The OpenGL® Graphics System:

A Specification
(Version 4.2 (Compatibility Profile) - April 27,
2012)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-4.2): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (© 2006-2012 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1
1.1.1 Formatting of the Compatibility Profile 1

1.1.2 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 2
1.4 Implementor’s View of OpenGL 2
1.5 OurView 3
1.6 The Deprecation Model 3
1.7 Companion Documents 3
1.7.1 OpenGL Shading Language 3

1.7.2 Window System Bindings 4

2 OpenGL Operation 5
2.1 OpenGL Fundamentals 5
2.1.1 Numeric Computation 7

2.1.2 Fixed-Point Data Conversions 11

22 GLState 12
2.2.1 Shared ObjectState 13

23 GLCommand Syntax 13
2.3.1 Data Conversion For State-Setting Commands 15

24 BasicGLOperation 17
25 GLErors 18
2.6 Begin/End Paradigm 19
2.6.1 BeginandEnd 23

2.6.2 PolygonEdges 30

2.6.3 GL Commands within Begin/End 31

2.7 Vertex Specification oL 31
2.8 VerteX Arrays v v v v e e e e e 38

CONTENTS ii

2.9

2.10
2.11
2.12

2.13

2.14

2.8.1 Packed Vertex Data Formats 45
2.8.2 DrawingCommands 45
BufferObjects 56
2.9.1 Creating and Binding Buffer Objects 56
2.9.2 Creating Buffer Object Data Stores 59
2.9.3 Mapping and Unmapping BufferData 61
2.9.4 Effects of Accessing Outside Buffer Bounds 65
2.9.5 Copying Between Buffers 66
2.9.6 Vertex Arrays in Buffer Objects 66
2.9.7 Array Indices in Buffer Objects 67
2.9.8 Indirect Commands in Buffer Objects 68
2.9.9 BufferObjectState 68
Vertex Array Objects L. 68
Rectangles 69
Fixed-Function Vertex Transformations 70
2121 MatriceS o e e 71
2.12.2 Normal Transformation. 76
2.12.3 Generating Texture Coordinates 78
Fixed-Function Vertex Lighting and Coloring 80
2.13.1 Lighting 80
2.13.2 Lighting Parameter Specification. 86
2.13.3 ColorMaterial 87
2.13.4 LightingState 90
2.13.5 ColorIndex Lighting 90
2.13.6 Clamping or Masking 91
Vertex Shaders 92
2.14.1 ShaderObjects 93
2.14.2 Loading Shader Binaries 95
2.14.3 Program Objects 96
2.14.4 Program Pipeline Objects 101
2.14.5 Program Binaries 107
2.14.6 Vertex Attributes 109
2.14.7 Uniform Variables 113
2.14.8 Subroutine Uniform Variables 136
2.149 Samplers Lo 139
2.14.10Images 139
2.14.11 Output Variables 140
2.14.12 Shader Execution 144
2.14.13 Shader Memory Access 154
2.14.14Required State 159

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

CONTENTS iii

2.15 Tessellation 161
2.15.1 Tessellation Control Shaders 162
2.15.2 Tessellation Primitive Generation 168
2.15.3 Tessellation Evaluation Shaders 177

2.16 Geometry Shaders, 183
2.16.1 Geometry Shader Input Primitives 183
2.16.2 Geometry Shader Output Primitives 185
2.16.3 Geometry Shader Variables 185
2.16.4 Geometry Shader Execution Environment 186

2.17 Coordinate Transformations 193
2.17.1 Controlling the Viewport 193

2.18 Asynchronous Queries 196

2.19 Conditional Rendering 199

2.20 Transform Feedback 200
2.20.1 Transform Feedback Objects 200
2.20.2 Transform Feedback Primitive Capture 202
2.20.3 Transform Feedback Draw Operations 206

2.21 Primitive Queries 207

2.22 Flatshading 208

2.23 Primitive Clipping 210
2.23.1 Color and Associated Data Clipping 213

2.24 Final Color Processing 213

2.25 Current Raster Position 214

3 Rasterization 218

3.1 Discarding Primitives Before Rasterization 220

32 Invariance 220

3.3 Antialiasing L. 220
3.3.1 Multisampling L. 222

34 Pointso 224
3.4.1 Basic Point Rasterization 226
3.4.2 Point Rasterization State 231
3.4.3 Point Multisample Rasterization 231

3.5 LineSegments 232
3.5.1 Basic Line Segment Rasterization 232
3.5.2 Other Line Segment Features 234
3.5.3 Line Rasterization State 237
3.5.4 Line Multisample Rasterization 238

3.6 Polygons 238
3.6.1 Basic Polygon Rasterization 239

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

CONTENTS v

3,62 Stippling 241
3,63 Antialiasing Lo 242
3.6.4 Options Controlling Polygon Rasterization 242
3,65 DepthOffset 243
3.6.6 Polygon Multisample Rasterization 244
3.6.7 Polygon Rasterization State 245
3.7 PixelRectangles., 245
3.7.1 Pixel Storage Modes and Pixel Buffer Objects 245
3.7.2 The Imaging Subset 247
373 Pixel TransferModes 247
3.7.4 Transfer of Pixel Rectangles 258
3.7.5 Rasterization of Pixel Rectangles 271
3.7.6 Pixel Transfer Operations 274
3.7.7 Pixel Rectangle Multisample Rasterization 283
3.8 Bitmaps 284
3.9 Early Per-Fragment Tests 286
310 Texturing L. 287
3.10.1 TextureObjects 289
3.10.2 Sampler Objects 292
3.10.3 Texture Image Specification 294
3.10.4 Alternate Texture Image Specification Commands 310
3.10.5 Compressed Texture Images 315
3.10.6 Multisample Textures 322
3.10.7 Buffer Textures, 323
3.10.8 Texture Parameters 326
3.10.9 Depth Component Textures 328
3.10.10 Cube Map Texture Selection 329
3.10.11 Texture Minification 330
3.10.12 Texture Magnification 341
3.10.13 Combined Depth/Stencil Textures 342
3.10.14 Texture Completeness 342
3.10.15 Texture State and Proxy State 344
3.10.16 Immutable-Format Texture Images 346
3.10.17 Texture Environments and Texture Functions 350
3.10.18 Texture Comparison Modes 356
3.10.19 sRGB Texture Color Conversion 357
3.10.20 Shared Exponent Texture Color Conversion 358
3.10.21 Texture Application 358
3.10.22 Texture Image Loads and Stores 361
31 ColorSum 368

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

CONTENTS v

312 Fog . . o o 369
3.13 FragmentShaders 370
3.13.1 Shader Variables 371
3.13.2 Shader Execution 373
3.14 Antialiasing Application 381
3.15 Multisample PointFade 381
4 Per-Fragment Operations and the Framebuffer 382
4.1 Per-Fragment Operations 384
4.1.1 Pixel OwnershipTest 384
412 ScissorTest 385
4.1.3 Multisample Fragment Operations 386
414 AlphaTest 388
415 Stencil Testo 389
41.6 DepthBufferTest. 391
4.1.7 Occlusion Queries 392
418 Blending 392
419 sRGBConversion 399
4.1.10 Dithering 400
4.1.11 Logical Operation 400
4.1.12 Additional Multisample Fragment Operations 402
4.2 Whole Framebuffer Operations 403
4.2.1 Selecting Buffers for Writing 403
4.2.2 Fine Control of Buffer Updates 407
423 Clearing the Buffers 408
424 The Accumulation Buffer 412
4.3 Drawing, Reading, and Copying Pixels 413
4.3.1 Writing to the Stencil or Depth/Stencil Buffers 413
432 ReadingPixels 414
433 CopyingPixels 0oL, 422
434 Pixel Draw/Read State 427
4.4 Framebuffer Objects 427
4.4.1 Binding and Managing Framebuffer Objects 427
4.4.2 Attaching Images to Framebuffer Objects 430
4.43 Feedback Loops Between Textures and the Framebuffer . 439
444 Framebuffer Completeness 442

4.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values 447
4.4.6 Mapping between Pixel and Element in Attached Image . 447
447 Layered Framebuffers 448

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

CONTENTS vi

5 Special Functions 451
5.1 Evaluators 451
52 Selection 457
5.3 Feedback 459
54 TimerQueries 461
5.5 DisplayLists 463

5.5.1 Commands Not Usable In Display Lists 466
5.6 FlushandFinish. 468
5.7 SyncObjectsandFences 468
5.7.1 Waiting for Sync Objects 470
572 Signalling 472
5.8 Hints. 472

6 State and State Requests 474

6.1 QueryingGL State 474
6.1.1 SimpleQueries 474
6.1.2 DataConversions 475
6.1.3 Enumerated Queries 477
6.1.4 Texture Queries 480
6.1.5 Sampler Queries 483
6.1.6 StippleQuery 484
6.1.7 ColorMatrixQuery. 484
6.1.8 ColorTableQuery 484
6.1.9 ConvolutionQuery 485
6.1.10 Histogram Query 487
6.1.11 Minmax Query 488
6.1.12 Pointer and String Queries 489
6.1.13 Asynchronous Queries 491
6.1.14 Sync Object Queries 492
6.1.15 Buffer Object Queries 493
6.1.16 Vertex Array Object Queries 496
6.1.17 Transform Feedback Queries 496
6.1.18 Shader and Program Queries 496
6.1.19 Framebuffer Object Queries 505
6.1.20 Renderbuffer Object Queries 507
6.1.21 Internal Format Queries 508
6.1.22 Saving and Restoring State 509

6.2 StateTables 512

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

CONTENTS vii

A

Invariance 587
A.l1 Repeatability 587
A.2 Multi-pass Algorithms 588
A3 InvarianceRules. 588
A.4 Tessellation Invariance 591
A.5 Atomic Counter Invariance 593
A6 What AllThisMeans 593
Corollaries 595
Compressed Texture Image Formats 598
C.1 RGTC Compressed Texture Image Formats 598
C.1.1 Format COMPRESSED_RED_RGTC1 599
C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1 600
C.1.3 Format COMPRESSED_RG_RGTC2 v 601
C.1.4 Format COMPRESSED_SIGNED_RG_RGIC2 601
C.2 BPTC Compressed Texture Image Formats 601

C.2.1 Formats COMPRESSED_RGBA_BPTC_UNORM and
COMPRESSED_SRGB_ALPHA_BPTC_UNORM 602

C.2.2 Formats COMPRESSED_RGB_BPTC_SIGNED_FLOAT and
COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT 604
Shared Objects and Multiple Contexts 613
D.1 Object Deletion Behavior 613
D.1.1 Side Effects of Shared Context Destruction 613
D.1.2 Automatic Unbinding of Deleted Objects 614
D.1.3 Deleted Object and Object Name Lifetimes 614
D.2 Sync Objects and Multiple Contexts 615
D.3 Propagating Changes to Objects 615
D.3.1 Determining Completion of Changes to an object 616
D.3.2 Definitionso 616
D33 Rules 617
Profiles and the Deprecation Model 619
E.1 Core and Compatibility Profiles 620
E.2 Deprecated and Removed Features 620
E.2.1 Deprecated But Still Supported Features 620
E.2.2 Removed Features 621

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

CONTENTS viii

F Version 3.0 and Before 626
F1 NewPFeatures 626
F2 Deprecation Model 627
F3 ChangedTokens 628
F4 Changelog 628
E5 Credits and Acknowledgements 630
G Version 3.1 633
G.1 NewPFeatures 633
G.2 DeprecationModel, 634
G3 Changelog 634
G.4 Credits and Acknowledgements 635
H Version 3.2 638
H.1 NewPFeatures 638
H.2 Deprecation Model 639
H.3 ChangedTokens 639
H4 Changelog 640
H.5 Credits and Acknowledgements 642
I Version 3.3 645
L1 NewPFeatures 645
1.2 Deprecation Model 646
I3 Changelog 647
1.4 Credits and Acknowledgements 647
J Version 4.0 649
JJ1 NewPFeatures 649
J.2 Deprecation Model 651
J3 Changelog L 651
J.4 Credits and Acknowledgements 651
K Version 4.1 654
K.l NewPFeatures 654
K.2 Deprecation Model 655
K.3 Changed Tokens. 655
K4 ChangeLog 655
K.5 Credits and Acknowledgements 655

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

CONTENTS ix

L Version 4.2 658
L1 NewPFeatures 658
L.2 Deprecation Model 659
L3 ChangedTokens. 659
L4 Changelog 660
L.5 Credits and Acknowledgements 668

M Extension Registry, Header Files, and ARB Extensions 670
M.1 Extension Registry 670
M.2 HeaderFiles 670
M.3 ARBExtensions. 671

M.3.1 Naming Conventions 671
M.3.2 Promoting Extensions to Core Features 672
M.3.3 Multitexture 672
M.3.4 Transpose Matrix 672
M.3.5 Multisample 672
M.3.6 Texture Add EnvironmentMode 673
M.3.7 CubeMap Textureso v 673
M.3.8 Compressed Textures 673
M.3.9 Texture BorderClamp 673
M.3.10 Point Parameters 673
M.3.11 VertexBlend L. 673
M.3.12 Matrix Palette L. 673
M.3.13 Texture Combine Environment Mode 674
M.3.14 Texture Crossbar Environment Mode 674
M.3.15 Texture Dot3 Environment Mode 674
M.3.16 Texture Mirrored Repeat 674
M.3.17 Depth Texture, 674
M3.18 Shadow 674
M.3.19 Shadow Ambient L. 674
M.3.20 Window Raster Position 674
M.3.21 Low-Level Vertex Programming 675
M.3.22 Low-Level Fragment Programming 675
M.3.23 Buffer Objects 675
M.3.24 Occlusion Queries 675
M.3.25 Shader Objects 675
M.3.26 High-Level Vertex Programming 675
M.3.27 High-Level Fragment Programming 675
M.3.28 OpenGL Shading Language 676
M.3.29 Non-Power-Of-Two Textures 676

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

CONTENTS X

M.3.30 Point Spriteso 676
M.3.31 Fragment Program Shadow 676
M.3.32 Multiple Render Targets 676
M.3.33 Rectangular Textures 676
M.3.34 Floating-Point Color Buffers 677
M.3.35 Half-Precision Floating Point 677
M.3.36 Floating-Point Textures 677
M.3.37 Pixel Buffer Objects 677
M.3.38 Floating-Point Depth Buffers 678
M.3.39 Instanced Rendering 678
M.3.40 Framebuffer Objects 678
M.3.41 sRGB Framebuffers 678
M.3.42 Geometry Shaders 678
M.3.43 Half-Precision Vertex Data 679
M.3.44 Instanced Rendering 679
M.3.45 Flexible Buffer Mapping 679
M.3.46 Texture Buffer Objects 679
M.3.47 RGTC Texture Compression Formats 679
M.3.48 One- and Two-Component Texture Formats 679
M.3.49 Vertex Array Objects 680
M.3.50 Versioned Context Creation 680
M.3.51 Uniform Buffer Objects 680
M.3.52 Restoration of features removed from OpenGL 3.0 680
M.3.53 Fast Buffer-to-Buffer Copies 681
M.3.54 Shader Texture Level of Detail Control 681
M.3.55 Depth Clamp Control 681
M.3.56 Base Vertex Offset Drawing Commands 681
M.3.57 Fragment Coordinate Convention Control 681
M.3.58 Provoking Vertex Control 681
M.3.59 Seamless Cube Maps 682
M.3.60 Fence Sync Objects 682
M.3.61 Multisample Textures 682
M.3.62 BGRA Attribute Component Ordering 682
M.3.63 Per-Buffer Blend Control 682
M.3.64 Sample Shading Control 682
M.3.65 Cube Map Array Textures 683
M.3.66 Texture Gather 683
M.3.67 Texture Level-Of-Detail Queries 683
M.3.68 Profiled Context Creation 683
M.3.69 Shading Language Include 683

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

CONTENTS xi

M.3.70 BPTC texture compression 684
M.3.71 Extended Blend Functions 684
M.3.72 Explicit Attribute Location 684
M.3.73 Boolean Occlusion Queries 684
M.3.74 Sampler Objects, 684
M.3.75 Shader Bit Encoding 684
M.3.76 RGB10A2 Integer Textures 685
M.3.77 Texture Swizzle 685
M.3.78 Timer Queries 685
M.3.79 Packed 2.10.10.10 Vertex Formats 685
M.3.80 Draw Indirect 685
M.3.81 GPU Shader5 Miscellaneous Functionality 685
M.3.82 Double-Precision Floating-Point Shader Support 685
M.3.83 Shader Subroutines 686
M.3.84 Tessellation Shaders 686
M.3.85 RGB32 Texture Buffer Objects 686
M.3.86 Transform Feedback2 686
M.3.87 Transform Feedback 3 686
M.3.88 OpenGL ES 2.0 Compatibility 686
M.3.89 Program Binary Support 686
M.3.90 Separate Shader Objects 687
M.3.91 Shader Precision Restrictions 687
M.3.92 Double Precision Vertex Shader Inputs 687
M.3.93 Viewport Arrays 687
M.3.94 Robust Context Creation 687
M.3.95 OpenCL Event Sharing 687
M.3.96 Debug Output Notification 688
M.3.97 Context Robustness 688
M.3.98 Shader Stencil Export 688
M.3.99 Base Instanced Rendering 688
M.3.1000penGL Shading Language 4.20 Feature Pack 688
M.3.101Instanced Transform Feedback 688
M.3.10Xompressed Texture Pixel Storage 689
M.3.10onservative Depth 689
M.3.104nternal Format Query 689
M.3.10Map Buffer Alignment 689
M.3.1065hader Atomic Counters 689
M.3.108hader Image Load/Store 689
M.3.108hading Language Packing 690
M.3.109Texture StOrageo e 690

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

List of Figures

2.1
2.2

23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10

Block diagramofthe GL. 17
Creation of a processed vertex from a transformed vertex and cur-

rentvalues. o 20
Primitive assembly and processing. 22
Triangle strips, fans, and independent triangles. 24
Quadrilateral strips and independent quadrilaterals. 25
Lines with adjacency. 26
Triangles with adjacency. 26
Triangle strips with adjacency. 28
Vertex transformation sequence. 70
Processing of RGBA colors. 80
Processing of colorindices. 80
ColorMaterial operation. 87
Domain parameterization for tessellation. 169
Inner triangle tessellation. 172
Inner quad tessellation. 175
Isoline tessellation. 177
Current raster position. 215
Rasterization. 218
Rasterization of non-antialiased wide points. 227
Rasterization of antialiased wide points. 227
Visualization of Bresenham’s algorithm. 233
Rasterization of non-antialiased wide lines. 235
The region used in rasterizing an antialiased line segment. 237
Transfer of pixel rectangles. 258
Selecting a subimage from animage 263
A bitmap and its associated parameters. 285
A texture image and the coordinates used to accessit. 308

Xii

LIST OF FIGURES xiii

3.11 Example of the components returned for textureGather. 336
3.12 Multitexture pipeline. L L 359
4.1 Per-fragment operations. 384
4.2 Operation of ReadPixels. 414
4.3 Operation of CopyPixels. 422
5.1 MapEvaluation.. L o 453
5.2 Feedbacksyntax. 462

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

List of Tables

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39

GL command suffixes 14
GL datatypes e 16
Summary of GL errors 20
Triangles generated by triangle strips with adjacency. 29
Vertex array sizes (values per vertex) and data types 40
Packed component layout for non-BGRA formats. 46
Packed component layout for BGRA format. 46
Variables that direct the execution of InterleavedArrays. 54
Buffer object binding targets. 57
Buffer object parameters and their values. 58
Buffer object initial state. L. 60
Buffer object state set by MapBufferRange. 63
Summary of lighting parameters. 83
Correspondence of lighting parameter symbols to names. 88
Scalar and vector vertex attribute types 110
OpenGL Shading Language type tokens 125
Transform feedback modes 203
Provoking vertex selection. 209
PixelStore parameters., 246
PixelTransfer parameters. 248
PixelMap parameters. 249
Color tablenames. 250
Pixeldatatypes. 261
Pixel data formats. 262
Swap Bytes bitordering.o L. 263
Packed pixel formats. 265
UNSIGNED_BYTE formats. Bit numbers are indicated for each

COMPONENL. . .« v v v v v e e et e e e e e e e e 266

X1V

LIST OF TABLES

3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18
3.19
3.20
3.21
322
3.23
3.24
3.25

3.26
3.27
3.28
3.29
3.30
3.31
3.32

3.33

3.34

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

UNSIGNED_SHORT formats
UNSIGNED_INT formats
FLOAT_UNSIGNED_INT formats
Packed pixel field assignments. oL
Color table lookup.,
Computation of filtered color components.
Conversion from RGBA, depth, and stencil pixel components to
internal components.
Sized internal color formats.
Sized internal luminance and intensity formats.
Sized internal depth and stencil formats.
Generic and specific compressed internal formats.
Internal formats for buffer textures
Texture parameters and their values.
Selection of cube map images.
Texel location wrap mode application.
Correspondence of filtered texture components to texture base
COMPONENLS. . .« « ¢ v v v v v e et e e e e e e e e e et
Texture functions REPLACE, MODULATE, and DECAL
Texture functions BLEND and ADD.
COMBINE texture functions.
Arguments for COMBINE_RGB functions.
Arguments for COMBINE_ALPHA functions.
Depth texture comparison functions.
Mapping of image load, store, and atomic texel coordinate compo-
nents to texel numbers. oL Lo
Supported image unit formats, with equivalent format layout qual-
ifiers.
Texel sizes, compatibility classes, and pixel format/type combina-
tions for each image format.

RGB and Alpha blend equations.
Blending functions. Lo
Arguments to LogicOp and their corresponding operations.
Buffer selection for the default framebuffer
Buffer selection for a framebuffer object
DrawBuffers buffer selection for the default framebuffer
PixelStore parameters.,
ReadPixels GL data types and reversed component conversion for-

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

XV

LIST OF TABLES XVi

4.9
4.10

4.11
4.12
4.13

5.1
52
53
54

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28

ReadPixels index masks. 421
Effective ReadPixels format for DEPTH_STENCIL CopyPixels
OPeration. v v v i e e e e e e e 424
Correspondence of renderbuffer sized to base internal formats. . . 433
Framebuffer attachment points. 435
Layer numbers for cube map texture faces. 449
Values specified by the targetrtoMapl. 452
Correspondence of feedback type to number of values per vertex. . 461
Initial properties of a sync object created with FenceSyne. 469
Hint targets and descriptions 473
Texture, table, and filter return values. 482
Pixel data formats accepted for the imaging queries. 485
Pixel data types accepted for the imaging queries. 486
Contextprofilebits 490
........................... 511
State Variable Types 513
GL Internal begin-end state variables (inaccessible) 514
Current Values and Associated Data 515
Vertex Array Object State 516
Vertex Array Object State (cont.) 517
Vertex Array Object State (cont.) 518
Vertex Array Object State (cont.) 519
Vertex Array Data (not in Vertex Array objects) 520
Buffer Object State 521
Transformationstate 522
Coloring e 523
Lighting (see also table 2.13 for defaults) 524
Lighting (cont.) 525
Rasterization 526
Rasterization (cont.) 527
Multisampling 528
Textures (state per texture unit 529
Textures (state per texture unit (cont.) 530
Textures (state per texture object) 531
Textures (state per texture image) 532
Textures (state per sampler object) 533
Texture Environment and Generation 534
Texture Environment and Generation (cont.) 535

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

LIST OF TABLES Xvii

6.29
6.30
6.31
6.32
6.33

6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67

Pixel Operations 536
Pixel Operations (cont.) 537
Framebuffer Control, ... 538
Framebuffer (state per target binding point) 539
Framebuffer (state per framebuffer object)

1 This state is queried from the currently bound read framebuffer.540
Framebuffer (state per attachment point) 541
Renderbuffer (state per target and binding point) 542
Renderbuffer (state per renderbuffer object) 543
Pixels 544
Pixels(cont.) 545
Pixels(cont.)) 546
Pixels(cont.) 547
Pixels (cont.)) 548
Pixels(cont.) 549
Evaluators (GetMap takes amapname) 550
Shader Object State 551
Program Pipeline Object State 552
Program Object State 553
Program Object State (cont.) 554
Program Object State (cont.) 555
Program Object State (cont.) 556
Program Object State (cont.) 557
Program Object State (cont.) 558
Program Object State (cont.) 559
Program Object State (cont.) 560
Vertex and Geometry Shader State 561
Query Object State 562
Image State (state per image unit) 563
Transform Feedback State 564
Atomic Counter State L. 565
Sync (state per syncobject) 566
Hints. 567
Implementation Dependent Values 568
Implementation Dependent Values (cont.) 569
Implementation Dependent Values (cont.) 570
Implementation Dependent Values (cont.) 571
Implementation Dependent Version and Extension Support 572
Implementation Dependent Vertex Shader Limits 573
Implementation Dependent Tessellation Shader Limits 574

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

LIST OF TABLES Xviii

6.68
6.69
6.70
6.71
6.72

6.73
6.74
6.75
6.76
6.77
6.78
6.79

C.1
C2
C3
C4
C5
C.6
C.7
C.38

F.1

H.1

K.1

L.1

Implementation Dependent Geometry Shader Limits 575
Implementation Dependent Fragment Shader Limits 576
Implementation Dependent Aggregate Shader Limits 577
Implementation Dependent Aggregate Shader Limits (cont.) . . . 578

Implementation Dependent Aggregate Shader Limits (cont.)
T The minimum value for each stage s
MAX_stage UNIFORM_BLOCKS X MAX_UNIFORM_BLOCK_SIZE

/ 4 +MAX_stage_ UNIFORM_COMPONENTS 579
Implementation Dependent Values (cont.) 580
Implementation Dependent Values (cont.) 581
Internal Format Dependent Values 582
Implementation Dependent Transform Feedback Limits 583
Framebuffer Dependent Values 584
Framebuffer Dependent Values (cont.) 585
Miscellaneous 586
Mode-dependent BPTC parameters 605
Partition table for2 subset 606
Partition table for 3 subset 607

Anchor index values for the second subset of two-subset partitioning 608
Anchor index values for the second subset of three-subset partitioning 608
Anchor index values for the third subset of three-subset partitioning 608

Endpoint and partition parameters for block modes 611
Block formats for block modes 612
New tokennames 628
New tokennames 640
New tokennames 655
New tokennames 660

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of the OpenGL Specification

1.1.1 Formatting of the Compatibility Profile

E

1.1.2 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the Specification are con-
sidered optional; an OpenGL implementation may or may not choose to provide
them (see section 3.7.2).

Portions of the Specification which are optional are so described where the
optional features are first defined (see section 3.7.2). State table entries which are
optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions

1.3. PROGRAMMER’S VIEW OF OPENGL 2

that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.
Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines,
but the way that some of this drawing occurs (such as when antialiasing
is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
an OpenGL context and associate it with the window. Once a context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.
OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

1.5. OUR VIEW 3

available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this Specification is to make OpenGL state information explicit, to elucidate how
it changes, and to indicate what its effects are.

1.5 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven stages that control a set of specific drawing operations. This model should
engender a specification that satisfies the needs of both programmers and imple-
mentors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the speci-
fied methods, but there may be ways to carry out a particular computation that are
more efficient than the one specified.

1.6 The Deprecation Model

Features marked as deprecated in one version of the Specification are expected to
be removed in a future version, allowing applications time to transition away from
use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.7 Companion Documents

1.7.1 OpenGL Shading Language

This Specification should be read together with a companion document titled The
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.14
and 3.13). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 4.2 implementations are guaranteed to support version 4.20 of the
OpenGL Shading Language. All references to sections of that specification refer to
version 4.20. The latest supported version of the shading language may be queried
as described in section 6.1.5.

profile of OpenGL 4.2 is also guaranteed to support all pre-
vious versions of the OpenGL Shading Language back to version

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

1.7. COMPANION DOCUMENTS 4

1.7.2 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

OpenGL Graphics with the X Window System, also called the “GLX Specifica-
tion”, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is avail-
able. The GLX Specification is available in the OpenGL Extension Registry (see
appendix M).

The WGL API supports use of OpenGL with Microsoft Windows. WGL is
documented in Microsoft’s MSDN system, although no full specification exists.

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X win-
dow system, including CGL, AGL, and NSOpenGLView. These APIs are docu-
mented on Apple’s developer website.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

http://www.khronos.org/registry/egl

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader

programs. Each primitive is a point, line segment,
Each mode may be changed independently; the setting of one does not affect the
settings of others (although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified, and other GL
operations described by sending commands in the form of function or procedure
calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a polygon where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all

2.1. OPENGL FUNDAMENTALS 6

previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL. command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. Another
way to describe this situation is to say that the GL provides mechanisms to de-
scribe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL confexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 7

section 1.7.2.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Numeric Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations will normally perform computations in floating-point, and
must meet the range and precision requirements defined under ’Floating-Point
Computation” below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and per-fragment
operations. Range and precision requirements during shader execution differ and
are as specified by the OpenGL Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the
details of how operations on them are performed.

We require simply that numbers’ floating-point parts contain enough bits and
that their exponent fields are large enough so that individual results of floating-

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 8

point operations are accurate to about 1 part in 10°. The maximum representable
magnitude for all floating-point values must be at least 232, -0 = 0 -z = 0 for
any non-infinite andnon-NaN z. 1 -z =z-1=2. 2 +0 =042 = 2. 0° =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as %. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (.5), a 5-bit exponent (F), and a
10-bit mantissa (M). The value V' of a 16-bit floating-point number is determined
by the following:

(—1)% x 0.0, E=0,M=0
(—1)% x 271 x JF E=0,M#0
V=q¢(-1)¥x2F B x (1+45), 0<E<31
(—1)% x Inf, E=31,M=0
NaN, E=31,M+#0

If the floating-point number is interpreted as an unsigned 16-bit integer IV, then

g {N mod 65536J
32768

5o {N mod 32768J
1024

M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 9
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (F£),
and a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number
is determined by the following:

0.0, E=0,M=0
—14 M —
27 x &7, E=0,M4%#0
V=392 (1+8), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 11-bit integer /V, then

N
EF=|—
=
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (F),
and a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number
is determined by the following:

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 10

0.0, E=0,M=0
- M
271 x &, E=0,M+#0
V=392 (1+23), 0<E<31
Inf, E=31,M=0
NaN, E=31,M=#0

If the floating-point number is interpreted as an unsigned 10-bit integer IV, then

p=|N
32
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed rep-
resentation with 16 bits to the right of the binary point (fraction bits).

General Requirements

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 11

2.1.2 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 3.10.3), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.
When the integer is a framebuffer color or depth component (see section 4), b is
the number of bits allocated to that component in the framebuffer. For framebuffer
and renderbuffer A components, b must be at least 2 if the buffer does not contain
an A component, or if there is only 1 bit of A in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively. The
signed fixed-point representation may be treated in one of two ways, as discussed
below.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

Cc

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f is performed using

c
Only the range [—2*~1 4 1,2°=1 — 1] is used to represent signed fixed-point

values in the range [—1, 1]. For example, if b = 8, then the integer value -127 cor-
responds to -1.0 and the value 127 corresponds to 1.0. Note that while zero can be

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.2. GL STATE 12

exactly expressed in this representation, one value (-128 in the example) is outside
the representable range, and must be clamped before use. This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such
as vertex attribute values', as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f=rx2-1. (2.3)

1’ is then cast to an unsigned binary integer value with exactly b bits.

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ is performed by clamping f to the range [—1, 1], then
computing

fl=fx @t -1). (2.4)

After conversion, f’ is then cast to a signed two’s-complement binary integer
value with exactly b bits.

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see
section 6) and returning integers”, as well as for specifying signed normalized tex-
ture or framebuffer values using floating-point.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we

! This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for
signed normalized values was used in which -128 mapped to -1.0, 127 mapped to 1.0, and 0.0 was
not exactly representable.

2 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for
signed normalized values was used in which -128 mapped to -1.0, 127 mapped to 1.0, and 0.0 was
not exactly representable.

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.3. GL COMMAND SYNTAX

describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.7.2. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix D. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the
command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniform4f(int location, £loat v0, float vl,
float v2, float v3);

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

13

2.3. GL COMMAND SYNTAX

Type Descriptor | Corresponding GL Type

b byte
S short
i int
i64 int64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

and
void GetFloatv(enum value, float *data);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form?

rtype Name{e1234}{e¢ b s ii64 f d ub us ui ui64}{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. e indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The /N arguments argl through arg/N have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then V is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);

3The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

14

2.3. GL COMMAND SYNTAX 15

indicates the eight declarations

void Uniformli(int location, int value);

void Uniform1f(int location, float value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, £loat v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, £loat vl, float v2,
float v2);

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, £loat v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

The types clampf and clampd are no longer used, replaced by float
and double respectively together with specification language requiring param-
eter clamping”.

2.3.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using
a different parameter type than the actual type of that state, data conversions are
performed as follows:

e When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

e When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer.

* These changes are completely backwards-compatible and will eventually be propagated to man
pages and header files as well.

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.3. GL COMMAND SYNTAX 16

GL Type Description
Bit Width

boolean 1 or more | Boolean

byte 8 Signed twos complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed twos complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed twos complement binary inte-
ger

uint 32 Unsigned binary integer

fixed 32 Signed 2’s complement 16.16 scaled
integer

int64 64 Signed twos complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr | ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 5.7)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.4. BASIC GL OPERATION

Vertex
Data

Pixel
Data

Figure 2.1.

Transform
Feedback

t

Vertex

and|

Geometry

Per-Vertex
Operations

-

an
Primitive
Assembly

Fragment

Shading and
[

Operations

Framebuffer

Pixel

A

A

*

Pack/Unpack]

1

A

»
-
ixe -t
ions [°F

Texture

Memory

A

e When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-

verted to floating-point.

For commands taking arrays of the specified type, these conversions are per-

formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values

and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after

conversion, unless specified otherwise for a specific command.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control

how the objects are handled by the various stages.

are effectively sent through a processing pipeline.

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.5. GL ERRORS 18

The first stage

operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, followed by assembly into
geometric primitives, which may optionally be used by the next stage, geometry
shading, to generate new primitives. The final resulting primitives are clipped to a
clip volume in preparation for the next stage, rasterization. The rasterizer produces
a series of framebuffer addresses and values using a two-dimensional description
of a point, line segment, or polygon. Each fragment so produced is fed to the next
stage that performs operations on individual fragments before they finally alter the
framebuffer. These operations include conditional updates into the framebuffer
based on incoming and previously stored depth values (to effect depth buffering),
blending of incoming fragment colors with stored colors, as well as masking and
other logical operations on fragment values.
Finally,

values may also be read
back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.
This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM 19

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. Except where otherwise noted, if the generating command
returns a value, it returns zero. If the generating command modifies values through
a pointer argument, no change is made to these values. These error semantics
apply only to GL errors, not to system errors such as memory access errors. This
behavior is the current behavior; the action of the GL in the presence of errors is
subject to change.

Several error generation conditions are implicit in the description of every GL
command:

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

e If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

In the GL, most geometric objects are drawn by

Points, lines, polygons, and a variety of related
geometric objects (see section 2.6.1) can be drawn in this way.

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM 20

Error Description Offending com-
mand ignored?
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes
INVALID_FRAMEBUFFER_OPERATION || Framebuffer object is not com- | Yes
plete

OUT_OF_MEMORY Not enough memory left to exe- | Unknown
cute command

Table 2.3: Summary of GL errors

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiple current texture coordinate sets, multiple current generic
vertex attributes, current color, current secondary color, and current fog coordi-
nate may be used in processing each vertex. Normals are used by the GL in lighting
calculations; the current normal is a three-dimensional vector that may be set by
sending three coordinates that specify it. Texture coordinates determine how a tex-
ture image is mapped onto a primitive. Multiple sets of texture coordinates may
be used to specify how multiple texture images are mapped onto a primitive. The
number of texture units supported is implementation-dependent but must be at least
two. The number of texture units supported can be queried with the state MAX_—
TEXTURE_UNITS. Generic vertex attributes can be accessed from within vertex
shaders (section 2.14) and used to compute values for consumption by later pro-
cessing stages.

Primary and secondary colors are associated with each vertex (see sec-
tion 3.11). These associated colors are either based on the current color and current
secondary color or produced by lighting, depending on whether or not lighting is
enabled. Texture and fog coordinates are similarly associated with each vertex.
Multiple sets of texture coordinates may be associated with a vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.

The current values are part of GL state. Vertices and normals are transformed,

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM

Vertex
Coordinates In

Y

vertex / normal Transformed
L transformation L)
Coordinates
Current
Normal >
! Processed
> Vertex
Out
Current lighting Q< | gl Associated
Colors & T> T Data
Materials (Colors, Edge Flag)
Fog and Texture
Coordinates)
Current
Edge Flag &
Fog Coord 0—0{
Current
Texture J— texgen | texture
matrix 0
Coord Set 0 T
| {
Current

Texture texgen Qe texture
Coord Set 1 _| T

matrix 1
I—O{

Current
Texture texgen | r;ez;trLiJ;ez
Coord Set 2 _| T
o(
Current
Texture texgen | rtr1e;:ttrlij>:e3
Coord Set 3 _| T
Figure 2.2.

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM

Point culling;
Line Segment
Coordinates | Point, »| OrPolygon |
Line Segment, or o Clipping
P\r/OCﬁssed Polygon Rasterization
ertices sssociated > (Primitive) > —
Data Assembly Color
Processing
A
Begin/End
State

Figure 2.3. Primitive assembly and processing.

colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, fog coordinate,
generic attributes, and colors are sent to the GL, as well as how normals are trans-
formed and how vertices are mapped to the two-dimensional screen, are discussed
later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see section 2.13.2), the current fog co-
ordinate, the multiple generic vertex attribute sets, and the multiple current texture
coordinate sets. Because color assignment is done vertex-by-vertex, a processed
vertex comprises the vertex’s coordinates, its edge flag, its fog coordinate, its as-
signed colors, and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a clip volume. This may alter the primitive by altering vertex coordi-
nates, texture coordinates, and colors. In the case of line and polygon primitives,
clipping may insert new vertices into the primitive. The vertices defining a primi-
tive to be rasterized have texture coordinates and colors associated with them.

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

22

2.6. BEGIN/END PARADIGM 23

2.6.1 Begin and End

Vertices making up one of the supported geometric object types are specified by
enclosing commands defining those vertices between the two commands

void Begin(enum mode);
void End(void);

There is no limit on the number of vertices that may be specified between a Begin
and an End. The mode parameter of Begin determines the type of primitives to be
drawn using the vertices. The types, and the corresponding mode parameters, are:

Points

A series of individual points may be specified with mode POINTS. Each vertex
defines a separate point. No special state need be kept between Begin and End in
this case, since each point is independent of previous and following points.

Line Strips

A series of one or more connected line segments may be specified with mode
LINE_STRIP. In this case, the first vertex specifies the first segment’s start point
while the second vertex specifies the first segment’s endpoint and the second seg-
ment’s start point. In general, the ¢th vertex (for ¢ > 1) specifies the beginning of
the ith segment and the end of the ¢ — 1st. The last vertex specifies the end of the
last segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops

Line loops may be specified with mode L.INE_1L0OOP. Loops are the same as
line strips except that a final segment is added from the final specified vertex to the
first vertex. The required state consists of the processed first vertex, in addition to
the state required for line strips.

Separate Lines

Individual line segments, each specified by a pair of vertices, may be specified
with mode LINES. The first two vertices between a Begin and End pair define the
first segment, with subsequent pairs of vertices each defining one more segment.
If the number of specified vertices is odd, then the last one is ignored. The state
required is the same as for line strips but it is used differently: a processed ver-
tex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM 24

NN

1 3

(@) (b) ()

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

Polygons

A polygon is described by specifying its boundary as a series of line segments.
When Begin is called with POLYGON, the bounding line segments are specified in
the same way as line loops. A polygon described with fewer than three vertices
does not generate a primitive.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified.

Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and may
be specified with mode TRIANGLE_STRIP. In this case, the first three vertices
define the first triangle (and their order is significant, just as for polygons). Each
subsequent vertex defines a new triangle using that point along with two vertices
from the previous triangle. If fewer than three vertices are specified, no primitive
is produced. See figure 2.4.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices, (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
After a Begin (TRIANGLE_STRIP), the pointer is initialized to point to vertex A.
Each successive vertex toggles the pointer. Therefore, the first vertex is stored as

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM 25

vertex A, the second stored as vertex B, the third stored as vertex A, and so on.
Any vertex after the second one sent forms a triangle from vertex A, vertex B, and
the current vertex (in that order).

Triangle Fans

A triangle fan is the same as a triangle strip with one exception: each vertex
after the first always replaces vertex B of the two stored vertices. A triangle fan
may be specified with mode TRIANGLE_FAN.

Separate Triangles

Separate triangles are specified with mode TRIANGLES. In this case, The 3i 4
1st, 37 + 2nd, and 3¢ 4 3rd vertices (in that order) determine a triangle for each
i =20,1,...,n — 1, where there are 3n + k vertices drawn. k is either O, 1, or 2; if
k is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
31 and vertex B is vertex 37 + 1. Otherwise, separate triangles are the same as a
triangle strip.

Quadrilateral (quad) strips
Quad strips generate a series of edge-sharing quadrilaterals from vertices ap-
pearing between Begin and End, when Begin is called with QUAD_STRIP. If the

m vertices between the Begin and End are v, ..., vm, Where v; is the jth spec-
ified vertex, then quad 7 has vertices (in order) va;, V2;+1, V2;+3, and vg;42 with
i =0,...,|m/2]. The state required is thus three processed vertices, to store the

last two vertices of the previous quad along with the third vertex (the first new ver-
tex) of the current quad, a flag to indicate when the first quad has been completed,
and a one-bit counter to count members of a vertex pair. See figure 2.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip between Begin and End is odd, the
final vertex is ignored.

Separate Quadrilaterals

Separate quads are just like quad strips except that each group of four vertices,
the 45 + 1st, the 45 + 2nd, the 45 + 3rd, and the 45 + 4th, generate a single quad,
for j = 0,1,...,n — 1. The total number of vertices between Begin and End is
4n+ k, where 0 < k < 3; if k is not zero, the final k vertices are ignored. Separate
quads are generated by calling Begin with the argument value QUADS.

Lines with Adjacency
Lines with adjacency are independent line segments where each endpoint has
a corresponding adjacent vertex that can be accessed by a geometry shader (sec-

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM 26

2 :4 - 6 > 6 >
A A A A
B vl Y B Y B y
1 3 5 1 4 5 8
(@) (b)
Figure 2.5.

tion 2.16). If a geometry shader is not active, the adjacent vertices are ignored.
They are generated with mode LINES_ADJACENCY.
A line segment is drawn from the 47 + 2nd vertex to the 47 + 3rd vertex for
eacht = 0,1,...,n — 1, where there are 4n + k vertices
k is either 0, 1, 2, or 3; if k is not zero, the final k vertices are ignored.
For line segment ¢, the 4¢ + 1st and 4¢ + 4th vertices are considered adjacent to the
47 4 2nd and 47 + 3rd vertices, respectively (see figure 2.6).

Line Strips with Adjacency

Line strips with adjacency are similar to line strips, except that each line seg-
ment has a pair of adjacent vertices that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode LINE_STRIP_ADJACENCY.

A line segment is drawn from the ¢ 4+ 2nd vertex to the ¢ + 3rd vertex for each
1 =0,1,...,n — 1, where there are n 4+ 3 vertices
If there are fewer than four vertices, all vertices are ignored. For line segment i,
the ¢ + 1st and ¢ + 4th vertex are considered adjacent to the ¢ + 2nd and i + 3rd
vertices, respectively (see figure 2.6).

Triangles with Adjacency

Triangles with adjacency are similar to separate triangles, except that each tri-
angle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLES_ADJACENCY.

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM

27

@ ---O—0O @

@ ---O—D - ®

O ---O—O—O—O O

Figure 2.6. Lines with adjacency (a) and line strips with adjacency (b). The vertices
connected with solid lines belong to the main primitives; the vertices connected by
dashed lines are the adjacent vertices that may be used in a geometry shader.

Figure 2.7. Triangles with adjacency. The vertices connected with solid lines be-
long to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM 28

Figure 2.8. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

The 67 + 1st, 6¢ + 3rd, and 67 + 5th vertices (in that order) determine a triangle
foreachi =0,1,...,n — 1, where there are 6n + k vertices
k is either O, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are
ignored. For triangle ¢, the ¢ + 2nd, 7 + 4th, and 7 4 6th vertices are considered
adjacent to edges from the ¢ + 1st to the 7 4 3rd, from the ¢ + 3rd to the 7 4 5th,
and from the 7 + 5th to the 7 + 1st vertices, respectively (see figure 2.7).

Triangle Strips with Adjacency

Triangle strips with adjacency are similar to triangle strips, except that each line
triangle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLE_STRIP_ADJACENCY.

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM 29

Primitive Vertices Adjacent Vertices
Primitive Ist [2nd | 3rd | 122 | 23 | 3/1
only 4 =0,n=1) 1 3 5 2 6 4
first (¢ = 0) 1 3 5 2 7 4
middle (¢ odd) 2043 | 2¢0+1 | 264+5 | 2¢0—1 | 2i+4 | 2047
middle (¢ even) 2041 | 2¢04+3 | 26+5 | 2¢0—1 | 20+7 | 2044
last(=mn—1,70dd) | 2¢0+3 | 20+1|20+5|20—1|20+4]|2i+6
last(t=mn—1,7even) | 20+1 | 20+3 | 20+5 | 20—1 | 20+6 | 21 +4

Table 2.4: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the Ist, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0,n = 1), the first triangle of several (i = 0,n > 0), “odd” middle
triangles (i = 1,3,5...), “even” middle triangles (i = 2,4,6,...), and special
cases for the last triangle, when ¢ is either even or odd. For the purposes of this
table, the first vertex is numbered 1 and the first triangle is
numbered 0.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices k is either O or 1; if k is 1, the final
vertex is ignored. If there are fewer than 6 vertices, the entire primitive is ignored.
Table 2.4 describes the vertices and order used to draw each triangle, and which
vertices are considered adjacent to each edge of the triangle (see figure 2.8).

Separate Patches

A patch is an ordered collection of vertices used for primitive tessellation (sec-
tion 2.15). The vertices comprising a patch have no implied geometric ordering.
The vertices of a patch are used by tessellation shaders and a fixed-function tes-
sellator to generate new point, line, or triangle primitives. Separate patches are
generated with mode PATCHES.

Each patch in the series has a fixed number of vertices, which is specified by
calling

void PatchParameteri(enum pname, int value);
with pname set to PATCH_VERTICES. The error INVALID_VALUE is generated

if value is less than or equal to zero or is greater than the implementation-dependent

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.6. BEGIN/END PARADIGM 30

maximum patch size (the value of MAX_PATCH_VERTICES). The patch size is ini-
tially three vertices.

If the number of vertices in a patch is given by v, the vi + 1st through vi 4 vth
vertices (in that order) determine a patch for each 7 = 0,1,...n — 1, where there
are vn + k vertices. k is in the range [0, v — 1]; if k is not zero, the final k vertices
are ignored.

General Considerations For Polygon Primitives

Depending on the current state of the GL, a polygon primitive gener-
ated from a drawing command with mode POLYGON, QUADS, QUAD STRIP,
TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES, TRIANGLES_ADJACENCY, or
TRIANGLE_STRIP_ADJACENCY may be rendered in one of several ways, such as
outlining its border or filling its interior. The order of vertices in such a prim-
itive is significant in lighting, polygon rasterization, and fragment shading (see
sections 2.13.1, 3.6.1, and 3.13.2). Only convex polygons are guaranteed to be
drawn correctly by the GL. If a specified polygon is nonconvex when projected
onto the window, then the rendered polygon need only lie within the convex hull
of the projected vertices defining its boundary.

The state required for Begin and End consists of a sixteen-valued integer indi-
cating either one of the possible Begin / End modes, or that no Begin / End mode
is being processed.

Calling Begin will result in an INVALID_FRAMEBUFFER_OPERATION error if
the object bound to DRAW_FRAMEBUFFER_BINDING is not framebuffer complete
(see section 4.4.4).

2.6.2 Polygon Edges

Each edge of each polygon primitive generated is flagged as either boundary or
non-boundary. These classifications are used during polygon rasterization; some
modes affect the interpretation of polygon boundary edges (see section 3.6.4). By
default, all edges are boundary edges, but the flagging of polygons, separate trian-
gles, or separate quadrilaterals may be altered by calling

void EdgeFlag(boolean flag);
void EdgeFlagv(const boolean *flag);

to change the value of a flag bit. If flag is zero, then the flag bit is set to FALSE; if
flag is non-zero, then the flag bit is set to TRUE.

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair be-
gins an edge. If the edge flag bit is TRUE, then each specified vertex begins an edge

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.7. VERTEX SPECIFICATION

that is flagged as boundary. If the bit is FALSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin / End

The only GL commands that are allowed within any Begin / End pairs are the
commands for specifying vertex coordinates, vertex colors, normal coordinates,
texture coordinates, generic vertex attributes, and fog coordinates (Vertex, Color,
SecondaryColor, Index, Normal, TexCoord and MultiTexCoord, VertexA ttrib,
FogCoord), the ArrayElement command (see section 2.8), the EvalCoord and
EvalPoint commands (see section 5.1), commands for specifying lighting mate-
rial parameters (Material commands; see section 2.13.2), display list invocation
commands (CallList and CallLists; see section 5.5), and the EdgeFlag command.
Executing any other GL. command between the execution of Begin and the corre-
sponding execution of End results in the error INVALID_OPERATION. Executing
Begin after Begin has already been executed but before an End is executed gen-
erates the INVALID_OPERATION error, as does executing End without a previous
corresponding Begin.

Execution of the commands EnableClientState, DisableClientState, Push-
ClientAttrib, PopClientAttrib, ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryCol-
orPointer, VertexPointer, VertexAttribPointer, ClientActiveTexture, Inter-
leavedArrays, and PixelStore is not allowed within any Begin / End pair, but
an error may or may not be generated if such execution occurs. If an error is not
generated, GL operation is undefined. (These commands are described in sections
2.8,3.7.1, and chapter 6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(const T coords);

Vertex coordinates may be stored as packed components within a larger natural
type. Such data may be specified using

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

31

2.7. VERTEX SPECIFICATION 32

void VertexP{234}ui (enum fype,uint coords) ;
void VertexP{234}uiv (enum type, const uint *coords) ;

These commands specify up to four coordinates as described above, packed
into a single natural type as described in section 2.8.1. The fype parameter
must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, speci-
fying signed or unsigned data respectively. The first two (x,y), three (z,y, 2),
or four (x,y, z,w) components of the packed data are consumed by VertexP2ui,
VertexP3ui, and VertexP4ui, respectively. For VertexP*uiv, coords contains the
address of a single uint containing the packed coordinate components.

A call to any Vertex command specifies four coordinates: x, y, z, and w. The
x coordinate is the first coordinate, y is second, z is third, and w is fourth. A call
to Vertex*2* sets the and y coordinates; the z coordinate is implicitly set to zero
and the w coordinate to one. Vertex*3* sets x, y, and z to the provided values
and w to one. Vertex*4* sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invoking a Vertex command outside of a
Begin / End pair results in undefined behavior.

Current values are used in associating auxiliary data with a vertex as described
in section 2.5. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(const T coords);

specify the current homogeneous texture coordinates, named s, ¢, r, and q.
Texture coordinates may be stored as packed components within a larger natu-
ral type. Such data may be specified using

void TexCoordP{1234}ui (enum type,uint coords) ;
void TexCoordP{1234}uiv (enum type, const uint
*coords) ;

This command specifies up to four components as described above, packed
into a single natural type as described in section 2.8.1. The type parameter
must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, speci-
fying signed or unsigned data, respectively. The first one (x), two (z,y), three
(x,y,), or four (z,y, z, w) components of the packed data are consumed by Tex-
CoordP1ui*, TexCoordP2ui*, TexCoordP3ui*, and TexCoordP4ui*, respec-
tively. For TexCoordP*uiv, coords contains the address of a single uint con-
taining the packed texture coordinate components.

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.7. VERTEX SPECIFICATION 33

The TexCoord*1* family of commands set the s coordinate to the provided
single argument while setting ¢ and 7 to 0 and ¢ to 1. Similarly, TexCoord*2* sets
s and t to the specified values, r to 0 and ¢ to 1; TexCoord*3* sets s, t, and r, with
q set to 1, and TexCoord*4* sets all four texture coordinates.

Implementations must support at least two sets of texture coordinates. The
commands

void MultiTexCoord{1234}{sifd} (enum ftexture, T coords) ;

void MultiTexCoord{1234}{sifd}v (enum fexture, const T
coords) ;

void MultiTexCoordP{1234}ui (enum texture, enum
type,uint coords) ;

void MultiTexCoordP{1234}uiv (enum fexture, enum
type, const uint *coords) ;

take the coordinate set to be modified as the texture parameter. fexture is a symbolic
constant of the form TEXTURE(, indicating that texture coordinate set i is to be
modified. The constants obey TEXTURE; = TEXTUREO + ¢ (¢ is in the range O to
k — 1, where k is the implementation-dependent number of texture coordinate sets
defined by MAX_TEXTURE_COORDS).

The TexCoord commands are exactly equivalent to the corresponding Multi-
TexCoord commands with fexture set to TEXTUREO.

Gets of CURRENT_TEXTURE_ COORDS return the texture coordinate set defined
by the value of ACTIVE_TEXTURE.

Specifying an invalid texture coordinate set for the fexture argument of Multi-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(const T coords);

Byte, short, or integer values passed to Normal are converted to floating-point
values as described in equation 2.2 for the corresponding (signed) type.

Normals may be stored as packed components within a larger natural type.
Such data may be specified using

void NormalP3ui (enum fype, uint normal) ;
void NormalP3uiv (enum type, uint *normal) ;

This specifies a three component normal, packed into the first three (x,y, z)
components of the natural type as described in section 2.8.1. fype must be INT_-
2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying signed or

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.7. VERTEX SPECIFICATION 34

unsigned data, respectively. Individual signed or unsigned components are con-
verted to floating-point values according to equations 2.1 or 2.2, respectively. For
NormalP3uiv, normal contains the address of a single uint containing the packed
normal components.

The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd}v(const T coord);

There are several ways to set the current color and secondary color. The GL
stores a current single-valued color index, as well as a current four-valued RGBA
color and secondary color. Either the index or the color and secondary color are
significant depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T components);
void Color{34}{bsifd ubusui}v(const T components);
void SecondaryColor3{bsifd ubusui}(T components);
void SecondaryColor3{bsifd ubusui}v(const

T components);

The Color command has two major variants: Color3 and Color4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section 2.13.)

The secondary color has only the three value versions. Secondary A is always
set to 1.0.

Versions of the Color and SecondaryColor commands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.13 on colors and color-
ing). Values outside [0, 1] are not clamped.

RGBA colors may be stored as packed components within a larger natural type.
Such data may be specified using

void ColorP{34}ui(enum type, uint coords) ;

void ColorP{34}uiv (enum fype, const uint *coords) ;

void SecondaryColorP3ui (enum type, uint coords) ;

void SecondaryColorP3uiv (enum type, const uint
*coords) ;

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.7. VERTEX SPECIFICATION

The ColorP* commands set the primary color similarly to Color*, above. The
SecondaryColorP* commands set the secondary color similarly to Secondary-
Color*. type must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_-
10_REV, specifying signed or unsigned data, respectively. Colors are packed into
a single natural type as described in section 2.8.1. The first three (x,y, z) or four
(x,y,z,w) components of the packed data are consumed by *ColorP3ui* and
ColorP4ui, respectively. Individual signed or unsigned components are con-
verted to floating-point values according to equations 2.1 or 2.2, respectively. For
ColorP*uiv and SecondaryColorP*uiv, coords contains the address of a single
uint containing the packed color components.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(const T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

Vertex shaders (see section 2.14) can be written to access an array of 4-
component generic vertex attributes in addition to the conventional attributes spec-
ified previously. The first slot of this array is numbered 0, and the size of the array
is specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex. The cur-
rent values of a generic shader attribute declared as a floating-point scalar, vector,
or matrix may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{sfd}(uint index, T values);
void VertexAttrib{123}{sfd}v(uint index, const
T values);
void VertexAttrib4{bsifd ub us ui}v(uint index, const
T values);
void VertexAttribdNub(uint index, T values);
void VertexAttrib4N{bsi ub us ui}v(uint index, const
T values);
void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, const
T values);
void VertexAttribl4{b s ub us}v(uint index, const
T values);
void VertexAttribL{1234}d(uint index, T values);

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

35

2.7. VERTEX SPECIFICATION 36

void VertexAttribL{1234}dv(uint index, T values);

void VertexAttribP{1234}ui (uint index, enum
type, boolean normalized, uint value) ;

void VertexAttribP{1234}uiv (uint index, enum
type, boolean normalized, const uint *value) ;

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [—1, 1] range as described in equations 2.1 and 2.2, re-
spectively.

The VertexAttribI* commands specify signed or unsigned fixed-point values
that are stored as signed or unsigned integers, respectively. Such values are referred
to as pure integers.

The VertexAttribL* commands specify double-precision values that will be
stored as double-precision values.

The VertexAttribP* commands specify up to four attribute component val-
ues packed into a single natural type fype as described in section 2.8.1. fype
must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, speci-
fying signed or unsigned data respectively. The first one (z), two (z,y), three
(x,y, z), or four (z,y, z,w) components of the packed data are consumed by Ver-
texAttribP1lui, VertexAttribP2ui, VertexAttribP3ui, and VertexAttribP4ui, re-
spectively. If normalized is TRUE, signed or unsigned components are converted
to floating-point by normalizing to [—1, 1] or [0, 1] respectively. If normalized is
false, components are cast directly to floating-point. For VertexAttribP*uiv, value
contains the address of a single uint containing the packed attribute components.

All other VertexAttrib* commands specify values that are converted directly
to the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

For all VertexAttrib* commands, the error INVALID_VALUE is generated if
index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

When values for a vertex shader attribute variable are sourced from a current

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.7. VERTEX SPECIFICATION 37

generic attribute value, the attribute must be specified by a command compatible
with the data type of the variable. The values loaded into a shader attribute variable
bound to generic attribute index are undefined if the current value for attribute index
was not specified by

o VertexAttrib[1234]* or VertexAttribP*, for single-precision floating-point
scalar, vector, and matrix types

o VertexAttribI[1234]i or VertexAttribI[1234]iv, for signed integer scalar
and vector types

e VertexAttribI[1234]Jui or VertexAttribI[1234]uiv, for unsigned integer
scalar and vector types

e VertexAttribL*, for double-precision floating-point scalar and vector types.

Setting generic vertex attribute zero specifies a vertex; the four vertex coordi-
nates are taken from the values of attribute zero. A Vertex2, Vertex3, or Vertex4
command is completely equivalent to the corresponding VertexAttrib* command
with an index of zero. Setting any other generic vertex attribute updates the current
values of the attribute. There are no current values for vertex attribute zero.

There is no aliasing among generic attributes and conventional attributes. In
other words, an application can set all MAX_VERTEX_ATTRIBS generic attributes
and all conventional attributes without fear of one particular attribute overwriting
the value of another attribute.

The state required to support vertex specification consists of four floating-point
numbers per texture coordinate set to store the current texture coordinates s, ¢, r,
and ¢, three floating-point numbers to store the three coordinates of the current
normal, one floating-point number to store the current fog coordinate, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and the value of MAX VERTEX ATTRIBS — | four-component vectors to
store generic vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coor-
dinates or generic attribute zero. The initial texture coordinates are (s,t,r,q) =
(0,0,0,1) for each texture coordinate set. The initial current normal has coor-
dinates (0,0,1). The initial fog coordinate is zero. The initial RGBA color is
(R,G,B,A) = (1,1,1,1) and the initial RGBA secondary color is (0,0,0,1).
The initial color index is 1. The initial values for all generic vertex attributes are
(0.0,0.0,0.0,1.0).

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 38

2.8 Vertex Arrays

The vertex specification commands described in section 2.7 accept data in almost
any format, but their use requires many command executions to specify even sim-
ple geometry. Vertex data may also be placed into arrays that are stored in the
client’s address space (described here) or in the server’s address space (described
in section 2.9). Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL. command. The client
may specify up to seven plus the values of MAX TEXTURE_COORDS and MAX_ -
VERTEX_ATTRIBS arrays: one each to store vertex coordinates, normals, colors,
secondary colors, color indices, edge flags, fog coordinates, two or more texture
coordinate sets, and MAX_VERTEX_ATTRIBS atrays to store one or more generic
vertex attributes. The commands

void VertexPointer(int size, enumtype, sizei stride,
const wvoid *pointer);

void NormalPointer(enum type, sizei stride, const
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
const void *pointer);

void SecondaryColorPointer(int size, enum type,
sizei stride, const void *pointer);

void IndexPointer(enum type, sizei stride, const
void *pointer);

void EdgeFlagPointer(sizei stride, const void *pointer);

void FogCoordPointer(enum type, sizei stride, const
void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
const void *pointer);

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer); void
VertexAttribLPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

describe the locations and organizations of these arrays. For each command, fype
specifies the data type of the values stored in the array. Because edge flags are al-
ways type boolean, EdgeFlagPointer has no rype argument. size, when present,

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 39

indicates the number of values per vertex that are stored in the array as well as their
component ordering. Because normals are always specified with three values, Nor-
malPointer has no size argument. Likewise, because color indices and edge flags
are always specified with a single value, IndexPointer and EdgeFlagPointer also
have no size argument. Table 2.5 indicates the allowable values for size and rype
(when present). For type the values BYTE, SHORT, INT, FIXED, FLOAT, HALF_—
FLOAT, and DOUBLE indicate types byte, short, int, fixed, float, half,
and double, respectively; the values UNSIGNED_BYTE, UNSIGNED_SHORT, and
UNSIGNED_INT indicate types ubyte, ushort, and uint, respectively; and the
values INT_2_10_10_10_REV and UNSIGNED_INT_2_10_10_10_REV, indicat-
ing respectively four signed or unsigned elements packed into a single uint, both
correspond to the term packed in that table.

An INVALID_VALUE error is generated if size is not one of the values allowed
in table 2.5 for the corresponding command.

An INVALID_OPERATION error is generated under any of the following con-
ditions:

e size is BGRA and fype is not UNSIGNED_BYTE, INT_2_10_10_10_REV or
UNSIGNED_INT_2_10_10_10_REV;

e fype is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV,
and size is neither 4 or BGRA;

o for VertexAttrib*Pointer only, size is BGRA and normalized is FALSE;

e any of the *Pointer commands specifying the location and organization of
vertex array data are called while a non-zero vertex array object is bound (see
section 2.10), zero is bound to the ARRAY_BUFFER buffer object binding

point (see section 2.9.6), and the pointer argument is not 17,7,

The index parameter in the VertexAttrib*Pointer commands identifies the
generic vertex attribute array being described. The error INVALID_VALUE is gen-
erated if index is greater than or equal to the value of MAX VERTEX_ATTRIBS.
Generic attribute arrays with integer fype arguments can be handled in one of three
ways: converted to float by normalizing to [0, 1] or [—1, 1] as described in equa-
tions 2.1 and 2.2, respectively; converted directly to float, or left as integers. Data
for an array specified by VertexAttribPointer will be converted to floating-point
by normalizing if normalized is TRUE, and converted directly to floating-point oth-
erwise. Data for an array specified by VertexAttribIPointer will always be left as

5 This error makes it impossible to create a vertex array object containing client array pointers,
while still allowing buffer objects to be unbound.

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 40

Sizes and
Component Integer
Command Ordering Handling | Types

VertexAttribPointer 1,2,3,4,BGRA | flag byte, ubyte, short,
ushort, int, uint,
fixed, float, half,

double, packed

VertexAttribIPointer 1,2,3,4 integer byte, ubyte, short,
ushort, int, uint
VertexAttribLPointer 1,2,3,4 n/a double

Table 2.5: Vertex array sizes (values per vertex) and data types. The “Integer
Handling” column indicates how fixed-point data types are handled: “cast” means
that they are converted to floating-point directly, “normalize” means that they are
converted to floating-point by normalizing to [0, 1] (for unsigned types) or [—1, 1]
(for signed types), “integer” means that they remain as integer values, and “flag”
means that either “cast” or “normalized” applies, depending on the setting of the
normalized flag in VertexAttribPointer. If size is BGRA, vertex array values are
always normalized, irrespective of the “normalize” table entry. packed is not a GL
type, but indicates commands accepting multiple components packed into a single
uint.
OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 41

integer values; such data are referred to as pure integers. Data for an array speci-
fied by VertexAttribLPointer must be specified as double-precision floating-point
values. An INVALID_ENUM error will be generated by VertexAttribLPointer if
type is not DOUBLE.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. When size is BGRA, it indicates four values. The values
within each array element are stored sequentially in memory. However, if size is
BGRA, the first, second, third, and fourth values of each array element are taken
from the third, second, first, and fourth values in memory respectively. If stride
is specified as zero, then array elements are stored sequentially as well. The error
INVALID_VALUE is generated if stride is negative. Otherwise pointers to the ith
and (7 + 1)st elements of an array differ by stride basic machine units (typically
unsigned bytes), the pointer to the (i 4+ 1)st element being greater. For each com-
mand, pointer specifies of the first value of the first element
of the array being specified.

When values for a vertex shader attribute variable are sourced from an enabled
generic vertex attribute array, the array must be specified by a command compat-
ible with the data type of the variable. The values loaded into a shader attribute
variable bound to generic attribute index are undefined if the array for index was
not specified by:

e VertexAttribPointer, for single-precision floating-point scalar, vector, and
matrix types

e VertexAttribIPointer with rype BYTE, SHORT, or INT for signed integer
scalar and vector types

e VertexAttribIPointer with fype UNSIGNED_BYTE, UNSIGNED_SHORT, Or
UNSIGNED_INT for unsigned integer scalar and vector types

o VertexAttribLPointer, for double-precision floating-point scalar and vector
types.

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 42

secondary color, color index, edge flag, fog coordinate, or texture coordinate array,
respectively.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable.

An INVALID_VALUE error is generated if index is greater than or equal to
MAX_VERTEX_ ATTRIBS.

The command

void VertexAttribDivisor(uint index, uint divisor);

modifies the rate at which generic vertex attributes advance when rendering multi-
ple instances of primitives in a single draw call. If divisor is zero, the attribute at
slot index advances once per vertex. If divisor is non-zero, the attribute advances
once per divisor instances of the primitives being rendered. An attribute is referred
to as instanced if its divisor value is non-zero.

An INVALID_VALUE error is generated if index is greater than or equal to the
value of MAX_VERTEX_ATTRIBS.

The command

void ClientActiveTexture(enum fexture);

is used to select the vertex array client state parameters to be modified by the Tex-
CoordPointer command and the array affected by EnableClientState and Dis-
ableClientState with parameter TEXTURE_COORD_ARRAY. This command sets the
client state variable CLIENT ACTIVE_ TEXTURE. Each texture coordinate set has
a client state vector which is selected when this command is invoked. This state
vector includes the vertex array state. This call also selects the texture coordinate
set state used for queries of client state.

Specifying an invalid texture generates the error INVALID_ENUM. Valid values
of texture are the same as for the MultiTexCoord commands described in sec-
tion 2.7.

The command

void ArrayElementInstanced(int i, int instance);

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 43

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command transfers the ith element of every enabled, non-instanced
array, and the L’Zfﬁi@iej ’th element of every enabled, instanced array to the GL.
The effect of

ArrayElementInstanced (i, instance);
is the same as the effect of the command sequence

if (normal array enabled)
Normal3[type]v (normal array element i) ;
if (color array enabled)
Color[size][type]v (color array element i) ;
if (secondary color array enabled)
SecondaryColor3[type]v (secondary color array element 1) ;
if (fog coordinate array enabled)
FogCoord|[type]v (fog coordinate array element 1) ;
for (j = 0; j < textureUnits; j++) {
if (texture coordinate set j array enabled)
MultiTexCoord[size][type]v (TEXTUREO + j, texcoord(7,
}
if (color index array enabled)
Index[type]v (color index array element 1) ;
if (edge flag array enabled)
EdgeFlagv (edge flag array element i) ;
for (j = 1; j < genericAttributes; j++) {
if (generic vertex attribute j array enabled) {
if (vertex attrib array divisor 3 > 0)

k = floor (instance / vertex attrib array divisor j);
else
k = 1;

VertexAttrib[size][typelv (7, genattrib(j, k));

}
}

if (generic vertex attribute array O enabled) {
if (vertex attrib array divisor 0 > 0)

k = floor (instance / vertex attrib array divisor 0) ;
else
k = 1;

VertexAttrib[size][typelv (0, genattrib (0, k));

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

i));

2.8. VERTEX ARRAYS

} else if (vertex array enabled) {
Vertex[size][type]v (vertex array element 1) ;
¥

genattrib (attrib, 1) represents the ith element of the vertex array for
generic attribute attrib, and texcoord (coord, 1) represents the ith element
of the vertex array for texture coordinate set coord. textureUnits and genericAt-
tributes give the number of texture coordinate sets and generic vertex attributes
supported by the implementation, respectively. “[size]” and “[type]” correspond
to the size and type of the corresponding array. For generic vertex attributes, it is
assumed that a complete set of vertex attribute commands exists, even though not
all such commands are provided by the GL.

When an array contains packed data, the pseudocode above will use the packed
equivalent with the type of that data. For example, when a generic vertex attribute
array contains packed data, the VertexAttribP[size]uiv command will be called
instead of VertexAttrib[size][type]v.

Similarly when a generic vertex attribute array contains pure integer data,
VertexAttribl[size][type]v will be called; when an array contains fixed-point
data, attribute values are specified in the signed 2’s complement 16.16 fixed-
point fixed format; when an array contains double-precision data, VertexAt-
tribL[size][type]v will be called; and when a generic attribute array normalization
flag is set, and the array data type is not FLOAT, HALF_FLOAT, or DOUBLE, Ver-
texAttrib[size]N[type]v will be called.

Changes made to array data between the execution of Begin and the corre-
sponding execution of End may affect calls to ArrayElementInstanced that are
made within the same Begin / End period in non-sequential ways. That is, a call
to ArrayElementInstanced that precedes a change to array data may access the
changed data, and a call that follows a change to array data may access original
data.

Specifying 7 < 0 results in undefined behavior. ~Generating the error
INVALID_VALUE is recommended in this case.

The command

void ArrayElement(int i);
behaves identically to
ArrayElementInstanced (i, 0) .

Primitive restarting is enabled or disabled by calling one of the commands

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

44

2.8. VERTEX ARRAYS 45

void Enable(enum rarget);

and
void Disable(enum target);

with farget PRIMITIVE_RESTART. The command
void PrimitiveRestartIndex(uint index);

specifies the index of a vertex array element that is treated specially when prim-
itive restarting is enabled. This value is called the primitive restart index. When
ArrayElementInstanced is called between an execution of Begin and the corre-
sponding execution of End, if ¢ is equal to the primitive restart index, then no
vertex data is dereferenced, and no current vertex state is modified. Instead, it is
as if End were called, followed by a call to Begin where mode is the same as the
mode used by the previous Begin.

When one of the *BaseVertex drawing commands specified in section 2.8.2 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

2.8.1 Packed Vertex Data Formats

UNSIGNED_INT_2_10_10_10_REVand INT_2_10_10_10_REV vertex data for-
mats describe packed, 4 component formats stored in a single 32-bit word.

For the UNSIGNED_INT_2_10_10_10_REV vertex data format, the first (x),
second (y), and third (2) components are represented as 10-bit unsigned integer
values and the fourth (w) component is represented as a 2-bit unsigned integer
value.

For the INT_2_10_10_10_REV vertex data format, the x, y and z compo-
nents are represented as 10-bit signed two’s complement integer values and the w
component is represented as a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Tables 2.6 and 2.7 describe how these components are laid out in a 32-bit word.

2.8.2 Drawing Commands

The command

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 46

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Table 2.6: Packed component layout for non-BGRA formats. Bit numbers are indi-
cated for each component.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

Table 2.7: Packed component layout for BGRA format. Bit numbers are indicated
for each component.

void DrawArraysOnelnstance(enum mode, int first,
sizel count, int instance, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives using elements
first through first + count — 1 of each enabled non-instanced array. mode specifies
what kind of primitives are constructed, and accepts the same token values as the
mode parameter of the Begin command. If mode is not a valid primitive type, an
INVALID_ENUM error is generated. If count is negative, an INVALID_VALUE error
is generated.

The value of instance may be read by a vertex shader as g1_InstancelID, as
described in section 2.14.12.

The effect of

DrawArraysOnelnstance (mode, first, count, instance, baseinstance) ;
is the same as the effect of the command sequence

Begin (mode) ;

for (int 1 = 0; 1 < count ; i++)
ArrayElementInstanced (first + i, instance) ;
End () ;

with one exception: the current normal coordinate, color, secondary color, color in-
dex, edge flag, fog coordinate, texture coordinates, and generic attribute values are
not modified by the execution of DrawArraysOnelnstance, if the corresponding

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 47

Specifying first < O results in undefined behavior. Generating the error
INVALID_ VALUE is recommended in this case.
The command

void DrawArrays(enum mode, int first, sizei count);
is equivalent to the command sequence
DrawArraysOnelnstance (mode, first, count, 0, 0);
The command

void DrawArraysInstancedBaselnstance(enum mode,
int first, sizei count, sizei primcount,
uint baseinstance);

behaves identically to DrawArrays except that primcount instances of the range of
elements are executed and the value of instance advances for each iteration. Those
attributes that have positive values for divisor, as specified by VertexAttribDivi-
sor, advance once every divisor instances. Additionally, the first element within
those instanced vertex attributes is specified in baseinstance.
DrawArraysInstancedBaselnstance has the same effect as:

if (mode, count, or primcount is invalid)
generate appropriate error
else {
for (i = 0; i < primcount; i++) {
DrawArraysOnelnstance (mode, first, count, i,
baseinstance) ;

}

The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei primcount);

is equivalent to the command sequence

DrawArraysInstancedBaselnstance (mode, first, count, primcount,

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

0);

2.8. VERTEX ARRAYS 48

The command

void DrawArraysIndirect(enum mode, const
void *indirect);

has the same effect as:

typedef struct {
uint count;
uint primCount;
uint first;
uint baselnstance;
} DrawArraysIndirectCommand;

DrawArraysIndirectCommand xcmd =
(DrawArraysIndirectCommand =) indirect;

DrawArraysInstancedBaselnstance (mode, cmd->first, cmd->count,
cmd->primCount, cmd->baselnstance);

Unlike DrawArraysInstanced, first is unsigned
and cannot cause an error.
All elements of DrawArraysIndirectCommand are tightly packed 32 bit val-
ues.
The command

void MultiDrawArrays(enum mode, const int *first,
const sizei *count, sizei primcount);

behaves identically to DrawArraysInstanced except that primcount separate
ranges of elements are specified instead, all elements are treated as though they
are not instanced, and the value of instance remains zero. It has the same effect
as:

if (mode or primcount is invalid)
generate appropriate error
else {
for (1 = 0; i < primcount; i++) {
if (count[i] > 0)
DrawArraysOnelnstance (mode, first[i], count[i],
0, 0);

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 49

The command

void DrawElementsOnelnstance(enum mode, sizei count,
enum type, const void *indices, int instance,
uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives using the count
elements whose indices are stored in indices. type must be one of UNSIGNED_ -
BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, indicating that the index values are
of GL type ubyte, ushort, or uint respectively. mode specifies what kind of
primitives are constructed, and accepts the same token values as the mode parame-
ter of the Begin command.

The value of instance may be read by a vertex shader as g1_InstancelID, as
described in section 2.14.12.

If an enabled vertex attribute array is instanced (it has a non-zero attribute
divisor as specified by VertexAttribDivisor), the element that is transferred to the
GL is given by:

VnstcmceJ .
——— | + baseinstance
divisor
The effect of

DrawElementsOnelnstance (mode, count, type, indices) ;
is the same as the effect of the command sequence

Begin (mode) ;

for (int 1 = 0; 1 < count ; i++)
ArrayElementInstanced (indices[1], instance) ;
End () ;

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are not
modified by the execution of DrawElementsOnelnstance, if the corresponding
array is enabled. Current values corresponding to disabled arrays are not modified
by the execution of DrawElementsOnelnstance.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 50

behaves identically to DrawElementsOnelnstance with the instance and basein-
stance parameters set to zero; the effect of calling

DrawElements (mode, count, type, indices) ;
is equivalent to the command sequence:

if (mode, count or type is invalid)
generate appropriate error
else
DrawElementsOnelnstance (mode, count, type, indices, 0, 0);

The command

void DrawElementsInstancedBaselnstance(enum mode,
sizei count, enumtype, const void *indices,
sizei primcount, uint baseinstance);

behaves identically to DrawElements except that primcount instances of the set
of elements are executed and the value of instance advances between each set.
Instanced attributes are advanced as they do during execution of DrawArraysIn-
stancedBaselInstace, and baseinstance has the same effect. It has the same effect
as:

if (mode, count, type, or primcount is invalid)
generate appropriate error
else {
for (int i = 0; 1 < primcount; i++) {
DrawElementsOnelnstance (mode, count, type, indices, 1,
baseinstance) ;

}

The command

void MultiDrawElements(enum mode, const
sizei *count, enumtype, const void * const *indices,
sizei primcount);

behaves identically to DrawElementsInstanced except that primcount separate
sets of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instance remains zero. It has the same effect as:

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 51

if (mode, count, primcount, or type is invalid)
generate appropriate error
else {
for (int 1 = 0; 1 < primcount; i++)
DrawElementsOnelnstance (mode, count[i], type,
indices[1], 0, 0);

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enumtype, const
void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end — start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for index values (other than the primitive restart
index, when primitive restart is enabled) to lie outside the range [start,end],
but implementations are not required to check for this. Such indices will cause
implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enummode, sizei count,
enum type, const void *indices, int basevertex);
void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);
void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enumtype, const void *indices,
sizei primcount, int basevertex);

OpenGL 4.2 (Compeatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 52

void DrawElementsInstancedBaseVertexBaselnstance(
enummode, sizei count, enumtype, const
void *indices, sizei primcount, int basevertex,
uint baseinstance);

are equivalent to the commands with the same base name (without the BaseVertex
suffix), except that the ith element transferred by the corresponding draw call will
be taken from element indices|i] + basevertex of each enabled array. If the result-
ing value is larger than the maximum value representable by type, it should behave
as if the calculation were upconverted to 32-bit unsigned integers (with wrapping
on overflow conditions). The operation is undefined if the sum would be negative
and should be handled as described in section 2.9.4. For DrawRangeElementsBa-
seVertex, the index values must lie between start and end inclusive, prior to adding
the basevertex offset. Index values lying outside the range [start, end] are treated
in the same way as DrawRangeElements.

For DrawElementsInstancedBaseVertexBaselnstance, baseinstance is used
to offset the element from which instanced vertex attributes (those with a non-zero
divisor as specified by VertexAttribDivisor) are taken.

The command

void DrawElementsIndirect(enum mode, enum type, const
void *indirect);

has the same effect as:

typedef struct {
uint count;
uint primCount;
uint firstIndex;
int baseVertex;
uint baselInstance;
} DrawElementsIndirectCommand;

if (no element array buffer is bound) {

generate appropriate error
} else {

DrawElementsIndirectCommand *cmd =
(DrawElementsIndirectCommand =*)indirect;

DrawElementsInstancedBase VertexBaselnstance (mode,

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 53

cmd->count, type,
cmd->firstIndex * size-of-type,
cmd->primCount, cmd->baseVertex,
cmd->baselInstance) ;

}

As with DrawElementsInstancedBaseVertex, vertex attributes may be
sourced from client arrays or vertex buffer objects. Unlike DrawElementsIn-
stancedBaseVertex, indices may not come from a client array and must come
from an index buffer. An INVALID_OPERATION error is generated if no element
array buffer is bound.

All elements of DrawElement sIndirectCommand are tightly packed.

The command

void MultiDrawElementsBaseVertex(enum mode, const
sizei *count, enumtype, const void * const *indices,
sizeil primcount, const int *basevertex);

behaves identically to DrawElementsBaseVertex, except that primcount separate
lists of elements are specified instead. It has the same effect as:

if (mode or primcount is invalid)
generate appropriate error
else {
for (int 1 = 0; 1 < primcount; i++)
if (count[i] > 0)
DrawElementsBaseVertex (mode, count[i], type,
indices[1], basevertex[1i]) ;

The command

void InterleavedArrays(enum format, sizei stride, const
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 configurations.

format must be one of 14 symbolic constants: V2F, V3F, C4UB_V2F, C4UB_-

V3F, C3F_V3F, N3F_V3F, CAF_N3F_V3F, T2F_V3F, T4F_VA4F, T2F_C4UB_V3F,

T2F_C3F_V3F, T2F_N3F_V3F, T2F_CA4F_N3F_V3F, or TAF_C4F_N3F_VA4F.
The effect of

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS

54

‘ format ey ‘ e ‘ en ‘ St ‘ Se ‘ Su te
V2F False | False | False 2
V3F False | False | False 3
C4UB_V2F False | True | Fualse 4 | 2 | UNSIGNED_BYTE
C4UB_V3F False | True | False 4 | 3 | UNSIGNED_BYTE
C3F_V3F False | True | False 313 FLOAT
N3F_V3F False | False | True 3
C4F_N3F_V3F False | True | True 4 1 3 FLOAT
T2F_V3F True | False | False | 2 3
T4F_VA4F True | False | False | 4 4
T2F_CAUB_V3F True | True | False | 2 | 4 | 3 | UNSIGNED_BYTE
T2F_C3F_V3F True | True | False | 2 | 3 | 3 FLOAT
T2F_N3F_V3F True | False | True | 2 3
T2F_C4F_N3F_V3F | True | True | True | 2 | 4 | 3 FLOAT
T4F_CAF_N3F_V4F | True | True | True | 4 | 4 | 4 FLOAT
’ format De ‘ Dn ‘ Dy ‘ S
V2F 0 2f
V3F 0 3f
CAUB_V2F 0 c c+2f
C4UB_V3F 0 c c+3f
C3F_V3F 0 3f 6f
N3F_V3F 0 3f 6f
C4F_N3F_V3F 0 | 4f 7f 10f
T2F_V3F 2f 5f
T4F_VAF 4f 8f
T2F_C4UB_V3F 2f c+2f | c+5f
T2F_C3F_V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F_CA4F_N3F_V3F | 2f | 6f 9f 12f
TAF_CA4F_N3F_V4F | 4f | 8f 11f 15f

Table 2.8: Variables that direct the execution of InterleavedArrays. f is
sizeof (FLOAT). c is 4 times sizeof (UNSIGNED_BYTE), rounded up to
the nearest multiple of f. All pointer arithmetic is performed in units of
sizeof (UNSIGNED_BYTE).

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.8. VERTEX ARRAYS 55

InterleavedArrays (format, stride, pointer) ;

is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error
else {
int str;
set et, €, €, St, Sc,y Su, tes Pes P, Pu, and s as a function
of table 2.8 and the value of format.
str = stride;
if (striszero)

str = s;
DisableClientState (EDGE_FLAG_ARRAY) ;
DisableClientState (INDEX_ARRAY) ;

(
(
DisableClientState (SECONDARY_COLOR_ARRAY) ;
DisableClientState (FOG_COORD_ARRAY) ;
1f (ep) {
EnableClientState (TEXTURE_COORD_ARRAY) ;
TexCoordPointer (s;, FLOAT, str, pointer) ;

} else
DisableClientState (TEXTURE_COORD_ARRAY) ;
if (ee) {

EnableClientState (COLOR_ARRAY) ;
ColorPointer (s, t., str, pointer + p.) ;

} else
DisableClientState (COLOR_ARRAY) ;
if (en) {

EnableClientState (NORMAL_ARRAY) ;

NormalPointer (FLOAT, str, pointer + py,) ;
} else

DisableClientState (NORMAL_ARRAY) ;
EnableClientState (VERTEX_ARRAY) ;
VertexPointer (s, FLOAT, str, pointer + py) ;

}

If the number of supported texture units (the value of MAX_TEXTURE_COORDS)
is m and the number of supported generic vertex attributes (the value of MAX_—
VERTEX_ATTRIBS) is n, then the state required to implement vertex arrays consists
of an integer for the client active texture unit selector, 7 + m + n boolean values,

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.9. BUFFER OBJECTS 56

7 + m + n memory pointers, 7 + m + n integer stride values, 7 + m + n sym-
bolic constants representing array types, 3 + m -+ n integers representing values
per element, n boolean values indicating normalization, n boolean values indicat-
ing whether the attribute values are pure integers, n integers representing vertex
attribute divisors, and an unsigned integer representing the restart index.

In the initial state, the
boolean values are each false, the memory pointers are each NULL, the strides are
each zero, the array types are each FLOAT, the integers representing values per
element are each four, the normalized and pure integer flags are each false, the
divisors are each zero, and the restart index is zero.

2.9 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is usually desirable to store other types of frequently
used client data, such as vertex array and pixel data, in server memory even if the
option to store it in client memory exists. Buffer objects provide a mechanism to
allocate, initialize, and render from such memory.

The command
void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object
is deleted it has no contents, and its name is again unused. =~ Unused names in
buffers that have been marked as used for the purposes of GenBuffers are marked
as unused again. Unused names in buffers are silently ignored, as is the value zero.

2.9.1 Creating and Binding Buffer Objects

A buffer object is created by binding to a buffer target. The
binding is effected by calling

OpenGL 4.2 (Compatibility Profile) - April 27, 2012

2.9. BUFFER OBJECTS 57

Target name Purpose Described in section(s) ‘
ARRAY_BUFFER Vertex attributes 2.9.6
ATOMIC_COUNTER_BUFFER Atomic counter storage 2.14.7
COPY_READ_BUFFER_BINDING | Buffer copy source 2.9.5
COPY_WRITE_BUFFER_BINDING | Buffer copy destination 2.9.5
DRAW_INDIRECT_BUFFER Indirect command arguments | 2.9.8
ELEMENT_ARRAY_ BUFFER Vertex array indices 2.9.7
PIXEL_PACK_BUFFER Pixel read target 43.2,6.1
PIXEL_UNPACK_BUFFER Texture data source 3.7
TEXTURE_BUFFER Texture data buffer 3.10.7
TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer 2.20
UNIFORM_BUFFER Uniform block storage 2.14.7

Table 2.9: Buffer object binding targets.

void BindBuffer(enum farget, uint buffer);

target must be one of the targets listed in table 2.9. If the buffer object named
buffer has not been previously bound,

the GL creates a new state vector, initial