atomic counters, each active atomic
counter buffer must be populated with a buffer object with a size no smaller than the
minimum required size for that buffer (the value of BUFFER_DATA_SIZE returned
by GetProgramResourceiv). For binding points populated by BindBufferRange,
the size in question is the value of the size parameter. If any active atomic counter
buffer is not backed by a sufficiently large buffer object, the results of shader exe-
cution may be undefined or modified, as described in section 6.4.

7.8 Shader Buffer Variables and Shader Storage Blocks

Shaders can declare named buffer variables, as described in the OpenGL Shading
Language Specification. Sets of buffer variables are grouped into interface blocks
called shader storage blocks. The values of each buffer variable in a shader storage
block are read from or written to the data store of a buffer object bound to the
binding point associated with the block. The values of active buffer variables may
be changed by executing shaders that assign values to them or perform atomic
memory operations on them; by modifying the contents of the bound buffer object’s
data store with the commands in sections 6.2, 6.2.1, 6.3, 6.5, and 6.6; by binding
a new buffer object to the binding point associated with the block; or by changing
the binding point associated with the block.

Buffer variables in shader storage blocks are represented in memory in the
same way as uniforms stored in uniform blocks, as described in section 7.6.2.1.
When a program is linked successfully, each active buffer variable is assigned an
offset relative to the base of the buffer object binding associated with its shader
storage block. For buffer variables declared as arrays and matrices, strides between
array elements or matrix columns or rows will also be assigned. Offsets and strides
of buffer variables will be assigned in an implementation-dependent manner unless
the shader storage block is declared using the std140 or std430 storage layout
qualifiers. For std140 and std430 shader storage blocks, offsets will be assigned
using the method described in section 7.6.2.2. If a program is re-linked, existing
buffer variable offsets and strides are invalidated, and a new set of active variables,
offsets, and strides will be generated.

The total amount of buffer object storage that can be accessed in any shader
storage block is subject to an implementation-dependent limit. The maximum
amount of available space, in basic machine units, may be queried by calling

OpenGL 4.5 (Core Profile) - October 24, 2016

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS142

GetIntegerv with pname MAX_SHADER_STORAGE_BLOCK_SIZE. If the amount
of storage required for any shader storage block exceeds this limit, a program will
fail to link.

If the number of active shader storage blocks referenced by the
shaders in a program exceeds implementation-dependent limits, the pro-
gram will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be ob-
tained by calling GetIntegerv with pname values of MAX_VERTEX_SHADER_-

STORAGE_BLOCKS, MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS, MAX_-

TESS_EVALUATION_SHADER_STORAGE_BLOCKS, MAX_GEOMETRY_SHADER_-

STORAGE_BLOCKS, MAX_FRAGMENT_SHADER_STORAGE_BLOCKS, and MAX_-

COMPUTE_SHADER_STORAGE_BLOCKS, respectively. Additionally, a program will
fail to link if the sum of the number of active shader storage blocks referenced by
each shader stage in a program exceeds the value of the implementation-dependent
limit MAX_COMBINED_SHADER_STORAGE_BLOCKS. If a shader storage block in a
program is referenced by multiple shaders, each such reference counts separately
against this combined limit.

When a named shader storage block is declared by multiple shaders in a pro-
gram, it must be declared identically in each shader. The buffer variables within
the block must be declared with the same names, types, qualification, and decla-
ration order. If a program contains multiple shaders with different declarations for
the same named shader storage block, the program will fail to link.

Regions of buffer objects are bound as storage for shader storage blocks by
calling one of the BindBuffer* commands (see section 6) with target SHADER_-
STORAGE_BUFFER.

Each of a program’s active shader storage blocks has a corresponding shader
storage buffer object binding point. When a program object is linked, the shader
storage buffer object binding point assigned to each of its active shader storage
blocks is reset to the value specified by the corresponding binding layout qual-
ifier, if present, or zero otherwise. After a program is linked, the command

void ShaderStorageBlockBinding(uint program,
uint storageBlockIndex, uint storageBlockBinding);

changes the active shader storage block with an assigned index of storage-
BlockIndex in program object program. ShaderStorageBlockBinding specifies
that program will use the data store of the buffer object bound to the binding point
storageBlockBinding to read and write the values of the buffer variables in the
shader storage block identified by storageBlockIndex.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.9. SUBROUTINE UNIFORM VARIABLES 143

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if storageBlockIndex is not an
active shader storage block index in program, or if storageBlockBinding is
greater than or equal to the value of MAX_SHADER_STORAGE_BUFFER_-

BINDINGS.

When executing shaders that access shader storage blocks, the binding point
corresponding to each active shader storage block must be populated with a buffer
object with a size no smaller than the minimum required size of the shader storage
block (the value of BUFFER_SIZE for the appropriate SHADER_STORAGE_BUFFER
resource). For binding points populated by BindBufferRange, the size in question
is the value of the size parameter or the size of the buffer minus the value of the
offset parameter, whichever is smaller. If any active shader storage block is not
backed by a sufficiently large buffer object, the results of shader execution may be
undefined or modified, as described in section 6.4.

7.9 Subroutine Uniform Variables

Subroutine uniform variables are similar to uniform variables, except they are con-
text state rather than program state, and apply only to a single program stage. Hav-
ing subroutine uniforms be context state allows them to have different values if the
program is used in multiple contexts simultaneously. There is a set of subroutine
uniforms for each shader stage.

A subroutine uniform may have an explicit location specified in the shader.
At link time, all active subroutine uniforms without an explicit location will be
assigned a unique location. The value of ACTIVE_SUBROUTINE_UNIFORM_-

LOCATIONS for a program object is the largest specified or assigned location plus
one. An assigned location will never take the location of an explicitly specified
location, even if that subroutine uniform is inactive. Between the location zero and
the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS minus one there may
be unused locations, either because they were not assigned a subroutine uniform or
because the subroutine uniform was determined to be inactive by the linker. These
locations will be ignored when assigning the subroutine index as described below.

There is an implementation-dependent limit on the number of active subrou-
tine uniform locations in each shader stage; a program will fail to link if the num-

OpenGL 4.5 (Core Profile) - October 24, 2016

7.9. SUBROUTINE UNIFORM VARIABLES 144

Interface Shader Type
VERTEX_SUBROUTINE VERTEX_SHADER

TESS_CONTROL_SUBROUTINE TESS_CONTROL_SHADER

TESS_EVALUATION_SUBROUTINE TESS_EVALUATION_SHADER

GEOMETRY_SUBROUTINE GEOMETRY_SHADER

FRAGMENT_SUBROUTINE FRAGMENT_SHADER

COMPUTE_SUBROUTINE COMPUTE_SHADER

Table 7.9: Interfaces for active subroutines for a particular shader type in a pro-
gram.

ber of subroutine uniform locations required is greater than the value of MAX_-
SUBROUTINE_UNIFORM_LOCATIONS or if an explicit subroutine uniform location
is outside this limit. For active subroutine uniforms declared as arrays, the declared
array elements are assigned consecutive locations.

Each function in a shader associated with a subroutine type is considered an
active subroutine, unless the compiler conclusively determines that the function
could never be assigned to an active subroutine uniform. The subroutine func-
tions can be assigned an explicit index in the shader between zero and the value
of MAX_SUBROUTINES minus one. At link time, all active subroutines without an
explicit index will be assigned an index between zero and the value of ACTIVE_-
SUBROUTINES minus one. An assigned index will never take the same index of
an explicitly specified index in the shader, even if that subroutine is inactive. Be-
tween index zero and the vaue of ACTIVE_SUBROUTINES minus one there may
be unused indices either because they weren’t assigned an index by the linker or
because the subroutine was determined to be inactive by the linker. If there are no
explicitly defined subroutine indices in the shader the implementation must assign
indices between zero and the value of ACTIVE_SUBROUTINES minus one with no
index unused. It is recommended, but not required, that the application assigns a
range of tightly packed indices starting from zero to avoid indices between zero
and the value of ACTIVE_SUBROUTINES minus one being unused.

To determine the set of active subroutines and subroutines used by a partic-
ular shader stage of a program, applications can query the properties and active
resources of the interfaces for the shader type, as listed in tables 7.9 and 7.10.

Additionally, dedicated commands are provided to determine properties of ac-
tive subroutines and active subroutine uniforms. The commands

uint GetSubroutineIndex(uint program, enum shadertype,
const char *name);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.9. SUBROUTINE UNIFORM VARIABLES 145

Interface Shader Type
VERTEX_SUBROUTINE_UNIFORM VERTEX_SHADER

TESS_CONTROL_SUBROUTINE_UNIFORM TESS_CONTROL_SHADER

TESS_EVALUATION_SUBROUTINE_UNIFORM TESS_EVALUATION_SHADER

GEOMETRY_SUBROUTINE_UNIFORM GEOMETRY_SHADER

FRAGMENT_SUBROUTINE_UNIFORM FRAGMENT_SHADER

COMPUTE_SUBROUTINE_UNIFORM COMPUTE_SHADER

Table 7.10: Interfaces for active subroutine uniforms for a particular shader type in
a program.

void GetActiveSubroutineName(uint program,
enum shadertype, uint index, sizei bufSize,
sizei *length, char *name);

are equivalent to

GetProgramResourceIndex(program, programInterface, name);

and

GetProgramResourceName(program, programInterface,
index, bufSize, length, name);

respectively, where programInterface is taken from table 7.9 according to the value
of shadertype.

The commands

int GetSubroutineUniformLocation(uint program,
enum shadertype, const char *name);

void GetActiveSubroutineUniformName(uint program,
enum shadertype, uint index, sizei bufSize,
sizei *length, char *name);

void GetActiveSubroutineUniformiv(uint program,
enum shadertype, uint index, enum pname, int *values);

are equivalent to

GetProgramResourceLocation(program, programInterface, name);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.9. SUBROUTINE UNIFORM VARIABLES 146

GetProgramResourceName(program, programInterface,
index, bufSize, length, name);

and

GetProgramResourceiv(program, programInterface,
index, 1, &pname, maxSize, NULL, values);

respectively, where programInterface is taken from table 7.10 according to the
value of shadertype. For GetActiveSubroutineUniformiv, pname must be one of
NUM_COMPATIBLE_SUBROUTINES or COMPATIBLE_SUBROUTINES, and maxSize
is taken to specify a sufficiently large buffer to receive all values that would be
written to params.

The command

void UniformSubroutinesuiv(enum shadertype, sizei count,
const uint *indices);

will load all active subroutine uniforms for shader stage shadertype with subrou-
tine indices from indices, storing indices[i] into the uniform at location i. The
indices for any locations between zero and the value of ACTIVE_SUBROUTINE_-
UNIFORM_LOCATIONS minus one which are not used will be ignored.

Errors

An INVALID_ENUM error is generated if shadertype is not one of the val-
ues in table 7.1.

An INVALID_VALUE error is generated if count is negative, is not equal to
the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the program
currently in use at shader stage shadertype, or if the uniform at location i
is used and the value in indices[i] is greater than or equal to the value of
ACTIVE_SUBROUTINES for the shader stage.

An INVALID_VALUE error is generated if the value of indices[i] for a used
uniform location specifies an unused subroutine index.

An INVALID_OPERATION error is generated if, for any subroutine index
being loaded to a particular uniform location, the function corresponding to the
subroutine index was not associated (as defined in section 6.1.2 of the OpenGL
Shading Language Specification) with the type of the subroutine variable at
that location.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.10. SAMPLERS 147

An INVALID_OPERATION error is generated if no program is active for
the shader stage identified by shadertype.

Each subroutine uniform must have at least one subroutine to assign to the uni-
form. A program will fail to link if any stage has one or more subroutine uniforms
that has no subroutine associated with the subroutine type of the uniform.

When the active program for a shader stage is re-linked or changed by a call
to UseProgram, BindProgramPipeline, or UseProgramStages, subroutine uni-
forms for that stage are reset to arbitrarily chosen default functions with compatible
subroutine types.

7.10 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to i selects texture
image unit number i. The value of i may range from zero to the implementation-
dependent maximum supported number of texture image units minus one.

The type of the sampler identifies the target on the texture image unit, as shown
in table 7.3 for sampler* types. The texture object bound to that texture image
unit’s target is then used for the texture lookup. For example, a variable of type
sampler2D selects target TEXTURE_2D on its texture image unit. Binding of tex-
ture objects to targets is done as usual with BindTexture. Selecting the texture
image unit to bind to is done as usual with ActiveTexture.

The location of a sampler is queried with GetUniformLocation, just like any
uniform variable. Sampler values must be set by calling Uniform1i{v}.

Errors

It is not allowed to have variables of different sampler types pointing to
the same texture image unit within a program object. This situation can only
be detected at the next rendering command issued which triggers shader invo-
cations, and an INVALID_OPERATION error will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link

OpenGL 4.5 (Core Profile) - October 24, 2016

7.11. IMAGES 148

fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

7.11 Images

Images are special uniforms used in the OpenGL Shading Language to identify a
level of a texture to be read or written using built-in image load, store, or atomic
functions in the manner described in section 8.26. The value of an image uniform is
an integer specifying the image unit accessed. Image units are numbered beginning
at zero, and there is an implementation-dependent number of available image units
(the value of MAX_IMAGE_UNITS).

Note that image units used for image variables are independent of the texture
image units used for sampler variables; the number of units provided by the imple-
mentation may differ. Textures are bound independently and separately to image
and texture image units.

The type of an image variable must match the texture target of the image cur-
rently bound to the image unit; otherwise the result of a load, store, or atomic
operation is undefined (see section 4.1.7.2 of the OpenGL Shading Language Spec-
ification for more details).

The location of an image variable needs to be queried with GetUniformLo-
cation, just like any uniform variable. Image values must be set by calling Uni-
form1i{v}.

Unlike samplers, there is no limit on the number of active image variables that
may be used by a program or by any particular shader. However, given that there
is an implementation-dependent limit on the number of unique image units, the
actual number of images that may be used by all shaders in a program is limited.

7.12 Shader Memory Access

As described in the OpenGL Shading Language Specification, shaders may per-
form random-access reads and writes to buffer object memory by reading from,
assigning to, or performing atomic memory operation on shader buffer variables,
or to texture or buffer object memory by using built-in image load, store, and
atomic functions operating on shader image variables. The ability to perform such
random-access reads and writes in systems that may be highly pipelined results in
ordering and synchronization issues discussed in the sections below.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 149

7.12.1 Shader Memory Access Ordering

The order in which texture or buffer object memory is read or written by shaders
is largely undefined. For some shader types (vertex, tessellation evaluation, and in
some cases, fragment), even the number of shader invocations that might perform
loads and stores is undefined.

In particular, the following rules apply:

• While a vertex or tessellation evaluation shader will be executed at least once
for each unique vertex specified by the application (vertex shaders) or gener-
ated by the tessellation primitive generator (tessellation evaluation shaders),
it may be executed more than once for implementation-dependent reasons.
Additionally, if the same vertex is specified multiple times in a collection
of primitives (e.g., repeating an index in DrawElements), the vertex shader
might be run only once.

• For each fragment generated by the GL, the number of fragment shader in-
vocations depends on a number of factors. If the fragment fails the pixel
ownership test (see section 14.9.1), scissor test (see section 14.9.2), or is dis-
carded by any of the multisample fragment operations (see section 14.9.3),
the fragment shader will not be executed

In addition, if early per-fragment tests are enabled (see section 14.9), the
fragment shader will not be executed if the fragment is discarded during the
early per-fragment tests.

When fragment shaders are executed, the number of invocations per frag-
ment is exactly one when the framebuffer has no multisample buffer (the
value of SAMPLE_BUFFERS is zero). Otherwise, the number of invocations
is in the range [1, N] where N is the number of samples covered by the frag-
ment; if the fragment shader specifies per-sample shading, it will be invoked
exactly N times.

• If a fragment shader is invoked to process fragments or samples not covered
by a primitive being rasterized to facilitate the approximation of derivatives
for texture lookups, then stores, atomics, and atomic counter updates have
no effect.

• The relative order of invocations of the same shader type are undefined. A
store issued by a shader when working on primitive B might complete prior
to a store for primitive A, even if primitive A is specified prior to primitive
B. This applies even to fragment shaders; while fragment shader outputs

OpenGL 4.5 (Core Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 150

are always written to the framebuffer in primitive order, stores executed by
fragment shader invocations are not.

• The relative order of invocations of different shader types is largely unde-
fined. However, when executing a shader whose inputs are generated from
a previous programmable stage, the shader invocations from the previous
stage are guaranteed to have executed far enough to generate final values
for all next-stage inputs. That implies shader completion for all stages ex-
cept geometry; geometry shaders are guaranteed only to have executed far
enough to emit all vertices used to generate the primitive being processed by
the fragment shader.

The above limitations on shader invocation order also make some forms of
synchronization between shader invocations within a single set of primitives unim-
plementable. For example, having one invocation poll memory written by another
invocation assumes that the other invocation has been launched and can complete
its writes. The only case where such a guarantee is made is when the inputs of
one shader invocation are generated from the outputs of a shader invocation in a
previous stage.

Stores issued to different memory locations within a single shader invocation
may not be visible to other invocations in the order they were performed. The built-
in function memoryBarrier may be used to provide stronger ordering of reads
and writes performed by a single invocation. Calling memoryBarrier guaran-
tees that any memory transactions issued by the shader invocation prior to the call
complete prior to the memory transactions issued after the call. Memory barriers
may be needed for algorithms that require multiple invocations to access the same
memory and require the operations to be performed in a partially-defined relative
order. For example, if one shader invocation does a series of writes, followed by a
memoryBarrier call, followed by another write, then another invocation that sees
the results of the final write will also see the previous writes. Without the memory
barrier, the final write may be visible before the previous writes.

The built-in atomic memory transaction and atomic counter functions may be
used to read and write a given memory address atomically. While built-in atomic
functions issued by multiple shader invocations are executed in undefined order
relative to each other, these functions perform both a read and a write of a memory
address and guarantee that no other memory transaction will write to the underlying
memory between the read and write. Atomics allow shaders to use shared global
addresses for mutual exclusion or as counters, among other uses.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 151

7.12.2 Shader Memory Access Synchronization

Data written to textures or buffer objects by a shader invocation may eventually be
read by other shader invocations, sourced by other fixed pipeline stages, or read
back by the application. When data is written using API commands such as Tex-
SubImage* or BufferSubData, the GL implementation knows when and where
writes occur and can perform implicit synchronization to ensure that operations re-
quested before the update see the original data and that subsequent operations see
the modified data. Without logic to track the target address of each shader instruc-
tion performing a store, automatic synchronization of stores performed by a shader
invocation would require the GL implementation to make worst-case assumptions
at significant performance cost. To permit cases where textures or buffers may
be read or written in different pipeline stages without the overhead of automatic
synchronization, buffer object and texture stores performed by shaders are not au-
tomatically synchronized with other GL operations using the same memory.

Explicit synchronization is required to ensure that the effects of buffer and tex-
ture data stores performed by shaders will be visible to subsequent operations using
the same objects and will not overwrite data still to be read by previously requested
operations. Without manual synchronization, shader stores for a “new” primitive
may complete before processing of an “old” primitive completes. Additionally,
stores for an “old” primitive might not be completed before processing of a “new”
primitive starts. The command

void MemoryBarrier(bitfield barriers);

defines a barrier ordering the memory transactions issued prior to the command
relative to those issued after the barrier. For the purposes of this ordering, memory
transactions performed by shaders are considered to be issued by the rendering
command that triggered the execution of the shader. barriers is a bitfield indicating
the set of operations that are synchronized with shader stores; the bits used in
barriers are as follows:

• VERTEX_ATTRIB_ARRAY_BARRIER_BIT: If set, vertex data sourced from
buffer objects after the barrier will reflect data written by shaders prior to the
barrier. The set of buffer objects affected by this bit is derived from the buffer
object bindings used for arrays of generic vertex attributes (VERTEX_-
ATTRIB_ARRAY_BUFFER bindings).

• ELEMENT_ARRAY_BARRIER_BIT: If set, vertex array indices sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The buffer objects affected by this bit are derived from the
ELEMENT_ARRAY_BUFFER binding.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 152

• UNIFORM_BARRIER_BIT: Shader uniforms sourced from buffer objects af-
ter the barrier will reflect data written by shaders prior to the barrier.

• TEXTURE_FETCH_BARRIER_BIT: Texture fetches from shaders, including
fetches from buffer object memory via buffer textures, after the barrier will
reflect data written by shaders prior to the barrier.

• SHADER_IMAGE_ACCESS_BARRIER_BIT: Memory accesses using shader
built-in image load, store, and atomic functions issued after the barrier will
reflect data written by shaders prior to the barrier. Additionally, image stores
and atomics issued after the barrier will not execute until all memory ac-
cesses (e.g., loads, stores, texture fetches, vertex fetches) initiated prior to
the barrier complete.

• COMMAND_BARRIER_BIT: Command data sourced from buffer objects by
Draw*Indirect and DispatchComputeIndirect commands after the bar-
rier will reflect data written by shaders prior to the barrier. The buffer ob-
jects affected by this bit are derived from the DRAW_INDIRECT_BUFFER and
DISPATCH_INDIRECT_BUFFER bindings.

• PIXEL_BUFFER_BARRIER_BIT: Reads/writes of buffer objects via the
PIXEL_PACK_BUFFER and PIXEL_UNPACK_BUFFER bindings (ReadPix-
els, TexSubImage, etc.) after the barrier will reflect data written by shaders
prior to the barrier. Additionally, buffer object writes issued after the barrier
will wait on the completion of all shader writes initiated prior to the barrier.

• TEXTURE_UPDATE_BARRIER_BIT: Writes
to a texture via Tex(Sub)Image*, ClearTex*Image, CopyTex*, or Com-
pressedTex*, and reads via GetTexImage after the barrier will not execute
until all shader writes initiated prior to the barrier complete.

• BUFFER_UPDATE_BARRIER_BIT: Reads and writes to buffer object mem-
ory after the barrier using the commands in sections 6.2, 6.2.1, 6.3, 6.6,
and 6.5 will reflect data written by shaders prior to the barrier. Additionally,
writes via these commands issued after the barrier will wait on the comple-
tion of any shader writes to the same memory initiated prior to the barrier.

• CLIENT_MAPPED_BUFFER_BARRIER_BIT: Access by the client to persis-
tent mapped regions of buffer objects will reflect data written by shaders
prior to the barrier. Note that this may cause additional synchronization op-
erations.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 153

• QUERY_BUFFER_BARRIER_BIT: Writes of buffer objects via the QUERY_-
BUFFER binding (see section 4.2.1) after the barrier will reflect data written
by shaders prior to the barrier. Additionally, buffer object writes issued after
the barrier will wait on the completion of all shader writes initiated prior to
the barrier.

• FRAMEBUFFER_BARRIER_BIT: Reads and writes via framebuffer object at-
tachments after the barrier will reflect data written by shaders prior to the
barrier. Additionally, framebuffer writes issued after the barrier will wait on
the completion of all shader writes issued prior to the barrier.

• TRANSFORM_FEEDBACK_BARRIER_BIT: Writes via transform feedback
bindings after the barrier will reflect data written by shaders prior to the
barrier. Additionally, transform feedback writes issued after the barrier will
wait on the completion of all shader writes issued prior to the barrier.

• ATOMIC_COUNTER_BARRIER_BIT: Memory accesses using shader atomic
counter built-in functions issued after the barrier will reflect data written by
shaders prior to the barrier. Additionally, atomic counter function invoca-
tions after the barrier will not execute until all memory accesses (e.g., loads,
stores, texture fetches, vertex fetches) initiated prior to the barrier complete.

• SHADER_STORAGE_BARRIER_BIT: Memory accesses using shader buffer
variables issued after the barrier will reflect data written by shaders prior to
the barrier. Additionally, assignments to and atomic operations performed
on shader buffer variables after the barrier will not execute until all memory
accesses initiated prior to the barrier complete.

If barriers is ALL_BARRIER_BITS, shader memory accesses will be synchro-
nized relative to all the operations described above.

Errors

An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER_BITS, and has any bits set other than those described above.

Implementations may cache buffer object and texture image memory that could
be written by shaders in multiple caches; for example, there may be separate caches
for texture, vertex fetching, and one or more caches for shader memory accesses.
Implementations are not required to keep these caches coherent with shader mem-
ory writes. Stores issued by one invocation may not be immediately observable
by other pipeline stages or other shader invocations because the value stored may

OpenGL 4.5 (Core Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 154

remain in a cache local to the processor executing the store, or because data over-
written by the store is still in a cache elsewhere in the system. When Memo-
ryBarrier is called, the GL flushes and/or invalidates any caches relevant to the
operations specified by the barriers parameter to ensure consistent ordering of op-
erations across the barrier.

To allow for independent shader invocations to communicate by reads and
writes to a common memory address, image variables in the OpenGL Shading
Language may be declared as coherent. Buffer object or texture image memory
accessed through such variables may be cached only if caches are automatically
updated due to stores issued by any other shader invocation. If the same address
is accessed using both coherent and non-coherent variables, the accesses using
variables declared as coherent will observe the results stored using coherent vari-
ables in other invocations. Using variables declared as coherent guarantees only
that the results of stores will be immediately visible to shader invocations using
similarly-declared variables; calling MemoryBarrier is required to ensure that the
stores are visible to other operations.

The following guidelines may be helpful in choosing when to use coherent
memory accesses and when to use barriers.

• Data that are read-only or constant may be accessed without using coher-
ent variables or calling MemoryBarrier. Updates to the read-only data via
commands such as BufferSubData will invalidate shader caches implicitly
as required.

• Data that are shared between shader invocations at a fine granularity (e.g.,
written by one invocation, consumed by another invocation) should use co-
herent variables to read and write the shared data.

• Data written by one shader invocation and consumed by other shader in-
vocations launched as a result of its execution (dependent invocations)
should use coherent variables in the producing shader invocation and call
memoryBarrier after the last write. The consuming shader invocation
should also use coherent variables.

• Data written to image variables in one rendering pass and read by the shader
in a later pass need not use coherent variables or memoryBarrier. Calling
MemoryBarrier with the SHADER_IMAGE_ACCESS_BARRIER_BIT set in
barriers between passes is necessary.

• Data written by the shader in one rendering pass and read by another mech-
anism (e.g., vertex or index buffer pulling) in a later pass need not use co-

OpenGL 4.5 (Core Profile) - October 24, 2016

7.12. SHADER MEMORY ACCESS 155

herent variables or memoryBarrier. Calling MemoryBarrier with the ap-
propriate bits set in barriers between passes is necessary.

The command

void MemoryBarrierByRegion(bitfield barriers);

behaves as described above for MemoryBarrier, with two differences:
First, it narrows the region under consideration so that only reads and writes of

prior fragment shaders that are invoked for a smaller region of the framebuffer will
be completed/reflected prior to subsequent reads and writes of following fragment
shaders. The size of the region is implementation-dependent and may be as small
as one framebuffer pixel.

Second, it only applies to memory transactions that may be read by or written
by a fragment shader. Therefore, only the barrier bits

• ATOMIC_COUNTER_BARRIER_BIT

• FRAMEBUFFER_BARRIER_BIT

• SHADER_IMAGE_ACCESS_BARRIER_BIT

• SHADER_STORAGE_BARRIER_BIT

• TEXTURE_FETCH_BARRIER_BIT

• UNIFORM_BARRIER_BIT

are supported.
When barriers is ALL_BARRIER_BITS, shader memory accesses will be syn-

chronized relative to all these barrier bits, but not to other barrier bits specific to
MemoryBarrier. This implies that reads and writes for scatter/gather-like algo-
rithms may or may not be completed/reflected after a MemoryBarrierByRegion
command. However, for uses such as deferred shading, where a linked list of vis-
ible surfaces with the head at a framebuffer address may be constructed, and the
entirety of the list is only dependent on previous executions at that framebuffer ad-
dress, MemoryBarrierByRegion may be significantly more efficient than Mem-
oryBarrier.

Errors

An INVALID_VALUE error is generated if barriers is not the special value

OpenGL 4.5 (Core Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 156

ALL_BARRIER_BITS, and has any bits set other than those described above.

7.13 Shader, Program, and Program Pipeline Queries

The command

void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, one of the values from table 7.1 corresponding to
the type of shader is returned.

If pname is DELETE_STATUS, TRUE is returned if the shader has been flagged
for deletion and FALSE is returned otherwise.

If pname is COMPILE_STATUS, TRUE is returned if the shader was last com-
piled successfully, and FALSE is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is no info log, zero is returned.

If pname is SHADER_SOURCE_LENGTH, the length of the concatenation of the
source strings making up the shader source, including a null terminator, is returned.
If no source has been defined, zero is returned.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_ENUM error is generated if pname is not SHADER_TYPE,
DELETE_STATUS, COMPILE_STATUS, INFO_LOG_LENGTH, or SHADER_-

SOURCE_LENGTH.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 157

If pname is LINK_STATUS, TRUE is returned if the program was last linked
successfully, and FALSE is returned otherwise.

If pname is VALIDATE_STATUS, TRUE is returned if the last call to Vali-
dateProgram (see section 11.1.3.11) with program was successful, and FALSE

is returned otherwise.
If pname is INFO_LOG_LENGTH, the length of the info log, including a null

terminator, is returned. If there is no info log, zero is returned.
If pname is ATTACHED_SHADERS, the number of objects attached is returned.
If pname is ACTIVE_ATTRIBUTES, the number of active attributes (see sec-

tion 7.3.1) in program is returned. If no active attributes exist, zero is returned.
If pname is ACTIVE_ATTRIBUTE_MAX_LENGTH, the length of the longest ac-

tive attribute name, including a null terminator, is returned. If no active attributes
exist, zero is returned.

If pname is ACTIVE_UNIFORMS, the number of active uniforms is returned. If
no active uniforms exist, zero is returned.

If pname is ACTIVE_UNIFORM_MAX_LENGTH, the length of the longest active
uniform name, including a null terminator, is returned. If no active uniforms exist,
zero is returned.

If pname is TRANSFORM_FEEDBACK_BUFFER_MODE, the buffer mode used
when transform feedback (see section 11.1.2.1) is active is returned. It can be
one of SEPARATE_ATTRIBS or INTERLEAVED_ATTRIBS.

If pname is TRANSFORM_FEEDBACK_VARYINGS, the number of output vari-
ables to capture in transform feedback mode for the program is returned.

If pname is TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, the length of
the longest output variable name specified to be used for transform feedback, in-
cluding a null terminator, is returned. If no outputs are used for transform feedback,
zero is returned.

If pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform blocks for
program containing active uniforms is returned.

If pname is ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH, the length of the
longest active uniform block name, including the null terminator, is returned.

If pname is GEOMETRY_VERTICES_OUT, the maximum number of vertices the
geometry shader (see section 11.3) will output is returned.

If pname is GEOMETRY_INPUT_TYPE, the geometry shader input type,
which must be one of POINTS, LINES, LINES_ADJACENCY, TRIANGLES or
TRIANGLES_ADJACENCY, is returned.

If pname is GEOMETRY_OUTPUT_TYPE, the geometry shader output type,
which must be one of POINTS, LINE_STRIP or TRIANGLE_STRIP, is returned.

If pname is GEOMETRY_SHADER_INVOCATIONS, the number of geometry
shader invocations per primitive will be returned.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 158

If pname is TESS_CONTROL_OUTPUT_VERTICES, the number of vertices in
the tessellation control shader (see section 11.2.1) output patch is returned.

If pname is TESS_GEN_MODE, QUADS, TRIANGLES, or ISOLINES is returned,
depending on the primitive mode declaration in the tessellation evaluation shader
(see section 11.2.3).

If pname is
TESS_GEN_SPACING, EQUAL, FRACTIONAL_EVEN, or FRACTIONAL_ODD is re-
turned, depending on the spacing declaration in the tessellation evaluation shader.

If pname is TESS_GEN_VERTEX_ORDER, CCW or CW is returned, depending on
the vertex order declaration in the tessellation evaluation shader.

If pname is TESS_GEN_POINT_MODE, TRUE is returned if point mode is en-
abled in a tessellation evaluation shader declaration; FALSE is returned otherwise.

If pname is COMPUTE_WORK_GROUP_SIZE, an array of three integers contain-
ing the local work group size of the compute program (see chapter 19), as specified
by its input layout qualifier(s), is returned.

If pname is PROGRAM_SEPARABLE, TRUE is returned if the program has been
flagged for use as a separable program object that can be bound to individual shader
stages with UseProgramStages.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, the value of whether
the binary retrieval hint is enabled for program is returned.

If pname is ACTIVE_ATOMIC_COUNTER_BUFFERS, the number of active
atomic counter buffers used by program is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not one of the values
listed above.

An INVALID_OPERATION error is generated if GEOMETRY_VERTICES_-
OUT, GEOMETRY_INPUT_TYPE, GEOMETRY_OUTPUT_TYPE, or GEOMETRY_-
SHADER_INVOCATIONS are queried for a program which has not been linked
successfully, or which does not contain objects to form a geometry shader.

An INVALID_OPERATION error is generated if TESS_CONTROL_-

OUTPUT_VERTICES is queried for a program which has not been linked suc-
cessfully, or which does not contain objects to form a tessellation control
shader.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 159

An INVALID_OPERATION error is generated if TESS_GEN_MODE,
TESS_GEN_SPACING, TESS_GEN_VERTEX_ORDER, or TESS_GEN_POINT_-
MODE are queried for a program which has not been linked successfully, or
which does not contain objects to form a tessellation evaluation shader.

An INVALID_OPERATION error is generated if COMPUTE_WORK_-

GROUP_SIZE is queried for a program which has not been linked successfully,
or which does not contain objects to form a compute shader,

The command

void GetProgramPipelineiv(uint pipeline, enum pname,
int *params);

returns properties of the program pipeline object named pipeline in params. The
parameter value to return is specified by pname.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

If pname is ACTIVE_PROGRAM, the name of the active program object (used
for uniform updates) of pipeline is returned.

If pname is one of the shader stage type arguments in table 7.1, the name of the
program object current for the corresponding shader stage of pipeline is returned.

If pname is VALIDATE_STATUS, the validation status of pipeline, as deter-
mined by ValidateProgramPipeline (see section 11.1.3.11) is returned.

If pname is INFO_LOG_LENGTH, the length of the info log for pipeline, includ-
ing a null terminator, is returned. If there is no info log, zero is returned.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_ENUM error is generated if pname is not ACTIVE_PROGRAM,
INFO_LOG_LENGTH, VALIDATE_STATUS, or one of the type arguments in
table 7.1.

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizei *count, uint *shaders);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 160

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders
are attached, count is set to zero. If count is NULL then it is ignored. The max-
imum number of shader names that may be written into shaders is specified by
maxCount. The number of objects attached to program may be queried by calling
GetProgramiv with ATTACHED_SHADERS.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if maxCount is negative.

A string that contains information about the last compilation attempt on a
shader object, last link or validation attempt on a program object, or last valida-
tion attempt on a program pipeline object, called the info log, can be obtained with
the commands

void GetShaderInfoLog(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramInfoLog(uint program, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramPipelineInfoLog(uint pipeline,
sizei bufSize, sizei *length, char *infoLog);

These commands return an info log string for the corresponding type of object
in infoLog. This string will be null-terminated. The actual number of characters
written into infoLog, excluding the null terminator, is returned in length. If length
is NULL, then no length is returned. The maximum number of characters that may
be written into infoLog, including the null terminator, is specified by bufSize. The
number of characters in the info log for a shader object, program object, or program
pipeline object may be queried respectively with GetShaderiv, GetProgramiv, or
GetProgramPipelineiv with pname INFO_LOG_LENGTH.

If shader is a shader object, GetShaderInfoLog will return either an empty
string or information about the last compilation attempt for that object.

If program is a program object, GetProgramInfoLog will return either an
empty string or information about the last link attempt or last validation attempt
(see section 11.1.3.11) for that object.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 161

If pipeline is a program pipeline object, GetProgramPipelineInfoLog will
return either an empty string or information about the last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if pipeline is not the name of an
existing program pipeline object.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.
The string source will be null-terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is a
concatenation of the strings passed to the GL using ShaderSource. The length of
this concatenation is given by SHADER_SOURCE_LENGTH, which may be queried
with GetShaderiv.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 162

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderPrecisionFormat(enum shadertype,
enum precisiontype, int *range, int *precision);

returns the range and precision for different numeric formats supported by the
shader compiler. shadertype must be VERTEX_SHADER or FRAGMENT_SHADER.
precisiontype must be one of LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT, LOW_-
INT, MEDIUM_INT or HIGH_INT. range points to an array of two integers in which
encodings of the format’s numeric range are returned. If min and max are the
smallest and largest values representable in the format, then the values returned are
defined to be

range[0] = blog2(|min|)c

range[1] = blog2(|max|)c

precision points to an integer in which the number of bits of precision of the for-
mat is returned. If the smallest representable value greater than 1 is 1 + ε, then
*precision will contain b−log2(ε)c, and every value in the range

[−2range[0], 2range[1]]

can be represented to at least one part in 2∗precision. For example, an IEEE single-
precision floating-point format would return range[0] = 127, range[1] = 127,
and ∗precision = 23, while a 32-bit two’s-complement integer format would re-
turn range[0] = 31, range[1] = 30, and ∗precision = 0.

The minimum required precision and range for formats corresponding to the
different values of precisiontype are described in section 4.7(“Precision and Preci-
sion Qualifiers”) of the OpenGL Shading Language Specification.

Errors

An INVALID_ENUM error is generated if shadertype is not VERTEX_-
SHADER or FRAGMENT_SHADER.

The commands

void GetUniformfv(uint program, int location,
float *params);

OpenGL 4.5 (Core Profile) - October 24, 2016

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 163

void GetUniformdv(uint program, int location,
double *params);

void GetUniformiv(uint program, int location,
int *params);

void GetUniformuiv(uint program, int location,
uint *params);

void GetnUniformfv(uint program, int location,
sizei bufSize, float *params);

void GetnUniformdv(uint program, int location,
sizei bufSize, double *params);

void GetnUniformiv(uint program, int location,
sizei bufSize, int *params);

void GetnUniformuiv(uint program, int location,
sizei bufSize, uint *params);

return the value or values of the uniform at location location of the default uniform
block for program object program in the array params. The type of the uniform at
location determines the number of values returned.

In order to query the values of an array of uniforms, a GetUniform* command
needs to be issued for each array element. If the uniform queried is a matrix, the
values of the matrix are returned in column major order.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully, or if location is not a valid location for program.

An INVALID_OPERATION error is generated by GetnUniform* if the
buffer size required to store the requested data is greater than bufSize.

The command

void GetUniformSubroutineuiv(enum shadertype,
int location, uint *params);

returns the value of the subroutine uniform at location location for shader stage
shadertype of the current program. If location represents an unused location, the
value INVALID_INDEX is returned and no error is generated.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.14. REQUIRED STATE 164

Errors

An INVALID_ENUM error is generated if shadertype is not one of the val-
ues in table 7.1.

An INVALID_VALUE error is generated if location is greater than or equal
to the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader
currently in use at shader stage shadertype.

An INVALID_OPERATION error is generated if no program is active.

The command

void GetProgramStageiv(uint program, enum shadertype,
enum pname, int *values);

returns properties of the program object program specific to the programmable
stage corresponding to shadertype in values. The parameter value to return is
specified by pname. If pname is ACTIVE_SUBROUTINE_UNIFORMS, the number
of active subroutine variables in the stage is returned. If pname is ACTIVE_-

SUBROUTINE_UNIFORM_LOCATIONS, the number of active subroutine variable
locations in the stage is returned. If pname is ACTIVE_SUBROUTINES, the number
of active subroutines in the stage is returned. If pname is ACTIVE_SUBROUTINE_-
UNIFORM_MAX_LENGTH or ACTIVE_SUBROUTINE_MAX_LENGTH, the length of
the longest subroutine uniform or subroutine name, respectively, for the stage is
returned. The returned name length includes space for a null terminator. If there
is no shader of type shadertype in program, the values returned will be consistent
with a shader with no subroutines or subroutine uniforms.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if shadertype is not one of the val-
ues in table 7.1.

7.14 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.

The state required per shader object consists of:

OpenGL 4.5 (Core Profile) - October 24, 2016

7.14. REQUIRED STATE 165

• An unsigned integer specifying the shader object name.

• An integer holding the value of SHADER_TYPE.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last compile, initially FALSE.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An array of type char containing the concatenated shader string, initially
empty.

• An integer holding the length of the concatenated shader string.

The state required per program object consists of:

• An unsigned integer indicating the program object name.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last link attempt, initially FALSE.

• A boolean holding the status of the last validation attempt, initially FALSE.

• An integer holding the number of attached shader objects.

• A list of unsigned integers to keep track of the names of the shader objects
attached.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An integer holding the number of active uniforms.

• For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

• An array holding the values of each active uniform.

• An integer holding the number of active attributes.

• For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

OpenGL 4.5 (Core Profile) - October 24, 2016

7.14. REQUIRED STATE 166

• A boolean holding the hint to the retrievability of the program binary, ini-
tially FALSE.

Additional state required to support vertex shaders consists of:

• A bit indicating whether or not program point size mode (section 14.4.1) is
enabled, initially disabled.

Additional state required to support transform feedback consists of:

• An integer holding the transform feedback mode, initially INTERLEAVED_-
ATTRIBS.

• An integer holding the number of outputs to be captured, initially zero.

• An integer holding the length of the longest output name being captured,
initially zero.

• For each output being captured, two integers holding its size and type, and
an array of type char holding its name.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

This list of program object state is not complete. Tables 23.32-23.42 describe
additional program object state specific to program binaries, geometry shaders,
tessellation control and evaluation shaders, shader subroutines, and uniform blocks.

Table 23.43 describes state related to vertex and geometry shaders that is not
program object state.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 8

Textures and Samplers

Texturing maps a portion of one or more specified images onto a fragment or
vertex. This mapping is accomplished in shaders by sampling the color of an
image at the location indicated by specified (s, t, r) texture coordinates. Texture
lookups are typically used to modify a fragment’s RGBA color but may be used
for any purpose in a shader.

This chapter first describes how pixel rectangles, texture images, and texture
and sampler object parameters are specified and queried, in sections 8.1-8.11. The
remainder of the chapter in sections 8.12-8.26 describe how texture sampling is
performed in shaders.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 8.12-8.13. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.
The fragment shader is responsible for interpreting the result of a texture lookup as
the correct data type, otherwise the result is undefined.

Each of the supported types of texture is a collection of texture images built
from one-, two-, or three-dimensional arrays of texels (see section 2.6.6). One-,
two-, and three-dimensional textures consist respectively of one-, two-, or three-
dimensional texture images. One- and two-dimensional array textures are arrays
of one- or two-dimensional images. Each image consists of one or more layers.
Two-dimensional multisample and two-dimensional multisample array textures are
special two-dimensional and two-dimensional array textures, respectively, contain-
ing multiple samples in each texel. Cube maps are special two-dimensional array
textures with six layers that represent the faces of a cube. When accessing a cube
map, the texture coordinates are projected onto one of the six faces of the cube. A

167

8.1. TEXTURE OBJECTS 168

cube map array is a collection of cube map layers stored as a two-dimensional array
texture. When accessing a cube map array, the texture coordinates s, t, and r are
applied similarly as cube maps while the last texture coordinate q is used as the in-
dex of one of the cube map slices. Rectangle textures are special two-dimensional
textures consisting of only a single image and accessed using unnormalized coor-
dinates. Buffer textures are special one-dimensional textures whose texture images
are stored in separate buffer objects.

Implementations must support texturing using multiple images.
The following subsections (up to and including section 8.14) specify the GL

operation with a single texture. Multiple texture images may be sampled and com-
bined by shaders as described in section 11.1.3.5.

The coordinates used for texturing in a fragment shader are defined by the
OpenGL Shading Language Specification.

The command

void ActiveTexture(enum texture);

specifies the active texture unit selector. The selector may be queried by calling
GetIntegerv with pname set to ACTIVE_TEXTURE.

Each texture image unit consists of all the texture state defined in chapter 8.
The active texture unit selector selects the texture image unit accessed by com-

mands involving texture image processing. Such commands include TexParam-
eter, TexImage, BindTexture, and queries of all such state.

Errors

An INVALID_ENUM error is generated if an invalid texture is specified.
texture is a symbolic constant of the form TEXTUREi, indicating that texture
unit i is to be modified. Each TEXTUREi adheres to TEXTUREi = TEXTURE0 +
i, where i is in the range zero to k−1, and k is the value of MAX_COMBINED_-
TEXTURE_IMAGE_UNITS.

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTURE0.

8.1 Texture Objects

Textures in GL are represented by named objects. The name space for tex-
ture objects is the unsigned integers, with zero reserved by the GL to represent
the default texture object. The default texture object is bound to each of the

OpenGL 4.5 (Core Profile) - October 24, 2016

8.1. TEXTURE OBJECTS 169

TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_-
2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_MULTISAMPLE, and TEXTURE_-

2D_MULTISAMPLE_ARRAY targets during context initialization.
A new texture object is created by binding an unused name to one of these

texture targets. The command

void GenTextures(sizei n, uint *textures);

returns n previously unused texture names in textures. These names are marked as
used, for the purposes of GenTextures only, but they acquire texture state and a
dimensionality only when they are first bound, just as if they were unused.

Errors

An INVALID_VALUE error is generated if n is negative.

The binding is effected by calling

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 8.22. The new texture object bound to target
is, and remains a texture of the dimensionality and type specified by target until it
is deleted.

BindTexture may also be used to bind an existing texture object to any of
these targets. If the bind is successful no change is made to the state of the
bound texture object, the name of the bound texture object may be queried with
TEXTURE BINDING, and any previous binding to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object.

Errors

An INVALID_ENUM error is generated if target is not one of the texture
targets described in the introduction to section 8.1.

An INVALID_OPERATION error is generated if an attempt is made to bind
a texture object of different dimensionality than the specified target.

An INVALID_OPERATION error is generated if texture is not zero or a

OpenGL 4.5 (Core Profile) - October 24, 2016

8.1. TEXTURE OBJECTS 170

name returned from a previous call to GenTextures, or if such a name has
since been deleted.

The command

void BindTextures(uint first, sizei count, const
uint *textures);

binds count existing texture objects to texture image units numbered first through
first + count − 1. If textures is not NULL, it specifies an array of count values,
each of which must be zero or the name of an existing texture object. When an
entry in textures is the name of an existing texture object, that object is bound to
the target, in the corresponding texture unit, that was specified when the object was
created. When an entry in textures is zero, each of the targets enumerated at the
beginning of this section is reset to its default texture for the corresponding texture
image unit. If textures is NULL, each target of each affected texture image unit from
first to first+ count− 1 is reset to its default texture.

BindTextures is equivalent (assuming no errors are generated to):

for (i = 0; i < count; i++) {
uint texture;
if (textures == NULL) {

texture = 0;
} else {

texture = textures[i];
}
ActiveTexture(TEXTURE0 + first + i);
if (texture != 0) {

enum target = /* target of textures[i] */;
BindTexture(target, textures[i]);

} else {
for (target in all supported targets) {

BindTexture(target, 0);
}

}
}

except that the active texture selector retains its original value upon completion of
the command, and that textures will not be created if they do not exist.

The values specified in textures will be checked separately for each texture
image unit. When a value for a specific texture image unit is invalid, the state for

OpenGL 4.5 (Core Profile) - October 24, 2016

8.1. TEXTURE OBJECTS 171

that texture image unit will be unchanged and an error will be generated. However,
state for other texture image units will still be changed if their corresponding values
are valid.

Errors

An INVALID_OPERATION error is generated if first + count is greater
than the number of texture image units supported by the implementation.

An INVALID_OPERATION error is generated if any value in textures is not
zero or the name of an existing texture object (per binding).

The command

void BindTextureUnit(uint unit, uint texture);

binds an existing texture object to the texture unit numbered unit. texture must
be zero or the name of an existing texture object. When texture is the name of
an existing texture object, that object is bound to the target, in the corresponding
texture unit, that was specified when the object was created. When texture is zero,
each of the targets enumerated at the beginning of this section is reset to its default
texture for the corresponding texture image unit.

Errors

An INVALID_OPERATION error is generated by BindTextureUnit if tex-
ture is not zero or the name of an existing texture object.

Texture objects may also be created with the command

void CreateTextures(enum target, sizei n, uint *textures);

CreateTextures returns n previously unused texture names in textures, each
representing a new texture object that is a state vector comprising all the state and
with the same initial values listed in section 8.22. The new texture objects are and
remain textures of the dimensionality and type specified by target until they are
deleted.

Errors

An INVALID_VALUE error is generated if n is negative.

Texture objects are deleted by calling

OpenGL 4.5 (Core Profile) - October 24, 2016

8.2. SAMPLER OBJECTS 172

void DeleteTextures(sizei n, const uint *textures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 9.2.8
for details.

Unused names in textures that have been marked as used for the purposes of
GenTextures are marked as unused again. Unused names in textures are silently
ignored, as is the name zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If texture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE.

The texture object name space, including the initial one-, two-, and three- di-
mensional, one- and two-dimensional array, rectangle, buffer, cube map, cube map
array, two-dimensional multisample, and two-dimensional multisample array tex-
ture objects, is shared among all texture units. A texture object may be bound to
more than one texture unit simultaneously. After a texture object is bound, any
GL operations on that target object affect any other texture units to which the same
texture object is bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

8.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described
in section 8.22. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category

OpenGL 4.5 (Core Profile) - October 24, 2016

8.2. SAMPLER OBJECTS 173

represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the sampling state of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a sampler unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter*, GetSamplerParameter*, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 23.18.

Errors

An INVALID_VALUE error is generated if count is negative.

Sampler objects may also be created with the command

void CreateSamplers(sizei n, uint *samplers);

CreateSamplers returns n previously unused sampler names in samplers, each
representing a new sampler object which is a state vector comprising all the state
and with the same initial values listed in table 23.181.

Errors

An INVALID_VALUE error is generated if n is negative.

When a sampler object is bound to a texture unit, its state supersedes that of
the texture object bound to that texture unit. If the sampler name zero is bound to
a texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler object binding is effected with the command

void BindSampler(uint unit, uint sampler);
1Note that unlike texture objects, the initial sampler object state for TEXTURE_MIN_FILTER

and TEXTURE_WRAP_* are fixed, rather than dependent on the type of texture image.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.2. SAMPLER OBJECTS 174

with unit set to the zero-based index of the texture unit to which to bind the sampler
and sampler set to the name of a sampler object returned from a previous call to
GenSamplers.

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

If state is present in a sampler object bound to a texture unit that would have
been rejected by a call to TexParameter* for the texture bound to that unit, the
behavior of the implementation is as if the texture were incomplete. For example, if
TEXTURE_WRAP_S or TEXTURE_WRAP_T is set to REPEAT, MIRRORED_REPEAT,
or MIRROR_CLAMP_TO_EDGE on the sampler object bound to a texture unit and
the texture bound to that unit is a rectangle texture, the texture will be considered
incomplete.

Sampler object state which does not affect sampling for the type of texture
bound to a texture unit, such as TEXTURE_WRAP_R for a rectangle texture, does
not affect completeness.

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding the sampler object named zero to that unit), the modified
state is again replaced with the sampler state associated with the texture object
bound to that texture unit.

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to
the value of MAX_COMBINED_TEXTURE_IMAGE_UNITS.

An INVALID_OPERATION error is generated if sampler is not zero or a
name returned from a previous call to GenSamplers, or if such a name has
since been deleted with DeleteSamplers.

The command

void BindSamplers(uint first, sizei count, const
uint *samplers);

binds count existing sampler objects to texture image units numbered first through
first + count − 1. If samplers is not NULL, it specifies an array of count values,
each of which must be zero or the name of an existing sampler object. If samplers
is NULL, each affected texture image unit from first through first+ count−1 will
be reset to have no bound sampler object.

BindSamplers is equivalent (assuming no errors are generated to):

OpenGL 4.5 (Core Profile) - October 24, 2016

8.2. SAMPLER OBJECTS 175

for (i = 0; i < count; i++) {
if (samplers == NULL) {

BindSampler(first + i, 0);
} else {

BindSampler(first + i, samplers[i]);
}

}

The values specified in samplers will be checked separately for each texture
image unit. When a value for a specific texture image unit is invalid, the state for
that texture image unit will be unchanged and an error will be generated. However,
state for other texture image units will still be changed if their corresponding values
are valid.

Errors

An INVALID_OPERATION error is generated if first + count is greater
than the number of texture image units supported by the implementation.

An INVALID_OPERATION error is generated if any value in samplers is
not zero or the name of an existing sampler object (per binding).

The parameters represented by a sampler object are a subset of those described
in section 8.10. Each parameter of a sampler object is set by calling

void SamplerParameter{if}(uint sampler, enum pname,
T param);

void SamplerParameter{if}v(uint sampler, enum pname,
const T *param);

void SamplerParameterI{i ui}v(uint sampler, enum pname,
const T *params);

sampler is the name of a sampler object previously reserved by a call to GenSam-
plers. pname is the name of a parameter to modify and param is the new value of
that parameter. pname must be one of the sampler state names in table 23.18.

Texture state listed in tables 23.16- 23.17 but not listed here and in the sampler
state in table 23.18 is not part of the sampler state, and remains in the texture object.

Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

• If the values for TEXTURE_BORDER_COLOR are specified with SamplerPa-
rameterIiv or SamplerParameterIuiv, they are unmodified and stored with

OpenGL 4.5 (Core Profile) - October 24, 2016

8.2. SAMPLER OBJECTS 176

an internal data type of integer. If specified with SamplerParameteriv, they
are converted to floating-point using equation 2.2. Otherwise, the values are
unmodified and stored as floating-point.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 23.18.

An INVALID_ENUM error is generated if SamplerParameter{if} is called
for a non-scalar parameter (pname TEXTURE_BORDER_COLOR or TEXTURE_-
SWIZZLE_RGBA).

If the value of param is not an acceptable value for the parameter specified
in pname, an error is generated as specified in the description of TexParame-
ter*.

Sampler objects are deleted by calling

void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to one or more texture units is deleted, it is as though BindSampler is called
once for each texture unit to which the sampler is bound, with unit set to the texture
unit and sampler set to zero. Unused names in samplers that have been marked as
used for the purposes of GenSamplers are marked as unused again. Unused names
in samplers are silently ignored, as is the reserved name zero.

Errors

An INVALID_VALUE error is generated if count is negative.

The command

boolean IsSampler(uint sampler);

OpenGL 4.5 (Core Profile) - October 24, 2016

8.3. SAMPLER OBJECT QUERIES 177

may be called to determine whether sampler is the name of a sampler object. Is-
Sampler will return TRUE if sampler is the name of a sampler object previously
returned from a call to GenSamplers and FALSE otherwise. Zero is not the name
of a sampler object.

8.3 Sampler Object Queries

The current values of the parameters of a sampler object may be queried by calling

void GetSamplerParameter{if}v(uint sampler,
enum pname, T *params);

void GetSamplerParameterI{i ui}v(uint sampler,
enum pname, T *params);

sampler is the name of the sampler object from which to retrieve parameters.
pname is the name of the parameter to be queried, and must be one of the sam-
pler state names in table 23.18. params is the address of an array into which the
current value of the parameter will be placed.

Querying TEXTURE_BORDER_COLOR with GetSamplerParameterIiv or Get-
SamplerParameterIuiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 23.18.

8.4 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL
using TexImage*D (see section 8.5). Some of the parameters and operations
governing the operation of these commands are shared by ReadPixels (used to
obtain pixel values from the framebuffer); the discussion of ReadPixels, how-
ever, is deferred until chapter 9 after the framebuffer has been discussed in detail.
Nevertheless, we note in this section when parameters and state pertaining to these
commands also pertain to ReadPixels.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 178

Parameter Name Type Initial Value Valid Range
UNPACK_SWAP_BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0,∞)

UNPACK_SKIP_ROWS integer 0 [0,∞)

UNPACK_SKIP_PIXELS integer 0 [0,∞)

UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT integer 0 [0,∞)

UNPACK_SKIP_IMAGES integer 0 [0,∞)

UNPACK_COMPRESSED_BLOCK_WIDTH integer 0 [0,∞)

UNPACK_COMPRESSED_BLOCK_HEIGHT integer 0 [0,∞)

UNPACK_COMPRESSED_BLOCK_DEPTH integer 0 [0,∞)

UNPACK_COMPRESSED_BLOCK_SIZE integer 0 [0,∞)

Table 8.1: PixelStore* parameters pertaining to one or more of TexImage*D,
TexSubImage*D, CompressedTexImage*D and CompressedTexSubImage*D.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with PixelStore*.

8.4.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D, Com-
pressedTexImage*D, CompressedTexSubImage*D, and ReadPixels when one
of these commands is issued. Pixel storage modes are set with

void PixelStore{if}(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Tables 8.1 and 18.1 summarize the pixel storage parameters, their
types, their initial values, and their allowable ranges.

Errors

An INVALID_ENUM error is generated if pname is not one of the paramater
names in table 8.1 or 18.1.

An INVALID_VALUE error is generated if param is outside the given range

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 179

for the corresponding pname in table 8.1 or 18.1.

Data conversions are performed as specified in section 2.2.1.
In addition to storing pixel data in client memory, pixel data may also be

stored in buffer objects (described in section 6). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_-

PACK_BUFFER targets respectively.
Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-

age specification commands such as TexImage*D source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into
the designated buffer object.

8.4.2 The Imaging Subset

This subsection is only defined in the compatibility profile.

8.4.3 Pixel Transfer Modes

This subsection is only defined in the compatibility profile.

8.4.4 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 8.1. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.
width and height are the width and height, respectively, of the pixel rectangle

to be transferred.
data refers to the data to be drawn. These data are represented with one of

several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 8.2.

Not all combinations of format and type are valid.

Errors

An INVALID ENUM error is generated if format is DEPTH STENCIL
and type is not UNSIGNED INT 24 8 or
FLOAT 32 UNSIGNED INT 24 8 REV.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 180

Unpack

byte, short, int, float, or packed
pixel component data stream

Convert to Float

Expansion to
RGBA

RGBA pixel data out

Pixel Storage
Operations

Figure 8.1. Transfer of pixel rectangles to the GL. Output is RGBA pixels. Depth
and stencil pixel paths are not shown.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 181

An INVALID_OPERATION error is generated if format is one of the
INTEGER component formats defined in table 8.3 and type is one of the
floating-point types defined in table 8.2.

Some additional constraints on the combinations of format and type values
that are accepted are discussed below. Additional restrictions may be imposed by
specific commands.

8.4.4.1 Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating-point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 8.3 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer.

Errors

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and unpacking the pixel data according to the process described
below would access memory beyond the size of the pixel unpack buffer’s
memory size.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and data is not evenly divisible by the number of basic machine
units needed to store in memory the corresponding GL data type from table 8.2
for the type parameter (or not evenly divisible by 4 for type FLOAT_32_-

UNSIGNED_INT_24_8_REV, which does not have a corresponding GL data
type).

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 8.4. The modified bit orderings are defined only if the GL data type

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 182

type Parameter Corresponding Special Floating-
Token Name GL Data Type Interpretation Point
UNSIGNED_BYTE ubyte No No
BYTE byte No No
UNSIGNED_SHORT ushort No No
SHORT short No No
UNSIGNED_INT uint No No
INT int No No
HALF_FLOAT half No Yes
FLOAT float No Yes
UNSIGNED_BYTE_3_3_2 ubyte Yes No
UNSIGNED_BYTE_2_3_3_REV ubyte Yes No
UNSIGNED_SHORT_5_6_5 ushort Yes No
UNSIGNED_SHORT_5_6_5_REV ushort Yes No
UNSIGNED_SHORT_4_4_4_4 ushort Yes No
UNSIGNED_SHORT_4_4_4_4_REV ushort Yes No
UNSIGNED_SHORT_5_5_5_1 ushort Yes No
UNSIGNED_SHORT_1_5_5_5_REV ushort Yes No
UNSIGNED_INT_8_8_8_8 uint Yes No
UNSIGNED_INT_8_8_8_8_REV uint Yes No
UNSIGNED_INT_10_10_10_2 uint Yes No
UNSIGNED_INT_2_10_10_10_REV uint Yes No
UNSIGNED_INT_24_8 uint Yes No
UNSIGNED_INT_10F_11F_11F_REV uint Yes Yes
UNSIGNED_INT_5_9_9_9_REV uint Yes Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes No

Table 8.2: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described in section 8.4.4.2. Floating-point types are incompatible with INTEGER

formats as described above.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 183

Format Name Element Meaning and Order Target Buffer
STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Index Depth and Stencil
RED R Color
GREEN G Color
BLUE B Color
RG R, G Color
RGB R, G, B Color
RGBA R, G, B, A Color
BGR B, G, R Color
BGRA B, G, R, A Color
RED_INTEGER iR Color
GREEN_INTEGER iG Color
BLUE_INTEGER iB Color
RG_INTEGER iR, iG Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, iG, iB, iA Color
BGR_INTEGER iB, iG, iR Color
BGRA_INTEGER iB, iG, iR, iA Color

Table 8.3: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Unless specified as an index, formats
yield components. Components are floating-point unless prefixed with the letter
’i’, which indicates they are integer.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 184

Element Size Default Bit Ordering Modified Bit Ordering
8 bit [7..0] [7..0]

16 bit [15..0] [7..0][15..8]

32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 8.4: Bit ordering modification of elements when UNPACK_SWAP_BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the least significant.

ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is zero, then the
number of groups in a row is width; otherwise the number of groups is the value of
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element
of the first row, then the first element of the N th row is indicated by

p+Nk (8.1)

where N is the row number (counting from zero) and k is defined as

k =

{
nl s ≥ a,
a
s

⌈
snl
a

⌉
s < a

(8.2)

where n is the number of elements in a group, l is the number of groups in the row,
a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL ubytes, of
an element. If the number of bits per element is not 1, 2, 4, or 8 times the number
of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 8.2.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 185

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 8.2. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK_ for TexImage* and by PACK_ for ReadPixels.

8.4.4.2 Special Interpretations

A type matching one of the types in table 8.5 is a special case in which all the
components of each group are packed into a single unsigned byte, unsigned short,
or unsigned int, depending on the type. If type is FLOAT_32_UNSIGNED_INT_-
24_8_REV, the components of each group are contained within two 32-bit words;
the first word contains the float component, and the second word contains a packed
24-bit unused field, followed by an 8-bit index. The number of components per
packed pixel is fixed by the type, and must match the number of components per
group indicated by the format parameter, as listed in table 8.5.

Errors

An INVALID_OPERATION error is generated by any command processing
pixel rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 8.6- 8.9. Each bitfield is interpreted as an
unsigned integer value.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive components occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 186

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats
UNSIGNED_BYTE_3_3_2 ubyte 3 RGB, RGB_INTEGER
UNSIGNED_BYTE_2_3_3_REV ubyte 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5 ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5_REV ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA, BGRA, RGBA_-

INTEGER, BGRA_-

INTEGER

UNSIGNED_SHORT_4_4_4_4_REV ushort 4 RGBA, BGRA, RGBA_-

INTEGER, BGRA_-

INTEGER

UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA, BGRA, RGBA_-

INTEGER, BGRA_-

INTEGER

UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA, BGRA, RGBA_-

INTEGER, BGRA_-

INTEGER

UNSIGNED_INT_8_8_8_8 uint 4 RGBA, BGRA, RGBA_-

INTEGER, BGRA_-

INTEGER

UNSIGNED_INT_8_8_8_8_REV uint 4 RGBA, BGRA, RGBA_-

INTEGER, BGRA_-

INTEGER

UNSIGNED_INT_10_10_10_2 uint 4 RGBA, BGRA, RGBA_-

INTEGER, BGRA_-

INTEGER

UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA, BGRA, RGBA_-

INTEGER, BGRA_-

INTEGER

UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL

UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB

UNSIGNED_INT_5_9_9_9_REV uint 4 RGB

FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 8.5: Packed pixel formats.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 187

significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

UNSIGNED_BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 8.6: UNSIGNED_BYTE formats. Bit numbers are indicated for each compo-
nent.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 188

UNSIGNED_SHORT_5_6_5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_SHORT_5_6_5_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED_SHORT_4_4_4_4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_SHORT_4_4_4_4_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_SHORT_5_5_5_1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_SHORT_1_5_5_5_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 8.7: UNSIGNED_SHORT formats

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 189

UNSIGNED_INT_8_8_8_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_INT_8_8_8_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_10_10_10_2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_INT_2_10_10_10_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_24_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd

UNSIGNED_INT_10F_11F_11F_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED_INT_5_9_9_9_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 8.8: UNSIGNED_INT formats

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 190

FLOAT_32_UNSIGNED_INT_24_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused 2nd

Table 8.9: FLOAT_UNSIGNED_INT formats

OpenGL 4.5 (Core Profile) - October 24, 2016

8.4. PIXEL RECTANGLES 191

Format First Second Third Fourth
Component Component Component Component

RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha
DEPTH_STENCIL depth stencil

Table 8.10: Packed pixel field assignments.

The assignment of components to fields in the packed pixel is as described in
table 8.10.

Byte swapping, if enabled, is performed before the components are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies
3 packed components as shown in table 8.8. The 1st, 2nd, and 3rd components are
called fred (11 bits), fgreen (11 bits), and fblue (10 bits) respectively.

fred and fgreen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.3.4.3. fblue is treated as an unsigned 10-bit floating-point value and con-
verted to a floating-point blue component as described in section 2.3.4.4.

A type of UNSIGNED_INT_5_9_9_9_REV and format of RGB is a special case
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in table 8.8. The 1st, 2nd, 3rd, and 4th components
are called pred, pgreen, pblue, and pexp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point” section below in this case) as follows:

red = pred2pexp−B−N

green = pgreen2pexp−B−N

blue = pblue2
pexp−B−N

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 192

8.4.4.3 Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and
indices, such as DEPTH_STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value. For unsigned
or signed normalized fixed-point elements, equations 2.1 or 2.2, respectively, are
used.

8.4.4.4 Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to one for integer components or 1.0 for floating-point com-
ponents. If any of R, G, or B is missing from the group, each missing element is
added and assigned a value of 0 for integer components or 0.0 for floating-point
components.

8.4.5 Pixel Transfer Operations

This subsection is only defined in the compatibility profile.

8.5 Texture Image Specification

The command

void TexImage3D(enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, const void *data);

is used to specify a three-dimensional texture image. target must be one of
TEXTURE_3D for a three-dimensional texture, TEXTURE_2D_ARRAY for a two-
dimensional array texture, or TEXTURE_CUBE_MAP_ARRAY for a cube map ar-
ray texture. Additionally, target may be either PROXY_TEXTURE_3D for a three-
dimensional proxy texture, PROXY_TEXTURE_2D_ARRAY for a two-dimensional
proxy array texture, or PROXY_TEXTURE_CUBE_MAP_ARRAY for a cube map array
texture, as discussed in section 8.22. format, type, and data specify the format of
the image data, the type of those data, and a reference to the image data in the cur-
rently bound pixel unpack buffer or client memory, as described in section 8.4.4.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 193

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 8.4.4. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_-
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 8.4.4.

The selected groups are transferred to the GL as described in section 8.4.4
and then clamped to the representable range of the internal format. If the inter-
nalformat of the texture is signed or unsigned integer, components are clamped
to [−2n−1, 2n−1 − 1] or [0, 2n − 1], respectively, where n is the number of bits
per component. For color component groups, if the internalformat of the texture
is signed or unsigned normalized fixed-point, components are clamped to [−1, 1]
or [0, 1], respectively. For depth component groups, the depth value is clamped
to [0, 1]. Otherwise, values are not modified. Stencil index values are masked by
2n − 1, where n is the number of stencil bits in the internal format resolution (see
below). If the base internal format is DEPTH_STENCIL and format is not DEPTH_-
STENCIL, then the values of the stencil index texture components are undefined.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 8.11 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the internal format
symbolic constants listed in table 8.11, as one of the sized internal format symbolic
constants listed in tables 8.12- 8.13, as one of the generic compressed internal
format symbolic constants listed in table 8.14, or as one of the specific compressed
internal format symbolic constants (if listed in table 8.14).

Textures with a base internal format of DEPTH_COMPONENT, DEPTH_-

STENCIL, or STENCIL_INDEX are supported by texture image specification
commands only if target is TEXTURE_1D, TEXTURE_2D, TEXTURE_2D_-

MULTISAMPLE, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_-

2D_MULTISAMPLE_ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP,

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 194

Base Internal Format RGBA, Depth, and Stencil Values Internal Components
DEPTH_COMPONENT Depth D

DEPTH_STENCIL Depth,Stencil D,S
RED R R

RG R,G R,G
RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A
STENCIL_INDEX Stencil S

Table 8.11: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture components. Texture components R, G, B, and A are converted back
to RGBA colors during filtering as shown in table 15.1.

TEXTURE_CUBE_MAP_ARRAY, PROXY_TEXTURE_1D, PROXY_TEXTURE_-

2D, PROXY_TEXTURE_2D_MULTISAMPLE, PROXY_TEXTURE_1D_ARRAY,
PROXY_TEXTURE_2D_ARRAY, PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY,
PROXY_TEXTURE_RECTANGLE, PROXY_TEXTURE_CUBE_MAP, or PROXY_-

TEXTURE_CUBE_MAP_ARRAY.
An INVALID_OPERATION error is generated if these formats are used in con-

junction with any other target.
Textures with a base internal format of DEPTH_COMPONENT or DEPTH_-

STENCIL require either depth component data or depth/stencil component data.
Textures with other base internal formats require RGBA component data.

Textures with integer internal formats (see table 8.12) require integer data.
In addition to the specific compressed internal formats listed in table 8.14, the

GL provides a mechanism to query token values for specific compressed internal
formats, suitable for general-purpose2 usage. Formats with restrictions that need to
be specifically understood prior to use will not be returned by this query. The num-
ber of specific compressed internal formats is obtained by querying the value of
NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed internal
formats is obtained by querying COMPRESSED_TEXTURE_FORMATS with GetInte-
gerv, returning an array containing that number of values.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.

2 These queries have been deprecated in OpenGL 4.2, because the vagueness of the term “general-
purpose” makes it possible for implementations to choose to return no formats from the query.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 195

If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures), internalformat is replaced by the corresponding
base internal format and the texture image will not be compressed by the GL.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing, referred to as the effective internal format. The effective internal format
chosen may change depending only on the values of format and type, and affects
format compatibility for commands such as TextureView (see section 8.18) and
CopyImageSubData (see section 18.3.2). If a sized internal format is specified,
the mapping of the R, G, B, A, depth, and stencil values to texture components is
equivalent to the mapping of the corresponding base internal format’s components,
as specified in table 8.11; the type (unsigned int, float, etc.) is assigned the same
type specified by internalformat; and the memory allocation per texture component
is assigned by the GL to match the allocations listed in tables 8.12- 8.13 as closely
as possible. (The definition of closely is left up to the implementation. However,
a non-zero number of bits must be allocated for each component whose desired
allocation in tables 8.12- 8.13 is non-zero, and zero bits must be allocated for all
other components).

8.5.1 Required Texture Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
any texture type will allocate at least the internal component sizes, and exactly the
component types shown for that format in the corresponding table:

• Color formats which are checked in the “Req. tex.” column of table 8.12.

• All of the specific compressed texture formats in table 8.14.

• Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.13.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 196

8.5.2 Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.3.4.3 and 2.3.4.4.

If internalformat is RGB9_E5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

redc = max(0,min(sharedexpmax, red))

greenc = max(0,min(sharedexpmax, green))

bluec = max(0,min(sharedexpmax, blue))

where

sharedexpmax =
(2N − 1)

2N
2Emax−B.

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and Emax is the maximum allowed biased exponent value (31).

The largest clamped component, maxc, is determined:

maxc = max(redc, greenc, bluec)

A preliminary shared exponent expp is computed:

expp = max(−B − 1, blog2(maxc)c) + 1 +B

A refined shared exponent exps is computed:

maxs =

⌊
maxc

2expp−B−N
+

1

2

⌋

exps =

{
expp, 0 ≤ maxs < 2N

expp + 1, maxs = 2N

Finally, three integer values in the range 0 to 2N − 1 are computed:

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 197

reds =

⌊
redc

2exps−B−N
+

1

2

⌋
greens =

⌊
greenc

2exps−B−N
+

1

2

⌋
blues =

⌊
bluec

2exps−B−N
+

1

2

⌋
The resulting reds, greens, blues, and exps are stored in the red, green, blue,

and shared bits respectively of the texture image.
An implementation accepting pixel data of type UNSIGNED_INT_5_9_9_9_-

REV with format RGB is allowed to store the components “as is”.

Sized Base Bits/component CR Req. Req.
Internal Internal S are shared bits rend. tex.
Format Format R G B A S
R8 RED 8 � � �
R8_SNORM RED s8 � �
R16 RED 16 � � �
R16_SNORM RED s16 � �
RG8 RG 8 8 � � �
RG8_SNORM RG s8 s8 � �
RG16 RG 16 16 � � �
RG16_SNORM RG s16 s16 � �
R3_G3_B2 RGB 3 3 2 � �
RGB4 RGB 4 4 4 � �
RGB5 RGB 5 5 5 � �
RGB565 RGB 5 6 5 � � �
RGB8 RGB 8 8 8 � �
RGB8_SNORM RGB s8 s8 s8 � �
RGB10 RGB 10 10 10 � �
RGB12 RGB 12 12 12 � �
RGB16 RGB 16 16 16 � �
RGB16_SNORM RGB s16 s16 s16 � �
RGBA2 RGBA 2 2 2 2 � �
RGBA4 RGBA 4 4 4 4 � � �
RGB5_A1 RGBA 5 5 5 1 � � �

Sized internal color formats continued on next page

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 198

Sized internal color formats continued from previous page
Sized Base Bits/component CR Req. Req.
Internal Internal S are shared bits rend. tex.
Format Format R G B A S
RGBA8 RGBA 8 8 8 8 � � �
RGBA8_SNORM RGBA s8 s8 s8 s8 � �
RGB10_A2 RGBA 10 10 10 2 � � �
RGB10_A2UI RGBA ui10 ui10 ui10 ui2 � � �
RGBA12 RGBA 12 12 12 12 � �
RGBA16 RGBA 16 16 16 16 � � �
RGBA16_SNORM RGBA s16 s16 s16 s16 � �
SRGB8 RGB 8 8 8 � �
SRGB8_ALPHA8 RGBA 8 8 8 8 � � �
R16F RED f16 � � �
RG16F RG f16 f16 � � �
RGB16F RGB f16 f16 f16 � �
RGBA16F RGBA f16 f16 f16 f16 � � �
R32F RED f32 � � �
RG32F RG f32 f32 � � �
RGB32F RGB f32 f32 f32 � �
RGBA32F RGBA f32 f32 f32 f32 � � �
R11F_G11F_B10F RGB f11 f11 f10 � � �
RGB9_E5 RGB 9 9 9 5 �
R8I RED i8 � � �
R8UI RED ui8 � � �
R16I RED i16 � � �
R16UI RED ui16 � � �
R32I RED i32 � � �
R32UI RED ui32 � � �
RG8I RG i8 i8 � � �
RG8UI RG ui8 ui8 � � �
RG16I RG i16 i16 � � �
RG16UI RG ui16 ui16 � � �
RG32I RG i32 i32 � � �
RG32UI RG ui32 ui32 � � �
RGB8I RGB i8 i8 i8 � �
RGB8UI RGB ui8 ui8 ui8 � �

Sized internal color formats continued on next page

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 199

Sized internal color formats continued from previous page
Sized Base Bits/component CR Req. Req.
Internal Internal S are shared bits rend. tex.
Format Format R G B A S
RGB16I RGB i16 i16 i16 � �
RGB16UI RGB ui16 ui16 ui16 � �
RGB32I RGB i32 i32 i32 � �
RGB32UI RGB ui32 ui32 ui32 � �
RGBA8I RGBA i8 i8 i8 i8 � � �
RGBA8UI RGBA ui8 ui8 ui8 ui8 � � �
RGBA16I RGBA i16 i16 i16 i16 � � �
RGBA16UI RGBA ui16 ui16 ui16 ui16 � � �
RGBA32I RGBA i32 i32 i32 i32 � � �
RGBA32UI RGBA ui32 ui32 ui32 ui32 � � �

Table 8.12: Correspondence of sized internal color formats to base
internal formats, internal data type, and desired component reso-
lutions for each sized internal format. The component resolution
prefix indicates the internal data type: f is floating-point, i is signed
integer, ui is unsigned integer, s is signed normalized fixed-point,
and no prefix is unsigned normalized fixed-point. The “CR”, “Req.
tex.”, and “Req. rend.” columns are described in sections 9.4,
8.5.1, and 9.2.5, respectively.

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 8.11. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImage1D (see below) parameter (except target), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by the data parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 8.22.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 200

Sized Base Internal D S Req.
Internal Format Format bits bits format
DEPTH_COMPONENT16 DEPTH_COMPONENT 16 �
DEPTH_COMPONENT24 DEPTH_COMPONENT 24 �
DEPTH_COMPONENT32 DEPTH_COMPONENT 32
DEPTH_COMPONENT32F DEPTH_COMPONENT f32 �
DEPTH24_STENCIL8 DEPTH_STENCIL 24 ui8 �
DEPTH32F_STENCIL8 DEPTH_STENCIL f32 ui8 �
STENCIL_INDEX1 STENCIL_INDEX ui1
STENCIL_INDEX4 STENCIL_INDEX ui4
STENCIL_INDEX8 STENCIL_INDEX ui8 �
STENCIL_INDEX16 STENCIL_INDEX ui16

Table 8.13: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and desired component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: f is floating-point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point. The “Req. format” column is described in section 8.5.1.

8.5.3 Texture Image Structure

The texture image itself (referred to by data) is a sequence of groups of values.
The first group is the lower left back corner of the texture image. Subsequent
groups fill out rows of width width from left to right; height rows are stacked from
bottom to top forming a single two-dimensional image slice; and depth slices are
stacked from back to front. When the final R, G, B, and A components have been
computed for a group, they are assigned to components of a texel as described by
table 8.11. Counting from zero, each resulting nth texel is assigned internal integer
coordinates (i, j, k), where

i = n mod width

j =
(⌊ n

width

⌋
mod height

)
k =

(⌊
n

width× height

⌋
mod depth

)
Thus the last two-dimensional image slice of the three-dimensional image is in-

dexed with the highest value of k.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 201

Compressed Internal Base Internal Type Border
Format Format Type
COMPRESSED_RED RED Generic unorm
COMPRESSED_RG RG Generic unorm
COMPRESSED_RGB RGB Generic unorm
COMPRESSED_RGBA RGBA Generic unorm
COMPRESSED_SRGB RGB Generic unorm
COMPRESSED_SRGB_ALPHA RGBA Generic unorm
COMPRESSED_RED_RGTC1 RED Specific unorm
COMPRESSED_SIGNED_RED_RGTC1 RED Specific snorm
COMPRESSED_RG_RGTC2 RG Specific unorm
COMPRESSED_SIGNED_RG_RGTC2 RG Specific snorm
COMPRESSED_RGBA_BPTC_UNORM RGBA Specific unorm
COMPRESSED_SRGB_ALPHA_BPTC_-

UNORM

RGBA Specific unorm

COMPRESSED_RGB_BPTC_SIGNED_-

FLOAT

RGB Specific float

COMPRESSED_RGB_BPTC_UNSIGNED_-

FLOAT

RGB Specific float

COMPRESSED_RGB8_ETC2 RGB Specific unorm
COMPRESSED_SRGB8_ETC2 RGB Specific unorm
COMPRESSED_RGB8_PUNCHTHROUGH_-

ALPHA1_ETC2

RGB Specific unorm

COMPRESSED_SRGB8_-

PUNCHTHROUGH_ALPHA1_ETC2

RGB Specific unorm

COMPRESSED_RGBA8_ETC2_EAC RGBA Specific unorm
COMPRESSED_SRGB8_ALPHA8_ETC2_-

EAC

RGBA Specific unorm

COMPRESSED_R11_EAC RED Specific unorm
COMPRESSED_SIGNED_R11_EAC RED Specific snorm
COMPRESSED_RG11_EAC RG Specific unorm
COMPRESSED_SIGNED_RG11_EAC RG Specific snorm

Table 8.14: Generic and specific compressed internal formats. Specific formats are
described in appendix C. The “Border Type” field determines how border colors
are clamped, as described in section 8.14.2.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 202

When target is TEXTURE_CUBE_MAP_ARRAY, specifying a cube map array tex-
ture, k refers to a layer-face. The layer is given by

layer =

⌊
k

6

⌋
,

and the face is given by

face = k mod 6.

The face number corresponds to the cube map faces as shown in table 9.3.
If the internal data type of the texture image is signed or unsigned normalized

fixed-point, each color component is converted using equation 2.4 or 2.3, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed in section 8.14.3. The main texture image has a level of
detail number of zero. level must be zero or more.

ws, hs, and ds are the specified image width, height and depth respectively.
border must be zero.

The maximum allowable size, in any relevant dimension, of a texture image
is an implementation-dependent function of the texture target, the level-of-detail,
and the internal format of the image. For most texture types, it must satisfy the
relationship

maxsize ≥ 2k−level (8.3)

for images of level-of-detail (level) 0 through k, where k is a texture target-
dependent maximum level of detail. The maximum size may be zero for any im-
ages where level > k.

The maximum allowable width, height, or depth of a texture image for a three-
dimensional texture is determined by equation 8.3, where k is log2 of the value of
MAX_3D_TEXTURE_SIZE.

In a similar fashion, the maximum allowable width, and the maximum allow-
able height for two-dimensional texture types, of a texture image for a one- or
two-dimensional, one- or two-dimensional array, two-dimensional multisample, or
two-dimensional multisample array texture is determined by equation 8.3, where k
is log2 of the value of MAX_TEXTURE_SIZE.

The maximum allowable width and height of a cube map or cube map array
texture image must be the same, and is determined by equation 8.3, where k is log2
of the value of MAX_CUBE_MAP_TEXTURE_SIZE.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 203

The maximum number of layers for one- and two-dimensional array textures
(height or depth, respectively), and the maximum number of layer-faces for cube
map array textures (depth), must be at least the value of MAX_ARRAY_TEXTURE_-
LAYERS for all levels.

The maximum allowable width and height of a rectangle texture image must
each be at least the value of the implementation-dependent constant MAX_-

RECTANGLE_TEXTURE_SIZE.
As described in section 8.17, these implementation-dependent limits may be

configured to reject textures at level one or greater unless a mipmap complete set
of texture images consistent with the specified sizes can be supported.

Errors

An INVALID_ENUM error is generated if target is not one of the valid tar-
gets listed for each TexImage*D command.

An INVALID_VALUE error is generated if level is negative.
An INVALID_VALUE error is generated if width, height, or depth (if each

argument is present) exceed the corresponding target-dependent maximum
size, as described above.

An INVALID_VALUE error is generated if ws, hs, or ds are negative.
An INVALID_VALUE error is generated by TexImage3D if target is

TEXTURE_CUBE_MAP_ARRAY or PROXY_TEXTURE_CUBE_MAP_ARRAY, and
width and height are not equal, or if depth is not a multiple of six, indicating
6N layer-faces in the cube map array.

An INVALID_VALUE error is generated by TexImage2D if target is one of
the cube map face targets from table 8.19, and width and height are not equal.

An INVALID_VALUE error is generated by TexImage2D if target is
TEXTURE_RECTANGLE and level is non-zero.

An INVALID_VALUE error is generated if border is not zero.
An INVALID_VALUE error is generated if internalformat is not one of the

valid values described above.
An INVALID_OPERATION error is generated if the internal format is in-

teger and format is not one of the integer formats listed in table 8.3, or if the
internal format is not integer and format is an integer format.

An INVALID_OPERATION error is generated by TexImage3D if internal-
format is one of the EAC, ETC2, or RGTC compressed formats and either
border is non-zero, or target is not TEXTURE_2D_ARRAY.

An INVALID_OPERATION error is generated by TexImage2D if internal-
format is one of the EAC, ETC2, or RGTC compressed formats and either

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 204

border is non-zero, or target is not TEXTURE_2D or one of the cube map face
targets from table 8.19.

An INVALID_ENUM error is generated by CompressedTexImage1D if in-
ternalformat is one of the specific compressed formats. OpenGL defines no
specific one-dimensional compressed formats, but such formats may be pro-
vided by extensions.

An INVALID_OPERATION error is generated if one of the base internal
format and format is DEPTH_COMPONENT or DEPTH_STENCIL, and the other
is neither of these values.

An INVALID_OPERATION error is generated if format is STENCIL_-

INDEX and the base internal format is not STENCIL_INDEX.
An INVALID_OPERATION error is generated if a pixel unpack buffer ob-

ject is bound and storing texture data would access memory beyond the end of
the pixel unpack buffer.

The command

void TexImage2D(enum target, int level, int internalformat,
sizei width, sizei height, int border, enum format,
enum type, const void *data);

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, TEXTURE_1D_ARRAY for a one-
dimensional array texture, TEXTURE_RECTANGLE for a rectangle texture, or one
of the cube map face targets from table 8.19 for a cube map texture. Addi-
tionally, target may be either PROXY_TEXTURE_2D for a two-dimensional proxy
texture, PROXY_TEXTURE_1D_ARRAY for a one-dimensional proxy array tex-
ture, PROXY_TEXTURE_RECTANGLE for a rectangle proxy texture, or PROXY_-
TEXTURE_CUBE_MAP for a cube map proxy texture in the special case discussed
in section 8.22. The other parameters match the corresponding parameters of Tex-
Image3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that
UNPACK_SKIP_IMAGES is ignored.

A two-dimensional or rectangle texture consists of a single two-dimensional
texture image. A cube map texture is a set of six two-dimensional texture images.
The six cube map texture face targets from table 8.19 form a single cube map tex-
ture. These targets each update the corresponding cube map face two-dimensional
texture image. Note that the cube map face targets are used when specifying, up-
dating, or querying one of a cube map’s six two-dimensional images, but when
binding to a cube map texture object (that is when the cube map is accessed as a

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 205

whole as opposed to a particular two-dimensional image), the TEXTURE_CUBE_-
MAP target is specified.

Finally, the command

void TexImage1D(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, const void *data);

is used to specify a one-dimensional texture image. target must be either
TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 8.22.

For the purposes of decoding the texture image, TexImage1D is equivalent to
calling TexImage2D with corresponding arguments and height of 1.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory.

We shall refer to the decoded image as the texture image. A three-dimensional
texture image has width, height, and depth ws, hs, and ds as defined in sec-
tion 8.5.3. A two-dimensional or rectangle texture image has depth ds = 1, with
height hs and width ws as above. A one-dimensional texture image has depth
ds = 1, height hs = 1, and width ws as above.

An element (i, j, k) of the texture image is called a texel (for a two-dimensional
texture or one-dimensional array texture, k is irrelevant; for a one-dimensional
texture, j and k are both irrelevant). The texture value used in texturing a fragment
is determined by sampling the texture in a shader, but may not correspond to any
actual texel. See figure 8.3. If target is TEXTURE_CUBE_MAP_ARRAY, the texture
value is determined by (s, t, r, q) coordinates where s, t, and r are defined to be the
same as for TEXTURE_CUBE_MAP and q is defined as the index of a specific cube
map in the cube map array.

If the data argument of TexImage1D, TexImage2D, or TexImage3D is NULL,
and the pixel unpack buffer object is zero, a one-, two-, or three-dimensional tex-
ture image is created with the specified target, level, internalformat, border, width,
height, and depth, but with unspecified image contents. In this case no pixel values
are accessed in client memory, and no pixel processing is performed. Errors are
generated, however, exactly as though the data pointer were valid. Otherwise if
the pixel unpack buffer object is non-zero, the data argument is treated normally
to refer to the beginning of the pixel unpack buffer object’s data.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.5. TEXTURE IMAGE SPECIFICATION 206

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure 8.3. A texture image and the coordinates used to access it. This is a two-
dimensional texture with width 8 and height 4. A one-dimensional texture would
consist of a single horizontal strip. α and β, values used in blending adjacent texels
to obtain a texture value are also shown.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 207

8.6 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

defines a two-dimensional texture image in exactly the manner of TexImage2D,
except that the image data are taken from the framebuffer rather than from client
memory. target must be one of TEXTURE_2D, TEXTURE_1D_ARRAY, TEXTURE_-
RECTANGLE, or one of the cube map face targets from table 8.19. x, y, width,
and height correspond precisely to the corresponding arguments to ReadPixels
(refer to section 18.2); they specify the image’s width and height, and the lower
left (x, y) coordinates of the framebuffer region to be copied. The image is taken
from the framebuffer exactly as if these arguments were passed to CopyPixels
(see section 18.3) with argument type set to COLOR, DEPTH, DEPTH_STENCIL,
or STENCIL_INDEX, depending on internalformat, stopping after conversion of
depth values. RGBA data is taken from the current color buffer, while depth
component and stencil index data are taken from the depth and stencil buffers,
respectively.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, A, or depth values, and masking of the stencil
index values from the resulting pixel groups. Parameters level, internalformat, and
border are specified using the same values, with the same meanings, as the corre-
sponding arguments of TexImage2D.

The constraints on width, height, and border are exactly those for the corre-
sponding arguments of TexImage2D.

Errors

An INVALID_ENUM error is generated if target is not TEXTURE_2D,
TEXTURE_1D_ARRAY, TEXTURE_RECTANGLE, or one of the cube map face
targets from table 8.19.

An INVALID_ENUM error is generated if an invalid value is specified for
internalformat.

An INVALID_VALUE error is generated if the target parameter to Copy-

OpenGL 4.5 (Core Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 208

TexImage2D is one of the six cube map two-dimensional image targets, and
width and height are not equal.

An INVALID_OPERATION error is generated under any of the following
conditions:

• if depth component data is required and no depth buffer is present

• if stencil index data is required and no stencil buffer is present

• if integer RGBA data is required and the format of the current color
buffer is not integer

• if floating- or fixed-point RGBA data is required and the format of the
current color buffer is integer

• if the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for
the framebuffer attachment corresponding to the read buffer (see sec-
tion 18.2.1) is LINEAR (see section 9.2.3) and internalformat is one of
the sRGB formats in table 8.24

• if the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for
the framebuffer attachment corresponding to the read buffer is SRGB

and internalformat is not one of the sRGB formats in table 8.24.

An INVALID_VALUE error is generated if width or height is negative.
An INVALID_FRAMEBUFFER_OPERATION error is generated if the object

bound to READ_FRAMEBUFFER_BINDING (see section 9) is not framebuffer
complete (as defined in section 9.4.2).

An INVALID_OPERATION error is generated if the object bound to
READ_FRAMEBUFFER_BINDING is framebuffer complete and its effective
value of SAMPLE_BUFFERS (see section 9.2.3.1) is one.

The command

void CopyTexImage1D(enum target, int level,
enum internalformat, int x, int y, sizei width,
int border);

defines a one-dimensional texture image in exactly the manner of TexImage1D,
except that the image data are taken from the framebuffer, rather than from client
memory. Currently, target must be TEXTURE_1D. For the purposes of decoding
the texture image, CopyTexImage1D is equivalent to calling CopyTexImage2D
with corresponding arguments and height of 1, except that the height of the image

OpenGL 4.5 (Core Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 209

is always 1, regardless of the value of border. level, internalformat and border
are specified using the same values, with the same meanings, as the corresponding
arguments of TexImage1D. The constraints on width and border are exactly those
of the corresponding arguments of TexImage1D.

To respecify only a rectangular subregion of the texture image of a texture
object, use the commands

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, const
void *data);

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, const void *data);

void TexSubImage1D(enum target, int level, int xoffset,
sizei width, enum format, enum type, const
void *data);

void CopyTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D(enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

void CopyTexSubImage1D(enum target, int level,
int xoffset, int x, int y, sizei width);

void TextureSubImage3D(uint texture, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format, enum type,
const void *pixels);

void TextureSubImage2D(uint texture, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, enum type, const void *pixels);

void TextureSubImage1D(uint texture, int level,
int xoffset, sizei width, enum format, enum type, const
void *pixels);

void CopyTextureSubImage3D(uint texture, int level,
int xoffset, int yoffset, int zoffset, int x, int y,
sizei width, sizei height);

void CopyTextureSubImage2D(uint texture, int level,
int xoffset, int yoffset, int x, int y, sizei width,

OpenGL 4.5 (Core Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 210

Command Names Valid targets or effective texture targets
TexSubImage1D, TEXTURE_1D

CopyTexSubImage1D,
TextureSubImage1D,
CopyTextureSubImage1D
TexSubImage2D, TEXTURE_2D,
CopyTexSubImage2D, TEXTURE_1D_ARRAY,

TEXTURE_RECTANGLE or one of the
cube map face targets from table 8.19

TextureSubImage2D, TEXTURE_2D,
CopyTextureSubImage2D TEXTURE_1D_ARRAY or

TEXTURE_RECTANGLE

TexSubImage3D, TEXTURE_3D,
CopyTexSubImage3D, TEXTURE_2D_ARRAY or

TEXTURE_CUBE_MAP_ARRAY

TextureSubImage3D, TEXTURE_3D,
CopyTextureSubImage3D TEXTURE_2D_ARRAY,

TEXTURE_CUBE_MAP_ARRAY or
TEXTURE_CUBE_MAP

Table 8.15: Valid texture target parameters or effective texture targets for texture
subimage commands.

sizei height);
void CopyTextureSubImage1D(uint texture, int level,

int xoffset, int x, int y, sizei width);

For *TexSubImage*, the texture object is that bound to target, For *Texture-
SubImage*, texture is the name of the texture object. target or the effective target
of texture (the value of TEXTURE_TARGET; see section 8.11.2) must match each
command as shown in table 8.15.

No change is made to the internalformat, width, height, depth, or border pa-
rameters of the specified texture image, nor is any change made to texel values
outside the specified subregion.

The level parameter of each command specifies the level of the texture image
that is modified.

TexSubImage*D and TextureSubImage*D arguments width, height, depth,

OpenGL 4.5 (Core Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 211

format, type, and data match the corresponding arguments to the corresponding3

TexImage*D command (where those arguments exist), meaning that they accept
the same values, and have the same meanings. The exception is that a NULL data
pointer does not represent unspecified image contents.

CopyTex*SubImage3D and CopyTex*SubImage2D arguments x, y, width,
and height match the corresponding arguments to CopyTexImage2D. Copy-
Tex*SubImage1D arguments x, y, and width match the corresponding arguments
to CopyTexImage1D.

Each of these commands interprets and processes pixel groups in exactly the
manner of its TexImage counterpart, except that the assignment of R, G, B, A,
depth, and stencil index pixel group values to the texture components is controlled
by the internalformat of the texture image, not by an argument to the command.
The same constraints and errors apply to the format argument of these commands
and the internalformat of the texture image being respecified as apply to the format
and internalformat arguments of their TexImage counterparts.

Arguments xoffset, yoffset, and zoffset of Tex*SubImage3D and Copy-
Tex*SubImage3D specify the lower left back texel coordinates of a width-wide
by height-high by depth-deep rectangular subregion of the texture image. For cube
map array textures, zoffset is the first layer-face to update, and depth is the num-
ber of layer-faces to update. For TextureSubImage3D and CopyTextureSubIm-
age3D only, texture may be a cube map texture. In this case, zoffset is interpreted
as specifying the cube map face for the corresponding layer in table 9.3 and depth
is the number of successive faces to update.

The depth argument associated with CopyTex*SubImage3D is always 1, be-
cause framebuffer memory is two-dimensional - only a portion of a single (s, t)
slice of a three-dimensional texture is replaced by these commands.

The subregion must lie within the bounds of the texture image. If ws, hs, and
ds are the specified width, height, and depth of the texture image (as described in
section 8.5.3); x, y, and z are the specified xoffset, yoffset, and zoffset values; and
w, h, and d are the specified width, height, and depth values; then it is an error if
any of the relationships in equations 8.4-8.6 are satisfied.

x < 0, x+ w > ws (8.4)

y < 0, y + h > hs (8.5)

z < 0, z + d > ds (8.6)

3 For example, both TexSubImage2D and TextureSubImage2D correspond to TexImage2D for
purposes of this paragraph.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 212

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j, k], where

i = x+ (n mod w)

j = y +
(⌊ n
w

⌋
mod h

)
k = z +

(⌊
n

w × h

⌋
mod d

)
Arguments xoffset and yoffset of Tex*SubImage2D and Copy-

Tex*SubImage2D specify the lower left texel coordinates of a width-wide
by height-high rectangular subregion of the texture image.

The subregion must lie within the bounds of the texture image, as described
above for TexSubImage3D. It is an error if any of the relationships in equa-
tions 8.4-8.5 are satisfied.
Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i = x+ (n mod w)

j = y + (
⌊ n
w

⌋
mod h)

The xoffset argument of Tex*SubImage1D and CopyTex*SubImage1D spec-
ifies the left texel coordinate of a width-wide subregion of the texture image.

The subregion must lie within the bounds of the texture image, as described
above for TexSubImage3D. It is an error if any of the relationships in equation 8.4
are satisfied.
Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i], where

i = x+ (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modified
in this manner, it may not be possible to preserve the contents of some of the tex-
els outside the region being modified. To avoid these complications, the GL does
not support arbitrary modifications to texture images with compressed internal for-
mats. Calling any of the Tex*SubImage* or CopyTex*SubImage* commands
will generate an INVALID_OPERATION error if xoffset, yoffset, or zoffset is not
equal to zero. In addition, the contents of any texel outside the region modified

OpenGL 4.5 (Core Profile) - October 24, 2016

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 213

by such a call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

If the internal format of the texture image being modified is one of the spe-
cific compressed formats described in table 8.14, the texture is stored using the
corresponding compressed texture image encoding (see appendix C). Since such
images are easily edited along 4× 4 texel boundaries, the limitations on subimage
location and size are relaxed for Tex*SubImage2D, Tex*SubImage3D, Copy-
Tex*SubImage2D, and CopyTex*SubImage3D. These commands will generate
an INVALID_OPERATION error if one of the following conditions occurs:

• width is not a multiple of four, width + xoffset is not equal to the value of
TEXTURE_WIDTH, and either xoffset or yoffset is non-zero.

• height is not a multiple of four, height + yoffset is not equal to the value of
TEXTURE_HEIGHT, and either xoffset or yoffset is non-zero.

• xoffset or yoffset is not a multiple of four.

The contents of any 4 × 4 block of texels of such a compressed texture im-
age that does not intersect the area being modified are preserved during valid
Tex*SubImage* and Copy*TexSubImage* calls.

Errors

An INVALID_ENUM error is generated by *TexSubImage* if target does
not match the command, as shown in table 8.15.

An INVALID_OPERATION error is generated by *TextureSubImage* if
texture is not the name of an existing texture object.

An INVALID_OPERATION error is generated by *TextureSubImage* if
the effective target of texture does not match the command, as shown in ta-
ble 8.15.

An INVALID_OPERATION error is generated by:

• *TexSubImage3D if target is TEXTURE_CUBE_MAP_ARRAY; and,

• *TextureSubImage3D if the effective target is TEXTURE_CUBE_MAP

or TEXTURE_CUBE_MAP_ARRAY

and the texture object is not cube complete (for TEXTURE_CUBE_MAP or cube
array complete (for TEXTURE_CUBE_MAP_ARRAY).

An INVALID_VALUE error is generated if level is negative or greater than
the log2 of the maximum texture width, height, or depth.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 214

An INVALID_VALUE error is generated if the effective target is
TEXTURE_RECTANGLE and level is not zero.

An INVALID_VALUE error is generated if the specified subregion does not
lie within the bounds of the texture image, as described above.

An INVALID_FRAMEBUFFER_OPERATION error is generated by Copy-
TexImage*D, CopyTexSubImage*D and CopyTextureSubImage*D if the
object bound to READ_FRAMEBUFFER_BINDING is not framebuffer complete
(see section 9.4.2)

An INVALID_OPERATION error is generated by CopyTexImage*D,
CopyTexSubImage*D and CopyTextureSubImage*D if

• the read buffer is NONE, or

• the value of READ_FRAMEBUFFER_BINDING is non-zero, and

– the read buffer selects an attachment that has no image attached,
or

– the effective value of SAMPLE_BUFFERS for the read framebuffer
(see section 9.2.3.1) is one.

8.6.1 Texture Copying Feedback Loops

Calling any of the CopyTex*SubImage* or CopyTexImage* commands will re-
sult in undefined behavior if the destination texture image level is also bound to to
the selected read buffer (see section 18.2.1) of the read framebuffer. This situation
is discussed in more detail in the description of feedback loops in section 9.3.2.

8.7 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, including the formats defined in appendix C
as well as any additional formats defined by extensions.

The commands

void CompressedTexImage1D(enum target, int level,
enum internalformat, sizei width, int border,
sizei imageSize, const void *data);

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, const void *data);

OpenGL 4.5 (Core Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 215

void CompressedTexImage3D(enum target, int level,
enum internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, const
void *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. The target, level, inter-
nalformat, width, height, depth, and border parameters have the same meaning
as in TexImage1D, TexImage2D, and TexImage3D, except that compressed rect-
angle texture formats are not supported. data refers to compressed image data
stored in the specific compressed image format corresponding to internalformat.
If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and the
compressed data is read from the buffer relative to this offset; otherwise, data is
a pointer to client memory and the compressed data is read from client memory
relative to the pointer.

The compressed image will be decoded according to the specification defining
the internalformat token. Compressed texture images are treated as an array of
imageSize ubytes relative to data.

If the compressed image is not encoded according to the defined image format,
the results of the call are undefined.

If the compressed data are arranged into fixed-size blocks of texels, the pixel
storage modes can be used to select a sub-rectangle from a larger containing rect-
angle. These pixel storage modes operate in the same way as they do for Tex-
Image*D and as described in section 8.4.4. In the remainder of this section, de-
note by blocksize, bw, bh, and bd the values of pixel storage modes UNPACK_-
COMPRESSED_BLOCK_SIZE, UNPACK_COMPRESSED_BLOCK_WIDTH, UNPACK_-
COMPRESSED_BLOCK_HEIGHT, and UNPACK_COMPRESSED_BLOCK_DEPTH re-
spectively. blocksize is the compressed block size in bytes; bw, bh, and bd are
the compressed block width, height, and depth in pixels.

By default the pixel storage modes UNPACK_ROW_LENGTH, UNPACK_SKIP_-
ROWS, UNPACK_SKIP_PIXELS, UNPACK_IMAGE_HEIGHT and UNPACK_SKIP_-

IMAGES are ignored for compressed images. To enable UNPACK_SKIP_PIXELS

and UNPACK_ROW_LENGTH, blocksize and bw must both be non-zero. To also
enable UNPACK_SKIP_ROWS and UNPACK_IMAGE_HEIGHT, bh must be non-zero.
And to also enable UNPACK_SKIP_IMAGES, bd must be non-zero. All parameters
must be consistent with the compressed format to produce the desired results.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 216

Errors

An INVALID_ENUM error is generated if the target parameter to any of the
CompressedTexImagenD commands is TEXTURE_RECTANGLE or PROXY_-
TEXTURE_RECTANGLE.

An INVALID_ENUM error is generated if internalformat is not a supported
specific compressed internal format from table 8.14. In particular, this error
will be generated for any of the generic compressed internal formats.

An INVALID_VALUE error is generated if width, height, depth, or image-
Size is negative.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and data+imageSize is greater than the size of the pixel buffer.

An INVALID_VALUE error is generated if the imageSize parameter is not
consistent with the format, dimensions, and contents of the compressed image.

An INVALID_OPERATION error is generated if any of the following con-
ditions is violated when selecting a sub-rectangle from a compressed image:

• the value of UNPACK_SKIP_PIXELS must be a multiple of bw;

• the value of UNPACK_SKIP_ROWS must be a multiple of bh for Com-
pressedTexImage2D and CompressedTexImage3D;

• the value of UNPACK_SKIP_IMAGES must be a multiple of bd for Com-
pressedTexImage3D.

An INVALID_VALUE error is generated if imageSize does not match the
following requirements when pixel storage modes are active:

• For CompressedTexImage1D the imageSize parameter must be equal
to

blocksize×
⌈
width

bw

⌉
• For CompressedTexImage2D the imageSize parameter must be equal

to

blocksize×
⌈
width

bw

⌉
×
⌈
height

bh

⌉

OpenGL 4.5 (Core Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 217

• For CompressedTexImage3D the imageSize parameter must be equal
to

blocksize×
⌈
width

bw

⌉
×
⌈
height

bh

⌉
×
⌈
depth

bd

⌉
Based on the definition of unpacking from section 8.4.4 for uncompressed im-

ages, unpacking compressed images can be defined where:

• n, the number of elements in a group, is 1.

• s, the size of an element, is blocksize.

• l, the number of groups in a row, is

l =

⌈
row length

bw

⌉
, row length > 0⌈

width
bw

⌉
, otherwise

where row length is the value of UNPACK_ROW_LENGTH.

• a, the value of UNPACK_ALIGNMENT, is ignored.

• k = n× l as is defined for uncompressed images.

Before obtaining the first compressed image block from memory, the data
pointer is advanced by

UNPACK SKIP PIXELS

bw
× n+

UNPACK SKIP ROWS

bh
× k

elements. Then
⌈
width
bw

⌉
blocks are obtained from contiguous blocks in memory

(without advancing the pointer), after which the pointer is advanced by k elements.⌈
height
bh

⌉
sets of

⌈
width
bw

⌉
blocks are obtained this way. For three-dimensional com-

pressed images the pointer is advanced by UNPACK SKIP IMAGES
bd

times the number
of elements in one two-dimensional image before obtaining the first group from
memory. Then after height rows are obtained the pointer skips over the remaining⌈
UNPACK IMAGE HEIGHT

bh

⌉
rows, if UNPACK_IMAGE_HEIGHT is positive, before starting

the next two-dimensional image.
Specific compressed internal formats may impose additional format-specific

restrictions. For example, a format might be supported only for two-dimensional

OpenGL 4.5 (Core Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 218

textures, or might not allow non-zero border values. Any such restrictions will be
documented in the extension specification defining the compressed internal format.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTexImage1D, CompressedTex-
Image2D, or CompressedTexImage3D will not generate an error if the following
restrictions are satisfied:

• data points to a compressed texture image returned by GetCompressedTex-
Image (section 8.11).

• target, level, and internalformat match the target, level and format parame-
ters provided to the GetCompressedTexImage call returning data.

• width, height, depth, internalformat, and imageSize match the values
of TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, TEXTURE_-

INTERNAL_FORMAT, and TEXTURE_COMPRESSED_IMAGE_SIZE for image
level level in effect at the time of the GetCompressedTexImage call return-
ing data.

This guarantee applies not just to images returned by GetCompressedTexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

If internalformat is one of the specific compressed formats described in ta-
ble 8.14, the compressed image data is stored using the corresponding texture im-
age encoding (see appendix C). The corresponding compression algorithms sup-
port only two-dimensional images without borders, though three-dimensional im-
ages can be compressed as multiple slices of compressed two-dimensional BPTC
images.

Errors

An INVALID_OPERATION error is generated if any format-specific re-
strictions imposed by specific compressed internal formats are violated by the
compressed image specification calls or parameters.

An INVALID_ENUM error is generated by CompressedTexImage1D if in-
ternalformat is one of the specific compressed formats. OpenGL defines no
specific one-dimensional compressed formats, but such formats may be pro-
vided by extensions.

An INVALID_OPERATION error is generated by CompressedTexIm-
age2D if internalformat is one of the EAC, ETC2, or RGTC formats and either

OpenGL 4.5 (Core Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 219

border is non-zero, or target is TEXTURE_RECTANGLE.
An INVALID_OPERATION error is generated by CompressedTexIm-

age3D if internalformat is one of the EAC, ETC2, or RGTC formats and either
border is non-zero, or target is not TEXTURE_2D_ARRAY.

An INVALID_OPERATION error is generated by CompressedTexIm-
age2D and CompressedTexImage3D if internalformat is one of the BPTC
formats and border is non-zero.

If the data argument of CompressedTexImage1D, CompressedTexImage2D,
or CompressedTexImage3D is NULL, and the pixel unpack buffer object is zero,
a texture image with unspecified image contents is created, just as when a NULL

pointer is passed to TexImage1D, TexImage2D, or TexImage3D.
To respecify only a rectangular subregion of the texture image of a texture

object, with incoming data stored in a specific compressed image format, use the
commands

void CompressedTexSubImage1D(enum target, int level,
int xoffset, sizei width, enum format, sizei imageSize,
const void *data);

void CompressedTexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, const void *data);

void CompressedTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

void CompressedTextureSubImage1D(uint texture,
int level, int xoffset, sizei width, enum format,
sizei imageSize, const void *data);

void CompressedTextureSubImage2D(uint texture,
int level, int xoffset, int yoffset, sizei width,
sizei height, enum format, sizei imageSize, const
void *data);

void CompressedTextureSubImage3D(uint texture,
int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

The target, texture, level, xoffset, yoffset, zoffset, width, height, and depth pa-
rameters have the same meaning as in the corresponding commands from sec-
tion 8.6 without the Compressed prefix (where those parameters are present). data

OpenGL 4.5 (Core Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 220

points to compressed image data stored in the compressed image format corre-
sponding to format.

The image pointed to by data and the imageSize parameter are interpreted
as though they were provided to CompressedTexImage1D, CompressedTexIm-
age2D, and CompressedTexImage3D.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTex*Image* will not generate an
error if the following restrictions are satisfied:

• data points to a compressed texture image returned by GetCompressedTex-
Image (section 8.11).

• target, level, and format match the target, level and format parameters pro-
vided to the GetCompressedTexImage call returning data.

• width, height, depth, format, and imageSize match the values of TEXTURE_-
WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, TEXTURE_INTERNAL_-

FORMAT, and TEXTURE_COMPRESSED_IMAGE_SIZE for image level level
in effect at the time of the GetCompressedTexImage call returning data.

• width, height, depth, and format match the values of TEXTURE_WIDTH,
TEXTURE_HEIGHT, TEXTURE_DEPTH, and TEXTURE_INTERNAL_FORMAT

currently in effect for image level level.

• xoffset, yoffset, and zoffset are all zero.

This guarantee applies not just to images returned by GetCompressedTexIm-
age, but also to any other properly encoded compressed texture image of the same
size.

If the internal format of the image being modified is one of the specific com-
pressed formats described in table 8.14, the texture is stored using the correspond-
ing texture image encoding (see appendix C).

Since these specific compressed formats are easily edited along 4 × 4 texel
boundaries, the limitations on subimage location and size are relaxed for Com-
pressedTex*SubImage2D and CompressedTex*SubImage3D.

The contents of any 4 × 4 block of texels of a compressed texture image in
these specific compressed formats that do not intersect the area being modified are
preserved during CompressedTex*SubImage* calls.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.7. COMPRESSED TEXTURE IMAGES 221

Errors

An INVALID_ENUM error is generated by CompressedTexSubImage*D
if target is TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE.

An INVALID_OPERATION error is generated by CompressedTexture-
SubImage*D if texture is not the name of an existing texture object.

An INVALID_OPERATION error is generated by CompressedTexture-
SubImage*D if the effective target is TEXTURE_RECTANGLE.

An INVALID_ENUM error is generated if format is one of the generic com-
pressed internal formats.

An INVALID_OPERATION error is generated if format does not match the
internal format of the texture image being modified, since these commands do
not provide for image format conversion.

An INVALID_VALUE error is generated if width, height, depth, or image-
Size is negative.

An INVALID_VALUE error is generated if imageSize is not consistent with
the format, dimensions, and contents of the compressed image (too little or
too much data).

An INVALID_OPERATION error is generated if any format-specific re-
strictions are violated, as with CompressedTex*Image commands. Any such
restrictions will be documented in the specification defining the compressed
internal format.

An INVALID_OPERATION error is generated if xoffset, yoffset, or zoffset
are not equal to zero, or if width, height, and depth do not match the corre-
sponding dimensions of the texture level. The contents of any texel outside the
region modified by the call are undefined. These restrictions may be relaxed
for specific compressed internal formats whose images are easily modified.

An INVALID_ENUM error is generated by CompressedTex*SubImage1D
if the internal format of the texture is one of the specific compressed formats.

An INVALID_OPERATION error
is generated by CompressedTex*SubImage2D if the internal format of the
texture is one of the EAC, ETC2, or RGTC formats and border is non-zero.

An INVALID_OPERATION er-
ror is generated by CompressedTex*SubImage3D if the internal format of
the texture is one of the EAC, ETC2, or RGTC formats and either border is
non-zero, or the effective target for the texture is not TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY.

An INVALID_OPERATION error is generated if the internal format of the
texture is one of the BPTC formats and border is non-zero.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.8. MULTISAMPLE TEXTURES 222

An INVALID_OPERATION error is generated if any of the following con-
ditions occurs:

• width is not a multiple of four, and width + xoffset is not equal to the
value of TEXTURE_WIDTH.

• height is not a multiple of four, and height + yoffset is not equal to the
value of TEXTURE_HEIGHT.

• xoffset or yoffset is not a multiple of four.

8.8 Multisample Textures

In addition to the texture types described in previous sections, two additional types
of textures are supported. A multisample texture is similar to a two-dimensional
or two-dimensional array texture, except it contains multiple samples per texel.
Multisample textures do not have multiple image levels.

The commands

void TexImage2DMultisample(enum target, sizei samples,
enum internalformat, sizei width, sizei height,
boolean fixedsamplelocations);

void TexImage3DMultisample(enum target, sizei samples,
enum internalformat, sizei width, sizei height,
sizei depth, boolean fixedsamplelocations);

establish the data storage, format, dimensions, and number of samples of a
multisample texture’s image. For TexImage2DMultisample, target must be
TEXTURE_2D_MULTISAMPLE or PROXY_TEXTURE_2D_MULTISAMPLE and for
TexImage3DMultisample target must be TEXTURE_2D_MULTISAMPLE_ARRAY

or PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY. width and height are the dimen-
sions in texels of the texture.

samples represents a request for a desired minimum number of samples.
Since different implementations may support different sample counts for multi-
sampled textures, the actual number of samples allocated for the texture image is
implementation-dependent. However, the resulting value for TEXTURE_SAMPLES
is guaranteed to be greater than or equal to samples and no more than the next
larger sample count supported by the implementation.

If fixedsamplelocations is TRUE, the image will use identical sample locations
and the same number of samples for all texels in the image, and the sample loca-
tions will not depend on the internal format or size of the image.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.9. BUFFER TEXTURES 223

Upon success, TexImage*Multisample deletes any existing image for tar-
get and the contents of texels are undefined. TEXTURE_WIDTH, TEXTURE_-
HEIGHT, TEXTURE_SAMPLES, TEXTURE_INTERNAL_FORMAT and TEXTURE_-

FIXED_SAMPLE_LOCATIONS are set to width, height, the actual number of sam-
ples allocated, internalformat, and fixedsamplelocations respectively.

When a multisample texture is accessed in a shader, the access takes one vec-
tor of integers describing which texel to fetch and an integer corresponding to the
sample numbers described in section 14.3.1 determining which sample within the
texel to fetch. No standard sampling instructions are allowed on the multisample
texture targets, and no filtering is performed by the fetch. Fetching a sample num-
ber less than zero, or greater than or equal to the number of samples in the texture,
produces undefined results.

Errors

An INVALID_ENUM error is generated if target is not an accepted multi-
sample target as described above.

An INVALID_VALUE error is generated if width, height, or depth is nega-
tive.

An INVALID_VALUE error is generated if samples is zero.
An INVALID_VALUE error is generated if width or height is greater than

the value of MAX_TEXTURE_SIZE.
An INVALID_VALUE error is generated by TexImage3DMultisample if

depth is greater than the value of MAX_ARRAY_TEXTURE_LAYERS.
An INVALID_ENUM error is generated if internalformat is not color-

renderable, depth-renderable, or stencil-renderable (as defined in section 9.4).
An INVALID_OPERATION error is generated if samples is greater than the

maximum number of samples supported for this target and internalformat.
The maximum number of samples supported can be determined by calling
GetInternalformativ with a pname of SAMPLES (see section 22.3).

An INVALID_OPERATION error is generated if the value of TEXTURE_-
IMMUTABLE_FORMAT for the texture currently bound to target on the active
texture unit is TRUE.

8.9 Buffer Textures

In addition to one-, two-, and three-dimensional, one- and two-dimensional array,
and cube map textures described in previous sections, one additional type of texture
is supported. A buffer texture is similar to a one-dimensional texture. However,

OpenGL 4.5 (Core Profile) - October 24, 2016

8.9. BUFFER TEXTURES 224

unlike other texture types, the texture image is not stored as part of the texture.
Instead, a buffer object is attached to a buffer texture and the texture image is taken
from that buffer object’s data store. When the contents of a buffer object’s data
store are modified, those changes are reflected in the contents of any buffer texture
to which the buffer object is attached. Buffer textures do not have multiple image
levels; only a single data store is available.

The commands

void TexBufferRange(enum target, enum internalformat,
uint buffer, intptr offset, sizeiptr size);

void TextureBufferRange(uint texture, enum internalformat,
uint buffer, intptr offset, sizeiptr size);

attach the range of the storage for the buffer object named buffer for size basic
machine units, starting at offset (also in basic machine units) to a buffer texture.

For TexBufferRange, the buffer texture is that currently bound to target. For
TextureBufferRange, texture is the name of the buffer texture. target or the effec-
tive target of texture must be TEXTURE_BUFFER.

If buffer is zero, then any buffer object attached to the buffer texture is detached,
the values offset and size are ignored and the state for offset and size for the buffer
texture are reset to zero. internalformat specifies the storage format for the texture
image found in the range of the attached buffer object, and must be one of the sized
internal formats found in table 8.16.

Errors

An INVALID_OPERATION error is generated by TextureBufferRange if
texture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the effective target is not
TEXTURE_BUFFER.

An INVALID_ENUM error is generated if internalformat is not one of the
sized internal formats in table 8.16.

An INVALID_OPERATION error is generated if buffer is non-zero and is
not the name of a buffer object.

An INVALID_VALUE error is generated if offset is negative, if size is less
than or equal to zero, or if offset + size is greater than the value of BUFFER_-
SIZE for the buffer bound to target.

An INVALID_VALUE error is generated if offset is not an integer multiple
of the value of TEXTURE_BUFFER_OFFSET_ALIGNMENT.

The commands

OpenGL 4.5 (Core Profile) - October 24, 2016

8.9. BUFFER TEXTURES 225

void TexBuffer(enum target, enum internalformat,
uint buffer);

void TextureBuffer(uint texture, enum internalformat,
uint buffer);

are respectively equivalent to

TexBufferRange(target, internalformat, buffer, 0, size);

and

TextureBufferRange(texture, internalformat, buffer, 0, size);

where size is the value of BUFFER_SIZE for buffer.
When a range of the storage of a buffer object is attached to a buffer texture, the

range of the buffer’s data store is taken as the texture’s texture image. The number
of texels in the buffer texture’s texture image is given by⌊

size

components× sizeof (base type)

⌋
.

where components and base type are the element count and base type for
elements, as specified in table 8.16.

The number of texels in the texture image is then clamped to an
implementation-dependent limit, the value of MAX_TEXTURE_BUFFER_SIZE.
When a buffer texture is accessed in a shader, the results of a texel fetch are un-
defined if the specified texel coordinate is negative, or greater than or equal to the
clamped number of texels in the texture image.

When a buffer texture is accessed in a shader, an integer is provided to indicate
the texel coordinate being accessed. If no buffer object is bound to the buffer tex-
ture, the results of the texel access are undefined. Otherwise, the attached buffer
object’s data store is interpreted as an array of elements of the GL data type cor-
responding to internalformat. Each texel consists of one to four elements that are
mapped to texture components (R, G, B, and A). Element m of the texel numbered
n is taken from element n× components+m of the attached buffer object’s data
store. Elements and texels are both numbered starting with zero. For texture for-
mats with signed or unsigned normalized fixed-point components, the extracted
values are converted to floating-point using equations 2.2 or 2.1, respectively. The
components of the texture are then converted to a (R,G,B,A) vector according
to table 8.16, and returned to the shader as a four-component result vector with
components of the appropriate data type for the texture’s internal format. The base
data type, component count, normalized component information, and mapping of
data store elements to texture components is specified in table 8.16.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.9. BUFFER TEXTURES 226

Sized Internal Format Base Type Components Norm Component
0 1 2 3

R8 ubyte 1 Yes R 0 0 1
R16 ushort 1 Yes R 0 0 1
R16F half 1 No R 0 0 1
R32F float 1 No R 0 0 1
R8I byte 1 No R 0 0 1
R16I short 1 No R 0 0 1
R32I int 1 No R 0 0 1
R8UI ubyte 1 No R 0 0 1
R16UI ushort 1 No R 0 0 1
R32UI uint 1 No R 0 0 1
RG8 ubyte 2 Yes R G 0 1
RG16 ushort 2 Yes R G 0 1
RG16F half 2 No R G 0 1
RG32F float 2 No R G 0 1
RG8I byte 2 No R G 0 1
RG16I short 2 No R G 0 1
RG32I int 2 No R G 0 1
RG8UI ubyte 2 No R G 0 1
RG16UI ushort 2 No R G 0 1
RG32UI uint 2 No R G 0 1
RGB32F float 3 No R G B 1
RGB32I int 3 No R G B 1
RGB32UI uint 3 No R G B 1
RGBA8 ubyte 4 Yes R G B A
RGBA16 ushort 4 Yes R G B A
RGBA16F half 4 No R G B A
RGBA32F float 4 No R G B A
RGBA8I byte 4 No R G B A
RGBA16I short 4 No R G B A
RGBA32I int 4 No R G B A
RGBA8UI ubyte 4 No R G B A
RGBA16UI ushort 4 No R G B A
RGBA32UI uint 4 No R G B A

Table 8.16: Internal formats for buffer textures. For each format,
the data type of each element is indicated in the “Base Type” col-
umn and the element count is in the “Components” column. The
“Norm” column indicates whether components should be treated
as normalized floating-point values. The “Component 0, 1, 2, and
3” columns indicate the mapping of each element of a texel to tex-
ture components.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.10. TEXTURE PARAMETERS 227

In addition to attaching buffer objects to textures, buffer objects can be bound
to the buffer object target named TEXTURE_BUFFER, in order to specify, modify, or
read the buffer object’s data store. The buffer object bound to TEXTURE_BUFFER

has no effect on rendering. A buffer object is bound to TEXTURE_BUFFER by
calling BindBuffer with target set to TEXTURE_BUFFER, as described in section 6.

8.10 Texture Parameters

Texture parameters control how the texture image of a texture object is treated
when specified or changed, and when applied to a fragment. Each parameter is set
with the commands

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname, const

T *params);
void TexParameterI{i ui}v(enum target, enum pname, const

T *params);
void TextureParameter{if}(uint texture, enum pname,

T param);
void TextureParameter{if}v(uint texture, enum pname,

const T *params);
void TextureParameterI{i ui}v(uint texture, enum pname

const T *params);

For TexParameter*, the texture object is that bound to target. For TexturePa-
rameter*, texture is the name of the texture object. target or the effective target
of texture must be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_-
1D_ARRAY, TEXTURE_2D_ARRAY. TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_MULTISAMPLE, or TEXTURE_2D_-
MULTISAMPLE_ARRAY.

pname is a symbolic constant indicating the parameter to be set; the possible
constants and corresponding parameters are summarized in table 8.17. In the scalar
forms of the command, param is a value to which to set a single-valued parameter;
in the vector forms, params is an array of parameters whose type depends on the
parameter being set.

Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

OpenGL 4.5 (Core Profile) - October 24, 2016

8.10. TEXTURE PARAMETERS 228

• If the values for TEXTURE_BORDER_COLOR are specified with TexParame-
terIiv or TexParameterIuiv, they are unmodified and stored with an internal
data type of integer. If specified with TexParameteriv, they are converted to
floating-point using equation 2.2. Otherwise, the values are unmodified and
stored as floating-point.

If pname is TEXTURE_SWIZZLE_RGBA, params is an array of four
enums which respectively set the TEXTURE_SWIZZLE_R, TEXTURE_SWIZZLE_G,
TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A parameters simultaneously.

Name Type Legal Values
DEPTH_STENCIL_TEXTURE_MODE enum DEPTH_COMPONENT, STENCIL_-

INDEX

TEXTURE_BASE_LEVEL int any non-negative integer
TEXTURE_BORDER_COLOR 4 floats, any 4 values

ints, or uints
TEXTURE_COMPARE_MODE enum NONE, COMPARE_REF_TO_-

TEXTURE

TEXTURE_COMPARE_FUNC enum LEQUAL, GEQUAL, LESS,
GREATER, EQUAL, NOTEQUAL,
ALWAYS, NEVER

TEXTURE_LOD_BIAS float any value
TEXTURE_MAG_FILTER enum NEAREST, LINEAR
TEXTURE_MAX_LEVEL int any non-negative integer
TEXTURE_MAX_LOD float any value
TEXTURE_MIN_FILTER enum NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,

TEXTURE_MIN_LOD float any value
TEXTURE_SWIZZLE_R enum RED, GREEN, BLUE, ALPHA, ZERO,

ONE

TEXTURE_SWIZZLE_G enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_B enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

Texture parameters continued on next page

OpenGL 4.5 (Core Profile) - October 24, 2016

8.10. TEXTURE PARAMETERS 229

Texture parameters continued from previous page
Name Type Legal Values
TEXTURE_SWIZZLE_A enum RED, GREEN, BLUE, ALPHA, ZERO,

ONE

TEXTURE_SWIZZLE_RGBA 4 enums RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_WRAP_S enum CLAMP_TO_EDGE, REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT,
MIRROR_CLAMP_TO_EDGE

TEXTURE_WRAP_T enum CLAMP_TO_EDGE, REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT,
MIRROR_CLAMP_TO_EDGE

TEXTURE_WRAP_R enum CLAMP_TO_EDGE, REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT,
MIRROR_CLAMP_TO_EDGE

Table 8.17: Texture parameters and their values.

In the remainder of chapter 8, denote by lodmin, lodmax, levelbase, and
levelmax the values of the texture parameters TEXTURE_MIN_LOD, TEXTURE_-
MAX_LOD, TEXTURE_BASE_LEVEL, and TEXTURE_MAX_LEVEL respectively. If
the texture was created with TextureView, then the TEXTURE_BASE_LEVEL and
TEXTURE_MAX_LEVEL parameters are interpreted relative to the view and not rel-
ative to the original data store.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

Errors

An INVALID_ENUM error is generated if the effective target is not one of
the valid targets listed above.

An INVALID_ENUM error is generated if pname is not one of the parameter
names in table 8.17.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 230

An INVALID_OPERATION error is generated by TextureParameter* if
texture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the type of the parameter speci-
fied by pname is enum, and the value(s) specified by param or params are not
among the legal values shown in table 8.17.

An INVALID_VALUE error is generated if pname is TEXTURE_BASE_-

LEVEL or TEXTURE_MAX_LEVEL, and param or params is negative.
An INVALID_ENUM error is generated if Tex*Parameter{if} is called

for a non-scalar parameter (pname TEXTURE_BORDER_COLOR or TEXTURE_-
SWIZZLE_RGBA).

An INVALID_ENUM error is generated if the effective target is either
TEXTURE_2D_MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY, and
pname is any sampler state from table 23.18.

An INVALID_OPERATION error is generated if the effective target
is TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_MULTISAMPLE_ARRAY or
TEXTURE_RECTANGLE, and pname TEXTURE_BASE_LEVEL is set to a value
other than zero.

An INVALID_ENUM error is generated if the effective target is TEXTURE_-
RECTANGLE and either of pnames TEXTURE_WRAP_S or TEXTURE_WRAP_T is
set to either MIRROR_CLAMP_TO_EDGE, MIRRORED_REPEAT or REPEAT.

An INVALID_ENUM error is generated if the effective target is TEXTURE_-
RECTANGLE and pname TEXTURE_MIN_FILTER is set to a value other than
NEAREST or LINEAR (no mipmap filtering is permitted).

An INVALID OPERATION error is generated if the effective target is
TEXTURE RECTANGLE and pname TEXTURE BASE LEVEL is set to any
value other than zero.

8.11 Texture Queries

8.11.1 Active Texture

Queries of most texture state variables are qualified by the value of ACTIVE_-
TEXTURE to determine which server texture state vector is queried.

Table 23.12 indicates those state variables which are qualified by ACTIVE_-

TEXTURE during state queries.

8.11.2 Texture Parameter Queries

Parameters of a texture object may be queried with the commands

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 231

void GetTexParameter{if}v(enum target, enum pname,
T *params);

void GetTexParameterI{i ui}v(enum target, enum pname,
T *params);

void GetTextureParameter{if}v(uint texture, enum pname,
T *data);

void GetTextureParameterI{i ui}v(uint texture,
enum pname, T *data);

For GetTexParameter*, the texture object is that bound to target. For Get-
TextureParameter*, texture is the name of the texture object.

The value of texture parameter pname for the texture is returned in params.
target or the effective target of texture must be one of TEXTURE_1D,

TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP, TEXTURE_CUBE_MAP_ARRAY,
TEXTURE_2D_MULTISAMPLE, or TEXTURE_2D_MULTISAMPLE_ARRAY, indicat-
ing the currently bound one-, two-, or three-dimensional, one- or two-dimensional
array, rectangle, cube map, cube map array, two-dimensional multisample, or
two-dimensional multisample array texture object.

pname must be one of IMAGE_FORMAT_COMPATIBILITY_TYPE, TEXTURE_-
IMMUTABLE_FORMAT, TEXTURE_IMMUTABLE_-

LEVELS, TEXTURE_TARGET, TEXTURE_VIEW_MIN_LEVEL, TEXTURE_VIEW_-
NUM_LEVELS, TEXTURE_VIEW_MIN_LAYER, TEXTURE_VIEW_NUM_LAYERS, or
one of the symbolic values in table 8.17.

Querying pname TEXTURE_BORDER_COLOR with GetTex*ParameterIiv or
GetTex*ParameterIuiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Querying pname TEXTURE_TARGET returns the effective target of the texture
object. For GetTexParameter*, this is the target parameter. For GetTexturePa-
rameter*, it is the target to which the texture was initially bound when it was
created, or the value of the target parameter to the call to CreateTextures which
created the texture.

Errors

An INVALID_OPERATION error is generated by GetTextureParameter*
if texture is not the name of an existing texture object.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 232

An INVALID_ENUM error is generated if the effective target is not one of
the texture targets described above.

An INVALID_ENUM error is generated if pname is not one of the texture
parameters described above.

8.11.3 Texture Level Parameter Queries

Parameters of a specified level-of-detail of a texture object may be queried with the
commands

void GetTexLevelParameter{if}v(enum target, int level,
enum pname, T *params);

void GetTextureLevelParameter{if}v(uint texture,
int level, enum pname, T *params);

For GetTexLevelParameter*, the texture object is that bound to target. For
GetTextureLevelParameter*, texture is the name of the texture object.

The value of texture parameter pname for level-of-detail level of the texture is
returned in params. pname must be one of the symbolic values in tables 23.16-
23.17.

The effective target of the texture object must be one of TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER,
TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_MULTISAMPLE_ARRAY, PROXY_-

TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D, PROXY_TEXTURE_-
1D_ARRAY, PROXY_TEXTURE_2D_ARRAY, PROXY_TEXTURE_CUBE_MAP_-

ARRAY, PROXY_TEXTURE_RECTANGLE, PROXY_TEXTURE_CUBE_MAP, PROXY_-
TEXTURE_2D_MULTISAMPLE, or PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY,
indicating the one-, two-, or three-dimensional texture, one- or two-dimensional
array texture, cube map array texture, rectangle texture, buffer texture, two-
dimensional multisample texture, two-dimensional multisample array texture;
or the one-, two-, three-dimensional, one- or two-dimensional array, cube map
array, rectangle, cube map, two-dimensional multisample, or two-dimensional
multisample array proxy state vector.

For GetTexLevelParameter* only, target may also be one of the cube map
face targets from table 8.19, indicating one of the six distinct two-dimensional
images making up the cube map texture object. Note that TEXTURE_CUBE_MAP is
not a valid target parameter for GetTexLevelParameter*.

For GetTextureLevelParameter* only, texture may also be a cube map texture
object. In this case the query is always performed for face zero (the TEXTURE_-
CUBE_MAP_POSITIVE_X face), since there is no way to specify another face.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 233

level determines which level-of-detail’s state is returned. The maximum value
of level depends on the texture target:

• For targets TEXTURE_CUBE_MAP and TEXTURE_CUBE_MAP_ARRAY, the
maximum value is log2 of the value of MAX_CUBE_MAP_TEXTURE_SIZE.

• For target TEXTURE_3D, the maximum value is log2 of the value of MAX_-
3D_TEXTURE_SIZE.

• For targets TEXTURE_BUFFER, TEXTURE_RECTANGLE, TEXTURE_2D_-

MULTISAMPLE, and TEXTURE_2D_MULTISAMPLE_ARRAY, which do not
support mipmaps, the maximum value is zero.

• For all other texture targets supported by GetTex*LevelParameter*, the
maximum value is log2 of the value of MAX_TEXTURE_SIZE.

For texture images with uncompressed internal formats, queries of
pname TEXTURE_RED_TYPE, TEXTURE_GREEN_TYPE, TEXTURE_BLUE_TYPE,
TEXTURE_ALPHA_TYPE, and TEXTURE_DEPTH_TYPE return the data type used
to store the component. Types NONE, SIGNED_NORMALIZED, UNSIGNED_-

NORMALIZED, FLOAT, INT, and UNSIGNED_INT respectively indicate missing,
signed normalized fixed-point, unsigned normalized fixed-point, floating-point,
signed unnormalized integer, and unsigned unnormalized integer components.
Queries of pname TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_-
BLUE_SIZE, TEXTURE_ALPHA_SIZE, TEXTURE_DEPTH_SIZE, TEXTURE_-

STENCIL_SIZE, and TEXTURE_SHARED_SIZE return the actual resolutions of the
stored texture image components, not the resolutions specified when the image was
defined.

For texture images with compressed internal formats, the types returned spec-
ify how components are interpreted after decompression, while the resolutions re-
turned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Querying pname TEXTURE_COMPRESSED_IMAGE_SIZE returns the size (in
ubytes) of the compressed texture image that would be returned by GetCom-
pressedTexImage (section 8.11). target must be a compressed texture target.

Queries of pname TEXTURE_SAMPLES and TEXTURE_FIXED_SAMPLE_-

LOCATIONS on multisample textures return the number of samples and whether
texture sample fixed locations are enabled respectively. For non-multisample tex-
tures, the default values in tables 23.16- 23.17 are returned.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 234

Queries of pname TEXTURE_INTERNAL_FORMAT, TEXTURE_WIDTH,
TEXTURE_HEIGHT, and TEXTURE_DEPTH return the internal format, width,
height, and depth, respectively, as specified when the texture image was created.

Errors

An INVALID_OPERATION error is generated by GetTextureLevelPa-
rameter* if texture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the effective texture target is not
one of the targets described above as valid for the corresponding command.

An INVALID_ENUM error is generated if pname is not one of the symbolic
values in tables 23.16- 23.17.

An INVALID_VALUE error is generated if level is negative or larger than
the maximum allowable level-of-detail for the effective texture target as de-
scribed above.

An INVALID_OPERATION error is generated if pname is TEXTURE_-

COMPRESSED_IMAGE_SIZE and the effective texture target is a proxy target,
or has an uncompressed internal format.

8.11.4 Texture Image Queries

Texture images may be obtained from a texture object with the commands

void GetTexImage(enum target, int level, enum format,
enum type, void *pixels);

void GetTextureImage(uint texture, int level, enum format,
enum type, sizei bufSize, void *pixels);

void GetnTexImage(enum target, int level, enum format,
enum type, sizei bufSize, void *pixels);

For Get*TexImage, target specifies the target to which the texture object is bound.
target must be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_-
1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY or TEXTURE_-
RECTANGLE, indicating a one-, two- or three-dimensional, one- or two-dimensional
array, cube map array or rectangle texture, respectively, or one of the targets from
table 8.19, indicates the corresponding face of a cube map texture.

For GetTextureImage, texture is the name of the texture object. In addition to
the types of textures accepted by the Get*TexImage commands, GetTextureIm-
age also accepts cube map texture objects (with effective target TEXTURE_CUBE_-
MAP).

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 235

level is a level-of-detail number, format is a pixel format from table 8.3, and
type is a pixel type from table 8.2.

If present, bufSize is the size of the buffer to receive the retrieved pixel data.
GetnTexImage and GetTextureImage do not write more than bufSize bytes

into pixels.
These commands obtain component groups from a texture image with the in-

dicated level-of-detail. If format is a color format then the components are as-
signed among R, G, B, and A according to table 8.18, starting with the first group
in the first row, and continuing by obtaining groups in order from each row and
proceeding from the first row to the last, and from the first image to the last for
three-dimensional textures. One- and two-dimensional array and cube map array
textures are treated as two-, three-, and three-dimensional images, respectively,
where the layers are treated as rows or images. Cube map textures are treated as
three-dimensional images with a depth of 6, where the cube map faces are ordered
as image layers as shown in table 9.3.

If format is DEPTH_COMPONENT, DEPTH_STENCIL, or STENCIL_INDEX, then
each depth component and/or stencil index is assigned with the same ordering of
rows and images.

These groups are then packed and placed in client or pixel buffer object mem-
ory. If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_-
PACK_BUFFER_BINDING), pixels is an offset into the pixel pack buffer; otherwise,
pixels is a pointer to client memory. Pixel storage modes that are applicable to
ReadPixels are applied, as described in table 18.1 and section 18.2.9.

For three-dimensional, two-dimensional array, cube map array, and cube map
textures pixel storage operations are applied as if the image were two-dimensional,
except that the additional pixel storage state values PACK_IMAGE_HEIGHT and
PACK_SKIP_IMAGES are applied. The correspondence of texels to memory loca-
tions is as defined for TexImage3D in section 8.5.

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders).

Errors

An INVALID_OPERATION error is generated by GetTextureImage if tex-
ture is not the name of an existing texture object.

An INVALID_ENUM error is generated if the effective target is
not one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_-

ARRAY, TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY, TEXTURE_-

RECTANGLE, one of the targets from table 8.19 (for GetTexImage and Getn-

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 236

TexImage only), or TEXTURE_CUBE_MAP (for GetTextureImage only).
An INVALID_OPERATION error is generated by GetTextureImage if the

effective target is TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, and
the texture object is not cube complete or cube array complete, respectively.

An INVALID_VALUE error is generated if level is negative or larger than
the maximum allowable level.

An INVALID_VALUE error is generated if level is non-zero and the effec-
tive target is TEXTURE_RECTANGLE.

An INVALID_OPERATION error is generated if any of the following mis-
matches between format and the internal format of the texture image exist:

• format is a color format (one of the formats in table 8.3 whose target is
the color buffer) and the base internal format of the texture image is not
a color format.

• format is DEPTH_COMPONENT and the base internal format is not
DEPTH_COMPONENT or DEPTH_STENCIL.

• format is DEPTH_STENCIL and the base internal format is not DEPTH_-
STENCIL.

• format is STENCIL_INDEX and the base internal format is not
STENCIL_INDEX or DEPTH_STENCIL.

• format is one of the integer formats in table 8.3 and the internal format
of the texture image is not integer, or format is not one of the integer
formats in table 8.3 and the internal format is integer.

An INVALID_OPERATION error is generated if a pixel pack buffer object
is bound and packing the texture image into the buffer’s memory would exceed
the size of the buffer.

An INVALID_OPERATION error is generated if a pixel pack buffer object
is bound and pixels is not evenly divisible by the number of basic machine
units needed to store in memory the GL data type corresponding to type (see
table 8.2).

An INVALID_OPERATION error is generated by GetTextureImage and
GetnTexImage if the buffer size required to store the requested data is greater
than bufSize.

Sub-regions of a texture image may be obtained from a texture object with the
command

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 237

Base Internal Format R G B A
RED Ri 0 0 1
RG Ri Gi 0 1
RGB Ri Gi Bi 1
RGBA Ri Gi Bi Ai

Table 8.18: Texture return values. Ri, Gi, Bi, and Ai are components of the
internal format that are assigned to pixel values R, G, B, and A. If a requested pixel
value is not present in the internal format, the specified constant value is used.

void GetTextureSubImage(uint texture, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format, enum type,
sizei bufSize, void *pixels);

texture is the name of the texture object, and must not be a buffer or multi-
sample texture. The effective target is the value of TEXTURE_TARGET for texture.
level, format, type and pixels have the same meaning as for GetTexImage. bufSize
is the size of the buffer to receive the retrieved pixel data.

For cube map textures, the behavior is as though GetTextureImage were
called, but only texels from the requested cube map faces (selected by zoffset and
depth, as described below) were returned.

xoffset, yoffset and zoffset indicate the position of the subregion to return. width,
height and depth indicate the size of the region to return. These parameters have
the same meaning as for TexSubImage3D, though for one- and two-dimensional
textures there are extra restrictions, described in the errors section below.

For one-dimensional array textures, yoffset is interpreted as the first layer to
access and height is the number of layers to access. For two-dimensional array
textures, zoffset is interpreted as the first layer to access and depth is the number
of layers to access. Cube map textures are treated as an array of six slices in the z-
dimension, where the value of zoffset is interpreted as specifying the cube map face
for the corresponding layer in table 9.3 and depth is the number of faces to access.
For cube map array textures, zoffset is the first layer-face to access, and depth is the
number of layer-faces to access. Each layer-face is translated into an array layer
and a cube map face as described for layer-face numbers in section 8.5.3.

Component groups from the specified sub-region are packed and placed
into memory as described for GetTextureImage, starting with the texel at
(xoffset, yoffset, zoffset).

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 238

Errors

An INVALID_VALUE error is generated if texture is not the name of an
existing texture object.

An INVALID_OPERATION error is generated if texture is the name of a
buffer or multisample texture.

An INVALID_OPERATION error is generated if the effective target is
TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, and the texture object
is not cube complete or cube array complete, respectively.

An INVALID_VALUE error is generated if xoffset, yoffset or zoffset are
negative.

An INVALID_VALUE error is generated if xoffset + width is greater than
the texture’s width, yoffset + height is greater than the texture’s height, or
zoffset + depth is greater than the texture’s depth.

An INVALID_VALUE error is generated if the effective target is
TEXTURE_1D and either yoffset is not zero, or height is not one.

An INVALID_VALUE error is generated if
the effective target is TEXTURE_1D, TEXTURE_1D_ARRAY, TEXTURE_2D or
TEXTURE_RECTANGLE, and either zoffset is not zero, or depth is not one.

An INVALID_OPERATION error is generated if the buffer size required to
store the requested data is greater than bufSize.

Texture images stored in compressed form may be obtained with the commands

void GetCompressedTexImage(enum target, int level,
void *pixels);

void GetCompressedTextureImage(uint texture, int level,
sizei bufSize, void *pixels);

void GetnCompressedTexImage(enum target, int level,
sizei bufSize, void *pixels);

For Get*CompressedTexImage, the texture object is that which is bound to
target. For GetCompressedTextureImage, texture is the name of the texture ob-
ject, and the effective target is the value of TEXTURE_TARGET for texture.

target, level, bufSize, and pixels are interpreted in the same manner as the cor-
responding parameters of GetTexImage, GetTextureImage, and GetnTexImage.

When called, GetCompressedTexImage writes n ubytes of compressed
image data to the pixel pack buffer or client memory pointed to by pix-
els, while GetCompressedTextureImage and GetnCompressedTexImage write
min{n, bufSize} ubytes. n is the value of TEXTURE_COMPRESSED_IMAGE_-

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 239

SIZE for the texture image The compressed image data is formatted according to
the definition of the texture’s internal format.

By default the pixel storage modes PACK_ROW_LENGTH, PACK_SKIP_ROWS,
PACK_SKIP_PIXELS, PACK_IMAGE_HEIGHT and PACK_SKIP_IMAGES are ig-
nored for compressed images. To enable PACK_SKIP_PIXELS and PACK_-

ROW_LENGTH, the values of PACK_COMPRESSED_BLOCK_SIZE and PACK_-

COMPRESSED_BLOCK_WIDTH must both be non-zero. To also enable PACK_-

SKIP_ROWS and PACK_IMAGE_HEIGHT, the value of PACK_COMPRESSED_-

BLOCK_HEIGHT must be non-zero. And to also enable PACK_SKIP_IMAGES,
the value of PACK_COMPRESSED_BLOCK_DEPTH must be non-zero. All param-
eters must be consistent with the compressed format to produce the desired results.
When the pixel storage modes are active, the correspondence of texels to memory
locations is as defined for CompressedTexImage3D in section 8.7.

Errors

An INVALID_OPERATION error is generated by GetCompressedTex-
tureImage if texture is not the name of an existing texture object.

An INVALID_OPERATION error is generated by GetCompressedTex-
tureImage if the effective target is TEXTURE_CUBE_MAP or TEXTURE_-

CUBE_MAP_ARRAY, and the texture object is not cube complete or cube array
complete, respectively.

An INVALID_VALUE error is generated if level is negative, or greater than
the maximum allowable level.

An INVALID_OPERATION error is generated if the texture image is stored
with an uncompressed internal format.

An INVALID_OPERATION error is generated if a pixel pack buffer object
is bound and packing the texture image into the buffer’s memory would exceed
the size of the buffer.

An INVALID_OPERATION error is generated by GetCompressedTex-
tureImage and GetnCompressedTexImage if the buffer size required to store
the requested data is greater than bufSize.

If the compressed data are arranged into fixed-size blocks of texels, the com-
mand

void GetCompressedTextureSubImage(uint texture,
int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth, sizei bufSize,
void *pixels);

OpenGL 4.5 (Core Profile) - October 24, 2016

8.11. TEXTURE QUERIES 240

can be used to obtain a sub-region of a compressed texture image instead of the
whole image. texture is the name of the texture object, and must not be a buffer
or multisample texture. The effective target is the value of TEXTURE_TARGET for
texture. level and pixels have the same meaning as the corresponding arguments of
CompressedTexSubImage3D. bufSize indicates the size of the buffer to receive
the retrieved pixel data.

For cube map textures, the behavior is as though GetCompressedTexImage
were called once for each requested face (selected by zoffset and depth, as de-
scribed below) with target corresponding to the requested texture cube map face as
indicated by table 9.3. pixels is offset appropriately for each successive image.

xoffset, yoffset and zoffset indicate the position of the subregion to return. width,
height and depth indicate the size of the region to return. These arguments have
the same meaning as for CompressedTexSubImage3D, though there are extra
restrictions, described in the errors section below.

The mapping between the xoffset, yoffset, zoffset, width, height, and depth pa-
rameters and the faces, layers, and layer-faces for cube map, array, and cube map
array textures is the same as for GetTextureSubImage.

The xoffset, yoffset, zoffset offsets and width, height and depth sizes must
be multiples of the values of PACK_COMPRESSED_BLOCK_WIDTH, PACK_-

COMPRESSED_BLOCK_HEIGHT, and PACK_COMPRESSED_BLOCK_DEPTH respec-
tively, unless an offset is zero and the corresponding size is the same as the texture
size in that dimension.

Pixel storage modes are treated as for GetCompressedTexSubImage. The
texel at (xoffset, yoffset, zoffset) will be stored at the location indicated by pixels
and the current pixel packing parameters.

Errors

In addition to the same errors generated by GetTextureSubImage with
corresponding parameters:

An INVALID_VALUE error is generated if xoffset, yoffset or zoffset is not a
multiple of the compressed block width, height or depth respectively.

An INVALID_VALUE error is generated if width, height or depth is not a
multiple of the compressed block width, height or depth respectively, unless
the offset is zero and the size equals the texture image size.

An INVALID_OPERATION error is generated if the texture compression
format is not based on fixed-size blocks.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.12. DEPTH COMPONENT TEXTURES 241

Major Axis Direction Target sc tc ma

+rx TEXTURE_CUBE_MAP_POSITIVE_X −rz −ry rx
−rx TEXTURE_CUBE_MAP_NEGATIVE_X rz −ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y rx rz ry
−ry TEXTURE_CUBE_MAP_NEGATIVE_Y rx −rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z rx −ry rz
−rz TEXTURE_CUBE_MAP_NEGATIVE_Z −rx −ry rz

Table 8.19: Selection of cube map images based on major axis direction of texture
coordinates.

8.12 Depth Component Textures

Depth textures and the depth components of depth/stencil textures can be treated as
RED textures during texture filtering and application (see section 8.23). The initial
state for depth and depth/stencil textures treats them as RED textures.

8.13 Cube Map Texture Selection

When a cube map texture is sampled, the
(
s t r

)
texture coordinates are treated

as a direction vector
(
rx ry rz

)
emanating from the center of a cube. The q

coordinate is ignored. At texture application time, the interpolated per-fragment
direction vector selects one of the cube map face’s two-dimensional images based
on the largest magnitude coordinate direction (the major axis direction). If two
or more coordinates have the identical magnitude, the implementation may define
the rule to disambiguate this situation. The rule must be deterministic and depend
only on

(
rx ry rz

)
. The target column in table 8.19 explains how the major axis

direction maps to the two-dimensional image of a particular cube map target.
Using the sc, tc, and ma determined by the major axis direction as specified in

table 8.19, an updated
(
s t

)
is calculated as follows:

s =
1

2

(
sc
|ma|

+ 1

)
t =

1

2

(
tc
|ma|

+ 1

)

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 242

8.13.1 Seamless Cube Map Filtering

Seamless cube map filtering is enabled or disabled by calling Enable or Disable
with target TEXTURE_CUBE_MAP_SEAMLESS.

When seamless cube map filtering is disabled, the new
(
s t

)
is used to find a

texture value in the determined face’s two-dimensional image using the rules given
in sections 8.14 through 8.15.

When seamless cube map filtering is enabled, the rules for texel selection in
sections 8.14 through 8.15 are modified so that texture wrap modes are ignored.
Instead,

• If NEAREST filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_EDGE.

• If LINEAR filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_BORDER. Then,

– If a texture sample location would lie in the texture border in either u
or v, instead select the corresponding texel from the appropriate neigh-
boring face.

– If a texture sample location would lie in the texture border in both u
and v (in one of the corners of the cube), there is no unique neighbor-
ing face from which to extract one texel. The recommended method to
generate this texel is to average the values of the three available sam-
ples. However, implementations are free to construct this fourth texel
in another way, so long as, when the three available samples have the
same value, this texel also has that value.

The required state is one bit indicating whether seamless cube map filtering is
enabled or disabled. Initially, it is disabled.

8.14 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 243

8.14.1 Scale Factor and Level of Detail

The choice is governed by a scale factor ρ(x, y) and the level-of-detail parameter
λ(x, y), defined as

λbase(x, y) = log2[ρ(x, y)] (8.7)

λ′(x, y) = λbase(x, y) + clamp(biastexobj + biasshader) (8.8)

λ =

lodmax, λ′ > lodmax

λ′, lodmin ≤ λ′ ≤ lodmax

lodmin, λ′ < lodmin

undefined, lodmin > lodmax

(8.9)

biastexobj is the value of TEXTURE_LOD_BIAS for the bound texture object (as
described in section 8.10). biasshader is the value of the optional bias parameter
in the texture lookup functions available to fragment shaders. If the texture access
is performed in a fragment shader without a provided bias, or outside a fragment
shader, then biasshader is zero. The sum of these values is clamped to the range
[−biasmax, biasmax] where biasmax is the value of the implementation defined
constant MAX_TEXTURE_LOD_BIAS.

Different implementations have chosen to perform clamping on intermediate
and final terms in computing λ′ differently. Care should be taken that intermediate
terms do not exceed the implementation-dependent range as different results may
otherwise occur.

If λ(x, y) is less than or equal to the constant c (see section 8.15) the texture is
said to be magnified; if it is greater, the texture is minified. Sampling of minified
textures is described in the remainder of this section, while sampling of magnified
textures is described in section 8.15.

The initial values of lodmin and lodmax are chosen so as to never clamp the
normal range of λ.

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (x, y) that lie within a primitive; define t(x, y) and r(x, y)

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 244

analogously. Let

u(x, y) =

{
s(x, y) + δu, rectangle texture
ws × s(x, y) + δu, otherwise

v(x, y) =

{
t(x, y) + δv, rectangle texture
hs × t(x, y) + δv, otherwise

w(x, y) = ds × r(x, y) + δw

(8.10)

where ws, hs, and ds are as defined in section 8.5.3 for the texture image whose
level is levelbase. For a one-dimensional or one-dimensional array texture, define
v(x, y) = 0 and w(x, y) = 0; for a two-dimensional, two-dimensional array, rect-
angle, cube map, or cube map array texture, define w(x, y) = 0.

(δu, δv, δw) are the texel offsets specified in the OpenGL Shading Language
texture lookup functions that support offsets. If the texture function used does not
support offsets, all three shader offsets are taken to be zero.

If the value of any non-ignored component of the offset vector operand is
outside implementation-dependent limits, the results of the texture lookup are
undefined. For all instructions except textureGather, the limits are the val-
ues of MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET. For
the textureGather instruction, the limits are the values of MIN_PROGRAM_-
TEXTURE_GATHER_OFFSET and MAX_PROGRAM_TEXTURE_GATHER_OFFSET.

For a polygon or point, ρ is given at a fragment with window coordinates (x, y)
by

ρ = max

√(

∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2

,

√(
∂u

∂y

)2

+

(
∂v

∂y

)2

+

(
∂w

∂y

)2

(8.11)
where ∂u/∂x indicates the derivative of u with respect to window x, and similarly
for the other derivatives.

For a line, the formula is

ρ =

√(
∂u

∂x
∆x+

∂u

∂y
∆y

)2

+

(
∂v

∂x
∆x+

∂v

∂y
∆y

)2

+

(
∂w

∂x
∆x+

∂w

∂y
∆y

)2/
l,

(8.12)
where ∆x = x2 − x1 and ∆y = y2 − y1 with (x1, y1) and (x2, y2) being the
segment’s window coordinate endpoints and l =

√
∆x2 + ∆y2.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 245

While it is generally agreed that equations 8.11 and 8.12 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal ρ with a function f(x, y) subject to these
conditions:

1. f(x, y) is continuous and monotonically increasing in each of |∂u/∂x|,
|∂u/∂y|, |∂v/∂x|, |∂v/∂y|, |∂w/∂x|, and |∂w/∂y|

2. Let

mu = max

{∣∣∣∣∂u∂x
∣∣∣∣ , ∣∣∣∣∂u∂y

∣∣∣∣}

mv = max

{∣∣∣∣∂v∂x
∣∣∣∣ , ∣∣∣∣∂v∂y

∣∣∣∣}

mw = max

{∣∣∣∣∂w∂x
∣∣∣∣ , ∣∣∣∣∂w∂y

∣∣∣∣} .
Then max{mu,mv,mw} ≤ f(x, y) ≤ mu +mv +mw.

8.14.2 Coordinate Wrapping and Texel Selection

After generating u(x, y), v(x, y), and w(x, y), they may be clamped and wrapped
before sampling the texture, depending on the corresponding texture wrap modes.

Let u′(x, y) = u(x, y), v′(x, y) = v(x, y), and w′(x, y) = w(x, y).
The value assigned to TEXTURE_MIN_FILTER is used to determine how the

texture value for a fragment is selected.
When the value of TEXTURE_MIN_FILTER is NEAREST, the texel in the texture

image of level levelbase that is nearest (in Manhattan distance) to (u′, v′, w′) is
obtained. Let (i, j, k) be integers such that

i = wrap(bu′(x, y)c)
j = wrap(bv′(x, y)c)
k = wrap(bw′(x, y)c)

and the value returned by wrap() is defined in table 8.20. For a three-dimensional
texture, the texel at location (i, j, k) becomes the texture value. For two-
dimensional, two-dimensional array, rectangle, or cube map textures, k is irrele-
vant, and the texel at location (i, j) becomes the texture value. For one-dimensional

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 246

texture or one-dimensional array textures, j and k are irrelevant, and the texel at
location i becomes the texture value.

For one- and two-dimensional array textures, the texel is obtained from image
layer l, where

l =

{
clamp(RNE(t), 0, hs − 1), for one-dimensional array textures
clamp(RNE(r), 0, ds − 1), for two-dimensional array textures

4

and RNE() is the round-to-nearest-even operation defined by IEEE arithmetic.

Wrap mode Result of wrap(coord)

CLAMP_TO_EDGE clamp(coord, 0, size− 1)

CLAMP_TO_BORDER clamp(coord,−1, size)

REPEAT coord mod size

MIRRORED_REPEAT (size− 1)−mirror(coord mod (2× size))− size)
MIRROR_CLAMP_TO_EDGE clamp(mirror(coord), 0, size− 1)

Table 8.20: Texel location wrap mode application. mirror(a) returns a if a ≥ 0,
and −(1 + a) otherwise. The values of mode and size are TEXTURE_WRAP_S and
ws, TEXTURE_WRAP_T and hs, and TEXTURE_WRAP_R and ds when wrapping i,
j, or k coordinates, respectively.

If the selected (i, j, k), (i, j), or i location refers to a border texel that satisfies
any of the conditions

i < 0 i ≥ ws

j < 0 j ≥ hs
k < 0 k ≥ ds

then the border values defined by TEXTURE_BORDER_COLOR are used in place
of the non-existent texel. If the texture contains color components, the values of
TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table 8.11. The internal data type of the
border values must be consistent with the type returned by the texture as described

4 Implementations may instead round the texture layer using the nearly equivalent computation
bvalue+ 1

2
c.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 247

in chapter 8, or the result is undefined. If border values are out-of-range with
respect to the texture’s internal format, the result is undefined. If the texture
contains depth components, the first component of TEXTURE_BORDER_COLOR is
interpreted as a depth value.

When the value of TEXTURE_MIN_FILTER is LINEAR, a 2 × 2 × 2 cube of
texels in the texture image of level levelbase is selected. Let

i0 = wrap(bu′ − 1

2
c)

j0 = wrap(bv′ − 1

2
c)

k0 = wrap(bw′ − 1

2
c)

i1 = wrap(bu′ − 1

2
c+ 1)

j1 = wrap(bv′ − 1

2
c+ 1)

k1 = wrap(bw′ − 1

2
c+ 1)

α = frac(u′ − 1

2
)

β = frac(v′ − 1

2
)

γ = frac(w′ − 1

2
)

where frac(x) denotes the fractional part of x.
For a three-dimensional texture, the texture value τ is found as

τ = (1− α)(1− β)(1− γ)τi0j0k0 + α(1− β)(1− γ)τi1j0k0

+ (1− α)β(1− γ)τi0j1k0 + αβ(1− γ)τi1j1k0

+ (1− α)(1− β)γτi0j0k1 + α(1− β)γτi1j0k1

+ (1− α)βγτi0j1k1 + αβγτi1j1k1

(8.13)

where τijk is the texel at location (i, j, k) in the three-dimensional texture image.
For a two-dimensional, two-dimensional array, rectangle, or cube map texture,

τ =(1− α)(1− β)τi0j0 + α(1− β)τi1j0

+ (1− α)βτi0j1 + αβτi1j1

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 248

where τij is the texel at location (i, j) in the two-dimensional texture image. For
two-dimensional array textures, all texels are obtained from layer l, where

l = clamp(

⌊
r +

1

2

⌋
, 0, ds − 1).

The textureGather and textureGatherOffset built-in shader functions
return a vector derived from sampling a 2 × 2 block of texels in the texture im-
age of level levelbase. The rules for the LINEAR minification filter are applied to
identify the four selected texels. Each texel is then converted to a texture source
color (Rs, Gs, Bs, As) according to table 15.1 and then swizzled as described in
section 15.2.1. A four-component vector is then assembled by taking a single
component from the swizzled texture source colors of the four texels, in the order
τi0j1 , τi1j1 , τi1j0 , and τi0j0 (see figure 8.4). The selected component is identified
by the optional comp argument, where the values zero, one, two, and three identify
the Rs, Gs, Bs, or As component, respectively. If comp is omitted, it is treated as
identifying the Rs component. Incomplete textures (see section 8.17) are consid-
ered to return a texture source color of (0.0, 0.0, 0.0, 1.0) in floating-point format
for all four source texels.

The textureGatherOffsets functions operate identically to
textureGather, except that the array of two-component integer vectors offsets is
used to determine the location of the four texels to sample. Each of the four texels is
obtained by applying the corresponding offset in the four-element array offsets as a
(u, v) coordinate offset to the coordinates coord, identifying the four-texel LINEAR
footprint, and then selecting the texel τi0j0 of that footprint. The specified values
in offsets must be constant. A limited range of offset values are supported; the
minimum and maximum offset values are implementation-dependent and given by
the values of MIN_PROGRAM_TEXTURE_GATHER_OFFSET and MAX_PROGRAM_-

TEXTURE_GATHER_OFFSET, respectively. Note that offset does not apply to the
layer coordinate for array textures.

And for a one-dimensional or one-dimensional array texture,

τ = (1− α)τi0 + ατi1

where τi is the texel at location i in the one-dimensional texture. For one-
dimensional array textures, both texels are obtained from layer l, where

l = clamp(

⌊
t+

1

2

⌋
, 0, hs − 1).

For any texel in the equation above that refers to a border texel outside the
defined range of the image, the texel value is taken from the texture border color as

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 249

Figure 8.4. An example of an 8× 8 texture image and the components returned for
textureGather. The vector (X,Y, Z,W) is returned, where each component is
taken from the post-swizzle R component of the corresponding texel.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 250

with NEAREST filtering.

8.14.2.1 Rendering Feedback Loops

If all of the following conditions are satisfied, then the value of the selected τijk,
τij , or τi in the above equations is undefined instead of referring to the value of the
texel at location (i, j, k), (i, j), or (i) respectively. This situation is discussed in
more detail in the description of feedback loops in section 9.3.1.

• The current DRAW_FRAMEBUFFER_BINDING names a framebuffer object F.

• The texture is attached to one of the attachment points, A, of framebuffer
object F.

• The value of TEXTURE_MIN_FILTER is NEAREST or LINEAR, and the value
of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A
is equal to levelbase

-or-

The value of TEXTURE_MIN_FILTER is NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, or LINEAR_-

MIPMAP_LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_-

TEXTURE_LEVEL for attachment point A is within the inclusive range from
levelbase to q.

8.14.3 Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_-

MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR

each require the use of a mipmap. Rectangle textures do not support mipmapping
(it is an error to specify a minification filter that requires mipmapping). A mipmap
is an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the texture image of level levelbase has dimensions
ws × hs × ds, then there are blog2(maxsize)c+ 1 levels in the mipmap, where

maxsize =

ws, for 1D and 1D array textures
max(ws, hs), for 2D, 2D array, cube map, and cube map array textures
max(ws, hs, ds), for 3D textures

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 251

Numbering the levels such that level levelbase is the 0th level, the ith array has
dimensions

max(1,

⌊
ws

wd

⌋
)×max(1,

⌊
hs
hd

⌋
)×max(1,

⌊
ds
dd

⌋
)

where

wd = 2i

hd =

{
1, for 1D and 1D array textures
2i, otherwise

dd =

{
2i, for 3D textures
1, otherwise

until the last array is reached with dimension 1× 1× 1.
Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-

TexImage2D, TexImage1D, or CopyTexImage1D or by functions that are defined
in terms of these functions. The array being set is indicated with the level-of-detail
argument level. Level-of-detail numbers proceed from levelbase for the original
texture image through the maximum level p, with each unit increase indicating
an array of half the dimensions of the previous one (rounded down to the next
integer if fractional) as already described. For immutable-format textures (see sec-
tion 8.19), levelbase is clamped to the range [0, levelimmut − 1], levelmax is then
clamped to the range [levelbase, levelimmut−1], and p is one less than levelimmut,
where levelimmut is the levels parameter passed to TexStorage* for the texture
object (the value of TEXTURE_IMMUTABLE_LEVELS; see section 8.19). Other-
wise p = blog2(maxsize)c + levelbase, and all arrays from levelbase through
q = min{p, levelmax} must be defined, as discussed in section 8.17.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Since this discussion
pertains to minification, we are concerned only with values of λ where λ > 0.

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_-

NEAREST, the dth mipmap array is selected, where

d =

levelbase, λ ≤ 1

2

dlevelbase + λ+ 1
2e − 1, λ > 1

2 , levelbase + λ ≤ q + 1
2

5

q, λ > 1
2 , levelbase + λ > q + 1

2

(8.14)

OpenGL 4.5 (Core Profile) - October 24, 2016

8.14. TEXTURE MINIFICATION 252

The rules for NEAREST or LINEAR filtering are then applied to the selected
array. Specifically, the coordinate (u, v, w) is computed as in equation 8.10, with
ws, hs, and ds equal to the width, height, and depth of the texture image whose
level is d.

For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR_MIPMAP_-

LINEAR, the level d1 and d2 mipmap arrays are selected, where

d1 =

{
q, levelbase + λ ≥ q
blevelbase + λc, otherwise

(8.15)

d2 =

{
q, levelbase + λ ≥ q
d1 + 1, otherwise

(8.16)

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values τ1 and τ2. Specifically,
for level d1, the coordinate (u, v, w) is computed as in equation 8.10, with ws, hs,
and ds equal to the width, height, and depth of the texture image whose level is d1.
For level d2 the coordinate (u′, v′, w′) is computed as in equation 8.10, with ws,
hs, and ds equal to the width, height, and depth of the texture image whose level is
d2.

The final texture value is then found as

τ = [1− frac(λ)]τ1 + frac(λ)τ2.

8.14.4 Manual Mipmap Generation

Mipmaps can be generated manually for a texture object with the commands

void GenerateMipmap(enum target);
void GenerateTextureMipmap(uint texture);

For GenerateMipmap, the texture object is that bound to target. For Gener-
ateTextureMipmap, texture is the name of the texture object.

target or the effective target of texture must be one of TEXTURE_-

1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP, or TEXTURE_CUBE_MAP_ARRAY.

5 Implementations may instead use the nearly equivalent computation d = blevelbase + λ+ 1
2
c

in this case.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.15. TEXTURE MAGNIFICATION 253

If target or the effective target of texture is TEXTURE_CUBE_MAP or
TEXTURE_CUBE_MAP_ARRAY, then the texture object must be cube complete or
cube array complete respectively, as defined in section 8.17.

Mipmap generation replaces texture image levels levelbase + 1 through q with
images derived from the levelbase image, regardless of their previous contents. All
other mipmap levels, including levelbase, are left unchanged by this computation.

The internal formats and border widths of the derived mipmap texture images
all match those of the levelbase image, and the dimensions of the derived images,
follow the requirements described in section 8.17.

The contents of the derived images are computed by repeated, filtered reduc-
tion of the levelbase image. For one- and two-dimensional array and cube map
array textures, each layer is filtered independently. No particular filter algorithm is
required, though a box filter is recommended as the default filter.

Errors

An INVALID_ENUM error is generated by GenerateMipmap if target is
not one of the valid targets listed above.

An INVALID_OPERATION error is gener-
ated by GenerateTextureMipmap if texture is not the name of an existing
texture object.

An INVALID_OPERATION error is
generated by GenerateTextureMipmap if the effective target is not one of
the valid targets listed above.

An INVALID_OPERATION error is generated by
GenerateTextureMipmap if the effective target is TEXTURE_CUBE_MAP or
TEXTURE_CUBE_MAP_ARRAY, and the texture object is not cube complete or
cube array complete, respectively.

8.14.5 Automatic Mipmap Generation

This subsection is only defined in the compatibility profile.

8.15 Texture Magnification

When λ indicates magnification, the value assigned to TEXTURE_MAG_FILTER

determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER and LINEAR behaves exactly as LINEAR for

OpenGL 4.5 (Core Profile) - October 24, 2016

8.16. COMBINED DEPTH/STENCIL TEXTURES 254

TEXTURE_MIN_FILTER as described in section 8.14, including the texture coordi-
nate wrap modes specified in table 8.20. The level-of-detail levelbase texture image
is always used for magnification.

8.16 Combined Depth/Stencil Textures

If the texture image has a base internal format of DEPTH_STENCIL, then the stencil
index texture component is ignored by default. The texture value τ does not include
a stencil index component, but includes only the depth component.

In order to access the stencil index texture component the DEPTH_STENCIL_-
TEXTURE_MODE texture parameter should be set to STENCIL_INDEX. When this
mode is set the depth component is ignored and the texture value includes only the
stencil index component. The stencil index value is treated as an unsigned inte-
ger texture and returns an unsigned integer value when sampled. When sampling
the stencil index only NEAREST filtering is supported. The DEPTH_STENCIL_-

TEXTURE_MODE is ignored for non depth/stencil textures.

8.17 Texture Completeness

A texture is said to be complete if all the texture images and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on texture dimensionality and type.

For one-, two-, and three-dimensional and one- and two-dimensional array tex-
tures, a texture is mipmap complete if all of the following conditions hold true:

• The set of mipmap images levelbase through q (where q is defined in sec-
tion 8.14.3) were each specified with the same internal format.

• The dimensions of the images follow the sequence described in sec-
tion 8.14.3.

• levelbase ≤ levelmax

Image levels k where k < levelbase or k > q are insignificant to the definition of
completeness.

A cube map texture is mipmap complete if each of the six texture images,
considered individually, is mipmap complete. Additionally, a cube map texture is
cube complete if the following conditions all hold true:

• The levelbase texture images of each of the six cube map faces have identical,
positive, and square dimensions.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.17. TEXTURE COMPLETENESS 255

• The levelbase images were each specified with the same internal format.

A cube map array texture is cube array complete if it is complete when treated
as a two-dimensional array and cube complete for every cube map slice within the
array texture.

Using the preceding definitions, a texture is complete unless any of the follow-
ing conditions hold true:

• Any dimension of the levelbase image is not positive. For a rectangle or
multisample texture, levelbase is always zero.

• The texture is a cube map texture, and is not cube complete.

• The texture is a cube map array texture, and is not cube array complete.

• The minification filter requires a mipmap (is neither NEAREST nor LINEAR),
and the texture is not mipmap complete.

• Any of

– The internal format of the texture is integer (see table 8.12).
– The internal format is STENCIL_INDEX.
– The internal format is DEPTH_STENCIL, and the value of DEPTH_-
STENCIL_TEXTURE_MODE for the texture is STENCIL_INDEX.

and either the magnification filter is not NEAREST, or the minification filter
is neither NEAREST nor NEAREST_MIPMAP_NEAREST.

• The internal format of
the texture is DEPTH STENCIL, the DEPTH STENCIL TEXTURE MODE
for the texture is STENCIL INDEX and either the magnification filter or the
minification filter is neither NEAREST nor NEAREST MIPMAP NEAREST.

8.17.1 Effects of Sampler Objects on Texture Completeness

If a sampler object and a texture object are simultaneously bound to the same tex-
ture unit, then the sampling state for that unit is taken from the sampler object (see
section 8.2). This can have an effect on the effective completeness of the texture. In
particular, if the texture is not mipmap complete and the sampler object specifies a
TEXTURE_MIN_FILTER requiring mipmaps, the texture will be considered incom-
plete for the purposes of that texture unit. However, if the sampler object does not
require mipmaps, the texture object will be considered complete. This means that
a texture can be considered both complete and incomplete simultaneously if it is
bound to two or more texture units along with sampler objects with different states.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.18. TEXTURE VIEWS 256

8.17.2 Effects of Completeness on Texture Application

Texture lookup and texture fetch operations performed in shaders are affected
by completeness of the texture being sampled as described in sections 11.1.3.5
and 15.2.1.

8.17.3 Effects of Completeness on Texture Image Specification

The implementation-dependent maximum sizes for texture images depend on the
texture level. In particular, an implementation may allow a texture image of level
one or greater to be created only if a mipmap complete set of images consistent with
the requested image can be supported with default values of TEXTURE_BASE_-
LEVEL and TEXTURE_MAX_LEVEL (see table 23.14). As a result, implementations
may permit a texture image at level zero that will never be mipmap complete and
can only be used with non-mipmapped minification filters.

8.18 Texture Views

A texture can be created which references the data store of another texture and
interprets the data with a different format, and/or selects a subset of the levels
and/or layers of the other texture. The data store for such a texture is shared with
the data store of the original texture. Updating the shared data store using the
original texture affects texture values read using the new texture, and vice versa. A
texture data store remains in existence until all textures that reference it are deleted.

The command

void TextureView(uint texture, enum target,
uint origtexture, enum internalformat, uint minlevel,
uint numlevels, uint minlayer, uint numlayers);

initializes the texture named texture to the target specified by target. texture’s data
store is inherited from the texture named origtexture, but elements of the data store
are interpreted according to the internal format specified by internalformat. Ad-
ditionally, if origtexture is an array or has multiple mipmap levels, the parameters
minlayer, numlayers, minlevel, and numlevels control which of those slices and
levels are considered part of the texture.

The minlevel and minlayer parameters are relative to the view of origtexture. If
numlayers or numlevels extend beyond origtexture, they are clamped to the maxi-
mum extent of the original texture.

If the command is successful, the texture parameters in texture are updated as
follows:

OpenGL 4.5 (Core Profile) - October 24, 2016

8.18. TEXTURE VIEWS 257

• TEXTURE_IMMUTABLE_FORMAT is set to TRUE.

• TEXTURE_IMMUTABLE_LEVELS is set to the value of TEXTURE_-

IMMUTABLE_LEVELS for origtexture.

• TEXTURE_VIEW_MIN_LEVEL is set to minlevel plus the value of
TEXTURE_VIEW_MIN_LEVEL for origtexture.

• TEXTURE_VIEW_MIN_LAYER is set to minlayer plus the value of
TEXTURE_VIEW_MIN_LAYER for origtexture.

• TEXTURE_VIEW_NUM_LEVELS is set to the lesser of numlevels and the value
of TEXTURE_VIEW_NUM_LEVELS for origtexture minus minlevel.

• TEXTURE_VIEW_NUM_LAYERS is set to the lesser of numlayers and the value
of TEXTURE_VIEW_NUM_LAYERS for origtexture minus minlayer.

The new texture’s target must be compatible with the target of origtexture, as
defined by table 8.21.

Numerous constraints on numlayers and the texture dimensions depend on tar-
get and the target of origtexture. These constraints are summarized below in the
errors section.

When origtexture’s target is TEXTURE_CUBE_MAP, the layer parameters are
interpreted in the same order as if it were a TEXTURE_CUBE_MAP_ARRAY with 6
layer-faces.

The two textures’ internal formats must be compatible according to table 8.22
if the internal format exists in that table. The internal formats must be identical if
not in that table. If the internal formats are the same but are a base internal format,
the implementation’s effective internal format (see the end of section 8.5) for each
texture must be the same.

If the internal format does not exactly match the internal format of the original
texture, the contents of the memory are reinterpreted in the same manner as for
image bindings described in section 8.26.

Texture commands that take a level or layer parameter, such as TexSubIm-
age2D, interpret that parameter to be relative to the view of the texture. i.e. the
mipmap level of the data store that would be updated via TexSubImage2D would
be the sum of level and the value of TEXTURE_VIEW_MIN_LEVEL.

Errors

An INVALID_VALUE error is generated if texture is zero.
An INVALID_OPERATION error is generated if texture is not a valid name

OpenGL 4.5 (Core Profile) - October 24, 2016

8.18. TEXTURE VIEWS 258

Original target Valid new targets
TEXTURE_1D TEXTURE_1D, TEXTURE_1D_ARRAY
TEXTURE_2D TEXTURE_2D, TEXTURE_2D_ARRAY
TEXTURE_3D TEXTURE_3D

TEXTURE_CUBE_MAP TEXTURE_CUBE_MAP, TEXTURE_2D,
TEXTURE_2D_ARRAY, TEXTURE_CUBE_-

MAP_ARRAY

TEXTURE_RECTANGLE TEXTURE_RECTANGLE

TEXTURE_BUFFER none
TEXTURE_1D_ARRAY TEXTURE_1D_ARRAY, TEXTURE_1D
TEXTURE_2D_ARRAY TEXTURE_2D_ARRAY, TEXTURE_2D,

TEXTURE_CUBE_MAP, TEXTURE_CUBE_-

MAP_ARRAY

TEXTURE_CUBE_MAP_ARRAY TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_-

ARRAY, TEXTURE_2D, TEXTURE_CUBE_MAP
TEXTURE_2D_MULTISAMPLE TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_-

MULTISAMPLE_ARRAY

TEXTURE_2D_MULTISAMPLE_ARRAY TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_-

MULTISAMPLE_ARRAY

Table 8.21: Legal texture targets for TextureView.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.18. TEXTURE VIEWS 259

Class Internal formats
VIEW_CLASS_128_BITS RGBA32F, RGBA32UI, RGBA32I
VIEW_CLASS_96_BITS RGB32F, RGB32UI, RGB32I
VIEW_CLASS_64_BITS RGBA16F, RG32F, RGBA16UI, RG32UI, RGBA16I, RG32I,

RGBA16, RGBA16_SNORM
VIEW_CLASS_48_BITS RGB16, RGB16_SNORM, RGB16F, RGB16UI, RGB16I
VIEW_CLASS_32_BITS RG16F, R11F_G11F_B10F, R32F, RGB10_A2UI, RGBA8UI,

RG16UI, R32UI, RGBA8I, RG16I, R32I, RGB10_A2, RGBA8,
RG16, RGBA8_SNORM, RG16_SNORM, SRGB8_ALPHA8, RGB9_E5

VIEW_CLASS_24_BITS RGB8, RGB8_SNORM, SRGB8, RGB8UI, RGB8I
VIEW_CLASS_16_BITS R16F, RG8UI, R16UI, RG8I, R16I, RG8, R16, RG8_SNORM,

R16_SNORM

VIEW_CLASS_8_BITS R8UI, R8I, R8, R8_SNORM
VIEW_CLASS_RGTC1_RED COMPRESSED_RED_RGTC1, COMPRESSED_SIGNED_RED_RGTC1
VIEW_CLASS_RGTC2_RG COMPRESSED_RG_RGTC2, COMPRESSED_SIGNED_RG_RGTC2
VIEW_CLASS_BPTC_UNORM COMPRESSED_RGBA_BPTC_UNORM, COMPRESSED_SRGB_-

ALPHA_BPTC_UNORM

VIEW_CLASS_BPTC_FLOAT COMPRESSED_RGB_BPTC_SIGNED_FLOAT, COMPRESSED_-

RGB_BPTC_UNSIGNED_FLOAT

Table 8.22: Compatible internal formats for TextureView. Formats in the same
row may be cast to each other.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 260

returned by GenTextures, or if texture has already been bound and given a
target.

An INVALID_VALUE error is generated if origtexture is not the name of a
texture.

An INVALID_OPERATION error is generated if the value of TEXTURE_-
IMMUTABLE_FORMAT for origtexture is not TRUE.

An INVALID_OPERATION error is generated if target is not compatible
with the target of origtexture, as defined by table 8.21.

An INVALID_OPERATION error is generated if the internal format of orig-
texture exists in table 8.22 and is not compatible with internalformat, as de-
scribed in that table.

An INVALID_OPERATION error is generated if the internal format of orig-
texture does not exist in table 8.22, and is not identical to internalformat.

An INVALID_VALUE error is generated if minlevel or minlayer are larger
than the greatest level or layer, respectively, of origtexture.

An INVALID_VALUE error is generated if target is TEXTURE_CUBE_MAP
and the clamped numlayers is not 6.

An INVALID_VALUE error is generated if target is TEXTURE_CUBE_-

MAP_ARRAY and the clamped numlayers is not a multiple of 6.
An INVALID_VALUE error is generated if target is TEXTURE_1D,

TEXTURE_2D, TEXTURE_3D, TEXTURE_RECTANGLE, or TEXTURE_2D_-

MULTISAMPLE and numlayers does not equal 1.
An INVALID_OPERATION error is generated if target is TEXTURE_-

CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, and the width and height of orig-
texture’s levels are not equal.

An INVALID_OPERATION error is generated if any dimension of origtex-
ture is larger than the maximum supported corresponding dimension of the
new target. For example, if origtexture has a TEXTURE_2D_ARRAY target and
target is TEXTURE_CUBE_MAP, its width must be no greater than the value of
MAX_CUBE_MAP_TEXTURE_SIZE.

An INVALID_OPERATION error is generated if the computed values of
TEXTURE_VIEW_NUM_LEVELS or TEXTURE_VIEW_NUM_LAYERS for texture,
as described above, are less than or equal to zero.

8.19 Immutable-Format Texture Images

An alternative set of commands is provided for specifying the properties of all
levels of a texture at once. Once a texture is specified with such a command, the
format and dimensions of all levels becomes immutable, unless it is a proxy texture

OpenGL 4.5 (Core Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 261

(since otherwise it would no longer be possible to use the proxy). The contents of
the images and the parameters can still be modified. Such a texture is referred
to as an immutable-format texture. The immutability status of a texture can be
determined by calling GetTexParameter with pname TEXTURE_IMMUTABLE_-

FORMAT.
Each of the commands below is described by pseudocode which indicates the

effect on the dimensions and format of the texture. For each command the follow-
ing apply in addition to the pseudocode:

• If executing the pseudocode would result in any other error, the error is gen-
erated and the command will have no effect.

• Any existing levels that are not replaced are reset to their initial state.

• The pixel unpack buffer should be considered to be zero; i.e., the image
contents are unspecified.

• Since no pixel data are provided, the format and type values used in the
pseudocode are irrelevant; they can be considered to be any values that are
legal to use with internalformat.

• If the command is successful, TEXTURE_IMMUTABLE_FORMAT becomes
TRUE. TEXTURE_IMMUTABLE_LEVELS and TEXTURE_VIEW_NUM_LEVELS
become levels. If the texture target is TEXTURE_1D_ARRAY then
TEXTURE_VIEW_NUM_LAYERS becomes height. If the texture target is
TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY, or TEXTURE_2D_-

MULTISAMPLE_ARRAY then TEXTURE_VIEW_NUM_LAYERS becomes depth.
If the texture target is TEXTURE_CUBE_MAP, then TEXTURE_VIEW_NUM_-

LAYERS becomes 6. For any other texture target, TEXTURE_VIEW_NUM_-
LAYERS becomes 1.

The TexStorage* commands specify properties of the texture object bound to
the target parameter of each command.

The TextureStorage* commands behave similarly to the equivalent TexStor-
age* commands, but specify properties of the texture object named by the texture
parameter of each command. The effective target of texture must be compatible
with the target parameter of the equivalent TexStorage* command.

For each command, the following errors are generated in addition to the errors
described specific to that command:

OpenGL 4.5 (Core Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 262

Errors

An INVALID_OPERATION error is generated by TexStorage* if zero is
bound to target.

An INVALID_OPERATION error is generated by TextureStorage* if tex-
ture is not the name of an existing texture object.

An INVALID_VALUE error is generated if width, height, depth or levels
are less than 1, for commands with the corresponding parameters.

An INVALID_ENUM error is generated if internalformat is one of the un-
sized base internal formats listed in table 8.11.

The commands

void TexStorage1D(enum target, sizei levels,
enum internalformat, sizei width);

void TextureStorage1D(uint texture, sizei levels,
enum internalformat, sizei width);

specify all the levels of a one-dimensional texture (or for TexStorage1D, proxy) at
the same time. TexStorage1D is described by the pseudocode below:

for (i = 0; i < levels; i++) {
TexImage1D(target, i, internalformat, width, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

}

Errors

In addition to the generic errors described at the start of this section,
An INVALID_ENUM error is generated by TexStorage1D if target is not

TEXTURE_1D or PROXY_TEXTURE_1D.
An INVALID_ENUM error is generated by TextureStorage1D if target is

not TEXTURE_1D.
An INVALID_OPERATION error is generated if levels is greater than

blog2(width)c+ 1.

The commands

void TexStorage2D(enum target, sizei levels,
enum internalformat, sizei width, sizei height);

OpenGL 4.5 (Core Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 263

void TextureStorage2D(uint texture, sizei levels,
enum internalformat, sizei width, sizei height);

specify all the levels of a two-dimensional, cube map, one-dimensional array or
rectangle texture (or for TexStorage2D, proxy) at the same time. TexStorage2D
is described by the target-dependent pseudocode below:

targets TEXTURE_2D, PROXY_TEXTURE_2D, TEXTURE_RECTANGLE, PROXY_-

TEXTURE_RECTANGLE, or PROXY_TEXTURE_CUBE_MAP:

for (i = 0; i < levels; i++) {
TexImage2D(target, i, internalformat, width, height, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

}

target TEXTURE_CUBE_MAP:

for (i = 0; i < levels; i++) {
for face in (each target in table 8.19) {

TexImage2D(face, i, internalformat, width, height, 0,
format, type, NULL);

}
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

}

targets TEXTURE_1D_ARRAY or PROXY_TEXTURE_1D_ARRAY:

for (i = 0; i < levels; i++) {
TexImage2D(target, i, internalformat, width, height, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

}

Errors

In addition to the generic errors described at the start of this section,
An INVALID_ENUM error is generated by TexStorage2D if target is not

OpenGL 4.5 (Core Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 264

one of those listed above.
An INVALID_OPERATION error is generated by TextureStorage2D if the

effective target is not one of those listed above.
An INVALID_OPERATION error is generated if any of the following con-

ditions hold:

• The effective target is TEXTURE_1D_ARRAY or PROXY_TEXTURE_-

1D_ARRAY, and levels is greater than blog2(width)c+ 1

• The effective target is not TEXTURE_1D_ARRAY or PROXY_TEXTURE_-
1D_ARRAY, and levels is greater than blog2(max(width, height))c+ 1

The commands

void TexStorage3D(enum target, sizei levels,
enum internalformat, sizei width, sizei height,
sizei depth);

void TextureStorage3D(uint texture, sizei levels,
enum internalformat, sizei width, sizei height,
sizei depth);

specify all the levels of a three-dimensional, two-dimensional array texture, or cube
map array texture (or for TexStorage3D, proxy). TexStorage3D is described by
the target-dependent pseudocode below:

targets TEXTURE_3D or PROXY_TEXTURE_3D:

for (i = 0; i < levels; i++) {
TexImage3D(target, i, internalformat, width, height, depth, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

depth = max(1,
⌊
depth

2

⌋
);

}

targets TEXTURE_2D_ARRAY, PROXY_TEXTURE_2D_ARRAY, TEXTURE_CUBE_-
MAP_ARRAY or PROXY_TEXTURE_CUBE_MAP_ARRAY:

for (i = 0; i < levels; i++) {
TexImage3D(target, i, internalformat, width, height, depth, 0,

format, type, NULL);

OpenGL 4.5 (Core Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 265

width = max(1,
⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

}

Errors

In addition to the generic errors described at the start of this section,
An INVALID_ENUM error is generated by TexStorage3D if target is not

one of those listed above.
An INVALID_OPERATION error is generated by TextureStorage3D if the

effective target is not one of those listed above.
An INVALID_OPERATION error is generated if any of the following con-

ditions hold:

• The effective target is TEXTURE_3D or PROXY_TEXTURE_3D and levels
is greater than blog2(max(width, height, depth)))c+ 1

• The effective target is TEXTURE_2D_ARRAY, PROXY_TEXTURE_2D_-
ARRAY, TEXTURE_CUBE_MAP_ARRAY or PROXY_TEXTURE_CUBE_-

MAP_ARRAY and levels is greater than blog2(max(width, height))c+1

The commands

void TexStorage2DMultisample(enum target, sizei samples,
enum internalformat, sizei width, sizei height,
boolean fixedsamplelocations);

void TextureStorage2DMultisample(uint texture,
sizei samples, enum internalformat, sizei width,
sizei height, boolean fixedsamplelocations);

specify a
two-dimensional multisample texture (or for TexStorage2DMultisample, proxy).
For TexStorage2DMultisample, target must be TEXTURE_2D_MULTISAMPLE or
PROXY_TEXTURE_2D_MULTISAMPLE.

Calling TexStorage2DMultisample is
equivalent to calling TexImage2DMultisample with the equivalently named pa-
rameters set to the same values, except that the resulting texture has immutable
format.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.19. IMMUTABLE-FORMAT TEXTURE IMAGES 266

Errors

In addition to the generic errors described at the start of this section,
An INVALID_ENUM error is generated by TexStorage2DMultisample

if target is not TEXTURE_2D_MULTISAMPLE or PROXY_TEXTURE_2D_-

MULTISAMPLE.
An INVALID_OPERATION

error is generated by TextureStorage2DMultisample if the effective target
is not TEXTURE_2D_MULTISAMPLE.

The commands

void TexStorage3DMultisample(enum target, sizei samples,
enum internalformat, sizei width, sizei height,
sizei depth, boolean fixedsamplelocations);

void TextureStorage3DMultisample(uint texture,
sizei samples, enum internalformat, sizei width,
sizei height, sizei depth,
boolean fixedsamplelocations);

specify a two-dimensional
multisample array texture (or, for TexStorage3DMultisample, proxy). For TexS-
torage3DMultisample, target must be TEXTURE_2D_MULTISAMPLE_ARRAY or
PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY.

Calling TexStorage3DMultisample is equivalent to calling TexIm-
age3DMultisample with the equivalently named parameters set to the same
values, except that the resulting texture has immutable format.

Errors

In addition to the generic errors described at the start of this section,
An INVALID_ENUM error is generated by TexStorage3DMultisample

if target is not TEXTURE_2D_MULTISAMPLE_ARRAY or PROXY_TEXTURE_-
2D_MULTISAMPLE_ARRAY.

An INVALID_-

OPERATION error is generated by TextureStorage3DMultisample if target
is not TEXTURE_2D_MULTISAMPLE_ARRAY.

8.19.1 Behavior of Immutable-Format Texture Images

After a successful call to any Tex*Storage* command with a non-proxy target, no
further changes to the dimensions or format of the texture object may be made.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.20. INVALIDATING TEXTURE IMAGE DATA 267

Other commands may only alter the texel values and texture parameters.

Errors

An INVALID_OPERATION error is generated by any of the commands
CompressedTexImage*, CopyTexImage*, TexImage*, and TexStorage*
with the same texture, even if it does not affect the dimensions or format:

8.20 Invalidating Texture Image Data

All or part of a texture image may be invalidated, effectively leaving those texels
undefined, by calling

void InvalidateTexSubImage(uint texture, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth);

with texture and level indicating which texture image is being invalidated. After
this command, data in that subregion have undefined values.

Arguments xoffset, yoffset, and zoffset specify the lower left back texel coordi-
nates of a width-wide by height-high by depth-deep rectangular subregion of the
texture image to invalidate, and are interpreted as described for TexSubImage3D
in section 8.6. The subregion must lie within the bounds of the texture image, as
described in that section.

Cube map textures are treated as an array of six slices in the z-dimension,
where a value of zoffset is interpreted as specifying the cube map face for the
corresponding layer in table 9.3.

For texture types that don’t have certain dimensions, InvalidateTexSubImage
treats those dimensions as having a size of 1. For example, to invalidate a portion
of a two-dimensional texture, use zoffset equal to zero and depth equal to one.

Errors

An INVALID_VALUE error is generated if level is negative or greater than
log2 of the maximum texture width, height, or depth.

An INVALID_OPERATION error is generated if the specified subregion
does not lie within the bounds of the texture image, as described for Tex-
SubImage3D in section 8.6.

An INVALID_VALUE error is generated if texture is zero or is not the name
of a texture. It is not possible to invalidate a portion of a default texture.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.21. CLEARING TEXTURE IMAGE DATA 268

An INVALID_VALUE error is generated if the effective target of texture
is TEXTURE_RECTANGLE, TEXTURE_BUFFER, TEXTURE_2D_MULTISAMPLE,
or TEXTURE_2D_MULTISAMPLE_ARRAY, and level is not zero.

An INVALID_VALUE error is generated if width, height, or depth is nega-
tive.

The command

void InvalidateTexImage(uint texture, int level);

is equivalent to calling InvalidateTexSubImage with xoffset, yoffset, and zoffset
equal to 0 and width, height, and depth equal to the dimensions of the texture
image (or zero and one for dimensions the texture doesn’t have).

8.21 Clearing Texture Image Data

All or part of a texture image may be filled with a constant value with the command

void ClearTexSubImage(uint texture, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format, enum type,
const void *data);

with texture and level indicating which texture image is being cleared. It is an error
if texture is zero or not the name of a texture object, if texture is a buffer texture, or
if the texture image has a compressed internal format.

Arguments xoffset, yoffset, and zoffset specify the lower left back texel coordi-
nates of a width-wide by height-high by depth-deep rectangular subregion of the
texture image, and are interpreted as described for TexSubImage3D in section 8.6.
The subregion must lie within the bounds of the texture image, as described in that
section.

For one-dimensional array textures, yoffset is interpreted as the first layer to
be cleared and height is the number of layers to clear. For two-dimensional array
textures, zoffset is interpreted as the first layer to be cleared and depth is the number
of layers to clear. Cube map textures are treated as an array of six slices in the z-
dimension, where the value of zoffset is interpreted as specifying the cube map face
for the corresponding layer in table 9.3 and depth is the number of faces to clear.
For cube map array textures, zoffset is the first layer-face to clear, and depth is the
number of layer-faces to clear. Each layer-face is translated into an array layer and
a cube map face as described for layer-face numbers in section 8.5.3.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.21. CLEARING TEXTURE IMAGE DATA 269

For texture types that do not have certain dimensions, ClearTexSubImage
treats those dimensions as having a size of 1. For example, to clear a portion
of a two-dimensional texture, use zoffset equal to zero and depth equal to one.

format and type specify the format and type of the source data and are inter-
preted as they are for TexImage3D, as described in section 8.4.4. Textures with a
base internal format of DEPTH_COMPONENT, STENCIL_INDEX, DEPTH_STENCIL
require depth component, stencil, or depth/stencil component data respectively.
Textures with other base internal formats require RGBA formats. Textures with in-
teger internal formats (see table 8.12) require integer data.

data is a pointer to an array of between one and four components of texel
data that will be used as the source for the constant fill value. The elements of
data are converted by the GL into the internalformat of the texture image (that
was specified when the level was defined by any of the TexImage, TexStorage
or CopyTexImage commands) in the manner described in section 8.4.4, and then
used to fill the specified range of the destination texture level. If data is NULL, then
the pointer is ignored and the sub-range of the texture image is filled with zeros. If
texture is a multisample texture, all the samples in a texel are cleared to the value
specified by data.

Errors

An INVALID_OPERATION error is generated if texture is zero or not the
name of a texture object.

An INVALID_OPERATION error is generated if texture is a buffer texture.
An INVALID_OPERATION error is generated if texture has a compressed

internal format.
An INVALID_OPERATION error is generated if the base internal format is

DEPTH_COMPONENT and format is not DEPTH_COMPONENT.
An INVALID_OPERATION error is generated if the base internal format is

DEPTH_STENCIL and format is not DEPTH_STENCIL.
An INVALID_OPERATION error is generated if the base internal format is

STENCIL_INDEX and format is not STENCIL_INDEX.
An INVALID_OPERATION error is generated if the base internal format is

RGBA and the format is DEPTH_COMPONENT, STENCIL_INDEX, or DEPTH_-
STENCIL.

An INVALID_OPERATION error is generated if the internal format is inte-
ger and format does not specify integer data.

An INVALID_OPERATION error is generated if the internal format is not
integer and format does specify integer data.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.22. TEXTURE STATE AND PROXY STATE 270

An INVALID_OPERATION error is generated if the specified subregion
does not lie within the bounds of the texture image, as described for Tex-
SubImage3D in section 8.6.

The command

void ClearTexImage(uint texture, int level, enum format,
enum type, const void * data);

is equivalent to calling ClearTexSubImage with xoffset, yoffset, and zoffset equal
to 0, and width, height, and depth equal to the dimensions of the texture image (or
zero and one for dimensions the texture doesn’t have).

Errors

In addition to the errors generated by ClearTexSubImage:
An INVALID_OPERATION error is generated if the texture image identi-

fied by level has not previously been defined by a TexImage* or TexStorage*
command.

8.22 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there
are the multiple sets of texture images (a single image for the rectangle texture
target; one set of mipmap images each for the one-, two-, and three-dimensional
and one- and two-dimensional array texture targets; and six sets of mipmap im-
ages each for the cube map and cube map array texture targets) and their num-
ber. Each array has associated with it a width, height (two- and three-dimensional,
rectangle, one-dimensional array, cube map, and cube map array only), and depth
(three-dimensional, two-dimensional array, and cube map array only), an integer
describing the internal format of the image, integer values describing the resolu-
tions of each of the red, green, blue, alpha, depth, and stencil components of the
image, integer values describing the type (unsigned normalized, integer, floating-
point, etc.) of each of the components, a boolean describing whether the image is
compressed or not, an integer size of a compressed image, and an integer contain-
ing the name of a buffer object bound as the data store of the image.

Each initial texture image is null. It has zero width, height, and depth, internal
format RGBA, or R8 for buffer textures, component sizes set to zero and component
types set to NONE, the compressed flag set to FALSE, a zero compressed size, and
the bound buffer object name is zero.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.22. TEXTURE STATE AND PROXY STATE 271

Multisample textures also contain an integer identifying the number of samples
in each texel, and a boolean indicating whether identical sample locations and the
same number of samples will be used for all texels in the image.

Buffer textures also contain two pointer sized integers containing the offset and
range of the buffer object’s data store.

Next, there are the five sets of texture properties, corresponding to the one-,
two-, three-dimensional, cube map and cube map array texture targets. Each set
consists of the selected minification and magnification filters, the wrap modes for
s, t (two- and three-dimensional and cube map only), and r (three-dimensional
only), the TEXTURE_BORDER_COLOR, two floating-point numbers describing the
minimum and maximum level of detail, two integers describing the base and max-
imum mipmap image levels, a boolean flag indicating whether the format and
dimensions of the texture are immutable, three integers describing the depth tex-
ture mode, compare mode, and compare function, an integer describing the depth
stencil texture mode, and four integers describing the red, green, blue, and alpha
swizzle modes (see section 15.2.1).

In the initial state, the value assigned to TEXTURE_MIN_FILTER is
NEAREST_MIPMAP_LINEAR (except for rectangle textures, where the initial value
is LINEAR), and the value for TEXTURE_MAG_FILTER is LINEAR. s, t, and r wrap
modes are all set to REPEAT (except for rectangle textures, where the initial value
is CLAMP_TO_EDGE). The values of TEXTURE_MIN_LOD and TEXTURE_MAX_-

LOD are -1000 and 1000 respectively. The values of TEXTURE_BASE_LEVEL and
TEXTURE_MAX_LEVEL are 0 and 1000 respectively. The value of TEXTURE_-
BORDER_COLOR is (0,0,0,0). The value of TEXTURE_IMMUTABLE_FORMAT is
FALSE. The values of TEXTURE_COMPARE_MODE, and TEXTURE_COMPARE_-

FUNC are NONE, and LEQUAL respectively. The value of DEPTH_STENCIL_-

TEXTURE_MODE is DEPTH_COMPONENT. The values of TEXTURE_SWIZZLE_-

R, TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_-

A are RED, GREEN, BLUE, and ALPHA, respectively. The values of TEXTURE_-
IMMUTABLE_LEVELS, TEXTURE_VIEW_MIN_LEVEL, TEXTURE_VIEW_NUM_-

LEVELS, TEXTURE_VIEW_MIN_LAYER, TEXTURE_VIEW_NUM_LAYERS are each
zero.

In addition to texture images for the non-proxy texture targets described above,
partially instantiated texture images are maintained for one-, two-, and three-
dimensional, rectangle, one- and two-dimensional array, and cube map array tex-
tures. Additionally, a single proxy image is maintained for the cube map texture.
Each proxy image includes width, height, depth, number of samples, and inter-
nal format state values, as well as state for the red, green, blue, alpha, depth,
and stencil component resolutions and types. Proxy images do not include image
data or texture parameters. When TexImage3D is executed with target specified

OpenGL 4.5 (Core Profile) - October 24, 2016

8.22. TEXTURE STATE AND PROXY STATE 272

as PROXY_TEXTURE_3D, the three-dimensional proxy state values of the specified
level-of-detail are recomputed and updated. If the image would not be supported
by TexImage3D called with target set to TEXTURE_3D, no error is generated, but
the proxy width, height, depth, number of samples, and component resolutions
are set to zero, and the component types are set to NONE. If the image would be
supported by such a call to TexImage3D, the proxy state values are set exactly
as though the actual image were being specified. No pixel data are transferred or
processed in either case.

Proxy images for one- and two-dimensional textures, one- and two-
dimensional array textures, and cube map array textures are operated on in the
same way when TexImage1D is executed with target specified as PROXY_-

TEXTURE_1D, TexImage2D is executed with target specified as PROXY_-

TEXTURE_2D, PROXY_TEXTURE_1D_ARRAY, or PROXY_TEXTURE_RECTANGLE,
or TexImage3D is executed with target specified as PROXY_TEXTURE_2D_ARRAY
or PROXY_TEXTURE_CUBE_MAP_ARRAY.

Proxy images for two-dimensional multisample and two-dimensional mul-
tisample array textures are operated on in the same way when TexIm-
age2DMultisample is called with target specified as PROXY_TEXTURE_2D_-

MULTISAMPLE, or TexImage3DMultisample is called with target specified as
PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY. However, if samples is not sup-
ported, then no error is generated.

The cube map proxy images are operated on in the same manner when Tex-
Image2D is executed with the target field specified as PROXY_TEXTURE_CUBE_-
MAP, with the addition that determining that a given cube map texture is supported
with PROXY_TEXTURE_CUBE_MAP indicates that all six of the cube map two-
dimensional images are supported. Likewise, if the specified PROXY_TEXTURE_-

CUBE_MAP is not supported, none of the six cube map two-dimensional images are
supported.

Errors

An INVALID_ENUM error is generated by BindTexture, GetTexImage,
GetTexParameteriv, and GetTexParameterfv when called with a proxy tex-
ture target. There is no image or non-level-related state associated with proxy
textures, therefore they may not be used as textures.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.23. TEXTURE COMPARISON MODES 273

8.23 Texture Comparison Modes

Texture values can also be computed according to a specified comparison function.
Texture parameter TEXTURE_COMPARE_MODE specifies the comparison operands,
and parameter TEXTURE_COMPARE_FUNC specifies the comparison function.

8.23.1 Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, then TEXTURE_COMPARE_MODE and TEXTURE_COMPARE_-

FUNC control the output of the texture unit as described below. Otherwise, the
texture unit operates in the normal manner and texture comparison is bypassed.

Let Dt be the depth texture value and St be the stencil index component. If
there is no stencil component, the value of St is undefined. Let Dref be the ref-
erence value, provided by the shader’s texture lookup function. If the texture’s
internal format indicates a fixed-point depth texture, thenDt andDref are clamped
to the range [0, 1]; otherwise no clamping is performed.

Then the effective texture value is computed as follows:

• If the base internal format is STENCIL_INDEX, then r = St.

• If the base internal format is DEPTH_STENCIL and the value of DEPTH_-
STENCIL_TEXTURE_MODE is STENCIL_INDEX, then r = St.

• Otherwise, if the value of TEXTURE_COMPARE_MODE is NONE, then r = Dt.

• Otherwise, if the value of TEXTURE_COMPARE_MODE is COMPARE_REF_-
TO_TEXTURE, then r depends on the texture comparison function as shown
in table 8.23.

The resulting r is assigned to Rt.
If the value of TEXTURE_MAG_FILTER is not NEAREST, or the value of

TEXTURE_MIN_FILTER is not NEAREST or NEAREST_MIPMAP_NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
reference value. The details of this are implementation-dependent, but r should
be a value in the range [0, 1] which is proportional to the number of comparison
passes or failures.

8.24 sRGB Texture Color Conversion

If the currently bound texture’s internal format is one of the sRGB formats in ta-
ble 8.24, the red, green, and blue components are converted from an sRGB color

OpenGL 4.5 (Core Profile) - October 24, 2016

8.25. SHARED EXPONENT TEXTURE COLOR CONVERSION 274

Texture Comparison Function Computed result r

LEQUAL r =

{
1.0, Dref ≤ Dt

0.0, Dref > Dt

GEQUAL r =

{
1.0, Dref ≥ Dt

0.0, Dref < Dt

LESS r =

{
1.0, Dref < Dt

0.0, Dref ≥ Dt

GREATER r =

{
1.0, Dref > Dt

0.0, Dref ≤ Dt

EQUAL r =

{
1.0, Dref = Dt

0.0, Dref 6= Dt

NOTEQUAL r =

{
1.0, Dref 6= Dt

0.0, Dref = Dt

ALWAYS r = 1.0

NEVER r = 0.0

Table 8.23: Depth texture comparison functions.

space to a linear color space as part of filtering described in sections 8.14 and 8.15.
Any alpha component is left unchanged. Ideally, implementations should perform
this color conversion on each sample prior to filtering but implementations are al-
lowed to perform this conversion after filtering (though this post-filtering approach
is inferior to converting from sRGB prior to filtering).

The conversion from an sRGB encoded component cs to a linear component cl
is as follows.

cl =

{
cs

12.92 , cs ≤ 0.04045(
cs+0.055
1.055

)2.4
, cs > 0.04045

(8.17)

Assume cs is the sRGB component in the range [0, 1].

8.25 Shared Exponent Texture Color Conversion

If the currently bound texture’s internal format is RGB9_E5, the red, green, blue,
and shared bits are converted to color components (prior to filtering) using shared
exponent decoding. The component reds, greens, blues, and exps values (see

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 275

Internal Format
SRGB

SRGB8

SRGB_ALPHA

SRGB8_ALPHA8

COMPRESSED_SRGB

COMPRESSED_SRGB8_ETC2

COMPRESSED_SRGB_ALPHA

COMPRESSED_SRGB8_ALPHA8_ETC2_EAC

COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2

COMPRESSED_SRGB_ALPHA_BPTC_UNORM

Table 8.24: sRGB texture internal formats.

section 8.5.2) are treated as unsigned integers and are converted to floating-point
red, green, and blue as follows:

red = reds2
exps−B−N

green = greens2
exps−B−N

blue = blues2
exps−B−N

8.26 Texture Image Loads and Stores

The contents of a texture may be made available for shaders to read and write by
binding the texture to one of a collection of image units. The GL implementation
provides an array of image units numbered beginning with zero, with the total num-
ber of image units provided determined by the implementation-dependent value of
MAX_IMAGE_UNITS. Unlike texture image units, image units do not have a sep-
arate binding point for each texture target; each image unit may have only one
texture bound at a time.

A texture may be bound to an image unit for use by image loads and stores
with the command

void BindImageTexture(uint unit, uint texture, int level,
boolean layered, int layer, enum access, enum format);

where unit identifies the image unit, texture is the name of the texture, and level

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 276

selects a single level of the texture. If texture is zero, any texture currently bound
to image unit unit is unbound.

If the texture identified by texture is a one-dimensional array, two-dimensional
array, three-dimensional, cube map, cube map array, or two-dimensional multi-
sample array texture, it is possible to bind either the entire texture level or a single
layer or face of the texture level. If layered is TRUE, the entire level is bound. If
layered is FALSE, only the single layer identified by layer will be bound. When
layered is FALSE, the single bound layer is treated as a different texture target for
image accesses:

• one-dimensional array texture layers are treated as one-dimensional textures;

• two-dimensional array, three-dimensional, cube map, and cube map array
texture layers are treated as two-dimensional textures; and

• two-dimensional multisample array textures are treated as two-dimensional
multisample textures.

For cube map textures where layered is FALSE, the face is taken by mapping
the layer number to a face according to table 9.3. For cube map array textures
where layered is FALSE, the selected layer number is mapped to a texture layer
and cube face using the following equations and mapping face to a face according
to table 9.3.

layer =

⌊
layerorig

6

⌋
face = layerorig − (layer × 6)

If the texture identified by texture does not have multiple layers or faces, the
entire texture level is bound, regardless of the values specified for layered and
layer.

format specifies the format that the elements of the image will be treated as
when doing formatted stores, as described later in this section. This is referred to
as the image unit format.

access specifies whether the texture bound to the image will be treated as
READ_ONLY, WRITE_ONLY, or READ_WRITE. If a shader reads from an image unit
with a texture bound as WRITE_ONLY, or writes to an image unit with a texture
bound as READ_ONLY, the results of that shader operation are undefined and may
lead to application termination.

If a texture object bound to one or more image units is deleted by DeleteTex-
tures, it is detached from each such image unit, as though BindImageTexture
were called with unit identifying the image unit and texture set to zero.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 277

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to
the value of MAX_IMAGE_UNITS, if level or layer is negative, or if texture is
not the name of an existing texture object.

An INVALID_VALUE error is generated if format is not one of the formats
listed in table 8.26.

The command

void BindImageTextures(uint first, sizei count, const
uint *textures);

binds count existing texture objects to image units numbered first through first+
count − 1. If textures is not NULL, it specifies an array of count values, each of
which must be zero or the name of an existing texture object. If textures is NULL,
each affected image unit from first through first+ count− 1 will be reset to have
no bound texture object.

When binding a non-zero texture object to an image unit, the image unit level,
layered, layer, and access parameters are set to zero, TRUE, zero, and READ_-

WRITE, respectively. The image unit format parameter is taken from the internal
format of the texture image at level zero of the texture object identified by tex-
tures. For cube map textures, the internal format of the TEXTURE_CUBE_MAP_-

POSITIVE_X image of level zero is used. For multisample, multisample array,
buffer, and rectangle textures, the internal format of the single texture level is used.

When unbinding a texture object from an image unit, the image unit parameters
level, layered, layer, and format will be reset to their default values of zero, FALSE,
0, and R8, respectively.

BindImageTextures is equivalent (assuming no errors are generated) to:

for (i = 0; i < count; i++) {
if (textures == NULL || textures[i] = 0) {

BindImageTexture(first + i, 0, 0, FALSE, 0,
READ_ONLY, R8);

} else {
BindImageTexture(first + i, textures[i], 0, TRUE, 0,

READ_WRITE, lookupInternalFormat(textures[i]));
}

}

where lookupInternalFormat returns the internal format of the specified
texture object.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 278

The values specified in textures will be checked separately for each image unit.
When a value for a specific image unit is invalid, the state for that image unit will
be unchanged and an error will be generated. However, state for other image units
will still be changed if their corresponding values are valid.

Errors

An INVALID_OPERATION error is generated if first + count is greater
than the number of image units supported by the implementation.

An INVALID_OPERATION error is generated if any value in textures is not
zero or the name of an existing texture object (per binding).

An INVALID_OPERATION error is generated if the internal format of the
level zero texture image of any texture in textures is not found in table 8.26
(per binding).

An INVALID_OPERATION error is generated if the width, height, or depth
of the level zero texture image of any texture in textures is zero (per binding).

When a shader accesses the texture bound to an image unit using a built-in
image load, store, or atomic function, it identifies a single texel by providing a
one-, two-, or three-dimensional coordinate. Multisample texture accesses also
specify a sample number. A coordinate vector is mapped to an individual texel
τi, τij , or τijk according to the target of the texture bound to the image unit using
table 8.25. As noted above, single-layer bindings of array or cube map textures are
considered to use a texture target corresponding to the bound layer, rather than that
of the full texture.

If the texture target has layers or cube map faces, the layer or face number is
taken from the layer argument of BindImageTexture if the texture is bound with
layered set to FALSE, or from the coordinate identified by table 8.25 otherwise. For
cube map and cube map array textures with layered set to TRUE, the coordinate is
mapped to a layer and face in the same manner as described for the layer argument
of BindImageTexture.

If the individual texel identified for an image load, store, or atomic operation
doesn’t exist, the access is treated as invalid. Invalid image loads will return zero.
Invalid image stores will have no effect. Invalid image atomics will not update
any texture bound to the image unit and will return zero. An access is considered
invalid if:

• no texture is bound to the selected image unit;

• the texture bound to the selected image unit is incomplete;

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 279

Texture target i j k Face / layer
TEXTURE_1D x - - -
TEXTURE_2D x y - -
TEXTURE_3D x y z -
TEXTURE_RECTANGLE x y - -
TEXTURE_CUBE_MAP x y - z
TEXTURE_BUFFER x - - -
TEXTURE_1D_ARRAY x - - y
TEXTURE_2D_ARRAY x y - z
TEXTURE_CUBE_MAP_ARRAY x y - z
TEXTURE_2D_MULTISAMPLE x y - -
TEXTURE_2D_MULTISAMPLE_ARRAY x y - z

Table 8.25: Mapping of image load, store, and atomic texel coordinate components
to texel numbers.

• the texture level bound to the image unit is less than the base level or greater
than the maximum level of the texture;

• the internal format of the texture bound to the image unit is not found in
table 8.26;

• the internal format of the texture bound to the image unit is incompatible
with the specified format, as described below;

• the texture bound to the image unit has layers, and the selected layer or cube
map face doesn’t exist;

• the selected texel τi, τij , or τijk doesn’t exist;

• the image has more samples than the implementation-dependent value of
MAX_IMAGE_SAMPLES.

Additionally, there are a number of cases where image load, store, or atomic
operations are considered to involve a format mismatch. In such cases, undefined
values will be returned by image loads and atomic operations and undefined values
will be written by stores and atomic operations. A format mismatch will occur if:

• the type of image variable used to access the image unit does not match the
target of a texture bound to the image unit with layered set to TRUE;

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 280

• the type of image variable used to access the image unit does not match the
target corresponding to a single layer of a multi-layer texture target bound to
the image unit with layered set to FALSE;

• the type of image variable used to access the image unit has a component data
type (floating-point, signed integer, unsigned integer) incompatible with the
format of the image unit;

• the format layout qualifier for an image variable used for an image load or
atomic operation does not match the format of the image unit, according to
table 8.26; or

• the image variable used for an image store has a format layout qualifier,
and that qualifier does not match the format of the image unit, according to
table 8.26.

For textures with multiple samples per texel, the sample selected for an image
load, store, or atomic is undefined if the sample coordinate is negative or greater
than or equal to the number of samples in the texture.

If a shader performs an image load, store, or atomic operation using an image
variable declared as an array, and if the index used to select an individual element is
negative or greater than or equal to the size of the array, the results of the operation
are undefined but may not lead to termination.

Accesses to textures bound to image units do format conversions based on
the format argument specified when the image is bound. Loads always return a
value as a vec4, ivec4, or uvec4, and stores always take the source data as a
vec4, ivec4, or uvec4. Data are converted to/from the specified format accord-
ing to the process described for a TexImage2D or GetTexImage command with
format and type as RGBA and FLOAT for vec4 data, as RGBA_INTEGER and INT for
ivec4 data, or as RGBA_INTEGER and UNSIGNED_INT for uvec4 data, respec-
tively. Unused components are filled in with (0, 0, 0, 1) (where 0 and 1 are either
floating-point or integer values, depending on the format).

Any image variable used for shader loads or atomic memory operations must
be declared with a format layout qualifier matching the format of its associated
image unit, as enumerated in table 8.26. Otherwise, the access is considered to
involve a format mismatch, as described above. Image variables used exclusively
for image stores need not include a format layout qualifier, but any declared
qualifier must match the image unit format to avoid a format mismatch.

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 281

Image Unit Format Format Qualifer
RGBA32F rgba32f

RGBA16F rgba16f

RG32F rg32f

RG16F rg16f

R11F_G11F_B10F r11f_g11f_b10f

R32F r32f

R16F r16f

RGBA32UI rgba32ui

RGBA16UI rgba16ui

RGB10_A2UI rgb10_a2ui

RGBA8UI rgba8ui

RG32UI rg32ui

RG16UI rg16ui

RG8UI rg8ui

R32UI r32ui

R16UI r16ui

R8UI r8ui

RGBA32I rgba32i

RGBA16I rgba16i

RGBA8I rgba8i

RG32I rg32i

RG16I rg16i

RG8I rg8i

R32I r32i

R16I r16i

R8I r8i

RGBA16 rgba16

RGB10_A2 rgb10_a2

RGBA8 rgba8

RG16 rg16

RG8 rg8

R16 r16

R8 r8

RGBA16_SNORM rgba16_snorm

RGBA8_SNORM rgba8_snorm

RG16_SNORM rg16_snorm

(Continued on next page)

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 282

Supported image unit formats (continued)
Image Unit Format Format Qualifer
RG8_SNORM rg8_snorm

R16_SNORM r16_snorm

R8_SNORM r8_snorm

Table 8.26: Supported image unit formats, with equivalent format
layout qualifiers.

When a texture is bound to an image unit, the format parameter for the image
unit need not exactly match the texture internal format as long as the formats are
considered compatible. A pair of formats is considered to match in size if the cor-
responding entries in the Size column of table 8.27 are identical. A pair of formats
is considered to match by class if the corresponding entries in the Class column
of table 8.27 are identical. For textures allocated by the GL, an image unit format
is compatible with a texture internal format if they match by size. For textures
allocated outside the GL, format compatibility is determined by matching by size
or by class, in an implementation-dependent manner. The matching criterion used
for a given texture may be determined by calling GetTexParameter with pname
set to IMAGE_FORMAT_COMPATIBILITY_TYPE, with return values of IMAGE_-
FORMAT_COMPATIBILITY_BY_SIZE and IMAGE_FORMAT_COMPATIBILITY_-

BY_CLASS, specifying matches by size and class, respectively.
When the format associated with an image unit does not exactly match the in-

ternal format of a compatible texture bound to the image unit, image loads, stores,
and atomic operations re-interpret the memory holding the components of an ac-
cessed texel according to the format of the image unit. The re-interpretation for
image loads and the read portion of image atomics is performed as though data
were copied from the texel of the bound texture to a similar texel represented in
the format of the image unit. Similarly, the re-interpretation for image stores and
the write portion of image atomics is performed as though data were copied from
a texel represented in the format of the image unit to the texel in the bound texture.
In both cases, this copy operation would be performed by:

• reading the texel from the source format to scratch memory according to the
process described for GetTexImage (see section 8.11), using default pixel
storage modes and format and type parameters corresponding to the source
format in table 8.27; and

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 283

• writing the texel from scratch memory to the destination format according to
the process described for TexSubImage3D (see section 8.6), using default
pixel storage modes and format and type parameters corresponding to the
destination format in table 8.27.

Image Format Size Class Pixel format Pixel type

RGBA32F 128 4x32 RGBA FLOAT

RGBA16F 64 4x16 RGBA HALF_FLOAT

RG32F 64 2x32 RG FLOAT

RG16F 32 2x16 RG HALF_FLOAT

R11F_G11F_B10F 32 (a) RGB UNSIGNED_INT_10F_11F_11F_REV

R32F 32 1x32 RED FLOAT

R16F 16 1x16 RED HALF_FLOAT

RGBA32UI 128 4x32 RGBA_INTEGER UNSIGNED_INT

RGBA16UI 64 4x16 RGBA_INTEGER UNSIGNED_SHORT

RGB10_A2UI 32 (b) RGBA_INTEGER UNSIGNED_INT_2_10_10_10_REV

RGBA8UI 32 4x8 RGBA_INTEGER UNSIGNED_BYTE

RG32UI 64 2x32 RG_INTEGER UNSIGNED_INT

RG16UI 32 2x16 RG_INTEGER UNSIGNED_SHORT

RG8UI 16 2x8 RG_INTEGER UNSIGNED_BYTE

R32UI 32 1x32 RED_INTEGER UNSIGNED_INT

R16UI 16 1x16 RED_INTEGER UNSIGNED_SHORT

R8UI 8 1x8 RED_INTEGER UNSIGNED_BYTE

RGBA32I 128 4x32 RGBA_INTEGER INT

RGBA16I 64 4x16 RGBA_INTEGER SHORT

RGBA8I 32 4x8 RGBA_INTEGER BYTE

RG32I 64 2x32 RG_INTEGER INT

RG16I 32 2x16 RG_INTEGER SHORT

RG8I 16 2x8 RG_INTEGER BYTE

R32I 32 1x32 RED_INTEGER INT

R16I 16 1x16 RED_INTEGER SHORT

R8I 8 1x8 RED_INTEGER BYTE

RGBA16 64 4x16 RGBA UNSIGNED_SHORT

RGB10_A2 32 (b) RGBA UNSIGNED_INT_2_10_10_10_REV

RGBA8 32 4x8 RGBA UNSIGNED_BYTE

RG16 32 2x16 RG UNSIGNED_SHORT

RG8 16 2x8 RG UNSIGNED_BYTE

(Continued on next page)

OpenGL 4.5 (Core Profile) - October 24, 2016

8.26. TEXTURE IMAGE LOADS AND STORES 284

Texel sizes, compatibility classes ... (continued)
Image Format Size Class Pixel format Pixel type

R16 16 1x16 RED UNSIGNED_SHORT

R8 8 1x8 RED UNSIGNED_BYTE

RGBA16_SNORM 64 4x16 RGBA SHORT

RGBA8_SNORM 32 4x8 RGBA BYTE

RG16_SNORM 32 2x16 RG SHORT

RG8_SNORM 16 2x8 RG BYTE

R16_SNORM 16 1x16 RED SHORT

R8_SNORM 8 1x8 RED BYTE

Table 8.27: Texel sizes, compatibility classes, and pixel for-
mat/type combinations for each image format. Class (a) is for
11/11/10 packed floating-point formats; class (b) is for 10/10/10/2
packed formats.

Implementations may support a limited combined number of image units,
shader storage blocks (see section 7.8), and active fragment shader outputs (see
section 17.4.1). A link error is generated if the sum of the number of active image
uniforms used in all shaders, the number of active shader storage blocks, and the
number of active fragment shader outputs exceeds the implementation-dependent
value of MAX_COMBINED_SHADER_OUTPUT_RESOURCES.

8.26.1 Image Unit Queries

The state required for each image unit is summarized in table 23.45 and may be
queried using the indexed query commands in that table. The initial values of
image unit state are described above for BindImageTexture.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 9

Framebuffers and Framebuffer
Objects

As described in chapter 1 and section 2.1, the GL renders into (and reads values
from) a framebuffer.

Initially, the GL uses the window system-provided default framebuffer. The
storage, dimensions, allocation, and format of the images attached to this frame-
buffer are managed entirely by the window system. Consequently, the state of the
default framebuffer, including its images, can not be changed by the GL, nor can
the default framebuffer be deleted by the GL.

This chapter begins with an overview of the structure and contents of the frame-
buffer in section 9.1, followed by describing the commands used to create, destroy,
and modify the state and attachments of application-created framebuffer objects
which may be used instead of the default framebuffer.

9.1 Framebuffer Overview

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
For purposes of this discussion, each pixel in the framebuffer is simply a set of
some number of bits. The number of bits per pixel may vary depending on the GL
implementation, the type of framebuffer selected, and parameters specified when
the framebuffer was created. Creation and management of the default framebuffer
is outside the scope of this specification, while creation and management of frame-
buffer objects is described in detail in section 9.2.

Corresponding bits from each pixel in the framebuffer are grouped together
into a bitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into several logical buffers. These are the color, depth, and stencil

285

9.1. FRAMEBUFFER OVERVIEW 286

buffers. The color buffer actually consists of a number of buffers, and these color
buffers serve related but slightly different purposes depending on whether the GL
is bound to the default framebuffer or a framebuffer object.

For the default framebuffer, the color buffers are the front left buffer, the front
right buffer, the back left buffer, and the back right buffer. Typically the contents
of the front buffers are displayed on a color monitor while the contents of the
back buffers are invisible. (Monoscopic contexts display only the front left buffer;
stereoscopic contexts display both the front left and the front right buffers.) All
color buffers must have the same number of bitplanes, although an implementation
or context may choose not to provide right buffers, or back buffers at all. Further,
an implementation or context may choose not to provide depth or stencil buffers.
If no default framebuffer is associated with the GL context, the framebuffer is
incomplete except when a framebuffer object is bound (see sections 9.2 and 9.4).

Framebuffer objects are not visible, and do not have any of the color buffers
present in the default framebuffer. Instead, the buffers of an framebuffer object are
specified by attaching individual textures or renderbuffers (see section 9) to a set
of attachment points. A framebuffer object has an array of color buffer attachment
points, numbered zero through n, a depth buffer attachment point, and a stencil
buffer attachment point. In order to be used for rendering, a framebuffer object
must be complete, as described in section 9.4. Not all attachments of a framebuffer
object need to be populated.

Each pixel in a color buffer consists of up to four color components. The four
color components are named R, G, B, and A, in that order; color buffers are not
required to have all four color components. R, G, B, and A components may be
represented as signed or unsigned normalized fixed-point, floating-point, or signed
or unsigned integer values; all components must have the same representation.
Each pixel in a depth buffer consists of a single unsigned integer value in the format
described in section 13.6.1 or a floating-point value. Each pixel in a stencil buffer
consists of a single unsigned integer value.

The number of bitplanes in the color, depth, and stencil buffers is dependent
on the currently bound framebuffer. For the default framebuffer, the number of
bitplanes is fixed. For framebuffer objects, the number of bitplanes in a given
logical buffer may change if the image attached to the corresponding attachment
point changes.

The GL has two active framebuffers; the draw framebuffer is the destination
for rendering operations, and the read framebuffer is the source for readback op-
erations. The same framebuffer may be used for both drawing and reading. Sec-
tion 9.2 describes the mechanism for controlling framebuffer usage.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 287

The default framebuffer is initially used as the draw and read framebuffer 1,
and the initial state of all provided bitplanes is undefined. The format and encod-
ing of buffers in the draw and read framebuffers may be queried as described in
section 9.2.3.

9.2 Binding and Managing Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer in a similar manner to
the way texture objects encapsulate the state of a texture. In particular, a frame-
buffer object encapsulates state necessary to describe a collection of color, depth,
and stencil logical buffers (other types of buffers are not allowed). For each logical
buffer, a framebuffer-attachable image can be attached to the framebuffer to store
the rendered output for that logical buffer. Examples of framebuffer-attachable im-
ages include texture images and renderbuffer images. Renderbuffers are described
further in section 9.2.4

By allowing the images of a renderbuffer to be attached to a framebuffer, the
GL provides a mechanism to support off-screen rendering. Further, by allowing the
images of a texture to be attached to a framebuffer, the GL provides a mechanism
to support render to texture.

The default framebuffer for rendering and readback operations is provided by
the window system. In addition, named framebuffer objects can be created and
operated upon. The name space for framebuffer objects is the unsigned integers,
with zero reserved by the GL for the default framebuffer.

A framebuffer object is created by binding a name returned by GenFrame-
buffers (see below) to DRAW_FRAMEBUFFER or READ_FRAMEBUFFER. The bind-
ing is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to the desired framebuffer target and framebuffer set to the frame-
buffer object name. The resulting framebuffer object is a new state vector, com-
prising all the state and with the same initial values listed in table 23.24, as well
as one set of the state values listed in table 23.25 for each attachment point of the
framebuffer, with the same initial values. There are the value of MAX_COLOR_-
ATTACHMENTS color attachment points, plus one each for the depth and stencil
attachment points.

1The window system binding API may allow associating a GL context with two separate “default
framebuffers” provided by the window system as the draw and read framebuffers, but if so, both
default framebuffers are referred to by the name zero at their respective binding points.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 288

BindFramebuffer may also be used to bind an existing framebuffer object
to DRAW_FRAMEBUFFER and/or READ_FRAMEBUFFER. If the bind is successful no
change is made to the state of the newly bound framebuffer object, and any previous
binding to target is broken.

If a framebuffer object is bound to DRAW_FRAMEBUFFER or READ_-

FRAMEBUFFER, it becomes the target for rendering or readback operations, respec-
tively, until it is deleted or another framebuffer object is bound to the correspond-
ing bind point. Calling BindFramebuffer with target set to FRAMEBUFFER binds
framebuffer to both the draw and read targets.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
An INVALID_OPERATION error is generated if framebuffer is not zero or

a name returned from a previous call to GenFramebuffers, or if such a name
has since been deleted with DeleteFramebuffers.

While a framebuffer object is bound, GL operations on the target to which it is
bound affect the images attached to the bound framebuffer object, and queries of
the target to which it is bound return state from the bound object. Queries of the
values specified in tables 23.73 and 23.24 are derived from the framebuffer object
bound to DRAW_FRAMEBUFFER, with the exception of those marked as properties
of the read framebuffer, which are derived from the framebuffer object bound to
READ_FRAMEBUFFER.

Framebuffer objects may also be created with the command

void CreateFramebuffers(sizei n, uint *framebuffers);

CreateFramebuffers returns n previously unused framebuffer names in frame-
buffers, each representing a new framebuffer object which is a state vector, com-
prising all the state and with the same initial values listed in table 23.24, as well
as one set of the state values listed in table 23.25 for each attachment point of the
framebuffer, with the same initial values.

Errors

An INVALID_VALUE error is generated if n is negative.

The initial state of DRAW_FRAMEBUFFER and READ_FRAMEBUFFER refers to
the default framebuffer. In order that access to the default framebuffer is not lost,

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 289

it is treated as a framebuffer object with the name of zero. The default framebuffer
is therefore rendered to and read from while zero is bound to the corresponding
targets. On some implementations, the properties of the default framebuffer can
change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Framebuffer objects (those with a non-zero name) differ from the default
framebuffer in a few important ways. First and foremost, unlike the default frame-
buffer, framebuffer objects have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer-attachable images can be attached to and de-
tached from these attachment points, which are described further in section 9.2.2.
Also, the size and format of the images attached to framebuffer objects are con-
trolled entirely within the GL interface, and are not affected by window system
events, such as pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created-
framebuffer object,

• The pixel ownership test always succeeds. In other words, framebuffer ob-
jects own all of their pixels.

• There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back, front, left, or right color bitplanes.

• The only color buffer bitplanes are the ones defined by the frame-
buffer attachment points named COLOR_ATTACHMENT0 through COLOR_-

ATTACHMENTn. Each COLOR_ATTACHMENTi adheres to COLOR_-

ATTACHMENTi = COLOR_ATTACHMENT0 + i2.

• The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH_ATTACHMENT.

• The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL_ATTACHMENT.

• If the attachment sizes are not all identical, the results of rendering are
defined only within the largest area that can fit in all of the attachments.
This area is defined as the intersection of rectangles having a lower left of
(0, 0) and an upper right of (width, height) for each attachment. Contents
of attachments outside this area are undefined after execution of a rendering
command (as defined in section 2.4).

2 The header files define tokens COLOR_ATTACHMENTi for i in the range [0, 31]. Most imple-
mentations support fewer than 32 color attachments, and it is an INVALID_OPERATION error
to pass an unsupported attachment name to a command accepting color attachment names.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 290

If there are no attachments, rendering will be limited to a rectangle having a
lower left of (0, 0) and an upper right of (width, height), where width and
height are the framebuffer object’s default width and height.

• If the number of layers of each attachment are not all identical, rendering
will be limited to the smallest number of layers of any attachment. If there
are no attachments, the number of layers will be taken from the framebuffer
object’s default layer count.

The command

void GenFramebuffers(sizei n, uint *framebuffers);

returns n previously unused framebuffer object names in framebuffers. These
names are marked as used, for the purposes of GenFramebuffers only, but they
acquire state and type only when they are first bound.

Errors

An INVALID_VALUE error is generated if n is negative.

Framebuffer objects are deleted by calling

void DeleteFramebuffers(sizei n, const
uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a frame-
buffer object is deleted, it has no attachments, and its name is again unused.
If a framebuffer that is currently bound to one or more of the targets DRAW_-

FRAMEBUFFER or READ_FRAMEBUFFER is deleted, it is as though BindFrame-
buffer had been executed with the corresponding target and framebuffer zero. Un-
used names in framebuffers that have been marked as used for the purposes of
GenFramebuffers are marked as unused again. Unused names in framebuffers are
silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsFramebuffer(uint framebuffer);

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 291

returns TRUE if framebuffer is the name of an framebuffer object. If framebuffer is
zero, or if framebuffer is a non-zero value that is not the name of an framebuffer
object, IsFramebuffer returns FALSE.

The names bound to the draw and read framebuffer bindings may be queried by
calling GetIntegerv with pnames DRAW_FRAMEBUFFER_BINDING and READ_-

FRAMEBUFFER_BINDING, respectively. FRAMEBUFFER_BINDING is equivalent to
DRAW_FRAMEBUFFER_BINDING.

9.2.1 Framebuffer Object Parameters

Parameters of a framebuffer object are set using the commands

void FramebufferParameteri(enum target, enum pname,
int param);

void NamedFramebufferParameteri(uint framebuffer,
enum pname, int param);

For FramebufferParameteri, the framebuffer object is that bound to target,
which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For NamedFramebuffer-
Parameteri, framebuffer is the name of the framebuffer object.

pname specifies the parameter of the framebuffer object to set.
When a framebuffer has one or more attachments, the width, height, layer count

(see section 9.8), sample count, and sample location pattern of the framebuffer are
derived from the properties of the framebuffer attachments. When the framebuffer
has no attachments, these properties are taken from framebuffer parameters. When
pname is FRAMEBUFFER_DEFAULT_WIDTH, FRAMEBUFFER_DEFAULT_HEIGHT,
FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_DEFAULT_SAMPLES,
or FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS, param specifies the
width, height, layer count, sample count, or sample location pattern, respectively,
used when the framebuffer has no attachments.

When a framebuffer has no attachments, it is considered layered (see sec-
tion 9.8) if and only if the value of FRAMEBUFFER_DEFAULT_LAYERS is non-zero.
It is considered to have sample buffers if and only if the value of FRAMEBUFFER_-
DEFAULT_SAMPLES is non-zero. The number of samples in the framebuffer is de-
rived from the value of FRAMEBUFFER_DEFAULT_SAMPLES in an implementation-
dependent manner similar to that described for the command RenderbufferStor-
ageMultisample (see section 9.2.4). If the framebuffer has sample buffers and
the value of FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS is non-zero,
it is considered to have a fixed sample location pattern as described for TexIm-
age2DMultisample (see section 8.8).

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 292

Errors

An INVALID_ENUM error is generated by FramebufferParameteri if tar-
get is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated if the default framebuffer is
bound to target.

An INVALID_OPERATION error is generated by NamedFramebufferPa-
rameteri if framebuffer is not the name of an existing framebuffer object.

An INVALID_ENUM error is generated if pname is not FRAMEBUFFER_-
DEFAULT_WIDTH, FRAMEBUFFER_DEFAULT_HEIGHT,
FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_DEFAULT_SAMPLES, or
FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS.

An INVALID_VALUE error is generated if pname is FRAMEBUFFER_-

DEFAULT_WIDTH, FRAMEBUFFER_DEFAULT_HEIGHT, FRAMEBUFFER_-

DEFAULT_LAYERS, or FRAMEBUFFER_DEFAULT_SAMPLES, and param is ei-
ther negative or greater than the value of the corresponding implementation-
dependent limit MAX_FRAMEBUFFER_WIDTH, MAX_FRAMEBUFFER_HEIGHT,
MAX_FRAMEBUFFER_LAYERS, or MAX_FRAMEBUFFER_SAMPLES, respec-
tively.

9.2.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer
objects. In contrast, the image attachments of the default framebuffer may not be
changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer
objects, potentially avoiding some data copies, and possibly decreasing memory
consumption.

For each logical buffer, a framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to
indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 23.25.

There are several types of framebuffer-attachable images:

• The image of a renderbuffer object, which is always two-dimensional.

• A single level of a one-dimensional texture, which is treated as a two-
dimensional image with a height of one.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 293

• A single level of a two-dimensional, two-dimensional multisample, or rect-
angle texture.

• A single face of a cube map texture level, which is treated as a two-
dimensional image.

• A single layer of a one- or two-dimensional array texture, two-dimensional
multisample array texture, or three-dimensional texture, which is treated as
a two-dimensional image.

• A single layer-face of a cube map array texture, which is treated as a two-
dimensional image.

Additionally, an entire level of a three-dimensional, cube map, cube map array,
or one- or two-dimensional array texture can be attached to an attachment point.
Such attachments are treated as an array of two-dimensional images, arranged in
layers, and the corresponding attachment point is considered to be layered (also
see section 9.8).

9.2.3 Framebuffer Object Queries

Parameters of a framebuffer object may be queried with the commands

void GetFramebufferParameteriv(enum target, enum pname,
int *params);

void GetNamedFramebufferParameteriv(uint framebuffer,
enum pname, int *params);

For GetFramebufferParameteriv, the framebuffer object is that bound to
target, which must be must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For Get-
NamedFramebufferParameteriv, framebuffer may be zero, indicating the default
draw framebuffer, or the name of the framebuffer object.

pname may be one of FRAMEBUFFER_DEFAULT_WIDTH, FRAMEBUFFER_-
DEFAULT_HEIGHT, FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_-

DEFAULT_SAMPLES, or FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_-

LOCATIONS, indicating one of the corresponding parameters set with Frame-
bufferParameteri (see section 9.2.1). These values may only be queried from a
framebuffer object, not from a default framebuffer.

pname may also be one of DOUBLEBUFFER, IMPLEMENTATION_COLOR_-
READ_FORMAT, IMPLEMENTATION_COLOR_READ_TYPE, SAMPLES, SAMPLE_-
BUFFERS, or STEREO, indicating the corresponding framebuffer-dependent state

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 294

from table 23.73. Values of framebuffer-dependent state are identical to those that
would be obtained were the framebuffer object bound and queried using the simple
state queries in that table. These values may be queried from either a framebuffer
object or a default framebuffer. The values of SAMPLES and SAMPLE_BUFFERS

are determined as described in section 9.2.3.1.
The value of parameter pname for the framebuffer object is returned in params.

Errors

An INVALID_ENUM error is generated by GetNamedFramebufferPa-
rameteriv if target is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER.

An INVALID_OPERATION error is generated by GetNamedFrame-
bufferParameteriv if framebuffer is not zero or the name of an existing frame-
buffer object.

An INVALID_ENUM error is generated if pname is not one of the valid
values listed above.

An INVALID_OPERATION error is generated by GetFramebufferParam-
eteriv if the default framebuffer is bound to target and pname is not one of the
accepted values from table 23.73, other than SAMPLE_POSITION.

An INVALID_OPERATION error is generated by GetNamedFrame-
bufferParameteriv if framebuffer is zero, and pname is not one of the valid
values from table 23.73, other than SAMPLE_POSITION.

Attachments of a framebuffer object or buffers of a default framebuffer may be
queried with the commands

void GetFramebufferAttachmentParameteriv(enum target,
enum attachment, enum pname, int *params);

void GetNamedFramebufferAttachmentParameteriv(
uint framebuffer, enum attachment, enum pname,
int *params);

For GetFramebufferAttachmentParameteriv, the framebuffer object is that
bound to target, which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For Get-
NamedFramebufferAttachmentParameteriv, framebuffer is zero or the name of
a framebuffer object. If framebuffer is zero, then the default draw framebuffer is
queried.

If a default framebuffer is queried, then attachment must be one of the values
listed in table 9.1, selecting a single color, depth or stencil buffer as shown in that

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 295

attachment Buffer Queried
FRONT Front Left Color
FRONT_LEFT Front Left Color
FRONT_RIGHT Front Right Color
BACK Back Left Color
BACK_LEFT Back Left Color
BACK_RIGHT Back Right Color
DEPTH Depth buffer
STENCIL Stencil buffer

Table 9.1: Valid attachment parameters when a default framebuffer is queried with
Get*FramebufferAttachmentParameteriv, and the buffers they select.

table.
Otherwise, attachment must be one of the framebuffer object attachment points

listed in table 9.2. If attachment is DEPTH_STENCIL_ATTACHMENT, the same ob-
ject must be bound to both the depth and stencil attachment points of the frame-
buffer object, and information about that object is returned.

Upon successful return from Get*FramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then params will contain
one of NONE, FRAMEBUFFER_DEFAULT, TEXTURE, or RENDERBUFFER, identifying
the type of object which contains the attached image. Other values accepted for
pname depend on the type of object, as described below.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, then ei-
ther no framebuffer is bound to target; or the default framebuffer is bound, attach-
ment is DEPTH or STENCIL, and the number of depth or stencil bits, respectively, is
zero. In this case querying pname FRAMEBUFFER_ATTACHMENT_OBJECT_NAME

will return zero, and all other queries will generate an INVALID_OPERATION error.
If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is not NONE,

these queries apply to all other framebuffer types:

• If pname is FRAMEBUFFER_ATTACHMENT_RED_SIZE, FRAMEBUFFER_-

ATTACHMENT_GREEN_SIZE, FRAMEBUFFER_ATTACHMENT_BLUE_-

SIZE, FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE, FRAMEBUFFER_-

ATTACHMENT_DEPTH_SIZE, or FRAMEBUFFER_ATTACHMENT_-

STENCIL_SIZE, then params will contain the number of bits in the
corresponding red, green, blue, alpha, depth, or stencil component of
the specified attachment. If the requested component is not present in

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 296

attachment, or if no data storage or texture image has been specified for the
attachment, then params will contain zero.

• If pname is FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE, then params
will contain the format of components of the specified attachment, one of
FLOAT, INT, UNSIGNED_INT, SIGNED_NORMALIZED, or UNSIGNED_-

NORMALIZED for floating-point, signed integer, unsigned integer, signed
normalized fixed-point, or unsigned normalized fixed-point components re-
spectively. If no data storage or texture image has been specified for the
attachment, then params will contain NONE. This query cannot be performed
for a combined depth+stencil attachment, since it does not have a single for-
mat.

• If pname is FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, then params
will contain the encoding of components of the specified attachment, one
of LINEAR or SRGB for linear or sRGB-encoded components, respectively.
Only color buffer components may be sRGB-encoded; such components are
treated as described in sections 17.3.6 and 17.3.7. For the default frame-
buffer, color encoding is determined by the implementation. For frame-
buffer objects, components are sRGB-encoded if the internal format of a
color attachment is one of the color-renderable SRGB formats described in
section 8.24. If attachment is not a color attachment, or no data storage or
texture image has been specified for the attachment, then params will contain
the value LINEAR.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is
RENDERBUFFER, then

• If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE, then

• If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will
contain the name of the texture object which contains the attached image.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE and
the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is the name of a

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 297

cube map texture object, then params will contain the cube map face of
the cubemap texture object which contains the attached image. Otherwise
params will contain zero.

• If pname is FRAMEBUFFER_ATTACHMENT_LAYERED, then params will con-
tain TRUE if an entire level of a three-dimensional texture, cube map texture,
or one- or two-dimensional array texture is attached. Otherwise, params will
contain FALSE.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER; the value
of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is the name of a three-
dimensional texture, or a one- or two-dimensional array texture object; and
the value of FRAMEBUFFER_ATTACHMENT_LAYERED is FALSE, then params
will contain the texture layer which contains the attached image. Otherwise
params will contain zero.

Errors

An INVALID_ENUM error is generated by GetFramebufferAttachment-
Parameteriv if target is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER.

An INVALID_OPERATION error is generated by GetNamedFrame-
bufferAttachmentParameteriv if framebuffer is not zero or the name of an
existing framebuffer object.

An INVALID_ENUM error is generated by any combinations of framebuffer
type and pname not described above.

An INVALID_OPERATION er-
ror is generated if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE
is NONE and pname is not FRAMEBUFFER_ATTACHMENT_OBJECT_NAME or
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

An INVALID_ENUM error is generated if the default framebuffer is queried
and attachment is not one the values specified in table 9.1.

An INVALID_OPERATION error is generated if a framebuffer object is
bound to target and attachment is COLOR_ATTACHMENTm where m is greater
than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if a framebuffer object is queried,
attachment is not one of the attachments in table 9.2, and attachment is not
COLOR_ATTACHMENTmwherem is greater than or equal to the value of MAX_-
COLOR_ATTACHMENTS.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 298

An INVALID_OPERATION error is generated if attachment is DEPTH_-

STENCIL_ATTACHMENT and different objects are bound to the depth and sten-
cil attachment points of the framebuffer object.

9.2.3.1 Multisample Queries

The values of SAMPLE_BUFFERS and SAMPLES control whether and how multi-
sampling is performed (see section 14.3.1). They are framebuffer-dependent con-
stants derived from the attachments of a framebuffer object or the buffers of a
default framebuffer, and may be determined either by calling GetFramebuffer-
Parameteriv and GetNamedFramebufferParameteriv for a specific framebuffer
(see section 9.2.3), or by calling GetIntegerv with pname set to SAMPLE_BUFFERS
or SAMPLES.

If a framebuffer object is not framebuffer complete, as defined in section 9.4.2,
then the values of SAMPLE_BUFFERS and SAMPLES are undefined.

Otherwise, the value of SAMPLES is equal to the value of RENDERBUFFER_-
SAMPLES or TEXTURE_SAMPLES (depending on the type of the attached images),
which must all have the same value. The value of SAMPLE_BUFFERS is one if
SAMPLES is non-zero, and zero otherwise.

9.2.4 Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable in-
ternal format. The commands described below allocate and delete a renderbuffer’s
image, and attach a renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero
reserved by the GL. A renderbuffer object is created by binding a name returned
by GenRenderbuffers (see below) to RENDERBUFFER. The binding is effected by
calling

void BindRenderbuffer(enum target, uint renderbuffer);

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name. If renderbuffer is not zero, then the resulting renderbuffer object is a new
state vector, initialized with a zero-sized memory buffer, and comprising all the
state and with the same initial values listed in table 23.27. Any previous binding to
target is broken.

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 299

While a renderbuffer object is bound, GL operations on the target to which it
is bound affect the bound renderbuffer object, and queries of the target to which a
renderbuffer object is bound return state from the bound object.

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to target is broken
and the target binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate GL errors, as described in section 9.2.3.

The current RENDERBUFFER binding can be determined by calling GetInte-
gerv with pname RENDERBUFFER_BINDING.

Errors

An INVALID_ENUM error is generated if target is not RENDERBUFFER.
An INVALID_OPERATION error is generated if renderbuffer is not zero or

a name returned from a previous call to GenRenderbuffers, or if such a name
has since been deleted with DeleteRenderbuffers.

New renderbuffers may also be created with the command

void CreateRenderbuffers(sizei n, uint *renderbuffers);

CreateRenderbuffers returns n previously unused renderbuffer names in ren-
derbuffers, each representing a new renderbuffer object which is a state vector
comprising all the state and with the initial values listed in table 23.27. The
state of each renderbuffer object is as if a name returned from GenRenderbuffers
had been bound to the RENDERBUFFER target, except that any existing binding to
RENDERBUFFER is not affected.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
acquire renderbuffer state only when they are first bound.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 300

Errors

An INVALID_VALUE error is generated if n is negative.

Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const
uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After
a renderbuffer object is deleted, it has no contents, and its name is again unused. If
a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
BindRenderbuffer had been executed with the target RENDERBUFFER and name
of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object (see section 9.2.7).
Unused names in renderbuffers that have been marked as used for the purposes of
GenRenderbuffers are marked as unused again. Unused names in renderbuffers
are silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsRenderbuffer(uint renderbuffer);

returns TRUE if renderbuffer is the name of a renderbuffer object. If renderbuffer
is zero, or if renderbuffer is a non-zero value that is not the name of a renderbuffer
object, IsRenderbuffer returns FALSE.

The data storage, format, dimensions, and number of samples of a renderbuffer
object’s image are established with the commands

void RenderbufferStorageMultisample(enum target,
sizei samples, enum internalformat, sizei width,
sizei height);

void NamedRenderbufferStorageMultisample(
uint renderbuffer, sizei samples, enum internalformat,
sizei width, sizei height);

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 301

For RenderbufferStorageMultisample, the renderbuffer object is that bound
to target, which must be RENDERBUFFER. For NamedRenderbufferStorageMul-
tisample, renderbuffer is the name of the renderbuffer object.

internalformat must be color-renderable, depth-renderable, or stencil-
renderable (as defined in section 9.4). width and height are the dimensions in
pixels of the renderbuffer.

Upon success, *RenderbufferStorageMultisample deletes any existing data
store for the renderbuffer image, and the contents of the data store are undefined.
RENDERBUFFER_WIDTH is set to width, RENDERBUFFER_HEIGHT is set to height,
and RENDERBUFFER_INTERNAL_FORMAT is set to internalformat.

If samples is zero, then RENDERBUFFER_SAMPLES is set to zero. Otherwise
samples represents a request for a desired minimum number of samples. Since
different implementations may support different sample counts for multisampled
rendering, the actual number of samples allocated for the renderbuffer image is
implementation-dependent. However, the resulting value for RENDERBUFFER_-
SAMPLES is guaranteed to be greater than or equal to samples and no more than the
next larger sample count supported by the implementation.

A GL implementation may vary its allocation of internal component resolution
based on any *RenderbufferStorageMultisample parameter (except target and
renderbuffer), but the allocation and chosen internal format must not be a function
of any other state and cannot be changed once they are established.

Errors

An INVALID_ENUM error is generated by RenderbufferStorageMulti-
sample if target is not RENDERBUFFER.

An INVALID_OPERATION error is generated by NamedRenderbuffer-
StorageMultisample if renderbuffer is not the name of an existing render-
buffer object.

An INVALID_VALUE error is generated if samples, width, or height is neg-
ative.

An INVALID_OPERATION error is generated if samples is greater than the
maximum number of samples supported for internalformat (see GetInternal-
formativ in section 22.3).

An INVALID_ENUM error is generated if internalformat is not one of the
color-renderable, depth-renderable, or stencil-renderable formats defined in
section 9.4.

An INVALID_VALUE error is generated if either width or height is greater
than the value of MAX_RENDERBUFFER_SIZE.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 302

The commands

void RenderbufferStorage(enum target, enum internalformat,
sizei width, sizei height);

void NamedRenderbufferStorage(uint renderbuffer,
enum internalformat, sizei width, sizei height);

are equivalent to

RenderbufferStorageMultisample(target,0,internalformat,width,height);

and

NamedRenderbufferStorageMultisample(renderbuffer,0,internalformat,width,height);

respectively.

9.2.5 Required Renderbuffer Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
a renderbuffer will allocate at least the internal component sizes, and exactly the
component types shown for that format in the corresponding table:

• Color formats which are checked in the “Req. rend.” column of table 8.12.

• Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.13.

The required color formats for renderbuffers are a subset of the required for-
mats for textures (see section 8.5.1).

Implementations must support creation of renderbuffers in these required for-
mats with up to the value of MAX_SAMPLES multisamples, with the exception
that the signed and unsigned integer formats are required only to support creation
of renderbuffers with up to the value of MAX_INTEGER_SAMPLES multisamples,
which must be at least one.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 303

9.2.6 Renderbuffer Object Queries

Parameters of a renderbuffer object may be queried with the commands

void GetRenderbufferParameteriv(enum target, enum pname,
int *params);

void GetNamedRenderbufferParameteriv(uint renderbuffer,
enum pname, int *params);

For GetRenderbufferParameteriv, the renderbuffer object is that bound to
target, which must be RENDERBUFFER. For GetNamedRenderbufferParame-
teriv, renderbuffer is the name of the renderbuffer object.

The value of renderbuffer parameter pname for the renderbuffer object is re-
turned in params. pname must be one of the symbolic values in table 23.27.

If pname is RENDERBUFFER_WIDTH, RENDERBUFFER_HEIGHT,
RENDERBUFFER_INTERNAL_FORMAT, or RENDERBUFFER_SAMPLES, then
params will contain the width in pixels, height in pixels, internal format, or
number of samples, respectively, of the image of the renderbuffer object.

If pname is RENDERBUFFER_RED_SIZE, RENDERBUFFER_GREEN_-

SIZE, RENDERBUFFER_BLUE_SIZE, RENDERBUFFER_ALPHA_SIZE,
RENDERBUFFER_DEPTH_SIZE, or RENDERBUFFER_STENCIL_SIZE, then
params will contain the actual resolutions (not the resolutions specified when the
image was defined) for the red, green, blue, alpha, depth, or stencil components,
respectively, of the image of the renderbuffer object.

Errors

An INVALID_ENUM error is generated by GetRenderbufferParameteriv
if target is not RENDERBUFFER.

An INVALID_OPERATION error is generated by GetRenderbufferPa-
rameteriv if the renderbuffer currently bound to target is zero.

An INVALID_OPERATION error is generated by GetNamedRender-
bufferParameteriv if renderbuffer is not the name of an existing renderbuffer
object.

An INVALID_ENUM error is generated if pname is not one of the render-
buffer state names in table 23.27.

9.2.7 Attaching Renderbuffer Images to a Framebuffer

A renderbuffer object can be attached as one of the logical buffers of a framebuffer
object with the commmands

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 304

void FramebufferRenderbuffer(enum target,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

void NamedFramebufferRenderbuffer(uint framebuffer,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

For FramebufferRenderbuffer the framebuffer object is that bound to target,
which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

For NamedFramebufferRenderbuffer, framebuffer is the name of the frame-
buffer object.

attachment must be set to one of the attachment points of the framebuffer listed
in table 9.2.

renderbuffertarget must be RENDERBUFFER and renderbuffer is zero or the
name of a renderbuffer object of type renderbuffertarget to be attached to the
framebuffer. If renderbuffer is zero, then the value of renderbuffertarget is ignored.

If renderbuffer is not zero and if *FramebufferRenderbuffer is suc-
cessful, then the renderbuffer named renderbuffer will be used as the logi-
cal buffer identified by attachment of the framebuffer object. The value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_-
NAME is set to renderbuffer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 23.25. No change is
made to the state of the renderbuffer object and any previous attachment to the at-
tachment logical buffer of the framebuffer object is broken. If the attachment is not
successful, then no change is made to the state of either the renderbuffer object or
the framebuffer object.

Calling *FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer object currently
bound to target. All state values of the attachment point specified by attachment in
the framebuffer object are set to their default values listed in table 23.25.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to be
set to renderbuffer, which should have base internal format DEPTH_STENCIL.

If a renderbuffer object is deleted while its image is attached to one or more at-
tachment points in a currently bound framebuffer object, then it is as if Framebuf-
ferRenderbuffer had been called, with a renderbuffer of zero, for each attachment
point to which this image was attached in that framebuffer object. In other words,
the renderbuffer image is first detached from all attachment points in that frame-

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 305

buffer object. Note that the renderbuffer image is specifically not detached from
any non-bound framebuffer objects. Detaching the image from any non-bound
framebuffer objects is the responsibility of the application.

Name of attachment
COLOR_ATTACHMENTi (see caption)
DEPTH_ATTACHMENT

STENCIL_ATTACHMENT

DEPTH_STENCIL_ATTACHMENT

Table 9.2: Framebuffer attachment points. i in COLOR_ATTACHMENTi may range
from zero to the value of MAX_COLOR_ATTACHMENTS minus one.

Errors

An INVALID_ENUM error is generated by FramebufferRenderbuffer if
target is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated by FramebufferRender-
buffer if zero is bound to target.

An INVALID_OPERATION error is generated by NamedFramebuffer-
Renderbuffer if framebuffer is not the name of an existing framebuffer object.

An INVALID_OPERATION error is generated if attachment is COLOR_-

ATTACHMENTmwherem is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.2, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if renderbuffertarget is not
RENDERBUFFER.

An INVALID_OPERATION error is generated if renderbuffer is not zero or
the name of an existing renderbuffer object of type renderbuffertarget.

9.2.8 Attaching Texture Images to a Framebuffer

The GL supports copying the rendered contents of the framebuffer into the images
of a texture object through the use of the routines CopyTexImage* and CopyTex-
SubImage*. Additionally, the GL supports rendering directly into the images of a
texture object.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 306

To render directly into a texture image, a specified level of a texture object can
be attached as one of the logical buffers of a framebuffer object with the commands

void FramebufferTexture(enum target, enum attachment,
uint texture, int level);

void NamedFramebufferTexture(uint framebuffer,
enum attachment, uint texture, int level);

For FramebufferTexture, the framebuffer object is that bound to target,
which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For NamedFramebuffer-
Texture, framebuffer is the name of the framebuffer object.

attachment must be one of the attachment points of the framebuffer listed in
table 9.2.

If texture is non-zero, the specified mipmap level of the texture object named
texture is attached to the framebuffer attachment point named by attachment.

If texture is the name of a three-dimensional texture, cube map array texture,
cube map texture, one- or two-dimensional array texture, or two-dimensional mul-
tisample array texture, the texture level attached to the framebuffer attachment
point is an array of images, and the framebuffer attachment is considered layered.

Errors

An INVALID_ENUM error is generated by FramebufferTexture if target
is not DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated by FramebufferTexture if
zero is bound to target.

An INVALID_OPERATION error is generated by NamedFramebuffer-
Texture if framebuffer is not the name of an existing framebuffer object.

An INVALID_OPERATION error is generated if attachment is COLOR_-

ATTACHMENTmwherem is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.2, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_VALUE error is generated if texture is not zero and is not the
name of a texture object, or if level is not a supported texture level for texture.

An INVALID_OPERATION error is generated if texture is the name of a
buffer texture.

Additionally, a specified image from a texture object can be attached as one of
the logical buffers of a framebuffer object with the commands

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 307

void FramebufferTexture1D(enum target, enum attachment,
enum textarget, uint texture, int level);

void FramebufferTexture2D(enum target, enum attachment,
enum textarget, uint texture, int level);

void FramebufferTexture3D(enum target, enum attachment,
enum textarget, uint texture, int level, int layer);

target specifies the target to which the framebuffer object is bound, and must be
DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER. FRAMEBUFFER is
equivalent to DRAW_FRAMEBUFFER.

attachment must be one of the attachment points of the framebuffer listed in
table 9.2.

If texture is not zero, then texture must either name an existing texture object
with an target of textarget, or texture must name an existing cube map texture and
textarget must be one of the cube map face targets from table 8.19.

level specifies the mipmap level of the texture image to be attached to the
framebuffer.

If textarget is TEXTURE_RECTANGLE or TEXTURE_2D_MULTISAMPLE, then
level must be zero. If textarget is TEXTURE_3D, then level must be greater than or
equal to zero and less than or equal to log2 of the value of MAX_3D_TEXTURE_-
SIZE. If textarget is one of the cube map face targets from table 8.19, then level
must be greater than or equal to zero and less than or equal to log2 of the value
of MAX_CUBE_MAP_TEXTURE_SIZE. For all other values of textarget, level must
be greater than or equal to zero and no larger than log2 of the value of MAX_-
TEXTURE_SIZE.

layer specifies the layer of a two-dimensional image within a three-dimensional
texture.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
An INVALID_OPERATION error is generated if attachment is COLOR_-

ATTACHMENTmwherem is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.2, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_OPERATION error is generated if zero is bound to target.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 308

An INVALID_VALUE error is generated if texture is not zero and level is
not a supported texture level for textarget, as described above.

An INVALID_VALUE error is generated if texture is not zero and layer is
larger than the value of MAX_3D_TEXTURE_SIZE minus one.

An INVALID_OPERATION error is generated for FramebufferTexture1D
if texture is not zero and textarget is not TEXTURE_1D.

An INVALID_OPERATION error is generated for FramebufferTexture2D
if texture is not zero and textarget is not one of TEXTURE_2D, TEXTURE_2D_-
MULTISAMPLE, TEXTURE_RECTANGLE, or one of the cube map face targets
from table 8.19.

An INVALID_OPERATION error is generated for FramebufferTexture3D
if texture is not zero and textarget is not TEXTURE_3D.

An INVALID_OPERATION error is generated if texture is not zero, and
does not name an existing texture object of type matching textarget, as de-
scribed above.

An INVALID_OPERATION error is generated if texture is the name of a
buffer texture.

A single layer of a three-dimensional or array texture object can be attached as
one of the logical buffers of a framebuffer object with the commands

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level, int layer);

void NamedFramebufferTextureLayer(uint framebuffer,
enum attachment, uint texture, int level, int layer);

These commands operate identically to the equivalent FramebufferTexture
and NamedFramebufferTexture commands, respectively, except for the addi-
tional layer argument which selects a layer of the texture object to attach.

layer specifies the layer of a one- or two-dimensional image within texture,
except for cube map and cube map array textures. For cube map textures, layer
is translated into a cube map face as described in table 9.3. For cube map array
textures, layer is translated into an array layer and a cube map face as described for
layer-face numbers in section 8.5.3.

If texture is a three-dimensional texture, then level must be greater than or equal
to zero and less than or equal to log2 of the value of MAX_3D_TEXTURE_SIZE. If
texture is a two-dimensional array texture, then level must be greater than or equal
to zero and no larger than log2 of the value of MAX_TEXTURE_SIZE. If texture is
a two-dimensional multisample array texture, then level must be zero.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 309

Errors

In addition to the corresponding errors for FramebufferTexture and
NamedFramebufferTexture when called with the same parameters (other
than layer):

An INVALID_VALUE error is generated if texture is a three-dimensional
texture, and layer is larger than the value of MAX_3D_TEXTURE_SIZE minus
one.

An INVALID_VALUE error is generated if texture is an array texture, and
layer is larger than the value of MAX_ARRAY_TEXTURE_LAYERS minus one.

An INVALID_VALUE error is generated if texture is a cube map array tex-
ture, and

layer

6

is larger than the value of MAX_CUBE_MAP_TEXTURE_SIZE minus one (see
section 9.8).

An INVALID_VALUE error is generated if texture is non-zero and layer is
negative.

An INVALID_OPERATION error is generated if texture is non-zero and is
not the name of a three-dimensional, two-dimensional multisample array, one-
or two-dimensional array, or cube map array texture.

An INVALID_VALUE error is generated if texture is not zero and level is
not a supported texture level for texture, as described above.

If texture is non-zero and the command does not result in an error, the frame-
buffer attachment state corresponding to attachment is updated as in the other
FramebufferTexture* commands, except that the value of FRAMEBUFFER_-

ATTACHMENT_TEXTURE_LAYER is set to layer.

9.2.8.1 Effects of Attaching a Texture Image

The remaining comments in this section apply to all forms of *FramebufferTex-
ture*.

If texture is zero, any image or array of images attached to the attachment point
named by attachment is detached. Any additional parameters (level, textarget,
and/or layer) are ignored when texture is zero. All state values of the attachment
point specified by attachment are set to their default values listed in table 23.25.

If texture is not zero, and if *FramebufferTexture* is successful, then the
specified texture image will be used as the logical buffer identified by attachment
of the framebuffer object currently bound to target. State values of the specified

OpenGL 4.5 (Core Profile) - October 24, 2016

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 310

attachment point are set as follows:

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is set to
TEXTURE.

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is set to texture.

• The value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to level.

• If *FramebufferTexture2D is called and texture is a cube map texture, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE is
set to textarget; otherwise it is set to the default value (NONE).

• If *FramebufferTextureLayer or *FramebufferTexture3D is called, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER is set to layer;
otherwise it is set to zero.

• If *FramebufferTexture* is called and texture is the name of a three-
dimensional, cube map, two-dimensional multisample array, or one- or
two-dimensional array texture, the value of FRAMEBUFFER_ATTACHMENT_-
LAYERED is set to TRUE; otherwise it is set to FALSE.

All other state values of the attachment point specified by attachment are set
to their default values listed in table 23.25. No change is made to the state of the
texture object, and any previous attachment to the attachment logical buffer of the
framebuffer object bound to framebuffer target is broken. If the attachment is not
successful, then no change is made to the state of either the texture object or the
framebuffer object.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to texture. texture must have base internal format DEPTH_STENCIL, or the
depth and stencil framebuffer attachments will be incomplete (see section 9.4.1).

If a texture object is deleted while its image is attached to one or more at-
tachment points in a currently bound framebuffer object, then it is as if *Frame-
bufferTexture* had been called, with a texture of zero, for each attachment point
to which this image was attached in that framebuffer object. In other words, the
texture image is first detached from all attachment points in that framebuffer ob-
ject. Note that the texture image is specifically not detached from any non-bound
framebuffer objects. Detaching the texture image from any non-bound framebuffer
objects is the responsibility of the application.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.3. FEEDBACK LOOPS BETWEEN TEXTURES AND THE FRAMEBUFFER 311

9.3 Feedback Loops Between Textures and the Frame-
buffer

A feedback loop may exist when a texture object is used as both the source and
destination of a GL operation. When a feedback loop exists, undefined behavior
results. This section describes rendering feedback loops (see section 8.14.2.1) and
texture copying feedback loops (see section 8.6.1) in more detail.

9.3.1 Rendering Feedback Loops

The mechanisms for attaching textures to a framebuffer object do not prevent a
one- or two-dimensional texture level, a face of a cube map texture level, or a
layer of a two-dimensional array or three-dimensional texture from being attached
to the draw framebuffer while the same texture is bound to a texture unit. While
this condition holds, texturing operations accessing that image will produce unde-
fined results, as described at the end of section 8.14. Conditions resulting in such
undefined behavior are defined in more detail below. Such undefined texturing
operations are likely to leave the final results of fragment processing operations
undefined, and should be avoided.

Special precautions need to be taken to avoid attaching a texture image to
the currently bound draw framebuffer object while the texture object is currently
bound. Doing so could lead to the creation of a rendering feedback loop between
the writing of pixels by GL rendering operations and the simultaneous reading of
those same pixels when used as texels in the currently bound texture. In this sce-
nario, the framebuffer will be considered framebuffer complete (see section 9.4),
but the values of fragments rendered while in this state will be undefined. The val-
ues of texture samples may be undefined as well, as described under “Rendering
Feedback Loops” in section 8.14.2.1

Specifically, the values of rendered fragments are undefined if any shader stage
fetches texels and the same texels are written via fragment shader outputs, even
if the reads and writes are not in the same draw call, unless any of the following
exceptions apply:

• The reads and writes are from/to disjoint sets of texels (after accounting for
texture filtering rules).

• There is only a single read and write of each texel, and the read is in
the fragment shader invocation that writes the same texel (e.g. using
texelFetch2D(sampler, ivec2(gl_FragCoord.xy), 0);).

OpenGL 4.5 (Core Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 312

• If a texel has been written, then in order to safely read the result a texel fetch
must be in a subsequent draw call separated by the command

void TextureBarrier(void);

TextureBarrier will guarantee that writes have completed and caches have
been invalidated before subsequent draw calls are executed.

9.3.2 Texture Copying Feedback Loops

Similarly to rendering feedback loops, it is possible for a texture image to be at-
tached to the currently bound read framebuffer object while the same texture im-
age is the destination of a CopyTexImage* operation, as described under “Texture
Copying Feedback Loops” in section 8.6.1. While this condition holds, a texture
copying feedback loop between the writing of texels by the copying operation and
the reading of those same texels when used as pixels in the read framebuffer may
exist. In this scenario, the values of texels written by the copying operation will be
undefined (in the same fashion that overlapping copies via BlitFramebuffer are
undefined).

Specifically, the values of copied texels are undefined if all of the following
conditions are true:

• an image from texture object T is attached to the currently bound read frame-
buffer object at attachment point A

• the selected read buffer (see section 18.2.1) is attachment point A

• T is bound to the texture target of a CopyTexImage* operation

• the level argument of the copying operation selects the same image that is
attached to A

9.4 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL.

The default framebuffer is always complete if it exists; however, if no default
framebuffer exists (no window system-provided drawable is associated with the
GL context), it is deemed to be incomplete.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 313

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined
below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation-dependent restrictions.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached.

• An internal format is color-renderable if it is RED, RG, RGB, RGBA, or one
of the sized internal formats from table 8.12 whose “CR” (color-renderable)
column is checked in that table No other formats, including compressed in-
ternal formats, are color-renderable.

• An internal format is depth-renderable if it is DEPTH_COMPONENT or one
of the formats from table 8.13 whose base internal format is DEPTH_-

COMPONENT or DEPTH_STENCIL. No other formats are depth-renderable.

• An internal format is stencil-renderable if it is STENCIL_INDEX, DEPTH_-
STENCIL, or one of the formats from table 8.13 whose base internal for-
mat is STENCIL_INDEX or DEPTH_STENCIL. No other formats are stencil-
renderable.

9.4.1 Framebuffer Attachment Completeness

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the framebuffer
attachment point attachment is not NONE, then it is said that a framebuffer-
attachable image, named image, is attached to the framebuffer at the attachment
point. image is identified by the state in attachment as described in section 9.2.2.

The framebuffer attachment point attachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for
attachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

• image is a component of an existing object with the name specified by
the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, and of the type
specified by the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

• The width and height of image are greater than zero and less than or equal
to the values of the implementation-dependent limits MAX_FRAMEBUFFER_-
WIDTH and MAX_FRAMEBUFFER_HEIGHT, respectively.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 314

• If image is a three-dimensional, one- or two-dimensional array, or cube map
array texture and the attachment is not layered, the selected layer is less than
the depth or layer count of the texture.

• If image is a three-dimensional, one- or two-dimensional array, or cube map
array texture and the attachment is layered, the depth or layer count of the
texture is less than or equal to the value of the implementation-dependent
limit MAX_FRAMEBUFFER_LAYERS.

• If image has multiple samples, its sample count is less than or equal to
the value of the implementation-dependent limit MAX_FRAMEBUFFER_-

SAMPLES.

• If image is not an immutable-format texture, the selected level number is in
the range [levelbase, q], where levelbase and q are as defined in section 8.14.3.

• If image is not an immutable-format texture and the selected level is not
levelbase, the texture must be mipmap complete; if image is part of a cube-
map texture, the texture must also be mipmap cube complete.

• If attachment is COLOR_ATTACHMENTi, then image must have a color-
renderable internal format.

• If attachment is DEPTH_ATTACHMENT, then image must have a depth-
renderable internal format.

• If attachment is STENCIL_ATTACHMENT, then image must have a stencil-
renderable internal format.

9.4.2 Whole Framebuffer Completeness

Each rule below is followed by an error token enclosed in { brackets }. The mean-
ing of these errors is explained below and under “Effects of Framebuffer Com-
pleteness on Framebuffer Operations” in section 9.4.4.

The framebuffer object bound to target is said to be framebuffer complete if all
the following conditions are true:

• if the default framebuffer is bound to target, the default framebuffer exists.

{ FRAMEBUFFER_UNDEFINED }

• All framebuffer attachment points are framebuffer attachment complete.

{ FRAMEBUFFER_INCOMPLETE_ATTACHMENT }

OpenGL 4.5 (Core Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 315

• There is at least one image attached to the framebuffer, or the value of
the framebuffer’s FRAMEBUFFER_DEFAULT_WIDTH and FRAMEBUFFER_-

DEFAULT_HEIGHT parameters are both non-zero.

{ FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT }

• The combination of internal formats of the attached images does not violate
an implementation-dependent set of restrictions.

{ FRAMEBUFFER_UNSUPPORTED }

• The value of RENDERBUFFER_SAMPLES is the same for all attached render-
buffers; the value of TEXTURE_SAMPLES is the same for all attached tex-
tures; and, if the attached images are a mix of renderbuffers and textures,
the value of RENDERBUFFER_SAMPLES matches the value of TEXTURE_-
SAMPLES.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

• The value of TEXTURE_FIXED_SAMPLE_LOCATIONS is the same for all
attached textures; and, if the attached images are a mix of renderbuffers
and textures, the value of TEXTURE_FIXED_SAMPLE_LOCATIONS must be
TRUE for all attached textures.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

• If any framebuffer attachment is layered, all populated attachments must be
layered. Additionally, all populated color attachments must be from textures
of the same target (three-dimensional, one- or two-dimensional array, cube
map, or cube map array textures).

{ FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS }

The token in brackets after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus (see below) that is gen-
erated when that clause is violated. If more than one clause is violated, it is
implementation-dependent which value will be returned by CheckFramebuffer-
Status.

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete:

OpenGL 4.5 (Core Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 316

• Binding to a different framebuffer with BindFramebuffer.

• Attaching an image to the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Detaching an image from the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Changing the internal format of a texture image that is attached to the frame-
buffer by calling TexImage*, TexStorage*, CopyTexImage*, or Com-
pressedTexImage*.

• Changing the internal format of a renderbuffer that is attached to the frame-
buffer by calling RenderbufferStorage*.

• Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-
ing an image that is attached to a currently bound framebuffer object.

• Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
those described in section 1.3.5.

Although the GL defines a wide variety of internal formats for framebuffer-
attachable images, such as texture images and renderbuffer images, some imple-
mentations may not support rendering to particular combinations of internal for-
mats. If the combination of formats of the images attached to a framebuffer object
are not supported by the implementation, then the framebuffer is not complete un-
der the clause labeled FRAMEBUFFER_UNSUPPORTED.

Implementations are required to support certain combinations of framebuffer
internal formats as described under “Required Framebuffer Formats” in sec-
tion 9.4.3.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the
set of attached images is modified, it is strongly advised, though not required, that
an application check to see if the framebuffer is complete prior to rendering.

The status of a framebuffer object or default framebuffer may be queried with
the commands

enum CheckFramebufferStatus(enum target);
enum CheckNamedFramebufferStatus(uint framebuffer,

enum target);

OpenGL 4.5 (Core Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 317

For CheckFramebufferStatus, the framebuffer object is that bound to target.
For CheckNamedFramebufferStatus, framebuffer is the name of the framebuffer
object.

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

If framebuffer is zero, then the status of the default read or draw framebuffer
(as determined by target) is returned.

A value is returned that identifies whether or not the framebuffer object or
default framebuffer is complete when treated as a read or draw framebuffer (as de-
termined by target). If the framebuffer object is complete, then FRAMEBUFFER_-

COMPLETE is returned. Otherwise, the value returned is one of the error codes
defined at the start of section 9.4.2 identifying one of the rules of framebuffer com-
pleteness that is violated.

If CheckFramebufferStatus generates an error, zero is returned.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
An INVALID_OPERATION error is generated by CheckNamedFrame-

bufferStatus if framebuffer is not the name of an existing framebuffer object.

9.4.3 Required Framebuffer Formats

Implementations must support framebuffer objects with up to the value of MAX_-
COLOR_ATTACHMENTS color attachments, a depth attachment, and a stencil at-
tachment. Each color attachment may be in any of the color-renderable formats
described in section 9.4 (although implementations are not required to support cre-
ation of attachments in all color-renderable formats). The depth attachment may
be in any of the required depth or combined depth+stencil formats described in
sections 8.5.1 and 9.2.5, and the stencil attachment may be in any of the required
stencil or combined depth+stencil formats. However, when both depth and stencil
attachments are present, implementations are only required to support framebuffer
objects where both attachments refer to the same image.

There must be at least one default framebuffer format allowing creation of a
default framebuffer supporting front-buffered rendering.

9.4.4 Effects of Framebuffer Completeness on Framebuffer Opera-
tions

OpenGL 4.5 (Core Profile) - October 24, 2016

9.4. FRAMEBUFFER COMPLETENESS 318

Errors

An INVALID_FRAMEBUFFER_OPERATION error is generated by attempts
to render to or read from a framebuffer which is not framebuffer complete.
This error is generated regardless of whether fragments are actually read from
or written to the framebuffer. For example, it is generated when a rendering
command is called and the framebuffer is incomplete, even if RASTERIZER_-
DISCARD is enabled.

An INVALID_FRAMEBUFFER_OPERATION error is generated by render-
ing commands (see section 2.4), and commands that read from the frame-
buffer such as ReadPixels, CopyTexImage*, and CopyTexSubImage* if
called while the framebuffer is not framebuffer complete.

9.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 23.73 may change when a
change is made to the current read or draw framebuffer binding, to the state
of a currently bound framebuffer object, or to an image attached to that frame-
buffer object. Most such state is dependent on the draw framebuffer (the
value DRAW_FRAMEBUFFER_BINDING), but IMPLEMENTATION_COLOR_READ_-
TYPE and IMPLEMENTATION_COLOR_READ_FORMAT are dependent on the read
framebuffer (the value of READ_FRAMEBUFFER_BINDING).

The values of the state variables listed in table 23.73 may change when a
change is made to DRAW_FRAMEBUFFER_BINDING, to the state of the currently
bound draw framebuffer object, or to an image attached to that framebuffer object.

When DRAW_FRAMEBUFFER_BINDING is zero, the values of the state variables
listed in table 23.73 are implementation-defined.

When DRAW_FRAMEBUFFER_BINDING is non-zero, if the currently bound
draw framebuffer object is not framebuffer complete, then the values of the state
variables listed in table 23.73 are undefined.

When DRAW_FRAMEBUFFER_BINDING is non-zero and the currently bound
draw framebuffer object is framebuffer complete, then the values of the state vari-
ables listed in table 23.73 are completely determined by DRAW_FRAMEBUFFER_-

BINDING, the state of the currently bound draw framebuffer object, and the state
of the images attached to that framebuffer object.

The actual sizes of the color, depth, or stencil bit planes can be obtained by
querying an attachment point using Get*FramebufferAttachmentParameteriv,
or querying the object attached to that point. If the value of FRAMEBUFFER_-
ATTACHMENT_OBJECT_TYPE at a particular attachment point is RENDERBUFFER,
the sizes may be determined by calling GetRenderbufferParameteriv as de-

OpenGL 4.5 (Core Profile) - October 24, 2016

9.5. MAPPING BETWEEN PIXEL AND ELEMENT IN ATTACHED IMAGE319

scribed in section 9.2.6. If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_-
TYPE at a particular attachment point is TEXTURE, the sizes may be determined by
calling GetTexParameter, as described in section 8.11.

9.5 Mapping between Pixel and Element in Attached Im-
age

When DRAW_FRAMEBUFFER_BINDING is non-zero, an operation that writes to the
framebuffer modifies the image attached to the selected logical buffer, and an oper-
ation that reads from the framebuffer reads from the image attached to the selected
logical buffer.

If the attached image is a renderbuffer image, then the window coordinates
(xw, yw) correspond to the value in the renderbuffer image at the same coordinates.

If the attached image is a texture image, then the window coordinates (xw, yw)
correspond to the texel (i, j, k) from figure 8.3 as follows:

i = xw

j = yw

k = layer

layer is the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER for the se-
lected logical buffer. For a two-dimensional texture, k and layer are irrelevant; for
a one-dimensional texture, j, k, and layer are irrelevant.

(xw, yw) corresponds to a border texel if xw, yw, or layer is less than zero, or if
xw, yw, or layer is greater than or equal to the width, height, or depth, respectively,
of the texture image.

9.6 Conversion to Framebuffer-Attachable Image Com-
ponents

When an enabled color value is written to the framebuffer while the draw frame-
buffer binding is non-zero, for each draw buffer the R, G, B, and A values are
converted to internal components as described in table 8.11, according to the ta-
ble row corresponding to the internal format of the framebuffer-attachable image
attached to the selected logical buffer, and the resulting internal components are
written to the image attached to logical buffer. The masking operations described
in section 17.4.2 are also effective.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.7. CONVERSION TO RGBA VALUES 320

9.7 Conversion to RGBA Values

When a color value is read while the read framebuffer binding is non-zero, or is
used as the source of a logical operation or for blending while the draw frame-
buffer binding is non-zero, components of that color taken from the framebuffer-
attachable image attached to the selected logical buffer are first converted to R,
G, B, and A values according to table 15.1 and the internal format of the attached
image.

9.8 Layered Framebuffers

A framebuffer is considered to be layered if it is complete and all of its populated
attachments are layered. When rendering to a layered framebuffer, each fragment
generated by the GL is assigned a layer number. The layer number for a fragment
is zero if

• geometry shaders are disabled, or

• the current geometry shader does not statically assign a value to the built-in
output variable gl_Layer.

Otherwise, the layer for each point, line, or triangle emitted by the geometry
shader is taken from the gl_Layer output of one of the vertices of the primitive.
The vertex used is implementation-dependent. To get defined results, all vertices
of each primitive emitted should set the same value for gl_Layer. Since the
EndPrimitive built-in function starts a new output primitive, defined results can
be achieved if EndPrimitive is called between two vertices emitted with differ-
ent layer numbers. A layer number written by a geometry shader has no effect if
the framebuffer is not layered.

When fragments are written to a layered framebuffer, the fragment’s layer num-
ber selects an image from the array of images at each attachment point to use for
the stencil test (see section 17.3.3), depth buffer test (see section 17.3.4), and for
blending and color buffer writes (see section 17.3.6). If the fragment’s layer num-
ber is negative, or greater than or equal to the minimum number of layers of any
attachment, the effects of the fragment on the framebuffer contents are undefined.

When the Clear or ClearBuffer* commands described in section 17.4.3 are
used to clear a layered framebuffer attachment, all layers of the attachment are
cleared.

When commands such as ReadPixels read from a layered framebuffer, the
image at layer zero of the selected attachment is always used to obtain pixel values.

OpenGL 4.5 (Core Profile) - October 24, 2016

9.8. LAYERED FRAMEBUFFERS 321

Layer Number Cube Map Face
0 TEXTURE_CUBE_MAP_POSITIVE_X

1 TEXTURE_CUBE_MAP_NEGATIVE_X

2 TEXTURE_CUBE_MAP_POSITIVE_Y

3 TEXTURE_CUBE_MAP_NEGATIVE_Y

4 TEXTURE_CUBE_MAP_POSITIVE_Z

5 TEXTURE_CUBE_MAP_NEGATIVE_Z

Table 9.3: Layer numbers for cube map texture faces. The layers are numbered in
the same sequence as the cube map face token values.

When cube map texture levels are attached to a layered framebuffer, there are
six layers, numbered zero through five. Each layer number corresponds to a cube
map face, as shown in table 9.3.

When cube map array texture levels are attached to a layered framebuffer, the
layer number corresponds to a layer-face. The layer-face can be translated into an
array layer and a cube map face by

array layer =

⌊
layer

6

⌋
face = layer mod 6

.
The face number corresponds to the cube map faces as shown in table 9.3.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 10

Vertex Specification and Drawing
Commands

Most geometric primitives are drawn by specifying a series of generic attribute
sets corresponding to vertices of a primitive using DrawArrays or one of the other
drawing commands defined in section 10.4. Points, lines, polygons, and a variety
of related geometric primitives (see section 10.1) can be drawn in this way.

The process of specifying attributes of a vertex and passing them to a shader
is referred to as transferring a vertex to the GL.

Vertex Shader Processing and Vertex State
Each vertex is specified with one or more generic vertex attributes. Each at-

tribute is specified with one, two, three, or four scalar values.
Generic vertex attributes can be accessed from within vertex shaders (see sec-

tion 11.1) and used to compute values for consumption by later processing stages.
Before vertex shader execution, the state required by a vertex is its generic

vertex attributes. Vertex shader execution processes vertices producing a homoge-
neous vertex position and any outputs explicitly written by the vertex shader.

Figure 10.1 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it is
clipped to a clip volume. This may modify the primitive by altering vertex coordi-
nates and vertex shader outputs. In the case of line and polygon primitives, clipping
may insert new vertices into the primitive. The vertices defining a primitive to be
rasterized have output variables associated with them.

322

323

Point,
Line Segment, or

Triangle
(Primitive)
Assembly

Point culling,
Line Segment
or Triangle

clipping

Rasterization
Shaded
Vertices

Coordinates

Varying
Outputs

Primitive type
(from DrawArrays or
DrawElements mode)

Vertex
Shader

Execution

Generic
Vertex

Attributes

Figure 10.1. Vertex processing and primitive assembly.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 324

10.1 Primitive Types

A sequence of vertices is passed to the GL using DrawArrays or one of the other
drawing commands defined in section 10.4. There is no limit to the number of
vertices that may be specified, other than the size of the vertex arrays. The mode
parameter of these commands determines the type of primitives to be drawn using
the vertices. Primitive types and the corresponding mode parameters are summa-
rized below, together with any additional state required when assembling primitives
from multiple vertices.

10.1.1 Points

A series of individual points are specified with mode POINTS. Each vertex defines
a separate point. No state is required for points, since each point is independent of
any previous and following points.

10.1.2 Line Strips

A series of one or more connected line segments are specified with mode LINE_-
STRIP. In this case, the first vertex specifies the first segment’s start point while
the second vertex specifies the first segment’s endpoint and the second segment’s
start point. In general, the ith vertex (for i > 1) specifies the beginning of the ith
segment and the end of the i − 1st. The last vertex specifies the end of the last
segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

10.1.3 Line Loops

A line loop is specified with mode LINE_LOOP. Loops are the same as line strips
except that a final segment is added from the final specified vertex to the first vertex.
The required state consists of the processed first vertex, in addition to the state
required for line strips.

10.1.4 Separate Lines

Individual line segments, each defined by a pair of vertices, are specified with mode
LINES. The first two vertices passed define the first segment, with subsequent pairs
of vertices each defining one more segment. If the number of vertices passed is
odd, then the last vertex is ignored. The state required is the same as for line strips

OpenGL 4.5 (Core Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 325

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 10.2. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

but it is used differently: a processed vertex holding the first vertex of the current
segment, and a boolean flag indicating whether the current vertex is odd or even (a
segment start or end).

10.1.5 Polygons

This subsection is only defined in the compatibility profile.

10.1.6 Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and is spec-
ified with mode TRIANGLE_STRIP. In this case, the first three vertices define the
first triangle (and their order is significant). Each subsequent vertex defines a new
triangle using that point along with two vertices from the previous triangle. If fewer
than three vertices are specified, no primitive is produced. See figure 10.2.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
When a series of vertices are transferred to the GL, the pointer is initialized to point
to vertex A. Each successive vertex toggles the pointer. Therefore, the first vertex
is stored as vertex A, the second stored as vertex B, the third stored as vertex A,

OpenGL 4.5 (Core Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 326

and so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

10.1.7 Triangle Fans

A triangle fan is specified with mode TRIANGLE_FAN, and is the same as a triangle
strip with one exception: each vertex after the first always replaces vertex B of the
two stored vertices.

10.1.8 Separate Triangles

Separate triangles are specified with mode TRIANGLES. In this case, the 3i + 1st,
3i + 2nd, and 3i + 3rd vertices (in that order) determine a triangle for each i =
0, 1, . . . , n − 1, where there are 3n + k vertices drawn. k is either 0, 1, or 2; if k
is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
3i and vertex B is vertex 3i + 1. Otherwise, separate triangles are the same as a
triangle strip.

10.1.9 Quadrilateral (quad) strips

This subsection is only defined in the compatibility profile.

10.1.10 Separate Quadrilaterals

This subsection is only defined in the compatibility profile.

10.1.11 Lines with Adjacency

Lines with adjacency are specified with mode LINES_ADJACENCY, and are inde-
pendent line segments where each endpoint has a corresponding adjacent vertex
that can be accessed by a geometry shader (section 11.3). If a geometry shader is
not active, the adjacent vertices are ignored.

A line segment is drawn from the 4i+2nd vertex to the 4i+3rd vertex for each
i = 0, 1, . . . , n − 1, where there are 4n + k vertices passed. k is either 0, 1, 2, or
3; if k is not zero, the final k vertices are ignored. For line segment i, the 4i + 1st
and 4i+ 4th vertices are considered adjacent to the 4i+ 2nd and 4i+ 3rd vertices,
respectively (see figure 10.3).

OpenGL 4.5 (Core Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 327

Figure 10.3. Lines with adjacency (a) and line strips with adjacency (b). The ver-
tices connected with solid lines belong to the main primitives; the vertices connected
by dashed lines are the adjacent vertices that may be used in a geometry shader.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 328

Figure 10.4. Triangles with adjacency. The vertices connected with solid lines
belong to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

10.1.12 Line Strips with Adjacency

Line strips with adjacency are specified with mode LINE_STRIP_ADJACENCY and
are similar to line strips, except that each line segment has a pair of adjacent ver-
tices that can be accessed by a geometry shader. If a geometry shader is not active,
the adjacent vertices are ignored.

A line segment is drawn from the i+ 2nd vertex to the i+ 3rd vertex for each
i = 0, 1, . . . , n − 1, where there are n + 3 vertices passed. If there are fewer than
four vertices, all vertices are ignored. For line segment i, the i + 1st and i + 4th
vertex are considered adjacent to the i+ 2nd and i+ 3rd vertices, respectively (see
figure 10.3).

10.1.13 Triangles with Adjacency

Triangles with adjacency are specified with mode TRIANGLES_ADJACENCY, and
are similar to separate triangles except that each triangle edge has an adjacent ver-
tex that can be accessed by a geometry shader. If a geometry shader is not active,
the adjacent vertices are ignored.

The 6i+ 1st, 6i+ 3rd, and 6i+ 5th vertices (in that order) determine a triangle
for each i = 0, 1, . . . , n − 1, where there are 6n + k vertices passed. k is either
0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are ignored. For triangle i,

OpenGL 4.5 (Core Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 329

Figure 10.5. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

the i+ 2nd, i+ 4th, and i+ 6th vertices are considered adjacent to edges from the
i + 1st to the i + 3rd, from the i + 3rd to the i + 5th, and from the i + 5th to the
i+ 1st vertices, respectively (see figure 10.4).

10.1.14 Triangle Strips with Adjacency

Triangle strips with adjacency are specified with mode TRIANGLE_STRIP_-

ADJACENCY, and are similar to triangle strips except that each triangle edge has
an adjacent vertex that can be accessed by a geometry shader. If a geometry shader
is not active, the adjacent vertices are ignored.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices passed. k is either 0 or 1; if k is 1, the final vertex is ignored. If

OpenGL 4.5 (Core Profile) - October 24, 2016

10.1. PRIMITIVE TYPES 330

Primitive Vertices Adjacent Vertices
Primitive 1st 2nd 3rd 1/2 2/3 3/1
only (i = 0, n = 1) 1 3 5 2 6 4
first (i = 0) 1 3 5 2 7 4
middle (i odd) 2i+ 3 2i+ 1 2i+ 5 2i− 1 2i+ 4 2i+ 7

middle (i even) 2i+ 1 2i+ 3 2i+ 5 2i− 1 2i+ 7 2i+ 4

last (i = n− 1, i odd) 2i+ 3 2i+ 1 2i+ 5 2i− 1 2i+ 4 2i+ 6

last (i = n− 1, i even) 2i+ 1 2i+ 3 2i+ 5 2i− 1 2i+ 6 2i+ 4

Table 10.1: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the 1st, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0, n = 1), the first triangle of several (i = 0, n > 0), “odd” middle
triangles (i = 1, 3, 5 . . .), “even” middle triangles (i = 2, 4, 6, . . .), and special
cases for the last triangle, when i is either even or odd. For the purposes of this
table, the first vertex passed is numbered 1 and the first triangle is numbered 0.

there are fewer than 6 vertices, the entire primitive is ignored. Table 10.1 describes
the vertices and order used to draw each triangle, and which vertices are considered
adjacent to each edge of the triangle (see figure 10.5).

10.1.15 Separate Patches

Separate patches are specified with mode PATCHES. A patch is an ordered collec-
tion of vertices used for primitive tessellation (section 11.2). The vertices compris-
ing a patch have no implied geometric ordering. The vertices of a patch are used by
tessellation shaders and the fixed-function tessellator to generate new point, line,
or triangle primitives.

Each patch in the series has a fixed number of vertices, which is specified by
calling

void PatchParameteri(enum pname, int value);

with pname set to PATCH_VERTICES.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.2. CURRENT VERTEX ATTRIBUTE VALUES 331

Errors

An INVALID_ENUM error is generated if pname is not PATCH_VERTICES.
An INVALID_VALUE error is generated if value is less than or equal to

zero, or greater than the implementation-dependent maximum patch size (the
value of MAX_PATCH_VERTICES). The patch size is initially three vertices.

If the number of vertices in a patch is given by v, the vi+ 1st through vi+ vth
vertices (in that order) determine a patch for each i = 0, 1, . . . n − 1, where there
are vn+ k vertices. k is in the range [0, v − 1]; if k is not zero, the final k vertices
are ignored.

10.1.16 General Considerations For Polygon Primitives

Depending on the current state of the GL, a polygon primitive generated from a
drawing command with mode TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES,
TRIANGLES_ADJACENCY, or TRIANGLE_STRIP_ADJACENCY may be rendered in
one of several ways, such as outlining its border or filling its interior. The or-
der of vertices in such a primitive is significant in polygon rasterization (see sec-
tion 14.6.1) and fragment shading (see section 15.2.2).

10.1.17 Polygon Edges

This subsection is only defined in the compatibility profile.

10.2 Current Vertex Attribute Values

The commands in this section are used to specify current attribute values. These
values are used by drawing commands to define the attributes transferred for a
vertex when a vertex array defining a required attribute is not enabled, as described
in section 10.3.

10.2.1 Current Generic Attributes

Vertex shaders (see section 11.1) access an array of 4-component generic vertex
attributes. The first slot of this array is numbered zero, and the size of the array is
specified by the value of the implementation-dependent constant MAX_VERTEX_-
ATTRIBS.

The current values of a generic shader attribute declared as a floating-point
scalar, vector, or matrix may be changed at any time by issuing one of the com-
mands

OpenGL 4.5 (Core Profile) - October 24, 2016

10.2. CURRENT VERTEX ATTRIBUTE VALUES 332

void VertexAttrib{1234}{sfd}(uint index, T values);
void VertexAttrib{123}{sfd}v(uint index, const

T *values);
void VertexAttrib4{bsifd ub us ui}v(uint index, const

T *values);
void VertexAttrib4Nub(uint index, ubyte x, ubyte y,

ubyte z, ubyte w);
void VertexAttrib4N{bsi ub us ui}v(uint index, const

T *values);
void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, const

T *values);
void VertexAttribI4{b s ub us}v(uint index, const

T *values);
void VertexAttribL{1234}d(uint index, const T values);
void VertexAttribL{1234}dv(uint index, const T *values);
void VertexAttribP{1234}ui(uint index,enum

type,boolean normalized,uint value);
void VertexAttribP{1234}uiv(uint index,enum

type,boolean normalized,const uint *value);

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [−1, 1] range as described in equations 2.1 and 2.2, re-
spectively.

The VertexAttribI* commands specify signed or unsigned fixed-point values
that are stored as signed or unsigned integers, respectively. Such values are referred
to as pure integers.

The VertexAttribL* commands specify double-precision values that will be
stored as double-precision values.

The VertexAttribP* commands specify up to four attribute component values
packed into a single natural type type as described in section 10.3.8. type must be
INT_2_10_10_10_REV, UNSIGNED_INT_2_10_10_10_REV, or UNSIGNED_-

INT_10F_11F_11F_REV, specifying signed, unsigned, or unsigned floating-point
data, respectively. The first one (x), two (x, y), three (x, y, z), or four (x, y, z, w)
components of the packed data are consumed by VertexAttribP1ui, VertexAt-
tribP2ui, VertexAttribP3ui, and VertexAttribP4ui, respectively. If normalized
is TRUE, signed or unsigned components are converted to floating-point by normal-
izing to [−1, 1] or [0, 1] respectively. If normalized is FALSE, signed and unsigned
components are directly cast to floating-point. For floating-point formats, normal-
ized is ignored. The number of components specified must be no greater than the

OpenGL 4.5 (Core Profile) - October 24, 2016

10.2. CURRENT VERTEX ATTRIBUTE VALUES 333

number of components in the packed type. For VertexAttribP*uiv, value contains
the address of a single uint containing the packed attribute components.

All other VertexAttrib* commands specify values that are converted directly
to the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

When values for a vertex shader attribute variable are sourced from a current
generic attribute value, the attribute must be specified by a command compatible
with the data type of the variable. The values loaded into a shader attribute variable
bound to generic attribute index are undefined if the current value for attribute index
was not specified by

• VertexAttrib[1234]* or VertexAttribP*, for single-precision floating-point
scalar, vector, and matrix types

• VertexAttribI[1234]i or VertexAttribI[1234]iv, for signed integer scalar
and vector types

• VertexAttribI[1234]ui or VertexAttribI[1234]uiv, for unsigned integer
scalar and vector types

• VertexAttribL*, for double-precision floating-point scalar and vector types.

Errors

An INVALID_VALUE error is generated for all VertexAttrib* commands
if index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_ENUM error is generated by VertexAttribP4ui and Vertex-
AttribP4uiv if type is UNSIGNED_INT_10F_11F_11F_REV.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 334

10.2.2 Current Conventional Attributes

This subsection is only defined in the compatibility profile.

10.2.3 Vertex Attribute Queries

Current generic vertex attribute values may be queried using the GetVertexAttrib*
commands as described in section 10.5.

10.2.4 Required State

The state required to support vertex specification consists of the value of MAX_-
VERTEX_ATTRIBS four-component vectors to store generic vertex attributes.

The initial values for all generic vertex attributes are (0.0, 0.0, 0.0, 1.0).

10.3 Vertex Arrays

Vertex data are placed into arrays that are stored in the server’s address space
(described in section 10.3.9). Blocks of data in these arrays may then be used to
specify multiple geometric primitives through the execution of a single GL com-
mand.

All of the state required to represent the vertex arrays is stored in a vertex array
object.

10.3.1 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The name space for vertex array objects is the unsigned integers, with zero
reserved by the GL.

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 335

Errors

An INVALID_VALUE error is generated if n is negative.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and no vertex array object is bound. Unused names in arrays that have been
marked as used for the purposes of GenVertexArrays are marked as unused again.
Unused names in arrays are silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state and with the same initial values listed in ta-
bles 23.3 and 23.4.

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 22).

Errors

An INVALID_OPERATION error is generated if array is not zero or a name
returned from a previous call to GenVertexArrays, or if such a name has since
been deleted with DeleteVertexArrays.

An INVALID_OPERATION error is generated by any commands which
modify, draw from, or query vertex array state when no vertex array is bound.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 336

This occurs in the initial GL state, and may occur as a result of BindVertexAr-
ray or a side effect of DeleteVertexArrays.

Vertex array objects may also be created with the command

void CreateVertexArrays(sizei n, uint *arrays);

CreateVertexArrays returns n previously unused vertex array object names in
arrays, each representing a state vector comprising all the state and with the same
initial values listed in tables 23.3 and 23.4.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsVertexArray(uint array);

returns TRUE if array is the name of a vertex array object. If array is zero, or a
non-zero value that is not the name of a vertex array object, IsVertexArray returns
FALSE. No error is generated if array is not a valid vertex array object name.

To bind a buffer object to the element array buffer bind point of a vertex array
object, use the command

void VertexArrayElementBuffer(uint vaobj, uint buffer);

vaobj is the name of the vertex array object, and buffer is zero or the name
of the buffer object. If buffer is zero, any existing element array buffer binding to
vaobj is removed.

Errors

An INVALID_OPERATION error is generated if vaobj is not the name of
an existing vertex array object.

An INVALID_OPERATION error is generated if buffer is not zero or the
name of an existing buffer object.

10.3.2 Specifying Arrays for Generic Vertex Attributes

To specify the organization of arrays storing generic vertex attributes of a vertex
array object, use the commands

The commands

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 337

void VertexAttribFormat(uint attribindex, int size,
enum type, boolean normalized, uint relativeoffset);

void VertexAttribIFormat(uint attribindex, int size,
enum type, uint relativeoffset);

void VertexAttribLFormat(uint attribindex, int size,
enum type, uint relativeoffset);

void VertexArrayAttribFormat(uint vaobj,
uint attribindex, int size, enum type,
boolean normalized, uint relativeoffset);

void VertexArrayAttribIFormat(uint vaobj,
uint attribindex, int size, enum type, uint relativeoffset);

void VertexArrayAttribLFormat(uint vaobj,
uint attribindex, int size, enum type, uint relativeoffset);

For VertexAttrib*Format, the vertex array object is that bound to VERTEX_-

ARRAY_BINDING. For VertexArrayAttrib*Format, vaobj is the name of the ver-
tex array object.

attribindex identifies the generic vertex attribute array. size indicates the num-
ber of values per vertex that are stored in the array, as well as their component
ordering. type specifies the data type of the values stored in the array.

Table 10.2 indicates the allowable values for size and type. A type of BYTE,
UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, FLOAT,
HALF_FLOAT, or DOUBLE indicates the corresponding GL data type shown in
table 8.2. A type of FIXED indicates the data type fixed. A type of
INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV indicates respec-
tively, four signed or unsigned elements packed into a single uint. A type
of UNSIGNED_INT_10F_11F_11F_REV indicates two unsigned 11-bit floating-
point elements and one unsigned 10-bit floating-point element packed into a sin-
gle uint. Encoding of the unsigned 11- and 10-bit floating-point values is de-
scribed in sections 2.3.4.3 and 2.3.4.4, respectively. The types INT_2_10_10_-
10_REV, UNSIGNED_INT_2_10_10_10_REV and UNSIGNED_INT_10F_11F_-

11F_REV all correspond to the term packed in table 10.2. The components are
packed as shown in table 8.8. packed is not a GL type, but indicates commands
accepting multiple components packed into a single uint.

The “Integer Handling” column in table 10.2 indicates how integer and fixed-
point data types are handled. “cast” means that they are converted to floating-point
directly. “normalize” means that they are converted to floating-point by normaliz-
ing to [0, 1] (for unsigned types) or [−1, 1] (for signed types), as described in equa-
tions 2.1 and 2.2, respectively. “integer” means that they remain as integer values.
“flag” means that either “cast” or “normalized” applies, depending on whether the

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 338

sizes and
Component Integer

Command Ordering Handling types
VertexAttribFormat 1, 2, 3, 4, BGRA flag byte, ubyte, short,

ushort, int, uint,
fixed, float, half,
double, packed

VertexAttribIFormat 1, 2, 3, 4 integer byte, ubyte, short,
ushort, int, uint

VertexAttribLFormat 1, 2, 3, 4 n/a double

Table 10.2: Vertex array sizes (values per vertex) and data types for generic vertex
attributes. See the body text for a full description of each column.

normalized flag to the command is TRUE or FALSE, respectively.
The normalized flag is ignored for floating-point data types, including fixed,

float, half, double, and any packed types that have floating-point compo-
nents.

If size is BGRA, vertex array values are always normalized, irrespective of the
“normalize” table entry.

If type is UNSIGNED_INT_10F_11F_11F_REV, vertex array values are never
normalized, irrespective of the “normalize” table entry.

relativeoffset is a byte offset of the first element relative to the start of the vertex
buffer binding this attribute fetches from.

Errors

An INVALID_OPERATION error is generated by VertexAttrib*Format if
no vertex array object is currently bound (see section 10.3.1);

An INVALID_OPERATION error is generated by VertexArrayAt-
trib*Format if vaobj is not the name of an existing vertex array object.

An INVALID_VALUE error is generated if attribindex is greater than or
equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_VALUE error is generated if size is not one of the values
shown in table 10.2 for the corresponding command.

An INVALID_ENUM error is generated if type is not one of the parameter
token names from table 8.2 corresponding to one of the allowed GL data types
for that command as shown in table 10.2.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 339

An INVALID_ENUM error is generated by VertexAttribIFormat and Ver-
texAttribLFormat if type is UNSIGNED_INT_10F_11F_11F_REV.

An INVALID_OPERATION error is generated under any of the following
conditions:

• size is BGRA and type is not UNSIGNED_BYTE, INT_2_10_10_10_REV
or UNSIGNED_INT_2_10_10_10_REV;

• type is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_-

REV, and size is neither 4 nor BGRA;

• type is UNSIGNED_INT_10F_11F_11F_REV and size is not 3;

• size is BGRA and normalized is FALSE.

An INVALID_VALUE error is generated if relativeoffset is larger than the
value of MAX_VERTEX_ATTRIB_RELATIVE_OFFSET.

The source of data for a generic vertex attribute may be determined by attaching
a buffer object to a vertex array object with the commands

void BindVertexBuffer(uint bindingindex, uint buffer,
intptr offset, sizei stride);

void VertexArrayVertexBuffer(uint vaobj,
uint bindingindex, uint buffer, intptr offset,
sizei stride);

For BindVertexBuffer, the vertex array object is the currently bound vertex
array object. For VertexArrayVertexBuffer, vaobj is the name of the vertex
array object.

buffer is either zero or a name returned by GenBuffers or CreateBuffers.
If buffer is zero, any buffer object bound to bindingindex is detached.
If buffer is not the name of an existing buffer object, the GL first creates a new

state vector, initialized with a zero-sized memory buffer and comprising all the
state and with the same initial values listed in table 6.2, just as for BindBuffer.
buffer is then attached to the specified bindingindex of the vertex array object.

When sourcing vertex data from the buffer object, offset specifies the offset in
basic machine units of the first element in the vertex buffer. Pointers to the ith and
(i + 1)st elements of the array differ by stride basic machine units, the pointer to
the (i+ 1)st element being greater.

If the operation is successful no change is made to the state of the newly bound
buffer object, and any previous binding to bindingindex is broken.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 340

Errors

An INVALID_OPERATION error is generated by BindVertexBuffer if no
vertex array object is bound.

An INVALID_OPERATION error is generated by VertexArrayVer-
texBuffer if vaobj is not the name of an existing vertex array object.

An INVALID_OPERATION error is generated if buffer is not zero or a name
returned from a previous call to GenBuffers or CreateBuffers, or if such a
name has since been deleted with DeleteBuffers.

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_VALUE error is generated if stride or offset is negative, or if
stride is greater than the value of MAX_VERTEX_ATTRIB_STRIDE.

The source of data for multiple vertex attributes may be determined by attach-
ing multiple existing buffer objects to a vertex array object with the commands

void BindVertexBuffers(uint first, sizei count, const
uint *buffers, const intptr *offsets, const
sizei *strides);

void VertexArrayVertexBuffers(uint vaobj, uint first,
sizei count, const uint *buffers, const
intptr *offsets, const sizei *strides);

For BindVertexBuffers, the vertex array object is the currently bound vertex
array object. For VertexArrayVertexBuffers, vaobj is the name of the vertex
array object.

count existing buffer objects are bound to vertex buffer binding points num-
bered first through first + count − 1. If buffers is not NULL, it specifies an array
of count values, each of which must be zero or the name of an existing buffer ob-
ject. offsets and strides specify arrays of count values indicating the offset of the
first element and stride between elements in each buffer, respectively. If buffers is
NULL, each affected vertex buffer binding point from first through first+count−1
will be reset to have no bound buffer object. In this case, the offsets and strides
associated with the binding points are set to default values, ignoring offsets and
strides.

BindVertexBuffers is equivalent (assuming no errors are generated) to:

for (i = 0; i < count; i++) {
if (buffers == NULL) {

BindVertexBuffer(first + i, 0, 0, 16);

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 341

} else {
BindVertexBuffer(first + i, buffers[i], offsets[i],

strides[i]);
}

}

except that buffers will not be created if they do not exist.
VertexArrayVertexBuffers is equivalent to the pseudocode above, but replac-

ing BindVertexBuffer(args) with VertexArrayVertexBuffers(vaobj, args).
The values specified in buffers, offsets, and strides will be checked separately

for each vertex buffer binding point. When a value for a specific vertex buffer
binding point is invalid, the state for that binding point will be unchanged and an
error will be generated. However, state for other vertex buffer binding points will
still be changed if their corresponding values are valid.

Errors

An INVALID_OPERATION error is generated by BindVertexBuffers if no
vertex array object is bound.

An INVALID_OPERATION error is generated by VertexArrayVer-
texBuffers if vaobj is not the name of an existing vertex array object.

An INVALID_OPERATION error is generated if first + count is greater
than the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_OPERATION error is generated if any value in buffers is not
zero or the name of an existing buffer object (per binding).

An INVALID_VALUE error is generated if any value in offsets or strides is
negative, or if any value in strides is greater than the value of MAX_VERTEX_-
ATTRIB_STRIDE (per binding).

The association between a vertex attribute and the vertex buffer binding used
by that attribute is set by the command

void VertexAttribBinding(uint attribindex,
uint bindingindex);

void VertexArrayAttribBinding(uint vaobj, uint attribindex,
uint bindingindex);

For VertexAttribBinding, the vertex array object is the currently bound vertex
array object. For VertexArrayAttribBinding, vaobj is the name of the vertex
array object.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 342

Errors

An INVALID_OPERATION error is generated by VertexArrayAttrib-
Binding if vaobj is not the name of an existing vertex array object.

An INVALID_VALUE error is generated if attribindex is greater than or
equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_OPERATION error is generated if no vertex array object is
bound.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. When size is BGRA, it indicates four values. The values
within each array element are stored sequentially in memory. However, if size is
BGRA, the first, second, third, and fourth values of each array element are taken
from the third, second, first, and fourth values in memory respectively.

The commands

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

void VertexAttribLPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

control vertex attribute state, a vertex buffer binding, and the mapping between
a vertex attribute and a vertex buffer binding. They are equivalent (assuming no
errors are generated) to:

VertexAttrib*Format(index, size, type, {normalized, }, 0);
VertexAttribBinding(index, index);
if (stride != 0) {

effectiveStride = stride;
} else {

compute effectiveStride based on size and type;
}
VERTEX_ATTRIB_ARRAY_STRIDE[index] = stride;
// This sets VERTEX_BINDING_STRIDE to effectiveStride
VERTEX_ATTRIB_ARRAY_POINTER[index] = pointer;
BindVertexBuffer(index, buffer bound to ARRAY_BUFFER,

(char *)pointer - (char *)NULL, effectiveStride);

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 343

If stride is specified as zero, then array elements are stored sequentially.

Errors

An INVALID_VALUE error is generated if stride is greater than the value
of MAX_VERTEX_ATTRIB_STRIDE.

An INVALID_OPERATION error is generated if no buffer is bound to
ARRAY_BUFFER, and pointer is not NULL.

An INVALID_OPERATION error is generated if no vertex array object is
bound.

In addition, any of the errors defined by VertexAttrib*Format and Ver-
texAttribBinding may be generated if the parameters passed to those com-
mands in the equivalent code above would generate those errors.

An individual generic vertex attribute array in a vertex array object is enabled
with the commands

void EnableVertexAttribArray(uint index);
void EnableVertexArrayAttrib(uint vaobj, uint index);

and is disabled with the commands

void DisableVertexAttribArray(uint index);
void DisableVertexArrayAttrib(uint vaobj, uint index);

index identifies the generic vertex attribute array to enable or disable. For En-
ableVertexAttribArray and DisableVertexAttribArray, the vertex array object
is the currently bound vertex array object. For EnableVertexArrayAttrib and
DisableVertexArrayAttrib, vaobj is the name of the vertex array object.

Errors

An INVALID_OPERATION error is generated by EnableVertexAttribAr-
ray and DisableVertexAttribArray if no vertex array object is bound.

An INVALID_OPERATION error is generated by EnableVertexArrayAt-
trib and DisableVertexArrayAttrib if vaobj is not the name of an existing
vertex array object.

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

10.3.3 Specifying Arrays for Fixed-Function Attributes

This subsection is only defined in the compatibility profile.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 344

10.3.4 Vertex Attribute Divisors

Each generic vertex attribute has a corresponding divisor which modifies the rate
at which attributes advance, which is useful when rendering multiple instances of
primitives in a single draw call. If the divisor is zero, the corresponding attributes
advance once per vertex. Otherwise, attributes advance once per divisor instances
of the set(s) of vertices being rendered. A generic attribute is referred to as in-
stanced if its corresponding divisor value is non-zero.

The divisor value for attributes taken from a vertex array object is set with the
commands

void VertexBindingDivisor(uint bindingindex,
uint divisor);

void VertexArrayBindingDivisor(uint vaobj,
uint bindingindex, uint divisor);

For VertexBindingDivisor, the vertex array object is the currently bound ver-
tex array object. For VertexArrayBindingDivisor, vaobj is the name of the vertex
array object. These commands set the divisor for the buffer bound to the specified
bindingindex of the vertex array object to divisor.

Errors

An INVALID_OPERATION error is generated by VertexBindingDivisor if
no vertex array object is bound.

An INVALID_OPERATION error is generated by VertexArrayBindingDi-
visor if vaobj is not the name of an existing vertex array object.

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

The command

void VertexAttribDivisor(uint index, uint divisor);

is equivalent to (assuming no errors are generated):

VertexAttribBinding(index, index);
VertexBindingDivisor(index, divisor);

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 345

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_OPERATION error is generated if no vertex array object is
bound.

10.3.5 Transferring Array Elements

When an vertex is transferred to the GL by DrawArrays, DrawElements, or the
other Draw* commands described below, each generic attribute is expanded to four
components. If size is one then the x component of the attribute is specified by the
array; the y, z, and w components are implicitly set to 0, 0, and 1, respectively. If
size is two then the x and y components of the attribute are specified by the array;
the z and w components are implicitly set to 0 and 1, respectively. If size is three
then x, y, and z are specified, and w is implicitly set to 1. If size is four then all
components are specified.

10.3.6 Primitive Restart

Primitive restarting is enabled or disabled by calling one of the commands

void Enable(enum target);

and

void Disable(enum target);

with target PRIMITIVE_RESTART. The command

void PrimitiveRestartIndex(uint index);

specifies a vertex array element that is treated specially when primitive restarting
is enabled. This value is called the primitive restart index.

When one of the *DrawElements* commands transfers a set of generic at-
tribute array elements to the GL, if the index within the vertex arrays correspond-
ing to that set is equal to the primitive restart index, then the GL does not process
those elements as a vertex. Instead, it is as if the drawing command ended with
the immediately preceding transfer, and another drawing command is immediately
started with the same parameters, but only transferring the immediately following
element through the end of the originally specified elements.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 346

When one of the *BaseVertex drawing commands specified in section 10.4 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

Primitive restart can also be enabled or disabled with a target of PRIMITIVE_-
RESTART_FIXED_INDEX. In this case, the primitive restart index is equal to
2N − 1, where N is 8, 16 or 32 if the type is UNSIGNED_BYTE, UNSIGNED_-
SHORT, or UNSIGNED_INT, respectively, and the index value specified by Primi-
tiveRestartIndex is ignored.

If both PRIMITIVE_RESTART and PRIMITIVE_RESTART_FIXED_INDEX are
enabled, the index value determined by PRIMITIVE_RESTART_FIXED_INDEX is
used.

Note that primitive restart is not performed for array elements transferred by
any drawing command not taking a type parameter, including all of the *Draw*
commands other than *DrawElements*.

Implementations are not required to support primitive restart for separate
patch primitives (primitive type PATCHES). Support can be queried by calling
GetBooleanv with pname PRIMITIVE_RESTART_FOR_PATCHES_SUPPORTED.
A value of FALSE indicates that primitive restart is treated as disabled when draw-
ing patches, no matter the value of the enables. A value of TRUE indicates that
primitive restart behaves normally for patches.

10.3.7 Robust Buffer Access

Robust buffer access is enabled by creating a context with robust access enabled
through the window system binding APIs. When enabled, indices within the el-
ement array (see section 10.3.10) that reference vertex data that lies outside the
enabled attribute’s vertex buffer object result in reading zero. It is not possible to
read vertex data from outside the enabled vertex buffer objects or from another GL
context, and these accesses do not result in abnormal program termination.

10.3.8 Packed Vertex Data Formats

Vertex data formats UNSIGNED_INT_2_10_10_10_REV and INT_2_10_10_-

10_REV describe packed, 4 component formats stored in a single 32-bit word.
For UNSIGNED_INT_2_10_10_10_REV, the first (x), second (y), and third (z)

components are represented as 10-bit unsigned integer values and the fourth (w)
component is represented as a 2-bit unsigned integer value.

For INT_2_10_10_10_REV, the x, y and z components are represented as 10-
bit signed two’s complement integer values and the w component is represented as
a 2-bit signed two’s complement integer value.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 347

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [−1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Tables 10.3 and 10.4 describe how these components are laid out in a 32-bit
word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w z y x

Table 10.3: Packed component layout for non-BGRA formats. Bit numbers are
indicated for each component.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w x y z

Table 10.4: Packed component layout for BGRA format. Bit numbers are indicated
for each component.

Vertex data format UNSIGNED_INT_10F_11F_11F_REV describes a packed,
3-component format that is stored in a single 32-bit word. The first (x), and sec-
ond (y) components are represented as 11-bit unsigned floating-point values, and
the third (z) component is represented as a 10-bit unsigned floating-point value.
Table 10.5 describes how these components are laid out in a 32-bit word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

z y x

Table 10.5: Packed component layout for UNSIGNED_INT_10F_11F_11F_REV
format. Bit numbers are indicated for each component.

10.3.9 Vertex Arrays in Buffer Objects

Blocks of vertex array data are stored in buffer objects with the same format and
layout options described in section 10.3.

A buffer object binding point is added to the client state associated with each
vertex array index. The commands that specify the locations and organizations

OpenGL 4.5 (Core Profile) - October 24, 2016

10.3. VERTEX ARRAYS 348

of vertex arrays copy the buffer object name that is bound to ARRAY_BUFFER to
the binding point corresponding to the vertex array index being specified. For ex-
ample, the VertexAttribPointer command copies the value of ARRAY_BUFFER_-
BINDING (the queriable name of the buffer binding corresponding to the target
ARRAY_BUFFER) to the client state variable VERTEX_ATTRIB_ARRAY_BUFFER_-
BINDING for the specified index.

The drawing commands using vertex arrays described in section 10.4 operate
as previously defined, where data for enabled generic attribute arrays are sourced
from buffer objects.

When an array is sourced from a buffer object for a vertex attribute, the
bindingindex set with VertexAttribBinding for that attribute indicates which ver-
tex buffer binding is used. The sum of the relativeoffset set for the attribute
with VertexAttrib*Format and the offset set for the vertex buffer with BindVer-
texBuffer is used as the offset in basic machine units of the first element in that
buffer’s data store.

If any enabled array’s buffer binding is zero when DrawArrays or one of the
other drawing commands defined in section 10.4 is called, the result is undefined.

10.3.10 Array Indices in Buffer Objects

Blocks of array indices are stored in buffer objects in the formats described by the
type parameter of DrawElements (see section 10.4).

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with target set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 6.

DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from the buffer object whose name is bound to ELEMENT_-

ARRAY_BUFFER, using their indices parameters as offsets into the buffer ob-
ject in the same fashion as described in section 10.3.9. DrawElementsBaseV-
ertex, DrawRangeElementsBaseVertex, and DrawElementsInstancedBaseVer-
tex also source their indices from that buffer object, adding the basevertex offset to
the appropriate vertex index as a final step before indexing into the vertex buffer;
this does not affect the calculation of the base pointer for the index array. Finally,
MultiDrawElements and MultiDrawElementsBaseVertex also source their in-
dices from that buffer object, using its indices parameter as a pointer to an ar-
ray of pointers that represent offsets into the buffer object. If zero is bound to
ELEMENT_ARRAY_BUFFER, the result of these drawing commands is undefined.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 349

Indirect Command Name Indirect Buffer target

DrawArraysIndirect DRAW_INDIRECT_BUFFER

DrawElementsIndirect DRAW_INDIRECT_BUFFER

MultiDrawArraysIndirect DRAW_INDIRECT_BUFFER

MultiDrawElementsIndirect DRAW_INDIRECT_BUFFER

DispatchComputeIndirect DISPATCH_INDIRECT_BUFFER

Table 10.6: Indirect commands and corresponding indirect buffer targets.

ing binding points.

10.3.11 Indirect Commands in Buffer Objects

Arguments to the indirect commands DrawArraysIndirect, DrawElementsIndi-
rect, MultiDrawArraysIndirect, and MultiDrawElementsIndirect (see sec-
tion 10.4), and to DispatchComputeIndirect (see section 19) may be sourced
from the buffer object currently bound to the corresponding indirect buffer tar-
get (see table 10.6), using the command’s indirect parameter as an offset into the
buffer object in the same fashion as described in section 10.3.9. Buffer objects are
created and/or bound to a target as described in section 6.1. Initially zero is bound
to each target.

Arguments are stored in buffer objects as structures (for *Draw*Indirect) or
arrays (for DispatchComputeIndirect) of tightly packed 32-bit integers.

10.4 Drawing Commands Using Vertex Arrays

The command

void DrawArraysOneInstance(enum mode, int first,
sizei count, int instance, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices. Elements first through first + count − 1
of each enabled non-instanced array are transferred to the GL. If count is zero, no
elements are transferred.

mode specifies what kind of primitives are constructed, and must be one of the
primitive types defined in section 10.1.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 350

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element index that is transferred to the GL,
for all vertices, is given by⌊

instance

divisor

⌋
+ baseinstance

If an array corresponding to an attribute required by a vertex shader is not
enabled, then the corresponding element is taken from the current attribute state
(see section 10.2).

If an array is enabled, the corresponding current vertex attribute value is unaf-
fected by the execution of DrawArraysOneInstance.

The index of any element transferred to the GL by DrawArraysOneInstance
is referred to as its vertex ID, and may be read by a vertex shader as gl_VertexID.
The vertex ID of the ith element transferred is first + i.

The value of instance may be read by a vertex shader as gl_InstanceID, as
described in section 11.1.3.9.

Errors

An INVALID_ENUM error is generated if mode is not one of the primitive
types defined in section 10.1.

Specifying first < 0 results in undefined behavior. Generating an
INVALID_VALUE error is recommended in this case.

An INVALID_VALUE error is generated if count is negative.
An INVALID_OPERATION error is generated if no vertex array object is

bound (see section 10.3.1),

The command

void DrawArrays(enum mode, int first, sizei count);

is equivalent to

DrawArraysOneInstance(mode, first, count, 0, 0);

The command

void DrawArraysInstancedBaseInstance(enum mode,
int first, sizei count, sizei instancecount,
uint baseinstance);

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 351

behaves identically to DrawArrays except that instancecount instances of the
range of elements are executed and the value of instance advances for each it-
eration. Those attributes that have non-zero values for divisor, as specified by
VertexAttribDivisor, advance once every divisor instances. Additionally, the first
element within those instanced vertex attributes is specified in baseinstance.

DrawArraysInstancedBaseInstance is equivalent (assuming no errors are
generated) to:

if (mode, count, or instancecount is invalid)
generate appropriate error

else {
for (i = 0; i < instancecount; i++) {

DrawArraysOneInstance(mode, first, count, i,
baseinstance);

}
}

The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei instancecount);

is equivalent to

DrawArraysInstancedBaseInstance(mode, first, count, instancecount, 0);

The command

void DrawArraysIndirect(enum mode, const
void *indirect);

is equivalent to

typedef struct {
uint count;
uint instanceCount;
uint first;
uint baseInstance;

} DrawArraysIndirectCommand;

DrawArraysIndirectCommand *cmd =
(DrawArraysIndirectCommand *)indirect;

DrawArraysInstancedBaseInstance(mode, cmd->first, cmd->count,
cmd->instanceCount, cmd->baseInstance);

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 352

Unlike DrawArraysInstanced, first is unsigned and cannot cause an error.

Errors

An INVALID_OPERATION error is generated if zero is bound to DRAW_-

INDIRECT_BUFFER.
An INVALID_OPERATION error is generated if the command would

source data beyond the end of the buffer object.
An INVALID_VALUE error is generated if indirect is not a multiple of the

size, in basic machine units, of uint.

All elements of DrawArraysIndirectCommand are tightly packed 32-bit
values.

The command

void MultiDrawArrays(enum mode, const int *first,
const sizei *count, sizei drawcount);

behaves identically to DrawArrays except that drawcount separate ranges of el-
ements are specified instead, all elements are treated as though they are not in-
stanced, and the value of instance remains zero. It is equivalent (assuming no
errors are generated) to:

if (mode or drawcount is invalid)
generate appropriate error

else {
for (i = 0; i < drawcount; i++) {

if (count[i] > 0)
DrawArraysOneInstance(mode, first[i], count[i],

0, 0);
}

}

The command

void MultiDrawArraysIndirect(enum mode, const
void *indirect, sizei drawcount, sizei stride);

behaves identically to DrawArraysIndirect except that indirect is treated as an
array of drawcount DrawArraysIndirectCommand structures. indirect contains
the offset of the first element of the array within the buffer currently bound to the

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 353

DRAW_INDIRECT buffer binding. stride specifies the distance, in basic machine
units, between the elements of the array. If stride is zero, the array elements are
treated as tightly packed.

It is equivalent (assuming no errors are generated) to:

if (mode is invalid)
generate appropriate error

else {
const ubyte *ptr = (const ubyte *)indirect;
for (i = 0; i < drawcount; i++) {

DrawArraysIndirect(mode, (DrawArraysIndirectCommand*)ptr);
if (stride == 0) {

ptr += sizeof(DrawArraysIndirectCommand);
} else {

ptr += stride;
}

}
}

Errors

In addition to errors that would be generated by DrawArraysIndirect:
An INVALID_VALUE error is generated if stride is neither zero nor a mul-

tiple of four.
An INVALID_VALUE error is generated if drawcount is not positive.

The command

void DrawElementsOneInstance(enum mode, sizei count,
enum type, const void *indices, int instance,
int basevertex, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices to the GL.

The index of any element transferred to the GL by DrawElementsOneIn-
stance is referred to as its vertex ID, and may be read by a vertex shader as
gl_VertexID. The vertex ID of the ith element transferred is the sum of
basevertex and the value stored in the currently bound element array buffer at
offset indices + i . If the vertex ID is larger than the maximum value representable

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 354

by type, it should behave as if the calculation were upconverted to 32-bit unsigned
integers (with wrapping on overflow conditions). Behavior of DrawElementsOne-
Instance is undefined if the vertex ID is negative for any element, and should be
handled as described in section 6.4.

type must be one of UNSIGNED_BYTE, UNSIGNED_SHORT, or UNSIGNED_-
INT, indicating that the index values are of GL type ubyte, ushort, or uint
respectively. mode specifies what kind of primitives are constructed, and must be
one of the primitive types defined in section 10.1.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element index that is transferred to the GL,
for all vertices, is given by⌊

instance

divisor

⌋
+ baseinstance

If an array corresponding to an attribute required by a vertex shader is not
enabled, then the corresponding element is taken from the current attribute state
(see section 10.2).

GL implementations do not restrict index values; any value representable in a
uintmay be used. However, for compatibility with OpenGL ES implementations,
the maximum representable index vaue may be queried by calling GetInteger64v
with pname MAX_ELEMENT_INDEX, and will return 232 − 1.

If an array is enabled, the corresponding current vertex attribute value is unaf-
fected by the execution of DrawElementsOneInstance.

The value of instance may be read by a vertex shader as gl_InstanceID, as
described in section 11.1.3.9.

Errors

An INVALID_ENUM error is generated if mode is not one of the primitive
types defined in section 10.1.

An INVALID_ENUM error is generated if type is not UNSIGNED_BYTE,
UNSIGNED_SHORT, or UNSIGNED_INT.

An INVALID_OPERATION error is generated if no vertex array object is
bound (see section 10.3.1),

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOneInstance with instance, basevertex and
baseinstance set to zero; the effect of calling

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 355

DrawElements(mode, count, type, indices);

is equivalent to

if (mode, count or type is invalid)
generate appropriate error

else
DrawElementsOneInstance(mode, count, type, indices,

0, 0, 0);

The command

void DrawElementsInstancedBaseInstance(enum mode,
sizei count, enum type, const void *indices,
sizei instancecount, uint baseinstance);

behaves identically to DrawElements except that instancecount instances of the
set of elements are executed and the value of instance advances between each set.
Instanced attributes are advanced as they do during execution of DrawArraysIn-
stancedBaseInstance, and baseinstance has the same effect. It is equivalent (as-
suming no errors are generated) to:

if (mode, count, type, or instancecount is invalid)
generate appropriate error

else {
for (int i = 0; i < instancecount; i++) {

DrawElementsOneInstance(mode, count, type, indices,
i, 0, baseinstance);

}
}

The command

void DrawElementsInstanced(enum mode, sizei count,
enum type, const void *indices, sizei instancecount);

behaves identically to DrawElementsInstancedBaseInstance except that basein-
stance is zero. It is equivalent to

DrawElementsInstancedBaseInstance(mode, count, type, indices,
instancecount, 0, 0);

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 356

The command

void MultiDrawElements(enum mode, const
sizei *count, enum type, const void * const *indices,
sizei drawcount);

behaves identically to DrawElementsInstanced except that drawcount separate
sets of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instance remains zero. It is equivalent (assuming
no errors are generated) to:

if (mode, drawcount, or type is invalid)
generate appropriate error

else {
for (int i = 0; i < drawcount; i++)

DrawElementsOneInstance(mode, count[i], type,
indices[i], 0, 0, 0);

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, const
void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and in-
dex data, which may be queried by calling GetIntegerv with pnames MAX_-

ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end − start + 1 is
greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

Errors

An INVALID_VALUE error is generated if end < start.
Invalid mode, count, or type parameters generate the same errors as would

the corresponding call to DrawElements.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 357

It is an error for index values (other than the primitive restart index,
when primitive restart is enabled) to lie outside the range [start, end], but
implementations are not required to check for this. Such indices will cause
implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enum mode, sizei count,
enum type, const void *indices, int basevertex);

void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);

void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enum type, const void *indices,
sizei instancecount, int basevertex);

void DrawElementsInstancedBaseVertexBaseInstance(
enum mode, sizei count, enum type, const
void *indices, sizei instancecount, int basevertex,
uint baseinstance);

are equivalent to the commands with the same base name (without the BaseVertex
suffix), except that the basevertex value passed to DrawElementsOneInstance is
the basevertex value of these commands, instead of zero.

For DrawRangeElementsBaseVertex, the values taken from indices for each
element transferred must be in the range [start, end], prior to adding the basev-
ertex offset. Index values lying outside this range are treated in the same way as
DrawRangeElements.

The command

void DrawElementsIndirect(enum mode, enum type, const
void *indirect);

is equivalent to

typedef struct {
uint count;
uint instanceCount;
uint firstIndex;
int baseVertex;
uint baseInstance;

} DrawElementsIndirectCommand;

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 358

if (no element array buffer is bound) {
generate appropriate error

} else {
DrawElementsIndirectCommand *cmd =

(DrawElementsIndirectCommand *)indirect;

DrawElementsInstancedBaseVertexBaseInstance(mode,
cmd->count, type,
cmd->firstIndex * size-of-type,
cmd->instanceCount, cmd->baseVertex,
cmd->baseInstance);

}

Errors

An INVALID_OPERATION error is generated if zero is bound to DRAW_-

INDIRECT_BUFFER, or if no element array buffer is bound.
An INVALID_OPERATION error is generated if the command would

source data beyond the end of the buffer object.
An INVALID_VALUE error is generated if indirect is not a multiple of the

size, in basic machine units, of uint.

All elements of DrawElementsIndirectCommand are tightly packed.
The command

void MultiDrawElementsIndirect(enum mode, enum type,
const void *indirect, sizei drawcount, sizei stride);

behaves identically to DrawElementsIndirect except that indirect is treated as an
array of drawcount DrawElementsIndirectCommand structures. indirect con-
tains the offset of the first element of the array within the buffer currently bound
to the DRAW_INDIRECT buffer binding. stride specifies the distance, in basic ma-
chine units, between the elements of the array. If stride is zero, the array elements
are treated as tightly packed.

It is equivalent (assuming no errors are generated) to:

if (mode or type is invalid)
generate appropriate error

else {

OpenGL 4.5 (Core Profile) - October 24, 2016

10.4. DRAWING COMMANDS USING VERTEX ARRAYS 359

const ubyte *ptr = (const ubyte *)indirect;
for (i = 0; i < drawcount; i++) {

DrawElementsIndirect(mode, type,
(DrawElementsIndirectCommand*)ptr);

if (stride == 0) {
ptr += sizeof(DrawElementsIndirectCommand);

} else {
ptr += stride;

}
}

}

Errors

In addition to errors that would be generated by DrawElementsIndirect:
An INVALID_VALUE error is generated if stride is neither zero nor a mul-

tiple of four.
An INVALID_VALUE error is generated if drawcount is not positive.

The command

void MultiDrawElementsBaseVertex(enum mode, const
sizei *count, enum type, const void * const *indices,
sizei drawcount, const int *basevertex);

behaves identically to DrawElementsBaseVertex, except that drawcount separate
lists of elements are specified instead. It is equivalent (assuming no errors are
generated) to:

if (mode or drawcount is invalid)
generate appropriate error

else {
for (int i = 0; i < drawcount; i++)

if (count[i] > 0)
DrawElementsBaseVertex(mode, count[i], type,

indices[i], basevertex[i]);
}

OpenGL 4.5 (Core Profile) - October 24, 2016

10.5. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 360

10.4.1 Interleaved Arrays

This subsection is only defined in the compatibility profile.

10.5 Vertex Array and Vertex Array Object Queries

To query parameters of a vertex array object, use the command

void GetVertexArrayiv(uint vaobj, enum pname,
int *param);

vaobj is the name of the vertex array object. The value of parameter pname of
vaobj is returned in param. pname must be ELEMENT_ARRAY_BUFFER_BINDING.

Errors

An INVALID_OPERATION error is generated if vaobj is not the name of
an existing vertex array object.

An INVALID_ENUM error is generated if pname is not ELEMENT_ARRAY_-
BUFFER_BINDING.

To query parameters of an attribute of a vertex array object, use the commands

void GetVertexArrayIndexediv(uint vaobj, uint index,
enum pname, int *param);

void GetVertexArrayIndexed64iv(uint vaobj, uint index,
enum pname, int64 *param);

vaobj is the name of the vertex array object. The value of parameter pname
for attribute index of vaobj is returned in param.

For GetVertexArrayIndexediv, pname must be one of VERTEX_ATTRIB_-
ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_SIZE, VERTEX_ATTRIB_-

ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY_TYPE, VERTEX_ATTRIB_ARRAY_-

NORMALIZED, VERTEX_ATTRIB_ARRAY_INTEGER, VERTEX_ATTRIB_ARRAY_-
LONG, VERTEX_ATTRIB_ARRAY_DIVISOR, or VERTEX_ATTRIB_RELATIVE_-

OFFSET.
For GetVertexArrayIndexed64iv, pname must be VERTEX_BINDING_-

OFFSET.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.5. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 361

Errors

An INVALID_OPERATION error is generated if vaobj is not the name of
an existing vertex array object.

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_ENUM error is generated if pname is not one of the valid
values listed above for the corresponding command.

Queries of vertex array state variables are qualified by the value of VERTEX_-
ARRAY_BINDING to determine which vertex array object is queried. Tables 23.3
and 23.4 define the set of state stored in a vertex array object.

To query parameters of an attribute of the currently bound vertex array object,
or current attribute values, use the commands

void GetVertexAttribdv(uint index, enum pname,
double *params);

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

void GetVertexAttribIiv(uint index, enum pname,
int *params);

void GetVertexAttribIuiv(uint index, enum pname,
uint *params);

void GetVertexAttribLdv(uint index, enum pname,
double *params);

The value of parameter pname for the attribute numbered index of the currently
bound vertex array object is returned in params.

pname must be one of VERTEX_ATTRIB_ARRAY_-

BUFFER_BINDING, VERTEX_ATTRIB_ARRAY_ENABLED, VERTEX_ATTRIB_-

ARRAY_SIZE, VERTEX_ATTRIB_ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY_-

TYPE, VERTEX_ATTRIB_ARRAY_NORMALIZED, VERTEX_ATTRIB_-

ARRAY_INTEGER, VERTEX_ATTRIB_ARRAY_LONG, VERTEX_ATTRIB_ARRAY_-
DIVISOR, VERTEX_ATTRIB_BINDING, VERTEX_ATTRIB_RELATIVE_OFFSET,
or CURRENT_VERTEX_ATTRIB. Note that all the queries except CURRENT_-

VERTEX_ATTRIB return values stored in the currently bound vertex array object
(the value of VERTEX_ARRAY_BINDING).

Queries of VERTEX_ATTRIB_ARRAY_BUFFER_BINDING and VERTEX_-

ATTRIB_ARRAY_DIVISOR map the requested attribute index to a binding index

OpenGL 4.5 (Core Profile) - October 24, 2016

10.5. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 362

via the VERTEX_ATTRIB_BINDING state, and then return the value of VERTEX_-
BINDING_BUFFER or VERTEX_BINDING_DIVISOR, respectively.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex
attribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type, normalized flag, and unconverted integer flag are set by the
commands VertexAttribPointer and VertexAttribIPointer. The normalized flag
is always set to FALSE by VertexAttribIPointer. The unconverted integer flag is
always set to FALSE by VertexAttribPointer and TRUE by VertexAttribIPointer.

The query CURRENT_VERTEX_ATTRIB returns the current value for the
generic attribute index. GetVertexAttribdv and GetVertexAttribfv read and re-
turn the current attribute values as four floating-point values; GetVertexAttribiv
reads them as floating-point values and converts them to four integer values;
GetVertexAttribIiv reads and returns them as four signed integers; GetVertex-
AttribIuiv reads and returns them as four unsigned integers; and GetVertexAttri-
bLdv reads and returns them as four double-precision floating-point values. The
results of the query are undefined if the current attribute values are read using one
data type but were specified using a different one.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_OPERATION error is generated if no vertex array object is
bound (see section 10.3.1).

An INVALID_ENUM error is generated if pname is not one of the values
listed above.

The command

void GetVertexAttribPointerv(uint index, enum pname,
const void **pointer);

obtains the pointer named pname for the vertex attribute numbered index and places
the information in the array pointer. pname must be VERTEX_ATTRIB_ARRAY_-
POINTER. The value returned is queried from the currently bound vertex array
object.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to

OpenGL 4.5 (Core Profile) - October 24, 2016

10.6. REQUIRED STATE 363

the value of MAX_VERTEX_ATTRIBS.
An INVALID_OPERATION error is generated if no vertex array object is

bound (see section 10.3.1).

Finally, the buffer bound to ELEMENT_ARRAY_BUFFER may be queried by call-
ing GetIntegerv with pname ELEMENT_ARRAY_BUFFER_BINDING.

10.6 Required State

Let the number of supported generic vertex attributes (the value of MAX_VERTEX_-
ATTRIBS) be n. Let the number of supported generic vertex attribute bindings (the
value of MAX_VERTEX_ATTRIB_BINDINGS be k.

Then the state required to implement vertex arrays consists of n boolean val-
ues, n memory pointers, n integer stride values, n symbolic constants representing
array types, n integers representing values per element, n boolean values indi-
cating normalization, n boolean values indicating whether the attribute values are
pure integers, n boolean values indicating whether the attribute values are double
precision, three integers for the current array buffer, current element array buffer,
and current vertex array bindings, n unsigned integer vertex attribute binding in-
dices, n unsigned integer relative offsets, k integers representing vertex attribute
divisors, k unsigned integer vertex buffer bindings, k 64-bit integer vertex bind-
ing offsets, k integer vertex binding strides, an unsigned integer representing the
primitive restart index, and two booleans representing the enable state of primitive
restart and primitive restart with a fixed index.

In the initial state, the boolean values are each FALSE, the memory pointers are
each NULL, the strides are each zero, the array types are each FLOAT, the integers
representing values per element are each four, the normalized and pure integer
flags are each FALSE, the divisors are each zero, the binding indices are i for each
attribute i, the relative offsets are each zero, the vertex binding offsets are each
zero, the vertex binding strides are each 16, the restart index is zero, and the restart
enables are both FALSE.

10.7 Drawing Commands Using Begin and End

This section is only defined in the compatibility profile.

10.8 Rectangles

This section is only defined in the compatibility profile.

OpenGL 4.5 (Core Profile) - October 24, 2016

10.9. CONDITIONAL RENDERING 364

10.9 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES_PASSED)
of the query is zero, or if the result (ANY_SAMPLES_PASSED or ANY_SAMPLES_-
PASSED_CONSERVATIVE) is FALSE, all rendering commands described in sec-
tion 2.4 are discarded and have no effect when issued between BeginConditional-
Render and the corresponding EndConditionalRender.

The effect of commands setting current vertex state, such as VertexAttrib,
are undefined. If the result (SAMPLES_PASSED) of the query is non-zero, or if
the result (ANY_SAMPLES_PASSED or ANY_SAMPLES_PASSED_CONSERVATIVE)
is TRUE, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id.

If mode is QUERY_WAIT, the GL waits for the results of the query to be avail-
able and then uses the results to determine if subsquent rendering commands are
discarded.

If mode is QUERY_NO_WAIT, the GL may choose to unconditionally execute
the subsequent rendering commands without waiting for the query to complete.

If mode is QUERY_BY_REGION_WAIT, the GL will also wait for occlusion
query results and discard rendering commands if the result of the occlusion query is
zero. If the query result is non-zero, subsequent rendering commands are executed,
but the GL may discard the results of the commands for any region of the frame-
buffer that did not contribute to the sample count in the specified occlusion query.
Any such discarding is done in an implementation-dependent manner, but the ren-
dering command results may not be discarded for any samples that contributed to
the occlusion query sample count.

If mode is QUERY_BY_REGION_NO_WAIT, the GL operates as in QUERY_BY_-
REGION_WAIT, but may choose to unconditionally execute the subsequent render-
ing commands without waiting for the query to complete.

If mode is QUERY_WAIT_INVERTED, QUERY_NO_WAIT_INVERTED, QUERY_-
BY_REGION_WAIT_INVERTED, or QUERY_BY_REGION_NO_WAIT_INVERTED

then the condition used to determine whether or not to render subsequent drawing

OpenGL 4.5 (Core Profile) - October 24, 2016

10.9. CONDITIONAL RENDERING 365

commands is negated with respect to QUERY_WAIT, QUERY_NO_WAIT, QUERY_-
BY_REGION_WAIT, or QUERY_BY_REGION_NO_WAIT, respectively.

If mode is QUERY_NO_WAIT_INVERTED or QUERY_BY_REGION_NO_WAIT_-
INVERTED, the GL may choose to unconditionally execute subsequent rendering
commands without waiting for the query to complete.

Errors

An INVALID_OPERATION error is generated by BeginConditionalRen-
der if called while conditional rendering is in progress.

An INVALID_VALUE error is generated by BeginConditionalRender if
id is not the name of an existing query object.

An INVALID_OPERATION error is generated by BeginConditional-
Render if id is the name of a query object with a target other than
SAMPLES_PASSED, ANY_SAMPLES_PASSED, or ANY_SAMPLES_PASSED_-
CONSERVATIVE; or if id is the name of a query currently in progress.

An INVALID_ENUM error is generated by BeginConditionalRender
if mode is not QUERY_WAIT, QUERY_NO_WAIT, QUERY_BY_REGION_-

WAIT, QUERY_BY_REGION_NO_WAIT, QUERY_WAIT_INVERTED, QUERY_-
NO_WAIT_INVERTED, QUERY_BY_REGION_WAIT_INVERTED, or QUERY_-
BY_REGION_NO_WAIT_INVERTED.

An INVALID_OPERATION error is generated by EndConditionalRender
if called while conditional rendering is not in progress.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 11

Programmable Vertex Processing

When the program object currently in use for the vertex stage (see section 7.3)
includes a vertex shader, its shader is considered active and is used to process
vertices transferred to the GL (see section 11.1). Vertices may be further processed
by tessellation and geometry shaders (see sections 11.2 and 11.3). The resulting
transformed vertices are then processed as described in chapter 13.

If the current vertex stage program object has no vertex shader, or no program
object is current for the vertex stage, the results of programmable vertex processing
are undefined.

11.1 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their associ-
ated data. When the program object currently in use for the vertex stage includes a
vertex shader, its vertex shader is considered active and is used to process vertices.

Vertex attributes are per-vertex values available to vertex shaders, and are spec-
ified as described in section 10.2.

11.1.1 Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to generic
vertex attributes transferred by drawing commands. This binding can be specified
by the application before the program is linked, or automatically assigned by the
GL when the program is linked.

When an attribute variable declared using one of the scalar or vector data types
enumerated in table 11.3 is bound to a generic attribute index i, its value(s) are
taken from the components of generic attribute i. The generic attribute components

366

11.1. VERTEX SHADERS 367

Data type component Components
layout qualifier used

scalar 0 or unspecified x

scalar 1 y

scalar 2 z

scalar 3 w

two-component vector 0 or unspecified (x, y)

two-component vector 1 (y, z)

two-component vector 2 (z, w)

three-component vector 0 or unspecified (x, y, z)

three-component vector 1 (y, z, w)

four-component vector 0 or unspecified (x, y, z, w)

Table 11.1: Generic attribute components accessed by attribute variables.

used depend on the type of the variable and value of the component layout

qualifier (if any) specified in the variable declaration, as identified in table 11.1.
An attribute variable declared using a combination of data type and component

layout qualifier not listed in this table is not supported and will result in shader
compilation errors.

When an attribute variable declared using a matrix type is bound to a generic
attribute index i, its values are taken from consecutive generic attributes beginning
with generic attribute i. Such matrices are treated as an array of column vectors
with values taken from the generic attributes identified in table 11.2. Individual col-
umn vectors are taken from generic attribute components according to table 11.1,
using the vector type from table 11.2. and the component layout qualifier (if
any) specified in the variable declaration.

When an attribute variable declared using an array type is bound to generic
attribute index i, the active array elements are assigned to consecutive generic at-
tributes beginning with generic attribute i. The number of attributes and compo-
nents assigned to each element are determined according to the data type of array
elements and component layout qualifier (if any) specified in the declaration of
the array, as described above.

For the 64-bit double precision types listed in table 11.3, no default attribute
values are provided if the values of the vertex attribute variable are specified with
fewer components than required for the attribute variable. For example, the fourth
component of a variable of type dvec4 will be undefined if specified using Ver-
texAttribL3dv, or using a vertex array specified with VertexAttribLPointer and

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 368

Data type Column vector type Generic
layout qualifier attributes used

mat2, dmat2 two-component vector i, i+ 1

mat2x3, dmat2x3 three-component vector i, i+ 1

mat2x4, dmat2x4 four-component vector i, i+ 1

mat3x2, dmat3x2 two-component vector i, i+ 1, i+ 2

mat3, dmat3 three-component vector i, i+ 1, i+ 2

mat3x4, dmat3x4 four-component vector i, i+ 1, i+ 2

mat4x2, dmat4x2 two-component vector i, i+ 1, i+ 2, i+ 3

mat4x3, dmat4x3 three-component vector i, i+ 1, i+ 2, i+ 3

mat4, dmat4 four-component vector i, i+ 1, i+ 2, i+ 3

Table 11.2: Generic attributes and vector types used by column vectors of matrix
variables bound to generic attribute index i.

Data type Command
int VertexAttribI1i
ivec2 VertexAttribI2i
ivec3 VertexAttribI3i
ivec4 VertexAttribI4i
uint VertexAttribI1ui
uvec2 VertexAttribI2ui
uvec3 VertexAttribI3ui
uvec4 VertexAttribI4ui
float VertexAttrib1*
vec2 VertexAttrib2*
vec3 VertexAttrib3*
vec4 VertexAttrib4*
double VertexAttribL1d
dvec2 VertexAttribL2d
dvec3 VertexAttribL3d
dvec4 VertexAttribL4d

Table 11.3: Scalar and vector vertex attribute types and VertexAttrib* commands
used to set the values of the corresponding generic attribute.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 369

a size of three.
The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index, but the new
binding becomes effective only when the program is next linked. name must be
a null-terminated string. BindAttribLocation has no effect until the program is
linked. In particular, it doesn’t modify the bindings of active attribute variables in
a program that has already been linked.

When a program is linked, any active attributes without a binding specified
either through BindAttribLocation or explicitly set within the shader text will
automatically be bound to vertex attributes by the GL. Such bindings may be
queried using the command GetAttribLocation. LinkProgram will fail if the
assigned binding of an active attribute variable would cause the GL to reference
a non-existent generic attribute (one greater than or equal to the value of MAX_-
VERTEX_ATTRIBS). LinkProgram will fail if the attribute bindings specified ei-
ther by BindAttribLocation or explicitly set within the shader text do not leave
enough space to assign a location for an active matrix attribute or an active attribute
array, both of which require multiple contiguous generic attributes. If an active at-
tribute has a binding explicitly set within the shader text and a different binding
assigned by BindAttribLocation, the assignment in the shader text is used.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name to an index,
including a name that is never used as an attribute in any vertex shader object. As-
signed bindings for attribute variables that do not exist or are not active are ignored.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 370

An INVALID_OPERATION error is generated if name starts with the re-
served "gl_" prefix.

To determine the set of active vertex attribute variables used by a program,
applications can query the properties and active resources of the PROGRAM_INPUT
interface of a program including a vertex shader.

Additionally, the command

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

can be used to determine properties of the active input variable assigned the index
index in program object program. If no error occurs, the command is equivalent
(assuming no errors are generated) to:

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName(program, PROGRAM_INPUT,

index, bufSize, length, name);
GetProgramResourceiv(program, PROGRAM_INPUT,

index, 1, &props[0], 1, NULL, size);
GetProgramResourceiv(program, PROGRAM_INPUT,

index, 1, &props[1], 1, NULL, (int *)type);

For GetActiveAttrib, all active vertex shader input variables are enumerated,
including the special built-in inputs gl_VertexID and gl_InstanceID.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if index is not the index of an
active input variable in program.

An INVALID_VALUE error is generated for all values of index if program
does not include a vertex shader, as it has no active vertex attributes.

An INVALID_VALUE error is generated if bufSize is negative.

The command

int GetAttribLocation(uint program, const char *name);

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 371

can be used to determine the location assigned to the active input variable named
name in program object program.

Errors

If program has been linked successfully but contains no vertex shader, no
error is generated but -1 will be returned.

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated and -1 is returned if program
has not been linked successfully.

Otherwise, the command is equivalent to

GetProgramResourceLocation(program, PROGRAM_INPUT, name);

There is an implementation-dependent limit on the number of active at-
tribute variables in a vertex shader. A program with more than the value of
MAX_VERTEX_ATTRIBS active attribute variables may fail to link, unless device-
dependent optimizations are able to make the program fit within available hard-
ware resources. For the purposes of this test, attribute variables of the type dvec3,
dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may count
as consuming twice as many attributes as equivalent single-precision types. While
these types use the same number of generic attributes as their single-precision
equivalents, implementations are permitted to consume two single-precision vec-
tors of internal storage for each three- or four-component double-precision vector.

The values of generic attributes sent to generic attribute index i are part of
current state. If a new program object has been made active, then these values
will be tracked by the GL in such a way that the same values will be observed by
attributes in the new program object that are also bound to index i.

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 372

11.1.2 Vertex Shader Variables

Vertex shaders can access uniforms belonging to the current program object. Lim-
its on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Vertex shaders also have access to samplers to perform texturing operations, as
described in section 7.10.

11.1.2.1 Output Variables

A vertex shader may define one or more output variables or outputs (see the
OpenGL Shading Language Specification).

The OpenGL Shading Language Specification also defines a set of built-in out-
puts that vertex shaders can write to (see section 7.1(“Built-In Variables”) of the
OpenGL Shading Language Specification). These output variables are either used
as the mechanism to communicate values to the next active stage in the vertex pro-
cessing pipeline: either the tessellation control shader, the tessellation evaluation
shader, the geometry shader, or the fixed-function vertex processing stages leading
to rasterization.

If the output variables are passed directly to the vertex processing stages lead-
ing to rasterization, the values of all outputs are expected to be interpolated across
the primitive being rendered, unless flatshaded. Otherwise the values of all out-
puts are collected by the primitive assembly stage and passed on to the subsequent
pipeline stage once enough data for one primitive has been collected.

The number of components (individual scalar numeric values) of output vari-
ables that can be written by the vertex shader, whether or not a tessellation con-
trol, tessellation evaluation, or geometry shader is active, is given by the value
of the implementation-dependent constant MAX_VERTEX_OUTPUT_COMPONENTS.
For the purposes of counting input and output components consumed by a shader,
variables declared as vectors, matrices, and arrays will all consume multiple com-
ponents. Each component of variables declared as double-precision floating-point
scalars, vectors, or matrices may be counted as consuming two components.

When a program is linked, all components of any outputs written by a vertex
shader will count against this limit. A program whose vertex shader writes more
than the value of MAX_VERTEX_OUTPUT_COMPONENTS components worth of out-
puts may fail to link, unless device-dependent optimizations are able to make the
program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as ver-
tex shader outputs or fragment shader inputs. This limit is given by the value

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 373

of the implementation-dependent constant MAX_VARYING_COMPONENTS. The
implementation-dependent constant MAX_VARYING_VECTORS has a value equal to
the value of MAX_VARYING_COMPONENTS divided by four. Each output variable
component used as either a vertex shader output or fragment shader input counts
against this limit, except for the components of gl_Position. A program con-
taining only a vertex and fragment shader that accesses more than this limit’s worth
of components of outputs may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Each program object can specify a set of output variables from one shader to be
recorded in transform feedback mode (see section 13.2). The variables that can be
recorded are those emitted by the first active shader, in order, from the following
list:

• geometry shader

• tessellation evaluation shader

• tessellation control shader

• vertex shader

The set of variables to record can be specified in shader text using the xfb_-
buffer, xfb_offset, or xfb_stride layout qualifiers. When recording out-
put variables of each vertex in transform feedback mode, a fixed amount of mem-
ory is reserved in the buffer bound to each transform feedback buffer binding
point. Each output variable recorded is associated with a binding point, speci-
fied by the xfb_buffer layout qualifier. Each output variable is written to its
associated transform feedback binding point at an offset specified by the xfb_-

offset layout qualifier, in basic machine units, relative to the base of the mem-
ory reserved for its vertex. The amount of memory reserved in each transform
feedback binding point for a single vertex can be specified using the xfb_stride
layout qualifier. If no xfb_stride qualifier is specified for a binding point,
the stride is derived by identifying the variable associated with the binding point
having the largest offset, and then adding the offset and the size of the variable,
in basic machine units. If any variable associated with the binding point contains
double-precision floating-point components, the derived stride is aligned to the
next multiple of eight basic machine units. If a binding point has no xfb_stride

qualifier and no associated output variables, its stride is zero.
When no xfb_buffer, xfb_offset, or xfb_stride layout qualifiers are

specified, the set of variables to record is specified with the command

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 374

void TransformFeedbackVaryings(uint program,
sizei count, const char * const *varyings,
enum bufferMode);

program specifies the program object. count specifies the number of output vari-
ables used for transform feedback. varyings is an array of count zero-terminated
strings specifying the names of the outputs to use for transform feedback. The
variables specified in varyings can be either built-in (beginning with "gl_") or
user-defined variables. Each variable can either be a basic type or an array of ba-
sic types. Structure, array of array and array of structure types cannot be captured
directly. Base-level members of aggregates can be captured by specifying the fully
qualified path identifying the member, using the same rules with which active re-
source lists are enumerated for program interfaces as described in section 7.3.1.1,
with one exception. To allow capturing whole arrays or individual elements of an
array, there are additional rules for array variables. To capture a single element, the
name of the output array is specified with a constant-integer index "name[x]"
where name is the name of the array variable and x is the constant-integer index of
the array element. To capture the whole of the output array, name is specified with-
out the array index or square brackets. Output variables are written out in the order
they appear in the array varyings. bufferMode is either INTERLEAVED_ATTRIBS
or SEPARATE_ATTRIBS, and identifies the mode used to capture the outputs when
transform feedback is active.

The variables in varyings are assigned binding points and offsets sequentially,
as though each were specified using the xfb_buffer and xfb_offset layout

qualifiers. The strides associated with each binding point are derived by adding
the offset and size of the last variable associated with that binding point. The
first variable in varyings is assigned a binding point and offset of zero. When
bufferMode is INTERLEAVED_ATTRIBS, each subsequent variable is assigned to
the same binding point as the previous variable and an offset equal to the sum of
the offset and size of the previous variable. When bufferMode is SEPARATE_-

ATTRIBS, each subsequent variable is assigned to the binding point following the
binding point of the previous variable with an offset of zero.

Several special identifiers are supported when bufferMode is INTERLEAVED_-
ATTRIBS. These identifiers do not identify output variables captured in transform
feedback mode, but can be used to modify the binding point and offsets assigned
to subsequent variables. If a string in varyings is gl_NextBuffer, the next vari-
able in varyings will be assigned to the next binding point, with an offset of zero.
If a string in varyings is gl_SkipComponents1, gl_SkipComponents2, gl_-
SkipComponents3, or gl_SkipComponents4, the variable is treated as specify-
ing a one- to four-component floating-point output variable with undefined values.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 375

No data will be recorded for such strings, but the offset assigned to the next variable
in varyings and the stride of the assigned binding point will be affected.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if count is negative.
An INVALID_ENUM error is generated if bufferMode is not SEPARATE_-

ATTRIBS or INTERLEAVED_ATTRIBS.
An INVALID_VALUE error is generated if bufferMode is SEPARATE_-

ATTRIBS and count is greater than the value of the implementation-dependent
limit MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

An INVALID_OPERATION error is generated if any pointer in varyings
identifies the special names gl_NextBuffer,
gl_SkipComponents1, gl_SkipComponents2, gl_SkipComponents3,
or gl_SkipComponents4 and bufferMode is not INTERLEAVED_ATTRIBS,
or if the number of gl_NextBuffer pointers in varyings is greater than or
equal to the value of MAX_TRANSFORM_FEEDBACK_BUFFERS.

The state set by TransformFeedbackVaryings or using transform feedback
layout qualifiers has no effect on the execution of the program until program is
subsequently linked. When LinkProgram is called, the program is linked so that
the values of the specified outputs for the vertices of each primitive generated by
the GL are written to one or more buffer objects. If the set of output variables to
record in transform feedback mode is specified by TransformFeedbackVaryings,
a program will fail to link if:

• the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex, tessellation control, tessellation evaluation, or
geometry shader;

• any variable name specified in the varyings array is not one of gl_-

NextBuffer, gl_SkipComponents1, gl_SkipComponents2, gl_-

SkipComponents3, or gl_SkipComponents4, and is not declared as a
built-in or user-defined output variable in the shader stage whose outputs
can be recorded;

• any two entries in the varyings array specify the same output variable or

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 376

include the same elements from an array variable (different elements from
the same array are permitted);

• the total number of components to capture in any output in varyings is greater
than the value of MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS
and the buffer mode is SEPARATE_ATTRIBS;

• the total number of components to capture is greater than the value of
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS; or

• the set of outputs to capture to any single binding point includes outputs from
more than one vertex stream.

If the set of output variables to record in transform feedback mode is specified
using layout qualifiers, a program will fail to link if:

• any pair of variables associated with the same binding point overlap in mem-
ory (where the offset of the first variable is less than or equal to the offset of
the second, but the sum of the offset and size of the first variable is greater
than the offset of the second);

• any binding point has a stride declared using the xfb_stride layout qual-
ifier and the sum of the offset and size of any variable associated with that
binding point exceeds the value of this stride;

• any variable containing double-precision floating-point components

– has an xfb_offset layout qualifier that is not a multiple of eight;
or

– is associated with a binding point with an xfb_stride layout qual-
ifier that is not a multiple of eight;

• the sum of the offset and size of any variable exceeds the maximum
stride supported by the implementation (four times the value of MAX_-

TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS); or

• the xfb_stride layout qualifier for any binding point exceeds the maxi-
mum stride supported by the implementation.

For transform feedback purposes, each component of outputs declared as
double-precision floating-point scalars, vectors, or matrices is considered to con-
sume eight basic machine units, and each component of any other type is consid-
ered to consume four basic machine units.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 377

To determine the set of output variables in a linked program object that will
be captured in transform feedback mode and the binding points to which those
variables are written, applications can query the properties and active resources
of the TRANSFORM_FEEDBACK_VARYING and TRANSFORM_FEEDBACK_BUFFER

interfaces.
If the shader used to record output variables for transform feedback varyings

uses the xfb_buffer, xfb_offset, or xfb_stride layout qualifiers, the val-
ues specified by TransformFeedbackVaryings are ignored, and the set of vari-
ables captured for transform feedback is instead derived from the specified layout
qualifiers.

Additionally, the command

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

can be used to enumerate properties of a single output variable captured in trans-
form feedback mode, and is equivalent (assuming no errors are generated) to:

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName(program, TRANSFORM_FEEDBACK_VARYING,

index, bufSize, length, name);
GetProgramResourceiv(program, TRANSFORM_FEEDBACK_VARYING,

index, 1, &props[0], 1, NULL, size);
GetProgramResourceiv(program, TRANSFORM_FEEDBACK_VARYING,

index, 1, &props[1], 1, NULL, (int *)type);

Special output names (e.g., gl_NextBuffer, gl_SkipComponents1)
passed to TransformFeedbackVaryings in the varyings array are counted as out-
puts to be recorded for the purposes of determining the value of TRANSFORM_-
FEEDBACK_VARYINGS and for determining the variable selected by index in Get-
TransformFeedbackVarying. If index identifies gl_NextBuffer, the values
zero and NONE will be written to size and type, respectively. If index is of the form
gl_SkipComponentsn, the value NONE will be written to type and the number of
components n will be written to size.

GetTransformFeedbackVarying may be used to query any transform feed-
back output variable, not just those specified with TransformFeedbackVarying.

11.1.3 Shader Execution

If there is an active program object present for the vertex, tessellation control,
tessellation evaluation, or geometry shader stages, the executable code for these

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 378

active programs is used to process incoming vertex values.
The following sequence of operations is performed:

• Vertices are processed by the vertex shader (see section 11.1) and assembled
into primitives as described in sections 10.1 through 10.3.

• If the current program contains a tessellation control shader, each indi-
vidual patch primitive is processed by the tessellation control shader (sec-
tion 11.2.1). Otherwise, primitives are passed through unmodified. If active,
the tessellation control shader consumes its input patch and produces a new
patch primitive, which is passed to subsequent pipeline stages.

• If the current program contains a tessellation evaluation shader, each indi-
vidual patch primitive is processed by the tessellation primitive generator
(section 11.2.2) and tessellation evaluation shader (see section 11.2.3). Oth-
erwise, primitives are passed through unmodified. When a tessellation eval-
uation shader is active, the tessellation primitive generator produces a new
collection of point, line, or triangle primitives to be passed to subsequent
pipeline stages. The vertices of these primitives are processed by the tes-
sellation evaluation shader. The patch primitive passed to the tessellation
primitive generator is consumed by this process.

• If the current program contains a geometry shader, each individual primitive
is processed by the geometry shader (section 11.3). Otherwise, primitives
are passed through unmodified. If active, the geometry shader consumes its
input patch primitive. However, each geometry shader invocation may emit
new vertices, which are arranged into primitives and passed to subsequent
pipeline stages.

Following shader execution, the fixed-function operations described in chap-
ter 13 are applied.

Special considerations for vertex shader execution are described in the follow-
ing sections.

11.1.3.1 Shader Only Texturing

This section describes texture functionality that is accessible through shaders (of
all types). Also refer to chapter 8 and to section 8.9(“Texture Functions”) of the
OpenGL Shading Language Specification.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 379

11.1.3.2 Texel Fetches

The OpenGL Shading Language texelFetch builtins provide the ability to ex-
tract a single texel from a specified texture image. Texel fetches cannot access cube
maps.

The integer coordinates (i, j, k) passed to texelFetch are used to point-
sample the texture image. The level of detail accessed is computed by adding the
specified level-of-detail parameter lod to the base level of the texture, levelbase.

Texel fetch proceeds similarly to the steps described for texture access in sec-
tion 11.1.3.5, with the exception that none of the operations controlled by sampler
object state are performed, including:

• level of detail clamping;

• texture wrap mode application;

• filtering (however, a mipmapped minification filter is required to access any
level of detail other than the base level);

• depth comparison.

The steps that are performed are:

• validation of texel coordinates as described below, including the computed
level-of-detail, (i, j, k), the specified level for array textures, and texture
completeness;

• sRGB conversion of fetched values as described in section 8.24;

• conversion to base color Cb;

• component swizzling.

The results of texelFetch builtins are undefined if any of the following
conditions hold:

• the computed level of detail is less than the texture’s base level (levelbase) or
greater than the maximum defined level, q (see section 8.14.3)

• the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

• the layer specified for array textures is negative, or greater than or equal to
the number of layers in the array texture

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 380

• the texel coordinates (i, j, k) refer to a texel outside the defined extents of
the computed level of detail, where any of

i < 0 i ≥ ws

j < 0 j ≥ hs
k < 0 k ≥ ds

and ws, hs, and ds refer to the width, height, and depth of the image, as
defined in section 8.5.3.

• the texture being accessed is not complete, as defined in section 8.17

• the texture being accessed is not bound.

In all the above cases, if the context was created with robust buffer access
enabled (see section 10.3.7), the result of the texture fetch is zero, or a texture
source color of (0, 0, 0, 1) in the case of a texel fetch from an incomplete texture.
If robust buffer access is not enabled, the result of the texture fetch is undefined in
each case.

11.1.3.3 Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.
Multisample textures are not filtered when samples are fetched, and filter state is
ignored.

The results of a multisample texel fetch are undefined if any of the following
conditions hold:

• the texel coordinates (i, j, k) refer to a texel outside the extents of the multi-
sample texture image, where any of

i < 0 i ≥ ws

j < 0 j ≥ hs
k < 0 k ≥ ds

and the size parameters ws, hs, and ds refer to the width, height, and depth
of the image

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 381

• the specified sample number does not exist (is negative, or greater than or
equal to the number of samples in the texture).

Additionally, these fetches may only be performed on a multisample texture
sampler. No other sample or fetch commands may be performed on a multisample
texture sampler.

11.1.3.4 Texture Queries

The textureSize functions provide the ability to query the size of a texture im-
age. The level-of-detail value lod passed in as an argument to the texture size func-
tions is added to the levelbase of the texture to determine a texture image level. The
dimensions of that image level are then returned. If the computed texture image
level is outside the range [levelbase, q], the results are undefined. When querying
the size of an array texture, both the dimensions and the layer count are returned.

The textureQueryLevels functions provide the ability to query the num-
ber of accessible mipmap levels in a texture object associated with a sampler uni-
form. If the sampler is associated with an immutable-format texture object (see
section 8.19), the value returned will be:

min{levelimmut − 1, levelmax} − levelbase + 1.

Otherwise, the value returned will be an implementation-dependent value between
zero and q− levelbase + 1, where q is defined in section 8.14.3. The value returned
in that case must satisfy the following constraints:

• if all levels of the texture have zero size, zero must be returned

• if the texture is complete, a non-zero value must be returned

• if the texture is complete and is accessed with a minification filter requiring
mipmaps, q − levelbase + 1 must be returned.

11.1.3.5 Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum number
of texture image units available to shaders are the values of the implementation-
dependent constants

• MAX_VERTEX_TEXTURE_IMAGE_UNITS (for vertex shaders),

• MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS (for tessellation control
shaders),

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 382

• MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS (for tessellation eval-
uation shaders),

• MAX_GEOMETRY_TEXTURE_IMAGE_UNITS (for geometry shaders),

• MAX_TEXTURE_IMAGE_UNITS (for fragment shaders), and

• MAX_COMPUTE_TEXTURE_IMAGE_UNITS (for compute shaders).

All active shaders combined cannot use more than the value of MAX_-

COMBINED_TEXTURE_IMAGE_UNITS texture image units. If more than one
pipeline stage accesses the same texture image unit, each such access counts sepa-
rately against the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a shader, the filtered texture value τ is
computed in the manner described in sections 8.14 and 8.15, and converted to a
texture base color Cb as shown in table 15.1, followed by application of the texture
swizzle as described in section 15.2.1 to compute the texture source color Cs and
As.

The resulting four-component vector (Rs, Gs, Bs, As) is returned to the shader.
Texture lookup functions (see section 8.9(“Texture Functions”) of the OpenGL
Shading Language Specification) may return floating-point, signed, or unsigned
integer values depending on the function and the internal format of the texture.

In shaders other than fragment shaders, it is not possible to perform automatic
level-of-detail calculations using partial derivatives of the texture coordinates with
respect to window coordinates as described in section 8.14. Hence, there is no au-
tomatic selection of an image array level. Minification or magnification of a texture
map is controlled by a level-of-detail value optionally passed as an argument in the
texture lookup functions. If the texture lookup function supplies an explicit level-
of-detail value l, then the pre-bias level-of-detail value λbase(x, y) = l (replacing
equation 8.7). If the texture lookup function does not supply an explicit level-of-
detail value, then λbase(x, y) = 0. The scale factor ρ(x, y) and its approximation
function f(x, y) (see equation 8.11) are ignored.

Texture lookups involving textures with depth component data generate a tex-
ture base color Cb either using depth data directly or by performing a comparison
with the Dref value used to perform the lookup, as described in section 8.23.1,
and expanding the resulting value Rt to a color Cb = (Rt, 0, 0, 1). In either case,
swizzling of Cb is then performed as described above, but only the first compo-
nent Cs[0] is returned to the shader. The comparison operation is requested in the
shader by using any of the shadow sampler types (sampler*Shadow), and in the
texture using the TEXTURE_COMPARE_MODE parameter. These requests must be

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 383

consistent; the results of a texture lookup are undefined if any of the following
conditions are true:

• The sampler used in a texture lookup function is not one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, and the texture object’s base internal format is not DEPTH_-
COMPONENT or DEPTH_STENCIL.

• The sampler used in a texture lookup function is one of the shadow sampler
types, the texture object’s base internal format is DEPTH_STENCIL, and the
DEPTH_STENCIL_TEXTURE_MODE is not DEPTH_COMPONENT.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL and the value of DEPTH_STENCIL_TEXTURE_MODE is
not STENCIL_INDEX.

Texture lookups involving texture objects with an internal format of DEPTH_-
STENCIL can read the stencil value as described in section 8.23 by setting
the DEPTH_STENCIL_TEXTURE_MODE to STENCIL_INDEX. Textures with a
STENCIL_INDEX base internal format may also be used to read stencil data. The
stencil value is read as an integer and assigned to Rt. An unsigned integer sampler
should be used to lookup the stencil component, otherwise the results are unde-
fined.

If a sampler is used in a shader and the sampler’s associated texture is not
complete, as defined in section 8.17, (0.0, 0.0, 0.0, 1.0), in floating-point, will be
returned for a non-shadow sampler and 0 for a shadow sampler. In this case, if
the sampler is declared in the shader as a signed or unsigned integer sampler type,
undefined values are returned as specified in section 9.9(“Texture Functions”) of
the OpenGL Shading Language Specification when the texture format and sampler
type are unsupported combinations.

11.1.3.6 Atomic Counter Access

Shaders have the ability to set and get atomic counters. The maximum num-
ber of atomic counters available to shaders are the values of the implementation-
dependent constants

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 384

• MAX_VERTEX_ATOMIC_COUNTERS (for vertex shaders),

• MAX_TESS_CONTROL_ATOMIC_COUNTERS (for tessellation control
shaders),

• MAX_TESS_EVALUATION_ATOMIC_COUNTERS (for tessellation evaluation
shaders),

• MAX_GEOMETRY_ATOMIC_COUNTERS (for geometry shaders),

• MAX_FRAGMENT_ATOMIC_COUNTERS (for fragment shaders), and

• MAX_COMPUTE_ATOMIC_COUNTERS (for compute shaders).

All active shaders combined cannot use more than the value of MAX_-

COMBINED_ATOMIC_COUNTERS atomic counters. If more than one pipeline stage
accesses the same atomic counter, each such access counts separately against the
MAX_COMBINED_ATOMIC_COUNTERS limit.

11.1.3.7 Image Access

Shaders have the ability to read and write to textures using image uniforms. The
maximum number of image uniforms available to individual shader stages are the
values of the implementation-dependent constants

• MAX_VERTEX_IMAGE_UNIFORMS (for vertex shaders),

• MAX_TESS_CONTROL_IMAGE_UNIFORMS (for tessellation control shaders),

• MAX_TESS_EVALUATION_IMAGE_UNIFORMS (for tessellation evaluation
shaders),

• MAX_GEOMETRY_IMAGE_UNIFORMS (for geometry shaders),

• MAX_FRAGMENT_IMAGE_UNIFORMS (for fragment shaders), and

• MAX_COMPUTE_IMAGE_UNIFORMS (for compute shaders).

All active shaders combined cannot use more than the value of MAX_-

COMBINED_IMAGE_UNIFORMS image uniforms. If more than one shader stage
accesses the same image uniform, each such access counts separately against the
MAX_COMBINED_IMAGE_UNIFORMS limit.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 385

11.1.3.8 Shader Storage Buffer Access

Shaders have the ability to read and write to buffer memory via buffer variables in
shader storage blocks. The maximum number of shader storage blocks available to
shaders are the values of the implementation-dependent constants

• MAX_VERTEX_SHADER_STORAGE_BLOCKS (for vertex shaders)

• MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS (for tessellation control
shaders)

• MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS (for tessellation
evaluation shaders)

• MAX_GEOMETRY_SHADER_STORAGE_BLOCKS (for geometry shaders)

• MAX_FRAGMENT_SHADER_STORAGE_BLOCKS (for fragment shaders)

• MAX_COMPUTE_SHADER_STORAGE_BLOCKS (for compute shaders)

All active shaders combined cannot use more than the value of MAX_-

COMBINED_SHADER_STORAGE_BLOCKS shader storage blocks. If more than one
pipeline stage accesses the same shader storage block, each such access counts
separately against this combined limit.

11.1.3.9 Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables gl_VertexID and gl_InstanceID.

gl_VertexID holds the integer index i implicitly passed by DrawArrays or
one of the other drawing commands defined in section 10.4.

gl_InstanceID holds the integer instance number of the current primitive in
an instanced draw call (see section 10.4).

Section 7.1(“Built-In Variables”) of the OpenGL Shading Language Specifica-
tion also describes these variables.

11.1.3.10 Shader Outputs

A vertex shader can write to user-defined output variables. These values are ex-
pected to be interpolated across the primitive it outputs, unless they are specified
to be flat shaded. Refer to sections 4.3.6(“Output Variables”), 4.5(“Interpola-
tion Qualifiers”), and 7.1(“Built-In Variables”) of the OpenGL Shading Language
Specification for more detail.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 386

The built-in output gl_Position is intended to hold the homogeneous vertex
position. Writing gl_Position is optional.

The built-in output variables gl_ClipDistance and gl_CullDistance re-
spectively hold the vertex coordinate, and the clip distance and cull distance used
in the clipping stage, as described in section 13.5. If clipping is enabled, gl_-

ClipDistance should be written.
The built-in output gl_PointSize, if written, holds the size of the point to be

rasterized, measured in pixels.

11.1.3.11 Validation

It is not always possible to determine at link time if a program object can execute
successfully, given that LinkProgram can not know the state of the remainder
of the pipeline. Therefore validation is done when the first rendering command
which triggers shader invocations is issued, to determine if the set of active program
objects can be executed.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL or launches compute work if the current set of active
program objects cannot be executed, for reasons including:

• A program object is active for at least one, but not all of the shader stages
that were present when the program was linked.

• One program object is active for at least two shader stages and a second
program is active for a shader stage between two stages for which the first
program was active. The active compute shader is ignored for the purposes
of this test.

• There is an active program for tessellation control, tessellation evaluation, or
geometry stages with corresponding executable shader, but there is no active
program with executable vertex shader.

• There is no current program object specified by UseProgram, there is a cur-
rent program pipeline object, and the current program for any shader stage
has been relinked since being applied to the pipeline object via UsePro-
gramStages with the PROGRAM_SEPARABLE parameter set to FALSE.

• There is no current program object specified by UseProgram, there is a
current program pipeline object, and that object is empty (no executable code

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 387

is installed for any stage).

• Any two active samplers in the set of active program objects are of different
types, but refer to the same texture image unit.

• The sum of the number of active samplers for each active program exceeds
the maximum number of texture image units allowed.

• The sum of the number of active atomic counters, atomic counter buffers,
image uniforms, shader output resources, shader storage blocks, texture im-
age units, and uniform blocks used by the current program objects exceeds
the corresponding combined limit (the value of MAX_COMBINED_ATOMIC_-
COUNTERS, MAX_COMBINED_ATOMIC_COUNTER_BUFFERS, MAX_-

COMBINED_IMAGE_UNIFORMS, MAX_COMBINED_SHADER_OUTPUT_-

RESOURCES, MAX_COMBINED_SHADER_STORAGE_BLOCKS, MAX_-

COMBINED_TEXTURE_IMAGE_UNITS, and MAX_COMBINED_UNIFORM_-

BLOCKS, respectively).

The INVALID_OPERATION error generated by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status may be queried with GetProgramiv (see section 7.13).
If validation succeeded this status will be set to TRUE, otherwise it will be set
to FALSE. If validation succeeded, no INVALID_OPERATION validation error is
generated if program is made current via UseProgram, given the current state. If
validation failed, such errors are generated under the current state.

ValidateProgram will check for all the conditions described in this section,
and may check for other conditions as well. For example, it could give a hint on
how to optimize some piece of shader code. The information log of program is
overwritten with information on the results of the validation, which could be an
empty string. The results written to the information log are typically only use-
ful during application development; an application should not expect different GL
implementations to produce identical information.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.1. VERTEX SHADERS 388

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

Separable program objects may have validation failures that cannot be detected
without the complete program pipeline. Mismatched interfaces, improper usage
of program objects together, and the same state-dependent failures can result in
validation errors for such program objects. As a development aid, use the command

void ValidateProgramPipeline(uint pipeline);

to validate the program pipeline object pipeline against the current GL state. Each
program pipeline object has a boolean status, VALIDATE_STATUS, that is modified
as a result of validation. This status may be queried with GetProgramPipelineiv
(see section 7.13). If validation succeeded, no INVALID_OPERATION validation
error is generated if pipeline is bound and no program is made current via UsePro-
gram, given the current state. If validation failed, such errors are generated under
the current state.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

11.1.3.12 Undefined Behavior

When using array, vector or matrix variables in a shader, it is possible to access
a variable with an index computed at run time that is outside the declared extent

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 389

of the variable. Such out-of-bounds accesses have undefined behavior, and system
errors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

Robust buffer access can be enabled by creating a context with robust access
enabled through the window system binding APIs. When enabled, out-of-bounds
accesses will be bounded within the working memory of the active program, cannot
access memory owned by other GL contexts, and will not result in abnormal pro-
gram termination. Out-of-bounds access to local and global variables cannot read
values from other program invocations. An out-of-bounds read may return another
value from the active program’s working memory or zero. An out-of-bounds write
may overwrite a value from the active program’s working memory or be discarded.

Out-of-bounds accesses to resources backed by buffer objects cannot read or
modify data outside of the buffer object. For resources bound to buffer ranges, ac-
cess is restricted within the buffer object from which the buffer range was created,
and not within the buffer range itself.

Out-of-bounds reads may return any of the following values:

• Values from anywhere within the buffer object.

• Zero values, or (0, 0, 0, x) vectors for vector reads where x is a valid value
represented in the type of the vector components and may be any of

– Zero, one, or the maximum representable positive integer value, for
signed or unsigned integer components.

– 0.0 or 1.0, for floating-point components.

Out-of-bounds writes may modify values within the buffer object or be dis-
carded.

Out-of-bounds accesses to arrays of resources, such as an array of textures, can
only access the data of bound resources. Reads from unbound resources return
zero and writes are discarded. It is not possible to access data owned by other GL
contexts.

Applications that require defined behavior for out-of-bounds accesses should
range check all computed indices before dereferencing the array, vector or matrix.

11.2 Tessellation

Tessellation is a process that reads a patch primitive and generates new primitives
used by subsequent pipeline stages. The generated primitives are formed by sub-
dividing a single triangle or quad primitive according to fixed or shader-computed

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 390

levels of detail and transforming each of the vertices produced during this subdivi-
sion.

Tessellation functionality is controlled by two types of tessellation shaders: tes-
sellation control shaders and tessellation evaluation shaders. Tessellation is con-
sidered active if and only if there is an active tessellation control or tessellation
evaluation program object.

The tessellation control shader is used to read an input patch provided by the
application, and emit an output patch. The tessellation control shader is run once
for each vertex in the output patch and computes the attributes of that vertex. Addi-
tionally, the tessellation control shader may compute additional per-patch attributes
of the output patch. The most important per-patch outputs are the tessellation lev-
els, which are used to control the number of subdivisions performed by the tessella-
tion primitive generator. The tessellation control shader may also write additional
per-patch attributes for use by the tessellation evaluation shader. If no tessellation
control shader is active, the patch provided is passed through to the tessellation
primitive generator stage unmodified.

If a tessellation evaluation shader is active, the tessellation primitive generator
subdivides a triangle or quad primitive into a collection of points, lines, or triangles
according to the tessellation levels of the patch and the set of layout declarations
specified in the tessellation evaluation shader text. The tessellation levels used to
control subdivision are normally written by the tessellation control shader. If no
tessellation control shader is active, default tessellation levels are instead used.

When a tessellation evaluation shader is active, it is run on each vertex gener-
ated by the tessellation primitive generator to compute the final position and other
attributes of the vertex. The tessellation evaluation shader can read the relative
location of the vertex in the subdivided output primitive, given by an (u, v) or
(u, v, w) coordinate, as well as the position and attributes of any or all of the ver-
tices in the input patch.

Tessellation operates only on patch primitives. Patch primitives are not sup-
ported by pipeline stages below the tessellation evaluation shader.

A non-separable program object or program pipeline object that includes a
tessellation shader of any kind must also include a vertex shader.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if tessellation is active and the primitive mode is not
PATCHES.

An INVALID_OPERATION error is generated by any command that trans-

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 391

fers vertices to the GL if the primitive mode is PATCHES and there is no active
tessellation evaluation program.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has a tessellation shader but
no vertex shader.

11.2.1 Tessellation Control Shaders

The tessellation control shader consumes an input patch provided by the applica-
tion and emits a new output patch. The input patch is an array of vertices with at-
tributes corresponding to output variables written by the vertex shader. The output
patch consists of an array of vertices with attributes corresponding to per-vertex
output variables written by the tessellation control shader and a set of per-patch
attributes corresponding to per-patch output variables written by the tessellation
control shader. Tessellation control output variables are per-vertex by default, but
may be declared as per-patch using the patch qualifier.

The number of vertices in the output patch is fixed when the program is linked,
and is specified in tessellation control shader source code using the output layout
qualifier vertices, as described in the OpenGL Shading Language Specifica-
tion. A program will fail to link if the output patch vertex count is not specified
by any tessellation control shader object attached to the program, if it is speci-
fied differently by multiple tessellation control shader objects, if it is less than or
equal to zero, or if it is greater than the implementation-dependent maximum patch
size. The output patch vertex count may be queried by calling GetProgramiv with
pname TESS_CONTROL_OUTPUT_VERTICES.

Tessellation control shaders are created as described in section 7.1, using a type
of TESS_CONTROL_SHADER. When a new input patch is received, the tessellation
control shader is run once for each vertex in the output patch. The tessellation con-
trol shader invocations collectively specify the per-vertex and per-patch attributes
of the output patch. The per-vertex attributes are obtained from the per-vertex out-
put variables written by each invocation. Each tessellation control shader invoca-
tion may only write to per-vertex output variables corresponding to its own output
patch vertex. The output patch vertex number corresponding to a given tessellation
control shader invocation is given by the built-in variable gl_InvocationID. Per-
patch attributes are taken from the per-patch output variables, which may be writ-
ten by any tessellation control shader invocation. While tessellation control shader
invocations may read any per-vertex and per-patch output variable and write any
per-patch output variable, reading or writing output variables also written by other
invocations has ordering hazards discussed below.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 392

11.2.1.1 Tessellation Control Shader Variables

Tessellation control shaders can access uniforms belonging to the current program
object. Limits on uniform storage and methods for manipulating uniforms are
described in section 7.6.

Tessellation control shaders also have access to samplers to perform texturing
operations, as described in section 7.10.

Tessellation control shaders can access the transformed attributes of all vertices
for their input primitive using input variables. A vertex shader writing to output
variables generates the values of these input variables. Values for any inputs that
are not written by a vertex shader are undefined.

Additionally, tessellation control shaders can write to one or more output vari-
ables including per-vertex attributes for the vertices of the output patch and per-
patch attributes of the patch. Tessellation control shaders can also write to a set
of built-in per-vertex and per-patch outputs defined in the OpenGL Shading Lan-
guage. The per-vertex and per-patch attributes of the output patch are used by the
tessellation primitive generator (section 11.2.2) and may be read by a tessellation
evaluation shader (section 11.2.3).

11.2.1.2 Tessellation Control Shader Execution Environment

If there is an active program for the tessellation control stage, the executable ver-
sion of the program’s tessellation control shader is used to process patches result-
ing from the primitive assembly stage. When tessellation control shader execu-
tion completes, the input patch is consumed. A new patch is assembled from the
per-vertex and per-patch output variables written by the shader and is passed to
subsequent pipeline stages.

There are several special considerations for tessellation control shader execu-
tion described in the following sections.

11.2.1.2.1 Texture Access Section 11.1.3.1 describes texture lookup function-
ality accessible to a vertex shader. The texel fetch and texture size query function-
ality described there also applies to tessellation control shaders.

11.2.1.2.2 Tessellation Control Shader Inputs Section 7.1(“Built-In Vari-
ables”) of the OpenGL Shading Language Specification describes the built-in vari-
able array gl_in available as input to a tessellation control shader. gl_in receives

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 393

values from equivalent built-in output variables written by the vertex shader (sec-
tion 11.1.3). Each array element of gl_in is a structure holding values for a spe-
cific vertex of the input patch. The length of gl_in is equal to the implementation-
dependent maximum patch size (gl_MaxPatchVertices). Behavior is unde-
fined if gl_in is indexed with a vertex index greater than or equal to the current
patch size. The members of each element of the gl_in array are gl_Position,
gl_PointSize, gl_CullDistance, and gl_ClipDistance.

Tessellation control shaders have available several other built-in input variables
not replicated per-vertex and not contained in gl_in, including:

• The variable gl_PatchVerticesIn holds the number of vertices in the
input patch being processed by the tessellation control shader.

• The variable gl_PrimitiveID is filled with the number of primitives pro-
cessed by the drawing command which generated the input vertices. The
first primitive generated by a drawing command is numbered zero, and the
primitive ID counter is incremented after every individual point, line, or tri-
angle primitive is processed. Restarting a primitive topology using the prim-
itive restart index has no effect on the primitive ID counter.

• The variable gl_InvocationID holds an invocation number for the cur-
rent tessellation control shader invocation. Tessellation control shaders are
invoked once per output patch vertex, and invocations are numbered begin-
ning with zero.

Similarly to the built-in inputs, each user-defined input variable has a value
for each vertex and thus needs to be declared as an array, or inside an in-
put block declared as an array. Declaring an array size is optional. If no
size is specified, it will be taken from the implementation-dependent maximum
patch size (gl_MaxPatchVertices). If a size is specified, it must match the
maximum patch size; otherwise, a compile or link error will occur. Since
the array size may be larger than the number of vertices found in the input
patch, behavior is undefined if a per-vertex input variable is accessed using
an index greater than or equal to the number of vertices in the input patch.

The OpenGL Shading Language doesn’t support multi-dimensional arrays as
shader inputs or outputs; therefore, user-defined tessellation control shader inputs
corresponding to vertex shader outputs declared as arrays must be declared as array
members of an input block that is itself declared as an array.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of input variables

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 394

that can be read by the tessellation control shader, given by the value of the
implementation-dependent constant MAX_TESS_CONTROL_INPUT_COMPONENTS.

When a program is linked, all components of any input variable read by a tes-
sellation control shader will count against this limit. A program whose tessellation
control shader exceeds this limit may fail to link, unless device-dependent opti-
mizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.1.2.3 Tessellation Control Shader Outputs Section 7.1(“Built-In Vari-
ables”) of the OpenGL Shading Language Specification describes the built-in vari-
able array gl_out available as an output for a tessellation control shader. gl_out
passes values to equivalent built-in input variables read by subsequent shader stages
or to subsequent fixed functionality vertex processing pipeline stages. Each array
element of gl_out is a structure holding values for a specific vertex of the output
patch. The length of gl_out is equal to the output patch size specified in the tessel-
lation control shader output layout declaration. The members of each element of
the gl_out array are gl_Position, gl_PointSize, gl_ClipDistance, and
gl_CullDistance, and behave identically to equivalently named vertex shader
outputs (section 11.1.3).

Tessellation control shaders additionally have two built-in per-patch output ar-
rays, gl_TessLevelOuter and gl_TessLevelInner. These arrays are not
replicated for each output patch vertex and are not members of gl_out. gl_-

TessLevelOuter is an array of four floating-point values specifying the approxi-
mate number of segments that the tessellation primitive generator should use when
subdividing each outer edge of the primitive it subdivides. gl_TessLevelInner
is an array of two floating-point values specifying the approximate number of seg-
ments used to produce a regularly-subdivided primitive interior. The values writ-
ten to gl_TessLevelOuter and gl_TessLevelInner need not be integers, and
their interpretation depends on the type of primitive the tessellation primitive gener-
ator will subdivide and other tessellation parameters, as discussed in the following
section.

A tessellation control shader may also declare user-defined per-vertex output
variables. User-defined per-vertex output variables are declared with the qualifier
out and have a value for each vertex in the output patch. Such variables must be
declared as arrays or inside output blocks declared as arrays. Declaring an array
size is optional. If no size is specified, it will be taken from the output patch
size declared in the shader. If a size is specified, it must match the maximum
patch size; otherwise, a compile or link error will occur. The OpenGL Shading

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 395

Language doesn’t support multi-dimensional arrays; therefore, user-defined per-
vertex tessellation control shader outputs with multiple elements per vertex must
be declared as array members of an output block that is itself declared as an array.

While per-vertex output variables are declared as arrays indexed by vertex
number, each tessellation control shader invocation may write only to those out-
puts corresponding to its output patch vertex. Tessellation control shaders must
use the input variable gl_InvocationID as the vertex number index when writ-
ing to per-vertex output variables.

Additionally, a tessellation control shader may declare per-patch output vari-
ables using the qualifier patch out. Unlike per-vertex outputs, per-patch outputs
do not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch outputs declared as arrays have multiple values for the output
patch; similarly declared per-vertex outputs would indicate a single value for each
vertex in the output patch. User-defined per-patch outputs are not used by the tes-
sellation primitive generator, but may be read by tessellation evaluation shaders.

There are several limits on the number of components of output variables that
can be written by the tessellation control shader. The number of components
of active per-vertex output variables may not exceed the value of MAX_TESS_-
CONTROL_OUTPUT_COMPONENTS. The number of components of active per-patch
output variables may not exceed the value of MAX_TESS_PATCH_COMPONENTS.
The built-in outputs gl_TessLevelOuter and gl_TessLevelInner are not
counted against the per-patch limit. The total number of components of active per-
vertex and per-patch outputs is derived by multiplying the per-vertex output com-
ponent count by the output patch size and then adding the per-patch output compo-
nent count. The total component count may not exceed MAX_TESS_CONTROL_-

TOTAL_OUTPUT_COMPONENTS.
When a program is linked, all components of any output variable written by a

tessellation control shader will count against this limit. A program exceeding any
of these limits may fail to link, unless device-dependent optimizations are able to
make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.1.2.4 Tessellation Control Shader Execution Order For tessellation
control shaders with a declared output patch size greater than one, the shader is
invoked more than once for each input patch. The order of execution of one tessel-
lation control shader invocation relative to the other invocations for the same input
patch is largely undefined. The built-in function barrier provides some control
over relative execution order. When a tessellation control shader calls the barrier

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 396

function, its execution pauses until all other invocations have also called the same
function. Output variable assignments performed by any invocation executed prior
to calling barrier will be visible to any other invocation after the call to barrier
returns. Shader output values read in one invocation but written by another may
be undefined without proper use of barrier; full rules are found in the OpenGL
Shading Language Specification.

The barrier function may only be called inside the main entry point of the
tessellation control shader and may not be called in code containing potentially di-
vergent flow of control. In particular, barrier may not be called inside a switch
statement, in either sub-statement of an if statement, inside a do, for, or while
loop, or at any point after a return statement in the function main.

11.2.2 Tessellation Primitive Generation

If a tessellation evaluation shader is present, the tessellation primitive generator
consumes the input patch and produces a new set of basic primitives (points, lines,
or triangles). These primitives are produced by subdividing a geometric primitive
(rectangle or triangle) according to the per-patch tessellation levels written by the
tessellation control shader, if present, or taken from default patch parameter val-
ues. This subdivision is performed in an implementation-dependent manner. If no
tessellation evaluation shader is present, the tessellation primitive generator passes
incoming primitives through without modification.

The type of subdivision performed by the tessellation primitive generator is
specified by an input layout declaration in the tessellation evaluation shader us-
ing one of the identifiers triangles, quads, and isolines. For triangles,
the primitive generator subdivides a triangle primitive into smaller triangles. For
quads, the primitive generator subdivides a rectangle primitive into smaller tri-
angles. For isolines, the primitive generator subdivides a rectangle primitive
into a collection of line segments arranged in strips stretching horizontally across
the rectangle. Each vertex produced by the primitive generator has an associated
(u, v, w) or (u, v) position in a normalized parameter space, with parameter values
in the range [0, 1], as illustrated in figure 11.1. For triangles, the vertex position
is a barycentric coordinate (u, v, w), where u+ v +w = 1, and indicates the rela-
tive influence of the three vertices of the triangle on the position of the vertex. For
quads and isolines, the position is a (u, v) coordinate indicating the relative
horizontal and vertical position of the vertex relative to the subdivided rectangle.
The subdivision process is explained in more detail in subsequent sections.

When no tessellation control shader is present, the tessellation levels are taken
from default patch tessellation levels. These default levels are set by calling

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 397

Figure 11.1. Domain parameterization for tessellation generator primitive modes
(triangles, quads, or isolines). The coordinates illustrate the value of gl_-
TessCoord at the corners of the domain. The labels on the edges indicate the
inner (IL0 and IL1) and outer (OL0 through OL3) tessellation level values used to
control the number of subdivisions along each edge of the domain.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 398

void PatchParameterfv(enum pname, const
float *values);

If pname is PATCH_DEFAULT_OUTER_LEVEL, values specifies an array of four
floating-point values corresponding to the four outer tessellation levels for each
subsequent patch. If pname is PATCH_DEFAULT_INNER_LEVEL, values specifies
an array of two floating-point values corresponding to the two inner tessellation
levels.

A patch is discarded by the tessellation primitive generator if any relevant outer
tessellation level is less than or equal to zero. Patches will also be discarded if
any relevant outer tessellation level corresponds to a floating-point NaN (not a
number) in implementations supporting NaN. When patches are discarded, no new
primitives will be generated and the tessellation evaluation program will not be run.
For quads, all four outer levels are relevant. For triangles and isolines, only
the first three or two outer levels, respectively, are relevant. Negative inner levels
will not cause a patch to be discarded; they will be clamped as described below.

Each of the tessellation levels is used to determine the number and spacing
of segments used to subdivide a corresponding edge. The method used to derive
the number and spacing of segments is specified by an input layout declaration
in the tessellation evaluation shader using one of the identifiers equal_spacing,
fractional_even_spacing, or fractional_odd_spacing. If no spacing is
specified in the tessellation evaluation shader, equal_spacing will be used.

If equal_spacing is used, the floating-point tessellation level is first clamped
to the range [1,max], where max is the implementation-dependent maximum tes-
sellation level (the value of MAX_TESS_GEN_LEVEL). The result is rounded up to
the nearest integer n, and the corresponding edge is divided into n segments of
equal length in (u, v) space.

If fractional_even_spacing is used, the tessellation level is first clamped
to the range [2,max] and then rounded up to the nearest even integer n. If
fractional_odd_spacing is used, the tessellation level is clamped to the range
[1,max− 1] and then rounded up to the nearest odd integer n. If n is one, the edge
will not be subdivided. Otherwise, the corresponding edge will be divided into
n − 2 segments of equal length, and two additional segments of equal length that
are typically shorter than the other segments. The length of the two additional seg-
ments relative to the others will decrease monotonically with the value of n − f ,
where f is the clamped floating-point tessellation level. When n − f is zero, the
additional segments will have equal length to the other segments. As n − f ap-
proaches 2.0, the relative length of the additional segments approaches zero. The
two additional segments should be placed symmetrically on opposite sides of the
subdivided edge. The relative location of these two segments is undefined, but

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 399

must be identical for any pair of subdivided edges with identical values of f .
When the tessellation primitive generator produces triangles (in the

triangles or quads modes), the orientation of all triangles can be specified by
an input layout declaration in the tessellation evaluation shader using the identi-
fiers cw and ccw. If the order is cw, the vertices of all generated triangles will have
a clockwise ordering in (u, v) or (u, v, w) space, as illustrated in figure 11.1. If the
order is ccw, the vertices will be specified in counter-clockwise order. If no layout
is specified, ccw will be used.

For all primitive modes, the tessellation primitive generator is capable of gen-
erating points instead of lines or triangles. If an input layout declaration in the
tessellation evaluation shader specifies the identifier point_mode, the primitive
generator will generate one point for each distinct vertex produced by tessellation.
Otherwise, the primitive generator will produce a collection of line segments or
triangles according to the primitive mode. When tessellating triangles or quads in
point mode with fractional odd spacing, the tessellation primitive generator may
produce ”interior” vertices that are positioned on the edge of the patch if an inner
tessellation level is less than or equal to one. Such vertices are considered distinct
from vertices produced by subdividing the outer edge of the patch, even if there are
pairs of vertices with identical coordinates.

The points, lines, or triangles produced by the tessellation primitive generator
are passed to subsequent pipeline stages in an implementation-dependent order.

Errors

An INVALID_ENUM error is generated if pname is not PATCH_DEFAULT_-
OUTER_LEVEL or PATCH_DEFAULT_INNER_LEVEL.

11.2.2.1 Triangle Tessellation

If the tessellation primitive mode is triangles, an equilateral triangle is subdi-
vided into a collection of triangles covering the area of the original triangle. First,
the original triangle is subdivided into a collection of concentric equilateral trian-
gles. The edges of each of these triangles are subdivided, and the area between
each triangle pair is filled by triangles produced by joining the vertices on the sub-
divided edges. The number of concentric triangles and the number of subdivisions
along each triangle except the outermost is derived from the first inner tessellation
level. The edges of the outermost triangle are subdivided independently, using the
first, second, and third outer tessellation levels to control the number of subdivi-
sions of the u = 0 (left), v = 0 (bottom), and w = 0 (right) edges, respectively.
The second inner tessellation level and the fourth outer tessellation level have no

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 400

effect in this mode.
If the first inner tessellation level and all three outer tessellation levels are ex-

actly one after clamping and rounding, only a single triangle with (u, v, w) co-
ordinates of (0, 0, 1), (1, 0, 0), and (0, 1, 0) is generated. If the inner tessellation
level is one and any of the outer tessellation levels is greater than one, the inner
tessellation level is treated as though it were originally specified as 1 + ε and will
result in a two- or three-segment subdivision depending on the tessellation spac-
ing. When used with fractional odd spacing, the three-segment subdivision may
produce “inner” vertices positioned on the edge of the triangle.

If any tessellation level is greater than one, tessellation begins by producing a
set of concentric inner triangles and subdividing their edges. First, the three outer
edges are temporarily subdivided using the clamped and rounded first inner tes-
sellation level and the specified tessellation spacing, generating n segments. For
the outermost inner triangle, the inner triangle is degenerate – a single point at the
center of the triangle – if n is two. Otherwise, for each corner of the outer trian-
gle, an inner triangle corner is produced at the intersection of two lines extended
perpendicular to the corner’s two adjacent edges running through the vertex of the
subdivided outer edge nearest that corner. If n is three, the edges of the inner trian-
gle are not subdivided and it is the final triangle in the set of concentric triangles.
Otherwise, each edge of the inner triangle is divided into n − 2 segments, with
the n− 1 vertices of this subdivision produced by intersecting the inner edge with
lines perpendicular to the edge running through the n− 1 innermost vertices of the
subdivision of the outer edge. Once the outermost inner triangle is subdivided, the
previous subdivision process repeats itself, using the generated triangle as an outer
triangle. This subdivision process is illustrated in figure 11.2.

Once all the concentric triangles are produced and their edges are subdivided,
the area between each pair of adjacent inner triangles is filled completely with a
set of non-overlapping triangles. In this subdivision, two of the three vertices of
each triangle are taken from adjacent vertices on a subdivided edge of one triangle;
the third is one of the vertices on the corresponding edge of the other triangle.
If the innermost triangle is degenerate (i.e., a point), the triangle containing it is
subdivided into six triangles by connecting each of the six vertices on that triangle
with the center point. If the innermost triangle is not degenerate, that triangle is
added to the set of generated triangles as-is.

After the area corresponding to any inner triangles is filled, the primitive gener-
ator generates triangles to cover area between the outermost triangles and the out-
ermost inner triangles. To do this, the temporary subdivision of the outer triangle
edges above is discarded. Instead, the u = 0, v = 0, and w = 0 edges are subdi-
vided according to the first, second, and third outer tessellation levels, respectively,
and the tessellation spacing. The original subdivision of the first inner triangle is

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 401

Figure 11.2. Inner triangle tessellation with inner tessellation levels of (a) five and
(b) four, respectively (not to scale). Solid black circles depict vertices along the
edges of the concentric triangles. The edges of inner triangles are subdivided by
intersecting the edge with segments perpendicular to the edge passing through each
inner vertex of the subdivided outer edge. Dotted lines depict edges connecting
corresponding vertices on the inner and outer triangle edges.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 402

retained. The area between the outer and first inner triangles is completely filled by
non-overlapping triangles as described above. If the first (and only) inner triangle
is degenerate, a set of triangles is produced by connecting each vertex on the outer
triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is as-
signed a barycentric (u, v, w) coordinate based on its location relative to the three
vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u, v, w) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will
be covered by multiple triangles. The order in which the generated triangles are
passed to subsequent pipeline stages and the order of the vertices in those triangles
are both implementation-dependent. However, when depicted in a manner similar
to figure 11.2, the order of the vertices in the generated triangles will be either all
clockwise or all counter-clockwise, according to the vertex order layout declara-
tion.

11.2.2.2 Quad Tessellation

If the tessellation primitive mode is quads, a rectangle is subdivided into a col-
lection of triangles covering the area of the original rectangle. First, the original
rectangle is subdivided into a regular mesh of rectangles, where the number of
rectangles along the u = 0 and u = 1 (vertical) and v = 0 and v = 1 (horizon-
tal) edges are derived from the first and second inner tessellation levels, respec-
tively. All rectangles, except those adjacent to one of the outer rectangle edges,
are decomposed into triangle pairs. The outermost rectangle edges are subdivided
independently, using the first, second, third, and fourth outer tessellation levels to
control the number of subdivisions of the u = 0 (left), v = 0 (bottom), u = 1
(right), and v = 1 (top) edges, respectively. The area between the inner rectangles
of the mesh and the outer rectangle edges is filled by triangles produced by joining
the vertices on the subdivided outer edges to the vertices on the edges of the inner
rectangle mesh.

If both clamped inner tessellation levels and all four clamped outer tessella-
tion levels are exactly one, only a single triangle pair covering the outer rectangle
is generated. Otherwise, if either clamped inner tessellation level is one, that tes-
sellation level is treated as though it were originally specified as 1 + ε, and will
result in a two- or three-segment subdivision depending on the tessellation spac-
ing. When used with fractional odd spacing, the three-segment subdivision may
produce “inner” vertices positioned on the edge of the rectangle.

If any tessellation level is greater than one, tessellation begins by subdividing

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 403

the u = 0 and u = 1 edges of the outer rectangle into m segments using the
clamped and rounded first inner tessellation level and the tessellation spacing. The
v = 0 and v = 1 edges are subdivided into n segments using the second inner
tessellation level. Each vertex on the u = 0 and v = 0 edges is joined with the
corresponding vertex on the u = 1 and v = 1 edges to produce a set of vertical
and horizontal lines that divide the rectangle into a grid of smaller rectangles. The
primitive generator emits a pair of non-overlapping triangles covering each such
rectangle not adjacent to an edge of the outer rectangle. The boundary of the re-
gion covered by these triangles forms an inner rectangle, the edges of which are
subdivided by the grid vertices that lie on the edge. If either m or n is two, the
inner rectangle is degenerate, and one or both of the rectangle’s “edges” consist of
a single point. This subdivision is illustrated in figure 11.3.

After the area corresponding to the inner rectangle is filled, the primitive gen-
erator must produce triangles to cover area between the inner and outer rectangles.
To do this, the subdivision of the outer rectangle edges above is discarded. In-
stead, the u = 0, v = 0, u = 1, and v = 1 edges are subdivided according to the
first, second, third, and fourth outer tessellation levels, respectively, and the tes-
sellation spacing. The original subdivision of the inner rectangle is retained. The
area between the outer and inner rectangles is completely filled by non-overlapping
triangles. Two of the three vertices of each triangle are adjacent vertices on a sub-
divided edge of one rectangle; the third is one of the vertices on the corresponding
edge of the other triangles. If either edge of the innermost rectangle is degenerate,
the area near the corresponding outer edge is filled by connecting each vertex on
the outer edge with the single vertex making up the inner “edge”.

The algorithm used to subdivide the rectangular domain in (u, v) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will
be covered by multiple triangles. The order in which the generated triangles are
passed to subsequent pipeline stages and the order of the vertices in those triangles
are both implementation-dependent. However, when depicted in a manner similar
to figure 11.3, the order of the vertices in the generated triangles will be either all
clockwise or all counter-clockwise, according to the vertex order layout declara-
tion.

11.2.2.3 Isoline Tessellation

If the tessellation primitive mode is isolines, a set of independent horizontal line
segments is drawn. The segments are arranged into connected strips called isolines,
where the vertices of each isoline have a constant v coordinate and u coordinates
covering the full range [0, 1]. The number of isolines generated is derived from the

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 404

Figure 11.3. Inner quad tessellation with inner tessellation levels of (a) (4, 2) and
(b) (7, 4), respectively. Gray regions on the bottom figure depict the 10 inner rectan-
gles, each of which will be subdivided into two triangles. Solid black circles depict
vertices on the boundary of the outer and inner rectangles, where the inner rectangle
on the top figure is degenerate (a single line segment). Dotted lines depict the hor-
izontal and vertical edges connecting corresponding vertices on the inner and outer
rectangle edges.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 405

first outer tessellation level; the number of segments in each isoline is derived from
the second outer tessellation level. Both inner tessellation levels and the third and
fourth outer tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle.
The u = 0 and u = 1 edges of the rectangle are subdivided according to the
first outer tessellation level. For the purposes of this subdivision, the tessellation
spacing is ignored and treated as equal_spacing. An isoline is drawn connecting
each vertex on the u = 0 rectangle edge with the corresponding vertex on the u = 1
rectangle edge, except that no line is drawn between (0, 1) and (1, 1). If the number
of isolines on the subdivided u = 0 and u = 1 edges is n, this process will result
in n equally spaced lines with constant v coordinates of 0, 1n ,

2
n , . . . ,

n−1
n .

Each of the n isolines is then subdivided according to the second outer tessella-
tion level and the tessellation spacing, resulting in m line segments. Each segment
of each line is emitted by the tessellation primitive generator, as illustrated in fig-
ure 11.4.

The order in which the generated line segments are passed to subsequent
pipeline stages and the order of the vertices in each generated line segment are
both implementation-dependent.

11.2.3 Tessellation Evaluation Shaders

If active, the tessellation evaluation shader takes the (u, v) or (u, v, w) location
of each vertex in the primitive subdivided by the tessellation primitive generator,
and generates a vertex with a position and associated attributes. The tessellation
evaluation shader can read any of the vertices of its input patch, which is the output
patch produced by the tessellation control shader (if present) or provided by the
application and transformed by the vertex shader (if no control shader is used).
Tessellation evaluation shaders are created as described in section 7.1, using a type
of TESS_EVALUATION_SHADER.

Each invocation of the tessellation evaluation shader writes the attributes of
exactly one vertex. The number of vertices evaluated per patch depends on the
tessellation level values computed by the tessellation control shaders (if present)
or specified as patch parameters. Tessellation evaluation shader invocations run
independently, and no invocation can access the variables belonging to another
invocation. All invocations are capable of accessing all the vertices of their corre-
sponding input patch.

If a tessellation control shader is present, the number of the vertices in the
input patch is fixed and is equal to the tessellation control shader output patch size
parameter in effect when the program was last linked. If no tessellation control
shader is present, the input patch is provided by the application and can have a

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 406

Figure 11.4. Isoline tessellation with the first two outer tessellation levels of (a)
(1, 3) and (b) (4, 6), respectively. Line segments connecting the vertices marked
with solid black circles are emitted by the primitive generator. Vertices marked
with empty circles correspond to (u, v) coordinates of (0, 1) and (1, 1), where no
line segments are generated.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 407

variable number of vertices, as specified by PatchParameteri.

11.2.3.1 Tessellation Evaluation Shader Variables

Tessellation evaluation shaders can access uniforms belonging to the current pro-
gram object. Limits on uniform storage and methods for manipulating uniforms
are described in section 7.6.

Tessellation evaluation shaders also have access to samplers to perform textur-
ing operations, as described in section 7.10.

Tessellation evaluation shaders can access the transformed attributes of all ver-
tices for their input primitive using input variables. If active, a tessellation control
shader writing to output variables generates the values of these input variables. If
no tessellation control shader is active, input variables will be obtained from vertex
shader outputs. Values for any input variables that are not written by a vertex or
tessellation control shader are undefined.

Additionally, tessellation evaluation shaders can write to one or more output
variables that will be passed to subsequent programmable shader stages or fixed
functionality vertex pipeline stages.

11.2.3.2 Tessellation Evaluation Shader Execution Environment

If there is an active program for the tessellation evaluation stage, the executable
version of the program’s tessellation evaluation shader is used to process vertices
produced by the tessellation primitive generator. During this processing, the shader
may access the input patch processed by the primitive generator. When tessellation
evaluation shader execution completes, a new vertex is assembled from the output
variables written by the shader and is passed to subsequent pipeline stages.

There are several special considerations for tessellation evaluation shader exe-
cution described in the following sections.

11.2.3.2.1 Texture Access Section 11.1.3.1 describes texture lookup function-
ality accessible to a vertex shader. The texel fetch and texture size query function-
ality described there also applies to tessellation evaluation shaders.

11.2.3.3 Tessellation Evaluation Shader Inputs

Section 7.1(“Built-In Variables”) of the OpenGL Shading Language Specification
describes the built-in variable array gl_in available as input to a tessellation evalu-
ation shader. gl_in receives values from equivalent built-in output variables writ-
ten by a previous shader (section 11.1.3). If a tessellation control shader is active,

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 408

the values of gl_in will be taken from tessellation control shader outputs. Other-
wise, they will be taken from vertex shader outputs. Each array element of gl_in
is a structure holding values for a specific vertex of the input patch. The length
of gl_in is equal to the implementation-dependent maximum patch size (gl_-
MaxPatchVertices). Behavior is undefined if gl_in is indexed with a vertex
index greater than or equal to the current patch size. The members of each element
of the gl_in array are gl_Position, gl_PointSize, gl_ClipDistance, and
gl_CullDistance.

Tessellation evaluation shaders have available several other built-in input vari-
ables not replicated per-vertex and not contained in gl_in, including:

• The variables gl_PatchVerticesIn and gl_PrimitiveID are filled
with the number of the vertices in the input patch and a primitive number,
respectively. They behave exactly as the identically named inputs for tessel-
lation control shaders.

• The variable gl_TessCoord is a three-component floating-point vector
consisting of the (u, v, w) coordinate of the vertex being processed by the
tessellation evaluation shader. The values of u, v, and w are in the range
[0, 1], and vary linearly across the primitive being subdivided. For tessella-
tion primitive modes of quads or isolines, the w value is always zero.
The (u, v, w) coordinates are generated by the tessellation primitive gen-
erator in a manner dependent on the primitive mode, as described in sec-
tion 11.2.2. gl_TessCoord is not an array; it specifies the location of the
vertex being processed by the tessellation evaluation shader, not of any ver-
tex in the input patch.

• The variables gl_TessLevelOuter and gl_TessLevelInner are ar-
rays holding outer and inner tessellation levels of the patch, as used by
the tessellation primitive generator. If a tessellation control shader is ac-
tive, the tessellation levels will be taken from the corresponding outputs of
the tessellation control shader. Otherwise, the default levels provided as
patch parameters are used. Tessellation level values loaded in these vari-
ables will be prior to the clamping and rounding operations performed by
the primitive generator as described in section 11.2.2. For triangular tes-
sellation, gl_TessLevelOuter[3] and gl_TessLevelInner[1] will
be undefined. For isoline tessellation, gl_TessLevelOuter[2], gl_-
TessLevelOuter[3], and both values in gl_TessLevelInner are un-
defined.

A tessellation evaluation shader may also declare user-defined per-vertex in-
put variables. User-defined per-vertex input variables are declared with the qual-

OpenGL 4.5 (Core Profile) - October 24, 2016

11.2. TESSELLATION 409

ifier in and have a value for each vertex in the input patch. User-defined per-
vertex input variables have a value for each vertex and thus need to be declared
as arrays or inside input blocks declared as arrays. Declaring an array size
is optional. If no size is specified, it will be taken from the implementation-
dependent maximum patch size (gl_MaxPatchVertices). If a size is speci-
fied, it must match the maximum patch size; otherwise, a compile or link er-
ror will occur. Since the array size may be larger than the number of vertices
found in the input patch, behavior is undefined if a per-vertex input variable is ac-
cessed using an index greater than or equal to the number of vertices in the input
patch. The OpenGL Shading Language doesn’t support multi-dimensional arrays
as shader inputs or outputs; therefore, user-defined tessellation evaluation shader
inputs corresponding to shader outputs declared as arrays must be declared as array
members of an input block that is itself declared as an array.

Additionally, a tessellation evaluation shader may declare per-patch input vari-
ables using the qualifier patch in. Unlike per-vertex inputs, per-patch inputs do
not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch inputs declared as arrays have multiple values for the input
patch; similarly declared per-vertex inputs would indicate a single value for each
vertex in the output patch. User-defined per-patch input variables are filled with
corresponding per-patch output values written by the tessellation control shader. If
no tessellation control shader is active, all such variables are undefined.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of per-vertex and
per-patch input variables that can be read by the tessellation evaluation shader,
given by the values of the implementation-dependent constants MAX_TESS_-

EVALUATION_INPUT_COMPONENTS and MAX_TESS_PATCH_COMPONENTS, re-
spectively. The built-in inputs gl_TessLevelOuter and gl_TessLevelInner

are not counted against the per-patch limit.
When a program is linked, all components of any input variable read by a tes-

sellation evaluation shader will count against this limit. A program whose tessella-
tion evaluation shader exceeds this limit may fail to link, unless device-dependent
optimizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.3.4 Tessellation Evaluation Shader Outputs

Tessellation evaluation shaders have a number of built-in output variables used
to pass values to equivalent built-in input variables read by subsequent shader
stages or to subsequent fixed functionality vertex processing pipeline stages. These

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 410

variables are gl_Position, gl_PointSize, gl_ClipDistance, and gl_-

CullDistance, and all behave identically to equivalently named vertex shader
outputs (see section 11.1.3). A tessellation evaluation shader may also declare
user-defined per-vertex output variables.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of output variables
that can be written by the tessellation evaluation shader, given by the values
of the implementation-dependent constant MAX_TESS_EVALUATION_OUTPUT_-
COMPONENTS.

When a program is linked, all components of any output variable written by
a tessellation evaluation shader will count against this limit. A program whose
tessellation evaluation shader exceeds this limit may fail to link, unless device-
dependent optimizations are able to make the program fit within available hardware
resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.3 Geometry Shaders

After vertices are processed, they are arranged into primitives, as described in sec-
tion 10.1. This section describes optional geometry shaders, an additional pipeline
stage defining operations to further process those primitives. Geometry shaders op-
erate on a single primitive at a time and emit one or more output primitives, all of
the same type, which are then processed like an equivalent OpenGL primitive spec-
ified by the application. The original primitive is discarded after geometry shader
execution. The inputs available to a geometry shader are the transformed attributes
of all the vertices that belong to the primitive. Additional adjacency primitives are
available which also make the transformed attributes of neighboring vertices avail-
able to the shader. The results of the shader are a new set of transformed vertices,
arranged into primitives by the shader.

The geometry shader pipeline stage is inserted after primitive assembly, prior
to transform feedback (section 13.2).

Geometry shaders are created as described in section 7.1 using a type of
GEOMETRY_SHADER. They are attached to and used in program objects as described
in section 7.3. When the program object currently in use includes a geometry
shader, its geometry shader is considered active, and is used to process primitives.
If the program object has no geometry shader, this stage is bypassed.

A non-separable program object or program pipeline object that includes a
geometry shader must also include a vertex shader.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 411

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has a geometry shader but
no vertex shader.

11.3.1 Geometry Shader Input Primitives

A geometry shader can operate on one of five input primitive types. Depending on
the input primitive type, one to six input vertices are available when the shader is
executed. Each input primitive type supports a subset of the primitives provided by
the GL.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if a geometry shader is active and the primitive mode
parameter is incompatible with the input primitive type of the geometry shader
of the active geometry program object, as discussed below. If a tessellation
evaluation shader is not active, the mode parameter passed to drawing com-
mands is used for purposes of this error check. Otherwise, the type of primitive
emitted by that shader is used.

A geometry shader that accesses more input vertices than are available for a
given input primitive type can be successfully compiled, because the input prim-
itive type is not part of the shader object. However, a program object containing
a shader object that accesses more input vertices than are available for the input
primitive type of the program object will not link.

The input primitive type is specified in the geometry shader source code using
an input layout qualifier, as described in the OpenGL Shading Language Speci-
fication. A program will fail to link if the input primitive type is not specified by
any geometry shader object attached to the program, or if it is specified differently
by multiple geometry shader objects. The input primitive type may be queried
by calling GetProgramiv with pname GEOMETRY_INPUT_TYPE. The supported
types and the corresponding OpenGL Shading Language input layout qualifier
keywords are:

Points (points)
Geometry shaders that operate on points are valid only for the POINTS primi-

tive type. There is only a single vertex available for each geometry shader invoca-
tion.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 412

Lines (lines)
Geometry shaders that operate on line segments are valid only for the LINES,

LINE_STRIP, and LINE_LOOP primitive types. There are two vertices available
for each geometry shader invocation. The first vertex refers to the vertex at the
beginning of the line segment and the second vertex refers to the vertex at the end
of the line segment. See also section 11.3.4.

Lines with Adjacency (lines_adjacency)
Geometry shaders that operate on line segments with adjacent vertices are valid

only for the LINES_ADJACENCY and LINE_STRIP_ADJACENCY primitive types.
There are four vertices available for each program invocation. The second vertex
refers to attributes of the vertex at the beginning of the line segment and the third
vertex refers to the vertex at the end of the line segment. The first and fourth
vertices refer to the vertices adjacent to the beginning and end of the line segment,
respectively.

Triangles (triangles)
Geometry shaders that operate on triangles are valid for the TRIANGLES,

TRIANGLE_STRIP and TRIANGLE_FAN primitive types. There are three vertices
available for each program invocation. The first, second and third vertices refer to
attributes of the first, second and third vertex of the triangle, respectively.

Triangles with Adjacency (triangles_adjacency)
Geometry shaders that operate on triangles with adjacent vertices are valid

for the TRIANGLES_ADJACENCY and TRIANGLE_STRIP_ADJACENCY primitive
types. There are six vertices available for each program invocation. The first, third
and fifth vertices refer to attributes of the first, second and third vertex of the tri-
angle, respectively. The second, fourth and sixth vertices refer to attributes of the
vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

11.3.2 Geometry Shader Output Primitives

A geometry shader can generate primitives of one of three types. The supported
output primitive types are points (POINTS), line strips (LINE_STRIP), and triangle
strips (TRIANGLE_STRIP). The vertices output by the geometry shader are assem-
bled into points, lines, or triangles based on the output primitive type in the manner
described in section 10.7. The resulting primitives are then further processed as de-
scribed in section 11.3.4. If the number of vertices emitted by the geometry shader
is not sufficient to produce a single primitive, nothing is drawn. The number of

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 413

vertices output by the geometry shader is limited to a maximum count specified in
the shader.

The output primitive type and maximum output vertex count are specified in
the geometry shader source code using an output layout qualifier, as described
in section 4.4.2.2(“Geometry Outputs”) of the OpenGL Shading Language Speci-
fication. A program will fail to link if either the output primitive type or maximum
output vertex count are not specified by any geometry shader object attached to the
program, or if they are specified differently by multiple geometry shader objects.
The output primitive type and maximum output vertex count of a linked program
may be queried by calling GetProgramiv with pnames GEOMETRY_OUTPUT_TYPE
and GEOMETRY_VERTICES_OUT, respectively.

11.3.3 Geometry Shader Variables

Geometry shaders can access uniforms belonging to the current program object.
Limits on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Geometry shaders also have access to samplers to perform texturing operations,
as described in section 7.10.

Geometry shaders can access the transformed attributes of all vertices for their
input primitive type using input variables. A vertex or tessellation shader writing to
output variables generates the values of these input variables. Values for any inputs
that are not written by a shader are undefined. Additionally, a geometry shader
has access to a built-in input that holds the ID of the current primitive. This ID is
generated by the primitive assembly stage preceding the geometry shader.

Additionally, geometry shaders can write to one or more output variables for
each vertex they output. These values are optionally flatshaded (using the OpenGL
Shading Language qualifier flat) and clipped, then the clipped values interpo-
lated across the primitive (if not flatshaded). The results of these interpolations are
available to the fragment shader.

11.3.4 Geometry Shader Execution Environment

If there is an active program for the geometry stage, the executable version of
the program’s geometry shader is used to process primitives resulting from the
primitive assembly stage.

There are several special considerations for geometry shader execution de-
scribed in the following sections.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 414

11.3.4.1 Texture Access

Section 11.1.3.1 describes texture lookup functionality accessible to a vertex
shader. The texel fetch and texture size query functionality described there also
applies to geometry shaders.

11.3.4.2 Instanced Geometry Shaders

For each input primitive received by the geometry shader pipeline stage, the ge-
ometry shader may be run once or multiple times. The number of times a geom-
etry shader should be executed for each input primitive may be specified using a
layout qualifier in a geometry shader of a linked program. If the invocation count
is not specified in any layout qualifier, the invocation count will be one.

Each separate geometry shader invocation is assigned a unique invocation num-
ber. For a geometry shader with N invocations, each input primitive spawns
N invocations, numbered 0 through N − 1. The built-in input variable gl_-

InvocationID may be used by a geometry shader invocation to determine its
invocation number.

When executing instanced geometry shaders, the output primitives generated
from each input primitive are passed to subsequent pipeline stages using the shader
invocation number to order the output. The first primitives received by the subse-
quent pipeline stages are those emitted by the shader invocation numbered zero,
followed by those from the shader invocation numbered one, and so forth. Addi-
tionally, all output primitives generated from a given input primitive are passed to
subsequent pipeline stages before any output primitives generated from subsequent
input primitives.

11.3.4.3 Geometry Shader Vertex Streams

Geometry shaders may emit primitives to multiple independent vertex streams.
Each vertex emitted by the geometry shader is directed at one of the vertex streams.
As vertices are received on each stream, they are arranged into primitives of the
type specified by the geometry shader output primitive type. The shading language
built-in functions EndPrimitive and EndStreamPrimitive may be used to
end the primitive being assembled on a given vertex stream and start a new empty
primitive of the same type. If an implementation supports N vertex streams, the
individual streams are numbered 0 through N − 1. There is no requirement on the
order of the streams to which vertices are emitted, and the number of vertices emit-
ted to each stream may be completely independent, subject only to implementation-
dependent output limits.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 415

The primitives emitted to all vertex streams are passed to the transform feed-
back stage to be captured and written to buffer objects in the manner specified
by the transform feedback state. The primitives emitted to all streams but stream
zero are discarded after transform feedback. Primitives emitted to stream zero are
passed to subsequent pipeline stages for clipping, rasterization, and subsequent
fragment processing.

Geometry shaders that emit vertices to multiple vertex streams are currently
limited to using only the points output primitive type. A program will fail to
link if it includes a geometry shader that calls the EmitStreamVertex built-in
function and has any other output primitive type parameter.

11.3.4.4 Geometry Shader Inputs

Section 7.1(“Built-In Variables”) of the OpenGL Shading Language Specification
describes the built-in variable array gl_in[] available as input to a geometry
shader. gl_in[] receives values from equivalent built-in output variables written
by the vertex or tessellation shader (the upstream shader), and each array element
of gl_in[] is a structure holding values for a specific vertex of the input primitive.
The length of gl_in[] is determined by the geometry shader input primitive type
(see section 11.3.1). The members of each element of the gl_in[] array are:

• Structure member gl_ClipDistance[] holds the per-vertex array of clip
distances, as written by the upstream shader to the built-in output variable
gl_ClipDistance[].

• Structure member gl_CullDistance[] holds the per-vertex array of cull
distances, as written by the upstream shader to the built-in output variable
gl_CullDistance[].

• Structure member gl_PointSize holds the per-vertex point size written
by the upstream shader to the built-in output variable gl_PointSize. If
the upstream shader does not write gl_PointSize, the value of gl_-

PointSize is undefined, regardless of the value of the enable PROGRAM_-
POINT_SIZE.

• Structure member gl_Position holds the per-vertex position written by
the upstream shader to the built-in output variable gl_Position. Note that
writing to gl_Position from either the upstream or geometry shader is
optional (also see section 7.1(“Built-In Variables”) of the OpenGL Shading
Language Specification).

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 416

Geometry shaders also have available the built-in input variable gl_-

PrimitiveIDIn, which is not an array and has no vertex shader equivalent. It
is filled with the number of primitives processed by the drawing command which
generated the input vertices. The first primitive generated by a drawing command
is numbered zero, and the primitive ID counter is incremented after every individ-
ual point, line, or triangle primitive is processed. For triangles drawn in point or
line mode, the primitive ID counter is incremented only once, even though multiple
points or lines may eventually be drawn. Restarting a primitive topology using the
primitive restart index has no effect on the primitive ID counter.

Similarly to the built-in inputs, each user-defined input has a value for each
vertex and thus needs to be declared as an array or inside an input block declared
as an array. Declaring an array size is optional. If no size is specified, it will be
inferred by the linker from the input primitive type. If a size is specified, it must
match the number of vertices for the input primitive type; otherwise, a link error
will occur. The OpenGL Shading Language doesn’t support multi-dimensional
arrays; therefore, user-defined geometry shader inputs corresponding to upstream
shader outputs declared as arrays must be declared as array members of an input
block that is itself declared as an array. See section 4.3.6(“Output Variables”) and
chapter 7 of the OpenGL Shading Language Specification for more information.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of input variables
that can be read by the geometry shader, given by the value of the implementation-
dependent constant MAX_GEOMETRY_INPUT_COMPONENTS.

When a program is linked, all components of any input read by a geometry
shader will count against this limit. A program whose geometry shader exceeds
this limit may fail to link, unless device-dependent optimizations are able to make
the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.3.4.5 Geometry Shader Outputs

A geometry shader is limited in the number of vertices it may emit per invocation.
The maximum number of vertices a geometry shader can possibly emit is specified
in the geometry shader source and may be queried after linking by calling Get-
Programiv with pname GEOMETRY_VERTICES_OUT. If a single invocation of a
geometry shader emits more vertices than this value, the emitted vertices may have
no effect.

There are two implementation-dependent limits on the value of GEOMETRY_-
VERTICES_OUT; it may not exceed the value of MAX_GEOMETRY_OUTPUT_-

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 417

VERTICES, and the product of the total number of vertices and the sum of all
components of all active output variables may not exceed the value of MAX_-

GEOMETRY_TOTAL_OUTPUT_COMPONENTS. LinkProgram will fail if it deter-
mines that the total component limit would be violated.

A geometry shader can write to built-in as well as user-defined output variables.
These values are expected to be interpolated across the primitive it outputs, unless
they are specified to be flat shaded. To enable seamlessly inserting or removing a
geometry shader from a program object, the rules, names and types of the built-in
and user-defined output variables are the same as for the vertex shader. Refer to
section 11.1.2.1, and to sections 4.3(“Storage Qualifiers”) and 7.1(“Built-In Vari-
ables”) of the OpenGL Shading Language Specification for more detail.

After a geometry shader emits a vertex, all output variables are undefined, as
described in section 8.15(“Geometry Shader Functions”) of the OpenGL Shading
Language Specification.

The built-in output gl_Position is intended to hold the homogeneous vertex
position. Writing gl_Position is optional.

The built-in outputs gl_ClipDistance and gl_CullDistance hold the
clip distance and cull distance, respectively, used in the clipping stage, as described
in section 13.5.

The built-in output gl_PointSize, if written, holds the size of the point to be
rasterized, measured in pixels.

The built-in output gl_PrimitiveID holds the primitive ID counter read by
the fragment shader, replacing the value of gl_PrimitiveID generated by draw-
ing commands when no geometry shader is active. The geometry shader must
write to gl_PrimitiveID for the provoking vertex (see section 13.4) of a prim-
itive being generated, or the primitive ID counter read by the fragment shader for
that primitive is undefined.

The built-in output gl_Layer is used in layered rendering, and discussed fur-
ther in the next section.

The built-in output gl_ViewportIndex is used to direct rendering to one of
several viewports and is discussed further in the next section.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of output variables that
can be written by the geometry shader, given by the value of the implementation-
dependent constant MAX_GEOMETRY_OUTPUT_COMPONENTS.

When a program is linked, all components of any output variable written by a
geometry shader will count against this limit. A program whose geometry shader
exceeds this limit may fail to link, unless device-dependent optimizations are able
to make the program fit within available hardware resources.

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 418

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.3.4.6 Layer and Viewport Selection

Geometry shaders can be used to render to one of several different layers of cube
map textures, three-dimensional textures, or one- or two-dimensional texture ar-
rays. This functionality allows an application to bind an entire complex texture
to a framebuffer object, and render primitives to arbitrary layers computed at run
time. For example, it can be used to project and render a scene onto all six faces
of a cubemap texture in one pass. The layer to render to is specified by writing
to the built-in output variable gl_Layer. Layered rendering requires the use of
framebuffer objects (see section 9.8).

Geometry shaders may also select the destination viewport for each output
primitive. The destination viewport for a primitive may be selected in the geom-
etry shader by writing to the built-in output variable gl_ViewportIndex. This
functionality allows a geometry shader to direct its output to a different viewport
for each primitive, or to draw multiple versions of a primitive into several different
viewports.

The specific vertex of a primitive that is used to select the rendering layer or
viewport index is implementation-dependent and thus portable applications will
assign the same layer and viewport index for all vertices in a primitive. The
vertex conventions followed for gl_Layer and gl_ViewportIndex may be de-
termined by calling GetIntegerv with pnames LAYER_PROVOKING_VERTEX and
VIEWPORT_INDEX_PROVOKING_VERTEX, respectively. For either query, if the
value returned is PROVOKING_VERTEX, then vertex selection follows the con-
vention specified by ProvokingVertex (see section 13.4). If the value returned
is FIRST_VERTEX_CONVENTION, selection is always taken from the first vertex
of a primitive. If the value returned is LAST_VERTEX_CONVENTION, the selec-
tion is always taken from the last vertex of a primitive. If the value returned is
UNDEFINED_VERTEX, the selection is not guaranteed to be taken from any specific
vertex in the primitive. The vertex considered the provoking vertex for particular
primitive types is given in table 13.2.

11.3.4.7 Primitive Type Mismatches and Drawing Commands

Errors

An INVALID_OPERATION error is generated by any command that trans-

OpenGL 4.5 (Core Profile) - October 24, 2016

11.3. GEOMETRY SHADERS 419

fers vertices to the GL, and no fragments will be rendered, if a mismatch exists
between the type of primitive being drawn and the input primitive type of a ge-
ometry shader. A mismatch exists under any of the following conditions:

• the input primitive type of the current geometry shader is POINTS and mode
is not POINTS;

• the input primitive type of the current geometry shader is LINES and mode
is not LINES, LINE_STRIP, or LINE_LOOP;

• the input primitive type of the current geometry shader is TRIANGLES and
mode is not TRIANGLES, TRIANGLE_STRIP or TRIANGLE_FAN;

• the input primitive type of the current geometry shader is LINES_-

ADJACENCY and mode is not LINES_ADJACENCY or LINE_STRIP_-

ADJACENCY; or,

• the input primitive type of the current geometry shader is TRIANGLES_-

ADJACENCY and mode is not TRIANGLES_ADJACENCY or TRIANGLE_-

STRIP_ADJACENCY.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 12

Fixed-Function Vertex Processing

This chapter is only defined in the compatibility profile.

420

Chapter 13

Fixed-Function Vertex
Post-Processing

After programmable vertex processing, the following fixed-function operations are
applied to vertices of the resulting primitives:

• Transform feedback (see section 13.2).

• Primitive queries (see section 13.3).

• Flatshading (see section 13.4).

• Primitive clipping, including client-defined half-spaces (see section 13.5).

• Shader output clipping (see section 13.5.1).

• Perspective division on clip coordinates (see section 13.6).

• Viewport mapping, including depth range scaling (see section 13.6.1).

• Front face determination for polygon primitives (see section 14.6.1).

• Generic attribute clipping (see section 13.5.1).

Next, rasterization is performed on primitives as described in chapter 14.

13.1 Clamping or Masking

This section is only defined in the compatibility profile.

421

13.2. TRANSFORM FEEDBACK 422

13.2 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
passed to the transform feedback stage are written out to one or more buffer objects.
The vertices are fed back before flatshading and clipping. The transformed vertices
may be optionally discarded after being stored into one or more buffer objects, or
they can be passed on down to the clipping stage for further processing. The set of
attributes captured is determined when a program is linked.

The data captured in transform feedback mode depends on the active programs
on each of the shader stages. If a program is active for the geometry shader stage,
transform feedback captures the vertices of each primitive emitted by the geometry
shader. Otherwise, if a program is active for the tessellation evaluation shader
stage, transform feedback captures each primitive produced by the tessellation
primitive generator, whose vertices are processed by the tessellation evaluation
shader. Otherwise, transform feedback captures each primitive processed by the
vertex shader.

If separable program objects are in use, the set of attributes captured is taken
from the program object active on the last shader stage processing the primitives
captured by transform feedback. The set of attributes to capture in transform feed-
back mode for any other program active on a previous shader stage is ignored.

13.2.1 Transform Feedback Objects

The set of buffer objects used to capture vertex output variables and related state are
stored in a transform feedback object. The set of attributes captured in transform
feedback mode is determined using the state of the active program object. The
name space for transform feedback objects is the unsigned integers. The name
zero designates the default transform feedback object.

The command

void GenTransformFeedbacks(sizei n, uint *ids);

returns n previously unused transform feedback object names in ids. These names
are marked as used, for the purposes of GenTransformFeedbacks only, but they
acquire transform feedback state only when they are first bound.

Errors

An INVALID_VALUE error is generated if n is negative.

Transform feedback objects are deleted by calling

OpenGL 4.5 (Core Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 423

void DeleteTransformFeedbacks(sizei n, const
uint *ids);

ids contains n names of transform feedback objects to be deleted. After a trans-
form feedback object is deleted it has no contents, and its name is again unused.
Unused names in ids that have been marked as used for the purposes of GenTrans-
formFeedbacks are marked as unused again. Unused names in ids are silently
ignored, as is the value zero. The default transform feedback object cannot be
deleted.

Errors

An INVALID_VALUE error is generated if n is negative.
An INVALID_OPERATION error is generated if the transform feedback

operation for any object named by ids is currently active.

The command

boolean IsTransformFeedback(uint id);

returns TRUE if id is the name of a transform feedback object. If id is zero, or
a non-zero value that is not the name of a transform feedback object, IsTrans-
formFeedback returns FALSE. No error is generated if id is not a valid transform
feedback object name.

A transform feedback object is created by binding a name returned by Gen-
TransformFeedbacks with the command

void BindTransformFeedback(enum target, uint id);

target must be TRANSFORM_FEEDBACK and id is the transform feedback object
name. The resulting transform feedback object is a new state vector, comprising
all the state and with the same initial values listed in table 23.48. Additionally, the
new object is bound to the GL state vector and is used for subsequent transform
feedback operations.

BindTransformFeedback can also be used to bind an existing transform feed-
back object to the GL state for subsequent use. If the bind is successful, no change
is made to the state of the newly bound transform feedback object and any previous
binding to target is broken.

While a transform feedback buffer object is bound, GL operations on the target
to which it is bound affect the bound transform feedback object, and queries of the
target to which a transform feedback object is bound return state from the bound

OpenGL 4.5 (Core Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 424

object. When buffer objects are bound for transform feedback, they are attached to
the currently bound transform feedback object. Buffer objects are used for trans-
form feedback only if they are attached to the currently bound transform feedback
object.

In the initial state, a default transform feedback object is bound and treated as
a transform feedback object with a name of zero. That object is bound any time
BindTransformFeedback is called with id of zero.

Errors

An INVALID_ENUM error is generated if target is not TRANSFORM_-

FEEDBACK.
An INVALID_OPERATION error is generated if the transform feedback

operation is active on the currently bound transform feedback object, and that
operation is not paused (as described below).

An INVALID_OPERATION error is generated if id is not zero or a name
returned from a previous call to GenTransformFeedbacks, or if such a name
has since been deleted with DeleteTransformFeedbacks.

New transform feedback objects may also be created with the command

void CreateTransformFeedbacks(sizei n, uint *ids);

CreateTransformFeedbacks returns n previously unused transform feedback
object names in ids, each representing a new state vector, comprising the state and
with all the same initial values listed in table 23.48.

Errors

An INVALID_VALUE error is generated if n is negative.

13.2.2 Transform Feedback Primitive Capture

Transform feedback for the currently bound transform feedback object is started
(made active) and finished (made inactive) with the commands

void BeginTransformFeedback(enum primitiveMode);

and

void EndTransformFeedback(void);

OpenGL 4.5 (Core Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 425

respectively. primitiveMode must be TRIANGLES, LINES, or POINTS, and speci-
fies the output type of primitives that will be recorded into the buffer objects bound
for transform feedback (see below). primitiveMode restricts the primitive types
that may be rendered while transform feedback is active, as shown in table 13.1.

EndTransformFeedback first performs an implicit ResumeTransformFeed-
back (see below) if transform feedback is paused.

BeginTransformFeedback and EndTransformFeedback calls must be
paired. Transform feedback is initially inactive.

Transform feedback mode captures the values of output variables written by
the vertex shader (or, if active, tesellation or geometry shader).

Errors

An INVALID_ENUM error is generated by BeginTransformFeedback if
primitiveMode is not TRIANGLES, LINES, or POINTS.

An INVALID_OPERATION error is generated by BeginTransformFeed-
back if transform feedback is active for the current transform feedback object.

An INVALID_OPERATION error is generated by EndTransformFeed-
back if transform feedback is inactive.

Transform feedback operations for the currently bound transform feedback ob-
ject may be paused and resumed by calling

void PauseTransformFeedback(void);

and

void ResumeTransformFeedback(void);

respectively. When transform feedback operations are paused, transform feedback
is still considered active and changing most transform feedback state related to the
object results in an error. However, a new transform feedback object may be bound
while transform feedback is paused.

When transform feedback is active and not paused, all geometric primitives
generated must be compatible with the value of primitiveMode passed to Begin-
TransformFeedback.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if mode is not one of the allowed modes in table 13.1.
If a tessellation evaluation or geometry shader is active, the type of primitive

OpenGL 4.5 (Core Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 426

Transform Feedback Allowed render primitive
primitiveMode modes
POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP
TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

Table 13.1: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

emitted by that shader is used instead of the mode parameter passed to drawing
commands for the purposes of this error check. If tessellation evaluation and
geometry shaders are both active, the output primitive type of the geometry
shader will be used for the purposes of this error. Any primitive type may be
used while transform feedback is paused.

Errors

An INVALID_OPERATION error is generated by PauseTransformFeed-
back if the currently bound transform feedback object is not active or is
paused.

An INVALID_OPERATION error is generated by ResumeTransformFeed-
back if the currently bound transform feedback object is not active or is not
paused.

Regions of buffer objects are bound as targets of the currently bound transform
feedback object by calling one of the BindBuffer* commands (see sections 6.1
and 6.1.1 with target set to TRANSFORM_FEEDBACK_BUFFER. Alternatively, re-
gions of buffer objects may be bound directly to a transform feedback object with
the commands

void TransformFeedbackBufferRange(uint xfb, uint index,
uint buffer, intptr offset, sizeiptr size);

void TransformFeedbackBufferBase(uint xfb, uint index,
uint buffer);

xfb must be zero, indicating the default transform feedback object, or the name
of an existing transform feedback object. buffer must be zero or the name of an
existing buffer object.

OpenGL 4.5 (Core Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 427

TransformFeedbackBufferRange and TransformFeedbackBufferBase be-
have similarly to BindBufferRange and BindBufferBase, respectively, except
that the target of the operation is xfb, and they do not affect any binding to the
generic TRANSFORM_FEEDBACK_BUFFER target.

Errors

An INVALID_OPERATION error is generated if xfb is not zero or the name
of an existing transform feedback object.

An INVALID_VALUE error is generated if buffer is not zero or the name of
an existing buffer object.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of binding points for transform feedback, as described in sec-
tion 6.7.1.

An INVALID_VALUE error is generated by TransformFeedbackBuffer-
Range if offset is negative.

An INVALID_VALUE error is generated by TransformFeedbackBuffer-
Range if size is less than or equal to zero.

An INVALID_VALUE error is generated by TransformFeedbackBuffer-
Range if offset or size do not satisfy the constraints described for those param-
eters for transform feedback array bindings, as described in section 6.7.1.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active and not paused, the values of the
specified output variables of the vertex are appended to the buffer objects bound to
the transform feedback binding points. The attributes of the first vertex received af-
ter BeginTransformFeedback are written at the starting offsets of the bound buffer
objects set by BindBufferRange, and subsequent vertex attributes are appended to
the buffer object. When capturing line and triangle primitives, all attributes of the
first vertex are written first, followed by attributes of the subsequent vertices.

When capturing vertices, the stride associated with each transform feedback
binding point indicates the number of basic machine units of storage reserved for
each vertex in the bound buffer object. For every vertex captured, each output
variable with an assigned transform feedback offset will be written to the storage
reserved for the vertex at the associated binding point. When writing output vari-
ables that are arrays or structures, individual array elements or structure members
are written in order. For vector types, individual components are written in order.
For matrix types, outputs are written as an array of column vectors. If any com-
ponent of an output with an assigned transform feedback offset was not written
to by its shader, the value recorded for that component is undefined. The results

OpenGL 4.5 (Core Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 428

of writing an output variable to a transform feedback buffer are undefined if any
component of that variable would be written at an offset not aligned to the size of
the component. When capturing a vertex, any portion of the reserved storage not
associated with an output variable with an assigned transform feedback offset will
be unmodified.

When transform feedback is paused, no vertices are recorded. When transform
feedback is resumed, subsequent vertices are appended to the bound buffer ob-
jects immediately following the last vertex written before transform feedback was
paused.

Individual lines or triangles of a strip or fan primitive will be extracted and
recorded separately. Incomplete primitives are not recorded.

When using a geometry shader that writes vertices to multiple vertex streams,
each vertex emitted may trigger a new primitive in the vertex stream to which
it was emitted. If transform feedback is active, the outputs of the primitive are
written to a transform feedback binding point if and only if the outputs directed at
that binding point belong to the vertex stream in question. All outputs assigned to
a given binding point are required to come from a single vertex stream.

If recording the vertices of a primitive to the buffer objects being used for trans-
form feedback purposes would result in either exceeding the limits of any buffer
object’s size, or in exceeding the end position offset + size − 1, as set by Bind-
BufferRange, then no vertices of that primitive are recorded in any buffer object,
and the counter corresponding to the asynchronous query target TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN (see section 13.3) is not incremented. For
the purposes of this test, gl_SkipComponents variables are counted as recording
data to a buffer object.

Any transform feedback binding point used for capturing vertices must have
buffer objects bound when BeginTransformFeedback is called. A binding point
requires a bound buffer object if and only if its associated stride in the program
object used for transform feedback primitive capture is non-zero.

Errors

An INVALID_OPERATION error is generated by BeginTransformFeed-
back if any of these binding points does not have a buffer object bound.

An INVALID_OPERATION error is generated by BeginTransformFeed-
back if no binding points would be used, either because no program object is
active or because the active program object has specified no output variables
to record.

OpenGL 4.5 (Core Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 429

When BeginTransformFeedback is called with an active program object con-
taining a vertex, tessellation or geometry shader, the set of output variables cap-
tured during transform feedback is taken from the active program object and may
not be changed while transform feedback is active. That program object must
be active until the EndTransformFeedback is called, except while the transform
feedback object is paused.

Errors

An INVALID_OPERATION error is generated by:

• UseProgram if the current transform feedback object is active and not
paused;

• UseProgramStages if the program pipeline object it refers to is current
and the current transform feedback object is active and not paused;

• BindProgramPipeline if the current transform feedback object is active
and not paused;

• LinkProgram or ProgramBinary if program is the name of a program
being used by one or more transform feedback objects, even if the ob-
jects are not currently bound or are paused;

• ResumeTransformFeedback if the program object being used by the
current transform feedback object is not active; or has been re-linked
since transform feedback became active for the current transform
feedback object;

• ResumeTransformFeedback if the program pipeline object being used
by the current transform feedback object is not bound, if any of its
shader stage bindings has changed, or if a single program object is active
and overriding it; and

• BindBufferRange or BindBufferBase if target is TRANSFORM_-

FEEDBACK_BUFFER and transform feedback is currently active.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings in-
clude ReadPixels to a pixel buffer object binding point and client access to a buffer

OpenGL 4.5 (Core Profile) - October 24, 2016

13.2. TRANSFORM FEEDBACK 430

mapped with MapBuffer. Commands that attempt to read or write to an active and
unpaused transform feedback buffer will have undefined results. Generating an
INVALID_OPERATION error is recommended in this case.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

13.2.3 Transform Feedback Draw Operations

When transform feedback is active, the values of output variables or transformed
vertex attributes are captured into the buffer objects attached to the current trans-
form feedback object. After transform feedback is complete, subsequent rendering
operations may use the contents of these buffer objects (see section 6). The number
of vertices captured from each vertex stream during transform feedback is stored in
the corresponding transform feedback object and may be used in conjunction with
the commands

void DrawTransformFeedback(enum mode, uint id);
void DrawTransformFeedbackInstanced(enum mode,

uint id, sizei instancecount);
void DrawTransformFeedbackStream(enum mode, uint id,

uint stream);
void DrawTransformFeedbackStreamInstanced(enum mode,

uint id, uint stream, sizei instancecount);

to replay the captured vertices.
DrawTransformFeedbackStreamInstanced is equivalent to call-

ing DrawArraysInstanced with mode as specified, first set to zero, count set to
the number of vertices captured from the vertex stream numbered stream the last
time transform feedback was active on the transform feedback object named id,
and instancecount as specified.

Calling DrawTransformFeedbackInstanced is equivalent to calling Draw-
TransformFeedbackStreamInstanced with stream set to zero.

Calling DrawTransformFeedbackStream is equivalent to calling Draw-
TransformFeedbackStreamInstanced with instancecount set to one.

Finally, calling DrawTransformFeedback is equivalent to calling Draw-
TransformFeedbackStreamInstanced with stream set to zero and instancecount
set to one.

OpenGL 4.5 (Core Profile) - October 24, 2016

13.3. PRIMITIVE QUERIES 431

Note that the vertex count is from the number of vertices recorded to the se-
lected vertex stream during the transform feedback operation. If no outputs be-
longing to the selected vertex stream are recorded, the corresponding vertex count
will be zero even if complete primitives were emitted to the selected stream.

No error is generated if the transform feedback object named by id is active;
the vertex count used for the rendering operation is set by the previous EndTrans-
formFeedback command.

Errors

An INVALID_VALUE error is generated if stream is greater than or equal
to the value of MAX_VERTEX_STREAMS.

An INVALID_VALUE error is generated if id is not the name of a transform
feedback object.

An INVALID_VALUE error is generated if instancecount is negative.
An INVALID_OPERATION error is generated if EndTransformFeedback

has never been called while the object named by id was bound.

13.3 Primitive Queries

Primitive queries use query objects to track the number of primitives in each vertex
stream that are generated by the GL and the number of primitives in each vertex
stream that are written to buffer objects in transform feedback mode.

When BeginQueryIndexed is called with a target of PRIMITIVES_-

GENERATED, the primitives generated count maintained by the GL for the vertex
stream index is set to zero. There is a separate query and counter for each vertex
stream. The number of vertex streams is given by the value of the implementation-
dependent constant MAX_VERTEX_STREAMS. When a generated primitive query
for a vertex stream is active, the primitives-generated count is incremented every
time a primitive emitted to that stream reaches the transform feedback stage (see
section 13.2), whether or not transform feedback is active. This counter counts
the number of primitives emitted by a geometry shader, if active, possibly further
tessellated into separate primitives during the transform feedback stage, if active.

When BeginQueryIndexed is called with a target of TRANSFORM_-

FEEDBACK_PRIMITIVES_WRITTEN, the transform feedback primitives written
count maintained by the GL for vertex stream index is set to zero. There is a
separate query and counter for each vertex stream. When a transform feedback
primitives written query for a vertex stream is active, the counter for that vertex
stream is incremented every time the vertices of a primitive written to that stream

OpenGL 4.5 (Core Profile) - October 24, 2016

13.4. FLATSHADING 432

are recorded into one or more buffer objects. If transform feedback is not active
or if a primitive to be recorded does not fit in a buffer object, the counter is not
incremented.

These two types of queries can be used together to determine if all primitives
in a given vertex stream have been written to the bound feedback buffers; if both
queries are run simultaneously and the query results are equal, all primitives have
been written to the buffer(s). If the number of primitives written is less than the
number of primitives generated, one or more buffers overflowed.

13.4 Flatshading

Flatshading a vertex shader output means to assign all vertices of the primitive the
same value for that output.

The output values assigned are those of the provoking vertex of the primitive.
The provoking vertex is controlled with the command

void ProvokingVertex(enum provokeMode);

provokeMode must be either FIRST_VERTEX_CONVENTION or LAST_VERTEX_-
CONVENTION, and controls selection of the vertex whose values are assigned to
flatshaded colors and outputs, as shown in table 13.2.

If a vertex, tessellation or geometry shader is active, user-defined output vari-
ables may be flatshaded by using the flat qualifier when declaring the output, as
described in section 4.5(“Interpolation Qualifiers”) of the OpenGL Shading Lan-
guage Specification.

The state required for flatshading is one bit for the provoking vertex mode.
The initial value of the provoking vertex mode is LAST_VERTEX_CONVENTION.

13.5 Primitive Clipping

The command

void ClipControl(enum origin, enum depth);

controls the clipping volume behavior. origin and depth specify the clip control
origin and depth mode respectively. The interpretation of these parameters is dis-
cussed later in this section and in section 13.6.

OpenGL 4.5 (Core Profile) - October 24, 2016

13.5. PRIMITIVE CLIPPING 433

Primitive type of polygon i First vertex convention Last vertex convention
point i i

independent line 2i− 1 2i

line loop i i+ 1, if i < n
1, if i = n

line strip i i+ 1

independent triangle 3i− 2 3i

triangle strip i i+ 2

triangle fan i+ 1 i+ 2

line adjacency 4i− 2 4i− 1

line strip adjacency i+ 1 i+ 2

triangle adjacency 6i− 5 6i− 1

triangle strip adjacency 2i− 1 2i+ 3

Table 13.2: Provoking vertex selection. The output values used for flatshading
the ith primitive generated by drawing commands with the indicated primitive type
are derived from the corresponding values of the vertex whose index is shown in
the table. Vertices are numbered 1 through n, where n is the number of vertices
drawn.

Errors

An INVALID_ENUM error is generated if origin is not LOWER_LEFT or
UPPER_LEFT.

An INVALID_ENUM error is generated if depth is not NEGATIVE_ONE_-
TO_ONE or ZERO_TO_ONE.

Primitives are culled against the cull volume and then clipped to the clip vol-
ume. In clip coordinates, the view volume is defined by

−wc ≤ xc ≤ wc

−wc ≤ yc ≤ wc

zmin ≤ zc ≤ wc.

where zmin is−wc when the clip control depth mode is NEGATIVE_ONE_TO_ONE,
and 0 when the mode is ZERO_TO_ONE.

This view volume may be further restricted by as many as n client-defined half-
spaces. n is an implementation-dependent maximum that must be at least 8, and
may be determined by calling GetIntegerv with pname MAX_COMBINED_CLIP_-
AND_CULL_DISTANCES.

OpenGL 4.5 (Core Profile) - October 24, 2016

13.5. PRIMITIVE CLIPPING 434

The cull volume is the intersection of up to the value of MAX_CULL_-

DISTANCES client-defined half-spaces (if no client-defined cull half-spaces are en-
abled, culling against the cull volume is skipped). The number of enabled cull
half-spaces is determined by the explicit or implicit size of the built-in array gl_-

CullDistance in the last shader stage before rasterization which has an active
program.

A shader may write a single cull distance for each enabled cull half-space to
elements of the gl_CullDistance[] array. If the cull distance for any enabled
cull half-space is negative for all of the vertices of the primitive under considera-
tion, the primitive is discarded. Otherwise the primitive is clipped against the clip
volume as defined below.

The clip volume is the intersection of up to the value of MAX_CLIP_-

DISTANCES client-defined half-spaces with the view volume (if no client-defined
clip half-spaces are enabled, the clip volume is the view volume).

A vertex shader may write a single clip distance for each enabled clip half-
space to elements of the gl_ClipDistance[] array. Clip half-space i is then
given by the set of points satisfying the inequality

ci(P) ≥ 0,

where ci(P) is the value of clip distance i at point P . For point primitives,
ci(P) is simply the clip distance for the vertex in question. For line and triangle
primitives, per-vertex clip distances are interpolated using a weighted mean, with
weights derived according to the algorithms described in sections 14.5 and 14.6.

Client-defined clip half-spaces are enabled or disabled by calling Enable or
Disable with target CLIP_DISTANCEi, where i is an integer between 0 and n− 1;
specifying a value of i enables or disables the client-defined clip half-space with
index i. The constants obey CLIP_DISTANCEi = CLIP_DISTANCE0 + i.

Depth clamping is enabled or disabled by calling Enable or Disable with target
DEPTH_CLAMP. If depth clamping is enabled, the

zmin ≤ zc ≤ wc

plane equation (see the clip volume definition above) is ignored by view volume
clipping (effectively, there is no near or far plane clipping).

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the clip volume, and discards it if it lies entirely outside the volume.

If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or both

OpenGL 4.5 (Core Profile) - October 24, 2016

13.5. PRIMITIVE CLIPPING 435

vertices. A clipped line segment endpoint lies on both the original line segment
and the boundary of the clip volume.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P1

and P2, then t is given by

P = tP1 + (1− t)P2.

The value of t is used to clip vertex shader outputs as described in section 13.5.1.
If the primitive is a polygon, then it is passed if every one of its edges lies

entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge.

Primitives rendered with user-defined half-spaces must satisfy a complemen-
tarity criterion. Suppose a series of primitives is drawn where each vertex i has a
single specified clip distance di (or a number of similarly specified clip distances,
if multiple half-spaces are enabled). Next, suppose that the same series of primi-
tives are drawn again with each such clip distance replaced by −di (and the GL
is otherwise in the same state). In this case, primitives must not be missing any
pixels, nor may any pixels be drawn twice in regions where those primitives are
cut by the clip planes.

The state required for clipping is one bit for clip control origin, one bit for
clip control depth mode, at least 8 bits indicating which of the client-defined half-
spaces are enabled. In the initial state, the clip control origin is LOWER_LEFT, the
depth mode is NEGATIVE_ONE_TO_ONE, and all half-spaces are disabled.

13.5.1 Clipping Shader Outputs

Next, vertex shader outputs are clipped. The output values associated with a vertex
that lies within the clip volume are unaffected by clipping. If a primitive is clipped,
however, the output values assigned to vertices produced by clipping are clipped.

Let the output values assigned to the two vertices P1 and P2 of an unclipped
edge be c1 and c2. The value of t (section 13.5) for a clipped point P is used to
obtain the output value associated with P as 1

1 Since this computation is performed in clip space before division by wc, clipped output values
are perspective-correct.

OpenGL 4.5 (Core Profile) - October 24, 2016

13.6. COORDINATE TRANSFORMATIONS 436

c = tc1 + (1− t)c2.

(Multiplying an output value by a scalar means multiplying each of x, y, z, and w
by the scalar.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one half-space at a time. Output value clipping is done in the
same way, so that clipped points always occur at the intersection of polygon edges
(possibly already clipped) with the clip volume’s boundary.

For vertex shader outputs specified to be interpolated without perspective cor-
rection (using the noperspective qualifier), the value of t used to obtain the
output value associated with P will be adjusted to produce results that vary lin-
early in screen space.

Implementations need not support interpolation of output values of integer or
unsigned integer type, as all such attributes must be flat shaded. Outputs of integer
or unsigned integer type must always be declared with the flat qualifier. Since
such outputs are constant over the primitive being rasterized (see sections 14.5.1
and 14.6.1), no interpolation is performed.

13.5.2 Clip Plane Queries

This subsection is only defined in the compatibility profile.

13.6 Coordinate Transformations

Clip coordinates for a vertex result from shader execution, which yields a vertex
coordinate gl_Position.

Perspective division on clip coordinates yields normalized device coordinates,
followed by a viewport transformation (see section 13.6.1) to convert these coordi-
nates into window coordinates.

If a vertex in clip coordinates is given by
xc
yc
zc
wc

OpenGL 4.5 (Core Profile) - October 24, 2016

13.6. COORDINATE TRANSFORMATIONS 437

then the vertex’s normalized device coordinates arexdyd
zd

 =

xc
wc

f×yc
wc
zc
wc

where f is 1 when the clip control origin is LOWER_LEFT and −1 when the origin
is UPPER_LEFT.

13.6.1 Controlling the Viewport

The viewport transformation is determined by the selected viewport’s width and
height in pixels, px and py, respectively, and its center (ox, oy) (also in pixels).

The vertex’s window coordinates,

xwyw
zw

 , are given by

xwyw
zw

 =

px
2 xd + ox
py
2 yd + oy
s× zd + b

 .

where s = f−n
2 and b = n+f

2 when the clip control depth mode is NEGATIVE_-
ONE_TO_ONE, or s = f − n and b = n when the mode is ZERO_TO_ONE.

Multiple viewports are available and are numbered zero through the value of
MAX_VIEWPORTS minus one. If a geometry shader is active and writes to gl_-

ViewportIndex, the viewport transformation uses the viewport corresponding
to the value assigned to gl_ViewportIndex taken from an implementation-
dependent primitive vertex. If the value of the viewport index is outside the range
zero to the value of MAX_VIEWPORTS minus one, the results of the viewport trans-
formation are undefined. If no geometry shader is active, or if the active geometry
shader does not write to gl_ViewportIndex, the viewport numbered zero is used
by the viewport transformation.

A single vertex may be used in more than one individual primitive, in primitives
such as TRIANGLE_STRIP. In this case, the viewport transformation is applied
separately for each primitive.

The factor and offset applied to zd for each viewport encoded by n and f are
set using

void DepthRangeArrayv(uint first, sizei count, const
double *v);

OpenGL 4.5 (Core Profile) - October 24, 2016

13.6. COORDINATE TRANSFORMATIONS 438

void DepthRangeIndexed(uint index, double n,
double f);

void DepthRange(double n, double f);
void DepthRangef(float n, float f);

DepthRangeArrayv is used to specify the depth range for multiple viewports
simultaneously. first specifies the index of the first viewport to modify and count
specifies the number of viewports. Viewports whose indices lie outside the range
[first, first + count) are not modified. The v parameter contains the address of
an array of double types specifying near (n) and far (f) for each viewport in that
order. Values in v are each clamped to the range [0, 1] when specified.

Errors

An INVALID_VALUE error is generated if (first + count) is greater than the
value of MAX_VIEWPORTS.

An INVALID_VALUE error is generated if count is negative.

DepthRangeIndexed specifies the depth range for a single viewport and is
equivalent (assuming no errors are generated) to:

double v[] = { n, f };
DepthRangeArrayv(index, 1, v);

DepthRange sets the depth range for all viewports to the same values and is
equivalent (assuming no errors are generated) to:

for (uint i = 0; i < MAX_VIEWPORTS; i++)
DepthRangeIndexed(i, n, f);

zw may be represented using either a fixed-point or floating-point representation.
However, a floating-point representation must be used if the draw framebuffer has
a floating-point depth buffer. If an m-bit fixed-point representation is used, we
assume that it represents each value k

2m−1 , where k ∈ {0, 1, . . . , 2m − 1}, as k
(e.g. 1.0 is represented in binary as a string of all ones).

Viewport transformation parameters are specified using

void ViewportArrayv(uint first, sizei count, const
float *v);

void ViewportIndexedf(uint index, float x, float y,
float w, float h);

OpenGL 4.5 (Core Profile) - October 24, 2016

13.6. COORDINATE TRANSFORMATIONS 439

void ViewportIndexedfv(uint index, const float *v);
void Viewport(int x, int y, sizei w, sizei h);

ViewportArrayv specifies parameters for multiple viewports simultaneously.
first specifies the index of the first viewport to modify and count specifies the num-
ber of viewports. Viewports whose indices lie outside the range [first ,first +
count) are not modified. v contains the address of an array of floating-point values
specifying the left (x), bottom (y), width (w) and height (h) of each viewport, in
that order. x and y give the location of the viewport’s lower left corner and w and h
give the viewport’s width and height, respectively.

Errors

An INVALID_VALUE error is generated if first + count is greater than the
value of MAX_VIEWPORTS.

An INVALID_VALUE error is generated if count is negative.

ViewportIndexedf and ViewportIndexedfv specify parameters for a single
viewport and are equivalent (assuming no errors are generated) to:

float v[4] = { x, y, w, h };
ViewportArrayv(index, 1, v);

and

ViewportArrayv(index, 1, v);

respectively.
Viewport sets the parameters for all viewports to the same values and is equiv-

alent (assuming no errors are generated) to:

for (uint i = 0; i < MAX_VIEWPORTS; i++)
ViewportIndexedf(i, 1, (float)x, (float)y, (float)w, (float)h);

The viewport parameters shown in the above equations are found from these
values as

ox = x+ w
2

oy = y + h
2

px = w
py = h.

OpenGL 4.5 (Core Profile) - October 24, 2016

13.7. FINAL COLOR PROCESSING 440

The location of the viewport’s bottom-left corner, given by (x, y), are clamped
to be within the implementation-dependent viewport bounds range. The view-
port bounds range [min,max] tuple may be determined by calling GetFloatv with
pname VIEWPORT_BOUNDS_RANGE (see section 22).

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by calling
GetFloatv with pname MAX_VIEWPORT_DIMS. The maximum viewport dimen-
sions must be greater than or equal to the larger of the visible dimensions of the
display being rendered to (if a display exists), and the largest renderbuffer image
which can be successfully created and attached to a framebuffer object (see chap-
ter 9).

Errors

An INVALID_VALUE error is generated if either w or h is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values for each viewport. In the initial state, w and
h for each viewport are set to the width and height, respectively, of the window
into which the GL is to do its rendering. If the default framebuffer is bound but no
default framebuffer is associated with the GL context (see chapter 9), then w and h
are initially set to zero. ox, oy, n, and f are set to w

2 , h
2 , 0.0, and 1.0, respectively.

The precision with which the GL interprets the floating-point viewport
bounds is implementation-dependent and may be determined by querying the
implementation-defined constant VIEWPORT_SUBPIXEL_BITS.

13.7 Final Color Processing

This section is only defined in the compatibility profile.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 14

Fixed-Function Primitive
Assembly and Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.

Rasterizing a primitive begins by determining which squares of an integer grid
in window coordinates are occupied by the primitive, and assigning a depth value
to each such square. This process is described in sections 14.1-14.6 for point, line,
and triangle primitives.

A grid square, including its (x, y) window coordinates, z (depth), and asso-
ciated data which may be added by fragment shaders, is called a fragment. A
fragment is located by its lower left corner, which lies on integer grid coordinates.
Rasterization operations also refer to a fragment’s center, which is offset by (12 ,

1
2)

from its lower left corner (and so lies on half-integer coordinates).
Fragments need not actually be square, and rasterization rules are not affected

by the aspect ratio of fragments. Display of non-square grids, however, will cause
rasterized points and line segments to appear fatter in one direction than the other.
We assume that fragments are square, since it simplifies antialiasing and texturing.

After rasterization, fragments are processed by the early per-fragment tests de-
scribed in section 14.9, which may modify or discard fragments.

Surviving fragments are processed by fragment shaders (see chapter 15). Frag-
ment shaders determine color values for fragments, and may also modify or replace
their assigned depth values.

Figure 14.1 diagrams the rasterization process.
A grid square along with its z (depth) and shader output parameters is called a

fragment; the parameters are collectively dubbed the fragment’s associated data. A
fragment is located by its lower left corner, which lies on integer grid coordinates.

441

442

Point
Rasterization

From
Primitive
Assembly

Processed
Fragments

Scissor
Test

Multisample
Fragment

Operations

Fragment
Shading

Line
Rasterization

Triangle
Rasterization

Pixel
Ownership

Test

Other Early
Tests

Figure 14.1. Rasterization, early per-fragment tests, and fragment shading. Optional
early tests described in section 14.9 are included in the “Other Early Tests” box.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 443

Rasterization operations also refer to a fragment’s center, which is offset by (12 ,
1
2)

from its lower left corner (and so lies on half-integer coordinates).
Grid squares need not actually be square in the GL. Rasterization rules are not

affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Primitives may be discarded before ras-
terization. Points may be given differing diameters and line segments differing
widths. A point, line segment, or polygon may be antialiased.

Rasterization only produces fragments corresponding to pixels in the frame-
buffer. Fragments which would be produced by application of any of the primitive
rasterization rules described below but which lie outside the framebuffer are not
produced, nor are they processed by any later stage of the GL, including any of the
early per-fragment tests described in section 14.9.

14.1 Discarding Primitives Before Rasterization

Primitives sent to vertex stream zero (see section 13.2) are processed further; prim-
itives emitted to any other stream are discarded. When geometry shaders are dis-
abled, all vertices are considered to be emitted to stream zero.

Primitives can be optionally discarded before rasterization by calling Enable
and Disable with target RASTERIZER_DISCARD. When enabled, primitives are
discarded immediately before the rasterization stage, but after the optional trans-
form feedback stage (see section 13.2). When disabled, primitives are passed
through to the rasterization stage to be processed normally. When enabled,
RASTERIZER_DISCARD also causes the Clear and ClearBuffer* commands to
be ignored.

The state required to control primitive discard is a bit indicating whether dis-
card is enabled or disabled. The initial value of primitive discard is FALSE.

14.2 Invariance

Consider a primitive p′ obtained by translating a primitive p through an offset (x, y)
in window coordinates, where x and y are integers. As long as neither p′ nor p is
clipped, it must be the case that each fragment f ′ produced from p′ is identical to
a corresponding fragment f from p except that the center of f ′ is offset by (x, y)
from the center of f .

OpenGL 4.5 (Core Profile) - October 24, 2016

14.3. ANTIALIASING 444

14.3 Antialiasing

The R, G, and B values of the rasterized fragment are left unaffected, but the A
value is multiplied by a floating-point value in the range [0, 1] that describes a
fragment’s screen pixel coverage. The per-fragment stage of the GL can be set up
to use the A value to blend the incoming fragment with the corresponding pixel
already present in the framebuffer.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called a fragment square and has lower left corner
(x, y) and upper right corner (x+1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f1 and f2 are two fragments, and the portion of f1 covered by some prim-
itive is a subset of the corresponding portion of f2 covered by the primitive,
then the coverage computed for f1 must be less than or equal to that com-
puted for f2.

2. The coverage computation for a fragment f must be local: it may depend
only on f ’s relationship to the boundary of the primitive being rasterized. It
may not depend on f ’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.3. ANTIALIASING 445

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 21.5), allowing a user to make an image quality
versus speed tradeoff.

14.3.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, and
polygons. The technique is to sample all primitives multiple times at each pixel.
The color sample values are resolved to a single, displayable color each time a
pixel is updated, so the antialiasing appears to be automatic at the application level.
Because each sample includes color, depth, and stencil information, the color (in-
cluding texture operation), depth, and stencil functions perform equivalently to the
single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.
Color buffers do coexist with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adja-
cent polygons, object silhouettes, and even intersecting polygons. If only lines
are being rendered, the “smooth” antialiasing mechanism provided by the base GL
may result in a higher quality image. This mechanism is designed to allow multi-
sample and smooth antialiasing techniques to be alternated during the rendering of
a single scene.

If the value of SAMPLE_BUFFERS (see section 9.2.3.1) is one, the rasteriza-
tion of all primitives is changed, and is referred to as multisample rasterization.
Otherwise, primitive rasterization is referred to as single-sample rasterization.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with the value of
SAMPLES bits (see section 9.2.3.1).

The location at which shading is performed for a given sample (the shading
sample location) is queried with the command

void GetMultisamplefv(enum pname, uint index,
float *val);

pname must be SAMPLE_POSITION, and index corresponds to the sample for
which the location should be returned. The sample location is returned as two

OpenGL 4.5 (Core Profile) - October 24, 2016

14.3. ANTIALIASING 446

floating-point values in val[0] and val[1], each between 0 and 1, corresponding to
the x and y locations respectively in GL pixel space of that sample. (0.5, 0.5) thus
corresponds to the pixel center. If the multisample mode does not have fixed sam-
ple locations, the returned values may only reflect the locations of samples within
some pixels.

Errors

An INVALID_ENUM error is generated if pname is not SAMPLE_-

POSITION.
An INVALID_VALUE error is generated if index is greater than or equal to

the value of SAMPLES.

Second, each fragment includes SAMPLES depth values and sets of associated
data, instead of the single depth value and set of associated data that is maintained
in single-sample rendering mode. An implementation may choose to assign the
same associated data to more than one sample. The location for evaluating such
associated data can be anywhere within the pixel including the fragment center or
any of the sample locations. The different associated data values need not all be
evaluated at the same location. Each pixel fragment thus consists of integer x and y
grid coordinates, SAMPLES depth values and sets of associated data, and a coverage
value with a maximum of SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable
with target MULTISAMPLE.

If MULTISAMPLE is disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has sample locations associated with it. These locations are exact
positions, rather than regions or areas, and each is referred to as a sample point.
These sample points do not necessarily correspond to the shading sample locations
returned by GetMultisamplefv. Their locations cannot be queried, and may lie
inside or outside of the unit square that is considered to bound the pixel. The

number of these samples may be different than the value of SAMPLES. Further-
more, the relative locations of sample points may be identical for each pixel in the
framebuffer, or they may differ.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.4. POINTS 447

If MULTISAMPLE is enabled and the current program object includes a frag-
ment shader with one or more input variables qualified with sample in, the data
associated with those variables will be assigned independently. The values for each
sample must be evaluated at the location of the sample. The data associated with
any other variables not qualified with sample in need not be evaluated indepen-
dently for each sample.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 14.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

14.3.1.1 Sample Shading

Sample shading can be used to specify a minimum number of unique samples to
process for each fragment. Sample shading is controlled by calling Enable or
Disable with target SAMPLE_SHADING.

If MULTISAMPLE or SAMPLE_SHADING is disabled, sample shading has no
effect. Otherwise, an implementation must provide a minimum of

max(dmss× samplese, 1)

unique sets of fragment shader inputs for each fragment, where mss is the value
of MIN_SAMPLE_SHADING_VALUE and samples is the number of samples (the
value of SAMPLES). These are associated with the samples in an implementation-
dependent manner. The value of MIN_SAMPLE_SHADING_VALUE is specified by
calling

void MinSampleShading(float value);

with value set to the desired minimum sample shading fraction. value is clamped
to [0, 1] when specified. The sample shading fraction may be queried by calling
GetFloatv with pname MIN_SAMPLE_SHADING_VALUE.

When the sample shading fraction is 1.0, a separate set of colors and other
associated data are evaluated for each sample, and each set of values is evaluated
at the sample location.

14.4 Points

A point is drawn by generating a set of fragments in the shape of a square or circle
centered around the vertex of the point. Each vertex has an associated point size
that controls the size of that square or circle.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.4. POINTS 448

If program point size mode is enabled, the derived point size is taken from the
(potentially clipped) shader built-in gl_PointSize written by:

• the geometry shader, if active;

• the tessellation evaluation shader, if active and no geometry shader is active;

• the tessellation control shader, if active and no geometry or tessellation
evaluation shader is active; or

• the vertex shader, otherwise

and clamped to the implementation-dependent point size range. If the value written
to gl_PointSize is less than or equal to zero, or if no value was written to gl_-

PointSize, results are undefined. If program point size mode is disabled, the
derived point size is specified with the command

void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0.

Errors

An INVALID_VALUE error is generated if size is less than or equal to zero.

Program point size mode is enabled and disabled by calling Enable or Disable
with target PROGRAM_POINT_SIZE.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 17.2) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

width =

{
derived size derived size ≥ threshold
threshold otherwise

(14.1)

and the fade factor is computed as follows:

fade =

{
1 derived size ≥ threshold(
derived size
threshold

)2
otherwise

(14.2)

The point fade threshold, is specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enum pname, const T *params);

OpenGL 4.5 (Core Profile) - October 24, 2016

14.4. POINTS 449

If pname is POINT_FADE_THRESHOLD_SIZE, then param specifies, or params
points to the point fade threshold.

Data conversions are performed as specified in section 2.2.1.
The point sprite texture coordinate origin is set with the PointParame-

ter* commands where pname is POINT_SPRITE_COORD_ORIGIN and param is
LOWER_LEFT or UPPER_LEFT. The default value is UPPER_LEFT.

Errors

An INVALID_ENUM error is generated if pname is not POINT_FADE_-

THRESHOLD_SIZE or POINT_SPRITE_COORD_ORIGIN.
An INVALID_VALUE error is generated if negative values are specified for

POINT_FADE_THRESHOLD_SIZE.

14.4.1 Basic Point Rasterization

Point rasterization produces a fragment for each framebuffer pixel whose center
lies inside a square centered at the point’s (xw, yw), with side length equal to the
current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. However,
the fragment shader built-in gl_PointCoord contains point sprite texture coor-
dinates. The s point sprite texture coordinate varies from zero to one across the
point horizontally left-to-right. If POINT_SPRITE_COORD_ORIGIN is LOWER_-
LEFT, the t coordinate varies from zero to one vertically bottom-to-top. Otherwise
if the point sprite texture coordinate origin is UPPER_LEFT, the t coordinate varies
from zero to one vertically top-to-bottom. The following formula is used to eval-
uate the s and t point sprite texture coordinates:

s =
1

2
+

(
xf + 1

2 − xw
)

size
(14.3)

t =

 1
2 +

(yf+ 1
2
−yw)

size , POINT_SPRITE_COORD_ORIGIN = LOWER_LEFT

1
2 −

(yf+ 1
2
−yw)

size , POINT_SPRITE_COORD_ORIGIN = UPPER_LEFT

(14.4)
where size is the point’s size, xf and yf are the (integral) window coordinates of
the fragment, and xw and yw are the exact, unrounded window coordinates of the
vertex for the point.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.5. LINE SEGMENTS 450

Not all point widths need be supported, but the width 1.0 must be provided.
The range of supported widths and the width of evenly-spaced gradations within
that range are implementation-dependent. The range and gradations may be ob-
tained using the query mechanism described in chapter 22. If, for instance, the
width range is from 0.1 to 2.0 and the gradation width is 0.1, then the widths
0.1, 0.2, . . . , 1.9, 2.0 are supported. Additional point widths may also be sup-
ported. There is no requirement that these widths must be equally spaced. If
an unsupported width is requested, the nearest supported width is used instead.

14.4.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, a bit indicating whether or not vertex program point size mode is enabled,
a bit for the point sprite texture coordinate origin, and a floating-point value speci-
fying the point fade threshold size.

14.4.3 Point Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then points
are rasterized using the following algorithm. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s (xw, yw). This region is a square with side equal
to the current point width. Coverage bits that correspond to sample points that
intersect the region are 1, other coverage bits are 0. All data associated with each
sample for the fragment are the data associated with the point being rasterized.

The set of point sizes supported is equivalent to those for point sprites without
multisample.

14.5 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line segment rasterization is controlled by several variables. Line width,
which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0. Antialiasing may be enabled or disabled
by calling Enable or Disable with target LINE_SMOOTH.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.5. LINE SEGMENTS 451

Errors

An INVALID_VALUE error is generated if width is less than or equal to
zero.

14.5.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [−1, 1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for x-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates xf and yf , define a diamond-shaped region that is the intersection
of four half planes:

Rf = { (x, y) | |x− xf |+ |y − yf | <
1

2
}.

Essentially, a line segment starting at pa and ending at pb produces those frag-
ments f for which the segment intersects Rf , except if pb is contained in Rf . See
figure 14.2.

To avoid difficulties when an endpoint lies on a boundary of Rf we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let pa and pb have window
coordinates (xa, ya) and (xb, yb), respectively. Obtain the perturbed endpoints p′a
given by (xa, ya) − (ε, ε2) and p′b given by (xb, yb) − (ε, ε2). Rasterizing the line
segment starting at pa and ending at pb produces those fragments f for which the
segment starting at p′a and ending on p′b intersects Rf , except if p′b is contained in
Rf . ε is chosen to be so small that rasterizing the line segment produces the same
fragments when δ is substituted for ε for any 0 < δ ≤ ε.

When pa and pb lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pb)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

OpenGL 4.5 (Core Profile) - October 24, 2016

14.5. LINE SEGMENTS 452

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 14.2. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either x or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For an x-major line, no two fragments may be produced that lie in the same
window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

OpenGL 4.5 (Core Profile) - October 24, 2016

14.5. LINE SEGMENTS 453

by pr = (xd, yd) and let pa = (xa, ya) and pb = (xb, yb). Set

t =
(pr − pa) · (pb − pa)

‖pb − pa‖2
. (14.5)

(Note that t = 0 at pa and t = 1 at pb). The value of an associated datum f for the
fragment, whether it be a shader output or the clip w coordinate, is found as

f =
(1− t)fa/wa + tfb/wb

(1− t)/wa + t/wb
(14.6)

where fa and fb are the data associated with the starting and ending endpoints of
the segment, respectively; wa and wb are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines
must be interpolated by

z = (1− t)za + tzb (14.7)

where za and zb are the depth values of the starting and ending endpoints of the
segment, respectively.

The noperspective and flat keywords used to declare shader outputs
affect how they are interpolated. When neither keyword is specified, interpolation
is performed as described in equation 14.6. When the noperspective keyword
is specified, interpolation is performed in the same fashion as for depth values, as
described in equation 14.7. When the flat keyword is specified, no interpola-
tion is performed, and outputs are taken from the corresponding input value of the
provoking vertex corresponding to that primitive (see section 13.4).

14.5.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one. We now describe the rasterization of line segments for general values of the
line segment rasterization parameters.

14.5.2.1 Line Stipple

This subsection is only defined in the compatibility profile.

14.5.2.2 Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,

OpenGL 4.5 (Core Profile) - October 24, 2016

14.5. LINE SEGMENTS 454

width = 2 width = 3

Figure 14.3. Rasterization of non-antialiased wide lines. x-major line segments
are shown. The heavy line segment is the one specified to be rasterized; the light
segment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

rounded to the nearest integer value, and in any event no less than 1. If rounding
the specified width results in the value 0, then it is as if the value was 1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for an x-major line, the minor direction is
y, and for a y-major line, the minor direction is x) and replicating fragments in
the minor direction (see figure 14.3). Let w be the width rounded to the near-
est integer (if w = 0, then it is as if w = 1). If the line segment has endpoints
given by (x0, y0) and (x1, y1) in window coordinates, the segment with endpoints
(x0, y0− (w− 1)/2) and (x1, y1− (w− 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height w (a row of fragments of length w for
a y-major segment) is produced at each x (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates.

14.5.2.3 Antialiasing

Rasterized antialiased line segments produce fragments which intersect a rectangle
centered on the line segment. Two of the edges are parallel to the specified line
segment; each is at a distance of one-half the current width from that segment:

OpenGL 4.5 (Core Profile) - October 24, 2016

14.5. LINE SEGMENTS 455

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

Figure 14.4. The region used in rasterizing and finding corresponding coverage
values for an antialiased line segment (an x-major line segment is shown).

one above the segment and one below it. The other two edges pass through the
line endpoints and are perpendicular to the direction of the specified line segment.
Coverage values are computed for each fragment by computing the area of the
intersection of the rectangle with the fragment square (see figure 14.4; see also
section 14.3). Equation 14.6 is used to compute associated data values just as with
non-antialiased lines; equation 14.5 is used to find the value of t for each fragment
whose square is intersected by the line segment’s rectangle. Not all widths need be
supported for line segment antialiasing, but width 1.0 antialiased segments must
be provided. As with the point width, a GL implementation may be queried for the
range and number of gradations of available antialiased line widths.

14.5.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width
and a bit indicating whether line antialiasing is on or off. The initial value of the
line width is 1.0. The initial state of line segment antialiasing is disabled.

14.5.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE_SMOOTH) is enabled or disabled. Line rasterization produces a fragment for

OpenGL 4.5 (Core Profile) - October 24, 2016

14.6. POLYGONS 456

each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in the Antialiasing portion of section 14.5.2 (Other Line
Segment Features).

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each depth value and set of associated data
is produced by substituting the corresponding sample location into equation 14.5,
then using the result to evaluate equation 14.7. An implementation may choose to
assign the associated data to more than one sample by evaluating equation 14.5 at
any location within the pixel including the fragment center or any one of the sam-
ple locations, then substituting into equation 14.6. The different associated data
values need not be evaluated at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

14.6 Polygons

A polygon results from a triangle arising from a triangle strip, triangle fan, or
series of separate triangles. Like points and line segments, polygon rasterization
is controlled by several variables. Polygon antialiasing is enabled or disabled by
calling Enable or Disable with target POLYGON_SMOOTH.

14.6.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back-facing
or front-facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

a =
1

2
f

n−1∑
i=0

xiwy
i⊕1
w − xi⊕1w yiw (14.8)

where f = 1 when the clip control origin is LOWER_LEFT and f = −1 when the
origin is UPPER_LEFT, xiw and yiw are the x and y window coordinates of the ith
vertex of the n-vertex polygon (vertices are numbered starting at zero for purposes
of this computation) and i ⊕ 1 is (i + 1) mod n. The interpretation of the sign of
this value is controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) uses a as computed above. Setting dir to

OpenGL 4.5 (Core Profile) - October 24, 2016

14.6. POLYGONS 457

CW (corresponding to clockwise orientation) indicates that the sign of a should be
reversed prior to use. Front face determination requires one bit of state, and is
initially set to CCW.

Errors

An INVALID_ENUM error is generated if dir is not CW or CCW.

If the sign of a (including the possible reversal of this sign as determined by
FrontFace) is positive, the polygon is front-facing; otherwise, it is back-facing.
This determination is used in conjunction with the CullFace enable bit and mode
value to decide whether or not a particular polygon is rasterized. The CullFace
mode is set by calling

void CullFace(enum mode);

mode must be FRONT, BACK or FRONT_AND_BACK. Culling is enabled or disabled
by calling Enable or Disable with target CULL_FACE. Front-facing polygons are
rasterized if either culling is disabled or the CullFace mode is BACK while back-
facing polygons are rasterized only if either culling is disabled or the CullFace
mode is FRONT. The initial setting of the CullFace mode is BACK. Initially, culling
is disabled.

Errors

An INVALID_ENUM error is generated if mode is not FRONT, BACK, or
FRONT_AND_BACK.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon edge. In such a case
we require that if two polygons lie on either side of a common edge (with identical
endpoints) on which a fragment center lies, then exactly one of the polygons results
in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and c, each in the range [0, 1], with a + b + c = 1.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.6. POLYGONS 458

These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

p = apa + bpb + cpc,

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found as

a =
A(ppbpc)

A(papbpc)
, b =

A(ppapc)

A(papbpc)
, c =

A(ppapb)

A(papbpc)
,

where A(lmn) denotes the area in window coordinates of the triangle with vertices
l, m, and n.

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

f =
afa/wa + bfb/wb + cfc/wc

a/wa + b/wb + c/wc
(14.9)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and c must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

z = aza + bzb + czc (14.10)

where za, zb, and zc are the depth values of pa, pb, and pc, respectively.
The noperspective and flat keywords used to declare shader outputs

affect how they are interpolated. When neither keyword is specified, interpolation
is performed as described in equation 14.9. When the noperspective keyword
is specified, interpolation is performed in the same fashion as for depth values, as
described in equation 14.10. When the flat keyword is specified, no interpola-
tion is performed, and outputs are taken from the corresponding input value of the
provoking vertex corresponding to that primitive (see section 13.4).

For a polygon with more than three edges, such as may be produced by clipping
a triangle, we require only that a convex combination of the values of the datum
at the polygon’s vertices can be used to obtain the value assigned to each fragment
produced by the rasterization algorithm. That is, it must be the case that at every
fragment

f =
n∑

i=1

aifi

OpenGL 4.5 (Core Profile) - October 24, 2016

14.6. POLYGONS 459

where n is the number of vertices in the polygon, fi is the value of the f at vertex
i; for each i 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1. The values of the ai may differ from

fragment to fragment, but at vertex i, aj = 0, j 6= i and ai = 1.
One algorithm that achieves the required behavior is to triangulate a polygon

(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 14.9 should be iterated independently and a division performed for each frag-
ment).

14.6.2 Stippling

This subsection is only defined in the compatibility profile.

14.6.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section 17.1. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

14.6.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode(enum face, enum mode);

face must be FRONT_AND_BACK, indicating that the rasterizing method described
by mode replaces the rasterizing method for both front- and back-facing polygons.
mode must be one of POINT, LINE, or FILL. Calling PolygonMode with POINT

causes the vertices of a polygon to be treated, for rasterization purposes, as if they
had been drawn with mode POINTS. LINE causes edges to be rasterized as line
segments. FILL is the default mode of polygon rasterization, corresponding to the
description in sections 14.6.1, and 14.6.3. Note that these modes affect only the
final rasterization of polygons: in particular, a polygon’s vertices are lit, and the
polygon is clipped and possibly culled before these modes are applied.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.6. POLYGONS 460

Polygon antialiasing applies only to the FILL state of PolygonMode. For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-
ply.

14.6.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m =

√(
∂zw
∂xw

)2

+

(
∂zw
∂yw

)2

(14.11)

where (xw, yw, zw) is a point on the triangle. m may be approximated as

m = max

{∣∣∣∣ ∂zw∂xw

∣∣∣∣ , ∣∣∣∣∂zw∂yw

∣∣∣∣} . (14.12)

The minimum resolvable difference r is an implementation-dependent param-
eter that depends on the depth buffer representation. It is the smallest difference in
window coordinate z values that is guaranteed to remain distinct throughout poly-
gon rasterization and in the depth buffer. All pairs of fragments generated by the
rasterization of two polygons with otherwise identical vertices, but zw values that
differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range
of the entire depth buffer. For floating-point depth buffers, there is no single min-
imum resolvable difference. In this case, the minimum resolvable difference for a
given polygon is dependent on the maximum exponent, e, in the range of z values
spanned by the primitive. If n is the number of bits in the floating-point mantissa,
the minimum resolvable difference, r, for the given primitive is defined as

r = 2e−n.

If no depth buffer is present, r is undefined.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.6. POLYGONS 461

The offset value o for a polygon is

o = m× factor + r × units. (14.13)

m is computed as described above. If the depth buffer uses a fixed-point represen-
tation, m is a function of depth values in the range [0, 1], and o is applied to depth
values in the same range.

Boolean state values POLYGON_OFFSET_POINT, POLYGON_OFFSET_LINE,
and POLYGON_OFFSET_FILL determine whether o is applied during the rasteri-
zation of polygons in POINT, LINE, and FILL modes. These boolean state values
are enabled and disabled as target values to the commands Enable and Disable.
If POLYGON_OFFSET_POINT is enabled, o is added to the depth value of each
fragment produced by the rasterization of a polygon in POINT mode. Likewise,
if POLYGON_OFFSET_LINE or POLYGON_OFFSET_FILL is enabled, o is added to
the depth value of each fragment produced by the rasterization of a polygon in
LINE or FILL modes, respectively.

For fixed-point depth buffers, fragment depth values are always limited to the
range [0, 1] by clamping after offset addition is performed. Fragment depth values
are clamped even when the depth buffer uses a floating-point representation.

14.6.6 Polygon Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGON_SMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in section 14.6.1. If a polygon is
culled, based on its orientation and the CullFace mode, then no fragments are pro-
duced during rasterization.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each associated datum is produced as
described in section 14.6.1, but using the corresponding sample location instead of
the fragment center. An implementation may choose to assign the same associated
data values to more than one sample by barycentric evaluation using any location
within the pixel including the fragment center or one of the sample locations.

When using a vertex shader, the noperspective and flat qualifiers affect
how shader outputs are interpolated in the same fashion as described for basic
polygon rasterization in section 14.6.1.

The rasterization described above applies only to the FILL state of Polygon-
Mode. For POINT and LINE, the rasterizations described in sections 14.4.3 (Point
Multisample Rasterization) and 14.5.4 (Line Multisample Rasterization) apply.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.7. CURRENT RASTER POSITION 462

14.6.7 Polygon Rasterization State

The state required for polygon rasterization consists of the current state of polygon
antialiasing (enabled or disabled), the current value of the PolygonMode setting,
whether point, line, and fill mode polygon offsets are enabled or disabled, and
the factor and bias values of the polygon offset equation. The initial setting of
polygon antialiasing is disabled. The initial state for PolygonMode is FILL . The
initial polygon offset factor and bias values are both 0; initially polygon offset is
disabled for all modes.

14.7 Current Raster Position

This section is only defined in the compatibility profile.

14.8 Bitmaps

This section is only defined in the compatibility profile.

14.9 Early Per-Fragment Tests

Once fragments are produced by rasterization, a number of per-fragment operations
are performed prior to fragment shader execution (see section 15). If a fragment is
discarded during any of these operations, it will not be processed by any subsequent
stage, including fragment shader execution.

Three fragment operations are performed, and a further three are optionally
performed on each fragment, in the following order:

• the pixel ownership test (see section 14.9.1);

• the scissor test (see section 14.9.2);

• multisample fragment operations (see section 14.9.3);

If early per-fragment operations are enabled, these tests are also performed:

• the stencil test (see section 17.3.3);

• the depth buffer test (see section 17.3.4); and

• occlusion query sample counting (see section 17.3.5).

The pixel ownership and scissor tests are always performed.

OpenGL 4.5 (Core Profile) - October 24, 2016

14.9. EARLY PER-FRAGMENT TESTS 463

14.9.1 Pixel Ownership Test

The first test is to determine if the pixel at location (xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate of the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

If the draw framebuffer is a framebuffer object (see section 17.4.1), the pixel
ownership test always passes, since the pixels of framebuffer objects are owned by
the GL, not the window system. If the draw framebuffer is the default framebuffer,
the window system controls pixel ownership.

14.9.2 Scissor Test

The scissor test determines if (xw, yw) lies within the scissor rectangle defined by
four values for each viewport. These values are set with

void ScissorArrayv(uint first, sizei count, const
int *v);

void ScissorIndexed(uint index, int left, int bottom,
sizei width, sizei height);

void ScissorIndexedv(uint index, int *v);
void Scissor(int left, int bottom, sizei width,

sizei height);

ScissorArrayv defines a set of scissor rectangles that are each applied to the
corresponding viewport (see section 13.6.1). first specifies the index of the first
scissor rectangle to modify, and count specifies the number of scissor rectangles. v
contains the address of an array of integers containing the left, bottom, width and
height of the scissor rectangles, in that order.

If left ≤ xw < left + width and bottom ≤ yw < bottom + height for the
selected scissor rectangle, then the scissor test passes. Otherwise, the test fails and
the fragment is discarded. For points, lines, and polygons, the scissor rectangle for
a primitive is selected in the same manner as the viewport (see section 13.6.1). For
buffer clears (see section 17.4.3), the scissor rectangle numbered zero is used for
the scissor test.

Errors

An INVALID_VALUE error is generated by ScissorArrayv if first +count

OpenGL 4.5 (Core Profile) - October 24, 2016

14.9. EARLY PER-FRAGMENT TESTS 464

is greater than the value of MAX_VIEWPORTS.
An INVALID_VALUE error is generated if width or height is negative.

The scissor test is enabled or disabled for all viewports using Enable or Dis-
able with target SCISSOR_TEST. The test is enabled or disabled for a specific
viewport using Enablei or Disablei with the constant SCISSOR_TEST and the in-
dex of the selected viewport. When disabled, it is as if the scissor test always
passes. The value of the scissor test enable for viewport i can be queried by calling
IsEnabledi with target SCISSOR_TEST and index i. The value of the scissor test
enable for viewport zero may also be queried by calling IsEnabled with the same
target, but no index parameter.

Errors

An INVALID_VALUE error is generated by Enablei, Disablei and IsEn-
abledi if target is SCISSOR_TEST and index is greater than or equal to the
value of MAX_VIEWPORTS.

The state required consists of four integer values per viewport, and a bit in-
dicating whether the test is enabled or disabled for each viewport. In the initial
state, left = bottom = 0, and width and height are determined by the size of the
window into which the GL is to do its rendering for all viewports. If the default
framebuffer is bound but no default framebuffer is associated with the GL context
(see chapter 9), then width and height are initially set to zero. Initially, the scissor
test is disabled for all viewports.

ScissorIndexed and ScissorIndexedv specify the scissor rectangle for a single
viewport and are equivalent (assuming no errors are generated) to:

int v[] = { left, bottom, width, height };
ScissorArrayv(index, 1, v);

and

ScissorArrayv(index, 1, v);

respectively.
Scissor sets the scissor rectangle for all viewports to the same values and is

equivalent (assuming no errors are generated) to:

for (uint i = 0; i < MAX_VIEWPORTS; i++) {
ScissorIndexed(i, left, bottom, width, height);

}

OpenGL 4.5 (Core Profile) - October 24, 2016

14.9. EARLY PER-FRAGMENT TESTS 465

Calling Enable or Disable with target SCISSOR_TEST is equivalent, assuming
no errors, to:

for (uint i = 0; i < MAX_VIEWPORTS; i++) {
Enablei(SCISSOR_TEST, i);
/* or */
Disablei(SCISSOR_TEST, i);

}

14.9.3 Multisample Fragment Operations

This step modifies fragment coverage values based on the values of SAMPLE_-
COVERAGE, SAMPLE_COVERAGE_VALUE, SAMPLE_COVERAGE_INVERT,
SAMPLE_MASK, SAMPLE_MASK_VALUE, and an output sample mask option-
ally written by the fragment shader. If MULTISAMPLE is disabled, or if the value
of SAMPLE_BUFFERS is not one, this step is skipped.

All alpha values in this section refer only to the alpha component of the frag-
ment shader output linked to color number zero, index zero (see section 15.2.3).
If the fragment shader does not write to this output, the alpha value is undefined.

Sample coverage and sample mask operations are enabled or disabled by call-
ing Enable and Disable with targets SAMPLE_COVERAGE or SAMPLE_MASK, re-
spectively.

If a fragment shader is active and statically assigns to the built-in output
variable gl SampleMask, the fragment coverage is ANDed with the bits of the
sample mask. If such a fragment shader did not assign a value to gl SampleMask
due to flow of control, the value ANDed with the fragment coverage is undefined.
If no fragment shader is active, or if the active fragment shader does not statically
assign values to gl SampleMask, the fragment coverage is not modified.

Next, if SAMPLE_COVERAGE is enabled, the fragment coverage is ANDed with
a temporary coverage mask generated from the value of SAMPLE_COVERAGE_-
VALUE. If the value of SAMPLE_COVERAGE_INVERT is TRUE, this mask is inverted
(all bit values are inverted) before it is ANDed with the fragment coverage. Finally,
if SAMPLE_MASK is enabled, the fragment coverage is ANDed with the value of
SAMPLE_MASK_VALUE. This updated coverage becomes the new fragment cover-
age value.

No specific algorithm is required for converting the sample coverage value to
a temporary coverage mask. It is intended that the number of 1’s in this value be
proportional to the sample coverage value, with all 1’s corresponding to a value
of 1.0 and all 0’s corresponding to 0.0. It is also intended that the algorithm be
pseudo-random in nature, to avoid image artifacts due to regular coverage sample

OpenGL 4.5 (Core Profile) - October 24, 2016

14.9. EARLY PER-FRAGMENT TESTS 466

locations. The algorithm can and probably should be different at different pixel
locations. If it does differ, it should be defined relative to window, not screen,
coordinates, so that rendering results are invariant with respect to window position.

The values of SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT

are specified by calling

void SampleCoverage(float value, boolean invert);

with value set to the desired coverage value, and invert set to TRUE or FALSE. value
is clamped to [0, 1] before being stored as SAMPLE_COVERAGE_VALUE. These val-
ues may be queried as described in table 23.11.

The value of SAMPLE_MASK_VALUE is specified using

void SampleMaski(uint maskNumber, bitfield mask);

with mask set to the desired mask for mask word maskNumber. BitB of mask word
M corresponds to sample 32×M +B as described in section 14.3.1. The sample
mask value is queried by calling GetIntegeri v with target set to SAMPLE_MASK_-
VALUE and the index set to maskNumber.

Errors

An INVALID_VALUE error is generated if maskNumber is greater than or
equal to the value of MAX_SAMPLE_MASK_WORDS.

14.9.4 The Early Fragment Test Qualifier

The stencil test, depth buffer test and occlusion query sample counting are per-
formed if and only if early fragment tests are enabled in the active fragment shader
(see section 15.2.4). When early per-fragment operations are enabled, these op-
erations are performed prior to fragment shader execution, and the stencil buffer,
depth buffer, and occlusion query sample counts will be updated accordingly; these
operations will not be performed again after fragment shader execution.

When there is no active program, the active program has no fragment shader, or
the active program was linked with early fragment tests disabled, these operations
are performed only after fragment program execution, in the order described in
section 17.3.

If early fragment tests are enabled, any depth value computed by the fragment
shader has no effect. Additionally, the depth buffer, stencil buffer, and occlusion
query sample counts may be updated even for fragments or samples that would be
discarded after fragment shader execution due to per-fragment operations such as
alpha-to-coverage tests.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 15

Programmable Fragment
Processing

When the program object currently in use for the fragment stage (see section 7.3)
includes a fragment shader, its shader is considered active and is used to process
fragments resulting from rasterization (see section 14).

If the current fragment stage program object has no fragment shader, or no
fragment program object is current for the fragment stage, the results of fragment
shader execution are undefined.

The processed fragments resulting from fragment shader execution are then
further processed and written to the framebuffer as described in chapter 17.

15.1 Fragment Shader Variables

Fragment shaders can access uniforms belonging to the current program object.
Limits on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Fragment shaders also have access to samplers to perform texturing operations,
as described in section 7.10.

Fragment shaders can read input variables or inputs that correspond to the
attributes of the fragments produced by rasterization.

The OpenGL Shading Language Specification defines a set of built-in inputs
that can be be accessed by a fragment shader. These built-in inputs include data
associated with a fragment such as the fragment’s position.

Additionally, the previous active shader stage may define one or more output
variables (see section 11.1.2.1 and the OpenGL Shading Language Specification).
The values of these user-defined outputs are, if not flat shaded, interpolated across

467

15.2. SHADER EXECUTION 468

the primitive being rendered. The results of these interpolations are available when
inputs of the same name are defined in the fragment shader.

When interpolating input variables, the default screen-space location at which
these variables are sampled is defined in previous rasterization sections. The
default location may be overriden by interpolation qualifiers. When interpolat-
ing variables declared using centroid in, the variable is sampled at a location
within the pixel covered by the primitive generating the fragment. When interpo-
lating variables declared using sample in when MULTISAMPLE is enabled, the
fragment shader will be invoked separately for each covered sample and the vari-
able will be sampled at the corresponding sample point.

Additionally, built-in fragment shader functions provide further fine-grained
control over interpolation. The built-in functions interpolateAtCentroid

and interpolateAtSample will sample variables as though they were declared
with the centroid or sample qualifiers, respectively. The built-in function
interpolateAtOffset will sample variables at a specified (x, y) offset relative
to the center of the pixel. The range and granularity of offsets supported by this
function is implementation-dependent. If either component of the specified off-
set is less than the value of MIN_FRAGMENT_INTERPOLATION_OFFSET or greater
than the value of MAX_FRAGMENT_INTERPOLATION_OFFSET, the position used
to interpolate the variable is undefined. Not all values of offset may be supported;
x and y offsets may be rounded to fixed-point values with the number of fraction
bits given by the value of the implementation-dependent constant FRAGMENT_-
INTERPOLATION_OFFSET_BITS.

A fragment shader can also write to output variables. Values written to these
outputs are used in the subsequent per-fragment operations. Output variables can
be used to write floating-point, integer or unsigned integer values destined for
buffers attached to a framebuffer object, or destined for color buffers attached to the
default framebuffer. Section 15.2.3 describes how to direct these values to buffers.

15.2 Shader Execution

If there is an active program object present for the fragment stage, the executable
code for that program is used to process incoming fragments that are the result of
rasterization.

Following shader execution, the fixed-function operations described in chap-
ter 17 are performed.

Special considerations for fragment shader execution are described in the fol-
lowing sections.

OpenGL 4.5 (Core Profile) - October 24, 2016

15.2. SHADER EXECUTION 469

15.2.1 Texture Access

Section 11.1.3.1 describes texture lookup functionality accessible to a vertex
shader. The texel fetch and texture size query functionality described there also
applies to fragment shaders.

When a texture lookup is performed in a fragment shader, the GL computes
the filtered texture value τ in the manner described in sections 8.14 and 8.15,
and converts it to a texture base color Cb as shown in table 15.1, followed
by swizzling the components of Cb, controlled by the values of the texture pa-
rameters TEXTURE_SWIZZLE_R, TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B,
and TEXTURE_SWIZZLE_A. If the value of TEXTURE_SWIZZLE_R is denoted by
swizzler, swizzling computes the first component of Cs according to

if (swizzler == RED)
Cs[0] = Cb[0];

else if (swizzler == GREEN)
Cs[0] = Cb[1];

else if (swizzler == BLUE)
Cs[0] = Cb[2];

else if (swizzler == ALPHA)
Cs[0] = Ab;

else if (swizzler == ZERO)
Cs[0] = 0;

else if (swizzler == ONE)
Cs[0] = 1; // float or int depending on texture component type

Swizzling of Cs[1], Cs[2], and As are similarly controlled by the values of
TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A, re-
spectively.

The resulting four-component vector (Rs, Gs, Bs, As) is returned to the frag-
ment shader. For the purposes of level-of-detail calculations, the derivatives du

dx , du
dy ,

dv
dx , dv

dy , dw
dx and dw

dy may be approximated by a differencing algorithm as described
in section 8.13.1(“Derivative Functions”) of the OpenGL Shading Language Spec-
ification.

Texture lookups involving textures with depth and/or stencil component data
are performed as described in section 11.1.3.5.

15.2.2 Shader Inputs

The OpenGL Shading Language Specification describes the values that are avail-
able as inputs to the fragment shader.

OpenGL 4.5 (Core Profile) - October 24, 2016

15.2. SHADER EXECUTION 470

Texture Base Texture base color
Internal Format Cb Ab

RED (Rt, 0, 0) 1
RG (Rt, Gt, 0) 1
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 15.1: Correspondence of filtered texture components to texture base compo-
nents.

The built-in variable gl_FragCoord holds the fragment coordinate(
xf yf zf wf

)
for the fragment. Computing the fragment coordinate depends

on the fragment processing pixel-center and origin conventions (discussed below)
as follows:

xf =

{
xw − 1

2 , pixel-center convention is integer
xw, otherwise

y′f =

{
H − yw, origin convention is upper-left
yw, otherwise

yf =

{
y′f −

1
2 , pixel-center convention is integer

y′f otherwise

zf = zw

wf =
1

wc

(15.1)

where
(
xw yw zw

)
is the fragment’s window-space position, wc is the w com-

ponent of the fragment’s clip-space position (see section 13.6), and H is the win-
dow’s height in pixels. Note that zw already has a polygon offset added in, if
enabled (see section 14.6.5). zf must be precisely zero or one in the case where zw
is either zero or one, respectively. The 1

w value is computed from thewc coordinate
(see section 13.6).

Unless otherwise specified by layout qualifiers in the fragment shader (see
section 4.4.1.3(“Fragment Shader Inputs”) of the OpenGL Shading Language
Specification), the fragment processing pixel-center convention is half-integer and
the fragment processing origin convention is lower left.

The built-in variable gl_FrontFacing is set to true if the fragment is gen-
erated from a front-facing primitive, and false otherwise. For fragments gener-

OpenGL 4.5 (Core Profile) - October 24, 2016

15.2. SHADER EXECUTION 471

ated from triangle primitives (including ones resulting from primitives rendered
as points or lines), the determination is made by examining the sign of the area
computed by equation 14.8 of section 14.6.1 (including the possible reversal of
this sign controlled by FrontFace). If the sign is positive, fragments generated by
the primitive are front-facing; otherwise, they are back-facing. All other fragments
are considered front-facing.

If a geometry shader is active, the built-in variable gl_PrimitiveID con-
tains the ID value emitted by the geometry shader for the provoking vertex. If no
geometry shader is active, gl_PrimitiveID contains the number of primitives
processed by the rasterizer since the last drawing command was called. The first
primitive generated by a drawing command is numbered zero, and the primitive ID
counter is incremented after every individual point, line, or polygon primitive is
processed. For polygons drawn in point or line mode, the primitive ID counter is
incremented only once, even though multiple points or lines may be drawn.

Restarting a primitive using the primitive restart index (see section 10.3) has
no effect on the primitive ID counter.

gl_PrimitiveID is only defined under the same conditions that gl_-

VertexID is defined, as described under “Shader Inputs” in section 11.1.3.9.
The built-in read-only variable gl_SampleID is filled with the sample num-

ber of the sample currently being processed. This variable is in the range zero
to gl_NumSamples minus one, where gl_NumSamples is the total number of
samples in the framebuffer, or one if rendering to a non-multisample framebuffer.
Using this variable in a fragment shader causes the entire shader to be evaluated
per-sample. When rendering to a non-multisample buffer, or if multisample ras-
terization is disabled, gl_SampleID will always be zero. gl_NumSamples is the
sample count of the framebuffer regardless of whether multisample rasterization is
enabled or not.

The built-in read-only variable gl_SamplePosition contains the position of
the current sample within the multi-sample draw buffer. The x and y components
of gl_SamplePosition contain the sub-pixel coordinate of the current sample
and will have values in the range [0, 1]. The sub-pixel coordinates of the center of
the pixel are always (0.5, 0.5). Using this variable in a fragment shader causes the
entire shader to be evaluated per-sample. When rendering to a non-multisample
buffer, or if multisample rasterization is disabled, gl_SamplePosition will al-
ways be (0.5, 0.5).

The built-in variable gl_SampleMaskIn is an integer array holding bitfields
indicating the set of fragment samples covered by the primitive corresponding to
the fragment shader invocation. The number of elements in the array is⌈ s

32

⌉
,

OpenGL 4.5 (Core Profile) - October 24, 2016

15.2. SHADER EXECUTION 472

where s is the value of MAX SAMPLES the maximum number of color samples
supported by the implementation for any renderable internal format. Bit n of ele-
ment w in the array is set if and only if the sample numbered 32w+n is considered
covered for this fragment shader invocation. When rendering to a non-multisample
buffer, or if multisample rasterization is disabled, all bits are zero except for bit zero
of the first array element. That bit will be one if the pixel is covered and zero other-
wise. Bits in the sample mask corresponding to covered samples that will be killed
due to SAMPLE_COVERAGE or SAMPLE_MASK will not be set (see section 14.9.3).
When per-sample shading is active due to the use of a fragment input qualified by
sample or due to the use of the gl_SampleID or gl_SamplePosition vari-
ables, only the bit for the current sample is set in gl_SampleMaskIn. When state
specifies multiple fragment shader invocations for a given fragment, the sample
mask for any single fragment shader invocation may specify a subset of the cov-
ered samples for the fragment. In this case, the bit corresponding to each covered
sample will be set in exactly one fragment shader invocation.

Similarly to the limit on geometry shader output components (see sec-
tion 11.3.4.5), there is a limit on the number of components of built-in and
user-defined input variables that can be read by the fragment shader, given by
the value of the implementation-dependent constant MAX_FRAGMENT_INPUT_-
COMPONENTS.

When a program is linked, all components of any input variables read by a
fragment shader will count against this limit. A program whose fragment shader
exceeds this limit may fail to link, unless device-dependent optimizations are able
to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

15.2.3 Shader Outputs

The OpenGL Shading Language Specification describes the values that may be
output by a fragment shader. These outputs are split into two categories, user-
defined outputs and the built-in outputs gl_FragDepth and gl_SampleMask.

For fixed-point depth buffers, the final fragment depth written by a fragment
shader is first clamped to [0, 1] and then converted to fixed-point as if it were a
window z value (see section 13.6.1). For floating-point depth buffers, conversion
is not performed but clamping is. Note that the depth range computation is not
applied here, only the conversion to fixed-point.

The built-in integer array gl_SampleMask can be used to change the sample
coverage for a fragment from within the shader. The number of elements in the

OpenGL 4.5 (Core Profile) - October 24, 2016

15.2. SHADER EXECUTION 473

array is ⌈ s
32

⌉
,

where s is the value of MAX SAMPLES the maximum number of color samples
supported by the implementation for any renderable internal format. If bit n of
element w in the array is set to zero, sample 32w+ n should be considered uncov-
ered for the purposes of additional multisample fragment operations, as described
in section 17.3.10, and the corresponding bits in the fragment coverage mask are
set to zero. Modifying the sample mask in this way may exclude covered sam-
ples from being processed further at a per-fragment granularity. However, setting
sample mask bits to one will never enable samples not covered by the original
primitive. If the fragment shader is being evaluated at any frequency other than
per-fragment, bits of the sample mask not corresponding to the current fragment
shader invocation do not affect the fragment coverage mask. If a fragment shader
does not statically assign a value to gl_SampleMask, the fragment coverage mask
is not modified. If a value is not assigned to gl_SampleMask due to flow of con-
trol, the affected bits of the sample mask are undefined.

Color values written by a fragment shader may be floating-point, signed inte-
ger, or unsigned integer. If the color buffer has a signed or unsigned normalized
fixed-point format, color values are assumed to be floating-point and are converted
to fixed-point as described in equations 2.4 or 2.3, respectively; otherwise no type
conversion is applied. If the values written by the fragment shader do not match
the format(s) of the corresponding color buffer(s), the result is undefined.

Writing to gl_FragDepth specifies the depth value for the fragment being
processed. If the active fragment shader does not statically assign a value to gl_-

FragDepth, then the depth value generated during rasterization is used by sub-
sequent stages of the pipeline. Otherwise, the value assigned to gl_FragDepth

is used, and is undefined for any fragments where statements assigning a value to
gl_FragDepth are not executed. Thus, if a shader statically assigns a value to
gl_FragDepth, then it is responsible for always writing it.

The binding of a user-defined output variable to components of a fragment
color number can be specified explicitly in shader text or using the command

void BindFragDataLocationIndexed(uint program,
uint colorNumber, uint index, const char * name);

specifies that the output variable name in program should be bound to fragment
color colorNumber when the program is next linked. index may be zero or one to
specify that the color will be used as either the first or second color input to the
blend equation, respectively, as described in section 17.3.6.

OpenGL 4.5 (Core Profile) - October 24, 2016

15.2. SHADER EXECUTION 474

If name was bound previously, its assigned binding is replaced with colorNum-
ber. name must be a null-terminated string.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if index is greater than one, if
colorNumber is greater than or equal to the value of MAX_DRAW_BUFFERS
and index is zero, or if colorNumber is greater than or equal to the value of
MAX_DUAL_SOURCE_DRAW_BUFFERS and index is equal to one.

The command

void BindFragDataLocation(uint program,
uint colorNumber, const char * name);

is equivalent to

BindFragDataLocationIndexed(program, colorNumber, 0, name);

BindFragDataLocation has no effect until the program is linked. In particular,
it doesn’t modify the bindings of outputs in a program that has already been linked.

Errors

An INVALID_OPERATION error is generated if name starts with the re-
served gl_ prefix.

When a program is linked, each active user-defined fragment shader output
variable will have a binding consisting of a fragment color number, a fragment
color index, and a component index. Output variables declared with location,
component, or index layout qualifiers will use the values specified in the shader
text. Output variables without such layout qualifiers will use bindings speci-
fied by BindFragDataLocationIndexed or BindFragDataLocation, if any. Oth-
erwise, the linker will automatically assign a fragment color number, using any
color number not already assigned to another active fragment shader output vari-
able. The fragment color index and component index of an output variable binding
will default to zero unless values are explicitly specified by a layout qualifer or

OpenGL 4.5 (Core Profile) - October 24, 2016

15.2. SHADER EXECUTION 475

BindFragDataLocationIndexed. The properties of an active fragment shader out-
put variable binding can be queried using the command GetProgramResourceiv
with a programInterface of PROGRAM_OUTPUT and props values of LOCATION,
LOCATION_INDEX, and LOCATION_COMPONENT.

When a fragment shader terminates, the value of each active user-defined out-
put variable is written to components of the fragment color output to which it is
bound. The set of fragment color components written is determined according to
the variable’s data type and component index binding, using the mappings in ta-
ble 11.1. For an output variable declared as an array bound to fragment color num-
ber i, individual active array elements are written to consecutive fragment color
numbers beginning with i, with the components written determined from the array
element’s data type and the array variable’s component index binding.

Output binding assignments will cause LinkProgram to fail:

• if the number of active outputs is greater than the value of MAX_DRAW_-
BUFFERS;

• if the program has an active output assigned to a location greater than or
equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has an active
output assigned an index greater than or equal to one;

• if two output variables are bound to the same output number and index with
overlapping components selected;

• if two output variables with different component types (signed integer, un-
signed integer, or floating-point) are bound to the same output number, even
if selected components do not overlap; or

• if the explicit binding assigments do not leave enough space for the linker to
automatically assign a location for an output array, which requires multiple
contiguous locations.

BindFragDataLocationIndexed may be issued before any shader objects are
attached to a program object. Hence it is allowed to bind any name (except a name
starting with gl_) to a color number and index, including a name that is never used
as an output in any fragment shader object. Assigned bindings for variables that do
not exist are ignored.

To determine the set of fragment shader output attribute variables used by a pro-
gram, applications can query the properties and active resources of the PROGRAM_-
OUTPUT interface of a program including a fragment shader.

Additionally, the commands

OpenGL 4.5 (Core Profile) - October 24, 2016

15.2. SHADER EXECUTION 476

int GetFragDataLocation(uint program, const
char *name);

int GetFragDataIndex(uint program, const char *name);

are provided to query the location and fragment color index assigned to a fragment
shader output variable.

Errors

If program has been linked successfully but contains no fragment shader,
no error is generated but -1 will be returned.

An INVALID_OPERATION error is generated and -1 is returned if program
has not been linked successfully.

Otherwise, the commands are equivalent to

GetProgramResourceLocation(program, PROGRAM_OUTPUT, name);

and

GetProgramResourceLocationIndex(program, PROGRAM_OUTPUT, name);

respectively.

15.2.4 Early Fragment Tests

An explicit control is provided to allow fragment shaders to enable early frag-
ment tests. If the fragment shader specifies the early_fragment_tests layout
qualifier, the per-fragment tests described in section 14.9 will be performed prior
to fragment shader execution. Otherwise, they will be performed after fragment
shader execution.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 16

Fixed-Function Fragment
Processing

This chapter is only defined in the compatibility profile.

477

Chapter 17

Writing Fragments and Samples
to the Framebuffer

After programmable fragment processing, the following fixed-function operations
are applied to the resulting fragments:

• Antialiasing application (see section 17.1).

• Multisample point fade (see section 17.2).

• Per-fragment operations and writing to the framebuffer (see section 17.3).

Writing to the framebuffer is the final set of operations performed as a result of
drawing primitives.

Additional commands controlling the framebuffer as a whole are described in
section 17.4.

17.1 Antialiasing Application

If antialiasing is enabled for the primitive from which a rasterized fragment was
produced, then the computed coverage value is applied to the fragment. The value
is multiplied by the fragment’s alpha value to yield a final alpha value. The
coverage value is applied separately to each fragment color, and only applied if the
corresponding color buffer in the framebuffer has a fixed- or floating-point format.

17.2 Multisample Point Fade

If multisampling is enabled and the rasterized fragment results from a point prim-
itive, then the computed fade factor from equation 14.2 is applied to the fragment.

478

17.3. PER-FRAGMENT OPERATIONS 479

The fade factor is multiplied by the fragment’s alpha value to yield a final alpha
value. The fade factor is applied separately to each fragment color, and only
applied if the corresponding color buffer in the framebuffer has a fixed- or floating-
point format.

17.3 Per-Fragment Operations

A fragment is produced by rasterization with window coordinates of (xw, yw)
and depth z, as described in chapter 14. The fragment is then modified by pro-
grammable fragment processing, which adds associated data as described in chap-
ter 15. The fragment is then further modified, and possibly discarded by the per-
fragment operations described in this chapter. These operations are diagrammed
in figure 17.1, in the order in which they are performed. Finally, if the fragment
was not discarded, it is used to update the framebuffer at the fragment’s window
coordinates.

The stencil test, depth test, and occlusion query operations described in sec-
tions 17.3.3, 17.3.4, and 17.3.5 may instead be performed prior to fragment pro-
cessing, as described in section 14.9, if requested by the fragment program.

17.3.1 Alpha To Coverage

This step modifies fragment alpha and coverage values based on the values of
SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE. If MULTISAMPLE
is disabled, if the value of SAMPLE_BUFFERS is not one, or if draw buffer zero is
not NONE and the buffer it references has an integer format, these operations are
skipped.

Alpha to coverage and alpha to one operations are enabled or disabled
by calling Enable and Disable with targets SAMPLE_ALPHA_TO_COVERAGE or
SAMPLE_ALPHA_TO_ONE, respectively.

All alpha values in this section refer only to the alpha component of the frag-
ment shader output linked to color number zero, index zero (see section 15.2.3).

If SAMPLE_ALPHA_TO_COVERAGE is enabled, a temporary coverage value is
generated where each bit is determined by the alpha value at the corresponding
sample location (see section 14.3.1). The temporary coverage value is then ANDed
with the fragment coverage value to generate a new fragment coverage value.

This temporary coverage is generated in the same manner as for sample cover-
age (see section 14.9.3), but as a function of the fragment’s alpha value, clamped
to the range [0, 1]. The function need not be identical, but it must have the same
properties of proportionality and invariance.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 480

Depth Buffer
Test (*)

Write To
Framebuffer

Fragment
Shader

Logicop

Fragment
(or sample)

from
Rasterization

Stencil
Test (*)

SRGB
Conversion

Dithering

Alpha To
Coverage

Operations

Framebuffer Framebuffer

Occlusion
Query (*)

Blending

Framebuffer

Framebuffer

Fragment (or sample)
and Associated Data

Additional
Multisample

Fragment
Operations

Figure 17.1. Per-fragment operations. The boxes labelled with “(*)” may instead
be performed during early per-fragment operations, as described in section 14.9.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 481

Next, if SAMPLE_ALPHA_TO_ONE is enabled, each alpha value is replaced by
the maximum representable alpha value for fixed-point color buffers, or by 1.0 for
floating-point buffers. Otherwise, the alpha values are not changed.

17.3.2 Alpha Test

This subsection is only defined in the compatibility profile.

17.3.3 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location (xw, yw) and a reference
value. The test is enabled or disabled with the Enable and Disable commands,
using target STENCIL_TEST. When disabled, the stencil test and associated modi-
fications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilFuncSeparate(enum face, enum func, int ref,

uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);
void StencilOpSeparate(enum face, enum sfail, enum dpfail,

enum dppass);

There are two sets of stencil-related state, the front stencil state set and the
back stencil state set. Stencil tests and writes use the front set of stencil state
when processing fragments rasterized from non-polygon primitives (points and
lines) and front-facing polygon primitives while the back set of stencil state is
used when processing fragments rasterized from back-facing polygon primitives.
For the purposes of stencil testing, a primitive is still considered a polygon even if
the polygon is to be rasterized as points or lines due to the current polygon mode.
Whether a polygon is front- or back-facing is determined in the same manner used
for face culling (see section 14.6.1).

StencilFuncSeparate and StencilOpSeparate take a face argument which can
be FRONT, BACK, or FRONT_AND_BACK and indicates which set of state is affected.
StencilFunc and StencilOp set front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails. ref is an integer reference value that is used
in the unsigned stencil comparison. Stencil comparison operations and queries of
ref clamp its value to the range [0, 2s − 1], where s is the number of bits in the
stencil buffer attached to the draw framebuffer. The s least significant bits of mask

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 482

are bitwise ANDed with both the reference and the stored stencil value, and the
resulting masked values are those that participate in the comparison controlled by
func. func is a symbolic constant that determines the stencil comparison function;
the eight symbolic constants are NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, and if
the masked reference value is less than, less than or equal to, equal to, greater than
or equal to, greater than, or not equal to the masked stored value in the stencil
buffer.

StencilOp and StencilOpSeparate take three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, and DECR_WRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at 0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in 0, and decrementing 0 results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (see section 17.3.4) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed to StencilFunc or StencilFuncSeparate
and to StencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and
back stencil reference values are both zero, the front and back stencil comparison
functions are both ALWAYS, and the front and back stencil masks are both set to the
value 2s − 1, where s is greater than or equal to the number of bits in the deepest
stencil buffer supported by the GL implementation. Initially, all three front and
back stencil operations are KEEP.

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls to StencilFunc.

17.3.4 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the generic Enable and Disable com-
mands using target DEPTH_TEST. When disabled, the depth comparison and sub-

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 483

sequent possible updates to the depth buffer value are bypassed and the fragment is
passed to the next operation. The stencil value, however, is modified as indicated
below as if the depth buffer test passed. If enabled, the comparison takes place and
the depth buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’s zw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s (xw, yw)
coordinates.

If depth clamping (see section 13.5) is enabled, before the incoming fragment’s
zw is compared zw is clamped to the range [min(n, f),max(n, f)], where n and f
are the current near and far depth range values (see section 13.6.1)

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s (xw, yw) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s (xw, yw)
location is set to the fragment’s zw value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

17.3.5 Occlusion Queries

Occlusion queries use query objects to track the number of fragments or samples
that pass the depth test. An occlusion query can be started and finished by calling
BeginQuery and EndQuery, respectively, with a target of SAMPLES_PASSED,
ANY_SAMPLES_PASSED, or ANY_SAMPLES_PASSED_CONSERVATIVE.

When an occlusion query is started with target SAMPLES_PASSED, the
samples-passed count maintained by the GL is set to zero. When an occlusion
query is active, the samples-passed count is incremented for each fragment that
passes the depth test. If the value of SAMPLE_BUFFERS is zero, then the samples-
passed count is incremented by one for each fragment. If the value of SAMPLE_-
BUFFERS is one, then the samples-passed count is incremented by the number of

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 484

samples whose coverage bit is set. However, implementations, at their discretion,
may instead increase the samples-passed count by the value of SAMPLES if any
sample in the fragment is covered.

When an occlusion query finishes and all fragments generated by commands
issued prior to EndQuery have been generated, the samples-passed count is written
to the corresponding query object as the query result value, and the query result for
that object is marked as available.

When an occlusion query is started with the target ANY_SAMPLES_PASSED,
the samples-boolean state maintained by the GL is set to FALSE. While that oc-
clusion query is active, the samples-boolean state is set to TRUE if any fragment
or sample passes the depth test. When the target is ANY_SAMPLES_PASSED_-

CONSERVATIVE, an implementation may choose to use a less precise version of
the test which can additionally set the samples-boolean state to TRUE in some other
implementation-dependent cases. This may offer better performance on some im-
plementations at the expense of false positives. When the occlusion query finishes,
the samples-boolean state of FALSE or TRUE is written to the corresponding query
object as the query result value, and the query result for that object is marked as
available.

17.3.6 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with
the destination R, G, B, and A values stored in the framebuffer at the fragment’s
(xw, yw) location.

Source and destination values are combined according to the blend equation,
quadruplets of source and destination weighting factors determined by the blend
functions, and a constant blend color to obtain a new set of R, G, B, and A values,
as described below.

If the color buffer is fixed-point, the components of the source and destination
values and blend factors are each clamped to [0, 1] or [−1, 1] respectively for an un-
signed normalized or signed normalized color buffer prior to evaluating the blend
equation. If the color buffer is floating-point, no clamping occurs. The resulting
four values are sent to the next operation.

Blending applies only if the color buffer has a fixed-point or floating-point
format. If the color buffer has an integer format, proceed to the next operation.

Blending is enabled or disabled for an individual draw buffer with the com-
mands

void Enablei(enum target, uint index);
void Disablei(enum target, uint index);

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 485

target is the symbolic constant BLEND and index is an integer i specifying the draw
buffer associated with the symbolic constant DRAW_BUFFERi. If the color buffer
associated with DRAW_BUFFERi is one of FRONT, BACK, LEFT, RIGHT, or FRONT_-
AND_BACK (specifying multiple color buffers), then the state enabled or disabled
is applicable for all of the buffers. Blending can be enabled or disabled for all
draw buffers using Enable or Disable with target BLEND. If blending is disabled
for a particular draw buffer, or if logical operation on color values is enabled (sec-
tion 17.3.9), proceed to the next operation.

If multiple fragment colors are being written to multiple buffers (see sec-
tion 17.4.1), blending is computed and applied separately for each fragment color
and the corresponding buffer.

Errors

An INVALID_VALUE error is generated by Enablei, Disablei and IsEn-
abledi if target is BLEND and index is greater than or equal to the value of
MAX_DRAW_BUFFERS.

17.3.6.1 Blend Equation

Blending is controlled by the blend equation. This equation can be simultaneously
set to the same value for all draw buffers using the commands

void BlendEquation(enum mode);
void BlendEquationSeparate(enum modeRGB,

enum modeAlpha);

or for an individual draw buffer using the indexed commands

void BlendEquationi(uint buf, enum mode);
void BlendEquationSeparatei(uint buf, enum modeRGB,

enum modeAlpha);

BlendEquationSeparate and BlendEquationSeparatei argument modeRGB
determines the RGB blend equation while modeAlpha determines the alpha blend
equation. BlendEquation and BlendEquationi argument mode determines both
the RGB and alpha blend equations. mode, modeRGB, and modeAlpha must be
one of the blend equation modes in table 17.1. BlendEquation and BlendEqua-
tionSeparate modify the blend equations for all draw buffers. BlendEquationi
and BlendEquationSeparatei modify the blend equations associated with an in-
dividual draw buffer. The buf argument is an integer i that indicates that the blend
equations should be modified for DRAW_BUFFERi.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 486

Errors

An INVALID_VALUE error is generated if buf is not in the range zero to
the value of MAX_DRAW_BUFFERS minus one.

An INVALID_ENUM error is generated if any of mode, modeRGB, or mod-
eAlpha are not one of the blend equation modes in table 17.1.

Signed or unsigned normalized fixed-point destination (framebuffer) com-
ponents are represented as described in section 2.3.5. Constant color compo-
nents, floating-point destination components, and source (fragment) components
are taken to be floating-point values. If source components are represented in-
ternally by the GL as fixed-point values, they are also interpreted according to
section 2.3.5.

Prior to blending, signed and unsigned normalized fixed-point color compo-
nents undergo an implied conversion to floating-point using equations 2.2 and 2.1,
respectively. This conversion must leave the values zero and one invariant. Blend-
ing computations are treated as if carried out in floating-point, and will be per-
formed with a precision and dynamic range no lower than that used to represent
destination components.

If FRAMEBUFFER_SRGB is enabled and the value of FRAMEBUFFER_-

ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding
to the destination buffer is SRGB (see section 9.2.3), the R, G, and B destination
color values (after conversion from fixed-point to floating-point) are considered to
be encoded for the sRGB color space and hence must be linearized prior to their
use in blending. Each R, G, and B component is converted in the same fashion
described for sRGB texture components in section 8.24.

If FRAMEBUFFER_SRGB is disabled or the value of FRAMEBUFFER_-

ATTACHMENT_COLOR_ENCODING is not SRGB, no linearization is performed.
The resulting linearized R, G, and B and unmodified A values are recombined

as the destination color used in blending computations.
Table 17.1 provides the corresponding per-component blend equations for each

mode, whether acting on RGB components for modeRGB or the alpha component
for modeAlpha.

In the table, the s subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, the d subscript
on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and the c subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally, Sr, Sg, Sb, and Sa are the red, green, blue, and alpha com-

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 487

Mode RGB Components Alpha Component
FUNC_ADD R = Rs ∗ Sr +Rd ∗Dr A = As ∗ Sa +Ad ∗Da

G = Gs ∗ Sg +Gd ∗Dg

B = Bs ∗ Sb +Bd ∗Db

FUNC_SUBTRACT R = Rs ∗ Sr −Rd ∗Dr A = As ∗ Sa −Ad ∗Da

G = Gs ∗ Sg −Gd ∗Dg

B = Bs ∗ Sb −Bd ∗Db

FUNC_REVERSE_SUBTRACT R = Rd ∗Dr −Rs ∗ Sr A = Ad ∗Da −As ∗ Sa
G = Gd ∗Dg −Gs ∗ Sg
B = Bd ∗Db −Bs ∗ Sb

MIN R = min(Rs, Rd) A = min(As, Ad)
G = min(Gs, Gd)
B = min(Bs, Bd)

MAX R = max(Rs, Rd) A = max(As, Ad)
G = max(Gs, Gd)
B = max(Bs, Bd)

Table 17.1: RGB and alpha blend equations.

ponents of the source weighting factors determined by the source blend function,
and Dr, Dg, Db, and Da are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend
functions are described below.

17.3.6.2 Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. There are four possible sources for weighting factors. These are the
constant color (Rc, Gc, Bc, Ac) set with BlendColor (see below), the first source
color (Rs0, Gs0, Bs0, As0), the second source color (Rs1, Gs1, Bs1, As1), and the
destination color (the existing content of the draw buffer). Additionally the special
constants ZERO and ONE are available as weighting factors.

Blend functions are simultaneously specified for all draw buffers using the
commands

void BlendFunc(enum src, enum dst);
void BlendFuncSeparate(enum srcRGB, enum dstRGB,

enum srcAlpha, enum dstAlpha);

or for an individual draw buffer using the indexed commands

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 488

void BlendFunci(uint buf, enum src, enum dst);
void BlendFuncSeparatei(uint buf, enum srcRGB,

enum dstRGB, enum srcAlpha, enum dstAlpha);

BlendFuncSeparate and BlendFuncSeparatei arguments srcRGB and
dstRGB determine the source and destination RGB blend functions, respectively,
while srcAlpha and dstAlpha determine the source and destination alpha blend
functions. BlendFunc and BlendFunci argument src determines both RGB and
alpha source functions, while dst determines both RGB and alpha destination func-
tions. BlendFuncSeparate and BlendFunc modify the blend functions for all
draw buffers. BlendFuncSeparatei and BlendFunci modify the blend functions
associated with an individual draw buffer. The buf argument is an integer i that
indicates that the blend functions should be modified for DRAW_BUFFERi.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table 17.2.

Errors

An INVALID_VALUE error is generated if buf is not in the range zero to
the value of MAX_DRAW_BUFFERS minus one.

An INVALID_ENUM error is generated if any of src, dst, srcRGB, dstRGB,
srcAlpha, or dstAlpha are not one of the blend functions in table 17.2.

17.3.6.3 Dual Source Blending and Multiple Draw Buffers

Blend functions that require the second color input, (Rs1, Gs1, Bs1, As1) (SRC1_-
COLOR, SRC1_ALPHA, ONE_MINUS_SRC1_COLOR, or ONE_MINUS_SRC1_ALPHA)
may consume hardware resources that could otherwise be used for rendering to
multiple draw buffers. Therefore, the number of draw buffers that can be attached
to a framebuffer may be lower when using dual-source blending.

The maximum number of draw buffers that may be attached to a single frame-
buffer when using dual-source blending functions is implementation-dependent
and may be queried by calling GetIntegerv with pname MAX_DUAL_SOURCE_-

DRAW_BUFFERS. When using dual-source blending, MAX_DUAL_SOURCE_DRAW_-
BUFFERS should be used in place of MAX_DRAW_BUFFERS to determine the max-
imum number of draw buffers that may be attached to a single framebuffer. The
value of MAX_DUAL_SOURCE_DRAW_BUFFERS must be at least 1. If the value of
MAX_DUAL_SOURCE_DRAW_BUFFERS is 1, then dual-source blending and multiple
draw buffers cannot be used simultaneously.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 489

Function RGB Blend Factors Alpha Blend Factor
(Sr, Sg, Sb) or (Dr, Dg, Db) Sa or Da

ZERO (0, 0, 0) 0

ONE (1, 1, 1) 1

SRC_COLOR (Rs0, Gs0, Bs0) As0

ONE_MINUS_SRC_COLOR (1, 1, 1)− (Rs0, Gs0, Bs0) 1−As0

DST_COLOR (Rd, Gd, Bd) Ad

ONE_MINUS_DST_COLOR (1, 1, 1)− (Rd, Gd, Bd) 1−Ad

SRC_ALPHA (As0, As0, As0) As0

ONE_MINUS_SRC_ALPHA (1, 1, 1)− (As0, As0, As0) 1−As0

DST_ALPHA (Ad, Ad, Ad) Ad

ONE_MINUS_DST_ALPHA (1, 1, 1)− (Ad, Ad, Ad) 1−Ad

CONSTANT_COLOR (Rc, Gc, Bc) Ac

ONE_MINUS_CONSTANT_COLOR (1, 1, 1)− (Rc, Gc, Bc) 1−Ac

CONSTANT_ALPHA (Ac, Ac, Ac) Ac

ONE_MINUS_CONSTANT_ALPHA (1, 1, 1)− (Ac, Ac, Ac) 1−Ac

SRC_ALPHA_SATURATE (f, f, f)1 1

SRC1_COLOR (Rs1, Gs1, Bs1) As1

ONE_MINUS_SRC1_COLOR (1, 1, 1)− (Rs1, Gs1, Bs1) 1−As1

SRC1_ALPHA (As1, As1, As1) As1

ONE_MINUS_SRC1_ALPHA (1, 1, 1)− (As1, As1, As1) 1−As1

Table 17.2: RGB and ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.
1 f = min(As0, 1−Ad).

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 490

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if either blend function requires the second color input
for any draw buffer, and any draw buffers greater than or equal to the value of
MAX_DUAL_SOURCE_DRAW_BUFFERS have values other than NONE.

17.3.6.4 Generation of Second Color Source for Blending

When using a fragment shader with dual-source blending functions, the color out-
puts are bound to the first and second inputs of the blender using BindFragDat-
aLocationIndexed as described in section 15.2.3. Data written to the first of these
outputs becomes the first source color input to the blender (corresponding to SRC_-
COLOR and SRC_ALPHA). Data written to the second of these outputs generates
the second source color input to the blender (corresponding to SRC1_COLOR and
SRC1_ALPHA).

If the second color input to the blender is not written in the shader, or if no
output is bound to the second input of a blender, the result of the blending operation
is not defined.

17.3.6.5 Blend Color

The constant color Cc to be used in blending is specified with the command

void BlendColor(float red, float green, float blue,
float alpha);

The constant color can be used in both the source and destination blending
functions. If destination framebuffer components use an unsigned normalized
fixed-point representation, the constant color components are clamped to the range
[0, 1] when computing blend factors.

17.3.6.6 Blending State

The state required for blending, for each draw buffer, is two integers for the RGB
and alpha blend equations, four integers indicating the source and destination RGB
and alpha blending functions, and a bit indicating whether blending is enabled or
disabled. Additionally, four floating-point values to store the RGBA constant blend
color are required.

For all draw buffers, the initial blend equations for RGB and alpha are both
FUNC_ADD, and the initial blending functions are ONE for the source RGB and alpha

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 491

functions and ZERO for the destination RGB and alpha functions. Initially, blending
is disabled for all draw buffers. The initial constant blend color is (R,G,B,A) =
(0, 0, 0, 0).

The value of the blend enable for draw buffer i may be queried by calling
IsEnabledi with target BLEND and index i, and the values of the blend equations
and functions may be queried by calling GetIntegeri v with the corresponding
target as shown in table 23.21 and index i.

The value of the blend enable, or the blend equations and functions for draw
buffer zero may also be queried by calling IsEnabled or GetIntegerv respectively,
with the same target but no index parameter.

Blending occurs once for each color buffer currently enabled for blending and
for writing (section 17.4.1) using each buffer’s color for Cd. If a color buffer has
no A value, then Ad is taken to be 1.

17.3.7 sRGB Conversion

If FRAMEBUFFER_SRGB is enabled and the value of FRAMEBUFFER_-

ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding
to the destination buffer is SRGB1 (see section 9.2.3), the R, G, and B values after
blending are converted into the non-linear sRGB color space by computing

cs =

0.0, cl ≤ 0

12.92cl, 0 < cl < 0.0031308

1.055c0.41666l − 0.055, 0.0031308 ≤ cl < 1

1.0, cl ≥ 1

(17.1)

where cl is the R, G, or B element and cs is the result (effectively converted into an
sRGB color space).

If FRAMEBUFFER_SRGB is disabled or the value of FRAMEBUFFER_-

ATTACHMENT_COLOR_ENCODING is not SRGB, then

cs = cl.

The resulting cs values for R, G, and B, and the unmodified A form a new
RGBA color value. If the color buffer is fixed-point, each component is clamped
to the range [0, 1] and then converted to a fixed-point value using equation 2.3. The
resulting four values are sent to the subsequent dithering operation.

1Note that only unsigned normalized fixed-point color buffers may be SRGB-encoded. Signed
normalized fixed-point + SRGB encoding is not defined.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 492

17.3.8 Dithering

Dithering selects between two representable color values. A representable value is
a value that has an exact representation in the color buffer. Dithering selects, for
each color component, either the largest representable color value (for that partic-
ular color component) that is less than or equal to the incoming color component
value, c, or the smallest representable color value that is greater than or equal to
c. The selection may depend on the xw and yw coordinates of the pixel, as well as
on the exact value of c. If one of the two values does not exist, then the selection
defaults to the other value.

Many dithering selection algorithms are possible, but an individual selection
must depend only on the incoming component value and the fragment’s x and y
window coordinates. If dithering is disabled, then one of the two values above is
selected, in an implementation-dependent manner that must not depend on the xw
and yw coordinates of the pixel.

Dithering is enabled and disabled by calling Enable or Disable with target
DITHER. The state required is a single bit. Initially, dithering is enabled.

17.3.9 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color val-
ues and the color values stored at the corresponding location in the framebuffer.
The result replaces the values in the framebuffer at the fragment’s (xw, yw) coor-
dinates.

The logical operation on color values is enabled or disabled by calling Enable
or Disable with target COLOR_LOGIC_OP. If the logical operation is enabled for
color values, it is as if blending were disabled, regardless of the value of BLEND. If
multiple fragment colors are being written to multiple buffers (see section 17.4.1),
the logical operation is computed and applied separately for each fragment color
and the corresponding buffer.

Logical operation has no effect on a floating-point destination color buffer,
or when FRAMEBUFFER_SRGB is enabled and the value of FRAMEBUFFER_-

ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding
to the destination buffer is SRGB (see section 9.2.3). However, if logical operation
is enabled, blending is still disabled.

The logical operation is selected by

void LogicOp(enum op);

op must be one of the logicop modes in table 17.3, which also describes the result-
ing operation when that mode is selected. s is the value of the incoming fragment

OpenGL 4.5 (Core Profile) - October 24, 2016

17.3. PER-FRAGMENT OPERATIONS 493

Logicop Mode Operation
CLEAR 0

AND s ∧ d
AND_REVERSE s ∧ ¬d
COPY s

AND_INVERTED ¬s ∧ d
NOOP d

XOR s xor d

OR s ∨ d
NOR ¬(s ∨ d)

EQUIV ¬(s xor d)

INVERT ¬d
OR_REVERSE s ∨ ¬d
COPY_INVERTED ¬s
OR_INVERTED ¬s ∨ d
NAND ¬(s ∧ d)

SET all 1’s

Table 17.3: Logical operation op arguments to LogicOp and their corresponding
operations.

and d is the value stored in the framebuffer.
Logical operations are performed independently for each red, green, blue, and

alpha value of each color buffer that is selected for writing. The required state is
an integer indicating the logical operation, and a bit indicating whether the logical
operation is enabled or disabled. The initial state is for the logic operation to be
given by COPY, and to be disabled.

Errors

An INVALID_VALUE error is generated if op is not one of the logicop
modes in table 17.3.

17.3.10 Additional Multisample Fragment Operations

If the DrawBuffer mode (see section 17.4.1) is NONE, no change is made to any
multisample or color buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, the

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 494

stencil test, depth test, blending, dithering, and logical operations are performed
for each pixel sample, rather than just once for each fragment. Failure of the sten-
cil or depth test results in termination of the processing of that sample, rather than
discarding of the fragment. All operations are performed on the color, depth, and
stencil values stored in the multisample renderbuffer attachments if a draw frame-
buffer object is bound, or otherwise in the multisample buffer of the default frame-
buffer. The contents of the color buffers are not modified at this point.

Stencil, depth, blending, dithering, and logical operations are performed for
a pixel sample only if that sample’s fragment coverage bit is a value of 1. If the
corresponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLE is disabled, and the value of SAMPLE_BUFFERS is one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization
is allowed, however. An implementation may choose to identify a centermost sam-
ple, and to perform stencil and depth tests on only that sample. Regardless of the
outcome of the stencil test, all multisample buffer stencil sample values are set to
the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment’s centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

If a draw framebuffer object is not bound, after all operations have been com-
pleted on the multisample buffer, the sample values for each color in the multisam-
ple buffer are combined to produce a single color value, and that value is written
into the corresponding color buffers selected by DrawBuffer or DrawBuffers. An
implementation may defer the writing of the color buffers until a later time, but the
state of the framebuffer must behave as if the color buffers were updated as each
fragment was processed. The method of combination is not specified. If the frame-
buffer contains sRGB values, then it is recommended that the an average of sam-
ple values is computed in a linearized space, as for blending (see section 17.3.6).
Otherwise, a simple average computed independently for each color component is
recommended.

17.4 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 495

17.4.1 Selecting Buffers for Writing

The first such operation is controlling the color buffers into which each of the
fragment color values is written. This is accomplished with either *DrawBuffer
or *DrawBuffers commands described below.

The set of buffers of a framebuffer object to which fragment color zero is writ-
ten is controlled with the commands

void DrawBuffer(enum buf);
void NamedFramebufferDrawBuffer(uint framebuffer,

enum buf);

For DrawBuffer, the framebuffer object is that bound to the DRAW_-

FRAMEBUFFER binding. For NamedFramebufferDrawBuffer, framebuffer is
zero or the name of a framebuffer object. If framebuffer is zero, then the default
draw framebuffer is affected.
If the default framebuffer is affected (see section 9), buf must be one of the values
listed in table 17.4. In this case, buf is a symbolic constant specifying zero, one,
two, or four buffers for writing. These constants refer to the four potentially visible
buffers (front left, front right, back left, and back right). Arguments that omit
reference to LEFT or RIGHT refer to both left and right buffers. Arguments that
omit reference to FRONT or BACK refer to both front and back buffers.

If a framebuffer object is affected, buf must be one of the values listed in ta-
ble 17.5, which summarizes the constants and the buffers they indicate. In this case,
buf specifies a single color buffer for writing. Specifying COLOR_ATTACHMENTi

enables drawing only to the image attached to the framebuffer at that attachment
point.

Errors

An INVALID_OPERATION error is generated by NamedFramebuffer-
DrawBuffer if framebuffer is not zero or the name of an existing framebuffer
object.

An INVALID_ENUM error is generated if buf is not one of the values in
tables 17.5 or 17.4.

An INVALID_OPERATION error is generated if the default framebuffer is
affected and buf is a value (other than NONE) that does not indicate one of the
color buffers allocated to the default framebuffer.

An INVALID_OPERATION error is generated if a framebuffer object is
affected and buf is one of the constants from table 17.4 (other than NONE), or

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 496

Symbolic Front Front Back Back
Constant Left Right Left Right
NONE

FRONT_LEFT •
FRONT_RIGHT •
BACK_LEFT •
BACK_RIGHT •
FRONT • •
BACK • •
LEFT • •
RIGHT • •
FRONT_AND_BACK • • • •

Table 17.4: Arguments to DrawBuffer when the context is bound to a default
framebuffer, and the buffers they indicate. The same arguments are valid for Read-
Buffer, but only a single buffer is selected as discussed in section 18.2.1.

COLOR_ATTACHMENTm and m is greater than or equal to the value of MAX_-
COLOR_ATTACHMENTS.

DrawBuffer will set the draw buffer for fragment colors other than zero to
NONE.

The set of buffers of a framebuffer object to which all fragment colors are
written is controlled with the commands

The commands

void DrawBuffers(sizei n, const enum *bufs);

Symbolic Constant Meaning
NONE No buffer
COLOR_ATTACHMENTi (see caption) Output fragment color to image attached

at color attachment point i

Table 17.5: Arguments to DrawBuffer(s) and ReadBuffer when the context is
bound to a framebuffer object, and the buffers they indicate. i in COLOR_-

ATTACHMENTi may range from zero to the value of MAX_COLOR_ATTACHMENTS
minus one.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 497

Symbolic Front Front Back Back
Constant Left Right Left Right
NONE

FRONT_LEFT •
FRONT_RIGHT •
BACK_LEFT •
BACK_RIGHT •

Table 17.6: Arguments to DrawBuffers when the default framebuffer is affected,
and the buffers they indicate.

void NamedFramebufferDrawBuffers(uint framebuffer,
sizei n, const enum *bufs);

For DrawBuffers, the framebuffer object is that bound to the DRAW_-

FRAMEBUFFER binding. For NamedFramebufferDrawBuffers, framebuffer is the
name of the framebuffer object. If framebuffer is zero, then the default framebuffer
is affected.

n specifies the number of buffers in bufs. bufs is a pointer to an array of values
specifying the buffer to which each fragment color is written.

Each buffer listed in bufs must be one of the values from tables 17.5 or 17.6.
Further, acceptable values for the constants in bufs depend on whether the default
framebuffer or a framebuffer object is affected. For more information about frame-
buffer objects, see section 9.

If the default framebuffer is affected, then each of the constants must be one of
the values listed in table 17.6 or the special value BACK. When BACK is used, n must
be 1 and color values are written into the left buffer for single-buffered contexts, or
into the back left buffer for double-buffered contexts.

If a framebuffer object is affected, then each of the constants must be one of
the values listed in table 17.5.

In both cases, the draw buffers being defined correspond in order to the re-
spective fragment colors. The draw buffer for fragment colors beyond n is set to
NONE.

The maximum number of draw buffers is implementation-dependent. The
number of draw buffers supported may be queried by calling GetIntegerv with
pname MAX_DRAW_BUFFERS.

Except for NONE, a buffer may not appear more than once in the array pointed
to by bufs.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 498

If a fragment shader writes to a user-defined output variable, DrawBuffers
specifies a set of draw buffers into which each of the multiple output colors de-
fined by these variables are separately written. If a fragment shader writes to no
user-defined output variables, the values of the fragment colors following shader
execution are undefined, and may differ for each fragment color. If some, but not
all user-defined output variables are written, the values of fragment colors corre-
sponding to unwritten variables are similarly undefined.

The order of writes to user-defined output variables is undefined. If the same
image is attached to multiple attachment points of a framebuffer object and differ-
ent values are written to outputs bound to those attachments, the resulting value in
the attached image is undefined. Similarly undefined behavior results during any
other per-fragment operations where a multiply-attached image may be written to
by more than one output, such as during blending.

Errors

An INVALID_OPERATION error is generated by NamedFramebuffer-
DrawBuffers if framebuffer is not zero or the name of an existing framebuffer
object.

An INVALID_VALUE error is generated if n is negative, or greater than the
value of MAX_DRAW_BUFFERS.

An INVALID_ENUM error is generated if any value in bufs is not one of the
values in tables 17.5 or 17.6.

An INVALID_OPERATION error is generated if a buffer other than NONE

is specified more than once in the array pointed to by bufs.
An INVALID_ENUM error is generated if any value in bufs is FRONT,

LEFT, RIGHT, or FRONT_AND_BACK. This restriction applies to both the de-
fault framebuffer and framebuffer objects, and exists because these constants
may themselves refer to multiple buffers, as shown in table 17.4.

An INVALID_OPERATION error is generated if any value in bufs is BACK,
and n is not one.

An INVALID_OPERATION error is generated if the default framebuffer is
affected and any value in bufs is a constant (other than NONE or BACK) that
does not indicate one of the color buffers allocated to the default framebuffer.

An INVALID_OPERATION error is generated if the GL is bound to a
draw framebuffer object and the ith argument is a value other than COLOR_-

ATTACHMENTi or NONE.
An INVALID OPERATION error is generated if a framebuffer object

is affected and any value in bufs is a constant from table 17.6, or

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 499

COLOR ATTACHMENTm where m is greater than or equal to the value of
MAX COLOR ATTACHMENTS.

Indicating a buffer or buffers using DrawBuffer or DrawBuffers causes sub-
sequent pixel color value writes to affect the indicated buffers. If a framebuffer
object is affected and a draw buffer selects an attachment that has no image at-
tached, then that fragment color is not written.

Specifying NONE as the draw buffer for a fragment color will inhibit that frag-
ment color from being written.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.

The state required to handle color buffer selection for each framebuffer is an
integer for each supported fragment color. For the default framebuffer, in the initial
state the draw buffer for fragment color zero is BACK if there is a back buffer;
FRONT if there is no back buffer; and NONE if no default framebuffer is associated
with the context. For framebuffer objects, in the initial state the draw buffer for
fragment color zero is COLOR_ATTACHMENT0. For both the default framebuffer
and framebuffer objects, the initial state of draw buffers for fragment colors other
then zero is NONE.

The draw buffer of the currently bound draw framebuffer selected for fragment
color i may be queried by calling GetIntegerv with pname set to DRAW_BUFFERi.
DRAW_BUFFER is equivalent to DRAW_BUFFER0.

17.4.2 Fine Control of Buffer Updates

Writing of bits to each of the logical buffers after all per-fragment operations have
been performed may be masked. The commands

void ColorMask(boolean r, boolean g, boolean b,
boolean a);

void ColorMaski(uint buf, boolean r, boolean g,
boolean b, boolean a);

control writes to the active draw buffers.
ColorMask and ColorMaski are used to mask the writing of R, G, B and A

values to the draw buffer or buffers. ColorMaski sets the mask for a particular
draw buffer. The mask for DRAW_BUFFERi is modified by passing i as the parame-
ter buf. r, g, b, and a indicate whether R, G, B, or A values, respectively, are written
or not (a value of TRUE means that the corresponding value is written). The mask

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 500

specified by r, g, b, and a is applied to the color buffer associated with DRAW_-

BUFFERi. For any i where the value of DRAW_BUFFERi is one of FRONT, BACK,
LEFT, RIGHT, or FRONT_AND_BACK, specifying multiple color buffers, the mask
is applied to all of the buffers.

ColorMask sets the mask for all draw buffers to the same values as specified
by r, g, b, and a.

Errors

An INVALID_VALUE error is generated by ColorMaski if buf is greater
than the value of MAX_DRAW_BUFFERS minus one.

In the initial state, all color values are enabled for writing for all draw buffers.
The value of the color writemask for draw buffer i may be queried by calling

GetBooleani v with target COLOR_WRITEMASK and index i. The value of the color
writemask for draw buffer zero may also be queried by calling GetBooleanv with
pname COLOR_WRITEMASK.

The depth buffer can be enabled or disabled for writing zw values using

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.

The commands

void StencilMask(uint mask);
void StencilMaskSeparate(enum face, uint mask);

control the writing of particular bits into the stencil planes.
The least significant s bits of mask, where s is the number of bits in the stencil

buffer, specify an integer mask. Where a 1 appears in this mask, the corresponding
bit in the stencil buffer is written; where a 0 appears, the bit is not written. The face
parameter of StencilMaskSeparate can be FRONT, BACK, or FRONT_AND_BACK
and indicates whether the front or back stencil mask state is affected. StencilMask
sets both front and back stencil mask state to identical values.

Fragments generated by front-facing primitives use the front mask and frag-
ments generated by back-facing primitives use the back mask (see section 17.3.3).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is two integers for the
front and back stencil values, and a bit for depth values. A set of four bits is also

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 501

required indicating which color components of an RGBA value should be written.
In the initial state, the integer masks are all ones, as are the bits controlling depth
value and RGBA component writing.

17.4.2.1 Fine Control of Multisample Buffer Updates

When the value of SAMPLE_BUFFERS is one, ColorMask, DepthMask, and Sten-
cilMask or StencilMaskSeparate control the modification of values in the multi-
sample buffer. The color mask has no effect on modifications to the color buffers.
If the color mask is entirely disabled, the color sample values must still be com-
bined (as described above) and the result used to replace the color values of the
buffers enabled by DrawBuffer.

17.4.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is zero or the bitwise OR of one or more values indicating which buffers are
to be cleared. The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and
STENCIL_BUFFER_BIT, indicating the buffers currently enabled for color writ-
ing, the depth buffer, and the stencil buffer (see below), respectively. The value
to which each buffer is cleared depends on the setting of the clear value for that
buffer. If buf is zero, no buffers are cleared.

Errors

An INVALID_VALUE error is generated if buf contains any bits other than
COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, or STENCIL_BUFFER_BIT.

void ClearColor(float r, float g, float b, float a);

sets the clear value for fixed-point and floating-point color buffers. The specified
components are stored as floating-point values.

The command

void ClearDepth(double d);
void ClearDepthf(float d);

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 502

sets the depth value used when clearing the depth buffer. d is clamped to the range
[0, 1] when specified. When clearing a fixed-point depth buffer, d is converted to
fixed-point according to the rules for a window z value given in section 13.6.1. No
conversion is applied when clearing a floating-point depth buffer.

The command

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, sRGB conversion (see sec-
tion 17.3.7), and dithering. The masking operations described in section 17.4.2 are
also applied. If a buffer is not present, then a Clear directed at that buffer has no
effect.

Unsigned normalized fixed-point and signed normalized fixed-point RGBA
color buffers are cleared to color values derived by clamping each component of the
clear color to the range [0, 1] or [−1, 1] respectively, then converting the (possibly
sRGB converted and/or dithered) color to fixed-point using equations 2.3 or 2.4,
respectively. The result of clearing integer color buffers is undefined.

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, and the stencil buffer. Initially, the RGBA color clear value is
(0.0, 0.0, 0.0, 0.0), the depth buffer clear value is 1.0, and the stencil buffer clear
index is 0.

17.4.3.1 Clearing Individual Buffers

Individual buffers of a framebuffer object may be cleared with the commands

void ClearBuffer{if ui}v(enum buffer, int drawbuffer,
const T *value);

void ClearNamedFramebuffer{if ui}v(uint framebuffer,
enum buffer, int drawbuffer, const T *value);

For ClearBuffer*, the framebuffer object is the bound draw framebuffer ob-
ject. For ClearNamedFramebuffer*, framebuffer is the name of the framebuffer
object. If framebuffer is zero, the default draw framebuffer is affected.

buffer and drawbuffer identify a buffer to clear, and value specifies the value
or values to clear it to. The *fv, *iv, and *uiv forms of these commands should be
used to clear fixed- and floating-point, signed integer, and unsigned integer color
buffers respectively.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 503

If buffer is COLOR, a particular draw buffer DRAW_BUFFERi is specified by
passing i as the parameter drawbuffer, and value points to a four-element vec-
tor specifying the R, G, B, and A color to clear that draw buffer to. If the value
of DRAW_BUFFERi is NONE, the command has no effect. Otherwise, the value of
DRAW_BUFFERi is one of the possible values in tables 17.4 and 17.5 identifying
one or more color buffers, each of which is cleared to the same value. Clamping
and conversion for fixed-point color buffers are performed in the same fashion as
for ClearColor.

If buffer is DEPTH, drawbuffer must be zero, and value points to the single
depth value to clear the depth buffer to. Clamping and type conversion for fixed-
point depth buffers are performed in the same fashion as for ClearDepth. Only the
*fv forms of these commands should be used to clear depth buffers; other forms do
not accept a buffer of DEPTH.

If buffer is STENCIL, drawbuffer must be zero, and value points to the single
stencil value to clear the stencil buffer to. Masking is performed in the same fashion
as for ClearStencil. Only the *iv forms of these commands should be used to clear
stencil buffers; other forms do not accept a buffer of STENCIL.

Both depth and stencil buffers of a framebuffer object may be cleared with the
commands

void ClearBufferfi(enum buffer, int drawbuffer,
float depth, int stencil);

void ClearNamedFramebufferfi(uint framebuffer,
enum buffer, int drawbuffer, float depth, int stencil);

For ClearBufferfi, the framebuffer object is the bound draw framebuffer ob-
ject. For ClearNamedFramebufferfi, framebuffer is the name of the framebuffer
object. If framebuffer is zero, the default draw framebuffer is affected.

buffer must be DEPTH_STENCIL and drawbuffer must be zero. depth and sten-
cil are the values to clear the depth and stencil buffers to, respectively. Clamping
and type conversion of depth for fixed-point depth buffers is performed in the same
fashion as for ClearDepth. Masking of stencil for stencil buffers is performed in
the same fashion as for ClearStencil. These commands are equivalent to clearing
the depth and stencil buffers separately, but may be faster when a buffer of internal
format DEPTH_STENCIL is being cleared. The same per-fragment and masking
operations defined for Clear are applied.

For all forms of ClearBuffer* and ClearNamedFramebuffer*, the result of
these commands is undefined if no conversion between the type of the specified
value and the type of the buffer being cleared is defined (for example, if Clear-
Bufferiv is called for a fixed- or floating-point buffer, or if ClearBufferfv is called
for a signed or unsigned integer buffer). This is not an error.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 504

Errors

An INVALID_OPERATION error is generated by ClearNamedFrame-
buffer* if framebuffer is not zero or the name of an existing framebuffer ob-
ject.

An INVALID_ENUM error is generated by ClearBufferiv and Clear-
NamedFramebufferiv if buffer is not COLOR or STENCIL.

An INVALID_ENUM error is generated by ClearBufferuiv and Clear-
NamedFramebufferuiv if buffer is not COLOR.

An INVALID_ENUM error is generated by ClearBufferfv and Clear-
NamedFramebufferfv if buffer is not COLOR or DEPTH.

An INVALID_ENUM error is generated by ClearBufferfi and Clear-
NamedFramebufferfi if buffer is not DEPTH_STENCIL.

An INVALID_VALUE error is generated if buffer is COLOR and drawbuffer
is negative, or greater than the value of MAX_DRAW_BUFFERS minus one; or if
buffer is DEPTH, STENCIL, or DEPTH_STENCIL and drawbuffer is not zero.

17.4.3.2 Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by the Clear mask bit COLOR_BUFFER_BIT and
the DrawBuffer mode. If the DrawBuffer mode is NONE, the color samples of the
multisample buffer cannot be cleared using Clear.

If the Clear mask bits DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT are
set, then the corresponding depth or stencil samples, respectively, are cleared.

The Clear*Buffer* commands also clear color, depth, or stencil samples of
multisample buffers corresponding to the specified buffer.

Masking and scissoring affect clearing the multisample buffer in the same way
as they affect clearing the corresponding color, depth, and stencil buffers.

17.4.4 Invalidating Framebuffer Contents

To signal that the GL need not preserve all contents of a framebuffer object (inval-
idating portions of every pixel or a subregion of pixels), use the commands

void InvalidateSubFramebuffer(enum target,
sizei numAttachments, const enum *attachments, int x,
int y, sizei width, sizei height);

void InvalidateNamedFramebufferSubData(uint framebuffer,
sizei numAttachments, const enum *attachments, int x,
int y, sizei width, sizei height);

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 505

For InvalidateSubFramebuffer, the framebuffer object is that bound to target,
which must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. For InvalidateNamed-
FramebufferSubData, framebuffer is the name of the framebuffer object. If
framebuffer is zero, the default draw framebuffer is affected.

numAttachments indicates how many attachments are supplied in the attach-
ments list. If an attachment is specified that does not exist in the framebuffer ob-
ject, it is ignored. x and y are the origin (with lower left-hand corner at (0, 0)) and
width and height are the width and height, respectively, of the pixel rectangle to
be invalidated. Any of these pixels lying outside of the window allocated to the
current GL context (for the default framebuffer), or outside of the attachments of
the framebuffer object, are ignored.

If the framebuffer object is not complete, these commands may be ignored.

Errors

An INVALID_ENUM error is generated by InvalidateSubFramebuffer if
target is not FRAMEBUFFER, DRAW_FRAMEBUFFER, or READ_FRAMEBUFFER.

An INVALID_OPERATION error is generated by InvalidateNamed-
FramebufferData if framebuffer is not zero or the name of an existing frame-
buffer object.

An INVALID_VALUE error is generated if numAttachments, width, or
height is negative.

An INVALID_ENUM error is generated if a framebuffer object is affected,
and any element of of attachments is not one of the values in table 9.2.

An INVALID_OPERATION error is generated if attachments contains
COLOR_ATTACHMENTmwherem is greater than or equal to the value of MAX_-
COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if the default framebuffer is af-
fected, and any elements of attachments are not one of:

• FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, and BACK_RIGHT, identi-
fying that specific buffer

• COLOR, which is treated as BACK_LEFT for a double-buffered context
and FRONT_LEFT for a single-buffered context

• DEPTH, identifying the depth buffer

• STENCIL, identifying the stencil buffer.

OpenGL 4.5 (Core Profile) - October 24, 2016

17.4. WHOLE FRAMEBUFFER OPERATIONS 506

The commands

void InvalidateFramebuffer(enum target,
sizei numAttachments, const enum *attachments);

void InvalidateNamedFramebufferData(uint framebuffer,
sizei numAttachments, const enum *attachments);

are equivalent to

InvalidateSubFramebuffer(target, numAttachments, attachments,
0, 0, vw, vh);

and

InvalidateNamedFramebufferSubData(framebuffer, numAttachments,
attachments, 0, 0, vw, vh);

respectively, where vw and vh are equal to the maximum viewport width and
height, respectively, obtained by querying MAX_VIEWPORT_DIMS.

17.4.5 The Accumulation Buffer

This subsection is only defined in the compatibility profile.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 18

Reading and Copying Pixels

Pixels may be read from the framebuffer using ReadPixels. BlitFramebuffer can
be used to copy a block of pixels from one portion of the framebuffer to another.

18.1 Drawing Pixels

This section is only defined in the compatibility profile.

18.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in pixel pack
buffer or client memory is diagrammed in figure 18.1. We describe the stages of
the pixel reading process in the order in which they occur.

18.2.1 Selecting Buffers for Reading

When reading pixels from a color buffer of a framebuffer object, the buffer selected
for reading is termed the read buffer, and is controlled with the commands

void ReadBuffer(enum src);
void NamedFramebufferReadBuffer(uint framebuffer,

enum src);

For ReadBuffer, the target framebuffer object is that bound to READ_-

FRAMEBUFFER. For NamedFramebufferReadBuffer, framebuffer is zero or the
name of the target framebuffer object. If framebuffer is zero, then the default read
framebuffer is affected.

507

18.2. READING PIXELS 508

byte, short, int, float, or packed
pixel component data stream

Clamp to [0,1]

Pack

Convert to float

RGBA pixel data in

Pixel Storage
Operations

Figure 18.1. Operation of ReadPixels. Operations in dashed boxes are not per-
formed for all data formats. Depth and stencil pixel paths are not shown.

If the default framebuffer is affected (see section 9), src must be one of the
values listed in table 17.4, including NONE. FRONT_AND_BACK, FRONT, and LEFT

refer to the front left buffer, BACK refers to the back left buffer, and RIGHT refers
to the front right buffer. Other constants correspond directly to the buffers that they
name. The initial value of the read buffer for the default framebuffer is FRONT

if there is no back buffer; BACK if there is a back buffer; and NONE if no default
framebuffer is associated with the context.

If a framebuffer object is affected, src must be one of the values listed in ta-
ble 17.5, including NONE. Specifying COLOR_ATTACHMENTi enables reading from
the image attached to the framebuffer at that attachment point. The initial value of
the read buffer for framebuffer objects is COLOR_ATTACHMENT0.

The read buffer of the currently bound read framebuffer may be queried by
calling GetIntegerv with pname set to READ_BUFFER.

Errors

An INVALID_OPERATION error is generated by NamedFramebuffer-
ReadBuffer if framebuffer is not zero or the name of an existing framebuffer

OpenGL 4.5 (Core Profile) - October 24, 2016

18.2. READING PIXELS 509

object.
An INVALID_ENUM error is generated if src is not one of the values in

tables 17.4 or 17.5.
An INVALID_OPERATION error is generated if the default framebuffer is

affected and src is a value (other than NONE) that does not indicate any of the
color buffers allocated to the default framebuffer.

An INVALID_OPERATION error is generated if a framebuffer object is
affected, and src is one of the constants from table 17.4 (other than NONE,
or COLOR_ATTACHMENTm where m is greater than or equal to the value of
MAX_COLOR_ATTACHMENTS).

18.2.2 ReadPixels

Initially, zero is bound for the PIXEL_PACK_BUFFER, indicating that image read
and query commands such as ReadPixels return pixel results into client memory
pointer parameters. However, if a non-zero buffer object is bound as the current
pixel pack buffer, then the pointer parameter is treated as an offset into the desig-
nated buffer object.

Pixels are read with the commands

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

void ReadnPixels(int x, int y, sizei width,
sizei height, enum format, enum type, sizei bufSize,
void *data);

The arguments after x and y to ReadPixels are described in section 8.4.4. The pixel
storage modes that apply to ReadPixels and other commands that query images
(see section 8.11) are summarized in table 18.1.

Errors

An INVALID_OPERATION error is generated if the value of READ_-

FRAMEBUFFER_BINDING (see section 9) is non-zero, the read framebuffer
is framebuffer complete, and the effective value of SAMPLE_BUFFERS for the
read framebuffer is one.

An INVALID_OPERATION error is generated by ReadnPixels if the buffer
size required to store the requested data is greater than bufSize.

Preferred values for format and type may be determined by call-
ing GetIntegerv with pnames IMPLEMENTATION_COLOR_READ_FORMAT and

OpenGL 4.5 (Core Profile) - October 24, 2016

18.2. READING PIXELS 510

Parameter Name Type Initial Value Valid Range
PACK_SWAP_BYTES boolean FALSE TRUE/FALSE
PACK_LSB_FIRST boolean FALSE TRUE/FALSE
PACK_ROW_LENGTH integer 0 [0,∞)

PACK_SKIP_ROWS integer 0 [0,∞)

PACK_SKIP_PIXELS integer 0 [0,∞)

PACK_ALIGNMENT integer 4 1,2,4,8
PACK_IMAGE_HEIGHT integer 0 [0,∞)

PACK_SKIP_IMAGES integer 0 [0,∞)

PACK_COMPRESSED_BLOCK_WIDTH integer 0 [0,∞)

PACK_COMPRESSED_BLOCK_HEIGHT integer 0 [0,∞)

PACK_COMPRESSED_BLOCK_DEPTH integer 0 [0,∞)

PACK_COMPRESSED_BLOCK_SIZE integer 0 [0,∞)

Table 18.1: PixelStore parameters pertaining to ReadPixels, GetCompressed-
TexImage and GetTexImage.

IMPLEMENTATION_COLOR_READ_TYPE, respectively. The preferred format may
vary depending on the format of the selected read buffer of the currently bound
read framebuffer.

Errors

An INVALID_OPERATION error is generated by GetIntegerv if pname is
IMPLEMENTATION_COLOR_READ_FORMAT or IMPLEMENTATION_COLOR_-
READ_TYPE and any of:

• the read framebuffer is not framebuffer complete.

• the read framebuffer is a framebuffer object, and the selected read buffer
(see section 18.2.1) has no image attached.

• the selected read buffer is NONE.

18.2.3 Obtaining Pixels from the Framebuffer

If the format is DEPTH_COMPONENT, then values are obtained from the depth buffer.
If there is a multisample buffer (the value of SAMPLE_BUFFERS is one), then

values are obtained from the depth samples in this buffer. It is recommended that

OpenGL 4.5 (Core Profile) - October 24, 2016

18.2. READING PIXELS 511

the depth value of the centermost sample be used, though implementations may
choose any function of the depth sample values at each pixel.

If the format is DEPTH_STENCIL, then values are taken from both the depth
buffer and the stencil buffer. type must be UNSIGNED_INT_24_8 or FLOAT_32_-
UNSIGNED_INT_24_8_REV.

If there is a multisample buffer, then values are obtained from the depth and
stencil samples in this buffer. It is recommended that the depth and stencil values of
the centermost sample be used, though implementations may choose any function
of the depth and stencil sample values at each pixel.

If the format is STENCIL_INDEX, then values are taken from the stencil buffer.
If there is a multisample buffer, then values are obtained from the stencil sam-

ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, values are obtained from the color buffer selected by the
read buffer.

Errors

An INVALID_ENUM error is generated if format is DEPTH_STENCIL and
type is not UNSIGNED_INT_24_8 or FLOAT_32_UNSIGNED_INT_24_8_-
REV.

An INVALID_OPERATION error is generated if format is DEPTH_-

COMPONENT and there is no depth buffer; if format is STENCIL_INDEX and
there is no stencil buffer; or if format is DEPTH_STENCIL and either there is
no depth buffer, or there is no stencil buffer.

An INVALID_FRAMEBUFFER_OPERATION error is generated if the object
bound to READ_FRAMEBUFFER_BINDING is not framebuffer complete (as de-
fined in section 9.4.2).

An INVALID_OPERATION error is generated if format selects a color
buffer while the read buffer is NONE, or if the GL is using a framebuffer object
(the value of READ_FRAMEBUFFER_BINDING is non-zero) and the read buffer
selects an attachment that has no image attached.

ReadPixels obtains values from the selected buffer from each pixel with lower
left hand corner at (x+ i, y+ j) for 0 ≤ i < width and 0 ≤ j < height; this pixel
is said to be the ith pixel in the jth row. If any of these pixels lies outside of the
window allocated to the current GL context, or outside of the image attached to the
currently bound read framebuffer object, then the values obtained for those pixels
are undefined. When READ_FRAMEBUFFER_BINDING is zero, values are also un-

OpenGL 4.5 (Core Profile) - October 24, 2016

18.2. READING PIXELS 512

defined for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected buffer, regardless of how those values
were placed there.

If format is one of RED, GREEN, BLUE, RG, RGB, RGBA, BGR, or BGRA, then
red, green, blue, and alpha values are obtained from the selected buffer at each
pixel location.

An INVALID_OPERATION error is generated if format is an integer format and
the color buffer is not an integer format, or if the color buffer is an integer format
and format is not an integer format.

When READ_FRAMEBUFFER_BINDING is non-zero, the red, green, blue, and
alpha values are obtained by first reading the internal component values of the
corresponding value in the image attached to the selected logical buffer. Internal
components are converted to an RGBA color by taking each R, G, B, and A com-
ponent present according to the base internal format of the buffer (as shown in
table 8.11). If G, B, or A values are not present in the internal format, they are
taken to be zero, zero, and one respectively.

18.2.4 Conversion of RGBA values

This step applies only if format is not STENCIL_INDEX, DEPTH_COMPONENT, or
DEPTH_STENCIL. The R, G, B, and A values form a group of elements.

For a signed or unsigned normalized fixed-point color buffer, each element is
converted to floating-point using equations 2.2 or 2.1, respectively. For an integer
or floating-point color buffer, the elements are unmodified.

18.2.5 Conversion of Depth values

This step applies only if format is DEPTH_COMPONENT or DEPTH_STENCIL and
the depth buffer uses a fixed-point representation. An element is taken to be a
fixed-point value in [0, 1] with m bits, where m is the number of bits in the depth
buffer (see section 13.6.1). No conversion is necessary if the depth buffer uses a
floating-point representation.

18.2.6 Pixel Transfer Operations

This subsection is only defined in the compatibility profile.

18.2.7 Conversion to L

This subsection is only defined in the compatibility profile.

OpenGL 4.5 (Core Profile) - October 24, 2016

18.2. READING PIXELS 513

18.2.8 Final Conversion

Read color clamping is controlled by calling

void ClampColor(enum target, enum clamp);

with target set to CLAMP_READ_COLOR. If clamp is TRUE, read color clamping is
enabled; if clamp is FALSE, read color clamping is disabled. If clamp is FIXED_-
ONLY, read color clamping is enabled if the selected read color buffer has fixed-
point components.

For an integer RGBA color, each component is clamped to the representable
range of type.

For a floating-point RGBA color, if type is FLOAT or HALF_FLOAT, each com-
ponent is clamped to [0, 1] if read color clamping is enabled. Then the appropriate
conversion formula from table 18.2 is applied to the component.

If type is UNSIGNED_INT_10F_11F_11F_REV and format is RGB, each com-
ponent is clamped to [0, 1] if read color clamping is enabled. The returned data are
then packed into a series of uint values. The red, green, and blue components
are converted to unsigned 11-bit floating-point, unsigned 11-bit floating-point, and
unsigned 10-bit floating-point as described in sections 2.3.4.3 and 2.3.4.4. The re-
sulting red 11 bits, green 11 bits, and blue 10 bits are then packed as the 1st, 2nd,
and 3rd components of the UNSIGNED_INT_10F_11F_11F_REV format as shown
in table 8.8.

If type is UNSIGNED_INT_5_9_9_9_REV and format is RGB, each component
is clamped to [0, 1] if read color clamping is enabled. The returned data are then
packed into a series of uint values. The red, green, and blue components are
converted to reds, greens, blues, and exps integers as described in section 8.5.2
when internalformat is RGB9_E5. reds, greens, blues, and exps are then packed
as the 1st, 2nd, 3rd, and 4th components of the UNSIGNED_INT_5_9_9_9_REV

format as shown in table 8.8.
For other types, and for a floating-point or unsigned normalized fixed-point

color buffer, each component is clamped to [0, 1] whether or not read color clamp-
ing is enabled. For a signed normalized fixed-point color buffer, each component
is clamped to [0, 1] if read color clamping is enabled, or if type represents un-
signed integer components; otherwise type represents signed integer components,
and each component is clamped to [−1, 1]. Following clamping, the appropriate
conversion formula from table 18.2 is applied to the component1.

For an index, if the type is not FLOAT or HALF_FLOAT, final conversion consists
of masking the index with the value given in table 18.3. If the type is FLOAT or

1 OpenGL 4.2 changes the behavior of ReadPixels to allow readbacks from a signed normalized
color buffer to a signed integer type without loss of information.

OpenGL 4.5 (Core Profile) - October 24, 2016

18.2. READING PIXELS 514

type Parameter GL Data Type Component
Conversion Formula

UNSIGNED_BYTE ubyte Equation 2.3, b = 8

BYTE byte Equation 2.4, b = 8

UNSIGNED_SHORT ushort Equation 2.3, b = 16

SHORT short Equation 2.4, b = 16

UNSIGNED_INT uint Equation 2.3, b = 32

INT int Equation 2.4, b = 32

HALF_FLOAT half c = f

FLOAT float c = f

UNSIGNED_BYTE_3_3_2 ubyte Equation 2.3, b = bitfield width
UNSIGNED_BYTE_2_3_3_REV ubyte Equation 2.3, b = bitfield width
UNSIGNED_SHORT_5_6_5 ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_5_6_5_REV ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_4_4_4_4 ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_4_4_4_4_REV ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_5_5_5_1 ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_1_5_5_5_REV ushort Equation 2.3, b = bitfield width
UNSIGNED_INT_8_8_8_8 uint Equation 2.3, b = bitfield width
UNSIGNED_INT_8_8_8_8_REV uint Equation 2.3, b = bitfield width
UNSIGNED_INT_10_10_10_2 uint Equation 2.3, b = bitfield width
UNSIGNED_INT_2_10_10_10_REV uint Equation 2.3, b = bitfield width
UNSIGNED_INT_24_8 uint Equation 2.3, b = bitfield width
UNSIGNED_INT_10F_11F_11F_REV uint Special
UNSIGNED_INT_5_9_9_9_REV uint Special
FLOAT_32_UNSIGNED_INT_24_8_REV float c = f (depth only)

Table 18.2: Reversed component conversions, used when component data are being
returned to client memory. Color and depth components are converted from the
internal floating-point representation (f) to a datum of the specified GL data type
(c). All arithmetic is done in the internal floating-point format. These conversions
apply to component data returned by GL query commands and to components of
pixel data returned to client memory. The equations remain the same even if the
implemented ranges of the GL data types are greater than the minimum required
ranges (see table 2.2).

OpenGL 4.5 (Core Profile) - October 24, 2016

18.2. READING PIXELS 515

type Parameter Index Mask
UNSIGNED_BYTE 28 − 1

BYTE 27 − 1

UNSIGNED_SHORT 216 − 1

SHORT 215 − 1

UNSIGNED_INT 232 − 1

INT 231 − 1

UNSIGNED_INT_24_8 28 − 1

FLOAT_32_UNSIGNED_INT_24_8_REV 28 − 1

Table 18.3: Index masks used by ReadPixels. Floating-point data are not masked.

HALF_FLOAT, then the integer index is converted to a GL float or half data
value.

18.2.9 Placement in Pixel Pack Buffer or Client Memory

If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_PACK_-
BUFFER_BINDING), data is an offset into the pixel pack buffer and the pixels are
packed into the buffer relative to this offset; otherwise, data is a pointer to a block
of client memory and the pixels are packed into the client memory relative to the
pointer.

An INVALID_OPERATION error is generated if a pixel pack buffer object is
bound and packing the pixel data according to the pixel pack storage state would
access memory beyond the size of the pixel pack buffer’s memory size.

An INVALID_OPERATION error is generated if a pixel pack buffer object is
bound and data is not evenly divisible by the number of basic machine units needed
to store in memory the corresponding GL data type from table 8.2 for the type
parameter.

Groups of elements are placed in memory just as they are taken from mem-
ory when transferring pixel rectangles to the GL. That is, the ith group of the jth
row (corresponding to the ith pixel in the jth row) is placed in memory just where
the ith group of the jth row would be taken from when transferring pixels. See
Unpacking under section 8.4.4.1. The only difference is that the storage mode
parameters whose names begin with PACK_ are used instead of those whose names
begin with UNPACK_. If the format is RED, GREEN, or BLUE, only the correspond-
ing single element is written. Likewise if the format is RG, RGB, or BGR, only the
corresponding two or three elements are written. Otherwise all the elements of

OpenGL 4.5 (Core Profile) - October 24, 2016

18.3. COPYING PIXELS 516

each group are written.

18.3 Copying Pixels

Several commands copy pixel data between regions of the framebuffer (see sec-
tion 18.3.1), or between regions of textures and renderbuffers (see section 18.3.2).
For all such commands, if the source and destination are identical or are differ-
ent views of the same underlying texture image, and if the source and destination
regions overlap in that framebuffer, renderbuffer, or texture image, pixel values
resulting from the copy operation are undefined.

18.3.1 Blitting Pixel Rectangles

To transfer a rectangle of pixel values from one region of a source framebuffer to
another region of a destination framebuffer, use the commands

void BlitFramebuffer(int srcX0, int srcY0, int srcX1,
int srcY1, int dstX0, int dstY0, int dstX1, int dstY1,
bitfield mask, enum filter);

void BlitNamedFramebuffer(uint readFramebuffer,
uint drawFramebuffer, int srcX0, int srcY0, int srcX1,
int srcY1, int dstX0, int dstY0, int dstX1, int dstY1,
bitfield mask, enum filter);

For BlitFramebuffer, the source and destination framebuffers are those bound
to READ_FRAMEBUFFER and DRAW_FRAMEBUFFER respectively. For BlitNamed-
Framebuffer, readFramebuffer and drawFramebuffer are the names of the source
and destination framebuffer objects respectively.

If no framebuffer is bound to READ_FRAMEBUFFER or DRAW_FRAMEBUFFER
(for BlitFramebuffer), or if readFramebuffer or drawFramebuffer is zero (for Blit-
NamedFramebuffer), then the default read or draw framebuffer is used as the
corresponding source or destination framebuffer, respectively.

mask is zero or the bitwise OR of one or more values indicating which buffers
are to be copied. The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and
STENCIL_BUFFER_BIT, which are described in section 17.4.3. The pixels corre-
sponding to these buffers are copied from the source rectangle bounded by the lo-
cations (srcX0, srcY 0) and (srcX1, srcY 1) to the destination rectangle bounded
by the locations (dstX0, dstY 0) and (dstX1, dstY 1).

Pixels have half-integer center coordinates. Only pixels whose centers lie
within the destination rectangle are written by BlitFramebuffer. Linear filter sam-
pling (see below) may result in pixels outside the source rectangle being read.

OpenGL 4.5 (Core Profile) - October 24, 2016

18.3. COPYING PIXELS 517

If mask is zero, no buffers are copied.
When the color buffer is transferred, values are taken from the read buffer of the

read framebuffer and written to each of the draw buffers of the draw framebuffer.
The actual region taken from the read framebuffer is limited to the intersection

of the source buffers being transferred, which may include the color buffer selected
by the read buffer, the depth buffer, and/or the stencil buffer depending on mask.
The actual region written to the draw framebuffer is limited to the intersection of
the destination buffers being written, which may include multiple draw buffers,
the depth buffer, and/or the stencil buffer depending on mask. Whether or not the
source or destination regions are altered due to these limits, the scaling and offset
applied to pixels being transferred is performed as though no such limits were
present.

If the source and destination rectangle dimensions do not match, the source im-
age is stretched to fit the destination rectangle. filter must be LINEAR or NEAREST,
and specifies the method of interpolation to be applied if the image is stretched.
LINEAR filtering is allowed only for the color buffer. If the source and destination
dimensions are identical, no filtering is applied. If either the source or destination
rectangle specifies a negative width or height (X1 < X0 or Y 1 < Y 0), the im-
age is reversed in the corresponding direction. If both the source and destination
rectangles specify a negative width or height for the same direction, no reversal is
performed. If a linear filter is selected and the rules of LINEAR sampling would
require sampling outside the bounds of a source buffer, it is as though CLAMP_-

TO_EDGE texture sampling were being performed. If a linear filter is selected and
sampling would be required outside the bounds of the specified source region, but
within the bounds of a source buffer, the implementation may choose to clamp
while sampling or not.

If the source and destination buffers are identical, and the source and destina-
tion rectangles overlap, the result of the blit operation is undefined as described in
the introduction to section 18.3.

When values are taken from the read buffer, if FRAMEBUFFER_SRGB is enabled
and the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for the frame-
buffer attachment corresponding to the read buffer is SRGB (see section 9.2.3), the
red, green, and blue components are converted from the non-linear sRGB color
space according to equation 8.17.

When values are written to the draw buffers, blit operations bypass most of the
fragment pipeline. The only fragment operations which affect a blit are the pixel
ownership test, the scissor test, and sRGB conversion (see section 17.3.7). Color,
depth, and stencil masks (see section 17.4.2) are ignored.

If the read framebuffer is layered (see section 9.8), pixel values are read from
layer zero. If the draw framebuffer is layered, pixel values are written to layer zero.

OpenGL 4.5 (Core Profile) - October 24, 2016

18.3. COPYING PIXELS 518

If both read and draw framebuffers are layered, the blit operation is still performed
only on layer zero.

If a buffer is specified in mask and does not exist in both the read and draw
framebuffers, the corresponding bit is silently ignored.

If the color formats of the read and draw buffers do not match, and mask in-
cludes COLOR_BUFFER_BIT, pixel groups are converted to match the destination
format. However, colors are clamped only if all draw color buffers have fixed-point
components. Format conversion is not supported for all data types, as described
below.

If the read framebuffer is multisampled (its effective value of SAMPLE_-

BUFFERS is one) and the draw framebuffer is not (its value of SAMPLE_BUFFERS is
zero), the samples corresponding to each pixel location in the source are converted
to a single sample before being written to the destination. filter is ignored. If the
source formats are integer types or stencil values, a single sample’s value is se-
lected for each pixel. If the source formats are floating-point or normalized types,
the sample values for each pixel are resolved in an implementation-dependent
manner. If the source formats are depth values, sample values are resolved in an
implementation-dependent manner where the result will be between the minimum
and maximum depth values in the pixel.

If the read framebuffer is not multisampled and the draw framebuffer is mul-
tisampled, the value of the source sample is replicated in each of the destination
samples.

If both the read and draw framebuffers are multisampled, and their effective
values of SAMPLES are identical, the samples are copied without modification
(other than possible format conversion) from the read framebuffer to the draw
framebuffer. Note that the samples in the draw buffer are not guaranteed to be at
the same sample location as the read buffer, so rendering using this newly created
buffer can potentially have geometry cracks or incorrect antialiasing. This may
occur if the sizes of the framebuffers do not match or if the source and destination
rectangles are not defined with the same (X0, Y 0) and (X1, Y 1) bounds.

Errors

An INVALID_OPERATION error is generated by BlitNamedFramebuffer
if readFramebuffer or drawFramebuffer is not zero or the name of an existing
framebuffer object.

An INVALID_VALUE error is generated if mask contains any bits other
than COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, or STENCIL_BUFFER_-

BIT.

OpenGL 4.5 (Core Profile) - October 24, 2016

18.3. COPYING PIXELS 519

An INVALID_ENUM error is generated if filter is not LINEAR or NEAREST.
An INVALID_OPERATION error is generated if mask includes DEPTH_-

BUFFER_BIT or STENCIL_BUFFER_BIT, and filter is not NEAREST.
An INVALID_FRAMEBUFFER_OPERATION error is generated if either the

read framebuffer or the draw framebuffer is not framebuffer complete (sec-
tion 9.4.2).

An INVALID_OPERATION error is generated if mask includes DEPTH_-
BUFFER_BIT or STENCIL_BUFFER_BIT, and the source and destination
depth and stencil buffer formats do not match.

An INVALID_OPERATION error is generated if filter is LINEAR and the
read buffer contains integer data.

An INVALID_OPERATION error is generated if either the read or draw
framebuffer is multisampled, and the dimensions of the source and destination
rectangles provided to BlitFramebuffer are not identical.

An INVALID_OPERATION error is generated if both the read and draw
framebuffers are multisampled, and their effective values of SAMPLES are not
identical.

An INVALID_OPERATION error is generated if format conversions are not
supported, which occurs under any of the following conditions:

• The read buffer contains fixed-point or floating-point values and any
draw buffer contains neither fixed-point nor floating-point values.

• The read buffer contains unsigned integer values and any draw buffer
does not contain unsigned integer values.

• The read buffer contains signed integer values and any draw buffer does
not contain signed integer values.

18.3.2 Copying Between Images

The command

void CopyImageSubData(uint srcName, enum srcTarget,
int srcLevel, int srcX, int srcY, int srcZ,
uint dstName, enum dstTarget, int dstLevel, int dstX,
int dstY, int dstZ, sizei srcWidth, sizei srcHeight,
sizei srcDepth);

may be used to copy a region of texel data between two image objects. An image
object may be either a texture or a renderbuffer.

OpenGL 4.5 (Core Profile) - October 24, 2016

18.3. COPYING PIXELS 520

CopyImageSubData does not perform general-purpose conversions such as
scaling, resizing, blending, color-space, or format conversions. It should be con-
sidered to operate in a manner similar to a CPU memcpy. CopyImageSubData
can copy between images with different internal formats, provided the formats are
compatible.

CopyImageSubData also allows copying between certain types of compressed
and uncompressed internal formats as described in table 18.4. This copy does not
perform on-the-fly compression or decompression. When copying from an un-
compressed internal format to a compressed internal format, each texel of uncom-
pressed data becomes a single block of compressed data. When copying from a
compressed internal format to an uncompressed internal format, a block of com-
pressed data becomes a single texel of uncompressed data. The texel size of the
uncompressed format must be the same size as the block size of the compressed
formats. Thus it is permitted to copy between a 128-bit uncompressed format and
a compressed format which uses 8-bit 4 × 4 blocks, or between a 64-bit uncom-
pressed format and a compressed format which uses 4-bit 4× 4 blocks.

The source object is identified by srcName and srcTarget. Similarly the des-
tination object is identified by dstName and dstTarget. The interpretation of the
name depends on the value of the corresponding target parameter. If the target
parameter is RENDERBUFFER, the name is interpreted as the name of a render-
buffer object. If the target parameter is a texture target, the name is interpreted as
a texture object. All non-proxy texture targets are accepted, with the exception of
TEXTURE_BUFFER and the cubemap face selectors described in table 8.19.

srcLevel and dstLevel identify the source and destination level of detail. For
textures, this must be a valid level of detail in the texture object. For renderbuffers,
this value must be zero.

srcX, srcY, and srcZ specify the lower left texel coordinates of a srcWidth-wide
by srcHeight-high by srcDepth-deep rectangular subregion of the source texture
image. Similarly, dstX, dstY and dstZ specify the coordinates of a subregion of
the destination texture image. The source and destination subregions must be con-
tained entirely within the specified level of the corresponding image objects. The
dimensions are always specified in texels, even for compressed texture formats.
But it should be noted that if only one of the source and destination textures is
compressed then the number of texels touched in the compressed image will be a
factor of the block size larger than in the uncompressed image.

Slices of a one-dimensional array, two-dimensional array, cube map array, or
three dimensional texture, or faces of a cube map texture are all compatible pro-
vided they share a compatible internal format, and multiple slices or faces may
be copied between these objects with a single call by specifying the starting slice
with srcZ and dstZ, and the number of slices to be copied with srcDepth. Cube-

OpenGL 4.5 (Core Profile) - October 24, 2016

18.3. COPYING PIXELS 521

Texel / Uncompressed Compressed
Block Size internal format internal format
128-bit RGBA32UI,

RGBA32I, RGBA32F
COMPRESSED_RG_RGTC2, COMPRESSED_-

SIGNED_RG_RGTC2, COMPRESSED_-

RGBA_BPTC_UNORM, COMPRESSED_-

SRGB_ALPHA_BPTC_UNORM,
COMPRESSED_RGB_BPTC_SIGNED_FLOAT,
COMPRESSED_RGB_BPTC_UNSIGNED_-

FLOAT

64-bit RGBA16F, RG32F,
RGBA16UI, RG32UI,
RGBA16I, RG32I,
RGBA16, RGBA16_-

SNORM

COMPRESSED_RED_RGTC1,
COMPRESSED_SIGNED_RED_RGTC1

Table 18.4: Compatible internal formats for copying between compressed and un-
compressed internal formats with CopyImageSubData. Formats in the same row
can be copied between each other.

map textures always have six faces which are selected by a zero-based face index,
according to the order specified in table 8.19.

For the purposes of CopyImageSubData, two internal formats are considered
compatible if any of the following conditions are met:

• the formats are the same If the formats are the same but are a base internal
format, the the implementation’s effective internal format (see the end of
section 8.5) for each image must be the same.

• the formats are considered compatible according to the compatibility rules
used for texture views as defined in section 8.18. In particular, if both in-
ternal formats are listed in the same entry of table 8.22, they are considered
compatible

• one format is compressed and the other is uncompressed and table 18.4 lists
the two formats in the same row.

Undefined pixel values result from overlapping copies, as described in the in-
troduction to section 18.3.

OpenGL 4.5 (Core Profile) - October 24, 2016

18.4. PIXEL DRAW AND READ STATE 522

Errors

An INVALID_OPERATION error is generated if the texel size of the un-
compressed image is not equal to the block size of the compressed image.

An INVALID_ENUM error is generated if either target is not
RENDERBUFFER or a valid non-proxy texture target; is TEXTURE_BUFFER or
one of the cubemap face selectors described in table 8.19; or if the target does
not match the type of the object.

An INVALID_OPERATION error is generated if either object is a texture
and the texture is not complete (as defined in section 8.17), if the source and
destination internal formats are not compatible (see below), or if the number
of samples do not match.

An INVALID_VALUE error is generated if either name does not correspond
to a valid renderbuffer or texture object according to the corresponding target
parameter.

An INVALID_VALUE error is generated if srcLevel and dstLevel are not
valid levels for the corresponding images.

An INVALID_VALUE error is generated if srcWidth, srcHeight, or sr-
cDepth is negative.

An INVALID_VALUE error is generated if the dimensions of either sub-
region exceeds the boundaries of the corresponding image object, or if the
image format is compressed and the dimensions of the subregion fail to meet
the alignment constraints of the format.

An INVALID_OPERATION error is generated if the formats are not com-
patible.

18.4 Pixel Draw and Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore. This state has been summarized in tables 8.1 and 18.1. Additional
state includes a three-valued integer controlling clamping during final conversion.
The initial value of read color clamping is FIXED_ONLY. State set with PixelStore
is GL client state.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 19

Compute Shaders

In addition to graphics-oriented shading operations such as vertex, tessellation,
geometry and fragment shading, generic computation may be performed by the
GL through the use of compute shaders. The compute pipeline is a form of single-
stage machine that runs generic shaders. Compute shaders are created as described
in section 7.1 using a type parameter of COMPUTE_SHADER. They are attached to
and used in program objects as described in section 7.3.

Compute workloads are formed from groups of work items called work groups
and processed by the executable code for a compute program. A work group is a
collection of shader invocations that execute the same code, potentially in parallel.
An invocation within a work group may share data with other members of the same
workgroup through shared variables (see section 4.3.8(“Shared Variables”) of the
OpenGL Shading Language Specification) and issue memory and control barriers
to synchronize with other members of the same work group. One or more work
groups is launched by calling

void DispatchCompute(uint num groups x,
uint num groups y, uint num groups z);

Each work group is processed by the active program object for the compute
shader stage. The active program for the compute shader stage will be determined
in the same manner as the active program for other pipeline stages, as described
in section 7.3. While the individual shader invocations within a work group are
executed as a unit, work groups are executed completely independently and in
unspecified order.

num groups x, num groups y and num groups z specify the number of local
work groups that will be dispatched in the X, Y and Z dimensions, respectively.

523

524

The built-in vector variable gl_NumWorkGroups will be initialized with the con-
tents of the num groups x, num groups y and num groups z parameters. The max-
imum number of work groups that may be dispatched at one time may be deter-
mined by calling GetIntegeri v with target set to MAX_COMPUTE_WORK_GROUP_-
COUNT and index set to zero, one, or two, representing the X, Y, and Z dimensions
respectively. If the work group count in any dimension is zero, no work groups are
dispatched.

The local work size in each dimension is specified at compile time using an
input layout qualifier in one or more of the compute shaders attached to the
program (see section 4.4.1.4(“Compute Shader Inputs”) of the OpenGL Shading
Language Specification). After the program has been linked, the local work group
size of the program may be queried by calling GetProgramiv with pname set to
COMPUTE_WORK_GROUP_SIZE, as described in section 7.13.

The maximum size of a local work group may be determined by calling Get-
Integeri v with target set to MAX_COMPUTE_WORK_GROUP_SIZE and index set to
0, 1, or 2 to retrieve the maximum work size in the X, Y and Z dimension, respec-
tively. Furthermore, the maximum number of invocations in a single local work
group (i.e., the product of the three dimensions) may be determined by calling
GetIntegerv with pname set to MAX_COMPUTE_WORK_GROUP_INVOCATIONS.

Errors

An INVALID_OPERATION error is generated if there is no active program
for the compute shader stage.

An INVALID_VALUE error is generated if any of num groups x, num -
groups y and num groups z are greater than or equal to the maximum work
group count for the corresponding dimension.

The command

void DispatchComputeIndirect(intptr indirect);

is equivalent to calling DispatchCompute with num groups x, num groups y and
num groups z initialized with the three uint values contained in the buffer cur-
rently bound to the DISPATCH_INDIRECT_BUFFER binding at an offset, in basic
machine units, specified in indirect. If any of num groups x, num groups y or
num groups z is greater than the value of MAX_COMPUTE_WORK_GROUP_COUNT
for the corresponding dimension then the results are undefined.

OpenGL 4.5 (Core Profile) - October 24, 2016

19.1. COMPUTE SHADER VARIABLES 525

Errors

An INVALID_OPERATION error is generated if there is no active program
for the compute shader stage.

An INVALID_VALUE error is generated if indirect is negative or is not a
multiple of the size, in basic machine units, of uint.

An INVALID_OPERATION error is generated if the command would
source data beyond the end of the buffer object.

An INVALID_OPERATION error is generated if zero is bound to the
DRAW_INDIRECT_BUFFER binding.

19.1 Compute Shader Variables

Compute shaders can access uniform variables belonging to the current program
object. Limits on uniform storage and methods for manipulating uniforms are
described in section 7.6.

There is a limit to the total size of all variables declared as shared in a single
program object. This limit, expressed in units of basic machine units, may be
queried as the value of MAX_COMPUTE_SHARED_MEMORY_SIZE.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 20

Debug Output

Application developers can obtain details about errors, undefined behavior,
implementation-dependent performance warnings, or other useful hints from the
GL in the form of debug output.

Debug output is communicated through a stream of debug messages that are
generated as GL commands are executed. The application can choose to receive
these messages either through a callback routine, or by querying for them from a
message log.

Controls are provided for disabling messages that the application does not care
about, and for inserting application-generated messages into the stream.

Different levels of debug output may be provided, depending on how the con-
text was created. If the context is not a debug context1 (e.g. if it was created without
the CONTEXT_FLAG_DEBUG_BIT set in the CONTEXT_FLAGS state, as described
in section 22.2), then the GL may optionally not generate any debug messages, but
the commands described in this chapter will otherwise operate without error.

Debug output functionality is enabled or disabled by calling Enable or Disable
with target DEBUG_OUTPUT. If the context is a debug context (if it was created with
the CONTEXT_FLAG_DEBUG_BIT set in CONTEXT_FLAGS) then the initial value of
DEBUG_OUTPUT is TRUE; otherwise the initial value is FALSE.

In a debug context, if DEBUG_OUTPUT is disabled the GL will not generate any
debug output logs or callbacks. Enabling DEBUG_OUTPUT again will enable full
debug output functionality.

In a non-debug context, if DEBUG_OUTPUT is later enabled, the level of debug
output logging is defined by the GL implementation, which may have zero debug

1Debug contexts are specified at context creation time, using window system binding APIs such as
those specified in the GLX_ARB_create_context and WGL_ARB_create_context
extensions for GLX and WGL, respectively.

526

20.1. DEBUG MESSAGES 527

Debug Output Message Source Messages Generated by
DEBUG_SOURCE_API The GL
DEBUG_SOURCE_SHADER_COMPILER The GLSL shader compiler or compilers

for other extension-provided languages
DEBUG_SOURCE_WINDOW_SYSTEM The window system, such as WGL or

GLX
DEBUG_SOURCE_THIRD_PARTY External debuggers or third-party middle-

ware libraries
DEBUG_SOURCE_APPLICATION The application
DEBUG_SOURCE_OTHER Sources that do not fit to any of the ones

listed above

Table 20.1: Sources of debug output messages. Each message must originate from
a source listed in this table.

output.
Full debug output support is guaranteed only in a debug context.

20.1 Debug Messages

A debug message is uniquely identified by the source that generated it, a type
within that source, and an unsigned integer ID identifying the message within that
type. The message source is one of the symbolic constants listed in table 20.1. The
message type is one of the symbolic constants listed in table 20.2.

Each message source and type pair contains its own namespace of messages
with every message being associated with an ID. The assignment of IDs to mes-
sages within a namespace is implementation-dependent. There can potentially be
overlap between the namespaces of two different pairs of source and type, so mes-
sages can only be uniquely distinguished from each other by the full combination
of source, type and ID.

Each message is also assigned a severity level that roughly describes its im-
portance across all sources and types along a single global axis. The severity of a
message is one of the symbolic constants defined in table 20.3. Because messages
can be disabled by their severity, the global volume of debug output can be limited.

Every message also has a null-terminated string representation that is used to
describe the message. The contents of the string can change slightly between dif-
ferent instances of the same message (e.g. which parameter value caused a specific
GL error to occur). The format of a message string is left as implementation-

OpenGL 4.5 (Core Profile) - October 24, 2016

20.1. DEBUG MESSAGES 528

Debug Output Message Type Informs about
DEBUG_TYPE_ERROR Events that generated an error
DEBUG_TYPE_DEPRECATED_BEHAVIOR Behavior that has been marked for depre-

cation
DEBUG_TYPE_UNDEFINED_BEHAVIOR Behavior that is undefined according to

the specification
DEBUG_TYPE_PERFORMANCE Implementation-dependent performance

warnings
DEBUG_TYPE_PORTABILITY Use of extensions or shaders in a way that

is highly vendor-specific
DEBUG_TYPE_MARKER Annotation of the command stream
DEBUG_TYPE_PUSH_GROUP Entering a debug group
DEBUG_TYPE_POP_GROUP Leaving a debug group
DEBUG_TYPE_OTHER Types of events that do not fit any of the

ones listed above

Table 20.2: Types of debug output messages. Each message is associated with one
of these types that describes the nature of the message.

Severity Level Token Suggested examples of messages
DEBUG_SEVERITY_HIGH Any GL error; dangerous undefined be-

havior; any shader compiler and linker er-
rors;

DEBUG_SEVERITY_MEDIUM Severe performance warnings; GLSL or
other shader compiler and linker warn-
ings; use of currently deprecated behav-
ior

DEBUG_SEVERITY_LOW Performance warnings from redundant
state changes; trivial undefined behavior

DEBUG_SEVERITY_NOTIFICATION Any message which is not an error or per-
formance concern

Table 20.3: Severity levels of messages. Each debug output message is associated
with one of these severity levels.

OpenGL 4.5 (Core Profile) - October 24, 2016

20.2. DEBUG MESSAGE CALLBACK 529

dependent, although it should at least represent a concise description of the event
that caused the message to be generated. Messages with different IDs should also
have sufficiently distinguishable string representations to warrant their separation.

The lengths of all messages, including their null terminators, is guaranteed to
be less than or equal to the value of the implementation-dependent constant MAX_-
DEBUG_MESSAGE_LENGTH.

Messages can be either enabled or disabled. Messages that are disabled will
not be generated. All messages are initially enabled unless their assigned severity
is DEBUG_SEVERITY_LOW. The enabled state of messages can be changed using
the command DebugMessageControl.

20.2 Debug Message Callback

Applications can provide a callback function for receiving debug messages using
the command

void DebugMessageCallback(DEBUGPROC callback, const
void *userParam);

with callback storing the address of the callback function. callback must be a
function whose prototype is of the form

void callback(enum source, enum type, uint id,
enum severity, sizei length, const char *message,
const void *userParam);

Additionally, callback must be declared with the same platform-dependent
calling convention used in the definition of the type DEBUGPROC. Anything else
will result in undefined behavior.

Only one debug callback can be specified for the current context, and further
calls overwrite the previous callback. Specifying NULL as the value of callback
clears the current callback and disables message output through callbacks. Appli-
cations can provide user-specified data through the pointer userParam. The context
will store this pointer and will include it as one of the parameters in each call to the
callback function.

If the application has specified a callback function for receiving debug out-
put, the implementation will call that function whenever any enabled message is
generated. The source, type, ID, and severity of the message are specified by the
DEBUGPROC parameters source, type, id, and severity, respectively. The string
representation of the message is stored in message and its length (excluding the

OpenGL 4.5 (Core Profile) - October 24, 2016

20.3. DEBUG MESSAGE LOG 530

null-terminator) is stored in length. The parameter userParam is the user-specified
parameter that was given when calling DebugMessageCallback.

Applications that specify a callback function must be aware of certain special
conditions when executing code inside a callback when it is called by the GL,
regardless of the debug source.

The memory for message is owned and managed by the GL, and should only
be considered valid for the duration of the function call.

The behavior of calling any GL or window system function from within the
callback function is undefined and may lead to program termination.

Care must also be taken in securing debug callbacks for use with asynchronous
debug output by multi-threaded GL implementations. Section 20.8 describes this
in further detail.

If DEBUG_OUTPUT is disabled, then the GL will not call the callback function.

20.3 Debug Message Log

If DEBUG_CALLBACK_FUNCTION is NULL, then debug messages are instead stored
in an internal message log up to some maximum number of messages as defined
by the value of MAX_DEBUG_LOGGED_MESSAGES.

Each context stores its own message log and will only store messages gener-
ated by commands operating in that context. If the message log fills up, then any
subsequently generated messages will not be placed in the log until the message
log is cleared, and will instead be discarded.

Applications can query the number of messages currently in the log by obtain-
ing the value of DEBUG_LOGGED_MESSAGES, and the string length (including its
null terminator) of the oldest message in the log through the value of DEBUG_-
NEXT_LOGGED_MESSAGE_LENGTH.

To fetch message data stored in the log, the command GetDebugMessageLog
can be used.

If DEBUG_CALLBACK_FUNCTION is not NULL, no generated messages will be
stored in the log but will instead be passed to the debug callback routine as de-
scribed in section 20.2.

If DEBUG_OUTPUT is disabled, then no messages are added to the message log.

20.4 Controlling Debug Messages

Applications can control the volume of debug output in the active debug group (see
section 20.6) by disabling specific groups of messages with the command

OpenGL 4.5 (Core Profile) - October 24, 2016

20.4. CONTROLLING DEBUG MESSAGES 531

void DebugMessageControl(enum source, enum type,
enum severity, sizei count, const uint *ids,
boolean enabled);

If enabled is TRUE, the referenced subset of messages will be enabled. If
FALSE, then those messages will be disabled.

This command can reference different subsets of messages by first considering
the set of all messages, and filtering out messages based on the following ways:

• If source, type, or severity is DONT_CARE, then messages from all sources,
of all types, or of all severities are referenced respectively.

• When values other than DONT_CARE are specified, all messages whose
source, type, or severity match the specified source, type, or severity respec-
tively will be referenced.

• If count is greater than zero, then ids is an array of count message IDs for
the specified combination of source and type. In this case, source and type
must not be DONT_CARE, and severity must be DONT_CARE,

Unrecognized message IDs in ids are ignored. If count is zero, the value if
ids is ignored.

Although messages are grouped into an implicit hierarchy by their sources and
types, there is no explicit per-source, per-type or per-severity enabled state. Instead,
the enabled state is stored individually for each message. There is no difference
between disabling all messages from one source in a single call, and individually
disabling all messages from that source using their types and IDs.

If DEBUG_OUTPUT is disabled, then it is as if messages of every source, type,
or severity are disabled.

Errors

An INVALID_ENUM error is generated if any of source, type, and severity
is neither DONT_CARE nor one of the symbols from, respectively, tables 20.1,
20.2, and 20.3.

An INVALID_VALUE error is generated if count is negative,
An INVALID_OPERATION error is generated if count is greater than zero

and either source or type is DONT_CARE, or severity is not DONT_CARE.

OpenGL 4.5 (Core Profile) - October 24, 2016

20.5. EXTERNALLY GENERATED MESSAGES 532

20.5 Externally Generated Messages

To support applications and third-party libraries generating their own messages,
such as ones containing timestamp information or signals about specific render
system events, the following function can be called

void DebugMessageInsert(enum source, enum type, uint id,
enum severity, int length, const char *buf);

The value of id specifies the ID for the message and severity indicates its sever-
ity level as defined by the caller. The string buf contains the string representation
of the message. The parameter length contains the number of characters in buf. If
length is negative, it is implied that buf contains a null terminated string.

Errors

If DEBUG_OUTPUT is disabled, then calls to DebugMessageInsert are dis-
carded, but do not generate an error.

An INVALID_ENUM error is generated if type is not one of the values from
table 20.2, or if source is not DEBUG_SOURCE_APPLICATION or DEBUG_-
SOURCE_THIRD_PARTY.

An INVALID_ENUM error is generated if severity is not one of the severity
levels listed in table 20.3.

An INVALID_VALUE error is generated if the number of characters in buf,
excluding the null terminator when length is negative, is not less than the value
of MAX_DEBUG_MESSAGE_LENGTH.

20.6 Debug Groups

Debug groups provide a method for annotating a command stream with discrete
groups of commands using a descriptive text. Debug output messages, either gener-
ated by the implementation or inserted by the application with DebugMessageIn-
sert are written to the active debug group (the top of the debug group stack). Debug
groups are strictly hierarchical. Their sequences may be nested within other debug
groups but can not overlap. If no debug group has been pushed by the application
then the active debug group is the default debug group.

The command

void PushDebugGroup(enum source, uint id, sizei length,
const char *message);

OpenGL 4.5 (Core Profile) - October 24, 2016

20.6. DEBUG GROUPS 533

pushes a debug group described by the string message into the command stream.
The value of id specifies the ID of messages generated. The parameter length
contains the number of characters in message. If length is negative, it is im-
plied that message contains a null terminated string. The message has the spec-
ified source and id, type DEBUG_TYPE_PUSH_GROUP, and severity DEBUG_-

SEVERITY_NOTIFICATION. The GL will put a new debug group on top of the
debug group stack which inherits control of the volume of debug output of the de-
bug group previously residing on the top of the debug group stack. Because debug
groups are strictly hierarchical, any additional control of the debug output volume
will only apply within the active debug group and the debug groups pushed on top
of the active debug group.

Errors

An INVALID_ENUM error is generated if the value of source is neither
DEBUG_SOURCE_APPLICATION nor DEBUG_SOURCE_THIRD_PARTY.

An INVALID_VALUE error is generated if length is negative and the num-
ber of characters in message, excluding the null-terminator, is not less than the
value of MAX_DEBUG_MESSAGE_LENGTH.

A STACK_OVERFLOW error is generated if PushDebugGroup is called and
the stack contains the value of MAX_DEBUG_GROUP_STACK_DEPTHminus one
elements.

The command

void PopDebugGroup(void);

pops the active debug group. After popping a debug group, the GL will also
generate a debug output message describing its cause based on the message
string, the source, and an id submitted to the associated PushDebugGroup com-
mand. DEBUG_TYPE_PUSH_GROUP and DEBUG_TYPE_POP_GROUP share a sin-
gle namespace for message id. severity has the value DEBUG_SEVERITY_-

NOTIFICATION and type has the value DEBUG_TYPE_POP_GROUP. Popping a de-
bug group restores the debug output volume control of the parent debug group.

Errors

A STACK_UNDERFLOW error is generated if PopDebugGroup is called and
only the default debug group is on the stack.

OpenGL 4.5 (Core Profile) - October 24, 2016

20.7. DEBUG LABELS 534

Identifier Object Type
BUFFER buffer

FRAMEBUFFER framebuffer
PROGRAM_PIPELINE program pipeline

PROGRAM program
QUERY query

RENDERBUFFER renderbuffer
SAMPLER sampler
SHADER shader
TEXTURE texture

TRANSFORM_FEEDBACK transform feedback
VERTEX_ARRAY vertex array

Table 20.4: Object namespace identifiers and the corresponding object types.

20.7 Debug Labels

Debug labels provide a method for annotating any object (texture, buffer, shader,
etc.) with a descriptive text label. These labels may then be used by the debug
output (see chapter 20) or an external tool such as a debugger or profiler to describe
labelled objects.

The command

void ObjectLabel(enum identifier, uint name, sizei length,
const char *label);

labels the object identified by name and its namespace identifier. identifier must be
one of the tokens in table 20.4, indicating the type of the object corresponding to
name.

label contains a string used to label an object. length contains the number
of characters in label. If length is negative, then label contains a null-terminated
string. If label is NULL, any debug label is effectively removed from the object.

Errors

An INVALID_ENUM error is generated if identifier is not one of the object
types listed in table 20.4.

An INVALID_VALUE error is generated if name is not the name of a valid
object of the type specified by identifier.

OpenGL 4.5 (Core Profile) - October 24, 2016

20.8. ASYNCHRONOUS AND SYNCHRONOUS DEBUG OUTPUT 535

An INVALID_VALUE error is generated if the number of characters in la-
bel, excluding the null terminator when length is negative, is not less than the
value of MAX_LABEL_LENGTH.

The command

void ObjectPtrLabel(void *ptr, sizei length, const
char *label);

labels the sync object identified by ptr. length and label match the corresponding
arguments of ObjectLabel.

Errors

An INVALID_VALUE error is generated if ptr is not the name of a sync
object.

An INVALID_VALUE error is generated if the number of characters in la-
bel, excluding the null terminator when length is negative, is not less than the
value of MAX_LABEL_LENGTH.

A label is part of the state of the object to which it is associated. The initial
state of an object’s label is the empty string. Labels need not be unique.

20.8 Asynchronous and Synchronous Debug Output

The behavior of how and when the GL driver is allowed to generate debug mes-
sages, and subsequently either call back to the application or place the message in
the debug message log, is affected by the state DEBUG_OUTPUT_SYNCHRONOUS.
This state can be modified by the Enable and Disable commands. Its initial value
is FALSE.

When DEBUG_OUTPUT_SYNCHRONOUS is disabled, the driver is optionally al-
lowed to concurrently call the debug callback routine from potentially multiple
threads, including threads that the context that generated the message is not cur-
rently bound to. The implementation may also call the callback routine asyn-
chronously after the GL command that generated the message has already returned.
The application is fully responsible for ensuring thread safety due to debug call-
backs under these circumstances. In this situation the userParam value may be
helpful in identifying which application thread’s command originally generated
the debug callback.

When DEBUG_OUTPUT_SYNCHRONOUS is enabled, the driver guarantees syn-
chronous calls to the callback routine by the context. When synchronous callbacks

OpenGL 4.5 (Core Profile) - October 24, 2016

20.9. DEBUG OUTPUT QUERIES 536

are enabled, all calls to the callback routine will be made by the thread that owns
the current context; all such calls will be made serially by the current context; and
each call will be made before the GL command that generated the debug message
is allowed to return.

When no callback is specified and DEBUG_OUTPUT_SYNCHRONOUS is disabled,
the driver can still asynchronously place messages in the debug message log, even
after the context thread has returned from the GL function that generated those
messages. When DEBUG_OUTPUT_SYNCHRONOUS is enabled, the driver guaran-
tees that all messages are added to the log before the GL function returns.

Enabling synchronous debug output greatly simplifies the responsibilities of
the application for making its callback functions thread-safe, but may potentially
result in drastically reduced driver performance.

The DEBUG_OUTPUT_SYNCHRONOUS only guarantees intra-context synchro-
nization for the callbacks of messages generated by that context, and does not
guarantee synchronization across multiple contexts. If multiple contexts are con-
currently used by the application, it is allowed for those contexts to also concur-
rently call their designated callbacks, and the application is responsible for han-
dling thread safety in that situation even if DEBUG_OUTPUT_SYNCHRONOUS is en-
abled in all contexts.

20.9 Debug Output Queries

Pointers set with debug output commands are queried with the generic GetPoint-
erv command (see section 22.2). pnames DEBUG_CALLBACK_FUNCTION and
DEBUG_CALLBACK_USER_PARAM respectively query the current callback function
and the user parameter to that function set with DebugMessageCallback.

When no debug callback is set, debug messages are stored in a debug message
log as described in section 20.3. Messages may be queried from the log by calling

uint GetDebugMessageLog(uint count, sizei bufSize,
enum *sources, enum *types, uint *ids, enum *severities,
sizei *lengths, char *messageLog);

GetDebugMessageLog fetches a maximum of count messages from the mes-
sage log, and will return the number of messages successfully fetched.

Messages will be fetched from the log in order of oldest to newest. Those
messages that were fetched will be removed from the log.

The sources, types, severities, IDs, and string lengths of fetched messages will
be stored in the application-provided arrays sources, types, severities, ids, and
lengths, respectively. The application is responsible for allocating enough space

OpenGL 4.5 (Core Profile) - October 24, 2016

20.9. DEBUG OUTPUT QUERIES 537

for each array to hold up to count elements. The string representations of all
fetched messages are stored in the messageLog array. If multiple messages are
fetched, their strings are concatenated into the same messageLog array and will
be separated by single null terminators. The last string in the array will also be
null-terminated. The maximum size of messageLog, including the space used by
all null terminators, is given by bufSize.

If a message’s string, including its null terminator, can not fully fit within the
messageLog array’s remaining space, then that message and any subsequent mes-
sages will not be fetched and will remain in the log. The string lengths stored in
the array lengths include the space for the null terminator of each string.

Any or all of the arrays sources, types, ids, severities, lengths and messageLog
can also be NULL pointers, which causes attributes for such arrays to be discarded
when messages are fetched. However, those messages will still be removed from
the log. Thus to simply delete up to count messages from the message log while ig-
noring their attributes, the application can call GetDebugMessageLog with NULL

pointers for all attribute arrays.
If the context is not a debug context, then the GL can opt to never add messages

to the message log, so that GetDebugMessageLog will always return zero.

Errors

An INVALID_VALUE error is generated if bufSize is negative and mes-
sageLog is not NULL.

The command

void GetObjectLabel(enum identifier, uint name,
sizei bufSize, sizei *length, char *label);

returns in label the string labelling an object. identifier and name specify the
namespace and name of the object, and match the corresponding arguments of
ObjectLabel (see section 20.7).

label will be null-terminated. The actual number of characters written into
label, excluding the null terminator, is returned in length. If length is NULL, no
length is returned. The maximum number of characters that may be written into
label, including the null terminator, is specified by bufSize. If no debug label was
specified for the object then label will contain a null-terminated empty string, and
zero will be returned in length. If label is NULL and length is non-NULL then no
string will be returned and the length of the label will be returned in length.

OpenGL 4.5 (Core Profile) - October 24, 2016

20.9. DEBUG OUTPUT QUERIES 538

Errors

An INVALID_ENUM error is generated is identifier is not one of the object
types listed in table 20.4.

An INVALID_VALUE error is generated if name is not the name of a valid
object of the type specified by identifier.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetObjectPtrLabel(void *ptr, sizei bufSize,
size *length, char *label);

returns in label the string labelling the sync object identified by ptr. bufSize, length,
and label match the corresponding arguments of GetObjectLabel.

Errors

An INVALID_VALUE error is generated if ptr is not the name of a sync
object.

An INVALID_VALUE error is generated if bufSize is negative.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 21

Special Functions

This chapter describes additional functionality that does not fit easily into any of
the preceding chapters, including hints influencing GL behavior (see section 21.5).

21.1 Evaluators

This section is only defined in the compatibility profile.

21.2 Selection

This section is only defined in the compatibility profile.

21.3 Feedback

This section is only defined in the compatibility profile.

21.4 Display Lists

This section is only defined in the compatibility profile.

21.5 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enum target, enum hint);

539

21.6. SAVING AND RESTORING STATE 540

Target Hint description
LINE_SMOOTH_HINT Line sampling quality
POLYGON_SMOOTH_HINT Polygon sampling quality
TEXTURE_COMPRESSION_HINT Quality and performance of

texture image compression
FRAGMENT_SHADER_DERIVATIVE_HINT Derivative accuracy for fragment

processing built-in functions
dFdx, dFdy and fwidth

Table 21.1: Hint targets and descriptions.

target is a symbolic constant indicating the behavior to be controlled, and hint is a
symbolic constant indicating what type of behavior is desired. The possible targets
are described in table 21.1. For each target, hint must be one of FASTEST, indi-
cating that the most efficient option should be chosen; NICEST, indicating that the
highest quality option should be chosen; and DONT_CARE, indicating no preference
in the matter.

For the texture compression hint, a hint of FASTEST indicates that texture im-
ages should be compressed as quickly as possible, while NICEST indicates that the
texture images should be compressed with as little image degradation as possible.
FASTEST should be used for one-time texture compression, and NICEST should be
used if the compression results are to be retrieved by GetCompressedTexImage
(section 8.11) for reuse.

The interpretation of hints is implementation-dependent. An implementation
may ignore them entirely.

The initial value of all hints is DONT_CARE.

Errors

An INVALID_ENUM error is generated if target is not one of the values in
table 21.1.

An INVALID_ENUM error is generated if hint is not FASTEST, NICEST, or
DONT_CARE.

21.6 Saving and Restoring State

This section is only defined in the compatibility profile.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 22

Context State Queries

The state required to describe the GL machine is enumerated in chapter 23, and is
set using commands described in previous chapters.

State that is part of GL objects can usually be queried using commands de-
scribed together with the commands to set that state. Such commands operate
either directly on a named object, or indirectly through a binding in the GL context
(such as a currently bound framebuffer object).

The commands in this chapter describe queries for state directly associated
with the context, rather than with an object. Data conversions may be done when
querying context state, as described in section 2.2.2.

22.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set of Get commands.

Valid values of the symbolic constants allowed as parameter names to the var-
ious queries in this section are not summarized here, because there are many al-
lowed parameters. Instead they are described elsewhere in the Specification to-
gether with the commands such state is relevant to, as well as in the state tables in
chapter 23.

There are five commands for obtaining simple state variables:

void GetBooleanv(enum pname, boolean *data);
void GetIntegerv(enum pname, int *data);
void GetInteger64v(enum pname, int64 *data);
void GetFloatv(enum pname, float *data);
void GetDoublev(enum pname, double *data);

541

22.1. SIMPLE QUERIES 542

The commands obtain boolean, integer, 64-bit integer, floating-point, or double-
precision state variables. pname is a symbolic constant indicating the state variable
to return. data is a pointer to a scalar or array of the indicated type in which to
place the returned data.

Errors

An INVALID_ENUM error is generated if pname is not state queriable with
these commands.

Indexed simple state variables are queried with the commands

void GetBooleani v(enum target, uint index,
boolean *data);

void GetIntegeri v(enum target, uint index, int *data);
void GetFloati v(enum target, uint index, float *data);
void GetDoublei v(enum target, uint index, double *data);
void GetInteger64i v(enum target, uint index,

int64 *data);

target is the name of the indexed state and index is the index of the particular
element being queried. data is a pointer to a scalar or array of the indicated type in
which to place the returned data.

Errors

An INVALID_ENUM error is generated if target is not indexed state queri-
able with these commands.

An INVALID_VALUE error is generated if index is outside the valid range
for the indexed state target.

Finally,

boolean IsEnabled(enum cap);

can be used to determine if cap is currently enabled (as with Enable) or disabled.

Errors

An INVALID_ENUM error is generated if cap is not enable state queriable
with IsEnabled.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.2. POINTER, STRING, AND RELATED CONTEXT QUERIES 543

boolean IsEnabledi(enum target, uint index);

can be used to determine if the indexed state corresponding to target and index is
enabled or disabled.

Errors

An INVALID_ENUM error is generated if target is not indexed enable state
queriable with IsEnabledi.

An INVALID_VALUE error is generated if index is outside the valid range
for the indexed state target.

22.2 Pointer, String, and Related Context Queries

Pointers in the current GL context are queried with the command

void GetPointerv(enum pname, void **params);

pname is a symbolic constant indicating the pointer to return. params is a pointer
to a variable in which to place the single returned pointer value.

pnames of DEBUG_CALLBACK_FUNCTION and DEBUG_CALLBACK_USER_-

PARAM, return debug output state as described in section 20.9.

Errors

An INVALID_ENUM error is generated if pname is not one of the names
described above.

String queries return pointers to UTF-8 encoded, null-terminated static strings
describing properties of the current GL context 1. The command

ubyte *GetString(enum name);

accepts name values of RENDERER, VENDOR, VERSION, and SHADING_-

LANGUAGE_VERSION. The format of the RENDERER and VENDOR strings is
implementation-dependent. The VERSION and SHADING_LANGUAGE_VERSION

strings are laid out as follows:

<version number><space><vendor-specific information>
1Applications making copies of these static strings should never use a fixed-length buffer, because

the strings may grow unpredictably between releases, resulting in buffer overflow when copying.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.2. POINTER, STRING, AND RELATED CONTEXT QUERIES 544

Value OpenGL Profile
CONTEXT_CORE_PROFILE_BIT Core

CONTEXT_COMPATIBILITY_PROFILE_BIT Compatibility

Table 22.1: Context profile bits returned by the CONTEXT_PROFILE_MASK query.

The version number is either of the form major number.minor number or major -
number.minor number.release number, where the numbers all have one or more
digits. The minor number for SHADING_LANGUAGE_VERSION is always two dig-
its, matching the OpenGL Shading Language Specification release number. For
example, this query might return the string "4.20" while the corresponding
VERSION query returns "4.2". The release number and vendor specific infor-
mation are optional. However, if present, then they pertain to the server and their
format and contents are implementation-dependent.

GetString returns the version number (in the VERSION string) that can be
supported by the current GL context. Thus, if the client and server support different
versions a compatible version is returned.

Errors

An INVALID_ENUM error is generated if name is not RENDERER, VENDOR,
VERSION, or SHADING_LANGUAGE_VERSION.

The context version may also be queried by calling GetIntegerv with pname
MAJOR_VERSION and MINOR_VERSION, which respectively return the same val-
ues as major number and minor number in the VERSION string.

The profile implemented by the context may be queried by calling GetIntegerv
with value CONTEXT_PROFILE_MASK, which returns a mask containing one of the
bits in table 22.1, corresponding to the API profile implemented by the context (see
appendix D.1).

Flags defining additional properties of the context may be queried by calling
GetIntegerv with pname CONTEXT_FLAGS.

If CONTEXT_FLAG_FORWARD_COMPATIBLE_BIT is set in CONTEXT_FLAGS,
then the context is a forward-compatible context as defined in appendix D, and
the deprecated features described in that appendix are not supported; otherwise the
context is a full context, and all features described in the specification are sup-
ported.

If CONTEXT_FLAG_DEBUG_BIT is set in CONTEXT_FLAGS, then the context is
a debug context, enabling full support for debug output as described in chapter 20.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.2. POINTER, STRING, AND RELATED CONTEXT QUERIES 545

If CONTEXT_FLAG_ROBUST_ACCESS_BIT is set in CONTEXT_FLAGS, then ro-
bust buffer access will be enabled for drawing commands using vertex arrays, as
described in section 10.3.7.

The behavior of the context when it is made no longer current (released) by the
platform binding may be queried by calling GetIntegerv with pname CONTEXT_-
RELEASE_BEHAVIOR. If the behavior is CONTEXT_RELEASE_BEHAVIOR_FLUSH,
any pending commands on the context will be flushed. If the behavior is NONE,
pending commands are not flushed.

The default value is CONTEXT_RELEASE_BEHAVIOR_FLUSH, and may in
some cases be changed using platform-specific context creation extensions.

Indexed strings are queried with the command

ubyte *GetStringi(enum name, uint index);

name is the name of the indexed state and index is the index of the particular ele-
ment being queried.

If name is EXTENSIONS, the extension name corresponding to the indexth
supported extension will be returned. index may range from zero to the value of
NUM_EXTENSIONS minus one. There is no defined relationship between any par-
ticular extension name and the index values; an extension name may correspond
to a different index in different GL contexts and/or implementations.

If name is SHADING_LANGUAGE_VERSION, a version string for one of the sup-
ported versions of the OpenGL Shading Language and OpenGL ES Shading Lan-
guage is returned. index may range from zero to the value of NUM_SHADING_-
LANGUAGE_VERSIONS minus one. The format of the returned string is identical to
the text that may follow #version in shader program source and is formatted as
the version number followed, for versions in which language profiles are defined,
by a space and a profile name. For example, a returned string containing "420
core" indicates support for OpenGL Shading Language 4.20, core profile. An
empty string indicates support for OpenGL Shading Language 1.10, which did not
include the #version compiler directive. The profile string will always be present
in the returned string when it is accepted by that version of the OpenGL Shading
Language, even though there is a default profile string in versions 1.50 and greater.
Version strings 100, 300 es, and 310 es correspond to OpenGL ES Shading
Language versions 1.00, 3.00 and 3.10, respectively.

An index of zero will always return the string for the version of the most recent
shading language supported by the GL and the profile of the shading language
corresponding to the profile of the API (e.g. the first entry returned in an OpenGL
4.30 core profile context will be "430 core" and the first entry returned in an
OpenGL 4.30 compatibility profile context will be "430 compatibility").
There is no defined ordering of the returned strings for other values of index.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 546

Errors

An INVALID_ENUM error is generated if name is not SHADING_-

LANGUAGE_VERSION or EXTENSIONS.
An INVALID_VALUE error is generated if index is outside the valid range

for the indexed state name.

22.3 Internal Format Queries

Information about implementation-dependent support for internal formats can be
queried with the command

void GetInternalformativ(enum target, enum internalformat,
enum pname, sizei bufSize, int *params);

void GetInternalformati64v(enum target,
enum internalformat, enum pname, sizei bufSize,
int64 *params);

internalformat can be any value. The INTERNALFORMAT_SUPPORTED pname
can be used to determine if the internal format is supported, and the other pnames
are defined in terms of whether or not the format is supported.

target indicates the usage of the internalformat, and must be one the targets
listed in table 22.2.

No more than bufSize integers will be written into params. If more data are
available, they will be ignored and no error will be generated.

pname indicates the information to query. The following subsections list the
valid values for pname and define their meaning and the values that may be re-
turned. In the following descriptions, the term resource is used to generically re-
fer to an object of the appropriate type that has been created with internalformat
and target. If the particular target and internalformat combination does not make
sense, or if a particular type of target is not supported by the implementation the
unsupported answer should be given. This is not an error.

All properties may be queried via either GetInternalformat* command. Data
conversions are done as defined in section 2.2.2.

22.3.1 Supported Operation Queries

Queries that return information about supported types of operations will return one
of the following values in params:

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 547

Target Usage
TEXTURE_1D 1D texture
TEXTURE_1D_ARRAY 1D array texture
TEXTURE_2D 2D texture
TEXTURE_2D_ARRAY 2D array texture
TEXTURE_2D_MULTISAMPLE 2D multisample texture
TEXTURE_2D_MULTISAMPLE_ARRAY 2D multisample array texture
TEXTURE_3D 3D texture
TEXTURE_BUFFER buffer texture
TEXTURE_CUBE_MAP cube map texture
TEXTURE_CUBE_MAP_ARRAY cube map array texture
TEXTURE_RECTANGLE rectangle texture
RENDERBUFFER renderbuffer

Table 22.2: Possible targets that internalformat can be used with and the corre-
sponding usage meaning.

• NONE: the requested resource or operation is not supported at all by the im-
plementation.

• CAVEAT_SUPPORT: the requested operation is supported by the implemen-
tation, but there may be some implementation-specific caveats that make
support less than optimal. For example using the feature may result in re-
duced performance (relative to other formats or features), such as software
rendering or other mechanisms of emulating the desired feature.

If a query reports that there is a caveat and the debug output functionality
is enabled (see section 20), the GL will generate a debug output message
describing the caveat. The message has the source DEBUG_SOURCE_API, the
type DEBUG_TYPE_PERFORMANCE, and an implementation-dependent ID.

• FULL_SUPPORT: the requested operation is fully supported by the imple-
mentation.

Possible pnames for supported types of operations, and their meanings, in-
clude:

• CLEAR_BUFFER: Support for using the resource with ClearBuffer*Data
commands is returned in params.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 548

• CLEAR_TEXTURE: Support for using the resource with ClearTex*Image
commands is returned in params.

• COMPUTE_TEXTURE: Support for using the resource as a source for texture
sampling in a compute shader is written to params.

• FILTER: Support for filter types other than NEAREST or NEAREST_-

MIPMAP_NEAREST for the resource is written to params. This indicates
if sampling from such resources supports setting the MIN/MAG filters to
LINEAR values.

• FRAGMENT_TEXTURE: Support for using the resource as a source for texture
sampling in a fragment shader is written to params.

• FRAMEBUFFER_BLEND: Support for rendering to the resource via frame-
buffer attachment when blending is enabled is returned in params.

• FRAMEBUFFER_RENDERABLE: Support for rendering to the resource via
framebuffer attachment is returned in params.

• FRAMEBUFFER_RENDERABLE_LAYERED: Support for layered rendering to
the resource via framebuffer attachment is returned in params.

• GEOMETRY_TEXTURE: Support for using the resource as a source for texture
sampling in a geometry shader is written to params.

• MANUAL_GENERATE_MIPMAP: Support for manually generating mipmaps
for the resource is returned in params.

• READ_PIXELS: Support for reading pixels from the resource when it is at-
tached to a framebuffer is returned in params.

• SHADER_IMAGE_ATOMIC: Support for using the resource with atomic mem-
ory operations from shaders is written to params.

• SHADER_IMAGE_LOAD: Support for using the resource with image load op-
erations in shaders is written to params. In this case the internalformat is the
value of the format parameter that would be passed to BindImageTexture.

• SHADER_IMAGE_STORE: Support for using the resource with image store
operations in shaders is written to params. In this case the internalformat is
the value of the format parameter that is passed to BindImageTexture.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 549

• SIMULTANEOUS_TEXTURE_AND_DEPTH_TEST: Support for using the re-
source both as a source for texture sampling while it is bound as a buffer
for depth test is written to params. For example, a depth (or stencil) texture
could be bound simultaneously for texturing while it is bound as a depth
(and/or stencil) buffer without causing a feedback loop, provided that depth
writes are disabled.

• SIMULTANEOUS_TEXTURE_AND_DEPTH_WRITE: Support for using the re-
source both as a source for texture sampling while performing depth writes
to the resources is written to params. For example, a depth-stencil texture
could be bound simultaneously for stencil texturing while it is bound as a
depth buffer. Feedback loops cannot occur because sampling a stencil tex-
ture only returns the stencil portion, and thus writes to the depth buffer do
not modify the stencil portions.

• SIMULTANEOUS_TEXTURE_AND_STENCIL_TEST: Support for using the re-
source both as a source for texture sampling while it is bound as a buffer for
stencil test is written to params. For example, a depth (or stencil) texture
could be bound simultaneously for texturing while it is bound as a depth
(and/or stencil) buffer without causing a feedback loop, provided that stencil
writes are disabled.

• SIMULTANEOUS_TEXTURE_AND_STENCIL_WRITE: Support for using the
resource both as a source for texture sampling while performing stencil
writes to the resources is written to params. For example, a depth-stencil
texture could be bound simultaneously for depth-texturing while it is bound
as a stencil buffer. Feedback loops cannot occur because sampling a depth
texture only returns the depth portion, and thus writes to the stencil buffer
could not modify the depth portions.

• SRGB_READ: Support for converting from sRGB colorspace on read opera-
tions (see section 8.24) from the resource is returned in params.

• SRGB_WRITE: Support for converting to sRGB colorspace on write opera-
tions to the resource is returned in params. This indicates that writing to
framebuffers with this internal format will encode to sRGB color spaces
when FRAMEBUFFER_SRGB is enabled (see section 17.3.7).

• TESS_CONTROL_TEXTURE: Support for using the resource as a source for
texture sampling in a tessellation control shader is written to params.

• TESS_EVALUATION_TEXTURE: Support for using the resource as a source
for texture sampling in a tessellation evaluation shader is written to params.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 550

• TEXTURE_GATHER: Support for using the resource with texture gather oper-
ations is written to params.

• TEXTURE_GATHER_SHADOW: Support for using resource with texture gather
operations with shadow samplers is written to params.

• TEXTURE_SHADOW: Support for using the resource with shadow samplers is
written to params.

• TEXTURE_VIEW: Support for using the resource with the TextureView com-
mand is returned in params.

• VERTEX_TEXTURE: Support for using the resource as a source for texture
sampling in a vertex shader is written to params.

22.3.2 Other Internal Format Queries

Other supported values for pname, their meanings, and their possible return values
include:

• COLOR_COMPONENTS: If the internal format contains any color components
(R, G, B, or A), TRUE is returned in params. If the internal format is unsup-
ported or contains no color components, FALSE is returned.

• COLOR_ENCODING: The color encoding for the resource is returned in
params. Possible values for color buffers are LINEAR or SRGB, for linear
or sRGB-encoded color components, respectively. For non-color formats
(such as depth or stencil), or for unsupported resources, the value NONE is
returned.

• COLOR_RENDERABLE: If internalformat is color-renderable (as defined in
section 9.4), TRUE is returned in params. If the internal format is unsup-
ported, or the internal format is not color-renderable, FALSE is returned.

• DEPTH_COMPONENTS: If the internal format contains a depth component
(D), TRUE is returned in params. If the internal format is unsupported or
contains no depth component, FALSE is returned.

• DEPTH_RENDERABLE: If internalformat is depth-renderable (as defined in
section 9.4), TRUE is returned in params. If the internal format is unsup-
ported, or if the internal format is not depth-renderable, FALSE is returned.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 551

• GET_TEXTURE_IMAGE_FORMAT: The implementation-preferred format to
pass to GetTexImage when querying texture image data from this resource.
Possible values include any value that is legal to pass for the format parame-
ter to GetTexImage, or NONE if the resource does not support this operation,
or if GetTexImage is not supported.

• GET_TEXTURE_IMAGE_TYPE: The implementation-preferred type to pass to
GetTexImage when querying texture image data from this resource. Possi-
ble values include any value that is legal to pass for the type parameter to
GetTexImage, or NONE if the resource does not support this operation, or if
GetTexImage is not supported.

• IMAGE_COMPATIBILITY_CLASS: The compatibility class of the resource
when used as an image texture is returned in params. This corre-
sponds to the value from the Class column in table 8.27. The possi-
ble values returned are IMAGE_CLASS_4_X_32, IMAGE_CLASS_2_X_32,
IMAGE_CLASS_1_X_32, IMAGE_CLASS_4_X_16, IMAGE_CLASS_2_X_-
16, IMAGE_CLASS_1_X_16, IMAGE_CLASS_4_X_8, IMAGE_CLASS_2_-
X_8, IMAGE_CLASS_1_X_8, IMAGE_CLASS_11_11_10, and IMAGE_-

CLASS_10_10_10_2, which correspond to the 4x32, 2x32, 1x32, 4x16,
2x16, 1x16, 4x8, 2x8, 1x8, the class (a) 11/11/10 packed floating-point for-
mat, and the class (b) 10/10/10/2 packed formats, respectively. If the re-
source is not supported for image textures, or if image textures are not sup-
ported, NONE is returned.

• IMAGE_FORMAT_COMPATIBILITY_TYPE: The matching criteria use for the
resource when used as an image textures is returned in params. This
is equivalent to calling GetTexParameter with pname set to IMAGE_-

FORMAT_COMPATIBILITY_TYPE. Possible values are IMAGE_FORMAT_-

COMPATIBILITY_BY_SIZE or IMAGE_FORMAT_COMPATIBILITY_BY_-

CLASS. If the resource is not supported for image textures, or if image tex-
tures are not supported, NONE is returned.

• IMAGE_PIXEL_FORMAT: The pixel format of the resource when used as an
image texture is returned in params. This is the value from the Pixel format
column in table 8.27. If the resource is not supported for image textures, or
if image textures are not supported, NONE is returned.

• IMAGE_PIXEL_TYPE: The pixel type of the resource when used as an image
texture is returned in params. This is the value from the Pixel type column
in table 8.27. If the resource is not supported for image textures, or if image
textures are not supported, NONE is returned.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 552

• IMAGE_TEXEL_SIZE: The size of a texel of the resource when used as an
image texture is returned in params. This is the value from the Size column
in table 8.27. If the resource is not supported for image textures, or if image
textures are not supported, zero is returned.

• INTERNALFORMAT_PREFERRED: The implementation-preferred internal
format for representing resources of the specified internalformat is returned
in params. The preferred internal format should have no less precision than
the requested one. If the specified internalformat is already a preferred for-
mat, or if there is no better format that is compatible, the queried internalfor-
mat value is written to params. If the internalformat is not supported, NONE
is returned.

• INTERNALFORMAT_RED_SIZE, INTERNALFORMAT_GREEN_-

SIZE, INTERNALFORMAT_BLUE_SIZE, INTERNALFORMAT_ALPHA_SIZE,
INTERNALFORMAT_DEPTH_SIZE, INTERNALFORMAT_STENCIL_SIZE, or
INTERNALFORMAT_SHARED_SIZE:

For uncompressed internal formats, queries of these values return the ac-
tual resolutions that would be used for storing image components for the
resource. For compressed internal formats, the resolutions returned specify
the component resolution of an uncompressed internal format that produces
an image of roughly the same quality as the compressed algorithm. For tex-
tures this query will return the same information as querying GetTexLevel-
Parameter* for the corresponding TEXTURE_*_SIZE. If the internal format
is unsupported, or if a particular component is not present in the format, 0 is
written to params.

• INTERNALFORMAT_RED_TYPE, INTERNALFORMAT_GREEN_-

TYPE, INTERNALFORMAT_BLUE_TYPE, INTERNALFORMAT_ALPHA_TYPE,
INTERNALFORMAT_DEPTH_TYPE, or INTERNALFORMAT_STENCIL_TYPE:

For uncompressed internal formats, queries for these values return the data
type used to store the component. For compressed internal formats the
types returned specify how components are interpreted after decompres-
sion. For textures this query returns the same information as querying
GetTexLevelParameter* for the corresponding TEXTURE_*_TYPE. Pos-
sible values returned include NONE, SIGNED_NORMALIZED, UNSIGNED_-
NORMALIZED, FLOAT, INT, and UNSIGNED_INT, representing missing,
signed normalized fixed-point, unsigned normalized fixed-point, floating-
point, signed unnormalized integer, and unsigned unnormalized integer com-
ponents respectively. NONE is returned for all component types if the format

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 553

is unsupported.

• INTERNALFORMAT_SUPPORTED: If internalformat is an internal format that
is supported by the implementation in at least some subset of possible oper-
ations, TRUE is written to params. If internalformat if not a valid token for
any internal format usage, FALSE is returned.

internalformats that must be supported include:

– sized internal formats from tables 8.12- 8.13 and 8.16,

– any specific compressed internal format from table 8.14,

– any image unit format from table 8.26,

– any generic compressed internal format from table 8.14, if the imple-
mentation accepts it for any texture specification commands, and

– any unsized or base internal format, if the implementation accepts it for
texture or image specification.

In other words, any internalformat accepted by any of the com-
mands: ClearBufferData, ClearBufferSubData, CompressedTexIm-
age1D, CompressedTexImage2D, CompressedTexImage3D, CopyTex-
Image1D, CopyTexImage2D, RenderbufferStorage, Renderbuffer-
StorageMultisample, TexBuffer, TexImage1D, TexImage2D, TexIm-
age3D, TexImage2DMultisample, TexImage3DMultisample, TexStor-
age1D, TexStorage2D, TexStorage3D, TexStorage2DMultisample, TexS-
torage3DMultisample, and TextureView, and any valid format accepted by
BindImageTexture, must be supported.

• MAX_COMBINED_DIMENSIONS: The maximum combined dimensions for
the resource is returned in params. The combined dimensions is the prod-
uct of the individual dimensions of the resource. For multisampled surfaces
the number of samples is considered an additional dimension. Note that the
value returned can be ≥ 232 and should be queried with GetInternalfor-
mati64v.

This value should be considered a recommendation for applications. There
may be system-dependant reasons why allocations larger than this size may
fail, even if there might appear to be sufficient memory available when
queried via some other means. This also does not provide a guarantee that
allocations smaller than this will succeed because this value is not affected
by existing resource allocations.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 554

For one-dimensional targets this is the maximum single dimension. For
one-dimensional array targets this is the maximum combined width and
layers. For two-dimensional targets this is the maximum combined width
and height. For two-dimensional multisample targets this is the combined
width, height and samples. For two-dimensional array targets this is the max
combined width, height and layers. For two-dimensional multisample array
targets, this is the max combined width, height, layers and samples. For
three-dimensional targets this is the maximum combined width, height and
depth. For cube map targets this is the maximum combined width, height
and faces. For cube map array targets this is the maximum width, height and
layer-faces. If the resource is unsupported, zero is returned.

• MAX_DEPTH: The maximum supported depth for the resource is returned in
params. For resources with three or more dimensions, the third dimension is
considered the depth. If the resource does not have at least three dimensions,
or if the resource is unsupported, zero is returned.

• MAX_HEIGHT: The maximum supported height for the resource is returned in
params. For resources with two or more dimensions, the second dimension
is considered the height. If the resource does not have at least two dimen-
sions, or if the resource is unsupported, zero is returned.

• MAX_LAYERS: The maximum supported number of layers for the resource is
returned in params. For 1D array targets, the value returned is the same as
the MAX_HEIGHT. For 2D and cube array targets, the value returned is the
same as the MAX_DEPTH. If the resource does not support layers, or if the
resource is unsupported, zero is returned.

• MAX_WIDTH: The maximum supported width for the resource is returned in
params. For resources with only one dimension, that dimension is consid-
ered the width. If the resource is unsupported, zero is returned.

• MIPMAP: If the resource supports mipmaps, TRUE is returned in params. If
the resource is not supported, or if mipmaps are not supported for this type
of resource, FALSE is returned.

• NUM_SAMPLE_COUNTS: The number of sample counts that would be re-
turned by querying SAMPLES is returned in params.

– If internalformat is not color-renderable, depth-renderable, or stencil-
renderable (as defined in section 9.4), or if target does not support mul-
tiple samples (is not TEXTURE_2D_MULTISAMPLE, TEXTURE_2D_-
MULTISAMPLE_ARRAY, or RENDERBUFFER), zero is returned.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 555

• READ_PIXELS_FORMAT: The format to pass to ReadPixels to obtain the
best performance and image quality when reading from framebuffers with
internalformat is returned in params. Possible values include any value that
is legal to pass for the format parameter to ReadPixels, or NONE if internal-
format is not supported or can never be a valid source for ReadPixels.

• READ_PIXELS_TYPE: The type to pass to ReadPixels to obtain the best
performance and image quality when reading from framebuffers with inter-
nalformat is returned in params. Possible values include any value that is
legal to pass for the type parameter to ReadPixels, or NONE if the internal
format is not supported or can never be a source for ReadPixels.

• SAMPLES: The sample counts supported for internalformat and target are
written into params, in descending numeric order. Only positive values are
returned.

– Note that querying SAMPLES with a bufSize of one will return just the
maximum supported number of samples for this format.

– The maximum value in SAMPLES is guaranteed to be at least the lowest
of the following:

∗ The value of MAX_INTEGER_SAMPLES, if internalformat is a
signed or unsigned integer format.
∗ The value of MAX_DEPTH_TEXTURE_SAMPLES, if internalformat

is a depth/stencil-renderable format and target is TEXTURE_2D_-
MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY.
∗ The value of MAX_COLOR_TEXTURE_SAMPLES, if internalfor-

mat is a color-renderable format and target is TEXTURE_2D_-

MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY.
∗ The value of MAX_SAMPLES.

– If internalformat is not color-renderable, depth-renderable, or stencil-
renderable (as defined in section 9.4), or if target does not sup-
port multiple samples (i.e. other than TEXTURE_2D_MULTISAMPLE,
TEXTURE_2D_MULTISAMPLE_ARRAY, or RENDERBUFFER), params is
not modified.

• STENCIL_COMPONENTS: If the internal format contains a stencil component
(S), TRUE is returned in params. If the internal format is unsupported or
contains no stencil component, FALSE is returned.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.3. INTERNAL FORMAT QUERIES 556

• STENCIL_RENDERABLE: If internalformat is stencil-renderable (as defined
in section 9.4), TRUE is returned in params. If the internal format is unsup-
ported, or if the internal format is not stencil-renderable, FALSE is returned.

• TEXTURE_COMPRESSED: If internalformat is a compressed format that is
supported for this type of resource, TRUE is returned in params. If the inter-
nal format is not compressed, or the type of resource is not supported, FALSE
is returned.

• TEXTURE_COMPRESSED_BLOCK_HEIGHT: If the resource contains a com-
pressed format, the height of a compressed block (in texels) is returned in
params. If the internal format is not compressed, or the resource is not sup-
ported, 0 is returned.

• TEXTURE_COMPRESSED_BLOCK_SIZE: If the resource contains a com-
pressed format, the number of bytes per block is returned in params. If
the internal format is not compressed, or the resource is not supported, 0 is
returned. Together with the block width and height queries this allows the
bitrate to be computed, and may be useful in conjunction with ARB com-
pressed texture pixel storage).

• TEXTURE_COMPRESSED_BLOCK_WIDTH: If the resource contains a com-
pressed format, the width of a compressed block (in texels) is returned in
params. If the internal format is not compressed, or the resource is not sup-
ported, 0 is returned.

• TEXTURE_IMAGE_FORMAT: The implementation-preferred format to pass to
TexImage*D or TexSubImage*D when specifying texture image data for
this resource is returned in params. Possible values include any value that
is legal to pass for the format parameter to the Tex*Image*D commands, or
NONE if the resource is not supported for this operation.

• TEXTURE_IMAGE_TYPE: The implementation-preferred type to pass to Tex-
Image*D or TexSubImage*D when specifying texture image data for this
resource is returned in params. Possible values include any value that is le-
gal to pass for the type parameter to the Tex*Image*D commands, or NONE
if the resource is not supported for this operation.

• VIEW_COMPATIBILITY_CLASS: The compatibility class of the resource
when used as a texture view is returned in params. The compatibility class
is one of the values from the Class column of table 8.22. If the resource has
no other formats that are compatible, the resource does not support views, or
if texture views are not supported, NONE is returned.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.4. TRANSFORM FEEDBACK STATE QUERIES 557

Errors

An INVALID_ENUM error is generated if target is not one of the targets in
table 22.2, or if pname is not one of the parameters described above.

An INVALID_VALUE error is generated if bufSize is negative.

22.4 Transform Feedback State Queries

State of the currently bound transform feedback object may be queried by call-
ing GetIntegerv, GetIntegeri v, GetInteger64i v, GetBooleanv, or other query
functions with the query target set to one of the tokens listed in table 23.48.

Alternatively, the state of a transform feedback object may be queried with the
commands

void GetTransformFeedbackiv(uint xfb, enum pname,
int *param);

void GetTransformFeedbacki v(uint xfb, enum pname,
uint index, int *param);

void GetTransformFeedbacki64 v(uint xfb, enum pname,
uint index, int64 *param);

xfb must be zero, indicating the default transform feedback object, or the name
of an existing transform feedback object. pname must be one of the tokens listed in
table 23.48, depending on the command name as shown in the errors section below.
For indexed state, index is the index of the transform feedback stream. param is
the address of a variable to receive the result of the query.

Errors

An INVALID_OPERATION error is generated by GetTransformFeed-
back* if xfb is not zero or the name of an existing transform feedback object.

An INVALID_ENUM error is generated by GetTransformFeedbackiv
if pname is not TRANSFORM_FEEDBACK_PAUSED or TRANSFORM_-

FEEDBACK_ACTIVE.
An INVALID_ENUM error is generated by GetTransformFeedbacki v if

pname is not TRANSFORM_FEEDBACK_BUFFER_BINDING.
An INVALID_ENUM error is generated by GetTransformFeedbacki64 v

if pname is not TRANSFORM_FEEDBACK_BUFFER_START or TRANSFORM_-
FEEDBACK_BUFFER_SIZE.

OpenGL 4.5 (Core Profile) - October 24, 2016

22.5. INDEXED BINDING STATE QUERIES 558

An INVALID_VALUE error is generated by GetTransformFeedbacki v
and GetTransformFeedbacki64 v if index is greater than or equal to the num-
ber of binding points for transform feedback, as described in section 6.7.1.

22.5 Indexed Binding State Queries

The name of the texture object bound to the active texture unit may be queried by
calling GetIntegerv with pname TEXTURE_BINDING_1D, TEXTURE_BINDING_-
1D_-

ARRAY, TEXTURE_BINDING_2D, TEXTURE_BINDING_2D_ARRAY, TEXTURE_-
BINDING_2D_MULTISAMPLE, TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY,
TEXTURE_BINDING_3D, TEXTURE_BINDING_BUFFER, TEXTURE_BINDING_-

CUBE_MAP, TEXTURE_BINDING_CUBE_MAP_ARRAY, or TEXTURE_BINDING_-
RECTANGLE. or TEXTURE BINDING. Likewise, the current sampler bound to the
active texture unit may be queried by calling GetIntegerv with pname SAMPLER_-
BINDING.

To query the bound texture or sampler object bound to a specific texture unit
without changing the active texture selector, call GetIntegeri v with one of the
valid pnames listed above, and with index set to the zero-based texture unit index
to be queried.

OpenGL 4.5 (Core Profile) - October 24, 2016

Chapter 23

State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any of the simple
queries in section 22.1 are listed with just one of these commands – the one that
is most appropriate given the type of the data to be returned. These state vari-
ables cannot be obtained using IsEnabled. However, state variables for which
IsEnabled is listed as the query command can also be obtained using any of the
simple queries. State variables for which any other command is listed as the query
command can be obtained by using that command or any of its typed variants,
although information may be lost when not using the listed command. Unless oth-
erwise specified, when floating-point state is returned as integer values or integer
state is returned as floating-point values it is converted in the fashion described in
section 2.2.2.

State table entries indicate a type for each variable. Table 23.1 explains these
types. The type actually identifies all state associated with the indicated descrip-
tion; in certain cases only a portion of this state is returned. This is the case with
textures, where only the selected texture or texture parameter is returned.

The abbreviations max., min., and no. are used interchangeably with maximum,
minimum, and number, respectively, to help fit tables without overflowing pages.

559

560

Type code Explanation
B Boolean

BMU Basic machine units
C Color (floating-point R, G, B, and A values)
E Enumerated value (as described in spec body)
Z Integer
Z+ Non-negative integer or enumerated value

Zk, Zk∗ k-valued integer (k∗ indicates k is minimum)
R Floating-point number
R+ Non-negative floating-point number
R[a,b] Floating-point number in the range [a, b]

Rk k-tuple of floating-point numbers
S null-terminated string
I Image
Y Pointer (data type unspecified)

n× type n copies of type type (n∗ indicates n is minimum)

Table 23.1: State Variable Types

OpenGL 4.5 (Core Profile) - October 24, 2016

561

Get value Type
Get
Command

Initial
Value Description Sec.

PATCH VERTICES Z+ GetIntegerv 3 No. of vertices in input patch 10.1

PATCH DEFAULT OUTER LEVEL 4×R GetFloatv (1.0, 1.0, 1.0, 1.0)
Default outer tess. level w/o control
shader 11.2.2

PATCH DEFAULT INNER LEVEL 2×R GetFloatv (1.0, 1.0)
Default inner tess. level w/o control
shader 11.2.2

Table
23.2:C

urrentV
alues

and
A

ssociated
D

ata

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

562

Get value Type
Get
Command

Initial
Value Description Sec.

VERTEX ATTRIB ARRAY ENABLED 16 ∗ ×B GetVertexAttribiv FALSE Vertex attrib array enable 10.3
VERTEX ATTRIB ARRAY SIZE 16 ∗ ×Z5 GetVertexAttribiv 4 Vertex attrib array size 10.3
VERTEX ATTRIB ARRAY STRIDE 16 ∗ ×Z+ GetVertexAttribiv 0 Vertex attrib array stride 10.3
VERTEX ATTRIB ARRAY TYPE 16 ∗ ×E GetVertexAttribiv FLOAT Vertex attrib array type 10.3

VERTEX ATTRIB ARRAY NORMALIZED 16 ∗ ×B GetVertexAttribiv FALSE
Vertex attrib array nor-
malized 10.3

VERTEX ATTRIB ARRAY INTEGER 16 ∗ ×B GetVertexAttribiv FALSE
Vertex attrib array has
unconverted integers 10.3

VERTEX ATTRIB ARRAY LONG 16 ∗ ×B GetVertexAttribiv FALSE
Vertex attrib array has
unconverted doubles 10.3

VERTEX ATTRIB ARRAY DIVISOR 16 ∗ ×Z+ GetVertexAttribiv 0
Vertex attrib array in-
stance divisor 10.4

VERTEX ATTRIB ARRAY POINTER 16 ∗ ×Y GetVertex-
AttribPointerv NULL

Vertex attrib array
pointer 10.3

– S GetObjectLabel empty Debug label 20.9

Table
23.3:V

ertex
A

rray
O

bjectState
(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

563

Get value Type
Get
Command

Initial
Value Description Sec.

ELEMENT ARRAY BUFFER BINDING Z+ GetIntegerv 0
Element array buffer
binding 10.3.10

VERTEX ATTRIB ARRAY BUFFER BINDING 16 ∗ ×Z+ GetVertexAttribiv 0
Attribute array buffer
binding 6

VERTEX ATTRIB BINDING 16× Z16∗ GetVertexAttribiv i† Vertex buffer binding
used by vertex attrib i 10.3

VERTEX ATTRIB RELATIVE OFFSET 16× Z+ GetVertexAttribiv 0
Byte offset added to ver-
tex binding offset for this
attribute

10.3

VERTEX BINDING OFFSET 16× Z GetInteger64i v 0

Byte offset of the first
element in data store of
the buffer bound to ver-
tex binding i

10.3

VERTEX BINDING STRIDE 16× Z GetIntegeri v 16
Stride between elements
in vertex binding i 10.3

VERTEX BINDING DIVISOR 16× Z GetIntegeri v 16
Instance divisor for ver-
tex binding i 10.3

VERTEX BINDING BUFFER 16× Z GetIntegeri v 16
Name of buffer bound to
vertex binding i 10.3

Table
23.4:V

ertex
A

rray
O

bjectState
(cont.)

†
T

he
ith

attribute
defaults

to
a

value
of

i.

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

564

Get value Type
Get
Command

Initial
Value Description Sec.

ARRAY BUFFER BINDING Z+ GetIntegerv 0 Current buffer binding 6

DRAW INDIRECT BUFFER BINDING Z+ GetIntegerv 0
Indirect command buffer
binding 10.3.11

VERTEX ARRAY BINDING Z+ GetIntegerv 0
Current vertex array ob-
ject binding 10.3.1

PRIMITIVE RESTART B IsEnabled FALSE Primitive restart enable 10.3

PRIMITIVE RESTART FIXED INDEX B IsEnabled FALSE
Primitive restart fixed in-
dex enable 10.3.6

PRIMITIVE RESTART INDEX Z+ GetIntegerv 0 Primitive restart index 10.3.6

Table
23.5:V

ertex
A

rray
D

ata
(notin

V
ertex

A
rray

objects)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

565

Get value Type
Get
Command

Initial
Value Description Sec.

– n×BMU GetBufferSubData - Buffer data 6
BUFFER SIZE n× Z+ GetBufferParameteri64v 0 Buffer data size 6
BUFFER USAGE n× E GetBufferParameteriv STATIC_DRAW Buffer usage pattern 6
BUFFER ACCESS n× E GetBufferParameteriv READ_WRITE Buffer access flag 6.3
BUFFER ACCESS FLAGS n× Z+ GetBufferParameteriv 0 Extended buffer access flag 6.3

BUFFER IMMUTABLE STORAGE B GetBufferParameteriv FALSE
TRUE if buffer’s data store is im-
mutable, FALSE otherwise 6

BUFFER STORAGE FLAGS Z+ GetBufferParameteriv 0 Buffer object storage flags 6
BUFFER MAPPED n×B GetBufferParameteriv FALSE Buffer map flag 6.3
BUFFER MAP POINTER n× Y GetBufferPointerv NULL Mapped buffer pointer 6.3
BUFFER MAP OFFSET n× Z+ GetBufferParameteri64v 0 Start of mapped buffer range 6.3
BUFFER MAP LENGTH n× Z+ GetBufferParameteri64v 0 Size of mapped buffer range 6.3
– S GetObjectLabel empty Debug label 20.9

Table
23.6:B

ufferO
bjectState

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

566

Get value Type
Get
Command

Initial
Value Description Sec.

VIEWPORT 16 ∗ ×4×R GetFloati v See sec. 13.6.1 Viewport origin & extent 13.6.1
DEPTH RANGE 16 ∗ ×2×R[0,1] GetDoublei v 0,1 Depth range near & far 13.6.1

CLIP DISTANCEi 8∗ ×B IsEnabled FALSE
ith user clipping plane
enabled 13.5

CLIP ORIGIN Z2 GetIntegerv LOWER_LEFT Clip origin 13.5
CLIP DEPTH MODE Z2 GetIntegerv NEGATIVE_ONE_TO_ONE Clip depth mode 13.5
DEPTH CLAMP B IsEnabled FALSE Depth clamping enabled 13.5

TRANSFORM FEEDBACK BINDING Z+ GetIntegerv 0
Object bound for trans-
form feedback operations 13.2

Table
23.7:Transform

ation
state

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

567

Get value Type
Get
Command

Initial
Value Description Sec.

CLAMP READ COLOR E GetIntegerv FIXED_-
ONLY

Read color clamping 18.2.8

PROVOKING VERTEX E GetIntegerv
LAST_-
VERTEX_-
CONVENTION

Provoking vertex con-
vention 13.4

Table
23.8:C

oloring

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

568

Get value Type
Get
Command

Initial
Value Description Sec.

RASTERIZER DISCARD B IsEnabled FALSE
Discard primitives before rasteriza-
tion 14.1

POINT SIZE R+ GetFloatv 1.0 Point size 14.4
POINT FADE THRESHOLD SIZE R+ GetFloatv 1.0 Threshold for alpha attenuation 14.4
POINT SPRITE COORD ORIGIN E GetIntegerv UPPER_LEFT Origin orientation for point sprites 14.4
LINE WIDTH R+ GetFloatv 1.0 Line width 14.5
LINE SMOOTH B IsEnabled FALSE Line antialiasing on 14.5

Table
23.9:R

asterization

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

569

Get value Type
Get
Command

Initial
Value Description Sec.

CULL FACE B IsEnabled FALSE Polygon culling enabled 14.6.1
CULL FACE MODE E GetIntegerv BACK Cull front-/back-facing polygons 14.6.1

FRONT FACE E GetIntegerv CCW
Polygon frontface CW/CCW indica-
tor 14.6.1

POLYGON SMOOTH B IsEnabled FALSE Polygon antialiasing on 14.6

POLYGON MODE E GetIntegerv FILL
Polygon rasterization mode (front &
back) 14.6.4

POLYGON OFFSET FACTOR R GetFloatv 0 Polygon offset factor 14.6.5
POLYGON OFFSET UNITS R GetFloatv 0 Polygon offset units 14.6.5

POLYGON OFFSET POINT B IsEnabled FALSE
Polygon offset enable for POINT
mode rasterization 14.6.5

POLYGON OFFSET LINE B IsEnabled FALSE
Polygon offset enable for LINE
mode rasterization 14.6.5

POLYGON OFFSET FILL B IsEnabled FALSE
Polygon offset enable for FILL
mode rasterization 14.6.5

Table
23.10:R

asterization
(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

570

Get value Type
Get
Command

Initial
Value Description Sec.

MULTISAMPLE B IsEnabled TRUE Multisample rasterization 14.3.1
SAMPLE ALPHA TO COVERAGE B IsEnabled FALSE Modify coverage from alpha 17.3.1
SAMPLE ALPHA TO ONE B IsEnabled FALSE Set alpha to max 17.3.1
SAMPLE COVERAGE B IsEnabled FALSE Mask to modify coverage 14.9.3
SAMPLE COVERAGE VALUE R+ GetFloatv 1 Coverage mask value 14.9.3
SAMPLE COVERAGE INVERT B GetBooleanv FALSE Invert coverage mask value 14.9.3
SAMPLE SHADING B IsEnabled FALSE Sample shading enable 14.9.3

MIN SAMPLE SHADING VALUE R+ GetFloatv 0
Fraction of multisamples to use for
sample shading 14.3.1.1

SAMPLE MASK B IsEnabled FALSE Additional sample mask 14.9.3
SAMPLE MASK VALUE n× Z+ GetIntegeri v All bits of all words set Additional sample mask value 14.9.3

Table
23.11:M

ultisam
pling

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

571

Get value Type
Get
Command

Initial
Value Description Sec.

TEXTURE BINDING xD 80 ∗ ×3× Z+ GetIntegerv 0
Texture object bound to
TEXTURE_xD

8.1

TEXTURE BINDING 1D ARRAY 80 ∗ ×Z+ GetIntegerv 0
Texture object bound to
TEXTURE_1D_ARRAY

8.1

TEXTURE BINDING 2D ARRAY 80 ∗ ×Z+ GetIntegerv 0
Texture object bound to
TEXTURE_2D_ARRAY

8.1

TEXTURE BINDING CUBE MAP ARRAY 80 ∗ ×Z+ GetIntegerv 0
Texture object bound
to TEXTURE_CUBE_-
MAP_ARRAY

8.1

TEXTURE BINDING RECTANGLE 80 ∗ ×Z+ GetIntegerv 0
Texture object bound
to TEXTURE_-
RECTANGLE

8.1

TEXTURE BINDING BUFFER 80 ∗ ×Z+ GetIntegerv 0
Texture object bound to
TEXTURE_BUFFER

8.1

TEXTURE BINDING CUBE MAP 80 ∗ ×Z+ GetIntegerv 0
Texture object bound to
TEXTURE_CUBE_MAP

8.1

TEXTURE BINDING 2D MULTISAMPLE 80 ∗ ×Z+ GetIntegerv 0
Texture object bound
to TEXTURE_2D_-
MULTISAMPLE

8.22

TEXTURE BINDING 2D MULTISAMPLE -

ARRAY
80 ∗ ×Z+ GetIntegerv 0

Texture object bound
to TEXTURE_2D_-
MULTISAMPLE_-
ARRAY

8.22

Table
23.12:Textures

(state
pertexture

unit)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

572

Get value Type
Get
Command

Initial
Value Description Sec.

SAMPLER BINDING 80 ∗ ×Z+ GetIntegerv 0
Sampler object bound to
active texture unit 8.2

TEXTURE xD 0 ∗ ×3× I GetTexImage See ch. 8
xD texture image at l.o.d.
i

8

TEXTURE 1D ARRAY 0 ∗ ×I GetTexImage See ch. 8 1D texture image at row i 8

TEXTURE 2D ARRAY 0 ∗ ×I GetTexImage See ch. 8
2D texture image at slice
i

8

TEXTURE CUBE MAP ARRAY 0 ∗ ×I GetTexImage See ch. 8
Cube map array texture
image at l.o.d. i 8

TEXTURE RECTANGLE 0 ∗ ×I GetTexImage See ch. 8
Rectangle texture image
at l.o.d. zero 8

TEXTURE CUBE MAP POSITIVE X 0 ∗ ×I GetTexImage See sec. 8.5
+x face cube map tex-
ture image at l.o.d. i 8.5

TEXTURE CUBE MAP NEGATIVE X 0 ∗ ×I GetTexImage See sec. 8.5
−x face cube map tex-
ture image at l.o.d. i 8.5

TEXTURE CUBE MAP POSITIVE Y 0 ∗ ×I GetTexImage See sec. 8.5
+y face cube map texture
image at l.o.d. i 8.5

TEXTURE CUBE MAP NEGATIVE Y 0 ∗ ×I GetTexImage See sec. 8.5
−y face cube map texture
image at l.o.d. i 8.5

TEXTURE CUBE MAP POSITIVE Z 0 ∗ ×I GetTexImage See sec. 8.5
+z face cube map texture
image at l.o.d. i 8.5

TEXTURE CUBE MAP NEGATIVE Z 0 ∗ ×I GetTexImage See sec. 8.5
−z face cube map texture
image at l.o.d. i 8.5

Table
23.13:Textures

(state
pertexture

unit(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

573

Get value Type
Get
Command

Initial
Value Description Sec.

TEXTURE SWIZZLE R E GetTexParameteriv RED Red component swizzle 8.10

TEXTURE SWIZZLE G E GetTexParameteriv GREEN
Green component swiz-
zle 8.10

TEXTURE SWIZZLE B E GetTexParameteriv BLUE Blue component swizzle 8.10

TEXTURE SWIZZLE A E GetTexParameteriv ALPHA
Alpha component swiz-
zle 8.10

TEXTURE BORDER COLOR C GetTexParameterfv 0.0,0.0,0.0,0.0 Border color 8
TEXTURE MIN FILTER E GetTexParameteriv See sec. 8.22 Minification function 8.14
TEXTURE MAG FILTER E GetTexParameteriv LINEAR Magnification function 8.15
TEXTURE WRAP S E GetTexParameteriv See sec. 8.22 Texcoord s wrap mode 8.14.2

TEXTURE WRAP T E GetTexParameteriv See sec. 8.22
Texcoord t wrap mode
(2D, 3D, cube map tex-
tures only)

8.14.2

TEXTURE WRAP R E GetTexParameteriv See sec. 8.22
Texcoord r wrap mode
(3D textures only) 8.14.2

TEXTURE TARGET E GetTextureParameteriv NONE Target of texture object 8.11
TEXTURE MIN LOD R GetTexParameterfv -1000 Min level of detail 8
TEXTURE MAX LOD R GetTexParameterfv 1000 Max. level of detail 8
TEXTURE BASE LEVEL Z+ GetTexParameterfv 0 Base texture array 8
TEXTURE MAX LEVEL Z+ GetTexParameterfv 1000 Max. texture array level 8

TEXTURE LOD BIAS R GetTexParameterfv 0.0
Texture level of detail
bias (biastexobj) 8.14

Table
23.14:Textures

(state
pertexture

object)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

574

Get value Type
Get
Command

Initial
Value Description Sec.

DEPTH STENCIL TEXTURE MODE E GetTexParameteriv DEPTH_COMPONENT
Depth stencil texture
mode 8.16

TEXTURE COMPARE MODE E GetTexParameteriv NONE Comparison mode 8.23
TEXTURE COMPARE FUNC E GetTexParameteriv LEQUAL Comparison function 8.23

IMAGE FORMAT COMPATIBILITY TYPE E GetTexParameteriv See sec. 8.26
Compatibility rules for
texture use with image
units

8.26

TEXTURE IMMUTABLE FORMAT B GetTexParameteriv FALSE
Size and format im-
mutable 8.19

TEXTURE IMMUTABLE LEVELS Z+ GetTexParameteriv 0 Storage no. of levels 8.18
TEXTURE VIEW MIN LEVEL Z+ GetTexParameteriv 0 View base texture level 8.18
TEXTURE VIEW NUM LEVELS Z+ GetTexParameteriv 0 View no. of texture levels 8.18
TEXTURE VIEW MIN LAYER Z+ GetTexParameteriv 0 View min array layer 8.18
TEXTURE VIEW NUM LAYERS Z+ GetTexParameteriv 0 View no. of array layers 8.18
– S GetObjectLabel empty Debug label 20.9

Table
23.15:Textures

(state
pertexture

object)(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

575

Get value Type
Get
Command

Initial
Value Description Sec.

TEXTURE WIDTH Z+ GetTexLevelParameteriv 0 Specified width 8
TEXTURE HEIGHT Z+ GetTexLevelParameteriv 0 Specified height (2D/3D) 8
TEXTURE DEPTH Z+ GetTexLevelParameteriv 0 Specified depth (3D) 8
TEXTURE SAMPLES Z+ GetTexLevelParameteriv 0 No. of samples per texel 8.8

TEXTURE FIXED SAMPLE LOCATIONS B GetTexLevelParameteriv TRUE
Whether the image uses a
fixed sample pattern 8.8

TEXTURE INTERNAL FORMAT E GetTexLevelParameteriv RGBA or R8
Internal format (see sec-
tion 8.22) 8

TEXTURE x SIZE 6× Z+ GetTexLevelParameteriv 0

Component resolution (x
is RED, GREEN, BLUE,
ALPHA, DEPTH, or
STENCIL)

8

TEXTURE SHARED SIZE Z+ GetTexLevelParameteriv 0
Shared exponent field
resolution 8

TEXTURE x TYPE E GetTexLevelParameteriv NONE
Component type (x is
RED, GREEN, BLUE,
ALPHA, or DEPTH)

8.11

Table
23.16:Textures

(state
pertexture

im
age)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

576

Get value Type
Get
Command

Initial
Value Description Sec.

TEXTURE COMPRESSED B GetTexLevelParameteriv FALSE
True if image has a com-
pressed internal format 8.7

TEXTURE COMPRESSED IMAGE SIZE Z+ GetTexLevelParameteriv 0
Size (in ubytes) of
compressed image 8.7

TEXTURE BUFFER DATA STORE BIND-

ING
Z+ GetTexLevelParameteriv 0

Buffer object bound as
the data store for the ac-
tive image unit’s buffer
texture

8.1

TEXTURE BUFFER OFFSET n× Z GetTexLevelParameteriv 0

Offset into buffer’s data
store used for the active
image unit’s buffer tex-
ture

8.9

TEXTURE BUFFER SIZE n× Z GetTexLevelParameteriv 0

Size of the buffer’s data
store used for the active
image unit’s buffer tex-
ture

8.9

Table
23.17:Textures

(state
pertexture

im
age)(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

577

Get value Type
Get
Command

Initial
Value Description Sec.

TEXTURE BORDER COLOR C GetSamplerParameterfv 0.0,0.0,0.0,0.0 Border color 8
TEXTURE COMPARE FUNC E GetSamplerParameteriv LEQUAL Comparison function 8.23
TEXTURE COMPARE MODE E GetSamplerParameteriv NONE Comparison mode 8.23

TEXTURE LOD BIAS R GetSamplerParameterfv 0.0
Texture level of detail
bias (biastexobj) 8.14

TEXTURE MAX LOD R GetSamplerParameterfv 1000 Max. level of detail 8
TEXTURE MAG FILTER E GetSamplerParameteriv LINEAR Magnification function 8.15
TEXTURE MIN FILTER E GetSamplerParameteriv NEAREST_MIPMAP_LINEAR Minification function 8.14
TEXTURE MIN LOD R GetSamplerParameterfv -1000 Min level of detail 8
TEXTURE WRAP S E GetSamplerParameteriv REPEAT Texcoord s wrap mode 8.14.2

TEXTURE WRAP T E GetSamplerParameteriv REPEAT
Texcoord t wrap mode
(2D, 3D, cube map tex-
tures only)

8.14.2

TEXTURE WRAP R E GetSamplerParameteriv REPEAT
Texcoord r wrap mode
(3D textures only) 8.14.2

– S GetObjectLabel empty Debug label 20.9

Table
23.18:Textures

(state
persam

plerobject)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

578

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE TEXTURE E GetIntegerv TEXTURE0 Active texture unit selector 10.2

Table
23.19:Texture

E
nvironm

entand
G

eneration

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

579

Get value Type
Get
Command

Initial
Value Description Sec.

SCISSOR TEST 16 ∗ ×B IsEnabledi FALSE Scissoring enabled 14.9.2
SCISSOR BOX 16 ∗ ×4× Z GetIntegeri v See sec. 14.9.2 Scissor box 14.9.2
STENCIL TEST B IsEnabled FALSE Stenciling enabled 17.3.3
STENCIL FUNC E GetIntegerv ALWAYS Front stencil function 17.3.3
STENCIL VALUE MASK Z+ GetIntegerv See sec. 17.3.3 Front stencil mask 17.3.3
STENCIL REF Z+ GetIntegerv 0 Front stencil reference value 17.3.3
STENCIL FAIL E GetIntegerv KEEP Front stencil fail action 17.3.3
STENCIL PASS DEPTH FAIL E GetIntegerv KEEP Front stencil depth buffer fail action 17.3.3

STENCIL PASS DEPTH PASS E GetIntegerv KEEP
Front stencil depth buffer pass ac-
tion 17.3.3

STENCIL BACK FUNC E GetIntegerv ALWAYS Back stencil function 17.3.3
STENCIL BACK VALUE MASK Z+ GetIntegerv See sec. 17.3.3 Back stencil mask 17.3.3
STENCIL BACK REF Z+ GetIntegerv 0 Back stencil reference value 17.3.3
STENCIL BACK FAIL E GetIntegerv KEEP Back stencil fail action 17.3.3
STENCIL BACK PASS DEPTH FAIL E GetIntegerv KEEP Back stencil depth buffer fail action 17.3.3
STENCIL BACK PASS DEPTH PASS E GetIntegerv KEEP Back stencil depth buffer pass action 17.3.3
DEPTH TEST B IsEnabled FALSE Depth buffer enabled 17.3.4
DEPTH FUNC E GetIntegerv LESS Depth buffer test function 17.3.4

Table
23.20:PixelO

perations

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

580

Get value Type
Get
Command

Initial
Value Description Sec.

BLEND 8 ∗ ×B IsEnabledi FALSE
Blending enabled for
draw buffer i 17.3.6

BLEND SRC RGB 8 ∗ ×E GetIntegeri v ONE
Blending source RGB
function for draw buffer i 17.3.6

BLEND SRC ALPHA 8 ∗ ×E GetIntegeri v ONE
Blending source A func-
tion for draw buffer i 17.3.6

BLEND DST RGB 8 ∗ ×E GetIntegeri v ZERO
Blending dest. RGB
function for draw buffer i 17.3.6

BLEND DST ALPHA 8 ∗ ×E GetIntegeri v ZERO
Blending dest. A func-
tion for draw buffer i 17.3.6

BLEND EQUATION RGB 8 ∗ ×E GetIntegeri v FUNC_ADD
RGB blending equation
for draw buffer i 17.3.6

BLEND EQUATION ALPHA 8 ∗ ×E GetIntegeri v FUNC_ADD
Alpha blending equation
for draw buffer i 17.3.6

BLEND COLOR C GetFloatv 0.0,0.0,0.0,0.0 Constant blend color 17.3.6

FRAMEBUFFER SRGB B IsEnabled FALSE
sRGB update and blend-
ing enable 17.3.6

DITHER B IsEnabled TRUE Dithering enabled 17.3.8
COLOR LOGIC OP B IsEnabled FALSE Color logic op enabled 17.3.9
LOGIC OP MODE E GetIntegerv COPY Logic op function 17.3.9

Table
23.21:PixelO

perations
(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

581

Get value Type
Get
Command

Initial
Value Description Sec.

COLOR WRITEMASK 8 ∗ ×4×B GetBooleani v (TRUE,TRUE,TRUE,TRUE)
Color write en-
ables (R,G,B,A)
for draw buffer i

17.4.2

DEPTH WRITEMASK B GetBooleanv TRUE
Depth buffer en-
abled for writing 17.4.2

STENCIL WRITEMASK Z+ GetIntegerv 1’s
Front stencil
buffer writemask 17.4.2

STENCIL BACK WRITEMASK Z+ GetIntegerv 1’s
Back stencil
buffer writemask 17.4.2

COLOR CLEAR VALUE C GetFloatv 0.0,0.0,0.0,0.0
Color buffer clear
value 17.4.3

DEPTH CLEAR VALUE R+ GetFloatv 1
Depth buffer clear
value 17.4.3

STENCIL CLEAR VALUE Z+ GetIntegerv 0
Stencil clear
value 17.4.3

Table
23.22:Fram

ebufferC
ontrol

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

582

Get value Type
Get
Command

Initial
Value Description Sec.

DRAW FRAMEBUFFER BINDING Z+ GetIntegerv 0
Framebuffer object bound to
DRAW_FRAMEBUFFER

9.2

READ FRAMEBUFFER BINDING Z+ GetIntegerv 0
Framebuffer object bound to
READ_FRAMEBUFFER

9.2

Table
23.23:Fram

ebuffer(state
pertargetbinding

point)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

583

Get value Type
Get
Command

Minimum
Value Description Sec.

DRAW BUFFERi 8 ∗ ×E GetIntegerv See sec. 17.4.1
Draw buffer selected for
color output i 17.4.1

READ BUFFER E GetIntegerv See sec. 18.2 Read source buffer † 18.2

FRAMEBUFFER DEFAULT WIDTH Z+ GetFramebuffer-
Parameteriv 0

Default width of frame-
buffer w/o attachments 9.2.1

FRAMEBUFFER DEFAULT HEIGHT Z+ GetFramebuffer-
Parameteriv 0

Default height of frame-
buffer w/o attachments 9.2.1

FRAMEBUFFER DEFAULT LAYERS Z+ GetFramebuffer-
Parameteriv 0

Default layer count of
framebuffer w/o attach-
ments

9.2.1

FRAMEBUFFER DEFAULT SAMPLES Z+ GetFramebuffer-
Parameteriv 0

Default sample count of
framebuffer w/o attach-
ments

9.2.1

FRAMEBUFFER DEFAULT FIXED SAMPLE LOCA-

TIONS
B

GetFramebuffer-
Parameteriv FALSE

Default sample location
pattern of framebuffer
w/o attachments

9.2.1

– S GetObjectLabel empty Debug label 20.9

Table
23.24:Fram

ebuffer(state
perfram

ebufferobject)
†

T
his

state
is

queried
from

the
currently

bound
read

fram
ebuffer.

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

584

Get value Type
Get
Command

Minimum
Value Description Sec.

FRAMEBUFFER ATTACHMENT OBJECT TYPE E
GetFramebuffer-
Attachment-
Parameteriv

NONE
Type of image attached
to framebuffer attach-
ment point

9.2.2

FRAMEBUFFER ATTACHMENT OBJECT NAME Z+
GetFramebuffer-
Attachment-
Parameteriv

0
Name of object at-
tached to framebuffer
attachment point

9.2.2

FRAMEBUFFER ATTACHMENT TEXTURE LEVEL Z+
GetFramebuffer-
Attachment-
Parameteriv

0
Mipmap level of texture
image attached, if object
attached is texture

9.2.8

FRAMEBUFFER ATTACHMENT TEXTURE CUBE -

MAP FACE
E

GetFramebuffer-
Attachment-
Parameteriv

NONE

Cubemap face of texture
image attached, if object
attached is cubemap tex-
ture

9.2.8

FRAMEBUFFER ATTACHMENT TEXTURE LAYER Z
GetFramebuffer-
Attachment-
Parameteriv

0
Layer of texture image
attached, if object at-
tached is 3D texture

9.2.8

FRAMEBUFFER ATTACHMENT LAYERED B
GetFramebuffer-
Attachment-
Parameteriv

FALSE
Framebuffer attachment
is layered 9.8

FRAMEBUFFER ATTACHMENT COLOR ENCODING E
GetFramebuffer-
Attachment-
Parameteriv

-
Encoding of components
in the attached image 9.2.3

FRAMEBUFFER ATTACHMENT COMPONENT TYPE E
GetFramebuffer-
Attachment-
Parameteriv

-
Data type of components
in the attached image 9.2.3

FRAMEBUFFER ATTACHMENT x SIZE Z+
GetFramebuffer-
Attachment-
Parameteriv

-

Size in bits of attached
image’s x component; x
is RED, GREEN, BLUE,
ALPHA, DEPTH, or
STENCIL

9.2.3

Table
23.25:Fram

ebuffer(state
perattachm

entpoint)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

585

Get value Type
Get
Command

Initial
Value Description Sec.

RENDERBUFFER BINDING Z GetIntegerv 0
Renderbuffer object bound to
RENDERBUFFER

9.2.4

Table
23.26:R

enderbuffer(state
pertargetand

binding
point)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

586

Get value Type
Get
Command

Initial
Value Description Sec.

RENDERBUFFER WIDTH Z+ GetRenderbufferParameteriv 0 Width of renderbuffer 9.2.4
RENDERBUFFER HEIGHT Z+ GetRenderbufferParameteriv 0 Height of renderbuffer 9.2.4
RENDERBUFFER INTERNAL FORMAT E GetRenderbufferParameteriv RGBA Internal format of renderbuffer 9.2.4

RENDERBUFFER RED SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
red component 9.2.4

RENDERBUFFER GREEN SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
green component 9.2.4

RENDERBUFFER BLUE SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
blue component 9.2.4

RENDERBUFFER ALPHA SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
alpha component 9.2.4

RENDERBUFFER DEPTH SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
depth component 9.2.4

RENDERBUFFER STENCIL SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
stencil component 9.2.4

RENDERBUFFER SAMPLES Z+ GetRenderbufferParameteriv 0 No. of samples 9.2.4
– S GetObjectLabel empty Debug label 20.9

Table
23.27:R

enderbuffer(state
perrenderbufferobject)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

587

Get value Type
Get
Command

Initial
Value Description Sec.

UNPACK SWAP BYTES B GetBooleanv FALSE Value of UNPACK_SWAP_BYTES 8.4.1
UNPACK LSB FIRST B GetBooleanv FALSE Value of UNPACK_LSB_FIRST 8.4.1

UNPACK IMAGE HEIGHT Z+ GetIntegerv 0
Value of UNPACK_IMAGE_-
HEIGHT

8.4.1

UNPACK SKIP IMAGES Z+ GetIntegerv 0 Value of UNPACK_SKIP_IMAGES 8.4.1
UNPACK ROW LENGTH Z+ GetIntegerv 0 Value of UNPACK_ROW_LENGTH 8.4.1
UNPACK SKIP ROWS Z+ GetIntegerv 0 Value of UNPACK_SKIP_ROWS 8.4.1
UNPACK SKIP PIXELS Z+ GetIntegerv 0 Value of UNPACK_SKIP_PIXELS 8.4.1
UNPACK ALIGNMENT Z+ GetIntegerv 4 Value of UNPACK_ALIGNMENT 8.4.1

UNPACK COMPRESSED BLOCK WIDTH Z+ GetIntegerv 0
Value of UNPACK_-
COMPRESSED_BLOCK_WIDTH

8.4.1

UNPACK COMPRESSED BLOCK HEIGHT Z+ GetIntegerv 0
Value of UNPACK_-
COMPRESSED_BLOCK_HEIGHT

8.4.1

UNPACK COMPRESSED BLOCK DEPTH Z+ GetIntegerv 0
Value of UNPACK_-
COMPRESSED_BLOCK_DEPTH

8.4.1

UNPACK COMPRESSED BLOCK SIZE Z+ GetIntegerv 0
Value of UNPACK_-
COMPRESSED_BLOCK_SIZE

8.4.1

PIXEL UNPACK BUFFER BINDING Z+ GetIntegerv 0 Pixel unpack buffer binding 6.7

Table
23.28:Pixels

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

588

Get value Type
Get
Command

Initial
Value Description Sec.

PACK SWAP BYTES B GetBooleanv FALSE Value of PACK_SWAP_BYTES 18.2
PACK LSB FIRST B GetBooleanv FALSE Value of PACK_LSB_FIRST 18.2
PACK IMAGE HEIGHT Z+ GetIntegerv 0 Value of PACK_IMAGE_HEIGHT 18.2
PACK SKIP IMAGES Z+ GetIntegerv 0 Value of PACK_SKIP_IMAGES 18.2
PACK ROW LENGTH Z+ GetIntegerv 0 Value of PACK_ROW_LENGTH 18.2
PACK SKIP ROWS Z+ GetIntegerv 0 Value of PACK_SKIP_ROWS 18.2
PACK SKIP PIXELS Z+ GetIntegerv 0 Value of PACK_SKIP_PIXELS 18.2
PACK ALIGNMENT Z+ GetIntegerv 4 Value of PACK_ALIGNMENT 18.2

PACK COMPRESSED BLOCK WIDTH Z+ GetIntegerv 0
Value of PACK_COMPRESSED_-
BLOCK_WIDTH

18.2

PACK COMPRESSED BLOCK HEIGHT Z+ GetIntegerv 0
Value of PACK_COMPRESSED_-
BLOCK_HEIGHT

18.2

PACK COMPRESSED BLOCK DEPTH Z+ GetIntegerv 0
Value of PACK_COMPRESSED_-
BLOCK_DEPTH

18.2

PACK COMPRESSED BLOCK SIZE Z+ GetIntegerv 0
Value of PACK_COMPRESSED_-
BLOCK_SIZE

18.2

PIXEL PACK BUFFER BINDING Z+ GetIntegerv 0 Pixel pack buffer binding 18.2

Table
23.29:Pixels

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

589

Get value Type
Get
Command

Initial
Value Description Sec.

SHADER TYPE E GetShaderiv - Type of shader (see table 7.1 7.1
DELETE STATUS B GetShaderiv FALSE Shader flagged for deletion 7.1
COMPILE STATUS B GetShaderiv FALSE Last compile succeeded 7.1
– S GetShaderInfoLog Empty string Info log for shader objects 7.13
INFO LOG LENGTH Z+ GetShaderiv 0 Length of info log 7.13
– S GetShaderSource Empty string Source code for a shader 7.1
SHADER SOURCE LENGTH Z+ GetShaderiv 0 Length of source code 7.13
– S GetObjectLabel empty Debug label 20.9

Table
23.30:ShaderO

bjectState

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

590

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE PROGRAM Z+ GetProgramPipelineiv 0
Program object updated
by Uniform* when PPO
bound

7.4

VERTEX SHADER Z+ GetProgramPipelineiv 0
Name of current vertex
shader program object 7.4

GEOMETRY SHADER Z+ GetProgramPipelineiv 0
Name of current geom-
etry shader program ob-
ject

7.4

FRAGMENT SHADER Z+ GetProgramPipelineiv 0
Name of current frag-
ment shader program ob-
ject

7.4

COMPUTE SHADER Z+ GetProgramPipelineiv 0
Name of current compute
shader program object 7.4

TESS CONTROL SHADER Z+ GetProgramPipelineiv 0
Name of current TCS
program object 7.4

TESS EVALUATION SHADER Z+ GetProgramPipelineiv 0
Name of current TES
program object 7.4

VALIDATE STATUS B GetProgramPipelineiv FALSE
Validate status of pro-
gram pipeline object 7.4

– S GetProgramPiplineInfoLog empty
Info log for program
pipeline object 7.13

INFO LOG LENGTH Z+ GetProgramPipelineiv 0 Length of info log 7.4
– S GetObjectLabel empty Debug label 20.9

Table
23.31:Program

Pipeline
O

bjectState

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

591

Get value Type
Get
Command

Initial
Value Description Sec.

CURRENT PROGRAM Z+ GetIntegerv 0
Name of current program
object 7.3

PROGRAM PIPELINE BINDING Z+ GetIntegerv 0
Current program pipeline
object binding 7.4

PROGRAM SEPARABLE B GetProgramiv FALSE
Program object can
be bound for separate
pipeline stages

7.3

DELETE STATUS B GetProgramiv FALSE Program object deleted 7.3

LINK STATUS B GetProgramiv FALSE
Last link attempt suc-
ceeded 7.3

VALIDATE STATUS B GetProgramiv FALSE
Last validate attempt suc-
ceeded 7.3

ATTACHED SHADERS Z+ GetProgramiv 0
No. of attached shader
objects 7.13

– 0 ∗ ×Z+ GetAttachedShaders empty Shader objects attached 7.13

– S GetProgramInfoLog empty
Info log for program ob-
ject 7.13

INFO LOG LENGTH Z+ GetProgramiv 0 Length of info log 7.3

PROGRAM BINARY LENGTH Z+ GetProgramiv 0
Length of program bi-
nary 7.5

PROGRAM BINARY RETRIEVABLE HINT B GetProgramiv FALSE
Retrievable binary hint
enabled 7.5

– 0 ∗ ×BMU GetProgramBinary –
Binary representation of
program 7.5

COMPUTE WORK GROUP SIZE 3× Z+ GetProgramiv {0, . . . } Local work size of a
linked compute program 19

– S GetObjectLabel empty Debug label 20.9

Table
23.32:Program

O
bjectState

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

592

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE UNIFORMS Z+ GetProgramiv 0 No. of active uniforms 7.6

– 0 ∗ ×Z GetUniformLocation –
Location of active uni-
forms 7.13

– 0 ∗ ×Z+ GetActiveUniform – Size of active uniform 7.6
– 0 ∗ ×Z+ GetActiveUniform – Type of active uniform 7.6
– 0 ∗ ×char GetActiveUniform empty Name of active uniform 7.6

ACTIVE UNIFORM MAX LENGTH Z+ GetProgramiv 0
Max. active uniform
name length 7.13

– − GetUniform 0 Uniform value 7.6
ACTIVE ATTRIBUTES Z+ GetProgramiv 0 No. of active attributes 11.1.1

– 0 ∗ ×Z GetAttribLocation –
Location of active
generic attribute 11.1.1

– 0 ∗ ×Z+ GetActiveAttrib – Size of active attribute 11.1.1
– 0 ∗ ×Z+ GetActiveAttrib – Type of active attribute 11.1.1
– 0 ∗ ×char GetActiveAttrib empty Name of active attribute 11.1.1

ACTIVE ATTRIBUTE MAX LENGTH Z+ GetProgramiv 0
Max. active attribute
name length 7.13

Table
23.33:Program

O
bjectState

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

593

Get value Type
Get
Command

Initial
Value Description Sec.

GEOMETRY VERTICES OUT Z+ GetProgramiv 0 Max. no. of output vertices 11.3.4
GEOMETRY INPUT TYPE E GetProgramiv TRIANGLES Primitive input type 11.3.1
GEOMETRY OUTPUT TYPE E GetProgramiv TRIANGLE_STRIP Primitive output type 11.3.2

GEOMETRY SHADER INVOCA-

TIONS
Z+ GetProgramiv 1

No. of times a geom.
shader should be executed
for each input primitive

11.3.4.2

TRANSFORM FEEDBACK BUFFER -

MODE
E GetProgramiv INTERLEAVED_-

ATTRIBS
Transform feedback mode
for the program 7.13

TRANSFORM FEEDBACK VARY-

INGS
Z+ GetProgramiv 0 No. of outputs to stream to

buffer object(s) 7.13

TRANSFORM FEEDBACK VARY-

ING MAX LENGTH
Z+ GetProgramiv 0

Max. transform feed-
back output variable name
length

7.13

– Z+ GetTransform-
FeedbackVarying - Size of each transform

feedback output variable 11.1.2.1

– Z+ GetTransform-
FeedbackVarying - Type of each transform

feedback output variable 11.1.2.1

– 0+ × char
GetTransform-
FeedbackVarying - Name of each transform

feedback output variable 11.1.2.1

Table
23.34:Program

O
bjectState

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

594

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE UNIFORM BLOCKS Z+ GetProgramiv 0 No. of active uniform
blocks in a program 7.6.2

ACTIVE UNIFORM BLOCK MAX -

NAME LENGTH
Z+ GetProgramiv 0 Length of longest active

uniform block name 7.6.2

UNIFORM TYPE 0 ∗ ×E GetActiveUniformsiv - Type of active uniform 7.6.2
UNIFORM SIZE 0 ∗ ×Z+ GetActiveUniformsiv - Size of active uniform 7.6.2
UNIFORM NAME LENGTH 0 ∗ ×Z+ GetActiveUniformsiv - Uniform name length 7.6.2
UNIFORM BLOCK INDEX 0 ∗ ×Z GetActiveUniformsiv - Uniform block index 7.6.2
UNIFORM OFFSET 0 ∗ ×Z GetActiveUniformsiv - Uniform buffer offset 7.6.2

Table
23.35:Program

O
bjectState

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

595

Get value Type
Get
Command

Initial
Value Description Sec.

UNIFORM ARRAY STRIDE 0 ∗ ×Z GetActiveUniformsiv - Uniform buffer array
stride 7.6.2

UNIFORM MATRIX STRIDE 0 ∗ ×Z GetActiveUniformsiv - Uniform buffer intra-
matrix stride 7.6.2

UNIFORM IS ROW MAJOR 0 ∗ ×B GetActiveUniformsiv - Whether uniform is a
row-major matrix 7.6.2

UNIFORM BLOCK BINDING Z+ GetActive-
UniformBlockiv 0

Uniform buffer binding
point associated with the
specified uniform block

7.6.2

UNIFORM BLOCK DATA SIZE Z+ GetActive-
UniformBlockiv -

Size of the storage
needed to hold this
uniform block’s data

7.6.2

UNIFORM BLOCK NAME LENGTH Z+ GetActive-
UniformBlockiv - Uniform block name

length 7.6.2

UNIFORM BLOCK ACTIVE UNI-

FORMS
Z+ GetActive-

UniformBlockiv -
Count of active uniforms
in the specified uniform
block

7.6.2

UNIFORM BLOCK ACTIVE UNI-

FORM INDICES
n× Z+ GetActive-

UniformBlockiv -
Array of active uniform
indices of the specified
uniform block

7.6.2

UNIFORM BLOCK REFERENCED -

BY VERTEX SHADER
B

GetActive-
UniformBlockiv 0

True if uniform block
is actively referenced by
the vertex stage

7.6.2

UNIFORM BLOCK REFERENCED -

BY TESS CONTROL SHADER
B

GetActive-
UniformBlockiv 0

True if uniform block
is actively referenced by
tess. control stage

7.6.2

UNIFORM BLOCK REFERENCED -

BY TESS EVALUTION SHADER
B

GetActive-
UniformBlockiv 0

True if uniform block
is actively referenced by
tess. evaluation stage

7.6.2

Table
23.36:Program

O
bjectState

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

596

Get value Type
Get
Command

Initial
Value Description Sec.

UNIFORM BLOCK REFERENCED -

BY GEOMETRY SHADER
B

GetActive-
UniformBlockiv 0

True if uniform block
is actively referenced by
the geometry stage

7.6.2

UNIFORM BLOCK REFERENCED -

BY FRAGMENT SHADER
B

GetActive-
UniformBlockiv 0

True if uniform block
is actively referenced by
the fragment stage

7.6.2

UNIFORM BLOCK REFERENCED -

BY COMPUTE SHADER
B

GetActive-
UniformBlockiv FALSE

True if uniform block is
referenced by the com-
pute stage

7.6.2

TESS CONTROL OUTPUT VERTICES Z+ GetProgramiv 0 Output patch size for
tess. control shader 11.2.1

TESS GEN MODE E GetProgramiv QUADS
Base primitive type for
tess. prim. generator 11.2.2

TESS GEN SPACING E GetProgramiv EQUAL
Spacing of tess. prim.
generator edge subdivi-
sion

11.2.2

TESS GEN VERTEX ORDER E GetProgramiv CCW
Order of vertices in prim-
itives generated by tess.
primitive generator

11.2.2

TESS GEN POINT MODE B GetProgramiv FALSE
Tess. prim. generator
emits points? 11.2.2

Table
23.37:Program

O
bjectState

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

597

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE SUBROUTINE UNIFORM -

LOCATIONS
6× Z+ GetProgramStageiv 0 No. of subroutine unif.

locations in the shader 7.9

ACTIVE SUBROUTINE UNIFORMS 6× Z+ GetProgramStageiv 0 No. of subroutine unif.
variables in the shader 7.9

ACTIVE SUBROUTINES 6× Z+ GetProgramStageiv 0 No. of subroutine func-
tions in the shader 7.9

ACTIVE SUBROUTINE UNIFORM -

MAX LENGTH
6× Z+ GetProgramStageiv 0 Max. subroutine uniform

name length 7.9

ACTIVE SUBROUTINE MAX -

LENGTH
6× Z+ GetProgramStageiv 0 Max. subroutine name

length 7.9

NUM COMPATIBLE SUBROUTINES 6× 0 ∗ ×Z+ GetActive-
SubroutineUniformiv -

No. of subroutines com-
patible with a sub. uni-
form

7.9

COMPATIBLE SUBROUTINES 6× 0 ∗ ×0 ∗ ×Z+ GetActive-
SubroutineUniformiv -

List of subroutines com-
patible with a sub. uni-
form

7.9

UNIFORM SIZE 6× 0 ∗ ×Z+ GetActive-
SubroutineUniformiv - No. of elements in sub.

uniform array 7.9

UNIFORM NAME LENGTH 6× 0 ∗ ×Z+ GetActive-
SubroutineUniformiv - Length of sub. uniform

name 7.9

– 6× 0 ∗ ×S
GetActive-
Subroutine-
UniformName

- Sub. uniform name string 7.9

– 6× 0 ∗ ×S GetActive-
SubroutineName - Length of subroutine

name 7.9

– 6× 0 ∗ ×S GetActive-
SubroutineName - Subroutine name string 7.9

Table
23.38:Program

O
bjectState

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

598

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE ATOMIC COUNTER -

BUFFERS
Z+ GetProgramiv 0

No. of active atomic
counter buffers (AACBs)
used by a program

7.7

ATOMIC COUNTER BUFFER BIND-

ING
n× Z+ GetActiveAtomic-

CounterBufferiv - Binding point associated
with an AACB 7.7

ATOMIC COUNTER BUFFER DATA -

SIZE
n× Z+ GetActiveAtomic-

CounterBufferiv - Min size required by an
AACB 7.7

ATOMIC COUNTER BUFFER AC-

TIVE ATOMIC COUNTERS
n× Z+ GetActiveAtomic-

CounterBufferiv - No. of active atomic
counters in an AACB 7.7

ATOMIC COUNTER BUFFER AC-

TIVE ATOMIC COUNTER INDICES
m× n× Z+ GetActiveAtomic-

CounterBufferiv - List of active atomic
counters in an AACB 7.7

ATOMIC COUNTER BUFFER REFER-

ENCED BY VERTEX SHADER
n×B GetActiveAtomic-

CounterBufferiv FALSE
AACB has a counter used
by vertex shaders 7.7

ATOMIC COUNTER BUFFER REF-

ERENCED BY TESS CONTROL -

SHADER

n×B GetActiveAtomic-
CounterBufferiv FALSE

AACB has a counter used
by tess. control shaders 7.7

ATOMIC COUNTER BUFFER REF-

ERENCED BY TESS EVALUTION -

SHADER

n×B GetActiveAtomic-
CounterBufferiv FALSE

AACB has a counter
used by tess. evaluation
shaders

7.7

ATOMIC COUNTER BUFFER REFER-

ENCED BY GEOMETRY SHADER
n×B GetActiveAtomic-

CounterBufferiv FALSE
AACB has a counter used
by geometry shaders 7.7

ATOMIC COUNTER BUFFER REFER-

ENCED BY FRAGMENT SHADER
n×B GetActiveAtomic-

CounterBufferiv FALSE
AACB has a counter used
by fragment shaders 7.7

ATOMIC COUNTER BUFFER REFER-

ENCED BY COMPUTE SHADER
B

GetActiveAtomic-
CounterBufferiv FALSE

AACB has a counter used
by compute shaders 7.7

UNIFORM ATOMIC COUNTER -

BUFFER INDEX
n× Z+ GetActiveUniformsiv - AACB associated with

an active uniform 7.7

Table
23.39:Program

O
bjectState

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

599

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE RESOURCES n× Z+ GetProgram-
Interfaceiv 0 No. of active resources

on an interface 7.3.1

MAX NAME LENGTH n× Z+ GetProgram-
Interfaceiv 0 Max. name length for ac-

tive resources 7.3.1

MAX NUM ACTIVE VARIABLES n× Z+ GetProgram-
Interfaceiv 0 Max. no. of active vari-

ables for active resources 7.3.1

MAX NUM COMPATIBLE SUBROU-

TINES
n× Z+ GetProgram-

Interfaceiv 0
Max. no. of compati-
ble subroutines for sub-
routine uniforms

7.3.1

Table
23.40:Program

Interface
State

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

600

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE VARIABLES Z+ GetProgram-
Resourceiv - List of active variables

owned by active resource 7.3.1

ARRAY SIZE Z+ GetProgram-
Resourceiv - Active resource array

size 7.3.1

ARRAY STRIDE Z+ GetProgram-
Resourceiv - Active resource array

stride in memory 7.3.1

ATOMIC COUNTER BUFFER INDEX Z+ GetProgram-
Resourceiv - Index of atomic counter

buffer owning resource 7.3.1

BLOCK INDEX Z+ GetProgram-
Resourceiv - Index of interface block

owning resource 7.3.1

BUFFER BINDING Z+ GetProgram-
Resourceiv - Buffer binding assigned

to active resource 7.3.1

BUFFER DATA SIZE Z+ GetProgram-
Resourceiv - Min. buffer data size re-

quired for resource 7.3.1

COMPATIBLE SUBROUTINES Z+ GetProgram-
Resourceiv -

List of compatible sub-
routines for active sub-
routine uniform

7.3.1

IS PER PATCH Z+ GetProgram-
Resourceiv - Is active input/output a

per-patch attribute? 7.3.1

IS ROW MAJOR Z+ GetProgram-
Resourceiv - Active resource stored as

a row major matrix? 7.3.1

LOCATION Z+ GetProgram-
Resourceiv - Location assigned to ac-

tive resource 7.3.1

LOCATION COMPONENT Z+ GetProgram-
Resourceiv - Location component as-

signed to active resources 7.3.1

LOCATION INDEX Z+ GetProgram-
Resourceiv - Location index assigned

to active resource 7.3.1

MATRIX STRIDE Z+ GetProgram-
Resourceiv - Active resource matrix

stride in memory 7.3.1

Table
23.41:Program

O
bjectR

esource
State

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

601

Get value Type
Get
Command

Initial
Value Description Sec.

NAME LENGTH Z+ GetProgram-
Resourceiv - Length of active resource

name 7.3.1

NUM ACTIVE VARIABLES Z+ GetProgram-
Resourceiv - No. of active variables

owned by active resource 7.3.1

NUM COMPATIBLE SUBROUTINES Z+ GetProgram-
Resourceiv -

No. of compatible sub-
routines for active sub-
routine uniform

7.3.1

OFFSET Z+ GetProgram-
Resourceiv - Active resource offset in

memory 7.3.1

REFERENCED BY VERTEX SHADER Z+ GetProgram-
Resourceiv - Active resource used by

vertex shader? 7.3.1

REFERENCED BY TESS CONTROL -

SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
tess. control shader? 7.3.1

REFERENCED BY TESS EVALUA-

TION SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
tess. evaluation shader? 7.3.1

REFERENCED BY GEOMETRY -

SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
geometry shader? 7.3.1

REFERENCED BY FRAGMENT -

SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
fragment shader? 7.3.1

REFERENCED BY COMPUTE -

SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
compute shader? 7.3.1

TOP LEVEL ARRAY SIZE Z+ GetProgram-
Resourceiv -

Array size of top level
shd. storage block mem-
ber

7.3.1

TOP LEVEL ARRAY STRIDE Z+ GetProgram-
Resourceiv -

Array stride of top level
shd. storage block mem-
ber

7.3.1

TYPE Z+ GetProgram-
Resourceiv - Active resource data type 7.3.1

Table
23.42:Program

O
bjectR

esource
State

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

602

Get value Type
Get
Command

Initial
Value Description Sec.

CURRENT VERTEX ATTRIB 16 ∗ ×R4 GetVertexAttribfv 0.0,0.0,0.0,1.0
Current generic vertex attribute val-
ues 10.2

PROGRAM POINT SIZE B IsEnabled FALSE Point size mode 14.4

Table
23.43:V

ertex
and

G
eom

etry
ShaderState(notpartofprogram

objects)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

603

Get value Type
Get
Command

Initial
Value Description Sec.

QUERY RESULT Z+ GetQueryObjectuiv 0 or FALSE Query object result 4.2.1
QUERY RESULT AVAILABLE B GetQueryObjectiv FALSE Is the query object result available? 4.2.1
– S GetObjectLabel empty Debug label 20.9
QUERY TARGET E GetQueryObjectiv NONE Target of query object 4.2

Table
23.44:Q

uery
O

bjectState

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

604

Get value Type
Get
Command

Initial
Value Description Sec.

IMAGE BINDING NAME 8 ∗ ×Z+ GetIntegeri v 0 Name of bound texture object 8.26
IMAGE BINDING LEVEL 8 ∗ ×Z+ GetIntegeri v 0 Level of bound texture object 8.26

IMAGE BINDING LAYERED 8 ∗ ×B GetBooleani v FALSE
Texture object bound with multiple
layers 8.26

IMAGE BINDING LAYER 8 ∗ ×Z+ GetIntegeri v 0
Layer of bound texture, if not lay-
ered 8.26

IMAGE BINDING ACCESS 8 ∗ ×E GetIntegeri v READ_ONLY
Read and/or write access for bound
texture 8.26

IMAGE BINDING FORMAT 8 ∗ ×Z+ GetIntegeri v R8
Format used for accesses to bound
texture 8.26

Table
23.45:Im

age
State

(state
perim

age
unit)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

605

Get value Type
Get
Command

Initial
Value Description Sec.

ATOMIC COUNTER BUFFER BINDING Z+ GetIntegerv 0
Current value of generic
atomic counter buffer bind-
ing

6.8

ATOMIC COUNTER BUFFER BINDING n× Z+ GetIntegeri v 0
Buffer object bound to
each atomic counter buffer
binding point

6.8

ATOMIC COUNTER BUFFER START n× Z+ GetInteger64i v 0
Start offset of binding
range for each atomic
counter buffer

6.8

ATOMIC COUNTER BUFFER SIZE n× Z+ GetInteger64i v 0
Size of binding range for
each atomic counter buffer 6.8

Table
23.46:A

tom
ic

C
ounterB

ufferB
inding

State

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

606

Get value Type
Get
Command

Initial
Value Description Sec.

SHADER STORAGE BUFFER BINDING Z+ GetIntegerv 0
Current value of generic
shader storage buffer bind-
ing

7.8

SHADER STORAGE BUFFER BINDING n× Z+ GetIntegeri v 0
Buffer object bound to
each shader storage buffer
binding point

7.8

SHADER STORAGE BUFFER START n× Z+ GetInteger64i v 0
Start offset of binding
range for each shader
storage buffer

7.8

SHADER STORAGE BUFFER SIZE n× Z+ GetInteger64i v 0
Size of binding range for
each shader storage buffer 7.8

Table
23.47:ShaderStorage

B
ufferB

inding
State

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

607

Get value Type
Get
Command

Initial
Value Description Sec.

TRANSFORM FEEDBACK BUFFER BINDING Z+ GetIntegerv 0
Buffer object bound to
generic bind point for
transform feedback

6.7

TRANSFORM FEEDBACK BUFFER BINDING n× Z+ GetIntegeri v 0
Buffer object bound to
each transform feedback
attribute stream

6.7

TRANSFORM FEEDBACK BUFFER START n× Z+ GetInteger64i v 0
Start offset of binding
range for each transform
feedback attrib. stream

6.7

TRANSFORM FEEDBACK BUFFER SIZE n× Z+ GetInteger64i v 0
Size of binding range for
each transform feedback
attrib. stream

6.7

TRANSFORM FEEDBACK PAUSED B GetBooleanv FALSE
Is transform feedback
paused on this object? 6.7

TRANSFORM FEEDBACK ACTIVE B GetBooleanv FALSE
Is transform feedback ac-
tive on this object? 6.7

– S GetObjectLabel empty Debug label 20.9

Table
23.48:Transform

Feedback
State

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

608

Get value Type
Get
Command

Initial
Value Description Sec.

UNIFORM BUFFER BINDING Z+ GetIntegerv 0
Uniform buffer object
bound to the context for
buffer object manipulation

7.6.2

UNIFORM BUFFER BINDING n× Z+ GetIntegeri v 0
Uniform buffer object
bound to the specified
context binding point

7.6.2

UNIFORM BUFFER START n× Z+ GetInteger64i v 0
Start of bound uniform
buffer region 6.7

UNIFORM BUFFER SIZE n× Z+ GetInteger64i v 0
Size of bound uniform
buffer region 6.7

Table
23.49:U

niform
B

ufferB
inding

State

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

609

Get value Type
Get
Command

Initial
Value Description Sec.

OBJECT TYPE E GetSynciv SYNC_FENCE Type of sync object 4.1
SYNC STATUS E GetSynciv UNSIGNALED Sync object status 4.1
SYNC CONDITION E GetSynciv SYNC_GPU_COMMANDS_COMPLETE Sync object condition 4.1
SYNC FLAGS Z+ GetSynciv 0 Sync object flags 4.1
– S GetObjectPtrLabel empty Debug label 20.9

Table
23.50:Sync

O
bjectState

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

610

Get value Type
Get
Command

Initial
Value Description Sec.

LINE SMOOTH HINT E GetIntegerv DONT_CARE Line smooth hint 21.5
POLYGON SMOOTH HINT E GetIntegerv DONT_CARE Polygon smooth hint 21.5
TEXTURE COMPRESSION HINT E GetIntegerv DONT_CARE Texture compression quality hint 21.5

FRAGMENT SHADER DERIVATIVE HINT E GetIntegerv DONT_CARE
Fragment shader derivative accu-
racy hint 21.5

Table
23.51:H

ints

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

611

Get value Type
Get
Command

Initial
Value Description Sec.

DISPATCH INDIRECT BUFFER BINDING Z+ GetIntegerv 0 Indirect dispatch buffer binding 19

Table
23.52:C

om
pute

D
ispatch

State

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

612

Get value Type
Get
Command

Minimum
Value Description Sec.

CONTEXT RELEASE BEHAVIOR E GetIntegerv See sec. 22.2
Flush behavior when context is re-
leased 22.2

MAX CLIP DISTANCES Z+ GetIntegerv 8 Max. no. of user clipping planes 13.5
MAX CULL DISTANCES Z+ GetIntegerv 8 Max. no. of user culling planes 13.5
MAX COMBINED CLIP AND CULL DISTANCES Z+ GetIntegerv 8 Max. combined no. of user clipping 13.5

SUBPIXEL BITS Z+ GetIntegerv 4
No. of bits of subpixel precision in
screen xw and yw

14

MAX ELEMENT INDEX Z+ GetInteger64v 232 − 1 Max. element index 10.4

PRIMITIVE RESTART FOR PATCHES SUPPORTED B GetBooleanv –
Primitive restart support for
PATCHES

10.3.6

MAX 3D TEXTURE SIZE Z+ GetIntegerv 2048 Max. 3D texture image dimension 8.5

MAX TEXTURE SIZE Z+ GetIntegerv 16384
Max. 2D/1D texture image dimen-
sion 8.5

MAX ARRAY TEXTURE LAYERS Z+ GetIntegerv 2048 Max. no. of layers for texture arrays 8.5

MAX TEXTURE LOD BIAS R+ GetFloatv 2.0
Max. absolute texture level of detail
bias 8.14

MAX CUBE MAP TEXTURE SIZE Z+ GetIntegerv 16384
Max. cube map texture image di-
mension 8.5

MAX RENDERBUFFER SIZE Z+ GetIntegerv 16384
Max. width and height of render-
buffers 9.2.4

Table
23.53:Im

plem
entation

D
ependentV

alues

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

613

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX VIEWPORT DIMS 2× Z+ GetFloatv See sec. 13.6.1 Max. viewport dimensions 13.6.1

MAX VIEWPORTS Z+ GetIntegerv 16
Max. no. of active view-
ports 13.6.1

VIEWPORT SUBPIXEL BITS Z+ GetIntegerv 0
No. of bits of sub-
pixel precision for view-
port bounds

13.6.1

VIEWPORT BOUNDS RANGE 2×R GetFloatv †
Viewport bounds range
[min,max] † (at least
[−32768, 32767])

13.6.1

LAYER PROVOKING VERTEX E GetIntegerv See sec. 11.3.4
Vertex convention fol-
lowed by gl_Layer 11.3.4

VIEWPORT INDEX PROVOKING VERTEX E GetIntegerv See sec. 11.3.4
Vertex convention
followed by gl_-
ViewportIndex

11.3.4

POINT SIZE RANGE 2×R+ GetFloatv 1,1
Range (lo to hi) of point
sprite sizes 14.4

POINT SIZE GRANULARITY R+ GetFloatv –
Point sprite size granular-
ity 14.4

ALIASED LINE WIDTH RANGE 2×R+ GetFloatv 1,1
Range (lo to hi) of aliased
line widths 14.5

SMOOTH LINE WIDTH RANGE 2×R+ GetFloatv 1,1
Range (lo to hi) of an-
tialiased line widths 14.5

SMOOTH LINE WIDTH GRANULARITY R+ GetFloatv –
Antialiased line width
granularity 14.5

MAX ELEMENTS INDICES Z+ GetIntegerv –
Recommended max no. of
DrawRangeElements in-
dices

10.3

MAX ELEMENTS VERTICES Z+ GetIntegerv –
Recommended max no. of
DrawRangeElements ver-
tices

10.3

Table
23.54:Im

plem
entation

D
ependentV

alues
(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

614

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX VERTEX ATTRIB RELATIVE OFFSET Z GetIntegerv 2047
Max. offset added to ver-
tex buffer binding offset 10.3

MAX VERTEX ATTRIB BINDINGS Z16∗ GetIntegerv 16
Max. no. of vertex
buffers 10.3

MAX VERTEX ATTRIB STRIDE Z GetIntegerv 2048
Max. vertex attribute
stride 10.3

NUM COMPRESSED TEXTURE FORMATS Z+ GetIntegerv 18
No. of compressed tex-
ture formats 8.7

COMPRESSED TEXTURE FORMATS 18 ∗ ×Z+ GetIntegerv -
Enumerated compressed
texture formats 8.7

MAX TEXTURE BUFFER SIZE Z+ GetIntegerv 65536
No. of addressable texels
for buffer textures 8.9

MAX RECTANGLE TEXTURE SIZE Z+ GetIntegerv 16384
Max. width & height of
rectangle textures 8.5

NUM PROGRAM BINARY FORMATS Z+ GetIntegerv 0
No. of program binary
formats 7.5

PROGRAM BINARY FORMATS 0 ∗ ×Z+ GetIntegerv N/A
Enumerated program bi-
nary formats 7.5

NUM SHADER BINARY FORMATS Z+ GetIntegerv 0
No. of shader binary for-
mats 7.2

SHADER BINARY FORMATS 0 ∗ ×Z+ GetIntegerv -
Enumerated shader bi-
nary formats 7.2

SHADER COMPILER B GetBooleanv TRUE
Shader compiler sup-
ported 7

MIN MAP BUFFER ALIGNMENT Z+ GetIntegerv 64
Min byte alignment of
pointers returned by
Map*Buffer

6.3

TEXTURE BUFFER OFFSET ALIGNMENT Z+ GetIntegerv 256† Min. required alignment
for texture buffer offsets 8.9

Table
23.55:Im

plem
entation

D
ependentV

alues
(cont.)

†
T

he
value

of
T
E
X
T
U
R
E
_
B
U
F
F
E
R
_
O
F
F
S
E
T
_
A
L
I
G
N
M
E
N
T

is
the

m
axim

um
allow

ed,
notthe

m
inim

um
.

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

615

Get value Type
Get
Command

Minimum
Value Description Sec.

MAJOR VERSION Z+ GetIntegerv –
Major version no. sup-
ported 22.2

MINOR VERSION Z+ GetIntegerv –
Minor version no. sup-
ported 22.2

CONTEXT FLAGS Z+ GetIntegerv –
Context full/forward-
compatible flag 22.2

CONTEXT PROFILE MASK Z+ GetIntegerv – Context profile mask 22.2

EXTENSIONS n× S GetStringi –
Supported individual ex-
tension names 22.2

NUM EXTENSIONS Z+ GetIntegerv 0
No. of individual exten-
sion names 22.2

RENDERER S GetString – Renderer string 22.2

SHADING LANGUAGE VERSION S GetString –
Latest Shading Language
version supported 22.2

SHADING LANGUAGE VERSION n× S GetStringi –
Supported Shading Lan-
guage versions 22.2

NUM SHADING LANGUAGE VERSIONS Z+ GetIntegerv 3
No. of supported Shad-
ing Language versions 22.2

VENDOR S GetString – Vendor string 22.2

VERSION S GetString –
OpenGL version sup-
ported 22.2

Table
23.56:Im

plem
entation

D
ependentV

ersion
and

E
xtension

Support

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

616

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX VERTEX ATTRIBS Z+ GetIntegerv 16
No. of active vertex at-
tributes 10.2

MAX VERTEX UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of components
for vertex shader uniform
variables

7.6

MAX VERTEX UNIFORM VECTORS Z+ GetIntegerv 256
No. of vectors for vertex
shader uniform variables 7.6

MAX VERTEX UNIFORM BLOCKS Z+ GetIntegerv 14∗ Max. no. of vertex uni-
form buffers per program 7.6.2

MAX VERTEX OUTPUT COMPONENTS Z+ GetIntegerv 64
Max. no. of components
of outputs written by a
vertex shader

11.1.2.1

MAX VERTEX TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of texture image
units accessible by a ver-
tex shader

11.1.3.5

MAX VERTEX ATOMIC COUNTER BUFFERS Z+ GetIntegerv 0
No. of atomic counter
buffers accessed by a ver-
tex shader

7.7

MAX VERTEX ATOMIC COUNTERS Z+ GetIntegerv 0
No. of atomic coun-
ters accessed by a vertex
shader

11.1.3.6

MAX VERTEX SHADER STORAGE BLOCKS Z+ GetIntegerv 0
No. of shader storage
blocks accessed by a ver-
tex shader

7.8

Table
23.57:Im

plem
entation

D
ependentV

ertex
ShaderL

im
its

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

617

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX TESS GEN LEVEL Z+ GetIntegerv 64
Max. level supported by
tess. primitive generator 11.2.2

MAX PATCH VERTICES Z+ GetIntegerv 32 Max. patch size 10.1

MAX TESS CONTROL UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of words for tess.
control shader (TCS)
uniforms

11.2.1.1

MAX TESS CONTROL TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of tex. image units
for TCS 11.1.3

MAX TESS CONTROL OUTPUT COMPONENTS Z+ GetIntegerv 128
No. components for TCS
per-vertex outputs 11.2.1.2

MAX TESS PATCH COMPONENTS Z+ GetIntegerv 120
No. components for TCS
per-patch outputs 11.2.1.2

MAX TESS CONTROL TOTAL OUTPUT COMPO-

NENTS
Z+ GetIntegerv 4096

Total no. components for
TCS outputs 11.2.1.2

MAX TESS CONTROL INPUT COMPONENTS Z+ GetIntegerv 128
No. components for TCS
per-vertex inputs 11.2.1.2

MAX TESS CONTROL UNIFORM BLOCKS Z+ GetIntegerv 14∗ No. of supported uni-
form blocks for TCS 7.6.2

MAX TESS CONTROL ATOMIC COUNTER BUFFERS Z+ GetIntegerv 0
No. of atomic counter
(AC) buffers accessed by
a TCS

7.7

MAX TESS CONTROL ATOMIC COUNTERS Z+ GetIntegerv 0
No. of ACs accessed by
a TCS 7.7

MAX TESS CONTROL SHADER STORAGE BLOCKS Z+ GetIntegerv 0
No. of shader storage
blocks accessed by a tess.
control shader

7.8

Table
23.58:Im

plem
entation

D
ependentTessellation

ShaderL
im

its

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

618

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX TESS EVALUATION UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of words for tess.
evaluation shader (TES)
uniforms

11.2.3.1

MAX TESS EVALUATION TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of tex. image units
for TES 11.1.3

MAX TESS EVALUATION OUTPUT COMPONENTS Z+ GetIntegerv 128
No. components for TES
per-vertex outputs 11.2.3.2

MAX TESS EVALUATION INPUT COMPONENTS Z+ GetIntegerv 128
No. components for TES
per-vertex inputs 11.2.3.2

MAX TESS EVALUATION UNIFORM BLOCKS Z+ GetIntegerv 14∗ No. of supported uni-
form blocks for TES 7.6.2

MAX TESS EVALUATION ATOMIC COUNTER -

BUFFERS
Z+ GetIntegerv 0

No. of AC buffers ac-
cessed by a TES 11.1.3.6

MAX TESS EVALUATION ATOMIC COUNTERS Z+ GetIntegerv 0
No. of ACs accessed by
a TES 11.1.3.6

MAX TESS EVALUATION SHADER STORAGE -

BLOCKS
Z+ GetIntegerv 0

No. of shader storage
blocks accessed by a tess.
evaluation shader

7.8

Table
23.59:Im

plem
entation

D
ependentTessellation

ShaderL
im

its
(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

619

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX GEOMETRY UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of components
for geometry shader (GS)
uniform variables

11.3.3

MAX GEOMETRY UNIFORM BLOCKS Z+ GetIntegerv 14∗ Max. no. of GS uniform
buffers per program 7.6.2

MAX GEOMETRY INPUT COMPONENTS Z+ GetIntegerv 64
Max. no. of components
of inputs read by a GS 11.3.4.4

MAX GEOMETRY OUTPUT COMPONENTS Z+ GetIntegerv 128
Max. no. of components
of outputs written by a
GS

11.3.4.5

MAX GEOMETRY OUTPUT VERTICES Z+ GetIntegerv 256
Max. no. of vertices that
any GS can emit 11.3.4

MAX GEOMETRY TOTAL OUTPUT COMPONENTS Z+ GetIntegerv 1024

Max. no. of total compo-
nents (all vertices) of ac-
tive outputs that a GS can
emit

11.3.4

MAX GEOMETRY TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of texture image
units accessible by a GS 11.3.4

MAX GEOMETRY SHADER INVOCATIONS Z+ GetIntegerv 32
Max. supported GS invo-
cation count 11.3.4.2

MAX VERTEX STREAMS Z+ GetIntegerv 4
Total no. of vertex
streams 11.3.4.2

MAX GEOMETRY ATOMIC COUNTER BUFFERS Z+ GetIntegerv 0
No. of atomic counter
buffers accessed by a GS 7.7

MAX GEOMETRY ATOMIC COUNTERS Z+ GetIntegerv 0
No. of atomic counters
accessed by a GS 11.1.3.6

MAX GEOMETRY SHADER STORAGE BLOCKS Z+ GetIntegerv 0
No. of shader storage
blocks accessed by a GS 7.8

Table
23.60:Im

plem
entation

D
ependentG

eom
etry

ShaderL
im

its

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

620

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX FRAGMENT UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of components
for fragment shader (FS)
uniform variables

15.1

MAX FRAGMENT UNIFORM VECTORS Z+ GetIntegerv 256
No. of vectors for FS uni-
form variables 15.1

MAX FRAGMENT UNIFORM BLOCKS Z+ GetIntegerv 14∗ Max. no. of FS uniform
buffers per program 7.6.2

MAX FRAGMENT INPUT COMPONENTS Z+ GetIntegerv 128
Max. no. of components
of inputs read by a FS 15.2.2

MAX TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of texture image
units accessible by a FS 11.1.3.5

MIN PROGRAM TEXTURE GATHER OFFSET Z GetIntegerv -8
Min texel offset for
textureGather

8.14.1

MAX PROGRAM TEXTURE GATHER OFFSET Z+ GetIntegerv 7
Max. texel offset for
textureGather

8.14.1

MAX FRAGMENT ATOMIC COUNTER BUFFERS Z+ GetIntegerv 1
No. of atomic counter
buffers accessed by a FS 7.7

MAX FRAGMENT ATOMIC COUNTERS Z+ GetIntegerv 8
No. of atomic counters
accessed by a FS 11.1.3.6

MAX FRAGMENT SHADER STORAGE BLOCKS Z+ GetIntegerv 8
No. of shader storage
blocks accessed by a FS 7.8

Table
23.61:Im

plem
entation

D
ependentFragm

entShaderL
im

its

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

621

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX COMPUTE WORK GROUP COUNT 3× Z+ GetIntegeri v 65535

Max. no. of work groups
(WG) that may be dis-
patched by a single dis-
patch command (per di-
mension)

19

MAX COMPUTE WORK GROUP SIZE 3× Z+ GetIntegeri v 1024 (x, y), 64 (z)
Max. local size of a com-
pute WG (per dimension) 19

MAX COMPUTE WORK GROUP INVOCATIONS Z+ GetIntegerv 1024
Max. total compute
shader (CS) invocations
in a single local WG

19

MAX COMPUTE UNIFORM BLOCKS Z+ GetIntegerv 14∗
Max. no. of uniform
blocks per compute pro-
gram

7.6.2

MAX COMPUTE TEXTURE IMAGE UNITS Z+ GetIntegerv 16
Max. no. of texture im-
age units accessible by a
CS

11.1.3.5

MAX COMPUTE ATOMIC COUNTER BUFFERS Z+ GetIntegerv 8
No. of atomic counter
buffers accessed by a CS 7.7

MAX COMPUTE ATOMIC COUNTERS Z+ GetIntegerv 8
No. of atomic counters
accessed by a CS 11.1.3.6

MAX COMPUTE SHARED MEMORY SIZE Z+ GetIntegerv 32768

Max. total storage size of
all variables declared as
shared in all CSs linked
into a single program ob-
ject

19.1

MAX COMPUTE UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of components for
CS uniform variables 19.1

MAX COMPUTE IMAGE UNIFORMS Z+ GetIntegerv 8
No. of image variables in
compute shaders 11.1.3

MAX COMBINED COMPUTE UNIFORM COMPO-

NENTS
Z+ GetIntegerv *

No. of words for com-
pute shader uniform
variables in all uniform
blocks, including the
default

19.1

MAX COMPUTE SHADER STORAGE BLOCKS Z+ GetIntegerv 8
No. of shader stor-
age blocks accessed by a
compute shader

7.8

Table
23.62:Im

plem
entation

D
ependentC

om
pute

ShaderL
im

its

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

622

Get value Type
Get
Command

Minimum
Value Description Sec.

MIN PROGRAM TEXEL OFFSET Z GetIntegerv -8 Min texel offset allowed in lookup 11.1.3.5
MAX PROGRAM TEXEL OFFSET Z GetIntegerv 7 Max. texel offset allowed in lookup 11.1.3.5

MAX UNIFORM BUFFER BINDINGS Z+ GetIntegerv 84
Max. no. of uniform buffer binding
points on the context 7.6.2

MAX UNIFORM BLOCK SIZE Z+ GetIntegerv 16384
Max. size in basic machine units of
a uniform block 7.6.2

UNIFORM BUFFER OFFSET ALIGNMENT Z+ GetIntegerv 256† Min. required alignment for uni-
form buffer sizes and offsets 7.6.2

MAX COMBINED UNIFORM BLOCKS Z+ GetIntegerv 70∗ Max. no. of uniform buffers per
program 7.6.2

MAX VARYING COMPONENTS Z+ GetIntegerv 60
No. of components for output vari-
ables 11.1.2.1

MAX VARYING VECTORS Z+ GetIntegerv 15 No. of vectors for output variables 11.1.2.1

MAX COMBINED TEXTURE IMAGE UNITS Z+ GetIntegerv 80
Total no. of texture units accessible
by the GL 11.1.3.5

MAX SUBROUTINES Z+ GetIntegerv 256
Max. no. of subroutines per shader
stage 7.9

MAX SUBROUTINE UNIFORM LOCATIONS Z+ GetIntegerv 1024
Max. no. of subroutine uniform lo-
cations per stage 7.9

MAX UNIFORM LOCATIONS Z+ GetIntegerv 1024
Max. no. of user-assignable uni-
form locations 7.6

Table
23.63:Im

plem
entation

D
ependentA

ggregate
ShaderL

im
its

†
T

he
value

of
U
N
I
F
O
R
M
_
B
U
F
F
E
R
_
O
F
F
S
E
T
_
A
L
I
G
N
M
E
N
T

is
the

m
axim

um
allow

ed,
notthe

m
inim

um
.

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

623

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX ATOMIC COUNTER BUFFER BINDINGS Z+ GetIntegerv 1
Max. no. of atomic counter buffer
bindings 6.8

MAX ATOMIC COUNTER BUFFER SIZE Z+ GetIntegerv 32
Max. size in basic machine units of
an atomic counter buffer 7.7

MAX COMBINED ATOMIC COUNTER BUFFERS Z+ GetIntegerv 1
Max. no. of atomic counter buffers
per program 7.7

MAX COMBINED ATOMIC COUNTERS Z+ GetIntegerv 8
Max. no. of atomic counter uni-
forms per program 11.1.3.6

MAX SHADER STORAGE BUFFER BINDINGS Z+ GetIntegerv 8
Max. no. of shader storage buffer
bindings in the context 7.8

MAX SHADER STORAGE BLOCK SIZE Z+ GetInteger64v 227
Max. size in basic machine units of
a shader storage block 7.8

MAX COMBINED SHADER STORAGE BLOCKS Z+ GetIntegerv 8
No. of shader storage blocks ac-
cessed by a program 7.8

SHADER STORAGE BUFFER OFFSET ALIGNMENT Z+ GetIntegerv 256† Min. required alignment for shader
storage buffer binding offsets 7.8

Table
23.64:Im

plem
entation

D
ependentA

ggregate
ShaderL

im
its

(cont.)
†

T
he

value
of
S
H
A
D
E
R
_
S
T
O
R
A
G
E
_
B
U
F
F
E
R
_
O
F
F
S
E
T
_
A
L
I
G
N
M
E
N
T

is
the

m
axim

um
allow

ed,notthe
m

inim
um

.

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

624

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX IMAGE UNITS Z+ GetIntegerv 8
No. of units for image
load/store/atom 8.26

MAX COMBINED SHADER OUTPUT RESOURCES Z+ GetIntegerv 8

Limit on active image
units + shader storage
blocks + fragment out-
puts

8.26

MAX IMAGE SAMPLES Z+ GetIntegerv 0
Max. allowed samples
for a texture level bound
to an image unit

8.26

MAX VERTEX IMAGE UNIFORMS Z+ GetIntegerv 0
No. of image variables in
vertex shaders 11.1.3.7

MAX TESS CONTROL IMAGE UNIFORMS Z+ GetIntegerv 0
No. of image variables in
tess. control shaders 11.1.3.7

MAX TESS EVALUATION IMAGE UNIFORMS Z+ GetIntegerv 0
No. of image variables in
tess. eval. shaders 11.1.3.7

MAX GEOMETRY IMAGE UNIFORMS Z+ GetIntegerv 0
No. of image variables in
geometry shaders 11.1.3.7

MAX FRAGMENT IMAGE UNIFORMS Z+ GetIntegerv 8
No. of image variables in
fragment shaders 11.1.3.7

MAX COMBINED IMAGE UNIFORMS Z+ GetIntegerv 8
No. of image variables in
all shaders 11.1.3.7

Table
23.65:Im

plem
entation

D
ependentA

ggregate
ShaderL

im
its

(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

625

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX COMBINED VERTEX UNIFORM COMPO-

NENTS
Z+ GetIntegerv †

No. of words for vertex
shader uniform variables
in all uniform blocks (in-
cluding default)

7.6.2

MAX COMBINED GEOMETRY UNIFORM COMPO-

NENTS
Z+ GetIntegerv †

No. of words for ge-
ometry shader uniform
variables in all uni-
form blocks (including
default)

7.6.2

MAX COMBINED TESS CONTROL UNIFORM COM-

PONENTS
Z+ GetIntegerv †

No. of words for TCS
uniform variables in all
uniform blocks (includ-
ing default)

11.2.1.1

MAX COMBINED TESS EVALUATION UNIFORM -

COMPONENTS
Z+ GetIntegerv †

No. of words for TES
uniform variables in all
uniform blocks (includ-
ing default)

11.2.3.1

MAX COMBINED FRAGMENT UNIFORM COMPO-

NENTS
Z+ GetIntegerv †

No. of words for frag-
ment shader uniform
variables in all uni-
form blocks (including
default)

7.6.2

Table
23.66:Im

plem
entation

D
ependentA

ggregate
ShaderL

im
its

(cont.)
†

T
he

m
inim

um
value

foreach
stage

is
M
A
X
_
s
t
a
g
e
_
U
N
I
F
O
R
M
_
B
L
O
C
K
S
×

M
A
X
_
U
N
I
F
O
R
M
_
B
L
O
C
K
_
S
I
Z
E

/
4

+
M
A
X
_
s
t
a
g
e
_
U
N
I
F
O
R
M
_
C
O
M
P
O
N
E
N
T
S

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

626

Get value Type
Get
Command

Initial
Value Description Sec.

DEBUG CALLBACK FUNCTION Y GetPointerv NULL
The current debug output
callback function pointer 20.2

DEBUG CALLBACK USER PARAM Y GetPointerv NULL
The current debug output
callback user parameter 20.2

DEBUG LOGGED MESSAGES Z+ GetIntegerv 0
The no. of messages cur-
rently in the debug mes-
sage log

20.3

DEBUG NEXT LOGGED MESSAGE -

LENGTH
Z+ GetIntegerv 0

The string length of the
oldest debug message in
the debug message log

20.3

DEBUG OUTPUT SYNCHRONOUS B IsEnabled FALSE
The enabled state for
synchronous debug mes-
sage callbacks

20.8

DEBUG GROUP STACK DEPTH Z+ GetIntegerv 1 Debug group stack
pointer 20.6

DEBUG OUTPUT B IsEnabled
Depends
on the
context†

The enabled state for de-
bug output functionality 20

Table
23.67:D

ebug
O

utputState
†

T
he

initialvalue
of

D
E
B
U
G
_
O
U
T
P
U
T

is
T
R
U
E

in
a

debug
contextand

F
A
L
S
E

in
a

non-debug
context.

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

627

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX DEBUG MESSAGE LENGTH Z+ GetIntegerv 1

The max length of a de-
bug message string, in-
cluding its null termina-
tor

20.1

MAX DEBUG LOGGED MESSAGES Z+ GetIntegerv 1
The max no. of messages
stored in the debug mes-
sage log

20.3

MAX DEBUG GROUP STACK DEPTH Z+ GetIntegerv 64 Max. group stack depth 20.6

MAX LABEL LENGTH Z+ GetIntegerv 256
Max. length of a label
string 20.7

Table
23.68:Im

plem
entation

D
ependentD

ebug
O

utputState

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

628

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX FRAMEBUFFER WIDTH Z+ GetIntegerv 16384
Max. width for frame-
buffer object 9.2.1

MAX FRAMEBUFFER HEIGHT Z+ GetIntegerv 16384
Max. height for frame-
buffer object 9.2.1

MAX FRAMEBUFFER LAYERS Z+ GetIntegerv 2048
Max. layer count for lay-
ered framebuffer object 9.2.1

MAX FRAMEBUFFER SAMPLES Z+ GetIntegerv 4
Max. sample count for
framebuffer object 9.2.1

MAX SAMPLE MASK WORDS Z+ GetIntegerv 1
Max. no. of sample mask
words 14.9.3

MAX SAMPLES Z+ GetIntegerv 4
Max. no. of sam-
ples supported for
multisampling†

9.2.4

MAX COLOR TEXTURE SAMPLES Z+ GetIntegerv 1

Max. no. of samples
supported for all color
formats in a multisample
texture†

22.3

MAX DEPTH TEXTURE SAMPLES Z+ GetIntegerv 1

Max. no. of sam-
ples supported for all
depth/stencil formats in a
multisample texture†

22.3

MAX INTEGER SAMPLES Z+ GetIntegerv 1
Max. no. of samples sup-
ported for all integer for-
mat multisample buffers†

22.3

QUERY COUNTER BITS 5× Z+ GetQueryiv See sec. 4.2.1
Asynchronous query
counter bits 4.2.1

MAX SERVER WAIT TIMEOUT Z+ GetInteger64v 0
Max. WaitSync timeout
interval 4.1.1

Table
23.69:Im

plem
entation

D
ependentV

alues
(cont.)

†
T

hese
queries

return
the

m
axim

um
no.ofsam

ples
forallinternalform

ats
required

to
supportm

ultisam
pled

rendering.

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

629

Get value Type
Get
Command

Minimum
Value Description Sec.

MIN FRAGMENT INTERPOLATION OFFSET R GetFloatv -0.5
Furthest negative offset
for interpolate-
AtOffset

15.1

MAX FRAGMENT INTERPOLATION OFFSET R GetFloatv +0.5
Furthest positive offset
for interpolate-
AtOffset

15.1

FRAGMENT INTERPOLATION OFFSET BITS Z+ GetIntegerv 4
Subpixel bits for
interpolate-
AtOffset

15.1

MAX DRAW BUFFERS Z+ GetIntegerv 8
Max. no. of active draw
buffers 17.4.1

MAX DUAL SOURCE DRAW BUFFERS Z+ GetIntegerv 1
Max. no. of active draw
buffers when using dual-
source blending

17.3.6

MAX COLOR ATTACHMENTS Z+ GetIntegerv 8
Max. no. of FBO at-
tachment points for color
buffers

9.2.7

Table
23.70:Im

plem
entation

D
ependentV

alues
(cont.)

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

630

Get value Type
Get
Command

Minimum
Value Description Sec.

SAMPLES 0 ∗ ×Z+ GetInternalformativ † Supported sample counts
† See section 22.3 22.3

NUM SAMPLE COUNTS Z+ GetInternalformativ 1
No. of supported sample
counts 22.3

Table
23.71:InternalForm

atD
ependentV

alues

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

631

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX TRANSFORM FEEDBACK INTERLEAVED -

COMPONENTS
Z+ GetIntegerv 64

Max. no. of components
to write to a single buffer
in interleaved mode

13.2

MAX TRANSFORM FEEDBACK SEPARATE ATTRIBS Z+ GetIntegerv 4

Max. no. of separate
attributes or outputs that
can be captured in trans-
form feedback

13.2

MAX TRANSFORM FEEDBACK SEPARATE COMPO-

NENTS
Z+ GetIntegerv 4

Max. no. of components
per attribute or output in
separate mode

13.2

MAX TRANSFORM FEEDBACK BUFFERS Z+ GetIntegerv 4
Max. no. of buffer objs
to write with transform
feedback

13.2

Table
23.72:Im

plem
entation

D
ependentTransform

Feedback
L

im
its

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

632

Get value Type
Get
Command

Minimum
Value Description Sec.

DOUBLEBUFFER B GetBooleanv –
True if front & back
buffers exist 17.4.1

STEREO B GetBooleanv –
True if left & right
buffers exist 22

SAMPLE BUFFERS Z2 GetIntegerv 0
No. of multisample
buffers 14.3.1

SAMPLES Z+ GetIntegerv 0 Coverage mask size 14.3.1
SAMPLE POSITION n× 2×R[0,1] GetMultisamplefv – Explicit sample positions 14.3.1

IMPLEMENTATION COLOR READ FORMAT E GetIntegerv † Implementation pre-
ferred pixel format 18.2.2

IMPLEMENTATION COLOR READ TYPE E GetIntegerv † Implementation pre-
ferred pixel type 18.2.2

Table
23.73:Fram

ebufferD
ependentV

alues
†

U
nlike

m
ostfram

ebuffer-dependentstate,w
hich

is
queried

from
the

currently
bound

draw
fram

ebuffer,this
state

is
queried

from
the

currently
bound

read
fram

ebuffer.
n

is
the

value
of
S
A
M
P
L
E
S.

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

633

Get value Type
Get
Command

Initial
Value Description Sec.

– n× E GetError 0 Current error code(s) 2.3.1
– n×B – FALSE True if there is a corresponding error 2.3.1
CURRENT QUERY 5× Z+ GetQueryiv 0 Active query object names 4.2.1
QUERY BUFFER BINDING Z+ GetIntegeriv 0 Query result buffer binding 4.2.1

COPY READ BUFFER BINDING Z+ GetIntegerv 0
Buffer object bound to copy buffer
“read” bind point 6.6

COPY WRITE BUFFER BINDING Z+ GetIntegerv 0
Buffer object bound to copy buffer
“write” bind point 6.6

RESET NOTIFICATION STRATEGY Z2 GetIntegerv See sec. 2.3.2 Reset notification behavior 2.3.2

TEXTURE BUFFER BINDING Z+ GetIntegerv 0
Buffer object bound to generic tex-
ture buffer bind point 8.1

TEXTURE CUBE MAP SEAMLESS B IsEnabled FALSE Seamless cube map filtering enable 8.13

Table
23.74:M

iscellaneous

O
penG

L
4.5

(C
ore

Profile)-O
ctober24,2016

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer state vector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state. This repeatability requirement
doesn’t apply when using shaders containing side effects (image and buffer vari-
able stores and atomic operations, and atomic counter operations), because these
memory operations are not guaranteed to be processed in a defined order.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

634

A.2. MULTI-PASS ALGORITHMS 635

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

• Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

• Framebuffer contents (all bitplanes)

• The color buffers enabled for writing

• Scissor parameters (other than enable)

OpenGL 4.5 (Core Profile) - October 24, 2016

A.3. INVARIANCE RULES 636

• Writemasks (color, depth, stencil)

• Clear values (color, depth, stencil)

Strongly suggested:

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

• Pixel storage state

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with • in Rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it.

Corollary 2 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

Rule 4 The same vertex or fragment shader will produce the same result when
run multiple times with the same input. The wording ‘the same shader’ means a
program object that is populated with the same source strings, which are compiled
and then linked, possibly multiple times, and which program object is then executed
using the same GL state vector. Invariance is relaxed for shaders with side effects,
such as accessing atomic counters (see section A.5).

Rule 5 All fragment shaders that either conditionally or unconditionally assign
gl_FragCoord.z to gl_FragDepth are depth-invariant with respect to each
other, for those fragments where the assignment to gl_FragDepth actually is
done.

If a sequence of GL commands specifies primitives to be rendered with shaders
containing side effects (image and buffer variable stores and atomic operations,
and atomic counter operations), invariance rules are relaxed. In particular, rule 1,
corollary 2, and rule 4 do not apply in the presence of shader side effects.

The following weaker versions of rules 1 and 4 apply to GL commands involv-
ing shader side effects:

OpenGL 4.5 (Core Profile) - October 24, 2016

A.4. TESSELLATION INVARIANCE 637

Rule 6 For any given GL and framebuffer state vector, and for any given GL com-
mand, the contents of any framebuffer state not directly or indirectly affected by
results of shader image or buffer variable stores or atomic operations, or atomic
counter operations must be identical each time the command is executed on that
initial GL and framebuffer state.

Rule 7 The same vertex or fragment shader will produce the same result when run
multiple times with the same input as long as:

• shader invocations do not use image atomic operations or atomic counters;

• no framebuffer memory is written to more than once by image stores, unless
all such stores write the same value; and

• no shader invocation, or other operation performed to process the sequence
of commands, reads memory written to by an image store.

When any sequence of GL commands triggers shader invocations that perform
image stores, atomic operations, or atomic counter operations, and subsequent GL
commands read the memory written by those shader invocations, these operations
must be explicitly synchronized. For more details, see section 7.12.

A.4 Tessellation Invariance

When using a program containing tessellation evaluation shaders, the fixed-
function tessellation primitive generator consumes the input patch specified by an
application and emits a new set of primitives. The following invariance rules are
intended to provide repeatability guarantees. Additionally, they are intended to al-
low an application with a carefully crafted tessellation evaluation shader to ensure
that the sets of triangles generated for two adjacent patches have identical vertices
along shared patch edges, avoiding “cracks” caused by minor differences in the
positions of vertices along shared edges.

Rule 1 When processing two patches with identical outer and inner tessellation
levels, the tessellation primitive generator will emit an identical set of point, line,
or triangle primitives as long as the active program used to process the patch prim-
itives has tessellation evaluation shaders specifying the same tessellation mode,
spacing, vertex order, and point mode input layout qualifiers. Two sets of primi-
tives are considered identical if and only if they contain the same number and type
of primitives and the generated tessellation coordinates for the vertex numbered m
of the primitive numbered n are identical for all values of m and n.

OpenGL 4.5 (Core Profile) - October 24, 2016

A.4. TESSELLATION INVARIANCE 638

Rule 2 The set of vertices generated along the outer edge of the subdivided prim-
itive in triangle and quad tessellation, and the tessellation coordinates of each,
depends only on the corresponding outer tessellation level and the spacing input
layout qualifier in the tessellation evaluation shader of the active program.

Rule 3 The set of vertices generated when subdividing any outer primitive edge is
always symmetric. For triangle tessellation, if the subdivision generates a vertex
with tessellation coordinates of the form (0, x, 1−x), (x, 0, 1−x), or (x, 1−x, 0),
it will also generate a vertex with coordinates of exactly (0, 1−x, x), (1−x, 0, x),
or (1 − x, x, 0), respectively. For quad tessellation, if the subdivision generates
a vertex with coordinates of (x, 0) or (0, x), it will also generate a vertex with
coordinates of exactly (1−x, 0) or (0, 1−x), respectively. For isoline tessellation,
if it generates vertices at (0, x) and (1, x) where x is not zero, it will also generate
vertices at exactly (0, 1− x) and (1, 1− x), respectively.

Rule 4 The set of vertices generated when subdividing outer edges in triangular
and quad tessellation must be independent of the specific edge subdivided, given
identical outer tessellation levels and spacing. For example, if vertices at (x, 1 −
x, 0) and (1−x, x, 0) are generated when subdividing thew = 0 edge in triangular
tessellation, vertices must be generated at (x, 0, 1 − x) and (1 − x, 0, x) when
subdividing an otherwise identical v = 0 edge. For quad tessellation, if vertices
at (x, 0) and (1 − x, 0) are generated when subdividing the v = 0 edge, vertices
must be generated at (0, x) and (0, 1−x) when subdividing an otherwise identical
u = 0 edge.

Rule 5 When processing two patches that are identical in all respects enumerated
in rule 1 except for vertex order, the set of triangles generated for triangle and
quad tessellation must be identical except for vertex and triangle order. For each
triangle n1 produced by processing the first patch, there must be a triangle n2
produced when processing the second patch each of whose vertices has the same
tessellation coordinates as one of the vertices in n1.

Rule 6 When processing two patches that are identical in all respects enumerated
in rule 1 other than matching outer tessellation levels and/or vertex order, the set
of interior triangles generated for triangle and quad tessellation must be identical
in all respects except for vertex and triangle order. For each interior triangle n1
produced by processing the first patch, there must be a triangle n2 produced when
processing the second patch each of whose vertices has the same tessellation co-
ordinates as one of the vertices in n1. A triangle produced by the tessellator is
considered an interior triangle if none of its vertices lie on an outer edge of the
subdivided primitive.

OpenGL 4.5 (Core Profile) - October 24, 2016

A.5. ATOMIC COUNTER INVARIANCE 639

Rule 7 For quad and triangle tessellation, the set of triangles connecting an inner
and outer edge depends only on the inner and outer tessellation levels correspond-
ing to that edge and the spacing input layout qualifier.

Rule 8 The value of all defined components of gl_TessCoordwill be in the range
[0, 1]. Additionally, for any defined component x of gl_TessCoord, the results of
computing 1.0−x in a tessellation evaluation shader will be exact. Some floating-
point values in the range [0, 1] may fail to satisfy this property, but such values may
never be used as tessellation coordinate components.

A.5 Atomic Counter Invariance

When using a program containing atomic counters, the following invariance rules
are intended to provide repeatability guarantees but within certain constraints.

Rule 1 When a single shader type within a program accesses an atomic counter
with only atomicCounterIncrement, any individual shader invocation is guar-
anteed to get a unique value returned.

Corollary 1 Also holds true with atomicCounterDecrement.

Corollary 2 This does not hold true for atomicCounter.

Corollary 3 Repeatability is relaxed. While a unique value is returned to the
shader, even given the same initial state vector and buffer contents, it is not guar-
anteed that the same unique value will be returned for each individual invocation
of a shader (for example, on any single vertex, or any single fragment). It is wholly
the shader writer’s responsibility to respect this constraint.

Rule 2 When two or more shader types within a program access an atomic counter
with only atomicCounterIncrement, there is no repeatability of the ordering
of operations between stages. For example, some number of vertices may be pro-
cessed, then some number of fragments may be processed.

Corollary 4 This also holds true with atomicCounterDecrement and
atomicCounter.

OpenGL 4.5 (Core Profile) - October 24, 2016

A.6. WHAT ALL THIS MEANS 640

A.6 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent command always is executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating-point values may be represented using different formats in
different renderers (hardware and software), many OpenGL state values may
change subtly when renderers are swapped. This is the type of state value change
that invariance rule 1 in section A.3 seeks to avoid.

OpenGL 4.5 (Core Profile) - October 24, 2016

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The error semantics of upward compatible OpenGL revisions may change,
and features deprecated in a previous revision may be removed. Otherwise,
only additions can be made to upward compatible revisions.

2. GL query commands are not required to satisfy the semantics of the Flush
or the Finish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

3. Application specified point size and line width must be returned as specified
when queried. Implementation-dependent clamping affects the values only
while they are in use.

4. The mask specified as the third argument to StencilFunc affects the operands
of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified by StencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

5. There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

6. Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

641

642

7. OpenGL does not force left- or right-handedness on any of its coordinates
systems.

8. (No pixel dropouts or duplicates.) Let two polygons share an identical edge.
That is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon; the positions of vertex A and C are
identical; and the positions of vertex B and D are identical. Vertex positions
are identical if the gl_Position values output by the vertex (or if active,
geometry) shader are identical. Then, when the fragments produced by ras-
terization of both polygons are taken together, each fragment intersecting the
interior of the shared edge is produced exactly once.

9. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

OpenGL 4.5 (Core Profile) - October 24, 2016

Appendix C

Compressed Texture Image
Formats

The compressed texture formats used by OpenGL are described in the specifically
identified sections of the Khronos Data Format Specification, version 1.1, available
at URL

https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html
Unless otherwise described, the quantities encoded in these compressed for-

mats are treated as normalized, unsigned values.
Those formats listed as sRGB-encoded have in-memory representations of R,

G and B components which are nonlinearly-encoded as R′, G′, and B′; any al-
pha component is unchanged. As part of filtering, the nonlinear R′, G′, and B′

values are converted to linear R, G, and B components; any alpha component is
unchanged. The conversion between linear and nonlinear encoding is performed
as described in the KHR_DF_TRANSFER_SRGB section of the Khronos Data Format
Specification.

C.1 RGTC Compressed Texture Image Formats

RGTC formats are described in the “RGTC Compressed Texture Image Formats”
chapter of the Khronos Data Format Specification. The mapping between OpenGL
RGTC formats and that specification is shown in table C.1.

643

https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html

C.2. BPTC COMPRESSED TEXTURE IMAGE FORMATS 644

OpenGL format Data Format Specification
description

COMPRESSED_RED_RGTC1 BC4 unsigned
COMPRESSED_SIGNED_RED_RGTC1 BC4 signed
COMPRESSED_RG_RGTC2 BC5 unsigned
COMPRESSED_SIGNED_RG_RGTC2 BC5 signed

Table C.1: Mapping of OpenGL RGTC formats to descriptions.

OpenGL format Data Format Specification
description

COMPRESSED_RGBA_BPTC_UNORM BC7, linear encoding
COMPRESSED_SRGB_ALPHA_BPTC_UNORM BC7, sRRB encoding
COMPRESSED_RGB_BPTC_SIGNED_FLOAT BC6H, signed format
COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT BC6H, unsigned format

Table C.2: Mapping of OpenGL BPTC formats to descriptions.

C.2 BPTC Compressed Texture Image Formats

BPTC formats are described in the “BPTC2 Compressed Texture Image Formats”
chapter of the Khronos Data Format Specification. The mapping between OpenGL
BPTC formats and that specification is shown in table C.2.

C.3 ETC Compressed Texture Image Formats

ETC formats are described in the “ETC2 Compressed Texture Image Formats”
chapter of the Khronos Data Format Specification. The mapping between OpenGL
ETC formats and that specification is shown in table C.3.

OpenGL 4.5 (Core Profile) - October 24, 2016

C.3. ETC COMPRESSED TEXTURE IMAGE FORMATS 645

OpenGL format Data Format Specification
description

COMPRESSED_R11_EAC Unsigned R11 EAC
COMPRESSED_SIGNED_R11_EAC Signed R11 EAC
COMPRESSED_RG11_EAC Unsigned RG11 EAC
COMPRESSED_SIGNED_RG11_EAC Signed RG11 EAC
COMPRESSED_RGB8_ETC2 RGB ETC2
COMPRESSED_SRGB8_ETC2 RGB ETC2 with sRGB encoding
COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 RGB ETC2 with punchthrough

alpha
COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 RGB ETC2 with punchthrough

alpha and sRGB encoding
COMPRESSED_RGBA8_ETC2_EAC RGBA ETC2
COMPRESSED_SRGB8_ALPHA8_ETC2_EAC RGBA ETC2 with sRGB encod-

ing

Table C.3: Mapping of OpenGL ETC formats to descriptions.

OpenGL 4.5 (Core Profile) - October 24, 2016

Appendix D

Profiles and the Deprecation
Model

OpenGL 3.0 introduced a deprecation model in which certain features are marked
as deprecated. Deprecated features are expected to be completely removed from a
future version of OpenGL. Deprecated features are summarized in section D.2.

To aid developers in writing applications which will run on such future ver-
sions, it is possible to create an OpenGL context which does not support depre-
cated features. Such a context is called a forward compatible context, while a
context supporting all OpenGL features is called a full context. Forward compat-
ible contexts cannot restore deprecated functionality through extensions, but they
may support additional, non-deprecated functionality through extensions.

Profiles define subsets of OpenGL functionality targeted to specific application
domains. Starting with OpenGL 3.2, two profiles are defined (see below). Future
versions may define additional profiles addressing embedded systems or other do-
mains. OpenGL implementations are not required to support all defined profiles,
but must support the core profile described below.

To enable application control of deprecation and profiles, new context creation
APIs have been defined as extensions to GLX, WGL and EGL. These APIs allow
specifying a particular version, profile, and full or forward compatible status, and
will either create a context compatible with the request, or fail (if, for example,
requesting an OpenGL version or profile not supported by the implementation).

Only the ARB may define OpenGL profiles and deprecated features.

646

D.1. CORE AND COMPATIBILITY PROFILES 647

D.1 Core and Compatibility Profiles

The core profile of OpenGL defines essential functionality for the modern pro-
grammable shading model introduced in OpenGL 2.0, but does not include features
marked as removed for that version of the Specification (see section D.2).

The compatibility profile does not remove any functionality.
It is not possible to implement both core and compatibility profiles in a single

GL context, since the core profile mandates functional restrictions not present in the
compatibility profile. Refer to the WGL_ARB_create_context_profile and
GLX_ARB_create_context_profile extensions (see appendix I.3.3.66) for in-
formation on creating a context implementing a specific profile.

D.2 Deprecated and Removed Features

OpenGL 3.0 defined a set of deprecated features. OpenGL 3.1 removed most of the
deprecated features and moved them into the optional GL_ARB_compatibility
extension. The OpenGL 3.2 core profile removes the same features as OpenGL
3.1, while the optional compatibility profile supports all those features.

Deprecated and removed features are summarized below in two groups: fea-
tures which are marked deprecated by the core profile, but have not yet been re-
moved, and features actually removed from the core profile of the current version
of OpenGL (no features have been removed from or deprecated in the compatibility
profile).

Functions which have been removed will generate an INVALID_OPERATION

error if called in the core profile or in a forward-compatible context. Functions
which are partially removed (e.g. no longer accept some parameter values) will
generate the errors appropriate for any other unrecognized value of that parame-
ter when a removed parameter value is passed in the core profile or a forward-
compatible context. Functions which are deprecated but have not yet been removed
from the core profile continue to operate normally except in a forward-compatible
context, where they are also removed.

D.2.1 Deprecated But Still Supported Features

The following features are deprecated, but still present in the core profile. They
may be removed from a future version of OpenGL, and are removed in a forward-
compatible context implementing the core profile.

• Wide lines - LineWidth values greater than 1.0 will generate an INVALID_-
VALUE error.

OpenGL 4.5 (Core Profile) - October 24, 2016

D.2. DEPRECATED AND REMOVED FEATURES 648

• Global component limit query - the implementation-dependent values
MAX_VARYING_COMPONENTS and MAX_VARYING_FLOATS.

• The query targets NUM_COMPRESSED_TEXTURE_FORMATS and
COMPRESSED_TEXTURE_FORMATS (see section 8.5).

• Bitmap pack/unpack state for bitmaps - the pixel pack parameters UNPACK_-
LSB_FIRST and PACK_LSB_FIRST.

D.2.2 Removed Features

• Application-generated object names - the names of all object types, such as
buffer, query, and texture objects, must be generated using the correspond-
ing Gen* commands. Trying to bind an object name not returned by a Gen*
command will result in an INVALID_OPERATION error. This behavior is al-
ready the case for framebuffer, renderbuffer, and vertex array objects. Object
types which have default objects (objects named zero), such as vertex ar-
ray, framebuffer, and texture objects, may also bind the default object, even
though it is not returned by Gen*.

• Color index mode - no color index visuals are supplied by the window
system-binding APIs such as GLX and WGL, so the default framebuffer
is always in RGBA mode. All language and state related to color index
mode vertex, rasterization, and fragment processing behavior is removed.
COLOR_INDEX formats are also deprecated.

• OpenGL Shading Language versions 1.10 and 1.20. These versions of the
shading language depend on many API features that have also been depre-
cated.

• Begin / End primitive specification - Begin, End, and EdgeFlag*; Color*,
FogCoord*, Index*, Normal3*, SecondaryColor3*, TexCoord*, Ver-
tex*; and all associated state. Vertex arrays and array drawing commands
must be used to draw primitives. However, VertexAttrib* and the current
vertex attribute state are retained in order to provide default attribute values
for disabled attribute arrays.

• Edge flags and fixed-function vertex processing - ColorPointer, EdgeFlag-
Pointer, FogCoordPointer, IndexPointer, NormalPointer, Secondary-
ColorPointer, TexCoordPointer, VertexPointer, EnableClientState, Dis-
ableClientState, and InterleavedArrays, ClientActiveTexture; Frus-
tum, LoadIdentity, LoadMatrix, LoadTransposeMatrix, MatrixMode,

OpenGL 4.5 (Core Profile) - October 24, 2016

D.2. DEPRECATED AND REMOVED FEATURES 649

MultMatrix, MultTransposeMatrix, Ortho, PopMatrix, PushMatrix,
Rotate, Scale, and Translate; Enable/Disable targets RESCALE_NORMAL
and NORMALIZE; TexGen* and Enable/Disable targets TEXTURE_-

GEN_*, Material*, Light*, LightModel*, and ColorMaterial, Shade-
Model, and Enable/Disable targets LIGHTING, VERTEX_PROGRAM_TWO_-
SIDE, LIGHTi, and COLOR_MATERIAL; ClipPlane; and all associated
fixed-function vertex array, multitexture, matrix and matrix stack, normal
and texture coordinate, lighting, and clipping state. A vertex shader must be
defined in order to draw primitives.

Language referring to edge flags in the current specification is modified as
though all edge flags are TRUE.

Note that the FrontFace and ClampColor commands are not deprecated,
as they still affect other non-deprecated functionality; however, the Clam-
pColor targets CLAMP_VERTEX_COLOR and CLAMP_FRAGMENT_COLOR are
deprecated.

• Client vertex and index arrays - all vertex array attribute and element array
index pointers must refer to buffer objects. The default vertex array object
(the name zero) is also deprecated. Calling VertexAttribPointer when no
buffer object or no vertex array object is bound will generate an INVALID_-
OPERATION error, as will calling any array drawing command when no ver-
tex array object is bound.

• Rectangles - Rect*.

• Current raster position - RasterPos* and WindowPos*, and all associated
state.

• Two-sided color selection - Enable target VERTEX_PROGRAM_TWO_-

SIDE; OpenGL Shading Language built-ins gl_BackColor and gl_-

BackSecondaryColor; and all associated state.

• Non-sprite points - Enable/Disable targets POINT_SMOOTH and POINT_-

SPRITE, and all associated state. Point rasterization is always performed as
though POINT_SPRITE were enabled.

• Wide lines and line stipple - LineWidth is not deprecated, but values greater
than 1.0 will generate an INVALID_VALUE error; LineStipple and En-
able/Disable target LINE_STIPPLE, and all associated state.

OpenGL 4.5 (Core Profile) - October 24, 2016

D.2. DEPRECATED AND REMOVED FEATURES 650

• Quadrilateral and polygon primitives - vertex array drawing modes
POLYGON, QUADS, and QUAD_STRIP, related descriptions of rasterization
of non-triangle polygons, and all associated state.

• Separate polygon draw mode - PolygonMode face values of FRONT and
BACK; polygons are always drawn in the same mode, no matter which face
is being rasterized.

• Polygon Stipple - PolygonStipple and Enable/Disable target POLYGON_-

STIPPLE, and all associated state.

• Pixel transfer modes and operations - all pixel transfer modes, including
pixel maps, shift and bias, color table lookup, color matrix, and convolu-
tion commands and state, and all associated state and commands defining
that state.

• Pixel drawing - DrawPixels and PixelZoom. However, the language de-
scribing pixel rectangles in section 8.4 is retained as it is required for Tex-
Image* and ReadPixels.

• Bitmaps - Bitmap and the BITMAP external format.

• Legacy OpenGL 1.0 pixel formats - the values 1, 2, 3, and 4 are no longer
accepted as internal formats by TexImage* or any other command taking
an internal format argument. The initial internal format of a texel array is
RGBA instead of 1. TEXTURE_COMPONENTS is deprecated; always use
TEXTURE_INTERNAL_FORMAT.

• Legacy pixel formats - all ALPHA, LUMINANCE, LUMINANCE_ALPHA, and
INTENSITY external and internal formats, including compressed, floating-
point, and integer variants; all references to luminance and intensity formats
elsewhere in the specification, including conversion to and from those for-
mats; and all associated state, including state describing the allocation or
format of luminance and intensity texture or framebuffer components.

• Depth texture mode - DEPTH_TEXTURE_MODE. Section 8.23.1 is to be
changed so that r is returned to texture samplers directly, and the OpenGL
Shading Language 1.30 Specification is to be changed so that (r, 0, 0, 1) is
always returned from depth texture samplers in this case.

• Texture wrap mode CLAMP - CLAMP is no longer accepted as a value of
texture parameters TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_-
WRAP_R.

OpenGL 4.5 (Core Profile) - October 24, 2016

D.2. DEPRECATED AND REMOVED FEATURES 651

• Texture borders - the border value to TexImage* must always be zero, or an
INVALID_VALUE error is generated (section 8.5); all language in section 8
referring to nonzero border widths during texture image specification and
texture sampling; and all associated state.

• Automatic mipmap generation - TexParameter* target GENERATE_-

MIPMAP, and all associated state.

• Fixed-function fragment processing - AreTexturesResident, Prioritize-
Textures, and TexParameter target TEXTURE_PRIORITY; TexEnv target
TEXTURE_ENV, and all associated parameters; TexEnv target TEXTURE_-
FILTER_CONTROL, and parameter name TEXTURE_LOD_BIAS; Enable tar-
gets of all dimensionalities (TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, and TEXTURE_CUBE_MAP);
Enable target COLOR_SUM; Enable target FOG, Fog, and all associated pa-
rameters; the implementation-dependent values MAX_TEXTURE_UNITS and
MAX_TEXTURE_COORDS; and all associated state.

• Alpha test - AlphaFunc and Enable/Disable target ALPHA_TEST, and all
associated state.

• Accumulation buffers - ClearAccum, and ACCUM_BUFFER_BIT is not valid
as a bit in the argument to Clear (section 17.4.3); Accum; the ACCUM_*_-
BITS framebuffer state describing the size of accumulation buffer compo-
nents; and all associated state.

Window system-binding APIs such as GLX and WGL may choose to either
not expose window configs containing accumulation buffers, or to ignore
accumulation buffers when the default framebuffer bound to a GL context
contains them.

• Pixel copying - CopyPixels (the comments also applying to CopyTexImage
will be moved to section 8.6).

• Auxiliary color buffers, including AUXi targets of the default framebuffer.

• Context framebuffer size queries - RED_BITS, GREEN_BITS, BLUE_BITS,
ALPHA_BITS, DEPTH_BITS, and STENCIL_BITS.

• Evaluators - Map*, EvalCoord*, MapGrid*, EvalMesh*, EvalPoint*, and
all evaluator map enables, and all associated state.

• Selection and feedback modes - RenderMode, InitNames, PopName,
PushName, LoadName, and SelectBuffer; FeedbackBuffer and
PassThrough; and all associated state.

OpenGL 4.5 (Core Profile) - October 24, 2016

D.2. DEPRECATED AND REMOVED FEATURES 652

• Display lists - NewList, EndList, CallList, CallLists, ListBase, GenLists,
IsList, and DeleteLists; all references to display lists and behavior when
compiling commands into display lists elsewhere in the specification; and all
associated state.

• Hints - the PERSPECTIVE_CORRECTION_HINT, POINT_SMOOTH_HINT,
FOG_HINT, and GENERATE_MIPMAP_HINT targets to Hint (section 21.5).

• Attribute stacks - PushAttrib, PushClientAttrib, PopAttrib, Pop-
ClientAttrib, the MAX_ATTRIB_STACK_DEPTH, MAX_CLIENT_ATTRIB_-
STACK_DEPTH, ATTRIB_STACK_DEPTH, and CLIENT_ATTRIB_STACK_-

DEPTH state, the client and server attribute stacks, and the values ALL_-

ATTRIB_BITS and CLIENT_ALL_ATTRIB_BITS.

• Unified extension string - EXTENSIONS target to GetString.

• Token names and queries - all token names and queries not otherwise men-
tioned above for deprecated state, as well as all query entry points where
all valid targets of that query are deprecated state (chapter 22 and the state
tables).

OpenGL 4.5 (Core Profile) - October 24, 2016

Appendix E

Version 4.2

OpenGL version 4.2, released on August 8, 2011, is the fourteenth revision since
the original version 1.0.

Separate versions of the OpenGL 4.2 Specification exist for the core and com-
patibility profiles described in appendix D, respectively subtitled the “Core Pro-
file” and the “Compatibility Profile”. This document describes the Core Profile.
An OpenGL 4.2 implementation must be able to create a context supporting the
core profile, and may also be able to create a context supporting the compatibility
profile.

Material specific to the compatibility profile specification is marked in a dis-
tinct color to clearly call out differences between the two profiles.

The OpenGL 4.2 compatibility and core profiles are upward compatible with
the OpenGL 4.1 compatibility and core profiles, respectively.

Following are brief descriptions of changes and additions to OpenGL 4.2.

E.1 New Features

New features in OpenGL 4.2, including the extension or extensions if any on which
they were based, include:

• Support for BPTC compressed textures (ARB_texture_compression_-
bptc).

• Allow pixel storage parameters to affect packing and unpacking of com-
pressed textures (ARB_compressed_texture_pixel_storage).

• Shader atomic counters (ARB_shader_atomic_counters).

• Immutable texture images (ARB_texture_storage).

653

E.2. DEPRECATION MODEL 654

• Instanced transformed feedback drawing (ARB_transform_feedback_-
instanced).

• Allow the offset within buffer objects used for instanced rendering to be
specified (ARB_base_instance).

• OpenGL Shading Language built-in functions allowing loads from and
stores to texture images from any shader stage, and application control
over the ordering of image load/store operations relative to other OpenGL
pipeline operations accessing the same memory (ARB_shader_image_-
load_store).

• New OpenGL Shading Language features with no OpenGL API impact
(ARB_conservative_depth and ARB_shading_language_420pack -
see the OpenGL Shading Language Specification for details).

• Queries for sample counts available for a given internal format and usage
(ARB_internalformat_query).

• More restrictive alignment constraints for mapped buffers (ARB_map_-
buffer_alignment).

E.2 Deprecation Model

The following features are newly deprecated by the OpenGL 4.2 core profile:

• The query targets NUM_COMPRESSED_TEXTURE_FORMATS and
COMPRESSED_TEXTURE_FORMATS (see section 8.5).

Features deprecated by OpenGL 4.1 remain deprecated, but have not yet been
removed.

E.3 Changed Tokens

New token names are introduced to be used in place of old, less general names.
However, the old token names continue to be supported, for backwards compati-
bility with code written for previous versions of OpenGL. The new names, and the
old names they replace, are shown in table E.1. Note that COPY_READ_BUFFER
and COPY_WRITE_BUFFER continue to be used as buffer targets for e.g. Bind-
Buffer; the _BINDING forms are used only when querying the buffer object bound
to those targets.

OpenGL 4.5 (Core Profile) - October 24, 2016

E.4. CHANGE LOG FOR RELEASED SPECIFICATIONS 655

New Token Name Old Token Name
COPY_READ_BUFFER_BINDING COPY_READ_BUFFER

COPY_WRITE_BUFFER_BINDING COPY_WRITE_BUFFER

TRANSFORM_FEEDBACK_ACTIVE TRANSFORM_FEEDBACK_BUFFER_ACTIVE

TRANSFORM_FEEDBACK_PAUSED TRANSFORM_FEEDBACK_BUFFER_PAUSED

Table E.1: New token names and the old names they replace.

E.4 Change Log for Released Specifications

Changes in the specification update of January 19, 2012:

• Corrections to figure 3.1 (Bug 7997).

• Minor bugfixes and typos in sections 3, 10.3, 11.1, 11.1.1, 11.1.3.5, 4.2,
13.2.3, 14.5.2 (restored description of non-antialiased wide line rendering to
the core profile since they are deprecated, but not yet removed), 8.2 (fixed
prototypes for SamplerParameter commands), 15.2.1, 17.3.10 (specify that
multisample buffer is only resolved at this time if the default framebuffer is
bound), 9.2.8 (correct limits on layer for different types of attached textures),
9.4.2, 8.11 (remove redundant description by IsTexture that unbound object
names created by GenTextures are not the names of texture objects), 23
(add GetInteger64v as a supported state query), chapter 5, and tables 23.31,
23.32, 23.55, and 23.72 (Bug 7895).

• Add missing automatic unbinding of previously bound buffer objects for
BindBufferRange and BindBufferBase in section 6.1.1 (Bug 8196).

• More clearly specify interface matching rules for shader inputs and outputs
in section 7.4.1, for cases where both sides of an interface are found in the
same program and where they are in different programs (Bug 7030).

• Clarify in section 11.1.1 that dvec3 and dvec4 vertex shader inputs con-
sume only a single attribute location for the purpose of matching inputs to
generic vertex attributes, but may consume two vectors for the purposes of
determining if too many attribute vectors are used (Bug 7809). Also, add
missing language describing the set of attributes consumed by matrix vertex
attributes, with fixes to explicitly address dmat* types.

• Remove dangling references to nonexistent gl_VerticesOut in sec-
tion 11.2.1.2.3 (Bug 8357).

OpenGL 4.5 (Core Profile) - October 24, 2016

E.4. CHANGE LOG FOR RELEASED SPECIFICATIONS 656

• Fix names of cube map sampler type tokens in table 7.3 (Bug 8303).

• Fix behavior of DeleteTransformFeedbacks in section 13.2.1 to generate
an error if any of the objects being deleted has transform feedback active
(Bug 8323).

• Remove ambiguity in the order of operations and which vertices are ap-
pended by transform feedback when it is resumed in section 13.2.2 (Bug
8202).

• Updated description of errors resulting from specifying texture images of
level 1 or greater which exceed implementation-dependent limits, in sec-
tions 8.5 and 8.17.3 (Bug 8210).

• Remove clamping of Dt and Dref prior to depth texture comparison in sec-
tion 8.23.1, since it doesn’t reflect hardware reality (Bug 7975).

• Update description of texture access from shadow samplers in section 15.2.1
to interact with texture swizzle (Bug 7962) and clarify that swizzling is not
performed on the results of incomplete texture lookups (Bug 7917).

• Add buffer clearing to the list of operations affected by scissor rectangle zero
in section 14.9.2 (Bug 8368).

• Remove error (from the core profile only) for querying CURRENT_-

VERTEX_ATTRIB for attribute zero with GetVertexAttrib* in section 7.13
(Bug 8352).

• Clarify that the initial state of SAMPLE_MASK_VALUE is for all bits to be set
in table 23.11 (Bug 8441).

• Add missing PROGRAM_SEPARABLE state to table 23.32 (Bug 8442).

• Numerous minor fixes to state table type fields and formatting (Bugs 8430,
8431).

• Clarified that automatic unbinding of deleted objects, as described in sec-
tion 5.1.2, does not affect attachments to unbound container objects the
deleted objects are themselves attached to (Bug 8233).

• Add version in which several extensions were introduced to core GL in sec-
tion I.3 (Bug 8418).

Changes in the specification update of August 22, 2011:

OpenGL 4.5 (Core Profile) - October 24, 2016

E.5. CREDITS AND ACKNOWLEDGEMENTS 657

• More clearly specify interface matching rules for shader inputs and outputs
in section 7.4.1, for cases where both sides of an interface are found in the
same program and where they are in different programs (Bug 7030).

• Clarify in section 11.1.1 that dvec3 and dvec4 vertex shader inputs con-
sume only a single attribute location for the purpose of matching inputs to
generic vertex attributes, but may consume two vectors for the purposes of
determining if too many attribute vectors are used (Bug 7809). Also, add
missing language describing the set of attributes consumed by matrix vertex
attributes, with fixes to explicitly address dmat* types.

Changes in the released specification of August 8, 2011:

• Update name of MIN_MAP_BUFFER_ALIGNMENT to follow GL conventions
in section 6.3 and table 23.55 (Bug 7825).

• Change query object state description in section 4.2 so the initial state of the
query result available flag agrees with the state table (Bug 7823).

• Minor cleanups to atomic counter language in section 7.6 and to atomic
counter token names in tables 23.57, 23.58, 23.60, and 23.61 (Bug 7834).

• Clarify that completeness affects texture lookup and fetch operations in all
shader stages in section 8.17 (Bug 7856).

• Change BindImageTexture parameter name from index to unit and fix mi-
nor language issues in section 8.26 (Bugs 7744, 7850, 7851).

• Fix typos in section 22.3 (Bug 7843).

• Fix minimum maximums for MAX_FRAGMENT_IMAGE_UNIFORMS and
MAX_COMBINED_IMAGE_UNIFORMS in table 23.65 (Bug 7805).

• Change minimum maximum for MAX_ATOMIC_COUNTER_BUFFER_SIZE to
32 in table 23.64 (Bug 7855).

E.5 Credits and Acknowledgements

OpenGL 4.2 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ARB Working Group during the development
of OpenGL 4.2, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed to-
gether with their name, including specific functionality developed in the form of

OpenGL 4.5 (Core Profile) - October 24, 2016

E.5. CREDITS AND ACKNOWLEDGEMENTS 658

new ARB extensions together with OpenGL 4.2. In addition, many people partic-
ipated in developing earlier vendor and EXT extensions on which the OpenGL 4.2
functionality is based in part; those individuals are listed in the respective extension
specifications in the OpenGL Extension Registry.

Acorn Pooley, NVIDIA
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Benji Bowman, Imagination Technologies
Bill Licea-Kane (Chair, ARB OpenGL Shading Language TSG, ARB_shader_-

atomic_counters)
Bruce Merry, ARM (Detailed specification review, ARB_texture_storage)
Chris Dodd, NVIDIA
Christophe Riccio, Imagination Technologies
Daniel Koch (ARB_internalformat_query)
Eric Werness, NVIDIA (ARB_texture_compression_bptc)
Graham Sellers, AMD (ARB_base_instance, ARB_conservative_depth,

ARB_transform_feedback_instanced)
Greg Roth, NVIDIA
Ian Romanick, Intel (ARB_texture_storage)
Jacob Ström, Ericsson AB
Jan-Harald Fredriksen (ARB_internalformat_query)
Jeannot Breton, NVIDIA
Jeff Bolz, NVIDIA Corporation (ARB_shader_image_load_store)
Jeremy Sandmel, Apple
John Kessenich, Independent (OpenGL Shading Language Specification Editor,

ARB_shading_language_420pack)
Jon Leech, Independent (OpenGL API Specification Editor)
Lingjun (Frank) Chen, Qualcomm
Mark Callow, HI Corporation
Maurice Ribble, Qualcomm
Nick Haemel, AMD
Pat Brown, NVIDIA Corporation (ARB_shader_image_load_store, ARB_-

shading_language_packing)
Patrick Doane, Blizzard
Pierre Boudier, AMD
Piers Daniell, NVIDIA Corporation (ARB_compressed_texture_pixel_-

storage, ARB_map_buffer_alignment)
Robert Simpson, Qualcomm
Tom Olson, ARM (Chair, Khronos OpenGL ES Working Group)

OpenGL 4.5 (Core Profile) - October 24, 2016

E.5. CREDITS AND ACKNOWLEDGEMENTS 659

The ARB gratefully acknowledges administrative support by the members of
Gold Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Freder-
icks, and Michelle Clark, and technical support from James Riordon, webmaster
of Khronos.org and OpenGL.org.

OpenGL 4.5 (Core Profile) - October 24, 2016

Appendix F

Version 4.3

OpenGL version 4.3, released on August 6, 2012, is the fifteenth revision since the
original version 1.0.

Separate versions of the OpenGL 4.3 Specification exist for the core profile
and compatibility profile described in appendix D, respectively subtitled the “Core
Profile” and the “Compatibility Profile”. This document describes the Core Profile.
An OpenGL 4.3 implementation must be able to create a context supporting the
core profile, and may also be able to create a context supporting the compatibility
profile.

Material specific to the compatibility profile specification is marked in a dis-
tinct color to clearly call out differences between the two profiles.

The OpenGL 4.3 compatibility and core profiles are upward compatible with
the OpenGL 4.2 compatibility and core profiles, respectively (see appendix E).

Following are brief descriptions of changes and additions to OpenGL 4.3. De-
scriptions of changes and additions in versions of OpenGL prior to 4.2 are omitted
in this Specification, but may be found in the OpenGL 3.0 Specification (for fea-
tures in versions 1.0 - 3.0, inclusive) and the OpenGL 4.2 Specification (for features
in versions 3.1 - 4.1, inclusive). These Specifications are available in the OpenGL
Registry.

F.1 Restructuring

The Specification has been substantially restructured to introduce high-level con-
cepts and describe objects before their use, and more cleanly split descriptions of
programmable and fixed-function processing. Chapter and section numbering has
been aligned between the two profile Specifications so that a section number will
always refer to the same concept in both profiles (although that section may be

660

F.2. NEW FEATURES 661

empty in the core profile).

F.2 New Features

New features in OpenGL 4.3, including the extension or extensions if any on which
they were based, include:

• ARB_arrays_of_arrays (OpenGL Shading Language only)

• ARB_ES3_compatibility

• ARB_clear_buffer_object

• ARB_compute_shader

• ARB_copy_image

• ARB debug group

• ARB debug label

• ARB debug output2

• ARB_debug_output

• ARB_explicit_uniform_location

• ARB_fragment_layer_viewport (OpenGL Shading Language only)

• ARB_framebuffer_no_attachments

• ARB_internalformat_query2

• ARB_invalidate_subdata

• ARB_multi_draw_indirect

• ARB_program_interface_query

• ARB_robust_buffer_access_behavior

• ARB_shader_image_size (OpenGL Shading Language only)

• ARB_shader_storage_buffer_object

• ARB_stencil_texturing

OpenGL 4.5 (Core Profile) - October 24, 2016

F.3. DEPRECATION MODEL 662

• ARB_texture_buffer_range

• ARB_texture_query_levels

• ARB_texture_storage_multisample

• ARB_texture_view

• ARB_vertex_attrib_binding

• KHR_debug

• Add VERTEX_ATTRIB_ARRAY_LONG query for whether a vertex attribute is
stored as an unconverted double (Bug 8272).

• Add queries for #version strings of all OpenGL Shading Language ver-
sions supported by the GL (Bug 7811).

• Increase required number of uniform blocks per program stage from 12 to
14 (Bug 8891).

F.3 Deprecation Model

The following features are deprecated by the OpenGL 4.3 core profile.

• Bitmap pack/unpack state for bitmaps - the pixel pack parameters UNPACK_-
LSB_FIRST PACK_LSB_FIRST and (see sections 8.4.1 and 18.2).

The following features which were previously deprecated have been re-
introduced to the OpenGL 4.3 core profile:

• The GetPointerv command (see section 22.2) and the STACK_OVERFLOW

and STACK_UNDERFLOW errors (see table 2.3). These features are used by
the debug functionality in chapter 20.

Other features deprecated by OpenGL 4.2 remain deprecated, but have not yet
been removed.

F.4 Changed Tokens

New token names are introduced to be used in place of old, less general names.
However, the old token names continue to be supported, for backwards compati-
bility with code written for previous versions of OpenGL. The new names, and the
old names they replace, are shown in table F.1.

OpenGL 4.5 (Core Profile) - October 24, 2016

F.5. CHANGE LOG FOR RELEASED SPECIFICATIONS 663

New Token Name Old Token Name
MAX_COMBINED_SHADER_OUTPUT_-

RESOURCES

MAX_COMBINED_IMAGE_UNITS_AND_-

FRAGMENT_OUTPUTS

Table F.1: New token names and the old names they replace.

F.5 Change Log for Released Specifications

Changes in the specification update of February 14, 2013:

• Do not perform validity checks on the BindBufferRange size and offset ar-
guments when a zero buffer is specified to unbind a buffer, in section 6.1.1
(Bug 9765).

• Clean up descriptions of BindBufferBase in section 6.1.1 so it is described
without reference to BindBufferRange, and note in section 6.7.1 that a zero
size query result for a buffer binding is a sentinel indicating the entire buffer
is bound (Bug 9513).

• Fix typo in error descriptions in section 6.7 (Bug 9720).

• Update section 6.8 to reference the tables of buffer binding state of differ-
ent types, and move uniform buffer binding state from table 23.35 to new
table 23.49 to match (Bug 9566).

• Clarify that Uniform*d cannot be used to load uniforms with boolean

types in section 7.6.1 (Bug 9345).

• Added double-precision matrix types to the description of uniform buffer
object storage layouts in section 7.6.2.1, and cleaned up description of the
matrix stride and how to query it (Bug 9375).

• Correct off-by-one error for valid range of sampler values in introduction to
section 7.10 (Bug 8905).

• Clarify in section 7.14 that table 23.43 is not part of program object state,
and update the table caption to match (Bug 9781).

• Clarify description of the data argument to TexSubImage* in section 8.6 so
that it may not be NULL, unlike TexImage* (Bug 9750).

• Fix typo in description of TexParameter* in section 8.10 (Bug 9625).

OpenGL 4.5 (Core Profile) - October 24, 2016

F.5. CHANGE LOG FOR RELEASED SPECIFICATIONS 664

• Add a color-renderable column to table 8.12 and modify section 9.4 to define
color-renderable formats with respect to the table, rather than with respect
to base formats. This results in the RGB9_E5 format no longer being color-
renderable, which was an error (Bug 9338).

• Allow vector forms of TexParameter* to be used to set scalar parameters in
section 8.10, reversing an old spec change made in error (vector parameters,
however, still cannot be set with the scalar calls) (Bug 7346).

• Restore missing clamp for Dt and Dref (depth texture comparison mode
parameters) in section 8.23.1 when using a fixed-point texture (Bug 7975).

• Correct expshared to exps terminology and include missing N term when
describing shared exponent texture color conversion and final conversion in
sections 8.25 and 18.2.8 (Bug 9486).

• Specify that FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER for Get-
FramebufferParameteriv in section 9.2.3 (Bug 9344).

• Added STENCIL_INDEX8 as a required stencil-only renderbuffer format in
sections 9.2.5 and 9.4.3, for compatibility with OpenGL ES 3.0 (Bug 9418).

• Fixes to description of isoline tessellation in section 11.2.2.3 to describe use
of outer tessellation levels in the correct order (Bug 9607).

• Clamp values at specification time for DepthRange* (section 13.6.1) and
ClearDepth (section 17.4.3), to avoid subtle issues when using floating-
point depth buffers. However, this change does not reintroduce use of the
clampf and clampd types eliminated in OpenGL 4.2 (Bug 9517).

• Change DrawBuffer error for COLOR_ATTACHMENTm out of range from
INVALID_VALUE to INVALID_OPERATION in section 17.4.1, to match
DrawBuffers and OpenGL ES 3.0 (Bug 8568).

• Modify language describing buffer writes in section 17.4.1 so that fragment
colors are not written only to draw buffers with no color attachment, or with
NONE as the draw buffer, allowing writes to other draw buffers to succeed.
Specify that when only some output variables are written, only the fragment
colors corresponding to unwritten variables are undefined (Bug 9494).

• Allow attachment parameters to InvalidateSubFramebuffer in sec-
tion 17.4.4 to include DEPTH_STENCIL_ATTACHMENT (Bug 9480).

OpenGL 4.5 (Core Profile) - October 24, 2016

F.5. CHANGE LOG FOR RELEASED SPECIFICATIONS 665

• Specify that the BlitFramebuffer mask may be zero in section 18.3.1 (Bug
9748).

• Cleaned up language describing parameters to DebugMessageControl in
section 20.4 to avoid triple negatives (Bug 9392).

• Increase minimum value for MAX_UNIFORM_BUFFER_BINDINGS to 84 in
table 23.63 to account for correct number of bindings/stage (14) (Bug 9424).

Changes in the released Specification of August 6, 2012:

• Restructured as described in section F.1.

• Added new features as described in section F.2.

• Add title image page using the “pipeline metro” diagram.

• Miscellaneous minor typos and fixes to better match OpenGL ES 3.0 spec
language (Bugs 7885, 7904, 7919).

• Changed “rectangular texture” to “rectangle texture” throughout the spec for
consistency (Bug 9262). Other consistency changes including using “equiv-
alent to” consistently for pseudocode samples defining the operation of a
command.

• Many cleanups and additions to error language throughout the spec to add
previously implicit errors explicitly (however, this is still a work in progress).
In particular, added explicit errors for all commands taking program or
shader arguments as described at the start of section 7.1, and for commands
taking shadertype arguments (Bug 9145); and added explicit INVALID_-
VALUE errors for negative values of sizei and sizeiptr arguments (Bug
9320).

• Cleaned up description of function prototypes from the old T notation to T *
or const T * as appropriate for the actual C binding of the corresponding
command.

• Added NUM_SHADING_LANGUAGE_VERSIONS and SHADING_-

LANGUAGE_VERSION queries for supported GLSL #version strings in sec-
tions 1.3.1, 1.3.3 and 22.2, and in table 23.56 (see Bug 7811). Still need
enum assignments for these.

• Remove assertion that draw and read framebuffers must be of the same class
in section 2.1 (Bug 9134).

OpenGL 4.5 (Core Profile) - October 24, 2016

F.5. CHANGE LOG FOR RELEASED SPECIFICATIONS 666

• Clarify in the caption to table 2.2 that sync is defined as a pointer type in
the C binding (Bug 9140).

• Reintroduced STACK_OVERFLOW and STACK_UNDERFLOW errors to the core
profile in table 2.3, since they are used by the debug group APIs (Bug 9158).

• Describe new, more complete error summary and typesetting style in sec-
tion 2.3.1. Convert (most) error summaries beginning with section 4.1,
adding implicit error conditions that have not been described with the com-
mands they apply to before. This is a work in progress.

• Clean up query objects in section 4.2 to clarify that TIME_ELAPSED and
TIMESTAMP queries are different type of queries, and remove an inapplicable
error condition for TIMESTAMP queries (Bug 9268).

• Add language to DeleteBuffers in section 6 and BufferData in section 6.2
specifying that these commands cause any existing mappings of a buffer be-
ing operated on in any context to be unmapped, per a rather offhand reference
in section 6.3.1 (Bug 9323).

• Restore COPY_READ_BUFFER and COPY_WRITE_BUFFER as buffer target
names in sections 6.1 and 6.6. The _BINDING aliases are used only when
querying those binding points (Bugs 8475, 9115).

• Bring compute shader language in sync with changes to the extension spec.
In particular, add DISPATCH_INDIRECT_BUFFER binding section 6.1, de-
scribe it in section 10.3.11, update DispatchComputeIndirect to use it in
section 19, add new table 23.52, and update aggregate shader limits in sec-
tion 23.63 (Bug 9130).

• Add create-on-bind behavior for BindBufferRange and BindBufferBase in
section 6.1.1, mirroring BindBuffer (Bug 9216).

• Clarify that offset and alignment constraints for ClearBufferSubData in
section 6.2.1 are based on the total size of a texel of type internalformat
(size of base type times no. of components) (Bug 9211).

• Update errors for ClearBuffer*Data and mention them and Invalidate-
Buffer*Data among the commands that can modify buffer object storage
in sections 6.2.1, 7.6, 7.8, and 7.12 (Bug 9154).

• Clarify that buffer mappings are not affected by whether or not a context is
current in section 6.3.1 (Bug 9323).

OpenGL 4.5 (Core Profile) - October 24, 2016

F.5. CHANGE LOG FOR RELEASED SPECIFICATIONS 667

• Add language in section 6.3.2 specifying that commands which write to (as
well as read from) mapped buffers are also supposed to generate errors (Bug
9115).

• Make InvalidateBuffer*Data generate errors for invalid object handles in
section 6.5 (Bug 9341).

• Merge description of different types of indexed array buffer bindings into
section 6.7.1, and move description of target-specific BindBufferRange er-
rors into section 6.1.1 with reference to section 6.7.1 (Bug 9115 and general
cleanup).

• Extend ShaderBinary in section 7.2 to allow support for shader binary for-
mats including all shader types, not just vertex and fragment shaders (Bug
9282).

• Add description of “top-level arrays” to active shader storage block discus-
sion in section 7.3.1 (Bug 9115). This probably needs to migrate back to the
extension as well, along with a few other language changes in this section
which Pat suggested in his PDF review but hasn’t put into the extension yet.

• Clarify error descriptions for UseProgramStages and ActiveShaderPro-
gram (section 7.4), UseProgram (section 7.6.1), and ProgramUniform*
(section 7.6.1) to generate an INVALID_OPERATION error “if program has
not been linked, or was last linked unsucessfully” rather than “if program has
not been successfully linked” (Bug 8640, tracking similar changes to other
commands previously).

• Merge similar descriptions of uniform variable component limits for each
separate shader stage into section 7.6.

• Fix nonexistent token ATOMIC_COUNTER_ARRAY_STRIDE to UNIFORM_-

ARRAY_STRIDE in section 7.7.1 (Bug 9346).

• Removed redundant definition of GetSubroutineUniformLocation from
the beginning of section 7.9.

• Added INVALID_VALUE error in section 7.10 if Uniform1i{v} is used to set
a sampler to a value less than zero or greater than or equal to the value of
MAX_COMBINED_TEXTURE_IMAGE_UNITS, matching the similar error for
setting image uniforms.

• Add VERTEX_ATTRIB_ARRAY_LONG state in section 7.13 and table 23.3
(Bug 8272).

OpenGL 4.5 (Core Profile) - October 24, 2016

F.5. CHANGE LOG FOR RELEASED SPECIFICATIONS 668

• Add all specific compressed texture formats to the required format list in
section 8.5.1. Include EAC and ETC2 format in specific format language in
table 8.14 and sections 8.6, 8.7, and 8.24 (Bug 9156).

• Add additional INVALID_OPERATION errors depending on odd combina-
tions of read buffer and FBO state for CopyTexImage* and CopyTex-
SubImage* in section 8.6 (Bug 8559).

• Disallow CopyTexImage* between sRGB and linear formats in section 8.6,
and define BlitFramebuffer to linearize sRGB data from the read buffer in
section 18.3.1 (Bug 8560).

• Allow multisample texture targets as arguments to TexParameter* in sec-
tion 8.10, with additional error conditions when attempting to set a disal-
lowed min filter or base level parameter value.

• Replace listings of all six cube map face selection targets with references to
tables 8.19 or 9.3, in several places throughout the spec.

• Fix error generated for invalid texture handle passed to TextureView in sec-
tion 8.18 (Bug 9337).

• Tweaked descriptions of transferring vertices in sections 10.3.4 and 10.4 to
more closely match OpenGL ES 3.0 (Bug 8686).

• Restore missing description of DrawElementsInstanced in section 10.4.

• Renamed the formal parameter primcount to instancecount for DrawAr-
raysInstancedBaseInstance, DrawArraysInstanced, DrawElementsIn-
stancedBaseInstance, DrawElementsInstanced, DrawElementsIn-
stancedBaseVertex, and DrawElementsInstancedBaseVertexBase-
Instance (section 10.4), and for DrawTransformFeedbackInstanced
and DrawTransformFeedbackStreamInstanced (section 13.2.3). Used
equivalent terminology in the pseudocode descriptions of DrawEle-
mentsIndirect and DrawArraysIndirect (section 10.4). Renamed
the formal parameter primcount to drawcount for MultiDrawArrays,
MultiDrawArraysIndirect, MultiDrawElements, MultiDrawEle-
mentsIndirect, MultiDrawElementsBaseVertex (section 10.4) (Bug
9230).

• Moved description of GetVertexAttrib* into section 10.5 (Bug 9115).

OpenGL 4.5 (Core Profile) - October 24, 2016

F.5. CHANGE LOG FOR RELEASED SPECIFICATIONS 669

• Specify in section 11.1.1 that special built-in inputs and outputs such as gl_-
VertexID should be enumerated in the PROGRAM_INPUT and PROGRAM_-

OUTPUT interfaces, as well as the legacy function GetActiveAttrib. Add
spec language counting the built-ins gl_VertexID and gl_InstanceID

against the active attribute limit (Bug 9201).

• Swap order of tessellation levels in describing isoline tessellation in sec-
tion 11.2.2.3, to match actual hardware (Bug 9195).

• Remove language about deferred deletion for DeleteTransformFeedbacks
in section 13.2.1 (Bug 8948).

• Add transform feedback-related error for ProgramBinary, matching exist-
ing error for LinkProgram in section 13.2.2 when program is the name of a
program being used by one or more transform feedback objects (Bug 7928).

• Add description of MAX_COMPUTE_SHARED_MEMORY_SIZE in section 19.1,
lifted from GLSL spec (Bug 9069).

• Add description of the type of the debug callback function, including
platform-dependent calling conventions, in section 20.2.

• Remove inaccurate description of GLSL version string sort order in sec-
tion 22.2. Instead, ensure that the most recent GLSL version corresponding
to the context profile is returned first, and other entries have no defined or-
dering (Bug 7811).

• Change Zn terminology used in state tables to describe enumerated state
with n possible values to E throughout, since maintaining the n was always
tricky as features were added and the possible values are fully described in
the spec body. This affects hundreds of state table entries as well as adding
a description of E in table 23.1.

• Move IMPLEMENTATION_COLOR_READ_FORMAT and
IMPLEMENTATION_COLOR_READ_TYPE from table 23.73 to table 23.53
since they are not framebuffer-dependent values, unlike OpenGL ES (Bug
8561).

• Increased minimum values for MAX_VERTEX_UNIFORM_BLOCKS, MAX_-
TESS_CONTROL_UNIFORM_BLOCKS, MAX_TESS_EVALUATION_-

UNIFORM_BLOCKS, MAX_GEOMETRY_UNIFORM_BLOCKS, MAX_-

FRAGMENT_UNIFORM_BLOCKS, and MAX_COMPUTE_UNIFORM_BLOCKS to
14 in tables 23.57, 23.58, 23.59, 23.60, 23.61, and 23.62 respectively, and
of MAX_COMBINED_UNIFORM_BLOCKS to 70 in table 23.63 (Bug 8891).

OpenGL 4.5 (Core Profile) - October 24, 2016

F.6. CREDITS 670

• Added UNPACK_LSB_FIRST and PACK_LSB_FIRST state to the deprecated
features list in section F.3 (Bug 7865).

F.6 Credits

OpenGL 4.3 is the result of the contributions of many people and companies. Mem-
bers of the Khronos OpenGL ARB Working Group during the development of
OpenGL 4.3, including the company that they represented at the time of their con-
tributions, follow.

Some major contributions made by individuals are listed together with their
name, including specific functionality developed in the form of new ARB exten-
sions together with OpenGL 4.3. In addition, many people participated in develop-
ing earlier vendor and EXT extensions on which the OpenGL 4.3 functionality is
based in part; those individuals are listed in the respective extension specifications
in the OpenGL Registry.

Aaron Plattner, NVIDIA
Acorn Pooley, NVIDIA
Ahmet Oguz Akyuz, AMD
Alex Eddy, Apple Inc
Anton Staaf, Google
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Benj Lipchak, Apple
Benjamin Morris, NVIDIA
Bill Licea-Kane (Chair, ARB OpenGL Shading Language TSG)
Brent Wilson, NVIDIA
Bruce Merry, Independent
Chris Marrin, Apple
Chris Niederauer, Apple Inc
Christophe Riccio, AMD (ARB_debug_group, ARB_debug_label, ARB_-

shader_image_size, ARB_texture_query_levels, KHR_debug_-

output)
Dan Omachi, Apple Inc
Daniel Koch, TransGaming Inc. (ARB_internalformat_query2)
Daniel Rakos, AMD
Eric Werness, NVIDIA
Georg Kolling, Imagination Technologies
Graham Sellers, AMD (ARB_multi_draw_indirect, ARB_clear_-

buffer_object, ARB_compute_shader, ARB_copy_image, ARB_-

texture_buffer_range, ARB_texture_storage_multisample)

OpenGL 4.5 (Core Profile) - October 24, 2016

F.6. CREDITS 671

Greg Roth, NVIDIA
Henri Verbeet, CodeWeavers
Jaakko Konttinen, AMD (ARB_debug_output)
James Jones, NVIDIA
Jan-Harald Fredriksen, ARM
Jason Green, TransGaming
Jean-Franois Roy, Apple
Jeff Bolz, NVIDIA (ARB_invalidate_subdata, ARB_texture_view,

ARB_vertex_attrib_binding)
Joe Kain, NVIDIA
John Kessenich, Independent (OpenGL Shading Language Specification Editor,

ARB_arrays_of_arrays)
Jon Leech, Independent (OpenGL API Specification Editor)
Kenneth Russell, Google (ARB_robustness_isolation)
Kent Miller, Apple
Lingjun (Frank) Chen, Qualcomm
Mark Callow, HI Corporation
Mark Kilgard, NVIDIA (ARB_robustness)
Mark Young, AMD
Mathias Schott, NVIDIA
Matt Collins, Apple
Maurice Ribble, Qualcomm
Michael Gold, NVIDIA (ARB_copy_image)
Michael Morrison, NVIDIA
Pat Brown, NVIDIA (ARB_framebuffer_no_attachments, ARB_-

program_interface_query, ARB_shader_storage_buffer_-

object)
Pierre Boudier, AMD
Piers Daniell, NVIDIA (ARB_ES3_compatibility, ARB_debug_-

output2, ARB_explicit_uniform_location, ARB_fragment_-

layer_viewport, ARB_robust_buffer_access_behavior, ARB_-

stencil_texturing)
Richard Schreyer, Apple
Seth Sowerby, Apple
Thomas Volk, NVIDIA
Tim Johansson, Opera
Vladimir Vukicevic, Mozilla
Yaki Tebeka, Graphic Remedy
Yuan Wang, IMG

OpenGL 4.5 (Core Profile) - October 24, 2016

F.7. ACKNOWLEDGEMENTS 672

F.7 Acknowledgements

The ARB gratefully acknowledges administrative support by the members of Gold
Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Fredericks,
and Michelle Clark, and technical support from James Riordon, webmaster of
Khronos.org and OpenGL.org.

The “pipeline metro” cover image was created by Dominic Agoro-Ombaka of
Gold Standard Group.

OpenGL 4.5 (Core Profile) - October 24, 2016

Appendix G

Version 4.4

OpenGL version 4.4, released on July 22, 2013, is the sixteenth revision since the
original version 1.0.

Separate versions of the OpenGL 4.4 Specification exist for the core profile
and compatibility profile described in appendix D, respectively subtitled the “Core
Profile” and the “Compatibility Profile”. This document describes the Core Profile.
An OpenGL 4.4 implementation must be able to create a context supporting the
core profile, and may also be able to create a context supporting the compatibility
profile.

Material specific to the compatibility profile specification is marked in a dis-
tinct color to clearly call out differences between the two profiles.

The OpenGL 4.4 compatibility and core profiles are upward compatible with
the OpenGL 4.3 compatibility and core profiles, respectively (see appendix F).

Following are brief descriptions of changes and additions to OpenGL 4.4. De-
scriptions of changes and additions in versions of OpenGL prior to 4.2 are omitted
in this Specification, but may be found in the OpenGL 3.0 Specification (for fea-
tures in versions 1.0 - 3.0, inclusive) and the OpenGL 4.2 Specification (for features
in versions 3.1 - 4.1, inclusive). These Specifications are available in the OpenGL
Registry.

G.1 New Features

New features in OpenGL 4.4, including the extension or extensions if any on which
they were based, include:

• ARB_buffer_storage

• ARB_clear_texture

673

G.2. DEPRECATION MODEL 674

• ARB_enhanced_layouts

• ARB_multi_bind

• ARB_query_buffer_object

• ARB_texture_mirror_clamp_to_edge

• ARB_texture_stencil8

• ARB_vertex_type_10f_11f_11f_rev

• New implementation-dependent state MAX_VERTEX_ATTRIB_STRIDE,
which constrains the maximum value of stride parameters to vertex array
pointer-setting commands.

G.2 Deprecation Model

No new features are deprecated, and no previously deprecated features are re-
introduced by the OpenGL 4.4 core profile.

Features deprecated by OpenGL 4.3 remain deprecated, but have not yet been
removed.

G.3 Change Log for Released Specifications

Changes in the released Specification update of March 19, 2014:

• Fix typos and apply minor non-semantic language changes in several places
to more closely match the OpenGL ES 3.1 Specification.

• Tweak Enable / Disable language for different targets throughout the spec
for more consistency.

• Modify language in section 5.1.2 so that binding-related state is restored to
default values after automatic unbinds (Bugs 10076, 11630).

• Add samplers to the list of object types in section 5.1.3 for which deletion is
delayed until the object is no longer in use, and remove transform feedback
objects since deletion is defined to generate an error while they are active
(Bugs 11374, 10079).

• Add atomic counter binding, offset and stride assignments to the values reset
by ProgramBinary in section 7.5 (bugfix from ES spec).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 675

• Move Uniform* errors to section 7.6.1 where the Uniform* commands are
defined, from sections 7.10 and 7.11

• Correct typo MAX_ATOMIC_COUNTER_BUFFERS to MAX_COMBINED_-

ATOMIC_COUNTER_BUFFERS in section 7.7, and specify new program in-
terface query for atomic counter buffer data size query in section 7.7.2

• Restrict error for UniformSubroutinesuiv in section 7.9 to the case where
no program stage is active for the shader stage identified by shadertype (Bug
11306).

• Update DeleteSamplers language in section 8.2 to allow for the case where
a sampler is bound to multiple texture units (bugfix from ES spec).

• Fix conversion equation reference for SamplerParameteriv in section 8.2.
Reorganize descriptions of exceptions to default data conversion rules here
and in section 8.10 for TexParameter* (Bug 11185).

• Add error in section 8.2 for calling scalar SamplerParameter{if} en-
try points with non-scalar param tokens, matching TexParameter* (Bug
11186).

• Add error for TexImage3D in section 8.5 when specifying invalid border
or target values with specific compressed texture formats, matching Com-
pressedTexImage3D (Bug 11239).

• Update table 8.12 in section 8.5.2 to make all remaining sized color formats
texture-renderable that were not already, since the component size promotion
rules mean there are already required texture formats with the same format
and as least as many bits/component (Bug 11097).

We discussed but did not also make these formats required renderbuffer for-
mats, because doing this might imply a format change when a format sup-
ported at exactly the required component size for textures is only supported
at a larger component size for renderbuffers (e.g. create texture at RGB4,
use as a texture, then use as a renderbuffer and find it has to be converted to
RGB565).

• Change maximum allowed texture size for TexImage3DMultisample in
section 8.8 to the value of MAX_ARRAY_TEXTURE_LAYERS (Bug 11135).

• Remove explicit OUT_OF_MEMORY errors from TexImage*Multisample in
section 8.8 and RenderbufferStorageMultisample in section 9.2.4. (public
Bug 952).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 676

• Add subsection headings and Errors sections for GetTexParameter* and
GetTexLevelParameter* in section 8.11.

• Change formal parameter names value and data to pname and params,
following the headers and man pages, for GetTexParameter* and Get-
TexLevelParameter* (see section 8.11). (Bug 11523).

• Added per-target maximum level-of-detail values to definition of Get-
TexLevelParameter* in section 8.11.3 (Bug 11136)

• Add error for GetTexLevelParameter* in section 8.11 when querying
multisample-specific parameters for non-multisample textures (this was im-
ported from the OpenGL ES spec and it’s not certain it should be here).

• Define behavior of GetTexLevelParameter* in section 8.11.3 for queries of
multisample state from non-multisampled textures (Bug 11814).

• Change rounding mode for layer numbers of array textures in section 8.14.2
to prefer round-to-nearest-even, while still allowing old spec behavior (Bug
11399).

• Add cube map array texel arrays to the enumerated state in section 8.22, and
remove redundant description of the bound buffer texture object name.

• Add description of DEPTH_STENCIL_TEXTURE_MODE in section 8.22, and
correct its type in table 23.15 (Bug 11770).

• Add section 8.26.1 summarizing image unit binding state (Bug 10076).

• Restructure error condition for FramebufferParameteri in section 9.2.1 to
avoid ambiguity (Bug 11831).

• Define GetFramebufferAttachmentParameteriv in section 9.2.3 to return
NONE when querying the object type of depth or stencil attachments, the
default framebuffer is bound, and the corresponding buffer of the default
framebuffer has zero bits (Bug 10908).

• Clean up language describing the GetFramebufferAttachmentParam-
eteriv query for FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER in sec-
tion 9.2.3 (Bug 11102).

• Remove bogus error condition for FramebufferRenderbuffer, and add er-
rors for invalid layer depending on texture type in section 9.2.7 (bugfix from
ES spec).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 677

• Set the vertex attribute array pointer state explicitly in the pseu-
docode for VertexAttrib*Pointer in section 10.3.2, and define queries
of VERTEX_ATTRIB_ARRAY_BUFFER_BINDING and VERTEX_ATTRIB_-

ARRAY_DIVISOR to look up the corresponding state via the vertex attribute
binding in section 10.5 (Bug 11789).

• Rewrite section 10.3.11 to merge language for indirect drawing and indirect
compute dispatch commands (Bug 11601).

• Fix texel fetch limit on layer for array textures in section 11.1.3.2 (Bug
11770).

• Fix typo in section 11.1.3.7 (Bug 11553).

• Relax restrictions on required shader stages in sections 11.2 and 11.3 so that
separable program objects containing tessellation and geometry shaders are
not also required to contain a vertex shader (Bug 11508).

• Modify tessellation primitive generation language in section 11.2.2 to dis-
card patches only when relevant outer tessellation levels are NaNs, but not
for non-relevant levels (Bug 11484).

• Add missing error for invalid pname to GetMultisamplefv in section 14.3.1
(Bug 11134).

• Change error for invalid mode* parameters to BlendEquation* in sec-
tion 17.3.6.1 to INVALID_ENUM (bug 11354).

• Fix error for invalid blending function arguments in section 17.3.6.2 to
INVALID_ENUM (Bug 11770).

• Add errors for ClearBuffer* in section 17.4.3.1 when the wrong type of
buffer is passed to different forms of the command (Bug 11139).

• Fix table reference in description of ClearBuffer* in section 17.4.3.1
from 17.5 to 17.4 so it’s clear that DRAW_BUFFERi can contain any legal
value and the corresponding buffers will be cleared (Bug 11463).

• Modify caption for table 17.4 in section 17.4.1 so it’s clear table entries refer
only to selected buffers for the draw buffer, and remove redundant descrip-
tion of initial draw buffers state (Bugs 11462, 11463).

• Moved language allowing undefined behavior for overlapping copies to the
beginning of section 18.3, extended it to the case of overlapping copies via

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 678

texture views, applied it to all pixel copy operations in the section, and re-
stricted the effects to undefined pixel values rather than general undefined
behavior (Bug 11355).

• Replace the “Get Value” of LABEL with - for debug labels of objects in
tables 23.3, 23.6, 23.15, 23.18, 23.24, 23.27, 23.30, 23.31, 23.32, 23.44,
23.48, 23.50, and 23.74 (Bug 11131).

• Rewrote descriptions of the vertex binding-specific state in table 23.4,
added missing VERTEX_BINDING_DIVISOR and VERTEX_BINDING_-

BUFFER state, and marked all such state as part of the vertex-array attribute
group (in the compatibility profile only) (Bug 10736).

• Add missing state for framebuffers with no attachment to tables 23.24
and 23.69 (Bug 11187).

• Add missing COMPUTE_SHADER state to program pipeline objects in ta-
ble 23.31 (Bug 11539).

Changes in the released Specification update of October 18, 2013:

• Add footnote to section 2.3.1 noting that OUT_OF_MEMORY errors are not
explicitly shown in command-specific Error sections because all GL com-
mands can potentially generate them. Remove explicit OUT_OF_MEMORY er-
rors from BufferStorage, BufferData, and MapBufferRange in section 6,
and the TexStorage* commands in section 8.19 (public Bug 952).

• Add new section 2.4 defining the term rendering commands, and modify
language using this term in sections 7.10, 9.4.4, 10.3.9, 10.9, and 11.1.3.11
to use the new definition, sometimes narrowed to drawing commands, or to
rendering commands which invoke shaders (Bug 10403).

• Add footnote to section 2.6.9 specifying that undefined behavior results
when mixing non-shared core API framebuffer objects and shared EXT ex-
tension framebuffer objects (Bug 10738).

• Change description of BufferStorage MAP_COHERENT_BIT in section 6.2
to say that changes are “visible to any subsequently issued GL commands”
rather than “immediately visible” (Public Bug 935).

• Remove error for BufferStorage in section 6.2 which did not allow flags to
contain MAP_WRITE_BIT while not also containing DYNAMIC_STORAGE_-

BIT (Bug 10561, public Bug 925).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 679

• Rewrite section 6.3.2 describing the effects of mapped buffers on other com-
mands and possible resulting errors or undefined behavior (Bug 10684).

• Update GetProgramResourceiv in section 7.3.1 to return one for ARRAY_-
SIZE queries of non-arrays (for compatibility with GetActiveUniform) and
zero for explicitly unsized arrays, and describe circumstances in which
queries of ARRAY_SIZE and TOP_LEVEL_ARRAY_SIZE for unknown array
sizes may return zero (Bugs 10641, 10647).

• Allow ActiveShaderProgram and UseProgramStages to accept zero pro-
gram values in section 7.4, to reset the corresponding program pipeline ob-
ject state to its initial value (Public Bug 871).

• Add additional const qualifier to parameter type of uniformNames for
GetUniformIndices in section 7.6 (Bug 10703).

• Fix typo from SHADER_STORAGE_BLOCK to SHADER_STORAGE_BUFFER

for ShaderStorageBlockBinding in section 7.8 (Bug 10795).

• Fix list of supported texture targets for stencil, depth, and depth+stencil for-
mats in section 8.5 to include multisample targets (Bug 10558).

• Move descriptions of required texture and renderbuffer/texture formats into
tables 8.12 and 8.13, and update language in sections 8.5.1, 9.2.5, 9.4,
and 9.4.3 to refer to those tables and to describe required framebuffer for-
mats as color-renderable. Also, merged the no-longer-existent table 9.1 of
renderbuffer-only stencil formats into table 8.13, and modified the definition
of stencil-renderable in section 9.4 accordingly (Bug 9338).

• Tag type of stencil fields in table 8.13 as ui (Bug 10748).

• Add error for TexImage*DMultisample in section 8.8 when internalformat
is not a valid format (Bug 11018).

• Change type of internalformat argument to TexImage2DMultisample and
TexImage3DMultisample in section 8.8 to enum, since the legacy internal
formats are never accepted by these commands (Bug 10496).

• Note that during computation of scale factors in section 8.14.1, implementa-
tions have chosen to perform clamping of intermediate terms in the sum of
level-of-detail biases differently (Bug 9779).

• Specify how border color values are clamped for compressed texture image
formats in table 8.14 and section 8.14.2 (Bug 9476).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 680

• Specify behavior of GetFramebufferAttachmentParameteriv in sec-
tion 9.2.3 when querying texture attachments which have not yet specified a
texture image or which do not yet have an allocated image store, and fix the
error generated when querying a combined depth+stencil attachment to ap-
ply to the component type query, rather than the color encoding query (Bugs
9170, 10357).

• Clean up errors for FramebufferTexture*D in section 9.2.8 (Bug 10674).

• Merge rows of table 10.2 for VertexAttrib*Format and VertexAt-
trib*Pointer commands which are otherwise identical (Bug 10692).

• Rewrite description of BindVertexBuffer in section 10.3.2 to clarify that it
may create buffers in the same fashion as BindBuffer (Bug 10693).

• Explicitly specify in section 10.3.2 that the VertexAttrib*Pointer com-
mands may generate any of the errors defined by VertexAttrib*Format and
VertexAttribBinding, since the pseudocode invokes those commands (Bug
10631). This was implicit in the previous spec language and has simply been
called out more explicitly for clarity without replicating the errors.

• Add PRIMITIVE_RESTART_FOR_PATCHES_SUPPORTED to section 10.3.6
and table 23.53 to allow querying primitive restart support for patch primi-
tives (Bug 10364). Note that some implementations already could not sup-
port this, but had no way to indicate this.

• Drop bogus references to “disabled attributes” in section 10.3.7 (Bug 10695).

• Generate INVALID_VALUE errors consistently for misaligned indirect pa-
rameters to DrawArraysIndirect and DrawElementsIndirect in sec-
tion 10.4, and DispatchComputeIndirect in section 19 (Bug 10385).

• Clarify in sections 11.1.3.5 and 15.2.1 that swizzling during texture lookups
of textures with depth component data is always performed, whether depth
comparision is disabled or enabled (Bug 10702, Public Bug 749).

• Restrict description in section 11.1.3.11 of checks required to be performed
by ValidateProgram to only the errors described in that section (Bug
10650).

• Remove a sentence fragment accidentally left in the description of Vali-
dateProgramPipeline in section 11.1.3.11.

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 681

• Specify in section 14.3.1 that the value of SAMPLE_BUFFERS is framebuffer-
dependent, like SAMPLES (Bug 10688).

• Remove redundant language describing depth texture lookups in sec-
tion 15.2.1 and replace with a link to section 11.1.3.5, which also has some
additional bugfixes that were not present here (Bug 10997).

• Move a paragraph in section 15.2.2 to near the end of the section for better
flow (Bug 10687).

• Restrict language disallowing writing to multiple “classes” of fragment
shader outputs in section 15.2.3 to compatibility profile only (Bug 10126).

• Improve language describing undefined behavior when different color values
are written to the same multiply-attached color buffer, and move it from
section 17.3.9 to section 17.4.1 (Bug 10983).

• Specify in section 18.3.1 that linearization of sRGB formats during
reads performed by blending and blitting operations is controlled by the
FRAMEBUFFER_SRGB enable (Bug 8560).

• Change the type of FRAMEBUFFER_ATTACHMENT_LAYERED in table 23.25
from n×B to B.

• Restore missing TEXTURE_BUFFER_BINDING query in table 23.74 for the
buffer object bound to the corresponding bind point (Bug 4353, public Bug
844).

Changes in the released Specification of July 22, 2013:

• Added new features as described in section G.1.

• Changed references throughout the spec to the value of SAMPLE_BUFFERS
being “greater than zero” to “one”, since it can only take on values of zero
and one.

• Added introductory subsection 1.4 describing how to file bug reports against
the GL and GLSL Specifications in the Khronos public Bugzilla (public bug
379).

• Added a note that querying QUERY_RESULT_AVAILABLE for a query object
will eventually succed in section 4.2.1 (Bug 9766).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 682

• Add views of an object’s data store to the list of conditions in sections 5
and 5.1.3 under which an object is considered in use for purposes of deter-
mining object lifetimes (Bug 10511).

• Minor clarifications in sections 5.3.1, 8.21, 7.6.3, 7.7.2, 7.8, 13.1, and 15.2.1
(Bug 10346).

• Added INVALID_VALUE error for BindBufferRange in section 6.1.1 if off-
set is negative (Bug 9873).

• Add BufferSubData error for immutable storage without dynamic draw flag
in section 6.2 (Bug 10326).

• Modified prototypes for vector forms of the commands GetTexParame-
ter* and GetTexLevelParameter* (section 8.11.1), and VertexAttrib4Nub
(section 10.2.1), so that they are passed pointers rather than scalars as sug-
gested by the ’T’ notation (public bug 273).

• Clarify that no specific compressed one-dimensional texture formats are sup-
ported by the API, but may be by extensions, in section 8.7 (Bug 10388).

• Restore errors for setting invalid rectangle texture parameters in section 8.10
(Bug 10208).

• Move language constraining levelbase and levelmax for immutable textures
from section 8.10 to section 8.14.3 (Bug 9342).

• Added alternate mipmap level selection computation in equation 8.14 (Bug
10119).

• Add forward references to pixel packing and PACK_* pixel storage modes
from descriptions of texture queries and PixelStore in sections 8.11, 8.4.1,
and 18.4 (Bug 10380).

• Describe wrap mode application for MIRROR_CLAMP_TO_EDGE consistently
with other modes in table 8.20, and use mod math operator instead of
fmod() function since the inputs are described in non-scaled integer co-
ordinates (Bug 10432).

• Use actual VIEW_CLASS_* compatibility class names in table 8.22 instead
of abstract class names, and refer to these tokens from the description of
VIEW_COMPATIBILITY_CLASS in section 22.3.2 instead of enumerating
them again (Bug 10518).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 683

• Change completeness condition for stencil index textures and stencil tex-
turing from depth+stencil textures to match other integer textures in sec-
tion 8.17 (Bug 10372).

• Add number of samples to proxy texture state in section 8.22 and specify
that its value is not checked for multisample textures (Bug 10171).

• Add error for querying component type of a combined depth+stencil buffer
with GetFramebufferAttachmentParameteriv in section 9.2.3, and note
that the color encoding for non-color buffers is returned as LINEAR (Bug
9170).

• Add conditions in section 9.4.1 for texture image attachments, making
framebuffer attachment completeness dependent on valid mipmap level and
mipmap completness of the image and including the case where texture im-
age attachment is part of a cubemap texture, which must be mipmap cube
complete (Bug 9689).

• Remove redundant paragraph from section 10.2 (Bug 10311).

• Limit stride parameters to BindVertexBuffer* and the generic ver-
tex array specification commands in section 10.3 to the value of the
new implementation-dependent state MAX_VERTEX_ATTRIB_STRIDE in ta-
ble 23.55 (Bug 10229).

• Move non-local error descriptions for *Indirect* rendering and dispatch
commands to live with the commands themselves in sections 10.3.11, 10.4,
and 19 (Bug 10385).

• Only allow generated buffer object names in the core profile for BindVer-
texBuffer in section 10.3.2 (Bug 10486).

• Added BlitFramebuffer to commands affected by conditional rendering in
section 10.9 (Bug 9562).

• Restore error for BindAttribLocation attribute variable names starting with
the reserved "gl_" prefix to core profile in section 11.1.1 (Bug 10203).

• Clarify that GetTransformFeedbackVarying may be used to query any
transform feedback varying variable in section 11.1.2.1 (Bug 10472).

• Add a non-local error in section 13.2.2 for GL commands that attempt to read
or write to an active and unpaused transform feedback buffer (Bug 10193).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 684

• Changed type of GetPolygonStipple argument to ubyte in section 14.6.2
to match shipping header files and be typesafe (Bug 10110).

• Clean up description of GetFragData* in section 15.2.3 (Bug 10127).

• Made default value for ALPHA_TEST_REF floating-point in section 17.3.2,
and changed query in table 23.20 to GetFloatv (Bug 10128).

• Strike redundant language describing default/FBO bindings under Draw-
Buffer (see section 17.4.1) and ReadBuffer (section 18.2.1). Bring lan-
guage for the two sections in sync, and restore errors for ReadBuffer corre-
sponding to DrawBuffer (Bug 10172).

• Fix error specified for ColorMaski in section 17.4.2 to specify the correct
formal parameter name, buf, and be restricted to that command (public bug
256).

• Minimize use of generic ClearBuffer* terminology, since Clear-
Buffer*Data behave differently than the similarly named commands in sec-
tion 17.4.3 with respect to conditional rendering and rasterizer discard (Bug
10312).

• Clarify that ClearBuffer* can clear any valid draw buffers in sec-
tion 17.4.3.1, and that the commands have no effect when the selected draw
buffer has the value NONE (Bug 10537).

• Relax BlitFramebuffer in section 18.3.1 so that format conversion can take
place during multisample blits, since drivers already allow this and some
apps depend on it. Simplified references to SAMPLE_BUFFERS by using the
term “multisampled”. Cleaned up the Errors section and moved errors from
spec body language into it (Bugs 9692, 10219).

• Add const qualifier to userParam argument of DebugMessageCallback
and DEBUGPROC in section 20.2. Specify that unrecognized message IDs
in DebugMessageControl ids array are ignored in section 20.4. Specify
in section 20.9 that GetDebugMessageLog messageLog parameter must be
NULL when bufSize is less than zero, to allow an early out. (Bug 10083).

• Reorganize section 22.3 to group internal format query pnames by the type
of query and sort them, and add CLEAR_TEXTURE pname to match extension
spec.

• Add missing PRIMITIVE_RESTART_FIXED_INDEX to table 23.5 (Bug
10250).

OpenGL 4.5 (Core Profile) - October 24, 2016

G.4. CREDITS 685

• Clean up state table entries to indicate enumerated types in tables 23.14,
23.18, 23.19, 23.25, and 23.27 (Bug 10251).

• Fixed types of CLIP_DISTANCEi and DEPTH_RANGE in table 23.7 (Bugs
10106, 10107).

• Add missing UNIFORM_BLOCK_NAME_LENGTH state to table 23.36 (Bug
8136).

• Change minimum number of compressed texture formats to 18 in ta-
ble 23.55, comprising the required specific formats in table 8.14 (Bug 7235).

G.4 Credits

OpenGL 4.4 is the result of the contributions of many people and companies. Mem-
bers of the Khronos OpenGL ARB Working Group during the development of
OpenGL 4.4, including the company that they represented at the time of their con-
tributions, follow.

Some major contributions made by individuals are listed together with their
name, including specific functionality developed in the form of new ARB exten-
sions together with OpenGL 4.4. In addition, many people participated in develop-
ing earlier vendor and EXT extensions on which the OpenGL 4.4 functionality is
based in part; those individuals are listed in the respective extension specifications
in the OpenGL Registry.

Alon Or-bach, Samsung
Aras Pranckevicius, Unity3D
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Benj Lipchak, Apple
Benji Bowman, Imagination Technologies
Bill Licea-Kane, AMD
Brent Insko, Intel
Bruce Merry, Independent
Christoph Kubisch, NVIDIA
Christophe Riccio, AMD
Daniel Koch, NVIDIA (GL_ARB_clear_texture, GL_ARB_texture_-

mirror_clamp_to_edge, GL_ARB_vertex_type_10f_11f_11f_rev)
Daniel Rakos, AMD (GL_ARB_query_buffer_object)
Graham Connor, Imagination Technologies
Graham Sellers, AMD (GL_ARB_buffer_storage)
Ian Romanick, Intel

OpenGL 4.5 (Core Profile) - October 24, 2016

G.5. ACKNOWLEDGEMENTS 686

James Helferty, NVIDIA
James Jones, NVIDIA
Jeff Bolz, NVIDIA (GL_ARB_texture_stencil8)
John Kessenich, Independent (OpenGL Shading Language Specification Editor,

GL_ARB_enhanced_layouts)
Jon Leech, Independent (OpenGL API Specification Editor)
Jonathan Putsman, Imagination Technologies
Karol Gasinski, Intel
Larry Seiler, Intel
Lingjun (Frank) Chen, Qualcomm
Mark Callow, Artspark
Nick Penwarden, Epic Games
Pat Brown, NVIDIA (GL_ARB_multi_bind)
Pierre Boudier, AMD
Piers Daniell, NVIDIA
Rob Barris, NVIDIA
Robert Simpson, Qualcomm
Slawomir Grajewski, Intel
Tim Foley, Intel
Tom Olson, ARM

G.5 Acknowledgements

The ARB gratefully acknowledges administrative support by the members of Gold
Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Fredericks,
and Michelle Clark, and technical support from James Riordon, webmaster of
Khronos.org and OpenGL.org.

The “pipeline metro” cover image was created by Dominic Agoro-Ombaka of
Gold Standard Group.

OpenGL 4.5 (Core Profile) - October 24, 2016

Appendix H

Version 4.5

OpenGL version 4.5, released on August 11, 2014, is the seventeenth revision since
the original version 1.0.

Separate versions of the OpenGL 4.5 Specification exist for the core profile
and compatibility profile described in appendix D, respectively subtitled the “Core
Profile” and the “Compatibility Profile”. This document describes the Core Profile.
An OpenGL 4.5 implementation must be able to create a context supporting the
core profile, and may also be able to create a context supporting the compatibility
profile.

Material specific to the compatibility profile specification is marked in a dis-
tinct color to clearly call out differences between the two profiles.

The OpenGL 4.5 compatibility and core profiles are upward compatible with
the OpenGL 4.4 compatibility and core profiles, respectively (see appendix G).

Following are brief descriptions of changes and additions to OpenGL 4.5. De-
scriptions of changes and additions in versions of OpenGL prior to 4.2 are omitted
in this Specification, but may be found in the OpenGL 3.0 Specification (for fea-
tures in versions 1.0 - 3.0, inclusive) and the OpenGL 4.2 Specification (for features
in versions 3.1 - 4.1, inclusive). These Specifications are available in the OpenGL
Registry.

H.1 New Features

New features in OpenGL 4.5, including the extension or extensions if any on which
they were based, include:

• GL_ARB_clip_control

• GL_ARB_cull_distance

687

H.2. DEPRECATION MODEL 688

• GL_ARB_ES3_1_compatibility

• GL_ARB_conditional_render_inverted

• GL_KHR_context_flush_control

• GL_ARB_derivative_control (OpenGL Shading Language Only)

• GL_ARB_direct_state_access

• GL_ARB_get_texture_sub_image

• GL_KHR_robustness

• GL_ARB_shader_texture_image_samples (OpenGL Shading Lan-
guage Only)

• GL_ARB_texture_barrier

H.2 Deprecation Model

No new features are deprecated, and no previously deprecated features are re-
introduced by the OpenGL 4.5 core profile.

Features deprecated by OpenGL 4.4 remain deprecated, but have not yet been
removed.

H.3 Change Log for Released Specifications

Changes in the released Specification update of October 24, 2016

• Add language to GetProgramResourceiv in section 7.3.1.1 specifying the
returned block index when the interface block is declared as an array of block
instances, and clarify the definition of active uniform blocks in section 7.6
(Bug 11938).

• Remove required clamping of texture border colors in section 8.14.2 and
make out-of-range values undefined, since not all hardware supports this
(Bug 14442).

• Add missing error for VertexAttrib*Pointer in section 10.3.2 of the core
profile when no vertex array object is bound (Bug 10694).

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 689

• Add validation errors in section 11.1.3.11 for multiple program objects ex-
ceeding any of the COMBINED resource limits, not just shader storage blocks
(Bug 8834).

• Attempt to rotate landscape-format state table pages when being displayed -
this is dependent on the PDF reader (Bug 11976).

Changes in the released Specification update of July 7, 2016

• Specify that queries returning unsigned integers will clamp negative state
values in section 2.2.1 (Bug 14444).

• Clean up error language around reuse of query objects in section 4.2 to make
clear that occlusion query objects created with targets ANY_SAMPLES_-

PASSED or ANY_SAMPLES_PASSED_CONSERVATIVE may be specified and
reused with either of those query targets (Bug 13342).

• Use consistent phrasing of “has/has been linked successfully” to describe
the link status of programs where relevant in the descriptions of conditions
for UseProgram in section 7.3, GetProgramResourceLocation* in sec-
tion 7.3.1.1, UseProgramStages and ActiveShaderProgram in section 7.4,
GetProgramBinary in section 7.5, ProgramUniform* in section 7.6.1,
GetActiveAttrib in section 11.1.1, and GetFragDataLocation and Get-
FragDataIndex in section 15.2.3.

This replaces a variety of previous usages including the rather wordy “has
not been linked, or was linked unsuccessfully” (Bug 8640).

• Clarify shader interface matching rules in section 7.4.1 so that there is no
match in the case where name, type and qualification match, but one variable
has a location qualifier and the other does not (Bug 13613).

• Fixed name of formal parameter of SamplerParameter*v in section 8.2 to
params (Bug 14158).

• Relax error that prevented CompressedTex*SubImage3D from accepting
TEXTURE_CUBE_MAP and TEXTURE_CUBE_MAP_ARRAY in section 8.7 (Bug
14366).

• Simplify error language for TexParameter* and TextureParameter* in
section 8.10 (Bug 15457).

• Fix name of formal parameter target to GetnTexImage in section 8.11.4.

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 690

• Specify that the COLOR_ATTACHMENTm tokens are defined for m in
the range [0, 31] in section 9.2, and specify that INVALID_OPERATION
errors are generated for valid COLOR_ATTACHMENTm tokens where m
is outside the range of valid color attachments for the commands
Get*FramebufferAttachmentParameteriv in section 9.2.3, *Framebuf-
ferRenderbuffer in section 9.2.7, *FramebufferTexture* in section 9.2.8,
*DrawBuffers in section 17.4.1, and InvalidateSubFramebuffer and In-
validateNamedFramebufferSubData in section 17.4.4 (Bug 13858).

• Add missing validation error for the target argument of BindRenderbuffer
in section 9.2.4 (Bug 14283).

• Add missing constraint for two-dimensional multisample array textures on
the level argument of *FramebufferTextureLayer in section 9.2.8 (Bug
14189).

• Rewrite layer validation errors for *FramebufferTextureLayer in sec-
tion 9.2.8 to break out validation by texture dimensionality and specify the
correct constraint for cube map array textures, matching the OpenGL ES
specification.

• Remove description of component layout qualifiers affecting values as-
signed to attribute variables of matrix type in section 11.1.1 (Bug 15326).

• Remove description of OpenGL Shading Language as not supporting multi-
dimensional arrays from sections 11.2.1.2 and 11.2.3.3 (Bug 13824).

• Specify in section 11.3.1 that the mode parameter used for validating geom-
etry shaders depends on whether or not a tessellation evaluation shader is
active (Bug 14141).

• Remove clause from section 13.2.2 specifying an error for ResumeTrans-
formFeedback if the active program object has been relinked since trans-
form feedback became active for the current transform feedback object (Bug
15414).

• Cleanup the description of fragment coordinate wf in section 15.2.2 (Bug
5434).

• Update the description of gl_SampleMaskIn in section 15.2.2 and gl_-

SampleMask in section 15.2.3 to refer to the maximum number of sam-
ples supported for any renderable internal format, and make corresponding
changes to the definitions of the MAX_*SAMPLES queries in table 23.69 (Bug
15792, based on ES bug 15122).

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 691

• Fix work group size limit error for DispatchCompute in section 19 (Bug
15069).

• Cleanup introduction to section 23, fix type of SYNC_FLAGS in table 23.50,
and add CONTEXT_PROFILE_MASK in table 23.56 (Bug 5581).

• Rewrite appendix C to refer to the Khronos Data Format Specification for
the definition of formats (Bug 15255).

Changes in the released Specification update of May 28, 2015

• Fix minor typos found during OpenGL ES spec updates.

• Add language to section 4.1.2 tightening the behavior of SYNC_FLUSH_-
COMMANDS_BIT to only guarantee that commands are flushed up to and in-
cluding the FenceSync command (Bug 11525).

• Change description of MAP_COHERENT_BIT for buffer storage in section 6.2
so that barriers with CLIENT_MAPPED_BUFFER_BARRIER_BIT does not
need to make CPU writes visible to the GPU in this case without an explicit
flush (Bug 13578).

• Add language for arrays of arrays to the generation of active resource lists in
section 7.3.1 (Bug 13004).

• Add language in sections 7.3.1, 7.3.1.1, and 11.1.2.1 allowing program in-
terface queries to distinguish between entire arrays and array elements for
transform feedback resources (Bug 12787).

• Specify that shared and std140 layout uniform blocks and their members
are always active in section 7.6 (Bug 10182).

• Clarify the interaction of multisample write masks, shader side effects, and
early per-fragment tests. Update the description of rasterization at the start
of chapter 14 and in figure 14.1, and add language in sections 7.12.1 and
14.9. Move pixel ownership, scissor, and multisample fragment operations
from section 17.3 into sections 14.9.1 and 14.9.2, note that stencil test, depth
test, and occlusion query operations may be performed prior to fragment
shading if requeseted by the shader, and update figure 17.1 to match. Move
description of the application of gl_SampleMask from section 14.9.3 to
section 15.2.3. Split alpha to coverage from multisample fragment oper-
ations, leaving the former in section 17.3.1. Update section references in
table 23.11 (Bug 12936).

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 692

• Strike INVALID_ENUM error for invalid packed depth-stencil format/type
combinations in section 8.4.4; it is covered by the generic special interpre-
tation language in section 8.4.4.2. Also change the error for invalid integer-
float format/type mismatches to INVALID_OPERATION in section 8.4.4 (Bug
11167).

• Add missing error conditions in section 8.5 when specifying texture images
with specific compressed internal formats and there’s a texture dimensional-
ity and/or target mismatch with the format (Bug 11239).

• Added a definition of the effective internal format corresponding to base
formats in section 8.5 (without going into detail on how it is determined,
unlike the OpenGL ES Specification), and modified the descriptions of for-
mat matching for TextureView in section 8.18 and CopyImageSubData in
section 18.3.2 to use the effective internal format where appropriate (Bug
13111).

• Fix error for invalid target to GetTexSubImage* in section 8.6 to generate
INVALID_ENUM instead of INVALID_VALUE (Bug 13563).

• Add errors to *Tex*SubImage3D (section 8.6 and to GetTexture*Image
and GetCompressedTextureImage (section 8.11.4) in the cases where
the target or effective target of the texture is TEXTURE_CUBE_MAP or
TEXTURE_CUBE_MAP_ARRAY, and the texture is not cube complete or cube
array complete, respectively (Bug 13223).

• Define initial state for sampler objects min filter and wrap modes in ta-
ble 23.18, instead of deferring it to inapplicable language describing these
parameters for texture objects as dependent on the texture type. Add a foot-
note noting this for CreateSamplers in section 8.2 (Bug 13499).

• Add missing language from ARB_gpu_program5 describing comp argu-
ment to textureGather*, and textureGatherOffsets commands in
section 8.14.2. This language should have been included in the OpenGL 4.0
Specification, but was left out by mistake (Bug 5910).

• Specify that the values returned for RGBA texture sampling and fetches
from incomplete textures are in floating-point format, in sections 8.14.2
and 11.1.3.5 (Bug 13525).

• Drop redundant bullet point in the list of texture incompleteness conditions
at the end of section 8.17 (Bug 12791).

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 693

• Fix typo for DEPTH_STENCIL_TEXTURE_MODE (was improperly shown as
DEPTH_TEXTURE_STENCIL_MODE in section 8.22) (Bug 13590).

• Restore the initial value of internal format for buffer textures in the compati-
bility profile to LUMINANCE8 in section 8.22 and table 23.16, fixing an error
introduced in earlier GL specs (Bug 10185).

• Restore cube map arrays, which were accidentally removed, to the list
of framebuffer attachment completeness conditions in section 9.4.1 (Bug
11201).

• Rewrite the beginning of section 11.1.3.2 to clarify which operations are and
are not performed during texelFetch operations (Bug 13833).

• Allow errors resulting from user-defined tessellation control inputs and out-
puts, and tessellation evaluation inputs that are not specified to be arrays
exactly gl_MaxPatchVertices long to be detected at compile time, as
well as link time in sections 11.2.1.2, 11.2.1.2.3 and 11.2.3.3 (Bug 12185).

• Clarify in section 14.3.1 that querying SAMPLE_POSITION returns a shad-
ing sample location, not a rasterization or coverage sample location (Bug
13484).

• Align language with GL_OES_sample_shading in section 14.3.1.1.

• Rearrange description of gl_SampleMaskIn in section 15.2.2 following
variables whose use can kick off per-sample shading, and mention that (by
symmetry with GL_OES_sample_variables).

• Add explicit errors list for GetPointerv and GetString in section 22.2.

• Fix description of MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS in
table 23.58 to reflect that it is the maximum for all outputs, not per-patch
outputs (Bug 13765).

Changes in the released Specification update of February 2, 2015

• Remove reference to nonexistent ARRAY_SIZE language in the discussion
of array trimming for active variables in section 7.3.1 (Bug 13445).

• Remove unimplementable TEXTURE_BINDING query from description of
BindTexture in section 8.1, section 22.5, and table 23.13 (Bug 13278). Also
removed in GL_ARB_direct_state_access specification and the spec-
file and headers in the Registry.

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 694

Changes in the released Specification update of October 30, 2014

• Restore language describing non-sequentiality of resource locations for con-
secutive active array elements in section 7.3.1 (Bug 12318).

• Restore description of MAX_UNIFORM_BLOCK_SIZE in section 7.6.2, which
was lost in the restructuring and program interface query language intro-
duced in OpenGL 4.3, but change behavior so that exceeding the limit will
cause link failure, compared to may cause link failure in the 4.2 language
(Bug 12897).

• Add NEAREST_MIPMAP_NEAREST to the allowed filter modes for
STENCIL_INDEX textures in section 8.17 (Bug 12791).

• Modify behavior of primitive restart in section 10.3.6 to only apply to
DrawElements commands for both forms of primitive restart, matching
shipping drivers (Bug 12893).

• Rearrange descriptions of DrawArraysOneInstance, DrawElementsOne-
Instance, and the actual DrawElements* commands in section 10.4 to use
the term “vertex ID” when referring to the actual element index of an ele-
ment transferred to the GL, and make clear that the vertex ID does include
the basevertex value passed to the DrawElements*BaseVertex commands
(Bug 12756).

• Add description of conditions for which multisample texel fetch operations
are undefined in section 11.1.3.3 (Bug 12255).

• Modify the end of section 13.5.1 to remove language requiring that integer
outputs be qualified as flat, since fragment shader inputs now control as
described in the OpenGL Shading Language Specification (Bug 12623).

• In the description of the source of the derived point size when program point
size mode is enabled in section 14.4, remove the unreachable case where a
tessellation evaluation shader is active, but no tessellation control shader or
geometry shader is active (Bug 12865).

• Add missing error for invalid target argument to InvalidateSubFrame-
buffer in section 17.4.4 (Bug 12727).

• Restore description of TEXTURE_BUFFER_OFFSET_ALIGNMENT in ta-
ble 23.55, UNIFORM_BUFFER_OFFSET_ALIGNMENT in table 23.63, and
SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT in table 23.64 to refer

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 695

to them as minimum require alignments, while the footnote in the caption
continues to note that the numeric limits are the maximum allowed values
(Bug 11962).

• Increase the minimum values for MAX_GEOMETRY_UNIFORM_COMPONENTS
and MAX_COMPUTE_UNIFORM_COMPONENTS from 512 to 1024 in ta-
bles 23.60 and 23.62, respectively. This makes the minimums consistent
across all shader stages (Bug 12731).

Changes in the released Specification update of September 19, 2014

• Clarify description of the initial state of query objects for CreateQueries
and BeginQueryIndexed in section 4.2 (Public Bug 1213).

• Add DSA-style GetQueryBufferObject* queries along with GetQueryOb-
ject* in section 4.2.1 (Public Bug 1214).

• Add missing MapNamedBufferRange to description of MAP_COHERENT_-
BIT in section 6.2 (Public Bug 1208).

• Modify description of active resource list enumeration in section 7.3.1 to
treat only arrays of aggregate types as top-level arrays, and clarify how this
applies to GetProgramResourceiv queries TOP_LEVEL_ARRAY_SIZE and
TOP_LEVEL_ARRAY_STRIDE (Bug 11753).

• Clarify behavior of rendering to multiple framebuffer object attachments of
different sizes in section 9.2 (Bug 10403).

• Add FRONT and BACK as valid attachment names for
Get*FramebufferAttachmentParameteriv in section 9.2.3 (Bug 12695).

Changes in the released Specification of August 11, 2014:

• Added new features as described in section H.1.

• Cleanup many bugs and typos (public Bug 1186).

• Clean up reference to texture borders in the core profile, where borders must
always be zero width, simplifying equations (Bug 10507).

• Replace all uses of “texel array” and “image array” with “texture image” or
“image” as appropriate, to avoid confusion with array texture types.

• Use “max.”, “min.”, and “no.” consistently throughout state tables instead of
“maximum”, “minimum”, and “number”.

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 696

• Make description of WebGL in section 1.3.4 consistent with the OpenGL ES
3.1 Specification.

• Change required size of boolean from “1 or more” bits to exactly 8 bits in
table 2.2, matching OpenGL ES 3.1 (Bug 11847).

• Clarify in equations 2.3 and 2.4 that either truncation or rounding are ac-
ceptable when converting from floating-point to normalized fixed-point (Bug
9976).

• Simplify and generalize language about object and name lifetimes in sec-
tion 5.1.3 to make clear that an active query object behaves like an object
attachment (Bug 12161).

• Add missing validation error for invalid target parameters to MapBuffer-
Range in section 6.3.

• Simplify language in section 6.3.2 to remove confusing reference to “invalid
reads, writes, or state changes” to mapped buffer objects (Bug 12300).

• Modify error condition for invalid buffer binding target arguments to Copy-
BufferSubData in section 6.6 to INVALID_ENUM instead of INVALID_-
VALUE.

• Make LinkProgram fail with an empty program object (one with no shaders
attached) in the core profile only, in section 7.3 (Bug 12215).

• Fix error condition for UseProgram in section 7.3 (Bug 12281).

• Fix description of LINK_STATUS for GetProgramiv in section 7.13 (Bug
9698).

• Change the variable representing compressed texture block size to blocksize
in section 8.7, to avoid confusion with the texture border width bs used in
many other places.

• Clarify that filter state is ignored for multisample texture access in sec-
tions 8.8 and 11.1.3.3 (Bug 12171).

• Include MIRROR_CLAMP_TO_EDGE in the wrap modes not allowed for rect-
angle texture targets in the description of TexParameter* in section 8.10
(public Bug 1186).

• Make the minification vs. magnification switch-over point always zero in
sections 8.14.3 and 8.15 (Bug 9997).

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 697

• Strike irrelevant clause from description of error condition for numlayers
argument to TextureView in section 8.18 (Bug 11891).

• Add an error for TextureView in section 8.18 if the computed number of
levels or layers for the new texture view is not positive (Bug 12256).

• Update errors for TexStorage*DMultisample in section 8.19 to include an
appropriate subset of the generic errors for Tex*Storage*D commands de-
fined in section 8.19, and remove redundant errors from the latter commands
(Bug 11937).

• Allow GetFramebufferParameteriv and GetNamedFramebufferParam-
eteriv in section 9.2.3 to be used to query the framebuffer-dependent state in
table 23.73, including queries for the default framebuffers (Bug 12360).

• Add missing error for invalid attachment arguments of GetFramebufferAt-
tachmentParameteriv and GetNamedFramebufferAttachmentParame-
teriv in section 9.2.3.

• Fix error condition for GetFramebufferAttachmentParameteriv in sec-
tion 9.2.3 (Bug 12180).

• Moved description of SAMPLE_BUFFERS and SAMPLE_BUFFERS from sec-
tion 9.4.2 to new section 9.2.3.1, and add a comment about the effective
value of these parameters for framebuffer objects other than the currently
bound draw framebuffer. Change references to these parameters accordingly
in sections 8.6, 14.3.1, 18.2.2, and 18.3.1 (Bug 12360).

• Add missing cube map array textures to list of layered texture types for
FramebufferTexture in section 9.2.8 (Bug 12336).

• Restore missing error condition for CheckFramebufferStatus target argu-
ment in section 9.4.2.

• Clarify in section 10.4 that DrawArrays transfers no elements when count
is zero (Bug 10015).

• Specify the values of gl_VertexID in the descriptions of drawing pseudo-
commands DrawArraysOneInstance and DrawElementsOneInstance in
section 10.4 (Bug 12202).

• Remove count from the list of parameters validated in the pseudocode for
MultiDrawElements in section 10.4, since it’s an array, not a value (Bug
7004).

OpenGL 4.5 (Core Profile) - October 24, 2016

H.3. CHANGE LOG FOR RELEASED SPECIFICATIONS 698

• Clarify that MultiDrawArraysIndirect and MultiDrawElementsIndirect
in section 10.4 share the same errors as the comparable non-MultiDraw*
commands, and throughout the spec, clarify relevant pseudocode examples
with “(assuming no errors are generated)” (Bug 12351).

• Add description of ELEMENT_ARRAY_BUFFER_BINDING. to section 10.5
(Bug 11042).

• Fix list of required state in section 10.6 and table 23.4 (Bug 10283).

• Clarify description of BindAttribLocation in section 11.1.1 (Bug 12186).

• Make validation fail in section 11.1.3.11 when an empty program pipeline
object (one with no code for any shader stage) is current (Bug 12176).

• Add language for robust buffer access in section 11.1.3.12 expanding the
definition of what can be returned from out-of-bounds shader reads within a
buffer object (Bugs 10826, 12104).

• Modify descriptions of tessellation in sections 11.2.2, 11.2.2.1, and 11.2.2.2
to clarify that tessellation may produce multiple vertices with the same gl_-
TessCoord values under some conditions (Bug 11979).

• Fixed DebugMessageInsert in section 20.5 so error for invalid severity
arguments is INVALID_ENUM, matching ARB_debug_output, instead of
INVALID_VALUE.

• Change title of section 22.2 to more accurately describe the contents (Bug
12352).

• Change query commands for buffer storage state in table 23.6 to GetBuffer-
Parameteriv (Bug 12307).

• Change the description column for TEXTURE_BUFFER_OFFSET_-

ALIGNMENT in table 23.55, UNIFORM_BUFFER_OFFSET_ALIGNMENT in
table 23.63, and SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT in
table 23.64 to refer to them as maximum, not minimum, values, consistently
with the footnote in the caption (Bug 11962).

• Clean up caption for table 23.73 to accurately describe which FBO binding
is used for different queries (Bug 12360).

OpenGL 4.5 (Core Profile) - October 24, 2016

H.4. CREDITS 699

H.4 Credits

OpenGL 4.5 is the result of the contributions of many people and companies. Mem-
bers of the Khronos OpenGL ARB Working Group during the development of
OpenGL 4.5, including the company that they represented at the time of their con-
tributions, follow.

Some major contributions made by individuals are listed together with their
name, including specific functionality developed in the form of new ARB exten-
sions together with OpenGL 4.5. In addition, many people participated in develop-
ing earlier vendor and EXT extensions on which the OpenGL 4.5 functionality is
based in part; those individuals are listed in the respective extension specifications
in the OpenGL Registry.

Acorn Pooley, NVIDIA
Alex Corscadden, VMware
Anton Staaf, Google
Aras Pranckevicius, Unity
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Bill Licea-Kane, Qualcomm
Brian Paul, VMware Inc. (GL_ARB_conditional_render_inverted, GL_-

ARB_cull_distance, GL_ARB_get_texture_sub_image)
Bruce Merry, ARM
Chris Marrin, Apple
Christoph Kubisch, NVIDIA
Christophe Riccio, Unity (GL_ARB_direct_state_access)
Daniel Koch, NVIDIA
Daniel Rakos, AMD
Dominik Witczak, Samsung Electronics (reference pages)
Evan Hart, NVIDIA
Graham Sellers, AMD (GL_ARB_direct_state_access)
Greg Roth, NVIDIA
Ian Romanick, Intel
Jaroslaw Lipowski (extensive proofreading in public bug 1186)
Jason Mitchell, Valve
Jeannot Breton, NVIDIA
Jeff Bolz, NVIDIA (GL_ARB_texture_barrier)
Jesse Hall, Google
John Kessenich, Independent (OpenGL Shading Language Specification Editor,

GL_ARB_derivative_control)
John McDonald, NVIDIA

OpenGL 4.5 (Core Profile) - October 24, 2016

H.5. ACKNOWLEDGEMENTS 700

Jon Leech, Independent (OpenGL API Specification Editor, reference pages)
Kenneth Russell, Google
Kent Miller, Apple
Lingjun (Frank) Chen, Qualcomm
Mark Callow, ArtSpark
Mark Kilgard, NVIDIA (GL_ARB_clip_control, GL_ARB_robustness)
Mathias Schott, NVIDIA (GL_ARB_shader_texture_image_samples)
Nick Penwarden, Epic Games
Pat Brown, NVIDIA
Patrick Doane, Blizzard
Piers Daniell, NVIDIA (GL_ARB_shader_texture_image_samples, GL_-

ARB_ES3_1_compatibility)
Robert Simpson, Qualcomm
Simon Bennett, VMware
Stefan Dsinger, CodeWeavers
Tim Foley, Intel
Timo Suoranta, Broadcom
Timothy Lottes, Epic Games
Tom Olson, ARM
Tristan Lorach, NVIDIA
Vladimir Vukicevic, Mozilla

H.5 Acknowledgements

The ARB gratefully acknowledges administrative support by the members of Gold
Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Fredericks,
and Michelle Clark, and technical support from James Riordon, webmaster of
Khronos.org and OpenGL.org.

The “pipeline metro” cover image was created by Dominic Agoro-Ombaka of
Gold Standard Group.

OpenGL 4.5 (Core Profile) - October 24, 2016

Appendix I

OpenGL Registry, Header Files,
and ARB Extensions

I.1 OpenGL Registry

Many extensions to the OpenGL API have been defined by vendors, groups of
vendors, and the OpenGL ARB. In order not to compromise the readability of
the OpenGL Specification, such extensions are not integrated into the core lan-
guage; instead, they are made available online in the OpenGL Registry, together
with extensions to window system binding APIs, such as GLX and WGL, and with
specifications for OpenGL, GLX, and related APIs.

Extensions are documented as changes to a particular version of the Specifica-
tion. The Registry is available on the World Wide Web at URL

http://www.opengl.org/registry/

I.2 Header Files

Historically, C and C++ source code calling OpenGL was to #include a single
header file, <GL/gl.h>. In addition to the core OpenGL API, the APIs for all
extensions provided by an implementation were defined in this header.

When platforms became common where the OpenGL SDK (library and header
files) were not necessarily obtained from the same source as the OpenGL driver,
such as Microsoft Windows and Linux, <GL/gl.h> could not always be kept
in sync with new core API versions and extensions supported by drivers. At this
time the OpenGL ARB defined a new header, <GL/glext.h>, which could be
obtained directly from the OpenGL Registry (see section I.1). The combination of

701

http://www.opengl.org/registry/

I.3. ARB AND KHRONOS EXTENSIONS 702

<GL/gl.h> and <GL/glext.h> always defines all APIs for all profiles of the
latest OpenGL version, as well as for all extensions defined in the Registry.

<GL/glcorearb.h> defines APIs for the core profile of OpenGL, together
with ARB extensions compatible with the core profile. It does not include APIs for
features only in the compatibility profile or for other extensions.

There is currently no Khronos-supported mechanism for using vendor exten-
sions together with <GL/glcorearb.h>, due to lack of demand and lack of
knowledge on which vendor extensions are compatible with the core profile. In
the future, this may be addressed by a hypothetical header <GL/glcoreext.h>
which would define APIs for additional EXT and vendor extensions compatible
with the core profile, but not defined in <GL/glcorearb.h>. Most older exten-
sions are not compatible with the core profile.

Applications using the compatibility profile (see appendix D) should
#include the traditional <GL/gl.h> and <GL/glext.h> headers.

Applications using the core profile, and which do not need to use vendor ex-
tensions, may instead #include the <GL/glcorearb.h> header.

By using <GL/glcorearb.h>, instead of the legacy <GL/gl.h> and
<GL/glext.h>, newly developed applications are given increased protection
against accidentally using a legacy feature that has been removed from the core
profile, and against using a less portable EXT or vendor extension. This can assist
in developing applications on a GL implementation that supports the compatibility
profile when the application is also intended to run on other platforms supporting
only the core profile.

Developers should always be able to download <GL/glcorearb.h> from
the Registry, with this headers replacing, or being used in place of older versions
that may be provided by a platform SDK.

I.3 ARB and Khronos Extensions

OpenGL extensions that have been approved by the Khronos OpenGL Architec-
tural Review Board Working Group (ARB), or jointly approved by the ARB and the
Khronos OpenGL ES Working Group (KHR), are summarized in this section. ARB
and KHR extensions are not required to be supported by a conformant OpenGL im-
plementation, but are expected to be widely available; they define functionality that
is likely to move into the required feature set in a future revision of the specifica-
tion.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 703

I.3.1 Naming Conventions

To distinguish ARB and KHR extensions from core OpenGL features and from
vendor-specific extensions, the following naming conventions are used:

• A unique name string of the form ”GL_ARB_name” or ”GL_KHR_name” is
associated with each extension. If the extension is supported by an imple-
mentation, this string will be among the EXTENSIONS strings returned by
GetStringi, as described in section 22.2.

• All functions defined by the extension will have names of the form Func-
tionARB or FunctionKHR, respectively.

• All enumerants defined by the extension will have names of the form
NAME_ARB. or NAME_KHR, respectively.

• In addition to OpenGL extensions, there are also ARB extensions to the
related GLX and WGL APIs. Such extensions have name strings prefixed by
"GLX_" and "WGL_" respectively. Not all GLX and WGL ARB extensions
are described here, but all such extensions are included in the registry.

I.3.2 Promoting Extensions to Core Features

Extensions can be promoted to required core features in later revisions of OpenGL.
When this occurs, the extension specifications are merged into the core specifica-
tion. Functions and enumerants that are part of such promoted extensions will have
the ARB, KHR, EXT, or vendor affix removed.

Implementations of such later revisions should continue to export the name
strings of promoted extensions in the EXTENSIONS strings and continue to support
the affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
beyond, see the corresponding version of the OpenGL specification, or the de-
scriptions of that version in version-specific appendices to later versions of the
specification.

I.3.3 Extension Summaries

This section describes each ARB and KHR extension briefly. In most cases, the
functionality of these extensions also was added to a version of the OpenGL Speci-
fication, and in these cases only the extension string is described, together with the
corresponding OpenGL version.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 704

I.3.3.1 Multitexture

The name string for multitexture is GL_ARB_multitexture. It was promoted to
a core feature in OpenGL 1.3.

I.3.3.2 Transpose Matrix

The name string for transpose matrix is GL_ARB_transpose_matrix. It was
promoted to a core feature in OpenGL 1.3.

I.3.3.3 Multisample

The name string for multisample is GL_ARB_multisample. It was promoted to a
core feature in OpenGL 1.3.

I.3.3.4 Texture Add Environment Mode

The name string for texture add mode is GL_ARB_texture_env_add. It was
promoted to a core feature in OpenGL 1.3.

I.3.3.5 Cube Map Textures

The name string for cube mapping is GL_ARB_texture_cube_map. It was pro-
moted to a core feature in OpenGL 1.3.

I.3.3.6 Compressed Textures

The name string for compressed textures is GL_ARB_texture_compression. It
was promoted to a core feature in OpenGL 1.3.

I.3.3.7 Texture Border Clamp

The name string for texture border clamp is GL_ARB_texture_border_clamp.
It was promoted to a core feature in OpenGL 1.3.

I.3.3.8 Point Parameters

The name string for point parameters is GL_ARB_point_parameters. It was
promoted to a core features in OpenGL 1.4.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 705

I.3.3.9 Vertex Blend

Vertex blending replaces the single model-view transformation with multiple ver-
tex units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the model-view matrices.

The name string for vertex blend is GL_ARB_vertex_blend.

I.3.3.10 Matrix Palette

Matrix palette extends vertex blending to include a palette of model-view matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette is GL_ARB_matrix_palette.

I.3.3.11 Texture Combine Environment Mode

The name string for texture combine mode is GL_ARB_texture_env_combine.
It was promoted to a core feature in OpenGL 1.3.

I.3.3.12 Texture Crossbar Environment Mode

The name string for texture crossbar is GL_ARB_texture_env_crossbar. It
was promoted to a core features in OpenGL 1.4.

I.3.3.13 Texture Dot3 Environment Mode

The name string for DOT3 is GL_ARB_texture_env_dot3. It was promoted to
a core feature in OpenGL 1.3.

I.3.3.14 Texture Mirrored Repeat

The name string for texture mirrored repeat is GL_ARB_texture_mirrored_-
repeat. It was promoted to a core feature in OpenGL 1.4.

I.3.3.15 Depth Texture

The name string for depth texture is GL_ARB_depth_texture. It was promoted
to a core feature in OpenGL 1.4.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 706

I.3.3.16 Shadow

The name string for shadow is GL_ARB_shadow. It was promoted to a core feature
in OpenGL 1.4.

I.3.3.17 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by the TEXTURE_COMPARE_FAIL_VALUE_ARB texture
parameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambient is GL_ARB_shadow_ambient.

I.3.3.18 Window Raster Position

The name string for window raster position is GL_ARB_window_pos. It was pro-
moted to a core feature in OpenGL 1.4.

I.3.3.19 Low-Level Vertex Programming

Application-defined vertex programs may be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex, transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipelines that will be
fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programming is GL_ARB_vertex_-

program.

I.3.3.20 Low-Level Fragment Programming

Application-defined fragment programs may be specified in the same low-level lan-
guage as GL_ARB_vertex_program, replacing the standard fixed-function vertex
texturing, fog, and color sum operations.

The name string for low-level fragment programming is GL_ARB_-

fragment_program.

I.3.3.21 Buffer Objects

The name string for buffer objects is GL_ARB_vertex_buffer_object. It was
promoted to a core feature in OpenGL 1.5.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 707

I.3.3.22 Occlusion Queries

The name string for occlusion queries is GL_ARB_occlusion_query. It was
promoted to a core feature in OpenGL 1.5.

I.3.3.23 Shader Objects

The name string for shader objects is GL_ARB_shader_objects. It was pro-
moted to a core feature in OpenGL 2.0.

I.3.3.24 High-Level Vertex Programming

The name string for high-level vertex programming is GL_ARB_vertex_shader.
It was promoted to a core feature in OpenGL 2.0.

I.3.3.25 High-Level Fragment Programming

The name string for high-level fragment programming is GL_ARB_fragment_-
shader. It was promoted to a core feature in OpenGL 2.0.

I.3.3.26 OpenGL Shading Language

The name string for the OpenGL Shading Language is GL_ARB_shading_-

language_100. The presence of this extension string indicates that programs
written in version 1 of the Shading Language are accepted by OpenGL. It was
promoted to a core feature in OpenGL 2.0.

I.3.3.27 Non-Power-Of-Two Textures

The name string for non-power-of-two textures is GL_ARB_texture_non_-

power_of_two. It was promoted to a core feature in OpenGL 2.0.

I.3.3.28 Point Sprites

The name string for point sprites is GL_ARB_point_sprite. It was promoted to
a core feature in OpenGL 2.0.

I.3.3.29 Fragment Program Shadow

Fragment program shadow extends low-level fragment programs defined with
GL_ARB_fragment_program to add shadow 1D, 2D, and 3D texture targets, and
remove the interaction with GL_ARB_shadow.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 708

The name string for fragment program shadow is GL_ARB_fragment_-

program_shadow.

I.3.3.30 Multiple Render Targets

The name string for multiple render targets is GL_ARB_draw_buffers. It was
promoted to a core feature in OpenGL 2.0.

I.3.3.31 Rectangle Textures

Rectangle textures define a new texture target TEXTURE_RECTANGLE_ARB that
supports 2D textures without requiring power-of-two dimensions. Rectangle tex-
tures are useful for storing video images that do not have power-of-two sizes
(POTS). Resampling artifacts are avoided and less texture memory may be re-
quired. They are also useful for shadow maps and window-space texturing. These
textures are accessed by dimension-dependent (aka non-normalized) texture coor-
dinates.

Rectangle textures are a restricted version of non-power-of-two textures. The
differences are that rectangle textures are supported only for 2D; they require a new
texture target; and the new target uses non-normalized texture coordinates.

The name string for texture rectangles is GL_ARB_texture_rectangle. It
was promoted to a core feature in OpenGL 3.1.

I.3.3.32 Floating-Point Color Buffers

Floating-point color buffers can represent values outside the normal [0, 1] range
of colors in the fixed-function OpenGL pipeline. This group of related exten-
sions enables controlling clamping of vertex colors, fragment colors throughout the
pipeline, and pixel data read back to client memory, and also includes WGL and
GLX extensions for creating framebuffers with floating-point color components
(referred to in GLX as framebuffer configurations, and in WGL as pixel formats).

The name strings for floating-point color buffers are GL_ARB_color_-

buffer_float, GLX_ARB_fbconfig_float, and WGL_ARB_pixel_-

format_float. GL_ARB_color_buffer_float was promoted to a core
feature in OpenGL 3.0.

I.3.3.33 Half-Precision Floating-Point

This extension defines the representation of a 16-bit floating-point data format, and
a corresponding type argument which may be used to specify and read back pixel
and texture images stored in this format in client memory. Half-precision floats are

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 709

smaller than full precision floats, but provide a larger dynamic range than similarly
sized (short) data types.

The name string for half-precision floating-point is GL_ARB_half_float_-
pixel. It was promoted to a core feature in OpenGL 3.0.

I.3.3.34 Floating-Point Textures

Floating-point textures stored in both 32- and 16-bit formats may be defined using
new internalformat arguments to commands which specify and read back texture
images.

The name string for floating-point textures is GL_ARB_texture_float. It
was promoted to a core feature in OpenGL 3.0.

I.3.3.35 Pixel Buffer Objects

The buffer object interface is expanded by adding two new binding targets for
buffer objects, the pixel pack and unpack buffers. This permits buffer objects to be
used to store pixel data as well as vertex array data. Pixel-drawing and -reading
commands using data in pixel buffer objects may operate at greatly improved per-
formance compared to data in client memory.

The name string for pixel buffer objects is GL_ARB_pixel_buffer_object.
It was promoted to a core feature in OpenGL 2.1.

I.3.3.36 Floating-Point Depth Buffers

The name string for floating-point depth buffers is GL_ARB_depth_buffer_-

float. This extension is equivalent to new core functionality introduced in
OpenGL 3.0, based on the earlier GL_NV_depth_buffer_float extension, and
is provided to enable this functionality in older drivers.

I.3.3.37 Instanced Rendering

The name string for instanced rendering is GL_ARB_draw_instanced. It was
promoted to a core feature in OpenGL 3.1.

I.3.3.38 Framebuffer Objects

The name string for framebuffer objects is GL_ARB_framebuffer_object. This
extension is equivalent to new core functionality introduced in OpenGL 3.0, based

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 710

on the earlier GL_EXT_framebuffer_object, GL_EXT_framebuffer_-

multisample, and GL_EXT_framebuffer_blit extensions, and is provided
to enable this functionality in older drivers.

I.3.3.39 sRGB Framebuffers

The name string for sRGB framebuffers is GL_ARB_framebuffer_sRGB. It was
promoted to a core feature in OpenGL 3.0.

To create sRGB format surfaces for use on display devices, an additional pixel
format (config) attribute is required in the window system integration layer. The
name strings for the GLX and WGL sRGB pixel format interfaces are GLX_ARB_-
framebuffer_sRGB and WGL_ARB_framebuffer_sRGB respectively.

I.3.3.40 Geometry Shaders

This extension defines a new shader type called a geometry shader. Geometry
shaders are run after vertices are transformed, but prior to the remaining fixed-
function vertex processing, and may generate new vertices for, or remove vertices
from the primitive assembly process.

The name string for geometry shaders is GL_ARB_geometry_shader4. It
was promoted to a core feature in OpenGL 3.2.

I.3.3.41 Half-Precision Vertex Data

The name string for half-precision vertex data is GL_ARB_half_float_vertex.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,
based on the earlier GL_NV_half_float extension, and is provided to enable this
functionality in older drivers.

I.3.3.42 Instanced Rendering

This instanced rendering interface is a less-capable form of GL_ARB_draw_-

instanced which can be supported on older hardware.
The name string for instanced rendering is GL_ARB_instanced_arrays. It

was promoted to a core feature in OpenGL 3.3.

I.3.3.43 Flexible Buffer Mapping

The name string for flexible buffer mapping is GL_ARB_map_buffer_range.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 711

based on the earlier GL_APPLE_flush_buffer_range extension, and is pro-
vided to enable this functionality in older drivers.

I.3.3.44 Texture Buffer Objects

The name string for texture buffer objects is GL_ARB_texture_buffer_-

object. It was promoted to a core feature in OpenGL 3.1.

I.3.3.45 RGTC Texture Compression Formats

The name string for RGTC texture compression formats is GL_ARB_texture_-
compression_rgtc. This extension is equivalent to new core functionality intro-
duced in OpenGL 3.0, based on the earlier GL_EXT_texture_compression_-
rgtc extension, and is provided to enable this functionality in older drivers.

It was promoted to a core feature in OpenGL 3.0.

I.3.3.46 One- and Two-Component Texture Formats

The name string for one- and two-component texture formats is GL_ARB_-

texture_rg. It was promoted to a core feature in OpenGL 3.0. This extension is
equivalent to new core functionality introduced in OpenGL 3.0, and is provided to
enable this functionality in older drivers.

I.3.3.47 Vertex Array Objects

The name string for vertex array objects is GL_ARB_vertex_array_object.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,
based on the earlier GL_APPLE_vertex_array_object extension, and is pro-
vided to enable this functionality in older drivers.

It was promoted to a core feature in OpenGL 3.0.

I.3.3.48 Versioned Context Creation

Starting with OpenGL 3.0, a new context creation interface is required in the win-
dow system integration layer. This interface specifies the context version required
as well as other attributes of the context.

The name strings for the GLX and WGL context creation interfaces are GLX_-
ARB_create_context and WGL_ARB_create_context respectively.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 712

I.3.3.49 Uniform Buffer Objects

The name string for uniform buffer objects is GL_ARB_uniform_buffer_-

object. This extension is equivalent to new core functionality introduced in
OpenGL 3.1 and is provided to enable this functionality in older drivers.

I.3.3.50 Restoration of features removed from OpenGL 3.0

OpenGL 3.1 removes a large number of features that were marked deprecated in
OpenGL 3.0. GL implementations needing to maintain these features to support
existing applications may do so, following the deprecation model, by exporting
an extension string indicating those features are present. Applications written for
OpenGL 3.1 should not depend on any of the features corresponding to this exten-
sion, since they will not be available on all platforms with 3.1 implementations.

The name string for restoration of features deprecated by OpenGL 3.0 is GL_-
ARB_compatibility.

The profile terminology introduced with OpenGL 3.2 eliminates the necessity
for evolving this extension. Instead, interactions between features removed by
OpenGL 3.1 and new features introduced in later OpenGL versions are defined by
the compatibility profile corresponding to those versions.

I.3.3.51 Fast Buffer-to-Buffer Copies

The name string for fast buffer-to-buffer copies is GL_ARB_copy_buffer. This
extension is equivalent to new core functionality introduced in OpenGL 3.1 and is
provided to enable this functionality in older drivers.

I.3.3.52 Shader Texture Level of Detail Control

The name string for shader texture level of detail control is GL_ARB_shader_-
texture_lod. This extension is equivalent to new core functions introduced in
OpenGL Shading Language 1.30 and is provided to enable this functionality in
older versions of the shading language.

I.3.3.53 Depth Clamp Control

The name string for depth clamp control is GL_ARB_depth_clamp. This exten-
sion is equivalent to new core functionality introduced in OpenGL 3.2 and is pro-
vided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 713

I.3.3.54 Base Vertex Offset Drawing Commands

The name string for base vertex offset drawing commands is GL_ARB_draw_-

elements_base_vertex. This extension is equivalent to new core functionality
introduced in OpenGL 3.2 and is provided to enable this functionality in older
drivers.

I.3.3.55 Fragment Coordinate Convention Control

The name string for fragment coordinate convention control is GL_ARB_-

fragment_coord_conventions. This extension is equivalent to new core func-
tionality introduced in OpenGL 3.2 and is provided to enable this functionality in
older drivers.

I.3.3.56 Provoking Vertex Control

The name string for provoking vertex control is GL_ARB_provoking_vertex.
This extension is equivalent to new core functionality introduced in OpenGL 3.2
and is provided to enable this functionality in older drivers.

I.3.3.57 Seamless Cube Maps

The name string for seamless cube maps is GL_ARB_seamless_cube_map. This
extension is equivalent to new core functionality introduced in OpenGL 3.2 and is
provided to enable this functionality in older drivers.

I.3.3.58 Fence Sync Objects

The name string for fence sync objects is GL_ARB_sync. This extension is equiva-
lent to new core functionality introduced in OpenGL 3.2 and is provided to enable
this functionality in older drivers.

I.3.3.59 Multisample Textures

The name string for multisample textures is GL_ARB_texture_multisample.
This extension is equivalent to new core functionality introduced in OpenGL 3.2
and is provided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 714

I.3.3.60 BGRA Attribute Component Ordering

The name string for BGRA attribute component ordering is GL_ARB_vertex_-
array_bgra. This extension is equivalent to new core functionality introduced in
OpenGL 3.2 and is provided to enable this functionality in older drivers.

I.3.3.61 Per-Buffer Blend Control

The blending interface is extended to specify blend equation and blend function on
a per-draw-buffer basis.

The name string for per-buffer blend control is GL_ARB_draw_buffers_-

blend. It was promoted to a core feature in OpenGL 4.0.

I.3.3.62 Sample Shading Control

Sample shading control adds the ability to request that an implementation use a
minimum number of unique sets of fragment computation inputs when multisam-
pling a pixel.

The name string for sample shading control is GL_ARB_sample_shading. It
was promoted to a core feature in OpenGL 4.0.

I.3.3.63 Cube Map Array Textures

A cube map array texture is a two-dimensional array texture that may contain many
cube map layers. Each cube map layer is a unique cube map image set.

The name string for cube map array textures is GL_ARB_texture_cube_-
map_array. It was promoted to a core feature in OpenGL 4.0.

I.3.3.64 Texture Gather

Texture gather adds a new set of texture functions (textureGather) to the
OpenGL Shading Language that determine the 2×2 footprint used for linear filter-
ing in a texture lookup, and return a vector consisting of the first component from
each of the four texels in the footprint.

The name string for texture gather is GL_ARB_texture_gather. It was pro-
moted to a core feature in OpenGL 4.0.

I.3.3.65 Texture Level-Of-Detail Queries

Texture level-of-detail queries adds a new set of fragment shader texture functions
(textureLOD) to the OpenGL Shading Language that return the results of au-

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 715

tomatic level-of-detail computations that would be performed if a texture lookup
were to be done.

The name string for texture level-of-detail queries is GL_ARB_texture_-

query_lod.

I.3.3.66 Profiled Context Creation

Starting with OpenGL 3.2, API profiles are defined. Profiled context creation ex-
tends the versioned context creation interface to specify a profile which must be
implemented by the context.

The name strings for the GLX and WGL profiled context creation interfaces
are GLX_ARB_create_context_profile and WGL_ARB_create_context_-
profile respectively.

I.3.3.67 Shading Language Include

Shading language include adds support for #include directives to shaders, and
a named string API for defining the text corresponding to #include pathnames.

The name string for shading language include is GL_ARB_shading_-

language_include.

I.3.3.68 BPTC texture compression

BPTC texture compression provides new block compressed specific texture for-
mats which can improve quality in images with sharp edges and strong chromi-
nance transitions, and support high dynamic range floating-point formats.

The name string for BPTC texture compression is GL_ARB_texture_-

compression_bptc.

I.3.3.69 Extended Blend Functions

The name string for extended blend functions is GL_ARB_blend_func_-

extended. This extension is equivalent to new core functionality introduced in
OpenGL 3.3, and is provided to enable this functionality in older drivers.

I.3.3.70 Explicit Attribute Location

The name string for explicit attribute location is GL_ARB_explicit_attrib_-
location. This extension is equivalent to new core functionality introduced in
OpenGL 3.3 and is provided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 716

I.3.3.71 Boolean Occlusion Queries

The name string for boolean occlusion queries is GL_ARB_occlusion_query2.
This extension is equivalent to new core functionality introduced in OpenGL 3.3
and is provided to enable this functionality in older drivers.

I.3.3.72 Sampler Objects

The name string for sampler objects is GL_ARB_sampler_objects. This ex-
tension is equivalent to new core functionality introduced in OpenGL 3.3 and is
provided to enable this functionality in older drivers.

I.3.3.73 Shader Bit Encoding

The name string for shader bit encoding is GL_ARB_shader_bit_encoding.
This extension is equivalent to new core functionality introduced in OpenGL 3.3
and is provided to enable this functionality in older drivers.

I.3.3.74 RGB10A2 Integer Textures

The name string for RGB10A2 integer textures is GL_ARB_texture_rgb10_-
a2ui. This extension is equivalent to new core functionality introduced in OpenGL
3.3 and is provided to enable this functionality in older drivers.

I.3.3.75 Texture Swizzle

The name string for texture swizzle is GL_ARB_texture_swizzle. This ex-
tension is equivalent to new core functionality introduced in OpenGL 3.3 and is
provided to enable this functionality in older drivers.

I.3.3.76 Timer Queries

The name string for timer queries is GL_ARB_timer_query. This extension is
equivalent to new core functionality introduced in OpenGL 3.3 and is provided to
enable this functionality in older drivers.

I.3.3.77 Packed 2.10.10.10 Vertex Formats

The name string for packed 2.10.10.10 vertex formats is GL_ARB_vertex_-

type_2_10_10_10_rev. This extension is equivalent to new core functional-
ity introduced in OpenGL 3.3 and is provided to enable this functionality in older
drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 717

I.3.3.78 Draw Indirect

The name string for draw indirect is GL_ARB_draw_indirect. This extension is
equivalent to new core functionality introduced in OpenGL 4.0 and is provided to
enable this functionality in older drivers.

I.3.3.79 GPU Shader5 Miscellaneous Functionality

The name string for GPU shader5 miscellaneous functionality is GL_ARB_gpu_-
shader5. This extension is equivalent to new core functionality introduced in
OpenGL 4.0 and is provided to enable this functionality in older drivers.

I.3.3.80 Double-Precision Floating-Point Shader Support

The name string for double-precision floating-point shader support is GL_ARB_-
gpu_shader_fp64. This extension is equivalent to new core functionality intro-
duced in OpenGL 4.0 and is provided to enable this functionality in older drivers.

I.3.3.81 Shader Subroutines

The name string for shader subroutines is GL_ARB_shader_subroutine. This
extension is equivalent to new core functionality introduced in OpenGL 4.0 and is
provided to enable this functionality in older drivers.

I.3.3.82 Tessellation Shaders

The name string for tessellation shaders is GL_ARB_tessellation_shader.
This extension is equivalent to new core functionality introduced in OpenGL 4.0
and is provided to enable this functionality in older drivers.

I.3.3.83 RGB32 Texture Buffer Objects

The name string for RGB32 texture buffer objects is GL_ARB_texture_-

buffer_object_rgb32. This extension is equivalent to new core functional-
ity introduced in OpenGL 4.0 and is provided to enable this functionality in older
drivers.

I.3.3.84 Transform Feedback 2

The name string for transform feedback 2 is GL_ARB_transform_feedback2.
This extension is equivalent to new core functionality introduced in OpenGL 4.0
and is provided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 718

I.3.3.85 Transform Feedback 3

The name string for transform feedback 3 is GL_ARB_transform_feedback3.
This extension is equivalent to new core functionality introduced in OpenGL 4.0
and is provided to enable this functionality in older drivers.

I.3.3.86 OpenGL ES 2.0 Compatibility

The name string for OpenGL ES 2.0 compatibility is GL_ARB_ES2_-

compatibility. This extension is equivalent to new core functionality intro-
duced in OpenGL 4.1 and is provided to enable this functionality in older drivers.

I.3.3.87 Program Binary Support

The name string for program binary support is GL_ARB_get_program_binary.
This extension is equivalent to new core functionality introduced in OpenGL 4.1
and is provided to enable this functionality in older drivers.

I.3.3.88 Separate Shader Objects

The name string for separate shader objects is GL_ARB_separate_shader_-

objects. This extension is equivalent to new core functionality introduced in
OpenGL 4.1 and is provided to enable this functionality in older drivers.

I.3.3.89 Shader Precision Restrictions

The name string for shader precision restritions is GL_ARB_shader_precision.
This extension is equivalent to new core functionality introduced in OpenGL 4.1
and is provided to enable this functionality in older drivers.

I.3.3.90 Double Precision Vertex Shader Inputs

The name string for double precision vertex shader inputs is GL_ARB_vertex_-
attrib_64bit. This extension is equivalent to new core functionality introduced
in OpenGL 4.1 and is provided to enable this functionality in older drivers.

I.3.3.91 Viewport Arrays

The name string for viewport arrays is GL_ARB_viewport_array. This exten-
sion is equivalent to new core functionality introduced in OpenGL 4.1 and is pro-
vided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 719

I.3.3.92 Robust Context Creation

Robust context creation allows creating an OpenGL context supporting robust
buffer access behavior and a specified graphics reset notification behavior exposed
through the GL_ARB_robustness extension (see section I.3.3.95).

The name strings for GLX and WGL robust context creation are GLX_-

ARB_create_context_robustness and WGL_ARB_create_context_-

robustness, respectively.

I.3.3.93 OpenCL Event Sharing

OpenCL event sharing allows creating OpenGL sync objects linked to OpenCL
event objects, potentially improving efficiency of sharing images and buffers be-
tween the two APIs.

The name string for OpenCL event sharing is GL_ARB_cl_event.

I.3.3.94 Debug Output Notification

Debug output notification enables GL to inform the application when various
events occur that may be useful during development and debugging.

The name string for debug output notification is GL_ARB_debug_output.

I.3.3.95 Context Robustness

Context robustness provides “safe” APIs that limit data written to application
memory to a specified length, provides a mechanism to learn about graphics re-
sets affecting the context, and defines guarantee that out-of-bounds buffer object
accesses will have deterministic behavior precluding instability or termination.
Some of these behaviors are controlled at context creation time via the companion
GLX_ARB_create_context_robustness or WGL_ARB_create_context_-
robustness extensions (see section I.3.3.92).

The name string for context robustness is GL_ARB_robustness.

I.3.3.96 Shader Stencil Export

Sharder stencil export enables shaders to generate a stencil reference value, allow-
ing stencil testing to be performed against per-shader-invocation values.

The name string for shader stencil export is GL_ARB_shader_stencil_-

export.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 720

I.3.3.97 Base Instanced Rendering

The name string for base instanced rendering is GL_ARB_base_instance. This
extension is equivalent to new core functionality introduced in OpenGL 4.2 and is
provided to enable this functionality in older drivers.

I.3.3.98 OpenGL Shading Language 4.20 Feature Pack

The name string for the OpenGL Shading Language 4.20 feature pack is GL_-

ARB_shading_language_420pack. This extension is equivalent to new core
functionality introduced in OpenGL 4.2 and is provided to enable this functionality
in older drivers.

I.3.3.99 Instanced Transform Feedback

The name string for instanced transform feedback is GL_ARB_transform_-

feedback_instanced. This extension is equivalent to new core functionality
introduced in OpenGL 4.2 and is provided to enable this functionality in older
drivers.

I.3.3.100 Compressed Texture Pixel Storage

The name string for compressed texture pixel storage is GL_ARB_compressed_-
texture_pixel_storage. This extension is equivalent to new core functional-
ity introduced in OpenGL 4.2 and is provided to enable this functionality in older
drivers.

I.3.3.101 Conservative Depth

The name string for conservative depth is GL_ARB_conservative_depth. This
extension is equivalent to new core functionality introduced in OpenGL 4.2 and is
provided to enable this functionality in older drivers.

I.3.3.102 Internal Format Query

The name string for internal format query is GL_ARB_internalformat_query.
This extension is equivalent to new core functionality introduced in OpenGL 4.2
and is provided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 721

I.3.3.103 Map Buffer Alignment

The name string for map buffer alignment is GL_ARB_map_buffer_alignment.
This extension is equivalent to new core functionality introduced in OpenGL 4.2
and is provided to enable this functionality in older drivers.

I.3.3.104 Shader Atomic Counters

The name string for shader atomic counters is GL_ARB_shader_atomic_-

counters. This extension is equivalent to new core functionality introduced in
OpenGL 4.2 and is provided to enable this functionality in older drivers.

I.3.3.105 Shader Image Load/Store

The name string for shader image load/store is GL_ARB_shader_image_load_-
store. This extension is equivalent to new core functionality introduced in
OpenGL 4.2 and is provided to enable this functionality in older drivers.

I.3.3.106 Shading Language Packing

The name string for shading language packing is GL_ARB_shading_-

language_packing. This extension is equivalent to new core functionality intro-
duced in OpenGL 4.2 and is provided to enable this functionality in older drivers.

I.3.3.107 Texture Storage

The name string for texture storage is GL_ARB_texture_storage. This exten-
sion is equivalent to new core functionality introduced in OpenGL 4.2 and is pro-
vided to enable this functionality in older drivers.

I.3.3.108 ASTC Texture Compression

The name string for ASTC texture compression is GL_KHR_texture_-

compression_astc_ldr. This extension is equivalent to new core functionality
introduced in OpenGL 4.3, and is provided to enable this functionality in older
drivers.

I.3.3.109 Debug Contexts

This KHR extension defines debugging features and combines the functionality of
GL_ARB_debug_output, GL_ARB_debug_output2, GL_ARB_debug_group,

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 722

and GL_ARB_debug_label. It is intended primarily to bring this debug func-
tionality to OpenGL ES implementations.

The name string for debug contexts is GL_KHR_debug.

I.3.3.110 Shader Array of Arrays

The name string for shader array of arrays is GL_ARB_arrays_of_arrays. This
extension is equivalent to new core functionality introduced in OpenGL 4.3, and is
provided to enable this functionality in older drivers.

I.3.3.111 Clear Buffer Object

The name string for clear buffer object is GL_ARB_clear_buffer_object. This
extension is equivalent to new core functionality introduced in OpenGL 4.3, and is
provided to enable this functionality in older drivers.

I.3.3.112 Compute Shaders

The name string for compute shaders is GL_ARB_compute_shader. This ex-
tension is equivalent to new core functionality introduced in OpenGL 4.3, and is
provided to enable this functionality in older drivers.

I.3.3.113 Copy Image

The name string for copy image is GL_ARB_copy_image. This extension is equiv-
alent to new core functionality introduced in OpenGL 4.3, and is provided to enable
this functionality in older drivers.

I.3.3.114 Texture Views

The name string for texture views is GL_ARB_texture_view. This extension is
equivalent to new core functionality introduced in OpenGL 4.3, and is provided to
enable this functionality in older drivers.

I.3.3.115 Vertex Attribute Binding

The name string for vertex attribute binding is GL_ARB_vertex_attrib_-

binding. This extension is equivalent to new core functionality introduced in
OpenGL 4.3, and is provided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 723

I.3.3.116 Robustness Isolation

The name string for robustness isolation is GL_ARB_robustness_isolation.
This extension is equivalent to new core functionality introduced in OpenGL 4.3,
and is provided to enable this functionality in older drivers.

I.3.3.117 OpenGL ES 3.0 Compatibility

The name string for OpenGL ES 3.0 compatibility is GL_ARB_ES3_-

compatibility. This extension is equivalent to new core functionality intro-
duced in OpenGL 4.3, and is provided to enable this functionality in older drivers.

I.3.3.118 Shader Explicit Uniform Location

The name string for shader explicit uniform location is GL_ARB_explicit_-

uniform_location. This extension is equivalent to new core functionality intro-
duced in OpenGL 4.3, and is provided to enable this functionality in older drivers.

I.3.3.119 Fragment Layer Viewport

The name string for fragment layer viewport is GL_ARB_fragment_layer_-

viewport. This extension is equivalent to new core functionality introduced in
OpenGL 4.3, and is provided to enable this functionality in older drivers.

I.3.3.120 Binding a Framebuffer Without Attachments

The name string for binding a framebuffer without attachments is GL_ARB_-

framebuffer_no_attachments. This extension is equivalent to new core func-
tionality introduced in OpenGL 4.3, and is provided to enable this functionality in
older drivers.

I.3.3.121 Extended Internal Format Query

The name string for extended internal format query is GL_ARB_-

internalformat_query2. This extension is equivalent to new core func-
tionality introduced in OpenGL 4.3, and is provided to enable this functionality in
older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 724

I.3.3.122 Invalidate SubData

The name string for invalidate subdata is GL_ARB_invalidate_subdata. This
extension is equivalent to new core functionality introduced in OpenGL 4.3, and is
provided to enable this functionality in older drivers.

I.3.3.123 Multi Draw Indirect

The name string for multi draw indirect is GL_ARB_multi_draw_indirect.
This extension is equivalent to new core functionality introduced in OpenGL 4.3,
and is provided to enable this functionality in older drivers.

I.3.3.124 Program Interface Queries

The name string for program interface queries is GL_ARB_program_-

interface_query. This extension is equivalent to new core functionality intro-
duced in OpenGL 4.3, and is provided to enable this functionality in older drivers.

I.3.3.125 Robust Buffer Access Behavior

The name string for robust buffer access behavior is GL_ARB_robust_buffer_-
access_behavior. This extension is equivalent to new core functionality intro-
duced in OpenGL 4.3, and is provided to enable this functionality in older drivers.

I.3.3.126 Shader Image Size Query

The name string for shader image size query is GL_ARB_shader_image_size.
This extension is equivalent to new core functionality introduced in OpenGL 4.3,
and is provided to enable this functionality in older drivers.

I.3.3.127 Shader Storage in Buffer Objects

The name string for shader storage in buffer objects is GL_ARB_shader_-

storage_buffer_object. This extension is equivalent to new core function-
ality introduced in OpenGL 4.3, and is provided to enable this functionality in
older drivers.

I.3.3.128 Stencil Texturing

The name string for stencil texturing is GL_ARB_stencil_texturing. This ex-
tension is equivalent to new core functionality introduced in OpenGL 4.3, and is
provided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 725

I.3.3.129 Texture Buffer Range

The name string for texture buffer range is GL_ARB_texture_buffer_range.
This extension is equivalent to new core functionality introduced in OpenGL 4.3,
and is provided to enable this functionality in older drivers.

I.3.3.130 Texture Query Levels

The name string for texture query levels is GL_ARB_texture_query_levels.
This extension is equivalent to new core functionality introduced in OpenGL 4.3,
and is provided to enable this functionality in older drivers.

I.3.3.131 Texture Storage Multisample

The name string for texture storage multisample is GL_ARB_texture_-

storage_multisample. This extension is equivalent to new core functionality
introduced in OpenGL 4.3, and is provided to enable this functionality in older
drivers.

I.3.3.132 Robustness Application Isolation Context Creation

These extensions allow creation of OpenGL contexts which support robustness
isolation through OpenGL 4.3 or the equivalent functionality in the GL_ARB_-

robustness_isolation extension (see I.3.3.116), and may also define addi-
tional constraints around how OpenGL context reset notification affects other con-
texts in the share group, or other applications on the system. There are equivalent
sets of extensions for both GLX and WGL window-system binding layers.

The name strings for GLX robustness application isolation context cre-
ation are GLX_ARB_robustness_application_isolation and GLX_ARB_-

robustness_share_group_isolation.
The name strings for WGL robustness application isolation context cre-

ation are WGL_ARB_robustness_application_isolation and WGL_ARB_-

robustness_share_group_isolation.

I.3.3.133 Buffer Storage

The name string for buffer storage is GL_ARB_buffer_storage. This extension
is equivalent to new core functionality introduced in OpenGL 4.4, and is provided
to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 726

I.3.3.134 Clear Texture

The name string for clear texture is GL_ARB_clear_texture. This extension is
equivalent to new core functionality introduced in OpenGL 4.4, and is provided to
enable this functionality in older drivers.

I.3.3.135 Enhanced Layouts

The name string for enhanced layouts is GL_ARB_enhanced_layouts. This ex-
tension is equivalent to new core functionality introduced in OpenGL 4.4, and is
provided to enable this functionality in older drivers.

I.3.3.136 Multiple Bind

The name string for multiple bind is GL_ARB_multi_bind. This extension is
equivalent to new core functionality introduced in OpenGL 4.4, and is provided to
enable this functionality in older drivers.

I.3.3.137 Query Buffer Object

The name string for query buffer object is GL_ARB_query_buffer_object.
This extension is equivalent to new core functionality introduced in OpenGL 4.4,
and is provided to enable this functionality in older drivers.

I.3.3.138 Texture Mirror Clamp To Edge

The name string for texture mirror clamp to edge is GL_ARB_texture_mirror_-
clamp_to_edge. This extension is equivalent to new core functionality intro-
duced in OpenGL 4.4, and is provided to enable this functionality in older drivers.

I.3.3.139 Texture Stencil8

The name string for texture stencil8 is GL_ARB_texture_stencil8. This ex-
tension is equivalent to new core functionality introduced in OpenGL 4.4, and is
provided to enable this functionality in older drivers.

I.3.3.140 Vertex Type 10f 11f 11f

The name string for vertex type 10f 11f 11f is GL_ARB_vertex_type_10f_-

11f_11f_rev. This extension is equivalent to new core functionality introduced
in OpenGL 4.4, and is provided to enable this functionality in older drivers.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 727

I.3.4 Bindless Textures

Bindless textures allows access to texture objects in shaders without first binding
each texture to one of a limited number of texture image units.

The name string for bindless textures is GL_ARB_bindless_texture.

I.3.5 Compute Variable Group Size

Compute variable groups size allows writing generic compute shaders that operate
on work groups with arbitrary dimensions.

The name string for compute variable group size is GL_ARB_compute_-

variable_group_size.

I.3.6 Indirect Parameters

Indirect parameters allows buffer objects to store drawing parameters for some
drawing commands, and introduces new drawing commands that source some of
their parameters from buffers.

The name string for indirect parameters is GL_ARB_indirect_parameters.

I.3.7 Seamless Cubemap per Texture

This allows providing a per-texture setting for enabling seamless sampling from
cube maps.

The name string for seamless cubemap per texture is GL_ARB_seamless_-
cubemap_per_texture.

I.3.8 Shader Draw Parameters

This adds two new built-in variables to the OpenGL Shading Language containing
values passed in the basevertex and baseinstance parameters of drawinng com-
mands, and an index of the draw command being processed by MultiDraw* com-
mands.

The name string for shader draw parameters is GL_ARB_shader_draw_-

parameters.

I.3.9 Shader Group Vote

Shader group vote provides new built-in functions to compute the composite of
a set of boolean conditions across a group of shader invocations. These compos-
ite results may be used to execute shaders more efficiently on a single-instruction
multiple-data (SIMD) processor.

OpenGL 4.5 (Core Profile) - October 24, 2016

I.3. ARB AND KHRONOS EXTENSIONS 728

The name string for shader group vote is GL_ARB_shader_group_vote.

I.3.10 Sparse Textures

This extension allows the separation of the graphics processor’s address space
(reservation) from the requirement that all textures must be physically backed
(commitment). This exposes a limited form of virtualization for textures. Use
cases include sparse (or partially resident) textures, texture paging, on-demand and
delayed loading of texture assets and application controlled level of detail.

The name string for sparse textures is GL_ARB_sparse_texture.

OpenGL 4.5 (Core Profile) - October 24, 2016

Index

#version, 4, 6, 545, 662, 665

Accum, 651
ACCUM BUFFER BIT, 651
ACTIVE ATOMIC COUNTER -

BUFFERS, 158, 598
ACTIVE ATTRIBUTE MAX -

LENGTH, 157, 592
ACTIVE ATTRIBUTES, 157, 592
ACTIVE PROGRAM, 159, 590
ACTIVE RESOURCES, 100, 101, 599
ACTIVE SUBROUTINE MAX -

LENGTH, 164, 597
ACTIVE SUBROUTINE UNIFORM -

LOCATIONS, 143, 146, 164,
597

ACTIVE SUBROUTINE UNIFORM -
MAX LENGTH, 164, 597

ACTIVE SUBROUTINE UNI-
FORMS, 164, 597

ACTIVE SUBROUTINES, 144, 146,
164, 597

ACTIVE TEXTURE, 168, 172, 230,
578

ACTIVE UNIFORM BLOCK -
MAX NAME LENGTH, 157,
594

ACTIVE UNIFORM BLOCKS, 157,
594

ACTIVE UNIFORM MAX LENGTH,
157, 592

ACTIVE UNIFORMS, 157, 592

ACTIVE VARIABLES, 104, 105, 130,
131, 600

ActiveShaderProgram, 117, 132, 667,
679, 689

ActiveTexture, 147, 168, 170
ALIASED LINE WIDTH RANGE,

613
ALL ATTRIB BITS, 652
ALL BARRIER BITS, 153, 155, 156
ALL SHADER BITS, 117
ALPHA, 228, 229, 271, 469, 489, 573,

575, 584, 650
ALPHA BITS, 651
ALPHA TEST, 651
ALPHA TEST REF, 684
AlphaFunc, 651
ALREADY SIGNALED, 37
ALWAYS, 228, 274, 482, 483, 579
AND, 493
AND INVERTED, 493
AND REVERSE, 493
Antialiasing, 456
ANY SAMPLES PASSED, 41–44, 46,

364, 365, 483, 484, 689
ANY SAMPLES PASSED CON-

SERVATIVE, 41–44, 46, 364,
365, 483, 484, 689

ARB arrays of arrays, 661, 671
ARB base instance, 654, 658
ARB buffer storage, 673
ARB clear buffer object, 661, 670
ARB clear texture, 673

729

INDEX 730

ARB compressed texture pixel stor-
age, 653, 658

ARB compute shader, 661, 670
ARB conservative depth, 654, 658
ARB copy image, 661, 670, 671
ARB debug group, 661, 670
ARB debug label, 661, 670
ARB debug output, 661, 671, 698
ARB debug output2, 661, 671
ARB enhanced layouts, 674
ARB ES3 compatibility, 661, 671
ARB explicit uniform location, 661,

671
ARB fragment layer viewport, 661,

671
ARB framebuffer no attachments, 661,

671
ARB gpu program5, 692
ARB internalformat query, 654, 658
ARB internalformat query2, 661, 670
ARB invalidate subdata, 661, 671
ARB map buffer alignment, 654, 658
ARB multi bind, 674
ARB multi draw indirect, 661, 670
ARB program interface query, 661,

671
ARB query buffer object, 674
ARB robust buffer access behavior,

661, 671
ARB robustness, 671
ARB robustness isolation, 671
ARB shader atomic counters, 653, 658
ARB shader image load store, 654,

658
ARB shader image size, 661, 670
ARB shader storage buffer object,

661, 671
ARB shading language 420pack, 654,

658
ARB shading language packing, 658

ARB stencil texturing, 661, 671
ARB texture buffer range, 662, 670
ARB texture compression bptc, 653,

658
ARB texture mirror clamp to edge,

674
ARB texture query levels, 662, 670
ARB texture stencil8, 674
ARB texture storage, 653, 658
ARB texture storage multisample, 662,

670
ARB texture view, 662, 671
ARB transform feedback instanced,

654, 658
ARB vertex attrib binding, 662, 671
ARB vertex type 10f 11f 11f rev, 674
AreTexturesResident, 651
ARRAY BUFFER, 58, 342, 343, 348
ARRAY BUFFER BINDING, 348,

564
ARRAY SIZE, 99, 100, 104, 105, 128,

129, 370, 377, 600, 679, 693
ARRAY STRIDE, 104, 106, 129, 600
ATOMIC COUNTER BARRIER BIT,

153, 155
ATOMIC COUNTER BUFFER,

58, 59, 96, 99, 101–105, 130,
140

ATOMIC COUNTER BUFFER AC-
TIVE ATOMIC COUNTER -
INDICES, 131, 598

ATOMIC COUNTER BUFFER AC-
TIVE ATOMIC COUN-
TERS, 131, 598

ATOMIC COUNTER -
BUFFER BINDING, 81, 131,
598, 605

ATOMIC COUNTER BUFFER -
DATA SIZE, 131, 598

ATOMIC COUNTER BUFFER IN-

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 731

DEX, 104, 106, 129, 600
ATOMIC COUNTER BUFFER REF-

ERENCED BY COMPUTE -
SHADER, 131, 598

ATOMIC COUNTER BUFFER REF-
ERENCED BY FRAG-
MENT SHADER, 131, 598

ATOMIC COUNTER BUFFER REF-
ERENCED BY GEOME-
TRY SHADER, 131, 598

ATOMIC COUNTER BUFFER REF-
ERENCED BY TESS CON-
TROL SHADER, 131, 598

ATOMIC COUNTER BUFFER REF-
ERENCED BY TESS EVAL-
UATION SHADER, 131

ATOMIC COUNTER BUFFER REF-
ERENCED BY TESS EVA-
LUTION SHADER, 598

ATOMIC COUNTER BUFFER REF-
ERENCED -
BY VERTEX SHADER, 131,
598

ATOMIC COUNTER BUFFER SIZE,
81, 605

ATOMIC COUNTER BUFFER -
START, 81, 605

atomic uint, 112, 140
atomicCounter, 639
atomicCounterDecrement, 639
atomicCounterIncrement, 639
ATTACHED SHADERS, 157, 160, 591
AttachShader, 88
ATTRIB STACK DEPTH, 652

BACK, 295, 457, 481, 485, 495–500,
508, 569, 650, 695

BACK LEFT, 295, 496, 497, 505
BACK RIGHT, 295, 496, 497, 505
barrier, 395, 396

Begin, 648
BeginConditionalRender, 364, 364, 365
BeginQuery, 41, 44, 48, 49, 483
BeginQueryIndexed, 41, 43, 44, 45,

431, 695
BeginTransformFeedback, 424, 425–

429
BGR, 183, 512, 515
BGR INTEGER, 183
BGRA, 183, 186, 191, 338, 339, 342,

347, 512
BGRA INTEGER, 183, 186
BindAttribLocation, 123, 369, 369, 683,

698
BindBuffer, 27, 56, 57, 59, 227, 339,

348, 654, 666, 680
BindBufferBase, 59, 60, 61, 82, 427,

429, 655, 663, 666
BindBufferRange, 51, 59, 60, 61, 80,

139, 141, 143, 427–429, 655,
663, 666, 667, 682

BindBuffersBase, 61, 61
BindBuffersRange, 61, 61, 62
BindFragDataLocation, 123, 474, 474
BindFragDataLocationIndexed, 473,

474, 475, 490
BindFramebuffer, 287, 288, 290, 316
BindImageTexture, 51, 275, 276–278,

284, 548, 553, 657
BindImageTextures, 277, 277
binding, 142
BindProgramPipeline, 93, 115, 116–

118, 147, 159, 388, 429
BindRenderbuffer, 298, 298, 300, 690
BindSampler, 27, 173, 173, 175, 176
BindSamplers, 174, 174
BindTexture, 147, 168, 169, 169, 170,

172, 272, 693
BindTextures, 170, 170
BindTextureUnit, 171

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 732

BindTransformFeedback, 423, 423, 424
BindVertexArray, 335, 335, 336
BindVertexBuffer, 339, 339–341, 348,

680, 683
BindVertexBuffers, 340, 340, 341
BITMAP, 650
Bitmap, 650
BLEND, 485, 491, 492, 580
BLEND COLOR, 580
BLEND DST ALPHA, 580
BLEND DST RGB, 580
BLEND EQUATION ALPHA, 580
BLEND EQUATION RGB, 580
BLEND SRC ALPHA, 580
BLEND SRC RGB, 580
BlendColor, 487, 490
BlendEquation, 485, 485
BlendEquationi, 485, 485
BlendEquationSeparate, 485, 485
BlendEquationSeparatei, 485, 485
BlendFunc, 487, 488
BlendFunci, 488, 488
BlendFuncSeparate, 487, 488
BlendFuncSeparatei, 488, 488
BlitFramebuffer, 26, 312, 507, 516, 516,

519, 665, 668, 683, 684
BlitNamedFramebuffer, 516, 516, 518
BLOCK INDEX, 104, 106, 129, 600
BLUE, 183, 228, 229, 271, 469, 512,

515, 573, 575, 584
BLUE BITS, 651
BLUE INTEGER, 183
BOOL, 109
bool, 109, 136
BOOL VEC2, 109
BOOL VEC3, 109
BOOL VEC4, 109
boolean, 133, 663
BUFFER, 534
BUFFER ACCESS, 58, 65, 72, 565

BUFFER ACCESS FLAGS, 58, 65, 72,
75, 565

BUFFER BINDING, 104, 106, 130,
131, 600

BUFFER DATA SIZE, 104, 106, 130,
131, 141, 600

BUFFER IMMUTABLE STORAGE,
58, 65, 67, 68, 565

BUFFER MAP LENGTH, 58, 65, 72,
75, 565

BUFFER MAP OFFSET, 58, 65, 72,
75, 565

BUFFER MAP POINTER, 58, 65, 72,
75, 78–80, 565

BUFFER MAPPED, 58, 65, 72, 75, 565
BUFFER SIZE, 58, 65, 68, 69, 72, 73,

77, 79, 143, 224, 225, 565
BUFFER STORAGE FLAGS, 58, 65,

68, 70, 565
BUFFER UPDATE BARRIER BIT,

152
BUFFER USAGE, 58, 65, 71, 565
BUFFER VARIABLE, 97, 104, 105,

107
BufferData, 53, 62, 65, 65–67, 75, 666,

678
BufferStorage, 62, 62, 64–67, 678
BufferSubData, 53, 63, 67, 67, 151,

154, 682
bvec2, 109, 133
bvec3, 109
bvec4, 109
BYTE, 182, 283, 284, 337, 514, 515

callback, 529
CallList, 652
CallLists, 652
CAVEAT SUPPORT, 547
CCW, 158, 456, 457, 569, 596
ccw, 399

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 733

centroid, 468
centroid in, 468
CHANGED ITEMS, 106, 124, 247,

343, 387
CHANGED ITEMS (OLD), 14, 15, 39,

41–43, 45, 47, 48, 63, 90–93,
96–100, 102, 108, 114, 117,
118, 122, 124, 126, 135, 148,
149, 169, 173, 179, 195, 203,
213, 221, 229, 230, 234–239,
248, 255, 257, 261, 270, 271,
276, 289, 294, 297, 299, 305–
309, 314, 345, 346, 350, 353–
357, 367, 371, 372, 374, 375,
377, 379–381, 383, 393–395,
407, 409–411, 429, 436, 441,
445–448, 462, 463, 465, 466,
470–473, 476, 479, 498, 505,
521, 524, 558, 559, 570, 577,
597, 609, 614, 617, 619, 621–
623, 628, 643, 661, 662, 699

CheckFramebufferStatus, 315, 316,
317, 697

CheckNamedFramebufferStatus, 316,
317

CLAMP, 650
CLAMP FRAGMENT COLOR, 649
CLAMP READ COLOR, 513, 567
CLAMP TO BORDER, 229, 242, 246
CLAMP TO EDGE, 229, 242, 246,

271, 517
CLAMP VERTEX COLOR, 649
ClampColor, 513, 649
CLEAR, 493
Clear, 26, 320, 443, 501, 502–504, 651
CLEAR BUFFER, 547
CLEAR TEXTURE, 548, 684
ClearAccum, 651
ClearBuffer{if ui}v, 502
ClearBufferData, 69, 553

ClearBufferfi, 503, 504
ClearBufferfv, 503, 504
ClearBufferiv, 503, 504
ClearBufferSubData, 63, 68, 68, 69,

553, 666
ClearBufferuiv, 504
ClearColor, 501, 503
ClearDepth, 501, 503, 664
ClearDepthf, 501
ClearNamedBufferData, 69, 69
ClearNamedBufferSubData, 68, 68
ClearNamedFramebuffer, 502
ClearNamedFramebufferfi, 503, 504
ClearNamedFramebufferfv, 504
ClearNamedFramebufferiv, 504
ClearNamedFramebufferuiv, 504
ClearStencil, 502, 503
ClearTexImage, 270
ClearTexSubImage, 268, 269, 270
CLIENT ALL ATTRIB BITS, 652
CLIENT ATTRIB STACK DEPTH,

652
CLIENT MAPPED BUFFER BAR-

RIER BIT, 63, 64, 152, 691
CLIENT STORAGE BIT, 64
ClientActiveTexture, 648
ClientWaitSync, 35, 36, 37, 37–39, 52
CLIP DEPTH MODE, 566
CLIP DISTANCEi, 566
CLIP DISTANCE0, 434
CLIP ORIGIN, 566
ClipControl, 432
ClipPlane, 649
coherent, 154
COLOR, 207, 503–505
COLOR ATTACHMENTm, 690
COLOR ATTACHMENT0, 289, 499,

508
COLOR BUFFER BIT, 501, 504, 516,

518

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 734

COLOR CLEAR VALUE, 581
COLOR COMPONENTS, 550
COLOR ENCODING, 550
COLOR INDEX, 648
COLOR LOGIC OP, 492, 580
COLOR MATERIAL, 649
COLOR RENDERABLE, 550
COLOR SUM, 651
COLOR WRITEMASK, 500, 581
ColorMask, 499, 499–501
ColorMaski, 499, 499, 500, 684
ColorMaterial, 649
ColorPointer, 648
COMMAND BARRIER BIT, 152
COMPARE REF TO TEXTURE, 228,

273
COMPATIBLE SUBROUTINES, 104,

146, 597, 600
COMPILE STATUS, 86, 94, 156, 589
CompileShader, 86, 86
component, 107, 118, 119, 367, 474,

690
COMPRESSED R11 EAC, 201, 645
COMPRESSED RED, 201
COMPRESSED RED RGTC1, 201,

259, 521, 644
COMPRESSED RG, 201
COMPRESSED RG11 EAC, 201, 645
COMPRESSED RG RGTC2, 201,

259, 521, 644
COMPRESSED RGB, 201
COMPRESSED RGB8 ETC2, 201,

645
COMPRESSED RGB8 -

PUNCHTHROUGH AL-
PHA1 ETC2, 201, 645

COMPRESSED RGB -
BPTC SIGNED FLOAT, 201,
259, 521, 644

COMPRESSED RGB BPTC UN-

SIGNED FLOAT, 201, 259,
521, 644

COMPRESSED RGBA, 201
COMPRESSED RGBA8 ETC2 EAC,

201, 645
COMPRESSED RGBA BPTC UN-

ORM, 201, 259, 521, 644
COMPRESSED SIGNED R11 EAC,

201, 645
COMPRESSED SIGNED -

RED RGTC1, 201, 259, 521,
644

COMPRESSED SIGNED RG11 EAC,
201, 645

COMPRESSED SIGNED RG -
RGTC2, 201, 259, 521, 644

COMPRESSED SRGB, 201, 275
COMPRESSED SRGB8 ALPHA8 -

ETC2 EAC, 201, 275, 645
COMPRESSED SRGB8 ETC2, 201,

275, 645
COMPRESSED SRGB8 -

PUNCHTHROUGH AL-
PHA1 ETC2, 201, 275, 645

COMPRESSED SRGB ALPHA, 201,
275

COMPRESSED SRGB ALPHA -
BPTC UNORM, 201, 259,
275, 521, 644

COMPRESSED TEXTURE FOR-
MATS, 194, 614, 648, 654

CompressedTexImage1D, 204, 214,
216, 218–220, 553

CompressedTexImage2D, 214, 216,
218–220, 553

CompressedTexImage3D, 215, 216–
220, 239, 553, 675

CompressedTexSubImage*D, 221
CompressedTexSubImage1D, 219
CompressedTexSubImage2D, 219

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 735

CompressedTexSubImage3D, 219, 240
CompressedTextureSubImage*D, 221
CompressedTextureSubImage1D, 219
CompressedTextureSubImage2D, 219
CompressedTextureSubImage3D, 219
COMPUTE SHADER, 85, 144, 145,

523, 590, 678
COMPUTE SHADER BIT, 117
COMPUTE SUBROUTINE, 96, 144
COMPUTE SUBROUTINE -

UNIFORM, 97, 101, 104, 113,
145

COMPUTE TEXTURE, 548
COMPUTE WORK GROUP SIZE,

158, 159, 524, 591
CONDITION SATISFIED, 37
CONSTANT ALPHA, 489
CONSTANT COLOR, 489
CONTEXT COMPATIBILITY PRO-

FILE BIT, 544
CONTEXT CORE PROFILE BIT, 544
CONTEXT FLAG DEBUG BIT, 526,

544
CONTEXT FLAG FORWARD COM-

PATIBLE BIT, 544
CONTEXT FLAG ROBUST AC-

CESS BIT, 545
CONTEXT FLAGS, 526, 544, 545, 615
CONTEXT LOST, 16–19
CONTEXT PROFILE MASK, 544,

615, 691
CONTEXT RELEASE BEHAVIOR,

545, 612
CONTEXT RELEASE BEHAVIOR -

FLUSH, 545
COPY, 493, 580
COPY INVERTED, 493
COPY READ BUFFER, 58, 77, 654,

655, 666
COPY READ BUFFER BINDING,

633, 655
COPY WRITE BUFFER, 58, 77, 654,

655, 666
COPY WRITE BUFFER BINDING,

633, 655
CopyBufferSubData, 63, 77, 77, 78, 696
CopyImageSubData, 195, 519, 520,

521, 692
CopyNamedBufferSubData, 77, 77, 78
CopyPixels, 207, 651
CopyTexImage, 269, 651
CopyTexImage1D, 208, 208, 211, 251,

553
CopyTexImage2D, 207, 208, 211, 251,

553
CopyTexSubImage1D, 209, 210
CopyTexSubImage2D, 209, 210
CopyTexSubImage3D, 209, 210
CopyTextureSubImage1D, 210, 210
CopyTextureSubImage2D, 209, 210
CopyTextureSubImage3D, 209, 210,

211
CreateBuffers, 27, 56, 56, 339, 340
CreateFramebuffers, 288, 288
CreateProgram, 27, 88
CreateProgramPipelines, 116, 116
CreateQueries, 42, 42, 43, 45, 49, 695
CreateRenderbuffers, 299, 299
CreateSamplers, 173, 173, 692
CreateShader, 84, 85
CreateShaderProgramv, 94, 94, 95
CreateTextures, 27, 171, 171, 231
CreateTransformFeedbacks, 424, 424
CreateVertexArrays, 27, 336, 336
CULL FACE, 457, 569
CULL FACE MODE, 569
CullFace, 457, 457, 461
CURRENT PROGRAM, 591
CURRENT QUERY, 46, 633
CURRENT VER-

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 736

TEX ATTRIB, 361, 362, 602,
656

CW, 158, 457
cw, 399

DEBUG CALLBACK FUNCTION,
530, 536, 543, 626

DEBUG CALLBACK USER -
PARAM, 536, 543, 626

DEBUG GROUP STACK DEPTH,
626

DEBUG LOGGED MESSAGES, 530,
626

DEBUG NEXT LOGGED MES-
SAGE LENGTH, 530, 626

DEBUG OUTPUT, 526, 530–532, 626
DEBUG OUTPUT SYNCHRONOUS,

535, 536, 626
DEBUG SEVERITY HIGH, 528
DEBUG SEVERITY LOW, 528, 529
DEBUG SEVERITY MEDIUM, 528
DEBUG SEVERITY NOTIFICA-

TION, 528, 533
DEBUG SOURCE API, 17, 527, 547
DEBUG SOURCE APPLICATION,

527, 532, 533
DEBUG SOURCE OTHER, 527
DEBUG SOURCE SHADER COM-

PILER, 527
DEBUG SOURCE THIRD PARTY,

527, 532, 533
DEBUG SOURCE WINDOW SYS-

TEM, 527
DEBUG TYPE DEPRECATED BE-

HAVIOR, 528
DEBUG TYPE ERROR, 17, 528
DEBUG TYPE MARKER, 528
DEBUG TYPE OTHER, 528
DEBUG TYPE PERFORMANCE,

528, 547

DEBUG TYPE POP GROUP, 528, 533
DEBUG TYPE PORTABILITY, 528
DEBUG TYPE PUSH GROUP, 528,

533
DEBUG TYPE UNDEFINED BE-

HAVIOR, 528
DebugMessageCallback, 529, 530, 536,

684
DebugMessageControl, 529, 531, 665,

684
DebugMessageInsert, 532, 532, 698
DECR, 482
DECR WRAP, 482
DELETE STATUS, 87, 156, 589, 591
DeleteBuffers, 28, 51, 57, 59, 60, 62,

340, 666
DeleteFramebuffers, 288, 290
DeleteLists, 652
DeleteProgram, 94, 94
DeleteProgramPipelines, 115, 116–118,

159, 388
DeleteQueries, 42, 43, 49
DeleteRenderbuffers, 51, 299, 300, 316
DeleteSamplers, 174, 176, 675
DeleteShader, 87, 87
DeleteSync, 36, 37, 40
DeleteTextures, 51, 172, 276, 316
DeleteTransformFeedbacks, 423, 424,

656, 669
DeleteVertexArrays, 335, 335, 336
DEPTH, 207, 295, 503–505, 575, 584
DEPTH24 STENCIL8, 200
DEPTH32F STENCIL8, 200
DEPTH ATTACHMENT, 289, 305,

314
DEPTH BITS, 651
DEPTH BUFFER BIT, 501, 504, 516,

518, 519
DEPTH CLAMP, 434, 566
DEPTH CLEAR VALUE, 581

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 737

DEPTH COMPONENT, 183, 193, 194,
200, 204, 228, 235, 236, 269,
271, 273, 313, 383, 510–512,
574

DEPTH COMPONENT16, 200
DEPTH COMPONENT24, 200
DEPTH COMPONENT32, 200
DEPTH COMPONENT32F, 200
DEPTH COMPONENTS, 550
DEPTH FUNC, 579
DEPTH RANGE, 566, 685
DEPTH RENDERABLE, 550
DEPTH STENCIL, 179, 183, 186,

191–194, 200, 204, 207, 235,
236, 254, 255, 269, 273, 304,
310, 313, 383, 503, 504, 511,
512

DEPTH STENCIL ATTACHMENT,
295, 298, 304, 305, 310, 664

DEPTH STENCIL -
TEXTURE MODE, 228, 254,
255, 271, 273, 383, 574, 676,
693

DEPTH TEST, 482, 579
DEPTH TEXTURE MODE, 650
DEPTH WRITEMASK, 581
DepthFunc, 483
DepthMask, 500, 501
DepthRange, 15, 438, 438
DepthRangeArrayv, 437, 438
DepthRangef, 438
DepthRangeIndexed, 438, 438
DetachShader, 89
dFdx, 540
dFdy, 540
Disable, 242, 345, 434, 443, 446–448,

450, 456, 457, 461, 464, 465,
479, 481, 482, 485, 492, 526,
535, 649–651, 674

DisableClientState, 648

Disablei, 464, 484, 485
DisableVertexArrayAttrib, 343, 343
DisableVertexAttribArray, 343, 343,

362
DISPATCH INDIRECT BUFFER, 58,

152, 349, 524, 666
DISPATCH INDIRECT BUFFER -

BINDING, 611
DispatchCompute, 523, 524, 691
DispatchComputeIndirect, 152, 349,

524, 666, 680
DITHER, 492, 580
dmatC, 136
dmatCxR, 136
dmat*, 655, 657
dmat2, 109, 368
dmat2x3, 109, 368, 371
dmat2x4, 109, 368, 371
dmat3, 109, 133, 368, 371
dmat3x2, 109, 368
dmat3x4, 109, 368, 371
dmat4, 109, 368, 371
dmat4x2, 109, 368
dmat4x3, 109, 368, 371
do, 396
DONT CARE, 531, 540, 610
DOUBLE, 109, 337
double, 109, 120, 136, 368, 438, 662
DOUBLE MAT2, 109
DOUBLE MAT2x3, 109
DOUBLE MAT2x4, 109
DOUBLE MAT3, 109
DOUBLE MAT3x2, 109
DOUBLE MAT3x4, 109
DOUBLE MAT4, 109
DOUBLE MAT4x2, 109
DOUBLE MAT4x3, 109
DOUBLE VEC2, 109
DOUBLE VEC3, 109
DOUBLE VEC4, 109

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 738

DOUBLEBUFFER, 293, 632
DRAW BUFFER, 499
DRAW BUFFERi, 583
DRAW BUFFER0, 499
DRAW FRAMEBUFFER, 287, 288,

290–294, 297, 304–307, 317,
495, 497, 505, 516, 582, 664

DRAW FRAMEBUFFER BINDING,
250, 291, 318, 319, 582

DRAW INDIRECT, 353, 358
DRAW INDIRECT BUFFER, 58, 152,

349, 352, 358, 525
DRAW INDIRECT BUFFER BIND-

ING, 564
DrawArrays, 322, 324, 335, 345, 348,

350, 351, 352, 385, 697
DrawArraysIndirect, 349, 351, 352,

353, 668, 680
DrawArraysInstanced, 351, 352, 430,

668
DrawArraysInstancedBaseInstance,

350, 351, 355, 668
DrawArraysOneInstance, 349, 350, 697
DrawBuffer, 493, 494, 495, 495, 496,

499, 501, 504, 664, 684
DrawBuffers, 494, 496, 497–499, 664
DrawElements, 149, 335, 345, 348, 354,

355, 356
DrawElementsBaseVertex, 348, 357,

359
DrawElementsIndirect, 349, 357, 358,

359, 668, 680
DrawElementsInstanced, 348, 355, 356,

668
DrawElementsInstancedBaseInstance,

355, 355, 668
DrawElementsInstancedBaseVertex,

348, 357, 668
DrawElementsInstancedBaseVertexBaseInstance,

357, 668

DrawElementsOneInstance, 353, 353,
354, 357, 697

DrawPixels, 650
DrawRangeElements, 348, 356, 357,

613
DrawRangeElementsBaseVertex, 348,

357, 357
DrawTransformFeedback, 430, 430
DrawTransformFeedbackInstanced,

430, 430, 668
DrawTransformFeedbackStream, 430,

430
DrawTransformFeedbackStreamInstanced,

430, 430, 668
DST ALPHA, 489
DST COLOR, 489
dvec2, 109, 368
dvec3, 109, 368, 371, 655, 657
dvec4, 109, 367, 368, 371, 655, 657
DYNAMIC COPY, 58, 66
DYNAMIC DRAW, 58, 65, 66
DYNAMIC READ, 58, 66
DYNAMIC STORAGE BIT, 63, 65,

66, 68, 678

early fragment tests, 476
EdgeFlagPointer, 648
ELEMENT ARRAY BARRIER BIT,

151
ELEMENT AR-

RAY BUFFER, 58, 151, 348,
363

ELEMENT ARRAY BUFFER BIND-
ING, 360, 363, 563, 698

EmitStreamVertex, 415
Enable, 242, 345, 434, 443, 446–448,

450, 456, 457, 461, 464, 465,
479, 481, 482, 485, 492, 526,
535, 542, 649–651, 674

EnableClientState, 648

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 739

Enablei, 464, 484, 485
EnableVertexArrayAttrib, 343, 343
EnableVertexAttribArray, 335, 343,

343, 362
End, 648
EndConditionalRender, 364, 364, 365
EndList, 652
EndPrimitive, 320, 414
EndQuery, 45, 48, 49, 483, 484
EndQueryIndexed, 44, 44
EndStreamPrimitive, 414
EndTransformFeedback, 53, 54, 424,

425, 429, 431
EQUAL, 158, 228, 274, 482, 483, 596
equal spacing, 398, 405
EQUIV, 493
EXTENSIONS, 545, 546, 615, 652, 703

FALSE, 14, 15, 40, 43, 45, 47, 57, 58,
65, 67, 75, 86, 87, 90, 93, 94,
115, 122, 132, 133, 156–158,
165, 166, 172, 177, 178, 270,
271, 276–278, 280, 291, 297,
300, 310, 332, 336, 338, 339,
346, 362–364, 386, 387, 423,
443, 466, 484, 510, 513, 526,
531, 535, 550, 553–556, 562,
564–566, 568–570, 574, 576,
579, 580, 583, 584, 587–591,
596, 598, 602–604, 607, 626,
633

false, 470
FASTEST, 540
FeedbackBuffer, 651
FenceSync, 27, 35, 35, 36, 39, 53, 64,

691
FILL, 459–462, 569, 641
FILTER, 548
Finish, 20, 20, 35, 53, 64, 641
FIRST VERTEX CONVENTION,

418, 432
FIXED, 337
FIXED ONLY, 513, 522, 567
flat, 413, 432, 694
FLOAT, 108, 182, 233, 280, 283, 296,

337, 363, 513, 514, 552, 562
float, 108, 120, 136, 368
FLOAT 32 UNSIGNED INT -

24 8 REV, 179, 181, 182, 185,
186, 190, 511, 514, 515

FLOAT MAT2, 109
FLOAT MAT2x3, 109
FLOAT MAT2x4, 109
FLOAT MAT3, 109
FLOAT MAT3x2, 109
FLOAT MAT3x4, 109
FLOAT MAT4, 109
FLOAT MAT4x2, 109
FLOAT MAT4x3, 109
FLOAT VEC2, 108
FLOAT VEC3, 108
FLOAT VEC4, 109
Flush, 20, 20, 39, 641
FlushMappedBufferRange, 53, 71, 74,

74
FlushMappedNamedBufferRange, 74,

74
FOG, 651
Fog, 651
FOG HINT, 652
FogCoordPointer, 648
for, 396
FRACTIONAL EVEN, 158
fractional even spacing, 398
FRACTIONAL ODD, 158
fractional odd spacing, 398
FRAGMENT INTERPO-

LATION OFFSET BITS, 468,
629

FRAGMENT SHADER, 85, 144, 145,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 740

162, 590
FRAGMENT SHADER BIT, 117
FRAGMENT SHADER DERIVA-

TIVE HINT, 540, 610
FRAGMENT SUBROUTINE, 96, 144
FRAGMENT SUBROUTINE -

UNIFORM, 97, 101, 104, 113,
145

FRAGMENT TEXTURE, 548
FRAMEBUFFER, 288, 291–294, 297,

304–307, 317, 505, 534, 664
FRAMEBUFFER ATTACHMENT x -

SIZE, 584
FRAMEBUFFER ATTACHMENT -

ALPHA SIZE, 295
FRAMEBUFFER ATTACHMENT -

BLUE SIZE, 295
FRAMEBUFFER ATTACHMENT -

COLOR ENCODING,
208, 296, 486, 491, 492, 517,
584

FRAMEBUFFER ATTACHMENT -
COMPONENT TYPE, 296,
584

FRAMEBUFFER ATTACHMENT -
DEPTH SIZE, 295

FRAMEBUFFER ATTACHMENT -
GREEN SIZE, 295

FRAMEBUFFER ATTACH-
MENT LAYERED, 297, 310,
584, 681

FRAMEBUFFER ATTACHMENT -
OBJECT NAME, 295–297,
304, 310, 313, 584

FRAMEBUFFER ATTACH-
MENT OBJECT TYPE, 295–
297, 304, 310, 313, 318, 319,
584

FRAMEBUFFER ATTACHMENT -
RED SIZE, 295

FRAMEBUFFER ATTACHMENT -
STENCIL SIZE, 295

FRAMEBUFFER ATTACHMENT -
TEXTURE -
CUBE MAP FACE, 296, 310,
584

FRAMEBUFFER ATTACHMENT -
TEXTURE LAYER, 297, 309,
310, 319, 584, 676

FRAMEBUFFER ATTACHMENT -
TEXTURE LEVEL, 250, 296,
310, 584

FRAMEBUFFER BARRIER BIT, 153,
155

FRAMEBUFFER BINDING, 291
FRAMEBUFFER BLEND, 548
FRAMEBUFFER COMPLETE, 317
FRAMEBUFFER DEFAULT, 295
FRAMEBUFFER DEFAULT FIXED -

SAMPLE LOCATIONS, 291–
293, 583

FRAMEBUFFER DEFAULT -
HEIGHT, 291–293, 315, 583

FRAMEBUFFER DEFAULT LAY-
ERS, 291–293, 583

FRAMEBUFFER DEFAULT SAM-
PLES, 291–293, 583

FRAMEBUFFER DEFAULT WIDTH,
291–293, 315, 583

FRAMEBUFFER INCOMPLETE AT-
TACHMENT, 314

FRAMEBUFFER INCOMPLETE -
LAYER TARGETS, 315

FRAMEBUFFER INCOMPLETE -
MISSING ATTACHMENT,
315

FRAMEBUFFER INCOMPLETE -
MULTISAMPLE, 315

FRAMEBUFFER RENDERABLE,
548

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 741

FRAMEBUFFER RENDERABLE -
LAYERED, 548

FRAMEBUFFER SRGB,
486, 491, 492, 517, 549, 580,
681

FRAMEBUFFER UNDEFINED, 314
FRAMEBUFFER UNSUPPORTED,

315, 316
FramebufferParameteri, 291, 291–293,

676
FramebufferRenderbuffer, 304, 304,

305, 316, 676
FramebufferTexture, 51, 306, 306, 308,

309, 697
FramebufferTexture1D, 307, 308
FramebufferTexture2D, 307, 308
FramebufferTexture3D, 307, 308
FramebufferTextureLayer, 308
FRONT, 295, 457, 481, 485, 495, 496,

498–500, 508, 650, 695
FRONT AND BACK, 457, 459, 481,

485, 496, 498, 500, 508
FRONT FACE, 569
FRONT LEFT, 295, 496, 497, 505
FRONT RIGHT, 295, 496, 497, 505
FrontFace, 456, 457, 471, 649
Frustum, 648
FULL SUPPORT, 547
FUNC ADD, 487, 490, 580
FUNC REVERSE SUBTRACT, 487
FUNC SUBTRACT, 487
fwidth, 540

GenBuffers, 27, 56, 56, 57, 59, 60, 339,
340

GENERATE MIPMAP, 651
GENERATE MIPMAP HINT, 652
GenerateMipmap, 252, 252, 253
GenerateTextureMipmap, 252, 252, 253
GenFramebuffers, 287, 288, 290, 290

GenLists, 652
GenProgramPipelines, 114, 115–118,

159, 388
GenQueries, 41, 41–43, 49
GenRenderbuffers, 298, 299, 299, 300
GenSamplers, 173, 173–177
GenTextures, 169, 169, 170, 172, 260,

655
GenTransformFeedbacks, 422, 422–424
GenVertexArrays, 334, 334, 335
GEOMETRY INPUT TYPE, 157, 158,

411, 593
GEOMETRY OUTPUT TYPE, 157,

158, 413, 593
GEOMETRY SHADER, 85, 144, 145,

410, 590
GEOMETRY SHADER BIT, 117
GEOMETRY SHADER INVOCA-

TIONS, 157, 158, 593
GEOMETRY SUBROUTINE, 96, 144
GEOMETRY SUBROUTINE -

UNIFORM, 97, 101, 104, 113,
145

GEOMETRY TEXTURE, 548
GEOMETRY VERTICES OUT, 157,

158, 413, 416, 593
GEQUAL, 228, 274, 482, 483
GET TEXTURE IMAGE FORMAT,

551
GET TEXTURE IMAGE TYPE, 551
GetActiveAtomicCounterBufferiv, 130,

131, 598
GetActiveAttrib, 370, 370, 592, 669,

689
GetActiveSubroutineName, 145, 597
GetActiveSubroutineUniformiv, 145,

146, 597
GetActiveSubroutineUniformName,

145, 597
GetActiveUniform, 128, 133, 592, 679

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 742

GetActiveUniformBlockiv, 129, 130,
595, 596

GetActiveUniformBlockName, 129
GetActiveUniformName, 127
GetActiveUniformsiv, 128, 129, 594,

595, 598
GetAttachedShaders, 159, 591
GetAttribLocation, 369, 370, 592
GetBooleani v, 500, 542, 581, 604
GetBooleanv, 14, 346, 500, 541, 557,

570, 581, 587, 588, 607, 612,
614, 632

GetBufferParameteri64v, 78, 565
GetBufferParameteriv, 78, 565, 698
GetBufferPointerv, 80, 80, 565
GetBufferSubData, 79, 79, 565
GetCompressedTexImage, 218, 220,

233, 238, 238, 240, 510, 540
GetCompressedTexSubImage, 240
GetCompressedTextureImage, 238,

238, 239
GetCompressedTextureSubImage, 239
GetDebugMessageLog, 530, 536, 536,

537, 684
GetDoublei v, 542, 566
GetDoublev, 15, 541
GetError, 16, 16, 19, 633
GetFloati v, 542, 566
GetFloatv, 11, 15, 440, 447, 541, 561,

568–570, 580, 581, 612, 613,
629, 684

GetFragDataIndex, 476, 689
GetFragDataLocation, 476, 689
GetFramebufferAttachmentParameteriv,

294, 294, 297, 584, 676, 680,
683, 697

GetFramebufferParameteriv, 293, 293,
294, 298, 583, 664, 697

GetGraphicsResetStatus, 18, 18, 19
GetInteger64i v, 82, 542, 557, 563,

605–608
GetInteger64v, 15, 38, 49, 354, 541,

612, 623, 628, 655
GetIntegeri v, 80, 82, 466, 491, 524,

542, 557, 558, 563, 570, 579,
580, 604–608, 621

GetIntegeriv, 633
GetIntegerv, 15, 19, 49, 124, 135, 138,

140, 142, 168, 174, 194, 291,
298, 299, 356, 363, 418, 433,
488, 491, 497, 499, 508–510,
524, 541, 544, 545, 557, 558,
561, 563, 564, 566–569, 571,
572, 578–583, 585, 587, 588,
591, 605–608, 610–629, 631–
633

GetInternalformati64v, 546, 553
GetInternalformativ, 223, 301, 546, 630
GetMultisamplefv, 380, 445, 446, 632,

677
GetNamedBufferParameteri64v, 78
GetNamedBufferParameteriv, 78
GetNamedBufferPointerv, 80, 80
GetNamedBufferSubData, 79, 79
GetNamedFramebufferAttachmentParameteriv,

294, 294, 297, 697
GetNamedFramebufferParameteriv,

293, 293, 294, 298, 697
GetNamedRenderbufferParameteriv,

303, 303
GetnCompressedTexImage, 238, 238
GetnTexImage, 234, 235, 236, 238, 689
GetnUniformdv, 163
GetnUniformfv, 163
GetnUniformiv, 163
GetnUniformuiv, 163
GetObjectLabel, 537, 538, 562, 565,

574, 577, 583, 586, 589–591,
603, 607

GetObjectPtrLabel, 538, 609

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 743

GetPointerv, 536, 543, 626, 662, 693
GetPolygonStipple, 684
GetProgramBinary, 121, 122, 123, 591,

689
GetProgramInfoLog, 91, 122, 160, 160,

591
GetProgramInterfaceiv, 100, 103, 599
GetProgramiv, 90, 121, 122, 156, 160,

387, 391, 411, 413, 416, 524,
591–594, 596, 598, 696

GetProgramPipelineInfoLog, 160, 161
GetProgramPipelineiv, 159, 160, 388,

590
GetProgramPiplineInfoLog, 590
GetProgramResourceIndex, 101
GetProgramResourceiv, 100, 103, 104,

105, 129–131, 136, 141, 475,
600, 601, 679, 688, 695

GetProgramResourceLocation, 113,
113, 114

GetProgramResourceLocationIndex,
113, 113, 114

GetProgramResourceName, 102
GetProgramStageiv, 164, 597
GetQueryBufferObjecti64v, 47
GetQueryBufferObjectiv, 47
GetQueryBufferObjectui64v, 47
GetQueryBufferObjectuiv, 47
GetQueryIndexediv, 45
GetQueryiv, 46, 628, 633
GetQueryObjecti64v, 47
GetQueryObjectiv, 47, 603
GetQueryObjectui64v, 47
GetQueryObjectuiv, 19, 47, 603
GetRenderbufferParameteriv, 303, 303,

318, 586
GetSamplerParameter, 177
GetSamplerParameterfv, 577
GetSamplerParameterI{i ui}v, 177
GetSamplerParameterIiv, 177

GetSamplerParameterIuiv, 14, 177
GetSamplerParameteriv, 577
GetShaderInfoLog, 86, 160, 160, 589
GetShaderiv, 86, 87, 156, 160, 161, 589
GetShaderPrecisionFormat, 86, 162
GetShaderSource, 161, 589
GetString, 543, 544, 615, 652, 693
GetStringi, 545, 615, 703
GetSubroutineIndex, 144
GetSubroutineUniformLocation, 145,

667
GetSynciv, 19, 36, 40, 40, 609
GetTexImage, 152, 234, 235, 237, 238,

272, 280, 282, 510, 551, 572
GetTexLevelParameter, 232
GetTexLevelParameteriv, 575, 576
GetTexParameter, 231, 261, 282, 319,

551
GetTexParameterfv, 272, 573
GetTexParameterI, 231
GetTexParameteriv, 272, 573, 574
GetTextureImage, 234, 234–238
GetTextureLevelParameter, 232
GetTextureLevelParameter*, 234
GetTextureParameter, 231
GetTextureParameter*, 231
GetTextureParameterI, 231
GetTextureParameteriv, 573
GetTextureSubImage, 237, 240
GetTransformFeedback*, 557
GetTransformFeedbacki64 v, 557, 557,

558
GetTransformFeedbacki v, 557, 557,

558
GetTransformFeedbackiv, 557, 557
GetTransformFeedbackVarying, 377,

377, 593, 683
GetUniform, 592
GetUniformBlockIndex, 129
GetUniformdv, 163

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 744

GetUniformfv, 162
GetUniformIndices, 127, 679
GetUniformiv, 163
GetUniformLocation, 127, 147, 148,

592
GetUniformSubroutineuiv, 163
GetUniformuiv, 163
GetVertexArrayIndexed64iv, 360, 360
GetVertexArrayIndexediv, 360, 360
GetVertexArrayiv, 360
GetVertexAttribdv, 361, 362
GetVertexAttribfv, 361, 362, 602
GetVertexAttribIiv, 361, 362
GetVertexAttribIuiv, 361, 362
GetVertexAttribiv, 361, 362, 562, 563
GetVertexAttribLdv, 361, 362
GetVertexAttribPointerv, 362, 562
gl , 100
GL APPLE flush buffer range, 711
GL APPLE vertex array object, 711
GL ARB arrays of arrays, 722
GL ARB base instance, 720
GL ARB bindless texture, 727
GL ARB blend func extended, 715
GL ARB buffer storage, 685
GL ARB buffer storage, 725
GL ARB cl event, 719
GL ARB clear buffer object, 722
GL ARB clear texture, 685
GL ARB clear texture, 726
GL ARB clip control, 687, 700
GL ARB color buffer float, 708
GL ARB compatibility, 647, 712
GL ARB compressed texture pixel -

storage, 720
GL ARB compute shader, 722
GL ARB compute variable group size,

727
GL ARB conditional render inverted,

688, 699

GL ARB conservative depth, 720
GL ARB copy buffer, 712
GL ARB copy image, 722
GL ARB cull distance, 687, 699
GL ARB debug group, 721
GL ARB debug label, 722
GL ARB debug output, 719, 721
GL ARB debug output2, 721
GL ARB depth buffer float, 709
GL ARB depth clamp, 712
GL ARB depth texture, 705
GL ARB derivative control, 688, 699
GL ARB direct state access, 688, 693,

699
GL ARB draw buffers, 708
GL ARB draw buffers blend, 714
GL ARB draw elements base vertex,

713
GL ARB draw indirect, 717
GL ARB draw instanced, 709, 710
GL ARB enhanced layouts, 686
GL ARB enhanced layouts, 726
GL ARB ES2 compatibility, 718
GL ARB ES3 1 compatibility, 688,

700
GL ARB ES3 compatibility, 723
GL ARB explicit attrib location, 715
GL ARB explicit uniform location,

723
GL ARB fragment coord conventions,

713
GL ARB fragment layer viewport, 723
GL ARB fragment program, 706, 707
GL ARB fragment program shadow,

708
GL ARB fragment shader, 707
GL ARB framebuffer no attachments,

723
GL ARB framebuffer object, 30, 709
GL ARB framebuffer sRGB, 710

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 745

GL ARB geometry shader4, 710
GL ARB get program binary, 718
GL ARB get texture sub image, 688,

699
GL ARB gpu shader5, 717
GL ARB gpu shader fp64, 717
GL ARB half float pixel, 709
GL ARB half float vertex, 710
GL ARB indirect parameters, 727
GL ARB instanced arrays, 710
GL ARB internalformat query, 720
GL ARB internalformat query2, 723
GL ARB invalidate subdata, 724
GL ARB map buffer alignment, 721
GL ARB map buffer range, 710
GL ARB matrix palette, 705
GL ARB multi bind, 686
GL ARB multi draw indirect, 724
GL ARB multi bind, 726
GL ARB multisample, 704
GL ARB multitexture, 704
GL ARB occlusion query, 707
GL ARB occlusion query2, 716
GL ARB pixel buffer object, 709
GL ARB point parameters, 704
GL ARB point sprite, 707
GL ARB program interface query, 724
GL ARB provoking vertex, 713
GL ARB query buffer object, 685
GL ARB query buffer object, 726
GL ARB robust buffer access behav-

ior, 724
GL ARB robustness, 700, 719
GL ARB robustness isolation, 723,

725
GL ARB sample shading, 714
GL ARB sampler objects, 716
GL ARB seamless cube map, 713
GL ARB seamless cubemap per tex-

ture, 727

GL ARB separate shader objects, 718
GL ARB shader atomic counters, 721
GL ARB shader bit encoding, 716
GL ARB shader image load store, 721
GL ARB shader image size, 724
GL ARB shader objects, 707
GL ARB shader precision, 718
GL ARB shader stencil export, 719
GL ARB shader storage buffer object,

724
GL ARB shader subroutine, 717
GL ARB shader texture image sam-

ples, 688, 700
GL ARB shader texture lod, 712
GL ARB shader draw parameters, 727
GL ARB shader group vote, 728
GL ARB shading language 100, 707
GL ARB shading language 420pack,

720
GL ARB shading language include,

715
GL ARB shading language packing,

721
GL ARB shadow, 706, 707
GL ARB shadow ambient, 706
GL ARB sparse texture, 728
GL ARB stencil texturing, 724
GL ARB sync, 713
GL ARB tessellation shader, 717
GL ARB texture barrier, 688, 699
GL ARB texture border clamp, 704
GL ARB texture buffer object, 711
GL ARB texture buffer object rgb32,

717
GL ARB texture buffer range, 725
GL ARB texture compression, 704
GL ARB texture compression bptc,

715
GL ARB texture compression rgtc,

711

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 746

GL ARB texture cube map, 704
GL ARB texture cube map array, 714
GL ARB texture env add, 704
GL ARB texture env combine, 705
GL ARB texture env crossbar, 705
GL ARB texture env dot3, 705
GL ARB texture float, 709
GL ARB texture gather, 714
GL ARB texture mirror clamp to -

edge, 685
GL ARB texture mirrored repeat, 705
GL ARB texture multisample, 713
GL ARB texture non power of two,

707
GL ARB texture query levels, 725
GL ARB texture query lod, 715
GL ARB texture rectangle, 708
GL ARB texture rg, 711
GL ARB texture rgb10 a2ui, 716
GL ARB texture stencil8, 686
GL ARB texture storage, 721
GL ARB texture storage multisample,

725
GL ARB texture swizzle, 716
GL ARB texture view, 722
GL ARB texture mirror clamp to -

edge, 726
GL ARB texture stencil8, 726
GL ARB timer query, 716
GL ARB transform feedback2, 717
GL ARB transform feedback3, 718
GL ARB transform feedback in-

stanced, 720
GL ARB transpose matrix, 704
GL ARB uniform buffer object, 712
GL ARB vertex array bgra, 714
GL ARB vertex array object, 711
GL ARB vertex attrib 64bit, 718
GL ARB vertex attrib binding, 722
GL ARB vertex blend, 705

GL ARB vertex buffer object, 706
GL ARB vertex program, 706
GL ARB vertex shader, 707
GL ARB vertex type 10f 11f 11f rev,

685
GL ARB vertex type 2 10 10 10 rev,

716
GL ARB vertex type 10f 11f 11f rev,

726
GL ARB viewport array, 718
GL ARB window pos, 706
GL ARB name, 703
gl BackColor, 649
gl BackSecondaryColor, 649
gl ClipDistance, 386, 393, 394, 408,

410, 417
gl ClipDistance[], 119, 415, 434
gl CullDistance, 386, 393, 394, 408,

410, 417, 434
gl CullDistance[], 119, 415, 434
GL EXT framebuffer blit, 710
GL EXT framebuffer multisample,

710
GL EXT framebuffer object, 30, 710
GL EXT texture compression rgtc,

711
gl FragCoord, 470
gl FragCoord.z, 636
gl FragDepth, 472, 473, 636
gl FrontFacing, 470
gl in, 392, 393, 407, 408
gl in[], 415
gl InstanceID, 350, 354, 370, 385, 669
gl InvocationID, 391, 393, 395, 414
GL KHR context flush control, 688
GL KHR debug, 722
GL KHR robustness, 688
GL KHR texture compression astc ldr,

721
GL KHR name, 703

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 747

gl Layer, 320, 417, 418, 613
gl MaxPatchVertices, 393, 408, 409
gl NextBuffer, 99, 102, 107, 108, 374
gl NumSamples, 471
gl NumWorkGroups, 524
GL NV depth buffer float, 709
GL NV half float, 710
GL OES sample shading, 693
GL OES sample variables, 693
gl out, 394
gl PatchVerticesIn, 393, 408
gl PerVertex, 120
gl PointCoord, 449
gl PointSize, 386, 393, 394, 408, 410,

415, 417, 448
gl Position, 373, 386, 393, 394, 408,

410, 415, 417, 436, 642
gl PrimitiveID, 393, 408, 417, 471
gl PrimitiveIDIn, 416
gl SampleID, 471, 472
gl SampleMask, 465, 472, 473, 690,

691
gl SampleMaskIn, 471, 472, 690, 693
gl SamplePosition, 471, 472
gl SkipComponents, 428
gl SkipComponents1, 99, 102, 107,

108, 374
gl SkipComponents2, 99, 102, 107,

108, 374
gl SkipComponents3, 99, 102, 107,

108, 374
gl SkipComponents4, 99, 102, 107,

108, 374
gl TessCoord, 397, 408, 639, 698
gl TessLevelInner, 394, 395, 408, 409
gl TessLevelInner[1], 408
gl TessLevelOuter, 394, 395, 408, 409
gl TessLevelOuter[2], 408
gl TessLevelOuter[3], 408
gl VertexID, 350, 353, 370, 385, 471,

669, 697
gl VerticesOut, 655
gl ViewportIndex, 417, 418, 437, 613
gl MaxPatchVertices, 693
GLX ARB create context, 526, 711
GLX ARB create context profile, 647,

715
GLX ARB create context robustness,

719
GLX ARB fbconfig float, 708
GLX ARB framebuffer sRGB, 710
GLX ARB robustness application iso-

lation, 725
GLX ARB robustness share group -

isolation, 725
GREATER, 228, 274, 482, 483
GREEN, 183, 228, 229, 271, 469, 512,

515, 573, 575, 584
GREEN BITS, 651
GREEN INTEGER, 183
GUILTY CONTEXT RESET, 18

HALF FLOAT, 182, 283, 337, 513–515
HIGH FLOAT, 162
HIGH INT, 162
Hint, 539, 652

if, 95, 396
iimage1D, 111
iimage1DArray, 112
iimage2D, 111
iimage2DArray, 112
iimage2DMS, 112
iimage2DMSArray, 112
iimage2DRect, 111
iimage3D, 111
iimageBuffer, 112
iimageCube, 111
iimageCubeArray, 112
image1D, 111

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 748

image1DArray, 111
image2D, 111
image2DArray, 111
image2DMS, 111
image2DMSArray, 111
image2DRect, 111
image3D, 111
IMAGE 1D, 111
IMAGE 1D ARRAY, 111
IMAGE 2D, 111
IMAGE 2D ARRAY, 111
IMAGE 2D MULTISAMPLE, 111
IMAGE 2D MULTISAMPLE AR-

RAY, 111
IMAGE 2D RECT, 111
IMAGE 3D, 111
IMAGE BINDING ACCESS, 604
IMAGE BINDING FORMAT, 604
IMAGE BINDING LAYER, 604
IMAGE BINDING LAYERED, 604
IMAGE BINDING LEVEL, 604
IMAGE BINDING NAME, 604
IMAGE BUFFER, 111
IMAGE CLASS 10 10 10 2, 551
IMAGE CLASS 11 11 10, 551
IMAGE CLASS 1 X 16, 551
IMAGE CLASS 1 X 32, 551
IMAGE CLASS 1 X 8, 551
IMAGE CLASS 2 X 16, 551
IMAGE CLASS 2 X 32, 551
IMAGE CLASS 2 X 8, 551
IMAGE CLASS 4 X 16, 551
IMAGE CLASS 4 X 32, 551
IMAGE CLASS 4 X 8, 551
IMAGE COMPATIBILITY CLASS,

551
IMAGE CUBE, 111
IMAGE CUBE MAP ARRAY, 111
IMAGE FORMAT COMPATIBIL-

ITY BY CLASS, 282, 551

IMAGE FORMAT COMPATIBIL-
ITY BY SIZE, 282, 551

IMAGE FORMAT COMPATI-
BILITY TYPE, 231, 282, 551,
574

IMAGE PIXEL FORMAT, 551
IMAGE PIXEL TYPE, 551
IMAGE TEXEL SIZE, 552
imageBuffer, 111
imageCube, 111
imageCubeArray, 111
IMPLEMENTATION COLOR -

READ FORMAT, 293, 318,
509, 510, 632, 669

IMPLEMENTATION COLOR -
READ TYPE, 293, 318, 510,
632, 669

in, 409
INCR, 482
INCR WRAP, 482
index, 474
IndexPointer, 648
INFO LOG LENGTH, 156, 157, 159,

160, 589–591
InitNames, 651
INNOCENT CONTEXT RESET, 18
INT, 109, 182, 233, 280, 283, 296, 337,

514, 515, 552
int, 109, 120, 136, 368
INT 2 10 10 10 REV, 332, 337, 339,

346
INT IMAGE 1D, 111
INT IMAGE 1D ARRAY, 112
INT IMAGE 2D, 111
INT IMAGE 2D ARRAY, 112
INT IMAGE 2D MULTISAMPLE,

112
INT IMAGE 2D MULTISAMPLE -

ARRAY, 112
INT IMAGE 2D RECT, 111

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 749

INT IMAGE 3D, 111
INT IMAGE BUFFER, 112
INT IMAGE CUBE, 111
INT IMAGE CUBE MAP ARRAY,

112
INT SAMPLER 1D, 110
INT SAMPLER 1D ARRAY, 110
INT SAMPLER 2D, 110
INT SAMPLER 2D ARRAY, 110
INT SAMPLER 2D MULTISAMPLE,

110
INT SAMPLER 2D MULTISAM-

PLE ARRAY, 110
INT SAMPLER 2D RECT, 110
INT SAMPLER 3D, 110
INT SAMPLER BUFFER, 110
INT SAMPLER CUBE, 110
INT SAMPLER CUBE MAP AR-

RAY, 110
INT VEC2, 109
INT VEC3, 109
INT VEC4, 109
INTENSITY, 650
INTERLEAVED ATTRIBS, 157, 166,

374–376, 593
InterleavedArrays, 648
INTERNALFORMAT ALPHA SIZE,

552
INTERNALFORMAT ALPHA TYPE,

552
INTERNALFORMAT BLUE SIZE,

552
INTERNALFORMAT BLUE TYPE,

552
INTERNALFORMAT DEPTH SIZE,

552
INTERNALFORMAT DEPTH TYPE,

552
INTERNALFORMAT GREEN SIZE,

552

INTERNALFORMAT GREEN TYPE,
552

INTERNALFORMAT PREFERRED,
552

INTERNALFORMAT RED SIZE, 552
INTERNALFORMAT RED TYPE,

552
INTERNALFORMAT SHARED -

SIZE, 552
INTERNALFORMAT STENCIL -

SIZE, 552
INTERNALFORMAT STENCIL -

TYPE, 552
INTERNALFORMAT SUPPORTED,

546, 553
interpolateAtCentroid, 468
interpolateAtOffset, 468, 629
interpolateAtSample, 468
INVALID ENUM, 17, 18, 36, 40, 42–

44, 46, 48, 49, 59, 60, 62,
67, 69, 72, 74, 75, 78–80, 85,
88, 93, 95, 101–103, 113, 114,
123, 146, 156, 158, 159, 162,
164, 168, 169, 176–179, 203,
204, 207, 213, 216, 218, 221,
223, 224, 229, 230, 232, 234,
235, 253, 262, 263, 265, 266,
272, 288, 292, 294, 297, 299,
301, 303, 305–307, 317, 331,
333, 338, 339, 350, 354, 360–
362, 365, 375, 399, 424, 425,
433, 446, 449, 457, 486, 488,
495, 498, 504, 505, 509, 511,
519, 522, 531–534, 538, 540,
542–544, 546, 557, 677, 692,
696, 698

INVALID FRAMEBUFFER OPERA-
TION, 18, 208, 214, 318, 511,
519

INVALID INDEX, 102, 163

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 750

INVALID OPERATION, 18, 43, 44,
48, 49, 59, 60, 62, 64, 67–69,
72, 74–80, 86–89, 91–94, 101–
103, 113, 114, 116–118, 121–
123, 133, 135, 139, 143, 146,
147, 156, 158–161, 163, 164,
169, 171, 174–177, 181, 185,
194, 203, 204, 208, 212–214,
216, 218, 219, 221–224, 230,
231, 234–236, 238–240, 253,
257, 260, 262, 264–267, 269,
270, 278, 288, 289, 292, 294,
295, 297–299, 301, 303, 305–
309, 317, 335, 336, 338–345,
350, 352, 354, 358, 360–363,
365, 369–371, 375, 386–388,
390, 391, 411, 418, 423–431,
474, 476, 490, 495, 498, 504,
505, 508–512, 515, 518, 519,
522, 524, 525, 531, 557, 647–
649, 664, 667, 668, 690, 692

INVALID VALUE, 17, 18, 36–38, 40,
42–44, 46, 48, 56, 57, 60, 62,
64, 67–69, 72, 74, 77–79, 82,
85–89, 91–95, 101–103, 113–
118, 121–123, 133, 134, 139,
143, 146, 153, 155, 156, 158,
160–164, 169, 171–174, 176,
178, 203, 207, 208, 213, 214,
216, 221, 223, 224, 230, 234,
236, 238–240, 257, 260, 262,
267, 268, 277, 288, 290, 292,
299–301, 306, 308, 309, 331,
333, 335, 336, 338–345, 350,
352, 353, 356, 358, 359, 361,
362, 365, 369–371, 375, 388,
422–424, 427, 431, 438–440,
446, 448, 449, 451, 463, 464,
466, 474, 485, 486, 488, 493,
498, 500, 501, 504, 505, 518,

522, 524, 525, 531–535, 537,
538, 542, 543, 546, 557, 558,
647, 649, 651, 664, 665, 667,
680, 682, 692, 696, 698

InvalidateBufferData, 77
InvalidateBufferSubData, 76, 77
InvalidateFramebuffer, 506
InvalidateNamedFramebufferData, 505,

506
InvalidateNamedFramebufferSubData,

504, 690
InvalidateSubFramebuffer, 504, 505,

664, 690, 694
InvalidateTexImage, 268
InvalidateTexSubImage, 267, 267, 268
INVERT, 482, 493
IS PER PATCH, 104, 106, 600
IS ROW MAJOR, 104, 106, 129, 600
isampler1D, 110
isampler1DArray, 110
isampler2D, 110
isampler2DArray, 110
isampler2DMS, 110
isampler2DMSArray, 110
isampler2DRect, 110
isampler3D, 110
isamplerBuffer, 110
isamplerCube, 110
isamplerCubeArray, 110
IsBuffer, 57, 57
IsEnabled, 464, 491, 542, 542, 559, 564,

566, 568–570, 579, 580, 602,
626, 633

IsEnabledi, 464, 485, 491, 543, 543,
579, 580

IsFramebuffer, 290, 291
IsList, 652
ISOLINES, 158
isolines, 396, 398, 403, 408
IsProgram, 94, 94

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 751

IsProgramPipeline, 115, 115
IsQuery, 45, 45
IsRenderbuffer, 300, 300
IsSampler, 173, 176, 177
IsShader, 87, 87
IsSync, 40, 40
IsTexture, 172, 172, 655
IsTransformFeedback, 423, 423
IsVertexArray, 336, 336
ivec2, 109, 368
ivec3, 109, 368
ivec4, 109, 280, 368

KEEP, 482, 579
KHR debug, 662
KHR debug output, 670

LAST VERTEX CONVENTION, 418,
432, 567

LAYER PROVOKING VERTEX, 418,
613

Layered images, 293
layout, 99, 100, 106, 107, 118–120, 135,

137–139, 141, 142, 158, 280,
282, 367, 368, 373–377, 390,
391, 394, 396, 398, 399, 402,
403, 411, 413, 414, 470, 474,
476, 524, 690

LEFT, 485, 495, 496, 498, 500, 508
LEQUAL, 228, 271, 274, 482, 483, 574,

577
LESS, 228, 274, 482, 483, 579
LIGHTING, 649
LINE, 459–461, 569
LINE LOOP, 324, 412, 419, 426
LINE SMOOTH, 450, 455, 568
LINE SMOOTH HINT, 540, 610
LINE STIPPLE, 649
LINE STRIP, 157, 324, 412, 419, 426

LINE STRIP ADJACENCY, 328, 412,
419

LINE WIDTH, 568
LINEAR, 208, 228, 230, 242, 247, 248,

250, 252, 253, 255, 271, 296,
379, 517, 519, 548, 550, 573,
577, 683

LINEAR MIPMAP LINEAR, 228,
250, 252

LINEAR MIPMAP NEAREST, 228,
250, 251

LINES, 157, 324, 412, 419, 425, 426
lines, 412
LINES ADJACENCY, 157, 326, 412,

419
lines adjacency, 412
LineStipple, 649
LineWidth, 450, 647, 649
LINK STATUS, 90, 122, 157, 591, 696
LinkProgram, 88, 89, 91–93, 97, 99,

119, 122, 123, 139, 147, 369,
375, 386, 417, 429, 475, 669,
696

ListBase, 652
LoadIdentity, 648
LoadMatrix, 648
LoadName, 651
LoadTransposeMatrix, 648
LOCATION, 104, 106, 113, 475, 600
location, 100, 118, 120, 474, 689
LOCATION COMPONENT, 105, 107,

475, 600
LOCATION INDEX, 105, 107, 113,

475, 600
LOGIC OP MODE, 580
LogicOp, 492, 493
LOSE CONTEXT ON RESET, 19
LOW FLOAT, 162
LOW INT, 162
LOWER LEFT, 433, 435, 437, 449,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 752

456, 566
LUMINANCE, 650
LUMINANCE8, 693
LUMINANCE ALPHA, 650

main, 396
MAJOR VERSION, 544, 615
MANUAL GENERATE MIPMAP,

548
MAP COHERENT BIT, 63, 64, 70, 73,

678, 691, 695
MAP FLUSH EXPLICIT BIT, 71, 73,

74
MAP INVALIDATE BUFFER BIT,

71, 73
MAP INVALIDATE RANGE BIT, 71,

73
MAP PERSISTENT BIT, 63, 64, 68–

70, 73, 74, 76–79
MAP READ BIT, 63–66, 70–73
MAP UNSYNCHRONIZED BIT, 72,

73
MAP WRITE BIT, 63–66, 70–73, 678
MAP COHERENT BIT, 70
MapBuffer, 59, 68, 69, 73, 73, 77, 430
MapBufferRange, 63, 68, 69, 70, 70, 72,

74, 77, 678, 696
MapNamedBuffer, 73, 73
MapNamedBufferRange, 63, 70, 70, 72,

74, 695
matC, 136
matCxR, 136
mat2, 109, 368
mat2x3, 109, 368
mat2x4, 109, 368
mat3, 109, 368
mat3x2, 109, 368
mat3x4, 109, 368
mat4, 109, 368
mat4x2, 109, 368

mat4x3, 109, 368
MATRIX STRIDE, 104, 107, 129, 136,

600
MatrixMode, 648
MAX, 487
MAX 3D TEXTURE SIZE, 202, 233,

307–309, 612
MAX ARRAY TEXTURE LAYERS,

203, 223, 309, 612, 675
MAX ATOMIC COUNTER -

BUFFER BINDINGS, 81,
140, 623

MAX ATOMIC COUNTER -
BUFFER SIZE, 623, 657

MAX ATTRIB STACK DEPTH, 652
MAX CLIENT ATTRIB STACK -

DEPTH, 652
MAX CLIP DISTANCES, 434, 612
MAX COLOR ATTACHMENTS, 287,

297, 305–307, 317, 496, 499,
505, 509, 629

MAX COLOR TEXTURE SAM-
PLES, 555, 628

MAX COMBINED ATOMIC -
COUNTER BUFFERS, 140,
387, 623, 675

MAX COMBINED ATOMIC COUN-
TERS, 384, 387, 623

MAX COMBINED CLIP AND -
CULL DISTANCES, 433, 612

MAX COMBINED COMPUTE UNI-
FORM COMPONENTS, 125,
621

MAX COMBINED DIMENSIONS,
553

MAX COMBINED FRAGMENT -
UNIFORM COMPONENTS,
125, 625

MAX COMBINED GEOMETRY -
UNIFORM COMPONENTS,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 753

125, 625
MAX COMBINED IMAGE UNI-

FORMS, 384, 387, 624, 657
MAX COMBINED IMAGE UNITS -

AND FRAGMENT OUT-
PUTS, 663

MAX COMBINED SHADER OUT-
PUT RESOURCES, 284, 387,
624, 663

MAX COMBINED SHADER STOR-
AGE BLOCKS, 142, 385,
387, 623

MAX COMBINED TESS CON-
TROL UNI-
FORM COMPONENTS, 125,
625

MAX COMBINED TESS EVALUA-
TION UNI-
FORM COMPONENTS, 125,
625

MAX COMBINED TEXTURE IM-
AGE UNITS, 133, 168, 174,
382, 387, 622, 667

MAX COMBINED UNIFORM -
BLOCKS, 135, 387, 622, 669

MAX COMBINED VERTEX UNI-
FORM COMPONENTS, 125,
625

MAX COMPUTE ATOMIC -
COUNTER BUFFERS, 140,
621

MAX COMPUTE ATOMIC COUN-
TERS, 384, 621

MAX COMPUTE IMAGE UNI-
FORMS, 384, 621

MAX COMPUTE SHADER STOR-
AGE BLOCKS, 142, 385, 621

MAX COMPUTE SHARED MEM-
ORY SIZE, 525, 621, 669

MAX COMPUTE TEXTURE IM-

AGE UNITS, 382, 621
MAX COMPUTE UNIFORM -

BLOCKS, 135, 621, 669
MAX COMPUTE UNI-

FORM COMPONENTS, 125,
621, 695

MAX COMPUTE WORK GROUP -
COUNT, 524, 621

MAX COMPUTE WORK GROUP -
INVOCATIONS, 524, 621

MAX COMPUTE WORK GROUP -
SIZE, 524, 621

MAX CUBE MAP TEXTURE SIZE,
202, 233, 260, 307, 309, 612

MAX CULL DISTANCES, 434, 612
MAX DEBUG GROUP STACK -

DEPTH, 533, 627
MAX DEBUG LOGGED MES-

SAGES, 530, 627
MAX DEBUG MESSAGE LENGTH,

529, 532, 533, 627
MAX DEPTH, 554
MAX DEPTH TEXTURE SAMPLES,

555, 628
MAX DRAW BUFFERS, 474, 475,

485, 486, 488, 497, 498, 500,
504, 629

MAX DUAL SOURCE -
DRAW BUFFERS, 474, 475,
488, 490, 629

MAX ELEMENT INDEX, 354, 612
MAX ELEMENTS INDICES, 356,

613
MAX ELEMENTS VERTICES, 356,

613
MAX FRAGMENT ATOMIC -

COUNTER BUFFERS, 140,
620

MAX FRAGMENT ATOMIC COUN-
TERS, 384, 620

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 754

MAX FRAGMENT IMAGE UNI-
FORMS, 384, 624, 657

MAX FRAGMENT -
INPUT COMPONENTS, 472,
620

MAX FRAGMENT INTERPOLA-
TION OFFSET, 468, 629

MAX FRAGMENT SHADER STOR-
AGE BLOCKS, 142, 385, 620

MAX FRAGMENT UNIFORM -
BLOCKS, 135, 620, 669

MAX FRAGMENT UNI-
FORM COMPONENTS, 124,
125, 620

MAX FRAGMENT UNIFORM VEC-
TORS, 124, 620

MAX FRAME-
BUFFER HEIGHT, 292, 313,
628

MAX FRAMEBUFFER LAYERS,
292, 314, 628

MAX FRAMEBUFFER SAMPLES,
292, 314, 628

MAX FRAMEBUFFER WIDTH, 292,
313, 628

MAX GEOMETRY ATOMIC -
COUNTER BUFFERS, 140,
619

MAX GEOMETRY ATOMIC COUN-
TERS, 384, 619

MAX GEOMETRY IMAGE UNI-
FORMS, 384, 624

MAX GEOMETRY -
INPUT COMPONENTS, 416,
619

MAX GEOMETRY OUTPUT COM-
PONENTS, 417, 619

MAX GEOMETRY OUTPUT VER-
TICES, 417, 619

MAX GEOMETRY SHADER INVO-

CATIONS, 619
MAX GEOMETRY SHADER STOR-

AGE BLOCKS, 142, 385, 619
MAX GEOMETRY TEXTURE IM-

AGE UNITS, 382, 619
MAX GEOMETRY TOTAL OUT-

PUT COMPONENTS, 417,
619

MAX GEOMETRY UNIFORM -
BLOCKS, 135, 619, 669

MAX GEOMETRY UNI-
FORM COMPONENTS, 125,
619, 695

MAX HEIGHT, 554
MAX IMAGE SAMPLES, 279, 624
MAX IMAGE UNITS, 133, 148, 275,

277, 624
MAX INTEGER SAMPLES, 302, 555,

628
MAX LABEL LENGTH, 535, 627
MAX LAYERS, 554
MAX NAME LENGTH, 100, 101,

103, 599
MAX NUM ACTIVE VARIABLES,

100, 101, 599
MAX NUM COMPATIBLE SUB-

ROUTINES, 101, 599
MAX PATCH VERTICES, 331, 617
MAX PROGRAM TEXEL OFFSET,

244, 622
MAX PROGRAM TEXTURE -

GATHER OFFSET, 244, 248,
620

MAX RECTANGLE TEXTURE -
SIZE, 203, 614

MAX RENDERBUFFER SIZE, 301,
612

MAX SAMPLE MASK WORDS,
466, 628

MAX SAMPLES, 302, 472, 473, 555,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 755

628
MAX SERVER WAIT TIMEOUT, 38,

628
MAX SHADER STORAGE -

BLOCK SIZE, 142, 623
MAX SHADER STORAGE -

BUFFER BINDINGS, 81,
143, 623

MAX SUBROUTINE UNIFORM -
LOCATIONS, 144, 622

MAX SUBROUTINES, 144, 622
MAX TESS CONTROL ATOMIC -

COUNTER BUFFERS, 140,
617

MAX TESS CONTROL ATOMIC -
COUNTERS, 384, 617

MAX TESS CONTROL IMAGE -
UNIFORMS, 384, 624

MAX TESS CONTROL -
INPUT COMPONENTS, 394,
617

MAX TESS CONTROL OUTPUT -
COMPONENTS, 395, 617

MAX TESS CONTROL SHADER -
STORAGE BLOCKS, 142,
385, 617

MAX TESS CONTROL TEXTURE -
IMAGE UNITS, 381, 617

MAX TESS CONTROL TOTAL -
OUTPUT COMPONENTS,
395, 617, 693

MAX TESS CONTROL UNIFORM -
BLOCKS, 135, 617, 669

MAX TESS CONTROL UNI-
FORM COMPONENTS, 125,
617

MAX TESS EVALUATION -
ATOMIC COUNTER -
BUFFERS, 140, 618

MAX TESS EVALUATION -

ATOMIC COUNTERS, 384,
618

MAX TESS EVALUATION IMAGE -
UNIFORMS, 384, 624

MAX TESS EVALUATION -
INPUT COMPONENTS, 409,
618

MAX TESS EVALUATION OUT-
PUT COMPONENTS, 410,
618

MAX TESS EVALUATION -
SHADER STORAGE -
BLOCKS, 142, 385, 618

MAX TESS EVALUATION TEX-
TURE IMAGE UNITS, 382,
618

MAX TESS EVALUATION UNI-
FORM BLOCKS, 135, 618,
669

MAX TESS EVALUATION UNI-
FORM COMPONENTS, 125,
618

MAX TESS GEN LEVEL, 398, 617
MAX TESS PATCH COMPONENTS,

395, 409, 617
MAX TEXTURE BUFFER SIZE,

225, 614
MAX TEXTURE COORDS, 651
MAX TEXTURE IMAGE UNITS,

382, 620
MAX TEXTURE LOD BIAS, 243,

612
MAX TEXTURE SIZE, 202, 223, 233,

307, 308, 612
MAX TEXTURE UNITS, 651
MAX TRANSFORM FEEDBACK -

BUFFERS, 81, 375, 631
MAX TRANSFORM FEEDBACK -

INTERLEAVED COMPO-
NENTS, 376, 631

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 756

MAX TRANSFORM FEEDBACK -
SEPARATE ATTRIBS, 375,
631

MAX TRANSFORM FEEDBACK -
SEPARATE COMPONENTS,
376, 631

MAX UNIFORM BLOCK SIZE, 135,
622, 694

MAX UNIFORM BUFFER BIND-
INGS, 81, 138, 139, 622, 665

MAX UNIFORM LOCATIONS, 126,
622

MAX VARYING COMPONENTS,
373, 622, 648

MAX VARYING FLOATS, 648
MAX VARYING VECTORS, 373, 622
MAX VERTEX ATOMIC -

COUNTER BUFFERS, 140,
616

MAX VERTEX ATOMIC COUN-
TERS, 384, 616

MAX VERTEX ATTRIB BINDINGS,
340–342, 344, 363, 614

MAX VERTEX ATTRIB RELA-
TIVE OFFSET, 339, 614

MAX VERTEX ATTRIB -
STRIDE, 340, 341, 343, 614,
674, 683

MAX VERTEX ATTRIBS, 331, 333,
334, 338, 342, 343, 345, 361–
363, 369, 371, 616

MAX VERTEX IMAGE UNIFORMS,
384, 624

MAX VERTEX OUTPUT COMPO-
NENTS, 372, 394, 395, 409,
410, 416, 418, 472, 616

MAX VERTEX SHADER STOR-
AGE BLOCKS, 142, 385, 616

MAX VERTEX STREAMS, 41, 43,
44, 46, 431, 619

MAX VERTEX TEXTURE IMAGE -
UNITS, 381, 616

MAX VERTEX UNIFORM -
BLOCKS, 135, 616, 669

MAX VERTEX UNI-
FORM COMPONENTS, 124,
125, 616

MAX VERTEX UNIFORM VEC-
TORS, 124, 616

MAX VIEWPORT DIMS, 440, 506,
613

MAX VIEWPORTS, 437–439, 464,
465, 613

MAX WIDTH, 554
MEDIUM FLOAT, 162
MEDIUM INT, 162
MemoryBarrier, 63, 64, 151, 154, 155
memoryBarrier, 150, 154, 155
MemoryBarrierByRegion, 155, 155
MIN, 487
MIN/MAG, 548
MIN FRAGMENT INTERPOLA-

TION OFFSET, 468, 629
MIN MAP BUFFER ALIGNMENT,

71, 73, 614, 657
MIN PROGRAM TEXEL OFFSET,

244, 622
MIN PROGRAM TEXTURE -

GATHER OFFSET, 244, 248,
620

MIN SAMPLE SHADING VALUE,
447, 570

MINOR VERSION, 544, 615
MinSampleShading, 447
MIPMAP, 554
MIRROR CLAMP TO EDGE, 174,

229, 230, 246, 682, 696
MIRRORED REPEAT, 174, 229, 230,

246
MultiDrawArrays, 352, 668

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 757

MultiDrawArraysIndirect, 349, 352,
668, 698

MultiDrawElements, 348, 356, 668, 697
MultiDrawElementsBaseVertex, 348,

359, 668
MultiDrawElementsIndirect, 349, 358,

668, 698
MULTISAMPLE, 446, 447, 450, 455,

461, 465, 468, 479, 493, 494,
570

MultMatrix, 649
MultTransposeMatrix, 649

NAME LENGTH, 105, 107, 129, 130,
601

NamedBufferData, 65, 65–67
NamedBufferStorage, 62, 62, 64, 65
NamedBufferSubData, 67, 67
NamedFramebufferDrawBuffer, 495,

495
NamedFramebufferDrawBuffers, 497,

497, 498
NamedFramebufferParameteri, 291,

291, 292
NamedFramebufferReadBuffer, 507,

507, 508
NamedFramebufferRenderbuffer, 304,

304, 305
NamedFramebufferTexture, 306, 306,

308, 309
NamedFramebufferTextureLayer, 308
NamedRenderbufferStorage, 302
NamedRenderbufferStorageMultisample,

300, 301
NAND, 493
NEAREST, 228, 230, 242, 245, 250,

252–255, 273, 379, 517, 519,
548

NEAREST MIPMAP -
LINEAR, 228, 250, 252, 271,

577
NEAREST MIPMAP NEAREST, 228,

250, 251, 255, 273, 548, 694
NEGATIVE ONE TO ONE, 433, 435,

437, 566
NEVER, 228, 274, 482, 483
NewList, 652
NICEST, 540
NO ERROR, 16, 18, 19
NO RESET NOTIFICATION, 19
NONE, 99, 214, 228, 233, 270–273,

295–297, 310, 313, 377, 383,
479, 490, 493, 495–499, 503,
504, 508–511, 545, 547, 550–
552, 555, 556, 573–575, 577,
584, 603, 664, 676, 684

NOOP, 493
noperspective, 436
NOR, 493
NORMALIZE, 649
NormalPointer, 648
NOTEQUAL, 228, 274, 482, 483
NULL, 529, 534, 537, 562, 565, 626
NUM ACTIVE VARIABLES, 104,

105, 107, 130, 131, 601
NUM COMPATIBLE SUBROU-

TINES, 104, 146, 597, 601
NUM COMPRESSED TEX-

TURE FORMATS, 194, 614,
648, 654

NUM EXTENSIONS, 545, 615
NUM PROGRAM BINARY FOR-

MATS, 123, 614
NUM SAMPLE COUNTS, 554, 630
NUM SHADER BINARY FOR-

MATS, 83, 87, 614
NUM SHADING LANGUAGE VER-

SIONS, 545, 615, 665

OBJECT TYPE, 36, 40, 609

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 758

ObjectLabel, 534, 535, 537
ObjectPtrLabel, 535
OFFSET, 105, 107, 129, 601
ONE, 228, 229, 469, 487, 489, 490, 580
ONE MINUS CONSTANT ALPHA,

489
ONE MINUS CONSTANT COLOR,

489
ONE MINUS DST ALPHA, 489
ONE MINUS DST COLOR, 489
ONE MINUS SRC1 ALPHA, 488, 489
ONE MINUS SRC1 COLOR, 488,

489
ONE MINUS SRC ALPHA, 489
ONE MINUS SRC COLOR, 489
OR, 493
OR INVERTED, 493
OR REVERSE, 493
Ortho, 649
out, 394
OUT OF MEMORY, 16–18, 675, 678

PACK ALIGNMENT, 510, 588
PACK COMPRESSED BLOCK -

DEPTH, 239, 240, 510, 588
PACK COMPRESSED BLOCK -

HEIGHT, 239, 240, 510, 588
PACK COMPRESSED BLOCK SIZE,

239, 510, 588
PACK COMPRESSED BLOCK -

WIDTH, 239, 240, 510, 588
PACK IMAGE HEIGHT, 235, 239,

510, 588
PACK LSB FIRST, 510, 588, 648, 662,

670
PACK ROW LENGTH, 239, 510, 588
PACK SKIP IMAGES, 235, 239, 510,

588
PACK SKIP PIXELS, 239, 510, 588
PACK SKIP ROWS, 239, 510, 588

PACK SWAP BYTES, 510, 588
PassThrough, 651
patch, 106, 391
patch in, 409
patch out, 395
PATCH DE-

FAULT INNER LEVEL, 398,
399, 561

PATCH DEFAULT OUTER LEVEL,
398, 399, 561

PATCH VERTICES, 330, 331, 561
PATCHES, 330, 346, 390, 391, 612
PatchParameterfv, 398
PatchParameteri, 330, 407
PauseTransformFeedback, 425, 426
PERSPECTIVE CORRECTION -

HINT, 652
PIXEL BUFFER BARRIER BIT, 152
PIXEL PACK BUFFER, 58, 152, 179,

509
PIXEL PACK BUFFER BINDING,

235, 515, 588
PIXEL UNPACK BUFFER, 58, 152,

179
PIXEL UNPACK BUFFER BIND-

ING, 181, 215, 587
PixelStore, 178, 510, 522, 682
PixelStore*, 178
PixelZoom, 650
POINT, 459–461, 569
POINT FADE THRESHOLD SIZE,

449, 568
point mode, 399
POINT SIZE, 568
POINT SIZE GRANULARITY, 613
POINT SIZE RANGE, 613
POINT SMOOTH, 649
POINT SMOOTH HINT, 652
POINT SPRITE, 649
POINT SPRITE COORD ORIGIN,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 759

449, 568
PointParameter, 448
POINTS, 157, 324, 411, 412, 419, 425,

426, 459
points, 411, 415
PointSize, 448
POLYGON, 650
POLYGON MODE, 569
POLYGON OFFSET FACTOR, 569
POLYGON OFFSET FILL, 461, 569
POLYGON OFFSET LINE, 461, 569
POLYGON OFFSET POINT, 461, 569
POLYGON OFFSET UNITS, 569
POLYGON SMOOTH, 456, 461, 569
POLYGON SMOOTH HINT, 540, 610
POLYGON STIPPLE, 650
PolygonMode, 459, 459–462, 650
PolygonOffset, 460
PolygonStipple, 650
PopAttrib, 652
PopClientAttrib, 652
PopDebugGroup, 533, 533
PopMatrix, 649
PopName, 651
PRIMITIVE RESTART, 345, 346, 564
PRIMITIVE RESTART FIXED IN-

DEX, 346, 564, 684
PRIMITIVE RESTART FOR -

PATCHES SUPPORTED,
346, 612, 680

PRIMITIVE RESTART INDEX, 564
PrimitiveRestartIndex, 345, 346
PRIMITIVES GENERATED, 41–44,

46, 431
PrioritizeTextures, 651
PROGRAM, 534
PROGRAM BINARY FORMATS,

123, 614
PROGRAM BINARY LENGTH, 121,

122, 591

PROGRAM BINARY RE-
TRIEVABLE HINT, 93, 123,
158, 591

PROGRAM INPUT, 96, 99, 104, 105,
113, 370, 371, 669

PROGRAM OUTPUT, 96, 99, 104,
105, 113, 475, 476, 669

PROGRAM PIPELINE, 534
PROGRAM PIPELINE BINDING,

591
PROGRAM POINT SIZE, 415, 448,

602
PROGRAM SEPARABLE, 93, 94,

117, 158, 386, 591, 656
ProgramBinary, 91–93, 122, 122, 123,

429, 669, 674
ProgramParameteri, 93, 123
ProgramUniform, 134
ProgramUniform{1234}ui, 134
ProgramUniform{1234}uiv, 134
ProgramUniformMatrix{234}, 134
ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3},

134
PROVOKING VERTEX, 418, 567
ProvokingVertex, 418, 432
PROXY TEXTURE 1D, 194, 205, 232,

262, 272
PROXY TEXTURE 1D ARRAY, 194,

204, 232, 263, 264, 272
PROXY TEXTURE 2D, 194, 204, 232,

263, 272
PROXY TEXTURE 2D ARRAY, 192,

194, 232, 264, 265, 272
PROXY TEXTURE 2D MULTI-

SAMPLE, 194, 222, 232, 265,
266, 272

PROXY TEXTURE 2D MULTISAM-
PLE ARRAY, 194, 222, 232,
266, 272

PROXY TEXTURE 3D, 192, 232, 264,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 760

265, 272
PROXY TEXTURE CUBE MAP, 194,

204, 232, 263, 272
PROXY TEXTURE CUBE -

MAP ARRAY, 192, 194, 203,
232, 264, 265, 272

PROXY TEXTURE RECTANGLE,
194, 204, 216, 221, 232, 263,
272

PushAttrib, 652
PushClientAttrib, 652
PushDebugGroup, 532, 533
PushMatrix, 649
PushName, 651

QUAD STRIP, 650
QUADS, 158, 596, 650
quads, 396, 398, 399, 402, 408
QUERY, 534
QUERY BUFFER, 58, 153
QUERY BUFFER BARRIER BIT,

153
QUERY BUFFER BINDING, 633
QUERY BY REGION NO WAIT,

364, 365
QUERY BY REGION NO WAIT IN-

VERTED, 364, 365
QUERY BY REGION WAIT, 364, 365
QUERY BY REGION WAIT IN-

VERTED, 364, 365
QUERY COUNTER BITS, 46, 628
QUERY NO WAIT, 364, 365
QUERY NO WAIT INVERTED, 364,

365
QUERY RESULT, 42, 47, 48, 603
QUERY RESULT -

AVAILABLE, 19, 42, 47, 48,
603, 681

QUERY RESULT NO WAIT, 48
QUERY TARGET, 47, 48, 603

QUERY WAIT, 364, 365
QUERY WAIT INVERTED, 364, 365
QueryCounter, 41, 49, 49

R11F G11F B10F, 196, 198, 259, 281,
283

r11f g11f b10f, 281
R16, 197, 226, 259, 281, 284
r16, 281
R16 SNORM, 197, 259, 282, 284
r16 snorm, 282
R16F, 198, 226, 259, 281, 283
r16f, 281
R16I, 198, 226, 259, 281, 283
r16i, 281
R16UI, 198, 226, 259, 281, 283
r16ui, 281
R32F, 198, 226, 259, 281, 283
r32f, 281
R32I, 198, 226, 259, 281, 283
r32i, 281
R32UI, 198, 226, 259, 281, 283
r32ui, 281
R3 G3 B2, 197
R8, 197, 226, 259, 270, 277, 281, 284,

575, 604
r8, 281
R8 SNORM, 197, 259, 282, 284
r8 snorm, 282
R8I, 198, 226, 259, 281, 283
r8i, 281
R8UI, 198, 226, 259, 281, 283
r8ui, 281
RASTERIZER DISCARD, 318, 443,

568
READ BUFFER, 508, 583
READ FRAMEBUFFER, 287, 288,

290–294, 297, 304–307, 317,
505, 507, 516, 582

READ FRAMEBUFFER BINDING,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 761

208, 214, 291, 318, 509, 511,
512, 582

READ ONLY, 58, 72–74, 276, 277, 604
READ PIXELS, 548
READ PIXELS FORMAT, 555
READ PIXELS TYPE, 555
READ WRITE, 58, 65, 72–74, 276,

277, 565
ReadBuffer, 496, 507, 507, 684
ReadnPixels, 509, 509
ReadPixels, 152, 177, 178, 185, 207,

235, 318, 320, 429, 507, 508,
509, 509–513, 515, 555, 650

RED, 183, 194, 197, 198, 201, 228, 229,
237, 241, 271, 283, 284, 313,
469, 470, 512, 515, 573, 575,
584

RED BITS, 651
RED INTEGER, 183, 283
REFERENCED BY COMPUTE -

SHADER, 105, 108, 130, 131,
601

REFERENCED BY FRAGMENT -
SHADER, 105, 108, 130, 131,
601

REFERENCED BY GEOMETRY -
SHADER, 105, 108, 130, 131,
601

REFERENCED BY TESS CON-
TROL SHADER, 105, 108,
130, 131, 601

REFERENCED BY TESS EVAL-
UATION SHADER, 105, 108,
130, 131, 601

REFERENCED -
BY VERTEX SHADER, 105,
107, 130, 131, 601

ReleaseShaderCompiler, 86, 86
RENDERBUFFER, 295, 296, 298–301,

303–305, 318, 520, 522, 534,

547, 554, 555, 585
RENDERBUFFER ALPHA SIZE,

303, 586
RENDERBUFFER BINDING, 299,

585
RENDERBUFFER BLUE SIZE, 303,

586
RENDERBUFFER DEPTH SIZE,

303, 586
RENDERBUFFER GREEN SIZE,

303, 586
RENDERBUFFER HEIGHT, 301, 303,

586
RENDERBUFFER INTERNAL FOR-

MAT, 301, 303, 586
RENDERBUFFER RED SIZE, 303,

586
RENDERBUFFER SAMPLES, 298,

301, 303, 315, 586
RENDERBUFFER STENCIL SIZE,

303, 586
RENDERBUFFER WIDTH, 301, 303,

586
RenderbufferStorage, 302, 553
RenderbufferStorage*, 316
RenderbufferStorageMultisample, 291,

300, 301, 553, 675
RENDERER, 543, 544, 615
RenderMode, 651
REPEAT, 174, 229, 230, 246, 271, 577
REPLACE, 482
RESCALE NORMAL, 649
RESET NOTIFICATION STRATEGY,

19, 633
ResumeTransformFeedback, 425, 425,

426, 429, 690
RG, 183, 194, 197, 198, 201, 237, 283,

284, 313, 470, 512, 515
RG16, 197, 226, 259, 281, 283
rg16, 281

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 762

RG16 SNORM, 197, 259, 281, 284
rg16 snorm, 281
RG16F, 198, 226, 259, 281, 283
rg16f, 281
RG16I, 198, 226, 259, 281, 283
rg16i, 281
RG16UI, 198, 226, 259, 281, 283
rg16ui, 281
RG32F, 198, 226, 259, 281, 283, 521
rg32f, 281
RG32I, 198, 226, 259, 281, 283, 521
rg32i, 281
RG32UI, 198, 226, 259, 281, 283, 521
rg32ui, 281
RG8, 197, 226, 259, 281, 283
rg8, 281
RG8 SNORM, 197, 259, 282, 284
rg8 snorm, 282
RG8I, 198, 226, 259, 281, 283
rg8i, 281
RG8UI, 198, 226, 259, 281, 283
rg8ui, 281
RG INTEGER, 183, 283
RGB, 183, 186, 191, 194, 197–199,

201, 237, 283, 313, 470, 489,
512, 513, 515

RGB10, 197
RGB10 A2, 198, 259, 281, 283
rgb10 a2, 281
RGB10 A2UI, 198, 259, 281, 283
rgb10 a2ui, 281
RGB12, 197
RGB16, 197, 259
RGB16 SNORM, 197, 259
RGB16F, 198, 259
RGB16I, 199, 259
RGB16UI, 199, 259
RGB32F, 198, 226, 259
RGB32I, 199, 226, 259
RGB32UI, 199, 226, 259

RGB4, 197, 675
RGB5, 197
RGB565, 197, 675
RGB5 A1, 197
RGB8, 197, 259
RGB8 SNORM, 197, 259
RGB8I, 198, 259
RGB8UI, 198, 259
RGB9 E5, 196, 198, 259, 274, 513, 664
RGB INTEGER, 183, 186
RGBA, 183, 186, 191, 194, 197–199,

201, 237, 269, 270, 280, 283,
284, 313, 470, 512, 575, 586,
650

RGBA12, 198
RGBA16, 198, 226, 259, 281, 283, 521
rgba16, 281
RGBA16 SNORM, 198, 259, 281, 284,

521
rgba16 snorm, 281
RGBA16F, 198, 226, 259, 281, 283, 521
rgba16f, 281
RGBA16I, 199, 226, 259, 281, 283, 521
rgba16i, 281
RGBA16UI, 199, 226, 259, 281, 283,

521
rgba16ui, 281
RGBA2, 197
RGBA32F, 198, 226, 259, 281, 283, 521
rgba32f, 281
RGBA32I, 199, 226, 259, 281, 283, 521
rgba32i, 281
RGBA32UI, 199, 226, 259, 281, 283,

521
rgba32ui, 281
RGBA4, 197
RGBA8, 198, 226, 259, 281, 283
rgba8, 281
RGBA8 SNORM, 198, 259, 281, 284
rgba8 snorm, 281

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 763

RGBA8I, 199, 226, 259, 281, 283
rgba8i, 281
RGBA8UI, 199, 226, 259, 281, 283
rgba8ui, 281
RGBA INTEGER, 183, 186, 280, 283
RIGHT, 485, 495, 496, 498, 500, 508
Rotate, 649

sample, 468, 472
sample in, 447, 468
SAMPLE ALPHA TO COVERAGE,

479, 570
SAMPLE ALPHA TO ONE, 479, 481,

570
SAMPLE BUFFERS, 149, 208, 214,

293, 294, 298, 445, 450, 455,
461, 465, 479, 483, 493, 494,
501, 509, 510, 518, 632, 681,
684, 697

SAMPLE COVERAGE, 465, 472, 570
SAMPLE COVERAGE INVERT, 465,

466, 570
SAMPLE COVERAGE VALUE, 465,

466, 570
SAMPLE MASK, 465, 472, 570
SAMPLE MASK VALUE, 15, 465,

466, 570, 656
SAMPLE POSITION, 294, 445, 446,

632, 693
SAMPLE SHADING, 447, 570
SampleCoverage, 466
SampleMaski, 466
SAMPLER, 534
sampler*, 147
sampler*Shadow, 382
sampler1D, 110
sampler1DArray, 110
sampler1DArrayShadow, 110
sampler1DShadow, 110
sampler2D, 110, 147

sampler2DArray, 110
sampler2DArrayShadow, 110
sampler2DMS, 110
sampler2DMSArray, 110
sampler2DRect, 110
sampler2DRectShadow, 110
sampler2DShadow, 110
sampler3D, 110
SAMPLER 1D, 110
SAMPLER 1D ARRAY, 110
SAMPLER 1D ARRAY SHADOW,

110
SAMPLER 1D SHADOW, 110
SAMPLER 2D, 110
SAMPLER 2D ARRAY, 110
SAMPLER 2D ARRAY SHADOW,

110
SAMPLER 2D MULTISAMPLE, 110
SAMPLER 2D MULTISAMPLE AR-

RAY, 110
SAMPLER 2D RECT, 110
SAMPLER 2D RECT SHADOW, 110
SAMPLER 2D SHADOW, 110
SAMPLER 3D, 110
SAMPLER BINDING, 174, 558, 572
SAMPLER BUFFER, 110
SAMPLER CUBE, 110
SAMPLER CUBE MAP ARRAY, 110
SAMPLER CUBE MAP ARRAY -

SHADOW, 110
SAMPLER CUBE SHADOW, 110
samplerBuffer, 110
samplerCube, 110
samplerCubeArray, 110
samplerCubeArrayShadow, 110
samplerCubeShadow, 110
SamplerParameter, 175
SamplerParameterI{i ui}v, 175
SamplerParameterIiv, 175
SamplerParameterIuiv, 175

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 764

SamplerParameteriv, 176, 675
SAMPLES, 223, 293, 294, 298, 445–

447, 484, 518, 519, 554, 555,
630, 632, 681

SAMPLES PASSED, 41–44, 46, 364,
365, 483

Scale, 649
Scissor, 463, 464
SCISSOR BOX, 579
SCISSOR TEST, 464, 465, 579
ScissorArrayv, 463, 463
ScissorIndexed, 463, 464
ScissorIndexedv, 463, 464
SecondaryColorPointer, 648
SelectBuffer, 651
SEPARATE ATTRIBS, 157, 374–376
SET, 493
ShadeModel, 649
SHADER, 534
SHADER BINARY FORMATS, 88,

614
SHADER COMPILER, 83, 614
SHADER IMAGE ACCESS BAR-

RIER BIT, 152, 154, 155
SHADER IMAGE ATOMIC, 548
SHADER IMAGE LOAD, 548
SHADER IMAGE STORE, 548
SHADER SOURCE LENGTH, 156,

161, 589
SHADER STORAGE BARRIER BIT,

153, 155
SHADER -

STORAGE BLOCK, 97, 101,
104, 105

SHADER STORAGE BUFFER, 58,
59, 142, 143, 679

SHADER STORAGE BUFFER -
BINDING, 81, 606

SHADER STORAGE BUFFER OFF-
SET ALIGNMENT, 81, 623,

694, 698
SHADER STORAGE BUFFER SIZE,

81, 606
SHADER STORAGE BUFFER -

START, 81, 606
SHADER TYPE, 156, 165, 589
ShaderBinary, 87, 88, 667
ShaderSource, 85, 85, 86, 161
ShaderStorageBlockBinding, 142, 142,

679
SHADING LANGUAGE VERSION,

543–546, 615, 665
shared, 124, 525, 691
SHORT, 182, 283, 284, 337, 514, 515
SIGNALED, 19, 36, 40
SIGNED NORMALIZED, 233, 296,

552
SIMULTANEOUS TEXTURE AND -

DEPTH TEST, 549
SIMULTANEOUS TEXTURE AND -

DEPTH WRITE, 549
SIMULTANEOUS TEXTURE AND -

STENCIL TEST, 549
SIMULTANEOUS TEXTURE AND -

STENCIL WRITE, 549
SMOOTH LINE WIDTH GRANU-

LARITY, 613
SMOOTH LINE WIDTH RANGE,

613
SRC1 ALPHA, 488–490
SRC1 COLOR, 488–490
SRC ALPHA, 489, 490
SRC ALPHA SATURATE, 489
SRC COLOR, 489, 490
SRGB, 208, 275, 296, 486, 491, 492,

517, 550
SRGB8, 198, 259, 275
SRGB8 ALPHA8, 198, 259, 275
SRGB ALPHA, 275
SRGB READ, 549

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 765

SRGB WRITE, 549
STACK OVERFLOW, 18, 533, 662,

666
STACK UNDERFLOW, 18, 533, 662,

666
STATIC COPY, 58, 66
STATIC DRAW, 58, 66, 565
STATIC READ, 58, 66
std140, 124, 137, 138, 141, 691
std430, 138, 141
STENCIL, 295, 503–505, 575, 584
STENCIL ATTACHMENT, 289, 305,

314
STENCIL BACK FAIL, 579
STENCIL BACK FUNC, 579
STENCIL BACK PASS DEPTH -

FAIL, 579
STENCIL BACK PASS DEPTH -

PASS, 579
STENCIL BACK REF, 579
STENCIL BACK VALUE MASK, 579
STENCIL BACK WRITEMASK, 581
STENCIL BITS, 651
STENCIL -

BUFFER BIT, 501, 504, 516,
518, 519

STENCIL CLEAR VALUE, 581
STENCIL COMPONENTS, 555
STENCIL FAIL, 579
STENCIL FUNC, 579
STENCIL INDEX, 183, 193, 194, 200,

204, 207, 228, 235, 236, 254,
255, 269, 273, 313, 383, 511,
512, 694

STENCIL INDEX1, 200
STENCIL INDEX16, 200
STENCIL INDEX4, 200
STENCIL INDEX8, 200, 664
STENCIL PASS DEPTH FAIL, 579
STENCIL PASS DEPTH PASS, 579

STENCIL REF, 579
STENCIL RENDERABLE, 556
STENCIL TEST, 481, 579
STENCIL VALUE MASK, 579
STENCIL WRITEMASK, 15, 581
StencilFunc, 481, 481, 482, 641
StencilFuncSeparate, 481, 481, 482
StencilMask, 500, 500, 501, 641
StencilMaskSeparate, 500, 500, 501
StencilOp, 481, 481, 482
StencilOpSeparate, 481, 481, 482
STEREO, 293, 632
STREAM COPY, 58, 66
STREAM DRAW, 58, 66
STREAM READ, 58, 66
SUBPIXEL BITS, 612
switch, 396
SYNC CONDITION, 36, 40, 609
SYNC FENCE, 36, 40, 609
SYNC FLAGS, 36, 40, 609, 691
SYNC FLUSH COMMANDS BIT,

37–39, 691
SYNC GPU COMMANDS COM-

PLETE, 36, 40, 64, 609
SYNC STATUS, 19, 36, 40, 609

TESS CONTROL OUTPUT VER-
TICES, 158, 391, 596

TESS CONTROL SHADER, 85, 144,
145, 391, 590

TESS CONTROL SHADER BIT, 117
TESS CONTROL SUBROUTINE, 96,

144
TESS CONTROL SUBROUTINE -

UNIFORM, 97, 101, 104, 113,
145

TESS CONTROL TEXTURE, 549
TESS EVALUATION -

SHADER, 85, 144, 145, 405,
590

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 766

TESS EVALUATION SHADER BIT,
117

TESS EVALUATION SUBROUTINE,
96, 144

TESS EVALUATION SUBROU-
TINE UNIFORM, 97, 101,
104, 113, 145

TESS EVALUATION TEXTURE, 549
TESS GEN MODE, 158, 159, 596
TESS GEN POINT MODE, 158, 159,

596
TESS GEN SPACING, 158, 159, 596
TESS GEN VERTEX ORDER, 158,

159, 596
TexBuffer, 225, 553
TexBufferRange, 224, 224
TexCoordPointer, 648
texelFetch, 379, 693
TexEnv, 651
TexImage, 168, 211, 269
TexImage*D, 177, 179, 215
TexImage1D, 199, 205, 205, 208, 209,

215, 219, 251, 272, 553
TexImage2D, 199, 203, 204, 204, 205,

207, 211, 215, 219, 251, 272,
280, 553

TexImage2DMultisample, 222, 222,
265, 272, 291, 553, 679

TexImage3D, 192, 193, 199, 202–205,
215, 219, 235, 251, 269, 271,
272, 553, 675

TexImage3DMultisample, 222, 222,
223, 266, 272, 553, 675, 679

TexParameter, 53, 168, 176, 227, 651
TexParameter*, 675
TexParameterI, 227
TexParameterIiv, 228
TexParameterIuiv, 228
TexParameteriv, 228
TexStorage, 269

TexStorage1D, 262, 262, 553
TexStorage2D, 262, 263, 553
TexStorage2DMultisample, 265, 265,

266, 553
TexStorage3D, 264, 264, 265, 553
TexStorage3DMultisample, 266, 266,

553
TexSubImage, 152
TexSubImage1D, 209, 210
TexSubImage2D, 209, 210, 211, 257
TexSubImage3D, 209, 210, 212, 237,

267, 268, 270, 283
TEXTURE, 295, 296, 310, 319, 534
TEXTURE0, 168, 170, 578
TEXTURE x SIZE, 575
TEXTURE x TYPE, 575
TEXTURE xD, 572
TEXTURE 1D, 169, 193, 205, 208,

210, 227, 231, 232, 234, 235,
238, 252, 258, 260, 262, 279,
308, 547, 651

TEXTURE 1D ARRAY, 169, 193, 204,
207, 210, 227, 231, 232, 234,
235, 238, 252, 258, 261, 263,
264, 279, 547, 571, 572, 651

TEXTURE 2D, 147, 169, 193, 204,
207, 210, 227, 231, 232, 234,
235, 238, 252, 258, 260, 263,
279, 308, 547, 651

TEXTURE 2D ARRAY, 169, 192, 193,
203, 210, 219, 221, 227, 231,
232, 234, 235, 252, 258, 260,
261, 264, 265, 279, 547, 571,
572, 651

TEXTURE 2D MULTISAMPLE, 169,
193, 222, 227, 230–233, 258,
260, 265, 266, 268, 279, 307,
308, 547, 554, 555, 571

TEXTURE 2D MULTISAMPLE AR-
RAY, 169, 193, 222, 227, 230–

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 767

233, 258, 261, 266, 268, 279,
547, 554, 555, 571

TEXTURE 3D, 169, 192, 210, 227,
231–235, 252, 258, 260, 264,
265, 272, 279, 307, 308, 547,
651

TEXTURE ALPHA SIZE, 233
TEXTURE ALPHA TYPE, 233
TEXTURE BASE LEVEL, 228–230,

256, 271, 573
TEXTURE BINDING xD, 571
TEXTURE BINDING 1D, 558
TEXTURE BINDING 1D ARRAY,

558, 571
TEXTURE BINDING 2D, 558
TEXTURE BINDING 2D ARRAY,

558, 571
TEXTURE BINDING 2D MULTI-

SAMPLE, 558, 571
TEXTURE BINDING 2D MULTI-

SAMPLE ARRAY, 558, 571
TEXTURE BINDING 3D, 558
TEXTURE BINDING BUFFER, 558,

571
TEXTURE BINDING CUBE MAP,

558, 571
TEXTURE BINDING CUBE MAP -

ARRAY, 558, 571
TEXTURE BINDING RECTANGLE,

558, 571
TEXTURE BLUE SIZE, 233
TEXTURE BLUE TYPE, 233
TEXTURE BORDER COLOR,

175–177, 228, 230, 231, 246,
247, 271, 573, 577

TEXTURE BUFFER, 58, 169, 224,
227, 232, 233, 258, 268, 279,
520, 522, 547, 571

TEXTURE BUFFER BINDING, 633,
681

TEXTURE BUFFER DATA STORE -
BINDING, 576

TEXTURE BUFFER OFFSET, 576
TEXTURE BUFFER OFF-

SET ALIGNMENT, 224, 614,
694, 698

TEXTURE BUFFER SIZE, 576
TEXTURE COMPARE FAIL -

VALUE ARB, 706
TEXTURE COMPARE FUNC, 228,

271, 273, 574, 577
TEXTURE COMPARE MODE,

228, 271, 273, 382, 383, 574,
577

TEXTURE COMPONENTS, 650
TEXTURE COMPRESSED, 556, 576
TEXTURE COMPRESSED BLOCK -

HEIGHT, 556
TEXTURE COMPRESSED BLOCK -

SIZE, 556
TEXTURE COMPRESSED BLOCK -

WIDTH, 556
TEXTURE COMPRESSED -

IMAGE SIZE, 218, 220, 233,
234, 239, 576

TEXTURE COMPRESSION HINT,
540, 610

TEXTURE CUBE MAP, 169,
193, 205, 210, 213, 221, 227,
231–234, 236, 238, 239, 252,
253, 257, 258, 260, 261, 263,
279, 547, 571, 651, 689, 692

TEXTURE CUBE MAP ARRAY, 169,
192, 194, 202, 203, 205, 210,
213, 221, 227, 231–236, 238,
239, 252, 253, 257, 258, 260,
261, 264, 265, 279, 547, 571,
572, 689, 692

TEXTURE CUBE MAP NEGA-
TIVE X, 241, 321, 572

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 768

TEXTURE CUBE MAP NEGA-
TIVE Y, 241, 321, 572

TEXTURE CUBE MAP NEGA-
TIVE Z, 241, 321, 572

TEXTURE CUBE MAP POS-
ITIVE X, 232, 241, 277, 321,
572

TEXTURE CUBE -
MAP POSITIVE Y, 241, 321,
572

TEXTURE CUBE -
MAP POSITIVE Z, 241, 321,
572

TEXTURE CUBE MAP SEAMLESS,
242, 633

TEXTURE DEPTH, 218, 220, 234, 575
TEXTURE DEPTH SIZE, 233
TEXTURE DEPTH TYPE, 233
TEXTURE ENV, 651
TEXTURE FETCH BARRIER BIT,

152, 155
TEXTURE FILTER CONTROL, 651
TEXTURE FIXED SAMPLE -

LOCATIONS, 223, 233, 315,
575

TEXTURE GATHER, 550
TEXTURE GATHER SHADOW, 550
TEXTURE GREEN SIZE, 233
TEXTURE GREEN TYPE, 233
TEXTURE HEIGHT, 213, 218, 220,

222, 223, 234, 575
TEXTURE IMAGE FORMAT, 556
TEXTURE IMAGE TYPE, 556
TEXTURE IMMUTABLE FORMAT,

223, 231, 257, 260, 261, 271,
574

TEXTURE IMMUTABLE LEVELS,
231, 251, 257, 261, 271, 574

TEXTURE INTERNAL FORMAT,
218, 220, 223, 234, 575, 650

TEXTURE LOD BIAS, 228, 243, 573,
577, 651

TEXTURE MAG FILTER, 228, 253,
271, 273, 573, 577

TEXTURE -
MAX LEVEL, 228–230, 256,
271, 573

TEXTURE MAX LOD, 228, 229, 271,
573, 577

TEXTURE MIN FILTER, 173, 228,
230, 245, 247, 250, 253–255,
271, 273, 573, 577

TEXTURE MIN LOD, 228, 229, 271,
573, 577

TEXTURE PRIORITY, 651
TEXTURE RECTANGLE, 169, 193,

203, 204, 207, 210, 214, 216,
219, 221, 227, 230–236, 238,
258, 260, 263, 268, 279, 307,
308, 547, 571, 572

TEXTURE RECTANGLE ARB, 708
TEXTURE RED SIZE, 233
TEXTURE RED TYPE, 233
TEXTURE SAMPLES, 222, 223, 233,

298, 315, 575
TEXTURE SHADOW, 550
TEXTURE SHARED SIZE, 233, 575
TEXTURE STENCIL SIZE, 233
TEXTURE SWIZZLE A, 228, 229,

271, 469, 573
TEXTURE SWIZZLE B, 228, 271,

469, 573
TEXTURE SWIZZLE G, 228, 271,

469, 573
TEXTURE SWIZZLE R, 228, 271,

469, 573
TEXTURE SWIZZLE RGBA, 176,

228–230
TEXTURE TARGET, 210, 231, 237,

238, 240, 573

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 769

TEXTURE UPDATE BARRIER BIT,
152

TEXTURE VIEW, 550
TEXTURE VIEW MIN LAYER, 231,

257, 271, 574
TEXTURE VIEW MIN LEVEL, 231,

257, 271, 574
TEXTURE VIEW NUM LAYERS,

231, 257, 260, 261, 271, 574
TEXTURE VIEW NUM LEVELS,

231, 257, 260, 261, 271, 574
TEXTURE WIDTH, 213, 218, 220,

222, 223, 234, 575
TEXTURE WRAP R, 174, 229, 246,

573, 577, 650
TEXTURE WRAP S, 174, 229, 230,

246, 573, 577, 650
TEXTURE WRAP T, 174, 229, 230,

246, 573, 577, 650
TextureBarrier, 312, 312
TextureBuffer, 225
TextureBufferRange, 224, 224
textureGather, 244, 248, 249, 620, 714
textureGather*, 692
textureGatherOffset, 248
textureGatherOffsets, 248, 692
textureLOD, 714
TextureParameter, 227
TextureParameter*, 230
TextureParameterI, 227
textureQueryLevels, 381
textureSize, 381
TextureStorage*, 262
TextureStorage1D, 262, 262
TextureStorage2D, 263, 264
TextureStorage2DMultisample, 265,

266
TextureStorage3D, 264, 265
TextureStorage3DMultisample, 266,

266

TextureSubImage1D, 209, 210
TextureSubImage2D, 209, 210, 211
TextureSubImage3D, 209, 210, 211
TextureView, 195, 229, 256, 258, 259,

550, 553, 668, 692, 697
TIME ELAPSED, 41–44, 46, 48, 49,

666
TIMEOUT EXPIRED, 37
TIMEOUT IGNORED, 38
TIMESTAMP, 41, 42, 46, 49, 666
TOP LEVEL ARRAY SIZE, 105, 108,

601, 679, 695
TOP LEVEL ARRAY STRIDE, 105,

108, 601, 695
TRANSFORM FEEDBACK, 423, 424,

534
TRANSFORM FEEDBACK ACTIVE,

557, 607, 655
TRANSFORM FEEDBACK BAR-

RIER BIT, 153
TRANSFORM FEEDBACK BIND-

ING, 566
TRANSFORM FEEDBACK -

BUFFER, 58, 59, 97, 99, 101–
105, 377, 426, 427, 429

TRANSFORM FEEDBACK -
BUFFER ACTIVE, 655

TRANSFORM FEEDBACK -
BUFFER BINDING, 81, 557,
607

TRANSFORM FEEDBACK -
BUFFER INDEX, 105, 108

TRANSFORM FEEDBACK -
BUFFER MODE, 157, 593

TRANSFORM FEEDBACK -
BUFFER PAUSED, 655

TRANSFORM FEEDBACK -
BUFFER SIZE, 81, 557, 607

TRANSFORM FEED-
BACK BUFFER START, 81,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 770

557, 607
TRANSFORM FEEDBACK -

BUFFER STRIDE, 105, 108
TRANSFORM FEEDBACK -

PAUSED, 557, 607, 655
TRANSFORM FEEDBACK PRIMI-

TIVES WRITTEN, 41–44,
46, 428, 431

TRANSFORM FEEDBACK -
VARYING, 97, 99, 102, 104,
105, 107, 377

TRANSFORM FEEDBACK VARY-
ING MAX LENGTH, 157,
593

TRANSFORM FEED-
BACK VARYINGS, 157, 377,
593

TransformFeedbackBufferBase, 426,
427

TransformFeedbackBufferRange, 426,
427

TransformFeedbackVarying, 377
TransformFeedbackVaryings, 97, 99,

102, 107, 374, 375, 377
Translate, 649
TRIANGLE FAN, 326, 331, 412, 419,

426
TRIANGLE STRIP, 157, 325, 331,

412, 419, 426, 437, 593
TRIANGLE STRIP -

ADJACENCY, 329, 331, 412,
419

TRIANGLES, 157, 158, 326, 331, 412,
419, 425, 426, 593

triangles, 396, 398, 399, 412
TRIANGLES ADJACENCY, 157, 328,

331, 412, 419
triangles adjacency, 412
TRUE, 14, 15, 19, 40, 42, 45, 47, 57, 58,

65, 67, 68, 72, 75, 83, 86, 87,

90, 93, 94, 115, 122, 123, 133,
156–158, 172, 177, 178, 222,
223, 257, 260, 261, 276–279,
291, 297, 300, 310, 315, 332,
336, 338, 346, 362, 364, 387,
423, 465, 466, 484, 499, 510,
513, 526, 531, 550, 553–556,
565, 570, 575, 580, 581, 614,
626, 649

true, 470
TYPE, 99, 105, 108, 128, 129, 370, 377,

601

uimage1D, 112
uimage1DArray, 112
uimage2D, 112
uimage2DArray, 112
uimage2DMS, 112
uimage2DMSArray, 112
uimage2DRect, 112
uimage3D, 112
uimageBuffer, 112
uimageCube, 112
uimageCubeArray, 112
uint, 109, 120, 136, 140, 368
UNDEFINED VERTEX, 418
UNIFORM, 96, 99, 104, 105, 107, 113,

127, 128
Uniform, 11
Uniform1f, 11
Uniform1i, 11
Uniform2f, 11
Uniform2i, 11
Uniform3f, 11
Uniform3i, 11
Uniform4f, 11, 12
Uniform4f{v}, 133
Uniform4i, 12
UNIFORM ARRAY -

STRIDE, 129, 137, 140, 595,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 771

667
UNIFORM ATOMIC COUNTER -

BUFFER INDEX, 129, 598
UNIFORM BARRIER BIT, 152, 155
UNIFORM BLOCK, 96, 101, 104, 105,

128, 129
UNIFORM BLOCK ACTIVE UNI-

FORM INDICES, 130, 595
UNIFORM BLOCK ACTIVE UNI-

FORMS, 130, 595
UNIFORM BLOCK BINDING, 130,

595
UNIFORM BLOCK DATA SIZE, 130,

139, 595
UNIFORM BLOCK INDEX, 129, 594
UNIFORM BLOCK NAME -

LENGTH, 130, 595, 685
UNIFORM BLOCK REFERENCED -

BY COMPUTE SHADER,
130, 596

UNIFORM BLOCK REFERENCED -
BY FRAGMENT SHADER,
130, 596

UNIFORM BLOCK REFERENCED -
BY GEOMETRY SHADER,
130, 596

UNIFORM BLOCK REFERENCED -
BY TESS CONTROL -
SHADER, 130, 595

UNIFORM BLOCK REFERENCED -
BY TESS EVALUATION -
SHADER, 130

UNIFORM BLOCK REFERENCED -
BY TESS EVALUTION -
SHADER, 595

UNIFORM BLOCK REFERENCED -
BY VERTEX SHADER, 130,
595

UNIFORM BUFFER, 58, 59, 139
UNIFORM BUFFER BINDING, 81,

608
UNIFORM BUFFER OFFSET -

ALIGNMENT, 81, 622, 694,
698

UNIFORM BUFFER SIZE, 81, 608
UNIFORM BUFFER START, 81, 608
UNIFORM IS ROW MAJOR, 129,

595
UNIFORM MATRIX STRIDE, 129,

595
UNIFORM NAME LENGTH, 129,

594, 597
UNIFORM OFFSET, 129, 594
UNIFORM SIZE, 129, 594, 597
UNIFORM TYPE, 129, 594
Uniform{1234}{ifd ui}, 131
Uniform{1234}{ifd ui}v, 131
UniformBlockBinding, 139, 139
UniformMatrix2x4fv, 132
UniformMatrix3dv, 133
UniformMatrix{234}, 132
UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3},

132
UniformSubroutinesuiv, 146, 675
UNKNOWN CONTEXT RESET, 19
UnmapBuffer, 53, 57, 64, 66, 71, 75, 75
UnmapNamedBuffer, 75, 75
UNPACK ALIGNMENT, 178, 184,

193, 217, 587
UNPACK COMPRESSED BLOCK -

DEPTH, 178, 215, 587
UNPACK COMPRESSED BLOCK -

HEIGHT, 178, 215, 587
UNPACK COMPRESSED BLOCK -

SIZE, 178, 215, 587
UNPACK COMPRESSED BLOCK -

WIDTH, 178, 215, 587
UNPACK IMAGE HEIGHT, 178, 193,

215, 217, 587
UNPACK LSB FIRST, 178, 587, 648,

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 772

662, 670
UNPACK ROW LENGTH, 178, 184,

193, 215, 217, 587
UNPACK SKIP IMAGES, 178, 193,

204, 215–217, 587
UNPACK SKIP PIXELS, 178, 184,

215–217, 587
UNPACK SKIP ROWS, 178, 184,

215–217, 587
UNPACK SWAP BYTES, 178, 181,

184, 587
UNSIGNALED, 36, 40, 609
UNSIGNED BYTE, 182, 283, 284,

337, 339, 346, 354, 514, 515
UNSIGNED BYTE 2 3 3 REV, 182,

186, 187, 514
UNSIGNED BYTE 3 3 2, 182, 186,

187, 514
UNSIGNED INT, 109, 182, 233, 280,

283, 296, 337, 346, 354, 514,
515, 552

UNSIGNED INT 10 10 10 2, 182,
186, 189, 514

UNSIGNED INT 10F 11F 11F REV,
182, 186, 189, 191, 283, 332,
333, 337–339, 347, 513, 514

UNSIGNED INT 24 8, 179, 182, 186,
189, 511, 514, 515

UNSIGNED INT 2 10 10 10 REV,
182, 186, 189, 283, 332, 337,
339, 346, 514

UNSIGNED INT 5 9 9 9 REV,
182, 186, 189, 191, 197, 513,
514

UNSIGNED INT 8 8 8 8, 182, 186,
189, 514

UNSIGNED INT 8 8 8 8 REV, 182,
186, 189, 514

UNSIGNED INT ATOMIC -
COUNTER, 112

UNSIGNED INT IMAGE 1D, 112
UNSIGNED INT IMAGE 1D AR-

RAY, 112
UNSIGNED INT IMAGE 2D, 112
UNSIGNED INT IMAGE 2D AR-

RAY, 112
UNSIGNED INT IMAGE 2D MUL-

TISAMPLE, 112
UNSIGNED INT IMAGE 2D MUL-

TISAMPLE ARRAY, 112
UNSIGNED INT IMAGE 2D RECT,

112
UNSIGNED INT IMAGE 3D, 112
UNSIGNED INT IMAGE BUFFER,

112
UNSIGNED INT IMAGE CUBE, 112
UNSIGNED INT IMAGE CUBE -

MAP ARRAY, 112
UNSIGNED INT SAMPLER 1D, 110
UNSIGNED INT SAMPLER 1D AR-

RAY, 111
UNSIGNED INT SAMPLER 2D, 111
UNSIGNED INT SAMPLER 2D AR-

RAY, 111
UNSIGNED INT SAMPLER 2D -

MULTISAMPLE, 111
UNSIGNED INT SAMPLER 2D -

MULTISAMPLE ARRAY,
111

UNSIGNED INT SAMPLER 2D -
RECT, 111

UNSIGNED INT SAMPLER 3D, 111
UNSIGNED INT SAMPLER -

BUFFER, 111
UNSIGNED INT SAMPLER CUBE,

111
UNSIGNED INT SAMPLER CUBE -

MAP ARRAY, 111
UNSIGNED INT VEC2, 109
UNSIGNED INT VEC3, 109

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 773

UNSIGNED INT VEC4, 109
UNSIGNED NORMALIZED, 233,

296, 552
UNSIGNED SHORT, 182, 283, 284,

337, 346, 354, 514, 515
UNSIGNED SHORT 1 5 5 5 REV,

182, 186, 188, 514
UNSIGNED SHORT 4 4 4 4, 182,

186, 188, 514
UNSIGNED SHORT 4 4 4 4 REV,

182, 186, 188, 514
UNSIGNED SHORT 5 5 5 1, 182,

186, 188, 514
UNSIGNED SHORT 5 6 5, 182, 186,

188, 514
UNSIGNED SHORT 5 6 5 REV, 182,

186, 188, 514
UPPER LEFT, 433, 437, 449, 456, 568
usampler1D, 110
usampler1DArray, 111
usampler2D, 111
usampler2DArray, 111
usampler2DMS, 111
usampler2DMSArray, 111
usampler2DRect, 111
usampler3D, 111
usamplerBuffer, 111
usamplerCube, 111
usamplerCubeArray, 111
UseProgram, 92, 92, 93, 116, 132, 147,

386–388, 429, 667, 689, 696
UseProgramStages, 93, 116, 117, 147,

158, 386, 429, 667, 679, 689
uvec2, 109, 368
uvec3, 109, 368
uvec4, 109, 280, 368

VALIDATE STATUS, 157, 159, 387,
388, 590, 591

ValidateProgram, 157, 387, 387, 680

ValidateProgramPipeline, 159, 388, 680
vec2, 108, 368
vec3, 108, 368
vec4, 109, 133, 138, 280, 368
VENDOR, 543, 544, 615
VERSION, 543, 544, 615
VERTEX ARRAY, 534
VERTEX ARRAY BINDING, 337,

361, 564
VERTEX ATTRIB ARRAY BAR-

RIER BIT, 151
VERTEX ATTRIB ARRAY BUFFER,

151
VERTEX ATTRIB ARRAY -

BUFFER BINDING, 348,
361, 563, 677

VERTEX ATTRIB -
ARRAY DIVISOR, 360, 361,
562, 677

VERTEX ATTRIB ARRAY EN-
ABLED, 360, 361, 562

VERTEX ATTRIB -
ARRAY INTEGER, 360, 361,
562

VERTEX ATTRIB ARRAY LONG,
360, 361, 562, 662, 667

VERTEX ATTRIB ARRAY NOR-
MALIZED, 360, 361, 562

VERTEX ATTRIB -
ARRAY POINTER, 342, 362,
562

VERTEX ATTRIB ARRAY SIZE,
360, 361, 562

VERTEX ATTRIB ARRAY STRIDE,
342, 360, 361, 562

VERTEX ATTRIB ARRAY TYPE,
360, 361, 562

VERTEX ATTRIB BINDING, 361,
362, 563

VERTEX ATTRIB RELATIVE OFF-

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 774

SET, 360, 361, 563
VERTEX BINDING BUFFER, 362,

563, 678
VERTEX BINDING DIVISOR, 362,

563, 678
VERTEX BINDING OFFSET, 360,

563
VERTEX BINDING STRIDE, 342,

563
VERTEX PROGRAM TWO SIDE,

649
VERTEX SHADER, 85, 144, 145, 162,

590
VERTEX SHADER BIT, 117
VERTEX SUBROUTINE, 96, 144
VERTEX SUBROUTINE UNIFORM,

97, 101, 104, 113, 145
VERTEX TEXTURE, 550
VertexArrayAttribBinding, 341, 341,

342
VertexArrayAttribFormat, 337
VertexArrayAttribIFormat, 337
VertexArrayAttribLFormat, 337
VertexArrayBindingDivisor, 344, 344
VertexArrayElementBuffer, 336
VertexArrayVertexBuffer, 339, 339, 340
VertexArrayVertexBuffers, 340, 340,

341
VertexAttrib, 332, 364
VertexAttrib4, 332
VertexAttrib4N, 332
VertexAttrib4Nub, 332, 682
VertexAttribBinding, 341, 341, 343,

348
VertexAttribDivisor, 344, 350, 351, 354
VertexAttribFormat, 337, 338
VertexAttribI, 332
VertexAttribI1i, 368
VertexAttribI1ui, 368
VertexAttribI2i, 368

VertexAttribI2ui, 368
VertexAttribI3i, 368
VertexAttribI3ui, 368
VertexAttribI4, 332
VertexAttribI4i, 368
VertexAttribI4ui, 368
VertexAttribIFormat, 337, 338, 339
VertexAttribIPointer, 342, 362
VertexAttribL1d, 368
VertexAttribL2d, 368
VertexAttribL3d, 368
VertexAttribL3dv, 367
VertexAttribL4d, 368
VertexAttribL{1234}d, 332
VertexAttribL{1234}dv, 332
VertexAttribLFormat, 337, 338, 339
VertexAttribLPointer, 342, 367
VertexAttribP1ui, 332
VertexAttribP2ui, 332
VertexAttribP3ui, 332
VertexAttribP4ui, 332, 333
VertexAttribP4uiv, 333
VertexAttribPointer, 335, 342, 348, 362,

649
VertexBindingDivisor, 344, 344
VertexPointer, 648
vertices, 391
VIEW CLASS 128 BITS, 259
VIEW CLASS 16 BITS, 259
VIEW CLASS 24 BITS, 259
VIEW CLASS 32 BITS, 259
VIEW CLASS 48 BITS, 259
VIEW CLASS 64 BITS, 259
VIEW CLASS 8 BITS, 259
VIEW CLASS 96 BITS, 259
VIEW CLASS BPTC FLOAT, 259
VIEW CLASS BPTC UNORM, 259
VIEW CLASS RGTC1 RED, 259
VIEW CLASS RGTC2 RG, 259

OpenGL 4.5 (Core Profile) - October 24, 2016

INDEX 775

VIEW COMPATIBILITY CLASS,
556, 682

VIEWPORT, 566
Viewport, 439, 439
VIEWPORT BOUNDS RANGE, 440,

613
VIEWPORT INDEX -

PROVOKING VERTEX, 418,
613

VIEWPORT SUBPIXEL BITS, 440,
613

ViewportArrayv, 438, 439
ViewportIndexedf, 438, 439
ViewportIndexedfv, 439, 439

WAIT FAILED, 37
WaitSync, 35–37, 38, 38, 39, 52, 53,

628
WGL ARB create context, 526, 711
WGL ARB create context profile, 647,

715
WGL ARB create context robustness,

719
WGL ARB framebuffer sRGB, 710
WGL ARB pixel format float, 708
WGL ARB robustness application iso-

lation, 725
WGL ARB robustness share group -

isolation, 725
while, 396
WRITE ONLY, 58, 72–74, 276

xfb buffer, 373, 374, 377
xfb offset, 107, 373, 374, 376, 377
xfb stride, 373, 376, 377
XOR, 493

ZERO, 228, 229, 469, 482, 487, 489,
491, 580

ZERO TO ONE, 433, 437

OpenGL 4.5 (Core Profile) - October 24, 2016

	1 Introduction
	1.1 Formatting of the OpenGL Specification
	1.1.1 Formatting of the Compatibility Profile
	1.1.2 Formatting of Optional Features
	1.1.3 Formatting of Changes

	1.2 What is the OpenGL Graphics System?
	1.2.1 Programmer's View of OpenGL
	1.2.2 Implementor's View of OpenGL
	1.2.3 Our View
	1.2.4 Fixed-function Hardware and the Compatibility Profile
	1.2.5 The Deprecation Model

	1.3 Related APIs
	1.3.1 OpenGL Shading Language
	1.3.2 OpenGL ES
	1.3.3 OpenGL ES Shading Language
	1.3.4 WebGL
	1.3.5 Window System Bindings
	1.3.6 OpenCL

	1.4 Filing Bug Reports

	2 OpenGL Fundamentals
	2.1 Execution Model
	2.2 Command Syntax
	2.2.1 Data Conversion For State-Setting Commands
	2.2.2 Data Conversions For State Query Commands

	2.3 Command Execution
	2.3.1 Errors
	2.3.2 Graphics Reset Recovery
	2.3.3 Flush and Finish
	2.3.4 Numeric Representation and Computation
	2.3.5 Fixed-Point Data Conversions

	2.4 Rendering Commands
	2.5 Context State
	2.5.1 Generic Context State Queries

	2.6 Objects and the Object Model
	2.6.1 Object Management
	2.6.2 Buffer Objects
	2.6.3 Shader Objects
	2.6.4 Program Objects
	2.6.5 Program Pipeline Objects
	2.6.6 Texture Objects
	2.6.7 Sampler Objects
	2.6.8 Renderbuffer Objects
	2.6.9 Framebuffer Objects
	2.6.10 Vertex Array Objects
	2.6.11 Transform Feedback Objects
	2.6.12 Query Objects
	2.6.13 Sync Objects
	2.6.14 Display Lists

	3 Dataflow Model
	4 Event Model
	4.1 Sync Objects and Fences
	4.1.1 Waiting for Sync Objects
	4.1.2 Signaling
	4.1.3 Sync Object Queries

	4.2 Query Objects and Asynchronous Queries
	4.2.1 Query Object Queries

	4.3 Time Queries

	5 Shared Objects and Multiple Contexts
	5.1 Object Deletion Behavior
	5.1.1 Side Effects of Shared Context Destruction
	5.1.2 Automatic Unbinding of Deleted Objects
	5.1.3 Deleted Object and Object Name Lifetimes

	5.2 Sync Objects and Multiple Contexts
	5.3 Propagating Changes to Objects
	5.3.1 Determining Completion of Changes to an object
	5.3.2 Definitions
	5.3.3 Rules

	6 Buffer Objects
	6.1 Creating and Binding Buffer Objects
	6.1.1 Binding Buffer Objects to Indexed Targets

	6.2 Creating and Modifying Buffer Object Data Stores
	6.2.1 Clearing Buffer Object Data Stores

	6.3 Mapping and Unmapping Buffer Data
	6.3.1 Unmapping Buffers
	6.3.2 Effects of Mapping Buffers on Other GL Commands

	6.4 Effects of Accessing Outside Buffer Bounds
	6.5 Invalidating Buffer Data
	6.6 Copying Between Buffers
	6.7 Buffer Object Queries
	6.7.1 Indexed Buffer Object Limits and Binding Queries

	6.8 Buffer Object State

	7 Programs and Shaders
	7.1 Shader Objects
	7.2 Shader Binaries
	7.3 Program Objects
	7.3.1 Program Interfaces

	7.4 Program Pipeline Objects
	7.4.1 Shader Interface Matching
	7.4.2 Program Pipeline Object State

	7.5 Program Binaries
	7.6 Uniform Variables
	7.6.1 Loading Uniform Variables In The Default Uniform Block
	7.6.2 Uniform Blocks
	7.6.3 Uniform Buffer Object Bindings

	7.7 Atomic Counter Buffers
	7.7.1 Atomic Counter Buffer Object Storage
	7.7.2 Atomic Counter Buffer Bindings

	7.8 Shader Buffer Variables and Shader Storage Blocks
	7.9 Subroutine Uniform Variables
	7.10 Samplers
	7.11 Images
	7.12 Shader Memory Access
	7.12.1 Shader Memory Access Ordering
	7.12.2 Shader Memory Access Synchronization

	7.13 Shader, Program, and Program Pipeline Queries
	7.14 Required State

	8 Textures and Samplers
	8.1 Texture Objects
	8.2 Sampler Objects
	8.3 Sampler Object Queries
	8.4 Pixel Rectangles
	8.4.1 Pixel Storage Modes and Pixel Buffer Objects
	8.4.2 The Imaging Subset
	8.4.3 Pixel Transfer Modes
	8.4.4 Transfer of Pixel Rectangles
	8.4.5 Pixel Transfer Operations

	8.5 Texture Image Specification
	8.5.1 Required Texture Formats
	8.5.2 Encoding of Special Internal Formats
	8.5.3 Texture Image Structure

	8.6 Alternate Texture Image Specification Commands
	8.6.1 Texture Copying Feedback Loops

	8.7 Compressed Texture Images
	8.8 Multisample Textures
	8.9 Buffer Textures
	8.10 Texture Parameters
	8.11 Texture Queries
	8.11.1 Active Texture
	8.11.2 Texture Parameter Queries
	8.11.3 Texture Level Parameter Queries
	8.11.4 Texture Image Queries

	8.12 Depth Component Textures
	8.13 Cube Map Texture Selection
	8.13.1 Seamless Cube Map Filtering

	8.14 Texture Minification
	8.14.1 Scale Factor and Level of Detail
	8.14.2 Coordinate Wrapping and Texel Selection
	8.14.3 Mipmapping
	8.14.4 Manual Mipmap Generation
	8.14.5 Automatic Mipmap Generation

	8.15 Texture Magnification
	8.16 Combined Depth/Stencil Textures
	8.17 Texture Completeness
	8.17.1 Effects of Sampler Objects on Texture Completeness
	8.17.2 Effects of Completeness on Texture Application
	8.17.3 Effects of Completeness on Texture Image Specification

	8.18 Texture Views
	8.19 Immutable-Format Texture Images
	8.19.1 Behavior of Immutable-Format Texture Images

	8.20 Invalidating Texture Image Data
	8.21 Clearing Texture Image Data
	8.22 Texture State and Proxy State
	8.23 Texture Comparison Modes
	8.23.1 Depth Texture Comparison Mode

	8.24 sRGB Texture Color Conversion
	8.25 Shared Exponent Texture Color Conversion
	8.26 Texture Image Loads and Stores
	8.26.1 Image Unit Queries

	9 Framebuffers and Framebuffer Objects
	9.1 Framebuffer Overview
	9.2 Binding and Managing Framebuffer Objects
	9.2.1 Framebuffer Object Parameters
	9.2.2 Attaching Images to Framebuffer Objects
	9.2.3 Framebuffer Object Queries
	9.2.4 Renderbuffer Objects
	9.2.5 Required Renderbuffer Formats
	9.2.6 Renderbuffer Object Queries
	9.2.7 Attaching Renderbuffer Images to a Framebuffer
	9.2.8 Attaching Texture Images to a Framebuffer

	9.3 Feedback Loops Between Textures and the Framebuffer
	9.3.1 Rendering Feedback Loops
	9.3.2 Texture Copying Feedback Loops

	9.4 Framebuffer Completeness
	9.4.1 Framebuffer Attachment Completeness
	9.4.2 Whole Framebuffer Completeness
	9.4.3 Required Framebuffer Formats
	9.4.4 Effects of Framebuffer Completeness on Framebuffer Operations
	9.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

	9.5 Mapping between Pixel and Element in Attached Image
	9.6 Conversion to Framebuffer-Attachable Image Components
	9.7 Conversion to RGBA Values
	9.8 Layered Framebuffers

	10 Vertex Specification and Drawing Commands
	10.1 Primitive Types
	10.1.1 Points
	10.1.2 Line Strips
	10.1.3 Line Loops
	10.1.4 Separate Lines
	10.1.5 Polygons
	10.1.6 Triangle Strips
	10.1.7 Triangle Fans
	10.1.8 Separate Triangles
	10.1.9 Quadrilateral (quad) strips
	10.1.10 Separate Quadrilaterals
	10.1.11 Lines with Adjacency
	10.1.12 Line Strips with Adjacency
	10.1.13 Triangles with Adjacency
	10.1.14 Triangle Strips with Adjacency
	10.1.15 Separate Patches
	10.1.16 General Considerations For Polygon Primitives
	10.1.17 Polygon Edges

	10.2 Current Vertex Attribute Values
	10.2.1 Current Generic Attributes
	10.2.2 Current Conventional Attributes
	10.2.3 Vertex Attribute Queries
	10.2.4 Required State

	10.3 Vertex Arrays
	10.3.1 Vertex Array Objects
	10.3.2 Specifying Arrays for Generic Vertex Attributes
	10.3.3 Specifying Arrays for Fixed-Function Attributes
	10.3.4 Vertex Attribute Divisors
	10.3.5 Transferring Array Elements
	10.3.6 Primitive Restart
	10.3.7 Robust Buffer Access
	10.3.8 Packed Vertex Data Formats
	10.3.9 Vertex Arrays in Buffer Objects
	10.3.10 Array Indices in Buffer Objects
	10.3.11 Indirect Commands in Buffer Objects

	10.4 Drawing Commands Using Vertex Arrays
	10.4.1 Interleaved Arrays

	10.5 Vertex Array and Vertex Array Object Queries
	10.6 Required State
	10.7 Drawing Commands Using Begin and End
	10.8 Rectangles
	10.9 Conditional Rendering

	11 Programmable Vertex Processing
	11.1 Vertex Shaders
	11.1.1 Vertex Attributes
	11.1.2 Vertex Shader Variables
	11.1.3 Shader Execution

	11.2 Tessellation
	11.2.1 Tessellation Control Shaders
	11.2.2 Tessellation Primitive Generation
	11.2.3 Tessellation Evaluation Shaders

	11.3 Geometry Shaders
	11.3.1 Geometry Shader Input Primitives
	11.3.2 Geometry Shader Output Primitives
	11.3.3 Geometry Shader Variables
	11.3.4 Geometry Shader Execution Environment

	12 Fixed-Function Vertex Processing
	13 Fixed-Function Vertex Post-Processing
	13.1 Clamping or Masking
	13.2 Transform Feedback
	13.2.1 Transform Feedback Objects
	13.2.2 Transform Feedback Primitive Capture
	13.2.3 Transform Feedback Draw Operations

	13.3 Primitive Queries
	13.4 Flatshading
	13.5 Primitive Clipping
	13.5.1 Clipping Shader Outputs
	13.5.2 Clip Plane Queries

	13.6 Coordinate Transformations
	13.6.1 Controlling the Viewport

	13.7 Final Color Processing

	14 Fixed-Function Primitive Assembly and Rasterization
	14.1 Discarding Primitives Before Rasterization
	14.2 Invariance
	14.3 Antialiasing
	14.3.1 Multisampling

	14.4 Points
	14.4.1 Basic Point Rasterization
	14.4.2 Point Rasterization State
	14.4.3 Point Multisample Rasterization

	14.5 Line Segments
	14.5.1 Basic Line Segment Rasterization
	14.5.2 Other Line Segment Features
	14.5.3 Line Rasterization State
	14.5.4 Line Multisample Rasterization

	14.6 Polygons
	14.6.1 Basic Polygon Rasterization
	14.6.2 Stippling
	14.6.3 Antialiasing
	14.6.4 Options Controlling Polygon Rasterization
	14.6.5 Depth Offset
	14.6.6 Polygon Multisample Rasterization
	14.6.7 Polygon Rasterization State

	14.7 Current Raster Position
	14.8 Bitmaps
	14.9 Early Per-Fragment Tests
	14.9.1 Pixel Ownership Test
	14.9.2 Scissor Test
	14.9.3 Multisample Fragment Operations
	14.9.4 The Early Fragment Test Qualifier

	15 Programmable Fragment Processing
	15.1 Fragment Shader Variables
	15.2 Shader Execution
	15.2.1 Texture Access
	15.2.2 Shader Inputs
	15.2.3 Shader Outputs
	15.2.4 Early Fragment Tests

	16 Fixed-Function Fragment Processing
	17 Writing Fragments and Samples to the Framebuffer
	17.1 Antialiasing Application
	17.2 Multisample Point Fade
	17.3 Per-Fragment Operations
	17.3.1 purple Alpha To Coverage
	17.3.2 Alpha Test
	17.3.3 Stencil Test
	17.3.4 Depth Buffer Test
	17.3.5 Occlusion Queries
	17.3.6 Blending
	17.3.7 sRGB Conversion
	17.3.8 Dithering
	17.3.9 Logical Operation
	17.3.10 Additional Multisample Fragment Operations

	17.4 Whole Framebuffer Operations
	17.4.1 Selecting Buffers for Writing
	17.4.2 Fine Control of Buffer Updates
	17.4.3 Clearing the Buffers
	17.4.4 Invalidating Framebuffer Contents
	17.4.5 The Accumulation Buffer

	18 Reading and Copying Pixels
	18.1 Drawing Pixels
	18.2 Reading Pixels
	18.2.1 Selecting Buffers for Reading
	18.2.2 ReadPixels
	18.2.3 Obtaining Pixels from the Framebuffer
	18.2.4 Conversion of RGBA values
	18.2.5 Conversion of Depth values
	18.2.6 Pixel Transfer Operations
	18.2.7 Conversion to L
	18.2.8 Final Conversion
	18.2.9 Placement in Pixel Pack Buffer or Client Memory

	18.3 Copying Pixels
	18.3.1 Blitting Pixel Rectangles
	18.3.2 Copying Between Images

	18.4 Pixel Draw and Read State

	19 Compute Shaders
	19.1 Compute Shader Variables

	20 Debug Output
	20.1 Debug Messages
	20.2 Debug Message Callback
	20.3 Debug Message Log
	20.4 Controlling Debug Messages
	20.5 Externally Generated Messages
	20.6 Debug Groups
	20.7 Debug Labels
	20.8 Asynchronous and Synchronous Debug Output
	20.9 Debug Output Queries

	21 Special Functions
	21.1 Evaluators
	21.2 Selection
	21.3 Feedback
	21.4 Display Lists
	21.5 Hints
	21.6 Saving and Restoring State

	22 Context State Queries
	22.1 Simple Queries
	22.2 Pointer, String, and Related Context Queries
	22.3 Internal Format Queries
	22.3.1 Supported Operation Queries
	22.3.2 Other Internal Format Queries

	22.4 Transform Feedback State Queries
	22.5 Indexed Binding State Queries

	23 State Tables
	23.2 Current Values and Associated Data
	23.3 Vertex Array Object State (cont.)
	23.4 Vertex Array Object State (cont.)
	23.5 Vertex Array Data (not in Vertex Array objects)
	23.6 Buffer Object State
	23.7 Transformation state
	23.8 Coloring
	23.9 Rasterization
	23.10 Rasterization (cont.)
	23.11 Multisampling
	23.12 Textures (state per texture unit)
	23.13 Textures (state per texture unit (cont.)
	23.14 Textures (state per texture object)
	23.15 Textures (state per texture object) (cont.)
	23.16 Textures (state per texture image)
	23.17 Textures (state per texture image) (cont.)
	23.18 Textures (state per sampler object)
	23.19 Texture Environment and Generation
	23.20 Pixel Operations
	23.21 Pixel Operations (cont.)
	23.22 Framebuffer Control
	23.23 Framebuffer (state per target binding point)
	23.24 Framebuffer (state per framebuffer object)
	23.25 Framebuffer (state per attachment point)
	23.26 Renderbuffer (state per target and binding point)
	23.27 Renderbuffer (state per renderbuffer object)
	23.28 Pixels
	23.29 Pixels (cont.)
	23.30 Shader Object State
	23.31 Program Pipeline Object State
	23.32 Program Object State
	23.33 Program Object State (cont.)
	23.34 Program Object State (cont.)
	23.35 Program Object State (cont.)
	23.36 Program Object State (cont.)
	23.37 Program Object State (cont.)
	23.38 Program Object State (cont.)
	23.39 Program Object State (cont.)
	23.40 Program Interface State
	23.41 Program Object Resource State
	23.42 Program Object Resource State (cont.)
	23.43 Vertex and Geometry Shader State
	23.44 Query Object State
	23.45 Image State (state per image unit)
	23.46 Atomic Counter Buffer Binding State
	23.47 Shader Storage Buffer Binding State
	23.48 Transform Feedback State
	23.49 Uniform Buffer Binding State
	23.50 Sync Object State
	23.51 Hints
	23.52 Compute Dispatch State
	23.53 Implementation Dependent Values
	23.54 Implementation Dependent Values (cont.)
	23.55 Implementation Dependent Values (cont.)
	23.56 Implementation Dependent Version and Extension Support
	23.57 Implementation Dependent Vertex Shader Limits
	23.58 Implementation Dependent Tessellation Shader Limits
	23.59 Implementation Dependent Tessellation Shader Limits (cont.)
	23.60 Implementation Dependent Geometry Shader Limits
	23.61 Implementation Dependent Fragment Shader Limits
	23.62 Implementation Dependent Compute Shader Limits
	23.63 Implementation Dependent Aggregate Shader Limits
	23.64 Implementation Dependent Aggregate Shader Limits (cont.)
	23.65 Implementation Dependent Aggregate Shader Limits (cont.)
	23.66 Implementation Dependent Aggregate Shader Limits (cont.)
	23.67 Debug Output State
	23.68 Implementation Dependent Debug Output State
	23.69 Implementation Dependent Values (cont.) purple These queries return the maximum no. of samples for all internal formats required to support multisampled rendering.
	23.70 Implementation Dependent Values (cont.)
	23.71 Internal Format Dependent Values
	23.72 Implementation Dependent Transform Feedback Limits
	23.73 Framebuffer Dependent Values
	23.74 Miscellaneous

	A Invariance
	A.1 Repeatability
	A.2 Multi-pass Algorithms
	A.3 Invariance Rules
	A.4 Tessellation Invariance
	A.5 Atomic Counter Invariance
	A.6 What All This Means

	B Corollaries
	C Compressed Texture Image Formats
	C.1 RGTC Compressed Texture Image Formats
	C.2 BPTC Compressed Texture Image Formats
	C.3 ETC Compressed Texture Image Formats

	D Profiles and the Deprecation Model
	D.1 Core and Compatibility Profiles
	D.2 Deprecated and Removed Features
	D.2.1 Deprecated But Still Supported Features
	D.2.2 Removed Features

	E Version 4.2
	E.1 New Features
	E.2 Deprecation Model
	E.3 Changed Tokens
	E.4 Change Log for Released Specifications
	E.5 Credits and Acknowledgements

	F Version 4.3
	F.1 Restructuring
	F.2 New Features
	F.3 Deprecation Model
	F.4 Changed Tokens
	F.5 Change Log for Released Specifications
	F.6 Credits
	F.7 Acknowledgements

	G Version 4.4
	G.1 New Features
	G.2 Deprecation Model
	G.3 Change Log for Released Specifications
	G.4 Credits
	G.5 Acknowledgements

	H Version 4.5
	H.1 New Features
	H.2 Deprecation Model
	H.3 Change Log for Released Specifications
	H.4 Credits
	H.5 Acknowledgements

	I OpenGL Registry, Header Files, and ARB Extensions
	I.1 OpenGL Registry
	I.2 Header Files
	I.3 ARB and Khronos Extensions
	I.3.1 Naming Conventions
	I.3.2 Promoting Extensions to Core Features
	I.3.3 Extension Summaries
	I.3.4 Bindless Textures
	I.3.5 Compute Variable Group Size
	I.3.6 Indirect Parameters
	I.3.7 Seamless Cubemap per Texture
	I.3.8 Shader Draw Parameters
	I.3.9 Shader Group Vote
	I.3.10 Sparse Textures

	Index

