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1 Introduction

This document specifies only version 4.50 of the OpenGL Shading Language.  It requires __VERSION__ 
to substitute 450, and requires #version to accept only 450.  If #version is declared with a smaller 
number, the language accepted is a previous version of the shading language, which will be supported 
depending on the version and type of context in the OpenGL API.  See the OpenGL Graphics System 
Specification, Version 4.5, for details on what language versions are supported.

Previous versions of the OpenGL Shading Language, as well as the OpenGL ES Shading Language, are 
not strict subsets of the version specified here, particularly with respect to precision, name-hiding rules, 
and treatment of interface variables.  See the specification corresponding to a particular language version 
for details specific to that version of the language.

All OpenGL Graphics System Specification references in this specification are to version 4.5.
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1 Introduction

1.2 Changes

1.2.1 Changes from Revision 5 of GLSL Version 4.50

• Updated copyright and license page.

• Bug 1293 restrict subroutine use to just the places needed.

• Bug 1294 define and use “aggregate” consistently.

• Bug 1310 large set of typographical changes (non-functional, not marked)

• Bug 1315 for arrays of arrays of block instances, each element gets a binding point

• Bug 1447 correct the pow() inheritance formula.

• Bug 1405 allow mixed int/uint types in bitwise operations.

• Bug 1461 align values must be greater than 0 (align = 0 is a compile-time error).

• Bug 1247 Component limits for arrayed interfaces (e.g., gl_MaxTessControlInputComponents) 
are limits per vertex, not limits for the entire interface.

• Bug 14863 Be clear that global non-const declarations can call user functions.

• Bug 14958 clarify in expository grammar for blocks that memory qualifiers can be used (as is 
normal, the grammars shown outside section 9 are expository, not normative).

• Bug 1321 and bug 15276 move to SPIR-V's improved definitions for uniform control flow and 
dynamically uniform.

• Bug 15327 layout(invocations = 0) is a compile-time error.

1.2.2 Changes from Revision 3 of GLSL Version 4.50

• Bug 12664: The memory qualifier restrict can be added or removed when passing an argument 
into function's formal parameter qualification.  The memory qualifier coherent was removed to 
the atomic and image-atomic built-in functions.  For all affected built-in functions, the code 
generated is based on the actual qualification of the calling argument, not on the specified list on 
the formal parameter in the prototype.

• Bug 12486: Changed “must” to “may” in the statement “When using OpenGL API entry points to
identify the name of an individual block in an array of blocks, the name string may include an 
array index.”

• Public Bug 1223: Removed old language that “Location layout qualifiers may not be used on 
output blocks or output block members”.

• Bug 12574:  Fix typo:  dFdxFine(dFdxFine(x)) → dFdxFine(dFdyFine(x)).

• Bug 13004: Clarify in the expository grammar that arrays-of-arrays are allowed for an interface 
block.

• Bug 12370: Change gl_MaxComputeUniformComponents from 1024 to 512.
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• Bug 11207: Clarify: The combinations of types and qualifiers that cause compile-time or link-
time errors are the same whether or not the declaration is empty.

• Public Bug 1220: Clarification: for assignment r-values, that is the resulting value of  “l-value = 
r-value”, change the result returned from saying “returns an r-value” to saying “returns that r-
value”.

• Instead of adding lots of memory qualifiers (readonly, coherent, volatile, …) to built-in 
functions, indicate the specific functions that accept all combinations, and say they operate on the
qualification of the passed in argument.

• Bug 13320: Clarify that doubles take up two component's worth of a location, when using 
component numbers with layout(location = L, component = C).

1.2.3 Summary of Changes from Revision 9 of GLSL Version 4.40

Deprecations

• None.

Changes

• Incorporate the ARB_ES3_1_compatibility extension

◦ Supports OpenGL ES 310 shaders.

◦ Adds imageAtomicExchange() built-in function for floating-point images.

◦ Adds coherent to atomic and image-atomic built-in function parameters.

◦ Adds gl_HelperInvocation built-in variable to say whether a fragment shader invocation is 
only as a helper, so the shader can skip code not needed or harmful when in a helper 
invocation.

◦ Adds gl_MaxSamples built-in constant, and several other built-in constants.

◦ Adds mix() built-in functions for selection of int, uint, and bool components.

• Incorporate the GL_ARB_shader_texture_image_samples extension to query how many samples 
are in a multi-sample texture or image.

• Incorporate the GL_ARB_cull_distance extensions to add the built-in variable 
gl_CullDistance[], which will cull whole primitives.

• Incorporate the GL_ARB_derivative_control extension:

◦ Adds dFdxCoarse(), dFdyCoarse(), fwidthCoarse() built-in functions for coarse-grained 
derivatives.  These ignore GL hints.

◦ Adds dFdxFine(), dFdyFine(), fwidthFine() built-in functions for fine-grained derivatives. 
These ignore GL hints.

◦ Higher-order derivatives are no longer undefined, but may be 0.

• Bug 10941:   It is an error to access the same packed uniform or shader storage block in multiple 
stages within a program.

4



1 Introduction

• Bug 11902:  Division by zero gives appropriately signed IEEE infinity.Bug 1293 restrict 
subroutine use to just the places needed.

• Bug 1294 define and use “aggregate” consistently.

• Bug 1315 for arrays of arrays of block instances, each element gets a binding point

• Bug 1447 correct the pow() inheritance formula.

• Bug 1405 allow mixed int/uint types in bitwise operations.

• Bug 1461 align values must be greater than 0 (align = 0 is a compile-time error).

• Bug 1247 Component limits for arrayed interfaces (e.g., gl_MaxTessControlInputComponents) 
are limits per vertex, not limits for the entire interface.

• Bug 14863 Be clear that global non-const declarations can call user functions.

• Bug 14958 clarify in expository grammar for blocks that memory qualifiers can be used (as is 
normal, the grammars shown outside section 9 are expository, not normative).

• Bug 1321 and bug 15276 move to SPIR-V's improved definitions for uniform control flow and 
dynamically uniform.

• Bug 15327 layout(invocations = 0) is a compile-time error.

1.3 Overview
This document describes The OpenGL Shading Language, version 4.50.

Independent compilation units written in this language are called shaders.  A program is a set of shaders 
that are compiled and linked together, completely creating one or more of the programmable stages of the 
OpenGL pipeline.  All the shaders for a single programmable stage must be within the same program.  A 
complete set of programmable stages can be put into a single program or the stages can be partitioned 
across multiple programs.  The aim of this document is to thoroughly specify the programming language.  
The OpenGL Graphics System Specification will specify the OpenGL entry points used to manipulate and
communicate with programs and shaders.

1.4 Error Handling
Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs.  Portability is only ensured for well-formed programs, which this specification 
describes.  Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are
not required to do so for all cases.  Compile-time errors must be returned for lexically or grammatically 
incorrect shaders.  Other errors are reported at compile time or link time as indicated.  Code that is “dead”
must still be error checked.  For example:
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if (false)     // changing false to true cannot uncover additional errors
    statement; // statement must be error checked regardless

1.5 Typographical Conventions
Italic, bold, and font choices have been used in this specification primarily to improve readability.  Code 
fragments use a fixed width font.  Identifiers embedded in text are italicized.  Keywords embedded in text 
are bold.  Operators are called by their name, followed by their symbol in bold in parentheses. The 
clarifying grammar fragments in the text use bold for literals and italics for non-terminals.  The official 
grammar in section 9 “Shading Language Grammar”  uses all capitals for terminals and lower case for 
non-terminals.

1.6 Deprecation
The OpenGL Shading Language has deprecated some features.  These are clearly called out in this 
specification as “deprecated”.  They are still present in this version of the language, but are targeted for 
potential removal in a future version of the shading language.  The OpenGL API has a forward 
compatibility mode that will disallow use of deprecated features.  If compiling in a mode where use of 
deprecated features is disallowed, their use causes compile-time or link-time errors.  See the OpenGL 
Graphics System Specification for details on what causes deprecated language features to be accepted or 
to return an error.
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2 Overview of OpenGL Shading

The OpenGL Shading Language is actually several closely related languages.  These languages are used to
create shaders for each of the programmable processors contained in the OpenGL processing pipeline.  
Currently, these processors are the vertex, tessellation control, tessellation evaluation, geometry,  
fragment, and compute processors.

Unless otherwise noted in this paper, a language feature applies to all languages, and common usage will 
refer to these languages as a single language.  The specific languages will be referred to by the name of 
the processor they target: vertex, tessellation control, tessellation evaluation, geometry, fragment, or 
compute.

Most OpenGL state is not tracked or made available to shaders.  Typically, user-defined variables will be 
used for communicating between different stages of the OpenGL pipeline.  However, a small amount of 
state is still tracked and automatically made available to shaders, and there are a few built-in variables for 
interfaces between different stages of the OpenGL pipeline.

2.1 Vertex Processor
The vertex processor is a programmable unit that operates on incoming vertices and their associated data. 
Compilation units written in the OpenGL Shading Language to run on this processor are called vertex 
shaders.  When a set of vertex shaders are successfully compiled and linked, they result in a vertex shader
executable that runs on the vertex processor.

The vertex processor operates on one vertex at a time. It does not replace graphics operations that require 
knowledge of several vertices at a time.

2.2 Tessellation Control Processor
The tessellation control processor is a programmable unit that operates on a patch of incoming vertices 
and their associated data, emitting a new output patch.  Compilation units written in the OpenGL Shading 
Language to run on this processor are called tessellation control shaders.  When a set of tessellation 
control shaders are successfully compiled and linked, they result in a tessellation control shader 
executable that runs on the tessellation control processor.

The tessellation control shader is invoked for each vertex of the output patch.  Each invocation can read 
the attributes of any vertex in the input or output patches, but can only write per-vertex attributes for the 
corresponding output patch vertex.  The shader invocations collectively produce a set of per-patch 
attributes for the output patch.  After all tessellation control shader invocations have completed, the output
vertices and per-patch attributes are assembled to form a patch to be used by subsequent pipeline stages.

Tessellation control shader invocations run mostly independently, with undefined relative execution order.
However, the built-in function barrier() can be used to control execution order by synchronizing 
invocations, effectively dividing tessellation control shader execution into a set of phases.  Tessellation 
control shaders will get undefined results if one invocation reads a per-vertex or per-patch attribute written
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2 Overview of OpenGL Shading

by another invocation at any point during the same phase, or if two invocations attempt to write different 
values to the same per-patch output in a single phase.

2.3 Tessellation Evaluation Processor
The tessellation evaluation processor is a programmable unit that evaluates the position and other 
attributes of a vertex generated by the tessellation primitive generator, using a patch of incoming vertices 
and their associated data.  Compilation units written in the OpenGL Shading Language to run on this 
processor are called tessellation evaluation shaders.  When a set of tessellation evaluation shaders are 
successfully compiled and linked, they result in a tessellation evaluation shader executable that runs on 
the tessellation evaluation processor.

Each invocation of the tessellation evaluation executable computes the position and attributes of a single 
vertex generated by the tessellation primitive generator.  The executable can read the attributes of any 
vertex in the input patch, plus the tessellation coordinate, which is the relative location of the vertex in the
primitive being tessellated.  The executable writes the position and other attributes of the vertex.

2.4 Geometry Processor
The geometry processor is a programmable unit that operates on data for incoming vertices for a primitive
assembled after vertex processing and outputs a sequence of vertices forming output primitives.  
Compilation units written in the OpenGL Shading Language to run on this processor are called geometry 
shaders.  When a set of geometry shaders are successfully compiled and linked, they result in a geometry 
shader executable that runs on the geometry processor.

A single invocation of the geometry shader executable on the geometry processor will operate on a 
declared input primitive with a fixed number of vertices.  This single invocation can emit a variable 
number of vertices that are assembled into primitives of a declared output primitive type and passed to 
subsequent pipeline stages.

2.5 Fragment Processor
The fragment processor is a programmable unit that operates on fragment values and their associated 
data. Compilation units written in the OpenGL Shading Language to run on this processor are called 
fragment shaders.  When a set of fragment shaders are successfully compiled and linked, they result in a 
fragment shader executable that runs on the fragment processor.

A fragment shader cannot change a fragment's (x, y) position. Access to neighboring fragments is not 
allowed. The values computed by the fragment shader are ultimately used to update framebuffer memory 
or texture memory, depending on the current OpenGL state and the OpenGL command that caused the 
fragments to be generated.

2.6 Compute Processor
The compute processor is a programmable unit that operates independently from the other shader 
processors. Compilation units written in the OpenGL Shading Language to run on this processor are 
called compute shaders.  When a set of compute shaders are successfully compiled and linked, they result 
in a compute shader executable that runs on the compute processor. 
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2 Overview of OpenGL Shading

A compute shader has access to many of the same resources as fragment and other shader processors, 
including textures, buffers, image variables, and atomic counters.  It does not have  fixed-function outputs.
It is not part of the graphics pipeline and its visible side effects are through changes to images, storage 
buffers, and atomic counters.

A compute shader operates on a group of work items called a work group.  A work group is a collection of
shader invocations that execute the same code, potentially in parallel.  An invocation within a work group 
may share data with other members of the same work group through shared variables and issue memory 
and control barriers to synchronize with other members of the same work group.

9



3 Basics

3.1 Character Set and Phases of Compilation
The source character set used for the OpenGL shading languages is Unicode in the UTF-8 encoding 
scheme.  After preprocessing, only the following characters are allowed in the resulting stream of GLSL 
tokens:

The letters a-z, A-Z, and the underscore ( _ ).

The numbers 0-9.

The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (< and
>), square brackets ( [ and ] ), parentheses ( ( and ) ), braces ( { and } ), caret (^), vertical bar ( | ), 
ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (;), comma (,), and 
question mark (?).

A compile-time error will be given if any other character is used in a GLSL token.

There are no digraphs or trigraphs.  There are no escape sequences or uses of the backslash beyond use as 
the line-continuation character.

Lines are relevant for compiler diagnostic messages and the preprocessor.  They are terminated by 
carriage-return or line-feed.  If both are used together, it will count as only a single line termination.  For 
the remainder of this document, any of these combinations is simply referred to as a new line.

In general, the language’s use of this character set is case sensitive.

There are no character or string data types, so no quoting characters are included.

There is no end-of-file character.

More formally, compilation happens as if the following logical phases were executed in order:

1. Source strings are concatenated to form a single input.  All provided new lines are retained.

2. Line numbering is noted, based on all present new lines, and does not change when new lines are
later eliminated.

3. Wherever a backslash ('\') occurs immediately before a new line, both are eliminated. (Note no 
white space is substituted, allowing a single token to span a new line.) Any newly formed 
backslash followed by a new line is not eliminated; only those pairs originally occurring after 
phase 1 are eliminated.

4. All comments are replaced with a single space. (Note that '//' style comments end before their 
terminating new lines and white space is generally relevant to preprocessing.)

5. Preprocessing is done, resulting in a sequence of GLSL tokens, formed from the character set 
stated above.

6. GLSL processing is done on the sequence of GLSL tokens.
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3 Basics

Details that fully define source strings, comments, line numbering, new line elimination, and 
preprocessing are all discussed in upcoming sections.  Sections beyond those describe GLSL processing.

3.2 Source Strings
The source for a single shader is an array of strings of characters from the character set.  A single shader is
made from the concatenation of these strings.  Each string can contain multiple lines, separated by new 
lines.  No new lines need be present in a string; a single line can be formed from multiple strings.  No new
lines or other characters are inserted by the implementation when it concatenates the strings to form a 
single shader.  Multiple shaders can be linked together to form a single program.

Diagnostic messages returned from compiling a shader must identify both the line number within a string 
and which source string the message applies to.  Source strings are counted sequentially with the first 
string being string 0.  Line numbers are one more than the number of new lines that have been processed, 
including counting the new lines that will be removed by the line-continuation character ( \ ).

Lines separated by the line-continuation character preceding a new line are concatenated together before 
either comment processing or preprocessing.  No white space is substituted for the line-continuation 
character.  That is, a single token could be formed by the concatenation by taking the characters at the end
of one line concatenating them with the characters at the beginning of the next line.

float f\
oo; 
// forms a single line equivalent to “float foo;”
// (assuming '\' is the last character before the new line and “oo” are 
// the first two characters of the next line)

3.3 Preprocessor
There is a preprocessor that processes the source strings as part of the compilation process.  Except as 
noted below, it behaves as the C++ standard preprocessor (see section 10 “Normative References”).
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The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
#else
#elif
#endif

#error
#pragma

#extension 
#version 

#line

The following operators are also available

defined
##

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs.  It may also be 
followed by spaces and horizontal tabs, preceding the directive.  Each directive is terminated by a new 
line.  Preprocessing does not change the number or relative location of new lines in a source string.  
Preprocessing takes places after new lines have been removed by the line-continuation character.

The number sign (#) on a line by itself is ignored.  Any directive not listed above will cause a diagnostic 
message and make the implementation treat the shader as ill-formed.

#define and #undef functionality are defined as is standard for C++ preprocessors for macro definitions 
both with and without macro parameters.

The following predefined macros are available

__LINE__
__FILE__
__VERSION__

__LINE__ will substitute a decimal integer constant that is one more than the number of preceding new 
lines in the current source string.

__FILE__ will substitute a decimal integer constant that says which source string number is currently 
being processed.

__VERSION__ will substitute a decimal integer reflecting the version number of the OpenGL shading 
language.  The version of the shading language described in this document will have __VERSION__ 
substitute the decimal integer 450.
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By convention, all macro names containing two consecutive underscores ( __ ) are reserved for use by 
underlying software layers.  Defining such a name in a shader does not itself result in an error, but may 
result in unintended behaviors that stem from having multiple definitions of the same name.  All macro 
names prefixed with “GL_” (“GL” followed by a single underscore) are also reserved, and defining such a
name results in a compile-time error.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as is standard for C++ preprocessors.  
Expressions following #if and #elif are further restricted to expressions operating on literal integer 
constants, plus identifiers consumed by the defined operator.    Character constants are not supported.  
The operators available are as follows.

Precedence Operator class Operators Associativity

  1  (highest) parenthetical grouping ( ) NA

2 unary defined 
+  -  ~  !

Right to Left

3 multiplicative *   /   % Left to Right

4 additive +  - Left to Right

5 bit-wise shift <<    >> Left to Right

6 relational <    >    <=   >= Left to Right

7 equality ==   != Left to Right

8 bit-wise and & Left to Right

9 bit-wise exclusive or ^ Left to Right

10 bit-wise inclusive or | Left to Right

11 logical and && Left to Right

12 (lowest) logical inclusive or | | Left to Right

The defined operator can be used in either of the following ways:

defined identifier
defined ( identifier )

Two tokens in a macro can be concatenated into one token using the token pasting (##) operator, as is 
standard for C++ preprocessors.  The result must be a valid single token, which will then be subject to 
macro expansion.  That is, macro expansion happens only after token pasting.  There are no other number 
sign based operators (e.g., no # or #@), nor is there a sizeof operator.

The semantics of applying operators to integer literals in the preprocessor match those standard in the
C++ preprocessor, not those in the OpenGL Shading Language.

Preprocessor expressions will be evaluated according to the behavior of the host processor, not the 
processor targeted by the shader.
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#error will cause the implementation to put a compile-time diagnostic message into the shader object’s 
information log (see section 7.12 “Shader and Program Queries” in the OpenGL Graphics System 
Specification for how to access a shader object’s information log).  The message will be the tokens 
following the #error directive, up to the first new line.  The implementation must then consider the shader
to be ill-formed.

#pragma allows implementation dependent compiler control.  Tokens following #pragma are not subject 
to preprocessor macro expansion.  If an implementation does not recognize the tokens following 
#pragma, then it will ignore that pragma.  The following pragmas are defined as part of the language.

#pragma STDGL

The STDGL pragma is used to reserve pragmas for use by future revisions of this language.  No 
implementation may use a pragma whose first token is STDGL.

#pragma optimize(on)
#pragma optimize(off)

can be used to turn off optimizations as an aid in developing and debugging shaders.  It can only be used 
outside function definitions.  By default, optimization is turned on for all shaders.  The debug pragma

#pragma debug(on)
#pragma debug(off)

can be used to enable compiling and annotating a shader with debug information, so that it can be used 
with a debugger.  It can only be used outside function definitions.  By default, debug is turned off.

Shaders should declare the version of the language they are written to.  The language version a shader is 
written to is specified by

#version number profileopt

where number must be a version of the language, following the same convention as __VERSION__ above.
The directive “#version 450” is required in any shader that uses version 4.50 of the language.  Any 
number representing a version of the language a compiler does not support will cause a compile-time 
error to be generated. Version 1.10 of the language does not require shaders to include this directive, and 
shaders that do not include a #version directive will be treated as targeting version 1.10.  Shaders that 
specify #version 100 will be treated as targeting version 1.00 of the OpenGL ES Shading Language.    
Shaders that specify #version 300 will be treated as targeting version 3.00 of the OpenGL ES Shading 
Language.  Shaders that specify #version 310 will be treated as targeting version 3.10 of the OpenGL ES 
Shading Language.

If the optional profile argument is provided, it must be the name of an OpenGL profile.  Currently, there 
are three choices:

core
compatibility
es

A profile argument can only be used with version 150 or greater. If no profile argument is provided and 
the version is 150 or greater, the default is core.  If version 300 or 310 is specified, the profile argument is
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not optional and must be es, or a compile-time error results. The Language Specification for the es profile 
is specified in The OpenGL ES Shading Language specification.

Shaders for the core or compatibility profiles that declare different versions can be linked together.  
However, es profile shaders cannot be linked with non-es profile shaders or with es profile shaders of a 
different version, or a link-time error will result.  When linking shaders of versions allowed by these rules,
remaining link-time errors will be given as per the linking rules in the GLSL version corresponding to the 
version of the context the shaders are linked under.  Shader compile-time errors must still be given strictly
based on the version declared (or defaulted to) within each shader.

Unless otherwise specified, this specification is documenting the core profile, and everything specified for
the core profile is also available in the compatibility profile.  Features specified as belonging specifically 
to the compatibility profile are not available in the core profile.

There is a built-in macro definition for each profile the implementation supports.  All implementations 
provide the following macro:

#define GL_core_profile 1

Implementations providing the compatibility profile provide the following macro:

#define GL_compatibility_profile 1

Implementations providing the es profile provide the following macro:

#define GL_es_profile 1

The #version directive must occur in a shader before anything else, except for comments and white space.
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By default, compilers of this language must issue compile-time lexical and grammatical errors for shaders 
that do not conform to this specification.  Any extended behavior must first be enabled.  Directives to 
control the behavior of the compiler with respect to extensions are declared with the #extension directive

#extension extension_name : behavior
#extension all : behavior

where extension_name is the name of an extension.  Extension names are not documented in this 
specification.  The token all means the behavior applies to all extensions supported by the compiler.  The 
behavior can be one of the following

behavior Effect

require Behave as specified by the extension extension_name.

Give a compile-time error on the #extension if the extension extension_name 
is not supported, or if all is specified.

enable Behave as specified by the extension extension_name.

Warn on the #extension if the extension extension_name is not supported.

Give a compile-time error on the #extension if all is specified.

warn Behave as specified by the extension extension_name, except issue warnings 
on any detectable use of that extension, unless such use is supported by other 
enabled or required extensions.

If all is specified, then warn on all detectable uses of any extension used.

Warn on the #extension if the extension extension_name is not supported.

disable Behave (including issuing errors and warnings) as if the extension 
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the non-extended 
core version of the language being compiled to.

Warn on the #extension if the extension extension_name is not supported.

The extension directive is a simple, low-level mechanism to set the behavior for each extension.  It does 
not define policies such as which combinations are appropriate, those must be defined elsewhere.  Order 
of directives matters in setting the behavior for each extension:  Directives that occur later override those 
seen earlier.  The all variant sets the behavior for all extensions, overriding all previously issued 
extension directives, but only for the behaviors warn and disable.
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The initial state of the compiler is as if the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this 
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope.  If nothing is said, the granularity is a shader 
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor 
tokens.  If necessary, the linker can enforce granularities larger than a single compilation unit, in which 
case each involved shader will have to contain the necessary extension directive.

Macro expansion is not done on lines containing #extension and #version directives.

#line must have, after macro substitution, one of the following forms:

#line line
#line line source-string-number

where line and source-string-number are constant integer expressions.  After processing this directive 
(including its new line), the implementation will behave as if it is compiling at line number line and source
string number source-string-number.  Subsequent source strings will be numbered sequentially, until 
another #line directive overrides that numbering.

3.4 Comments
Comments are delimited by /* and */, or by // and a new line.  The begin comment delimiters (/* or //) are 
not recognized as comment delimiters inside of a comment, hence comments cannot be nested.  A /* 
comment includes its terminating delimiter (*/).  However, a // comment does not include (or eliminate) its
terminating new line.  

Inside comments, any byte values may be used, except a byte whose value is 0.  No errors will be given 
for the content of comments and no validation on the content of comments need be done.

Removal of new lines by the line-continuation character ( \ ) logically occurs before comments are 
processed.  That is, a single-line comment ending in the line-continuation character ( \ ) includes the next 
line in the comment.

// a single-line comment containing the next line \ 
a = b; // this is still in the first comment

17



3 Basics

3.5 Tokens

The language, after preprocessing, is a sequence of GLSL tokens.  A token can be

token:

keyword

identifier

integer-constant

floating-constant

operator

;  {  }

3.6 Keywords
The following are the language's keywords and (after preprocessing) can only be used as described in this 
specification, or a compile-time error results: 

    attribute   const   uniform   varying    buffer    shared

    coherent    volatile    restrict    readonly    writeonly

    atomic_uint

    layout

    centroid    flat    smooth    noperspective

    patch    sample

    break   continue   do   for   while    switch    case    default 

    if    else

    subroutine

    in   out   inout

    float   double    int   void   bool  true  false

    invariant    precise

    discard   return

    mat2  mat3  mat4                  dmat2  dmat3  dmat4

    mat2x2   mat2x3   mat2x4    dmat2x2   dmat2x3   dmat2x4

    mat3x2   mat3x3   mat3x4    dmat3x2   dmat3x3   dmat3x4

    mat4x2   mat4x3   mat4x4    dmat4x2   dmat4x3   dmat4x4

    vec2   vec3  vec4    ivec2   ivec3   ivec4    bvec2   bvec3   bvec4    dvec2    dvec3    dvec4

    uint    uvec2    uvec3    uvec4
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    lowp    mediump    highp    precision

    sampler1D   sampler2D   sampler3D   samplerCube   

    sampler1DShadow   sampler2DShadow    samplerCubeShadow

    sampler1DArray   sampler2DArray

    sampler1DArrayShadow   sampler2DArrayShadow

    isampler1D   isampler2D   isampler3D   isamplerCube

    isampler1DArray   isampler2DArray

    usampler1D   usampler2D   usampler3D   usamplerCube

    usampler1DArray   usampler2DArray

    sampler2DRect    sampler2DRectShadow    isampler2DRect    usampler2DRect

    samplerBuffer    isamplerBuffer    usamplerBuffer

    sampler2DMS    isampler2DMS    usampler2DMS

    sampler2DMSArray    isampler2DMSArray    usampler2DMSArray

    samplerCubeArray  samplerCubeArrayShadow   isamplerCubeArray   usamplerCubeArray

    image1D    iimage1D    uimage1D

    image2D    iimage2D    uimage2D

    image3D    iimage3D    uimage3D

    image2DRect    iimage2DRect    uimage2DRect

    imageCube    iimageCube    uimageCube

    imageBuffer    iimageBuffer    uimageBuffer

    image1DArray    iimage1DArray    uimage1DArray

    image2DArray    iimage2DArray    uimage2DArray

    imageCubeArray    iimageCubeArray    uimageCubeArray

    image2DMS    iimage2DMS    uimage2DMS

    image2DMSArray    iimage2DMSArray    uimage2DMSArray

    struct

The following are the keywords reserved for future use.  Using them will result in a compile-time error:

    common    partition    active

    asm

    class    union    enum    typedef    template   this    

    resource     
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    goto    

    inline    noinline        public    static    extern    external    interface

    long    short    half    fixed    unsigned    superp

    input    output

    hvec2    hvec3    hvec4    fvec2    fvec3    fvec4

    sampler3DRect    

                             filter

    sizeof    cast

    namespace    using

In addition, all identifiers containing two consecutive underscores ( __ ) are reserved for use by 
underlying software layers.  Defining such a name in a shader does not itself result in an error, but may 
result in unintended behaviors that stem from having multiple definitions of the same name.

3.7 Identifiers
Identifiers are used for variable names, function names, structure names, and field selectors (field 
selectors select components of vectors and matrices similar to structure members, as discussed in section
5.5 “Vector and Scalar Components”  and section 5.6 “Matrix Components” ).  Identifiers have the form

identifier:

nondigit 

identifier nondigit 

identifier digit 

nondigit: one of

_ a b c d e f g h i j k l m n o p q r s t u v w x y z 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

digit: one of 

0 1 2 3 4 5 6 7 8 9

Identifiers starting with “gl_” are reserved for use by OpenGL, and may not be declared in a shader; this 
results in a compile-time error.  However, as noted in the specification, there are some cases where 
previously declared variables can be redeclared, and predeclared "gl_" names are allowed to be 
redeclared in a shader only for these specific purposes.  More generally, it is a compile-time error to 
redeclare a variable, including those starting “gl_”.

3.8 Definitions
Some language rules described below depend on the following definitions.  
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3.8.1 Static Use

A shader contains a static use of (or static assignment to) a variable x if, after preprocessing, the shader 
contains a statement that would read (or write) x, whether or not run-time flow of control will cause that 
statement to be executed.

3.8.2 Dynamically Uniform Expressions and Uniform Control Flow

Some operations require an expression to be dynamically uniform, or that it be located in uniform control 
flow.  These requirements are defined by the following set of definitions.

An invocation is a single execution of main() for a particular stage, operating only on the amount of data 
explicitly exposed within that stage's shaders. (Any implicit operation on additional instances of data 
would comprise additional invocations.)  For example, in compute execution models, a single invocation 
operates only on a single work item, or, in a vertex execution model, a single invocation operates only on 
a single vertex.

An invocation group is the complete set of invocations collectively processing a particular compute 
workgroup or graphical operation, where the scope of a "graphical operation" is implementation 
dependent, but at least as large as a single triangle or patch, and at most as large as a single rendering 
command, as defined by the client API.

Within a single invocation, a single shader statement can be executed multiple times, giving multiple 
dynamic instances of that instruction.  This can happen when the instruction is executed in a loop, or in a 
function called from multiple call sites, or combinations of multiple of these.  Different loop iterations and
different dynamic function-call-site chains yield different dynamic instances of such an instruction.  
Dynamic instances are distinguished by their control-flow path within an invocation, not by which 
invocation executed it.  That is, different invocations of main() execute the same dynamic instances of an 
instruction when they follow the same control-flow path.

An expression is dynamically uniform for a dynamic instance consuming it when its value is the same for 
all invocations (in the invocation group) that execute that dynamic instance.

Uniform control flow (or converged control flow) occurs when all invocations in the invocation group 
execute the same control-flow path (and hence the same sequence of dynamic instances of instructions).  
Uniform control flow is the initial state at the entry into main(), and lasts until a conditional branch takes 
different control paths for different invocations (non-uniform or divergent control flow).  Such divergence
can reconverge, with all the invocations once again executing the same control-flow path, and this re-
establishes the existence of uniform control flow.  If control flow is uniform upon entry into a selection or 
loop, and all invocations in the invocation group subsequently leave that selection or loop, then control 
flow reconverges to be uniform.
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For example:

main()
{
    float a = ...;// this is uniform flow control
    if (a < b) {  // this expression is true for some fragments, not all
        ....;     // non-uniform flow control
    } else {
        ....;     // non-uniform flow control
    }
    ....;         // uniform flow control again
}

Note that constant expressions are trivially dynamically uniform.  It follows that typical loop counters 
based on these are also dynamically uniform.
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All variables and functions must be declared before being used.  Variable and function names are 
identifiers.  

There are no default types.  All variable and function declarations must have a declared type, and 
optionally qualifiers.  A variable is declared by specifying its type followed by one or more names 
separated by commas.  In many cases, a variable can be initialized as part of its declaration by using the 
assignment operator (=).  

User-defined types may be defined using struct to aggregate a list of existing types into a single name.

The OpenGL Shading Language is type safe.  There are some implicit conversions between types.  
Exactly how and when this can occur is described in section 4.1.10 “Implicit Conversions” and as 
referenced by other sections in this specification.

4.1 Basic Types
The OpenGL Shading Language supports the following basic data types, grouped as follows.

Transparent types

Type Meaning

void for functions that do not return a value

bool a conditional type, taking on values of true or false

int a signed integer

uint an unsigned integer

float a single-precision floating-point scalar

double a double-precision floating-point scalar

vec2 a two-component single-precision floating-point vector

vec3 a three-component single-precision floating-point vector

vec4 a four-component single-precision floating-point vector

dvec2 a two-component double-precision floating-point vector

dvec3 a three-component double-precision floating-point vector

dvec4 a four-component double-precision floating-point vector

bvec2 a two-component Boolean vector

bvec3 a three-component Boolean vector

bvec4 a four-component Boolean vector

ivec2 a two-component signed integer vector
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Type Meaning

ivec3 a three-component signed integer vector

ivec4 a four-component signed integer vector

uvec2 a two-component unsigned integer vector

uvec3 a three-component unsigned integer vector

uvec4 a four-component unsigned integer vector

mat2 a 2×2 single-precision floating-point matrix

mat3 a 3×3 single-precision floating-point matrix

mat4 a 4×4 single-precision floating-point matrix

mat2x2 same as a mat2

mat2x3 a single-precision floating-point matrix with 2 columns and 3 rows

mat2x4 a single-precision floating-point matrix with 2 columns and 4 rows

mat3x2 a single-precision floating-point matrix with 3 columns and 2 rows

mat3x3 same as a mat3

mat3x4 a single-precision floating-point matrix with 3 columns and 4 rows

mat4x2 a single-precision floating-point matrix with 4 columns and 2 rows

mat4x3 a single-precision floating-point matrix with 4 columns and 3 rows

mat4x4 same as a mat4

dmat2 a 2×2 double-precision floating-point matrix

dmat3 a 3×3 double-precision floating-point matrix

dmat4 a 4×4 double-precision floating-point matrix

dmat2x2 same as a dmat2

dmat2x3 a double-precision floating-point matrix with 2 columns and 3 rows

dmat2x4 a double-precision floating-point matrix with 2 columns and 4 rows

dmat3x2 a double-precision floating-point matrix with 3 columns and 2 rows

dmat3x3 same as a dmat3

dmat3x4 a double-precision floating-point matrix with 3 columns and 4 rows

dmat4x2 a double-precision floating-point matrix with 4 columns and 2 rows

dmat4x3 a double-precision floating-point matrix with 4 columns and 3 rows

dmat4x4 same as a dmat4
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Floating-Point Opaque Types

Type Meaning

sampler1D
image1D

a handle for accessing a 1D texture

sampler2D
image2D

a handle for accessing a 2D texture

sampler3D
image3D

a handle for accessing a 3D texture

samplerCube
imageCube

a handle for accessing a cube mapped texture

sampler2DRect
image2DRect

a handle for accessing a rectangle texture

sampler1DArray
image1DArray

a handle for accessing a 1D array texture

sampler2DArray
image2DArray

a handle for accessing a 2D array texture

samplerBuffer
imageBuffer

a handle for accessing a buffer texture

sampler2DMS
image2DMS

a handle for accessing a 2D multi-sample texture

sampler2DMSArray
image2DMSArray

a handle for accessing a 2D multi-sample array texture

samplerCubeArray
imageCubeArray

a handle for accessing a cube map array texture

sampler1DShadow a handle for accessing a 1D depth texture with comparison

sampler2DShadow a handle for accessing a 2D depth texture with comparison

sampler2DRectShadow a handle for accessing a rectangle texture with comparison

sampler1DArrayShadow a handle for accessing a 1D array depth texture with comparison

sampler2DArrayShadow a handle for accessing a 2D array depth texture with comparison

samplerCubeShadow a handle for accessing a cube map depth texture with comparison

samplerCubeArrayShadow a handle for accessing a cube map array depth texture with 
comparison

Signed Integer Opaque Types

Type Meaning

isampler1D
iimage1D

a handle for accessing an integer 1D texture
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Type Meaning

isampler2D
iimage2D

a handle for accessing an integer 2D texture

isampler3D
iimage3D

a handle for accessing an integer 3D texture

isamplerCube
iimageCube

a handle for accessing an integer cube mapped texture

isampler2DRect
iimage2DRect

a handle for accessing an integer 2D rectangle texture 

isampler1DArray
iimage1DArray

a handle for accessing an integer 1D array texture

isampler2DArray
iimage2DArray

a handle for accessing an integer 2D array texture

isamplerBuffer
iimageBuffer

a handle for accessing an integer buffer texture

isampler2DMS
iimage2DMS

a handle for accessing an integer 2D multi-sample texture

isampler2DMSArray
iimage2DMSArray

a handle for accessing an integer 2D multi-sample array texture

isamplerCubeArray
iimageCubeArray

a handle for accessing an integer cube map array texture

Unsigned Integer Opaque Types

Type Meaning

atomic_uint a handle for accessing an unsigned integer atomic counter

usampler1D
uimage1D

a handle for accessing an unsigned integer 1D texture

usampler2D
uimage2D

a handle for accessing an unsigned integer 2D texture

usampler3D
uimage3D

a handle for accessing an unsigned integer 3D texture

usamplerCube
uimageCube

a handle for accessing an unsigned integer cube mapped texture

usampler2DRect
uimage2DRect

a handle for accessing an unsigned integer rectangle texture

usampler1DArray
uimage1DArray

a handle for accessing an unsigned integer 1D array texture

usampler2DArray
uimage2DArray

a handle for accessing an unsigned integer 2D array texture
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Type Meaning

usamplerBuffer
uimageBuffer

a handle for accessing an unsigned integer buffer texture

usampler2DMS
uimage2DMS

a handle for accessing an unsigned integer 2D multi-sample texture

usampler2DMSArray
uimage2DMSArray

a handle for accessing an unsigned integer 2D multi-sample texture 
array

usamplerCubeArray
uimageCubeArray

a handle for accessing an unsigned integer cube map array texture

In addition, a shader can aggregate these basic types using arrays and structures to build more complex 
types.

There are no pointer types.

In this specification, an aggregate will mean a structure or array.  (Matrices and vectors are not by 
themselves aggregates.)  Aggregates, matrices, and vectors will collectively be referred to as composites.

4.1.1 Void

Functions that do not return a value must be declared as void.  There is no default function return type.  
The keyword void cannot be used in any other declarations (except for empty formal or actual parameter 
lists), or a compile-time error results.

4.1.2 Booleans

To make conditional execution of code easier to express, the type bool is supported.  There is no 
expectation that hardware directly supports variables of this type.  It is a genuine Boolean type, holding 
only one of two values meaning either true or false.  Two keywords true and false can be used as literal 
Boolean constants. Booleans are declared and optionally initialized as in the follow example:

bool success;      // declare “success” to be a Boolean
bool done = false; // declare and initialize “done”

The right side of the assignment operator ( = ) must be an expression whose type is bool.  

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

4.1.3 Integers

Signed and unsigned integer variables are fully supported.  In this document, the term integer is meant to 
generally include both signed and unsigned integers.  Unsigned integers have exactly 32 bits of precision. 
Signed integers use 32 bits, including a sign bit, in two's complement form.  Addition, subtraction, and 
shift operations resulting in overflow or underflow will not cause any exception, nor will they saturate, 
rather they will “wrap” to yield the low-order 32 bits of the result. Division and multiplication operations 
resulting in overflow or underflow will not cause any exception but will result in an undefined value.

Integers are declared and optionally initialized with integer expressions, as in the following example:
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int i, j = 42;  // default integer literal type is int
uint k = 3u;    // “u” establishes the type as uint

Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base 16) 
as follows.

integer-constant :

decimal-constant integer-suffixopt

octal-constant integer-suffixopt

hexadecimal-constant  integer-suffixopt

integer-suffix: one of

u  U

decimal-constant :

nonzero-digit

decimal-constant digit

octal-constant :

0
octal-constant octal-digit

hexadecimal-constant :

0x hexadecimal-digit

0X hexadecimal-digit

hexadecimal-constant hexadecimal-digit

digit :

0
nonzero-digit

nonzero-digit : one of

1 2 3 4 5 6 7 8 9

octal-digit : one of

0 1 2 3 4 5 6 7

hexadecimal-digit : one of

0 1 2 3 4 5 6 7 8 9

a b c d e f

A B C D E F

No white space is allowed between the digits of an integer constant, including after the leading 0 or after 
the leading 0x or 0X of a constant, or before the suffix u or U.  When tokenizing, the maximal token 
matching the above will be recognized before a new token is started.  When the suffix u or U is present, 
the literal has type uint, otherwise the type is int.  A leading unary minus sign (-) is interpreted as an 
arithmetic unary negation, not as part of the constant.  Hence, literals themselves are always expressed 
with non-negative syntax, though they could result in a negative value.
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It is a compile-time error to provide a literal integer whose bit pattern cannot fit in 32 bits.  The bit pattern
of the literal is always used unmodified.  So a signed literal whose bit pattern includes a set sign bit 
creates a negative value.  For example,

int  a = 0xffffffff;  // 32 bits, a gets the value -1
int  b = 0xffffffffU; // ERROR: can't convert uint to int
uint c = 0xffffffff;  // 32 bits, c gets the value 0xFFFFFFFF
uint d = 0xffffffffU; // 32 bits, d gets the value 0xFFFFFFFF
int  e = -1;          // the literal is “1”, then negation is performed,
                      //   and the resulting non-literal 32-bit signed 
                      //   bit pattern of 0xFFFFFFFF is assigned, giving e 
                      //   the value of -1.
uint f = -1u;         // the literal is “1u”, then negation is performed,
                      //   and the resulting non-literal 32-bit unsigned 
                      //   bit pattern of 0xFFFFFFFF is assigned, giving f 
                      //   the value of 0xFFFFFFFF.
int  g = 3000000000;  // a signed decimal literal taking 32 bits,
                      //   setting the sign bit, g gets -1294967296
int  h = 0xA0000000;  // okay, 32-bit signed hexadecimal
int  i = 5000000000;  // ERROR: needs more than 32 bits
int  j = 0xFFFFFFFFF; // ERROR: needs more than 32 bits
int  k = 0x80000000;  // k gets -2147483648 == 0x80000000
int  l = 2147483648;  // l gets -2147483648 (the literal set the sign bit)

Despite all these examples initializing variables, literals are recognized and given values and types 
independently of their context.

4.1.4 Floating-Point Variables

Single-precision and double-precision floating-point variables are available for use in a variety of scalar 
calculations.  Generally, the term floating-point will refer to both single- and double-precision floating 
point.  Floating-point variables are defined as in the following examples:

float a, b = 1.5;     // single-precision floating-point
double c, d = 2.0LF;  // double-precision floating-point

As an input value to one of the processing units, a single-precision or double-precision floating-point 
variable is expected to match the corresponding IEEE 754 floating-point definition for precision and 
dynamic range.  Floating-point variables within a shader are also encoded according to the IEEE 754 
specification for single-precision floating-point values (logically, not necessarily physically).  While 
encodings are logically IEEE 754, operations (addition, multiplication, etc.) are not necessarily performed
as required by IEEE 754.  See section 4.7.1 “Range and Precision” for more details on precision and 
usage of NaNs (Not a Number) and Infs (positive or negative infinities).    
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Floating-point constants are defined as follows.

floating-constant :
fractional-constant exponent-part

opt  
floating-suffixopt 

digit-sequence exponent-part floating-suffixopt

fractional-constant :

digit-sequence . digit-sequence

digit-sequence .

. digit-sequence

exponent-part :
e sign

opt
 digit-sequence

E sign
opt

 digit-sequence

sign : one of

+ –

digit-sequence :

digit

digit-sequence digit

floating-suffix: one of

f  F  lf  LF

A decimal point ( . ) is not needed if the exponent part is present.  No white space may appear anywhere 
within a floating-point constant, including before a suffix.  When tokenizing, the maximal token matching 
the above will be recognized before a new token is started.  When the suffix "lf" or "LF" is present, the 
literal has type double.  Otherwise, the literal has type float.  A leading unary minus sign (-) is interpreted 
as a unary operator and is not part of the floating-point constant.

4.1.5 Vectors

The OpenGL Shading Language includes data types for generic 2-, 3-, and 4-component vectors of 
floating-point values, integers, or Booleans.  Floating-point vector variables can be used to store colors, 
normals, positions, texture coordinates, texture lookup results and the like.  Boolean vectors can be used 
for component-wise comparisons of numeric vectors.  Some examples of vector declaration are:

vec2 texcoord1, texcoord2;
vec3 position;
vec4 myRGBA;
ivec2 textureLookup;
bvec3 less;

Initialization of vectors can be done with constructors, which are discussed shortly.

4.1.6 Matrices

The OpenGL Shading Language has built-in types for 2×2, 2×3, 2×4, 3×2, 3×3, 3×4, 4×2, 4×3, and 4×4 
matrices of floating-point numbers.  Matrix types beginning with "mat" have single-precision components 
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while matrix types beginning with "dmat" have double-precision components.  The first number in the 
type is the number of columns, the second is the number of rows.  If there is only one number, the matrix 
is square.  Example matrix declarations:

mat2 mat2D;
mat3 optMatrix;
mat4 view, projection;
mat4x4 view;  // an alternate way of declaring a mat4
mat3x2 m;     // a matrix with 3 columns and 2 rows
dmat4 highPrecisionMVP;
dmat2x4 dm;

Initialization of matrix values is done with constructors (described in section 5.4 “Constructors” ) in 
column-major order.

4.1.7 Opaque Types

The opaque types declare variables that are effectively opaque handles to other objects.  These objects are
accessed through built-in functions, not through direct reading or writing of the declared variable.  They 
can only be declared as function parameters or in uniform-qualified variables.  The only opaque types 
that take memory qualifiers are the image types.  Except for array indexing, structure member selection, 
and parentheses, opaque variables are not allowed to be operands in expressions; such use results in a 
compile-time error.  

Opaque variables cannot be treated as l-values; hence cannot be used as out or inout function parameters,
nor can they be assigned into.  Any such use results in a compile-time error.  However, they can be passed 
as in parameters with matching type and memory qualifiers.  They cannot be declared with an initializer.

Because a single opaque type declaration effectively declares two objects, the opaque handle itself and the
object it is a handle to, there is room for both a storage qualifier and a memory qualifier.  The storage 
qualifier will qualify the opaque handle, while the memory qualifier will qualify the object it is a handle 
to.

4.1.7.1 Samplers

Sampler types (e.g., sampler2D) are opaque types, declared and behaving as described above for opaque 
types.  When aggregated into arrays within a shader, samplers can only be indexed with a dynamically 
uniform integral expression, otherwise results are undefined.  

Sampler variables are handles to one-, two-, and three- dimensional textures, cube maps, depth textures 
(shadowing), etc., as enumerated in the basic types tables.  There are distinct sampler types for each 
texture target, and for each of float, integer, and unsigned integer data types.  Texture accesses are done 
through built-in texture functions (described in section 8.9 “Texture Functions”) and samplers are used to 
specify which texture to access and how it is to be filtered.

4.1.7.2 Images

Image types are opaque types, declared and behaving as described above for opaque types.  They can be 
further qualified with memory qualifiers.  When aggregated into arrays within a shader, images can only 
be indexed with a dynamically uniform integral expression, otherwise results are undefined.

31



4 Variables and Types

Image variables are handles to one-, two-, or three-dimensional images corresponding to all or a portion 
of a single level of a texture image bound to an image unit.  There are distinct image types for each texture
target, and for each of float, integer, and unsigned integer data types.  Image accesses should use an image
type that matches the target of the texture whose level is bound to the image unit, or for non-layered 
bindings of 3D or array images should use the image type that matches the dimensionality of the layer of 
the image (i.e., a layer of 3D, 2DArray, Cube, or CubeArray should use image2D, a layer of 1DArray 
should use image1D, and a layer of 2DMSArray should use image2DMS).  If the image target type does 
not match the bound image in this manner, if the data type does not match the bound image, or if the 
format layout qualifier does not match the image unit format as described in section 8.25 “Texture Image 
Loads and Stores” of the OpenGL Specification, the results of image accesses are undefined but cannot 
include program termination.

Image variables are used in the image load, store, and atomic functions described in section 8.12 "Image 
Functions" to specify an image to access.

4.1.7.3 Atomic Counters

Atomic counter types (atomic_uint) are opaque handles to counters, declared and behaving as described 
above for opaque types.  The variables they declare specify which counter to access when using the built-
in atomic counter functions as described in section 8.10 “Atomic Counter Functions”.  They are bound to 
buffers as described in section 4.4.6.1 “Atomic Counter Layout Qualifiers”.  When aggregated into arrays 
within a shader, atomic counters can only be indexed with a dynamically uniform integral expression, 
otherwise results are undefined.  Members of structures cannot be declared as atomic counter types.

4.1.8 Structures

User-defined types can be created by aggregating other already defined types into a structure using the 
struct keyword.  For example,

struct light {
    float intensity;
    vec3 position;
} lightVar;

In this example, light becomes the name of the new type, and lightVar becomes a variable of type light.  
To declare variables of the new type, use its name (without the keyword struct).

light lightVar2;
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More formally, structures are declared as follows.  However, the complete correct grammar is as given in 
section 9 “Shading Language Grammar” .

struct-definition :
qualifier

opt
  struct name

opt
 { member-list } declarators

opt
 ;

member-list :

member-declaration;

member-declaration member-list;

member-declaration :

basic-type declarators;

where name becomes the user-defined type, and can be used to declare variables to be of this new type.  
The name shares the same name space as other variables,  types, and functions.  All previously visible 
variables, types, constructors, or functions with that name are hidden.  The optional qualifier only applies 
to any declarators, and is not part of the type being defined for name.

Structures must have at least one member declaration.  Member declarators may contain precision 
qualifiers, but use of any other qualifier results in a compile-time error.  Bit fields are not supported.  
Member types must be already defined (there are no forward references).  A compile-time error results if a
member declaration contains an initializer.  Member declarators can contain arrays.  Such arrays must 
have a size specified, and the size must be an integral constant expression that's greater than zero (see 
section 4.3.3 “Constant Expressions”).  Each level of structure has its own name space for names given in 
member declarators; such names need only be unique within that name space.

Anonymous structures are not supported.  Embedded structure definitions are not supported.  These result 
in compile-time errors.

struct S { float f; };

struct T {
S;              // Error: anonymous structures disallowed
struct { ... }; // Error: embedded structures disallowed
S s;            // Okay: nested structures with name are allowed

};

Structures can be initialized at declaration time using constructors, as discussed in section 5.4.3 “Structure
Constructors” .

Any restrictions on the usage of a type or qualifier also apply to any structure that contains a member of 
that type or qualifier.  This also applies to structure members that are structures, recursively.

4.1.9 Arrays

Variables of the same type can be aggregated into arrays by declaring a name followed by brackets ( [ ] ) 
enclosing an optional size.  When an array size is specified in a declaration, it must be an integral constant
expression (see section 4.3.3 “Constant Expressions”) greater than zero.  Except for the last declared 
member of a shader storage block (section 4.3.9 “Interface Blocks”), the size of an array must be declared
(explicitly sized) before it is indexed with anything other than an integral constant expression.  The size of 
any array must be declared before passing it as an argument to a function.  Violation of any of these rules 
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result in compile-time errors.  It is legal to declare an array without a size (unsized) and then later 
redeclare the same name as an array of the same type and specify a size, or index it only with integral 
constant expressions (implicitly sized).  However, unless noted otherwise, blocks cannot be redeclared; an 
unsized array in a user-declared block cannot be sized by a block redeclaration.  It is a compile-time error 
to declare an array with a size, and then later (in the same shader) index the same array with an integral 
constant expression greater than or equal to the declared size.  It is a compile-time error to redeclare an 
unsized array with a size equal to or smaller than any index used earlier in the shader to index the array.  It
is also a compile-time error to index an array with a negative constant expression.  Arrays declared as 
formal parameters in a function declaration must specify a size.  Undefined behavior results from indexing
an array with a non-constant expression that’s greater than or equal to the array’s size or less than 0.  
Arrays only have a single dimension (a single entry within "[ ]"), however, arrays of arrays can be 
declared.  All types (basic types, structures, arrays) can be formed into an array.  

All arrays are inherently homogeneous; made of elements all having the same type and size, with one 
exception.  The exception is a shader storage block having an unsized array as its last member (run-time 
sized); an array can be formed from such a shader storage block, even if the storage blocks have differing 
lengths for their last member.

Some examples are:

float frequencies[3];
uniform vec4 lightPosition[4];
light lights[];
const int numLights = 2;
light lights[numLights];

// a shader storage block, introduced in section 4.3.7 “buffer variables”
buffer b {
    float u[];  // an error, unless u gets statically sized by link time
    vec4 v[];   // okay, v will be sized dynamically, if not statically
} name[3];      // when the block is arrayed, all u will be the same size,
                //        but not necessarily all v, if sized dynamically

An array type can be formed by specifying non-array type followed by an array specifier. All dimensions 
of such an array specifier must include a size.

float[5]    // an array of size [5] of float
float[2][3] // an array of size [2][3] of float, not size [3] of float[2]

This type can be used anywhere any other type can be used, including as the return value from a function

float[5] foo() { }

as a constructor of an array

float[5](3.4, 4.2, 5.0, 5.2, 1.1)

as an unnamed parameter

void foo(float[5])
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and as an alternate way of declaring a variable or function parameter.

float[5] a;

Arrays can have initializers formed from array constructors:

float a[5] = float[5](3.4, 4.2, 5.0, 5.2, 1.1);
float a[5] = float[](3.4, 4.2, 5.0, 5.2, 1.1);  // same thing

An array of arrays can be declared as

vec4 a[3][2];  // size-3 array of size-2 array of vec4

which declares a one-dimensional array of size 3 of one-dimensional arrays of size 2 of vec4s.  These 
following declarations do the same thing:

vec4[2] a[3];  // size-3 array of size-2 array of vec4
vec4[3][2] a;  // size-3 array of size-2 array of vec4

When in transparent memory (like in a uniform block), the layout is that the inner-most (right-most in 
declaration) dimensions iterate faster than outer dimensions.  That is, for the above, the order in memory 
would be:

         Low address : a[0][0] : a[0][1] : a[1][0] : a[1][1] : a[2][0] : a[2][1] : High address

The type of a needed for both constructors and nameless parameters is “vec4[3][2]”:

vec4 b[2] = vec4[2](vec4(0.0), vec4(0.1));
vec4[3][2] a = vec4[3][2](b, b, b);        // constructor
void foo(vec4[3][2]);  // prototype with unnamed parameter

Alternatively, the initializer-list syntax can be used to initialize an array of arrays:

vec4 a[3][2] = { vec4[2](vec4(0.0), vec4(1.0)),   
                 vec4[2](vec4(0.0), vec4(1.0)),   
                 vec4[2](vec4(0.0), vec4(1.0)) };

Unsized arrays can be explicitly sized by an initializer at declaration time:

float a[5];
...
float b[] = a;  // b is explicitly size 5
float b[5] = a; // means the same thing
float b[] = float[](1,2,3,4,5);  // also explicitly sizes to 5

However, it is a compile-time error to assign to an unsized array.  Note, this is a rare case that initializers 
and assignments appear to have different semantics.  For arrays of arrays, any unsized dimension is 
explicitly sized by the initializer:

vec4 a[][] = { vec4[2](vec4(0.0), vec4(1.0)),    // okay, size to a[3][2] 
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               vec4[2](vec4(0.0), vec4(1.0)),   
               vec4[2](vec4(0.0), vec4(1.0)) };

Arrays know the number of elements they contain.  This can be obtained by using the length method:

float a[5];
a.length();  // returns 5 

This returns a type int.  If an array has been explicitly sized, the value returned by the length method is a 
constant expression.  If an array has not been explicitly sized and is not the last declared member of a 
shader storage block, the value returned by the length method is not a constant expression and will be 
determined when a program is linked.  If an array has not been explicitly sized and is the last declared 
member of a shader storage block, the value returned will not be a constant expression and will be 
determined at run time based on the size of the buffer object providing storage for the block.  For such 
arrays, the value returned by the length method will be undefined if the array is contained in an array of 
shader storage blocks that is indexed with a non-constant expression less than zero or greater than or 
equal to the number of blocks in the array.

The length method cannot be called on an array that has not yet been explicitly sized; this results in a 
compile-time error.  

The length method works equally well for arrays of arrays:

vec4 a[3][2];
a.length()     // this is 3
a[x].length()  // this is 2

When the length method returns a compile-time constant, the expression in brackets (x above) will be 
evaluated and subjected to the rules required for array indexes, but the array will not be dereferenced.  
Thus, behavior is well defined even if the run-time value of the expression is out of bounds.  

When the length method returns a run-time value, the array will be dereferenced with the value x.  If x is 
not a compile-time constant and is out of range, an undefined value results. 

     
// for an array b containing a member array a:
b[++x].a.length();    // b is never dereferenced, but “++x” is evaluated

// for an array s of a shader storage object containing a member array a:
s[x].a.length();      // s is dereferenced; x needs to be a valid index

For implicitly-sized or run-time-sized arrays, only the outermost dimension can be lacking a size. A type 
that includes an unknown array size cannot be formed into an array until it gets an explicit size, except for 
shader storage blocks where the only unsized array member is the last member of the block.

In a shader storage block, the last member may be declared without an explicit size.  In this case, the 
effective array size is inferred at run-time from the size of the data store backing the interface block.  Such
run-time-sized arrays may be indexed with general integer expressions.  However, it is a compile-time 
error to pass them as an argument to a function or index them with a negative constant expression.
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4.1.10 Implicit Conversions

In some situations, an expression and its type will be implicitly converted to a different type.  The 
following table shows all allowed implicit conversions:

Type of expression Can be implicitly converted to

int uint

int
uint

float

int
uint
float

double

ivec2 uvec2

ivec3 uvec3

ivec4 uvec4

ivec2
uvec2

vec2

ivec3
uvec3

vec3

ivec4
uvec4

vec4

ivec2
uvec2
vec2

dvec2

ivec3
uvec3
vec3

dvec3

ivec4
uvec4
vec4

dvec4

mat2 dmat2

mat3 dmat3

mat4 dmat4

mat2x3 dmat2x3

mat2x4 dmat2x4

mat3x2 dmat3x2

mat3x4 dmat3x4

mat4x2 dmat4x2

mat4x3 dmat4x3
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There are no implicit array or structure conversions.  For example, an array of int cannot be implicitly 
converted to an array of float.

When an implicit conversion is done, it is not a re-interpretation of the expression's bit pattern, but a 
conversion of its value to an equivalent value in the new type.  For example, the integer value -5 will be 
converted to the floating-point value -5.0.  Integer values having more bits of precision than a single-
precision floating-point mantissa will lose precision when converted to float.

When performing implicit conversion for binary operators, there may be multiple data types to which the 
two operands can be converted.  For example, when adding an int value to a uint value, both values can 
be implicitly converted to uint, float, and double.  In such cases, a floating-point type is chosen if either 
operand has a floating-point type.  Otherwise, an unsigned integer type is chosen if either operand has an 
unsigned integer type.  Otherwise, a signed integer type is chosen.  If operands can be implicitly converted
to multiple data types deriving from the same base data type, the type with the smallest component size is 
used.

The conversions in the table above are done only as indicated by other sections of this specification.

4.1.11 Initializers

At declaration, an initial value for a variable may be provided, specified as an equals (=) followed by an 
initializer.  The initializer is either an assignment-expression or a list of initializers enclosed in curly 
braces.  The grammar for the initializer is:

initializer :

assignment-expression

{ initializer-list }

{ initializer-list , }

initializer-list :

initializer

initializer-list , initializer

The assignment-expression is a normal expression except that a comma ( , ) outside parentheses is 
interpreted as the end of the initializer, not as the sequence operator.  As explained in more detail below, 
this allows creation of nested initializers:  The variable type and its initializer must exactly match in terms 
of nesting, number of components/elements/members present at each level, and types of 
components/elements/members.  An assignment-expression at global scope can include calls to user-
defined functions.

An assignment-expression in an initializer must be either the same type as the object it initializes or be a 
type that can be converted to the object's type according to section 4.1.10 "Implicit Conversions".  Since 
these include constructors, a composite variable can be initialized by either a constructor or an initializer 
list; and an element in an initializer list can be a constructor.

If an initializer is a list of initializers enclosed in curly braces, the variable being declared must be a 
vector, a matrix, an array, or a structure.

int i = { 1 };      // illegal, i is not a composite 
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A list of initializers enclosed in a matching set of curly braces is applied to one composite.  This may be 
the variable being declared or a composite contained in the variable being declared.  Individual initializers
from the initializer list are applied to the elements/members of the composite, in order.

If the composite has a vector type, initializers from the list are applied to the components of the vector, in 
order, starting with component 0.  The number of initializers must match the number of components.

If the composite has a matrix type, initializers from the list must be vector initializers and are applied to 
the columns of the matrix, in order, starting with column 0.  The number of initializers must match the 
number of columns.

If the composite has a structure type, initializers from the list are applied to the members of the structure, 
in the order declared in the structure, starting with the first member.  The number of initializers must 
match the number of members.

Applying these rules, the following matrix declarations are equivalent:

mat2x2 a = mat2(  vec2( 1.0, 0.0 ), vec2( 0.0, 1.0 ) );
mat2x2 b =      { vec2( 1.0, 0.0 ), vec2( 0.0, 1.0 ) };
mat2x2 c =      {     { 1.0, 0.0 },     { 0.0, 1.0 } };

All of the following declarations result in a compile-time error.

float a[2] = { 3.4, 4.2, 5.0 };         // illegal
vec2 b = { 1.0, 2.0, 3.0 };             // illegal
mat3x3 c = { vec3(0.0), vec3(1.0), vec3(2.0), vec3(3.0) };    // illegal
mat2x2 d = { 1.0, 0.0, 0.0, 1.0 };      // illegal, can't flatten nesting
struct {
    float a;
    int   b;
} e = { 1.2, 2, 3 };                    // illegal

In all cases, the innermost initializer (i.e., not a list of initializers enclosed in curly braces) applied to an 
object must have the same type as the object being initialized or be a type that can be converted to the 
object's type according to section 4.1.10 "Implicit Conversions".  In the latter case, an implicit conversion 
will be done on the initializer before the assignment is done. 

struct {
    float a;
    int   b;
} e = { 1.2, 2 };             // legal, all types match
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struct {
    float a;
    int   b;
} e = { 1, 3 };               // legal, first initializer is converted

All of the following declarations result in a compile-time error.

int a = true;                           // illegal
vec4 b[2] = { vec4(0.0), 1.0 };         // illegal
mat4x2 c = { vec3(0.0), vec3(1.0) };    // illegal

struct S1 {
    vec4 a;
    vec4 b;
};

struct {
    float s;
    float t;
} d[] = { S1(vec4(0.0), vec4(1.1)) };   // illegal

If an initializer (of either form) is provided for an unsized array, the size of the array is determined by the 
number of top-level (non-nested) initializers within the initializer.  All of the following declarations create 
arrays explicitly sized with five elements:

float a[] = float[](3.4, 4.2, 5.0, 5.2, 1.1);
float b[] = { 3.4, 4.2, 5.0, 5.2, 1.1 };
float c[] = a;                          // c is explicitly size 5
float d[5] = b;                         // means the same thing

It is a compile-time error to have too few or too many initializers in an initializer list for the composite 
being initialized.  That is, all elements of an array, all members of a structure, all columns of a matrix, and
all components of a vector must have exactly one initializer expression present, with no unconsumed 
initializers.

4.2 Scoping
The scope of a variable is determined by where it is declared.  If it is declared outside all function 
definitions, it has global scope, which starts from where it is declared and persists to the end of the shader 
it is declared in.  If it is declared in a while test or a for statement, then it is scoped to the end of the 
following sub-statement.  If it is declared in an if or else statement, it is scoped to the end of that 
statement.  (See section 6.2 “Selection” and section 6.3 “Iteration” for the location of statements and sub-
statements.)  Otherwise, if it is declared as a statement within a compound statement, it is scoped to the 
end of that compound statement.  If it is declared as a parameter in a function definition, it is scoped until 
the end of that function definition.  A function's parameter declarations and body together form a single 
scope nested in the global scope.  The if statement’s expression does not allow new variables to be 
declared, hence does not form a new scope.
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Within a declaration, the scope of a name starts immediately after the initializer if present or immediately 
after the name being declared if not.  Several examples:

int x = 1;
{ 

int x = 2, y = x; // y is initialized to 2
}

struct S 
{ 

int x; 
};

{
S S = S(0);   // 'S' is only visible as a struct and constructor 
S;            // 'S' is now visible as a variable

}

int x = x;          // Error if x has not been previously defined.
                    // If the previous definition of x was in this 
                    // same scope, this causes a redeclaration error.

int f( /* nested scope begins here */ int k) 
{
    int k = k + 3;  // redeclaration error of the name k
    ...
}

int f(int k)
{
    {
        int k = k + 3; // 2nd k is parameter, initializing nested first k
        int m = k      // use of new k, which is hiding the parameter
    }
}

For both for and while loops, the sub-statement itself does not introduce a new scope for variable names, 
so the following has a redeclaration compile-time error:

for ( /* nested scope begins here */ int i = 0; i < 10; i++) {
    int i;  // redeclaration error
}
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The body of a do-while loop introduces a new scope lasting only between the do and while (not including
the while test expression), whether or not the body is simple or compound:

int i = 17;
do
    int i = 4;   // okay, in nested scope
while (i == 0);  // i is 17, scoped outside the do-while body

The statement following a switch (…) forms a nested scope.

All variable names, structure type names, and function names in a given scope share the same name space.
Function names can be redeclared in the same scope, with the same or different parameters, without error. 
An implicitly-sized array can be redeclared in the same scope as an array of the same base type.  
Otherwise, within one compilation unit, a declared name cannot be redeclared in the same scope; doing so
results in a redeclaration compile-time error.  If a nested scope redeclares a name used in an outer scope, it
hides all existing uses of that name.  There is no way to access the hidden name or make it unhidden, 
without exiting the scope that hid it.

The built-in functions are scoped in a scope outside the global scope users declare global variables in.  
That is, a shader's global scope, available for user-defined functions and global variables, is nested inside 
the scope containing the built-in functions.  When a function name is redeclared in a nested scope, it hides
all functions declared with that name in the outer scope.  Function declarations (prototypes) cannot occur 
inside of functions; they must be at global scope, or for the built-in functions, outside the global scope, 
otherwise a compile-time error results.

Shared globals are global variables declared with the same name in independently compiled units 
(shaders)  within the same language (i.e., same stage, e.g., vertex) that are linked together when making a 
single program.  (Globals forming the interface between two different shader languages are discussed in 
other sections.)  Shared globals share the same name space, and must be declared with the same type.  
They will share the same storage.  

Shared global arrays must have the same base type and the same explicit size.  An array implicitly sized in
one shader can be explicitly sized by another shader in the same stage.  If no shader in a stage has an 
explicit size for the array, the largest implicit size (one more than the largest index used) in that stage is 
used.  There is no cross-stage array sizing.  If there is no static access to an implicitly sized array within 
the stage declaring it, then the array is given a size of 1, which is relevant when the array is declared 
within an interface block that is shared with other stages or the application (other unused arrays might be 
eliminated by the optimizer).

Shared global scalars must have exactly the same type name and type definition.  Structures must have the
same name, sequence of type names, and type definitions, and member names to be considered the same 
type.  This rule applies recursively for nested or embedded types.  If a shared global has multiple 
initializers, the initializers must all be constant expressions, and they must all have the same value.  
Otherwise, a link-time error will result.  (A shared global having only one initializer does not require that 
initializer to be a constant expression.)
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4.3 Storage Qualifiers
Variable declarations may have at most one storage qualifier specified in front of the type.  These are 
summarized as

Storage Qualifier Meaning

< none: default > local read/write memory, or an input parameter to a function

const a variable whose value cannot be changed 

in linkage into a shader from a previous stage, variable is copied in

out linkage out of a shader to a subsequent stage, variable is copied out

attribute compatibility profile only and vertex language only; same as in when in a 
vertex shader

uniform value does not change across the primitive being processed,  uniforms 
form the linkage between a shader, OpenGL, and the application

varying compatibility profile only and vertex and fragment languages only; same 
as out when in a vertex shader and same as in when in a fragment shader

buffer value is stored in a buffer object, and can be read or written both by 
shader invocations and the OpenGL API

shared compute shader only; variable storage is shared across all work items in a 
local work group

Some input and output qualified variables can be qualified with at most one additional auxiliary storage 
qualifier:
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Auxiliary Storage 
Qualifier

Meaning

centroid centroid-based interpolation

sample per-sample interpolation

patch per-tessellation-patch attributes

Not all combinations of qualification are allowed.  Auxiliary storage qualifiers can only be used with the 
in or out storage qualifiers.  Additional qualifier rules are defined in upcoming sections.

Local variables can only use the const storage qualifier (or use no storage qualifier).

Function parameters can use const, in, and out qualifiers, but as parameter qualifiers.  Parameter 
qualifiers are discussed in section 6.1.1 “Function Calling Conventions”.

Function return types and structure members do not use storage qualifiers.

Initializers in global declarations may only be used in declarations of global variables with no storage 
qualifier, with a const qualifier, or with a uniform qualifier. Global variables without storage qualifiers 
that are not initialized in their declaration or by the application will not be initialized by OpenGL, but 
rather will enter main() with undefined values.

When comparing an output from one shader stage to an input of a subsequent shader stage, the input and 
output don't match if their auxiliary qualifiers (or lack thereof) are not the same.

4.3.1 Default Storage Qualifier

If no qualifier is present on a global variable, then the variable has no linkage to the application or shaders
running on other pipeline stages.  For either global or local unqualified variables, the declaration will 
appear to allocate memory associated with the processor it targets.  This variable will provide read/write 
access to this allocated memory.

4.3.2 Constant Qualifier

Named compile-time constants or read-only variables can be declared using the const qualifier. The const
qualifier can be used with any of the non-void transparent basic data types, as well as with structures and 
arrays of these. It is a compile-time error to write to a const variable outside of its declaration, so they 
must be initialized when declared.  For example,

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);
const float ceiling = a + b; // a and b not necessarily constants

Structure members may not be qualified with const.  Structure variables can be declared as const, and 
initialized with a structure constructor or initializer.

Initializers for const declarations at global scope must be constant expressions, as defined in section 4.3.3
“Constant Expressions.”
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4.3.3 Constant Expressions

A constant expression is one of 

• a literal value (e.g., 5 or true)

• a variable declared with the const qualifier and an initializer, where the initializer is a constant 
expression

• an expression formed by an operator on operands that are all constant expressions, including getting an
element of a constant array, or a member of a constant structure, or components of a constant vector.  
However, the lowest precedence operators of the sequence operator ( , ) and the assignment operators (
=, +=, ...)  are not included in the operators that can create a constant expression.

• valid use of the length() method on an explicitly sized object, whether or not the object itself is 
constant (implicitly sized or run-time sized arrays do not return a constant expression)

• a constructor whose arguments are all constant expressions

• the value returned by a built-in function call whose arguments are all constant expressions, with the 
exception of those that access memory (texture lookup functions, image access, atomic counter, etc.) 
and the noise functions.  This rule excludes functions with a void return or functions that have an out 
parameter.  The following built-in functions must return 0 when evaluated with an argument that is a 
constant expression:

dFdx
dFdy
fwidth
dFdxCoarse
dFdyCoarse
fwidthCoarse
dFdxFine
dFdyFine
fwidthFine

Function calls to user-defined functions (non-built-in functions) cannot be used to form constant 
expressions.

An integral constant expression is a constant expression that evaluates to a scalar signed or unsigned 
integer.

Constant expressions will be always be evaluated in an invariant way, independent of use of invariant and
precise qualification, so as to create the same value in multiple shaders when the same constant 
expressions appear in those shaders.  See section 4.8.1 “The Invariant Qualifier” and section 4.9 “The 
Precise Qualifier” for more details on how to create invariant expressions.  Constant expressions may be 
evaluated by the compiler's host platform, and are therefore not required to compute the same value that 
the same expression would evaluate to on the shader execution target.  However, the host must use the 
same or greater precision than the target would use.
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4.3.4 Input Variables

Shader input variables are declared with the storage qualifier in.  They form the input interface between 
previous stages of the OpenGL pipeline and the declaring shader.  Input variables must be declared at 
global scope.  Values from the previous pipeline stage are copied into input variables at the beginning of 
shader execution.  It is a compile-time error to write to a variable declared as an input.  

Only the input variables that are statically read need to be written by the previous stage; it is allowed to 
have superfluous declarations of input variables.  This is shown in the following table.

Treatment of Mismatched Input
Variables

Consuming Shader (input variables)

No Declaration Declared but no
Static Use

Declared and 
Static Use

Generating
Shader
(output

variables)

No Declaration Allowed Allowed Link-Time Error

Declared but no
Static Use

Allowed Allowed
Allowed

(values are undefined)

Declared and 
Static Use

Allowed Allowed
Allowed

(values are potentially
undefined)

Consumption errors are based on static use only.  Compilation may generate a warning, but not an error, 
for any dynamic use the compiler can deduce that might cause consumption of undefined values.  

See section 7 “Built-in Variables”  for a list of the built-in input names.

Vertex shader input variables (or attributes) receive per-vertex data.  They are declared in a vertex shader 
with the in qualifier.  It is a compile-time error to use any auxiliary or interpolation qualifier on a vertex 
shader input.  The values copied in are established by the OpenGL API or through the use of the layout 
identifier location.  It is a compile-time error to declare a vertex shader input containing any of the 
following:

• A Boolean type (bool, bvec2, bvec3, bvec4)

• An opaque type

• A structure

Example declarations in a vertex shader:

in vec4 position;
in vec3 normal;
in vec2 texCoord[4];

It is expected that graphics hardware will have a small number of fixed vector locations for passing vertex
inputs. Therefore, the OpenGL Shading language defines each non-matrix input variable as taking up one 
such vector location. There is an implementation dependent limit on the number of locations that can be 
used, and if this is exceeded it will cause a link-time error. (Declared input variables that are not statically 
used do not count against this limit.) A  scalar input counts the same amount against this limit as a vec4, so
applications may want to consider packing groups of four unrelated float inputs together into a vector to 

46



4 Variables and Types

better utilize the capabilities of the underlying hardware.  A matrix input will use up multiple locations.  
The number of locations used will equal the number of columns in the matrix.

Tessellation control, evaluation, and geometry shader input variables get the per-vertex values written out 
by output variables of the same names in the previous active shader stage.  For these inputs, centroid and 
interpolation qualifiers are allowed, but have no effect.  Since tessellation control, tessellation evaluation, 
and geometry shaders operate on a set of vertices, each input variable (or input block, see interface blocks
below) needs to be declared as an array.  For example,

in float foo[];     // geometry shader input for vertex “out float foo”

Each element of such an array corresponds to one vertex of the primitive being processed.  Each array can
optionally have a size declared.  For geometry shaders, the array size will be set by, (or if provided must 
be consistent with) the input layout declaration(s) establishing the type of input primitive, as described 
later in section 4.4.1 “Input Layout Qualifiers”.

Some inputs and outputs are arrayed, meaning that for an interface between two shader stages either the 
input or output declaration requires an extra level of array indexing for the declarations to match.  For 
example, with the interface between a vertex shader and a geometry shader, vertex shader output variables
and geometry shader input variables of the same name must have matching types, except that the 
geometry shader will have one more array dimension than the vertex shader, to allow for vertex indexing. 
If such an arrayed interface variable is not declared with the necessary additional input or output array 
dimension, a link-time error will result.  Geometry shader inputs, tessellation control shader inputs and 
outputs, and tessellation evaluation inputs all have an additional level of arrayness relative to other shader 
inputs and outputs.  Component limits for arrayed interfaces (e.g., gl_MaxTessControlInputComponents) 
are limits per vertex, not limits for the entire interface.

For non-arrayed interfaces (meaning array dimensionally stays the same between stages), it is a link-time 
error if the input variable is not declared with the same type, including array dimensionality, as the 
matching output variable.

The link-time type-matching rules apply to all declared input and output variables, whether or not they are
used.

Additionally, tessellation evaluation shaders support per-patch input variables declared with the patch and
in qualifiers.  Per-patch input variables are filled with the values of per-patch output variables written by 
the tessellation control shader.  Per-patch inputs may be declared as one-dimensional arrays, but are not 
indexed by vertex number. Applying the patch qualifier to inputs can only be done in tessellation 
evaluation shaders. As with other input variables, per-patch inputs must be declared using the same type 
and qualification as per-patch outputs from the previous (tessellation control) shader stage.  It is a 
compile-time error to use patch with inputs in any other stage.

Fragment shader inputs get per-fragment values, typically interpolated from a previous stage's outputs.  
They are declared in fragment shaders with the in storage qualifier.  The auxiliary storage qualifiers 
centroid and sample can also be applied, as well as the interpolation qualifiers flat, noperspective, and 
smooth.   It is a compile-time error to declare a fragment shader input containing any of the following:

• A Boolean type (bool, bvec2, bvec3, bvec4)

• An opaque type
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Fragment shader inputs that are signed or unsigned integers, integer vectors, or any double-precision 
floating-point type must be qualified with the interpolation qualifier flat.

Fragment inputs are declared as in the following examples:

in vec3 normal;
centroid in vec2 TexCoord;
invariant centroid in vec4 Color;
noperspective in float temperature;
flat in vec3 myColor;
noperspective centroid in vec2 myTexCoord;

The fragment shader inputs form an interface with the last active shader in the vertex processing pipeline. 
For this interface, the last active shader stage output variables and fragment shader input variables of the 
same name must match in type and qualification, with a few exceptions:  The storage qualifiers must, of 
course, differ (one is in and one is out).  Also, interpolation qualification (e.g., flat) and auxiliary 
qualification (e.g. centroid) may differ.  These mismatches are allowed between any pair of stages.  When
interpolation or auxiliary qualifiers do not match, those provided in the fragment shader supersede those 
provided in previous stages.  If any such qualifiers are completely missing in the fragment shaders, then 
the default is used, rather than any qualifiers that may have been declared in previous stages.  That is, 
what matters is what is declared in the fragment shaders, not what is declared in shaders in previous 
stages.

When an interface between shader stages is formed using shaders from two separate program objects, it is 
not possible to detect mismatches between inputs and outputs when the programs are linked.  When there 
are mismatches between inputs and outputs on such interfaces, the values passed across the interface will 
be partially or completely undefined.  Shaders can ensure matches across such interfaces either by using 
input and output layout qualifiers (sections 4.4.1 “Input Layout Qualifiers” and 4.4.2 “Output Layout 
Qualifiers”) or by using identical input and output declarations of blocks or variables.  Complete rules for 
interface matching between programs are found in section 7.4.1 “Shader Interface Matching” of the 
OpenGL Graphics System Specification.

Compute shaders do not permit user-defined input variables and do not form a formal interface with any 
other shader stage.  See section 7.1 “Built-In Variables” for a description of built-in compute shader input 
variables.  All other input to a compute shader is retrieved explicitly through image loads, texture fetches, 
loads from uniforms or uniform buffers, or other user supplied code.  Redeclaration of built-in input 
variables in compute shaders is not permitted.

4.3.5 Uniform Variables

The uniform qualifier is used to declare global variables whose values are the same across the entire 
primitive being processed.  All uniform variables are read-only and are initialized externally either at link
time or through the API.  The link-time initial value is either the value of the variable's initializer, if 
present, or 0 if no initializer is present.  Opaque types cannot have initializers, or a compile-time error 
results.

Example declarations are:

uniform vec4 lightPosition;
uniform vec3 color = vec3(0.7, 0.7, 0.2);  // value assigned at link time
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The uniform qualifier can be used with any of the basic data types, or when declaring a variable whose 
type is a structure, or an array of any of these.

There is an implementation dependent limit on the amount of storage for uniforms that can be used for 
each type of shader and if this is exceeded it will cause a compile-time or link-time error. Uniform 
variables that are declared but not used do not count against this limit. The number of user-defined 
uniform variables and the number of built-in uniform variables that are used within a shader are added 
together to determine whether available uniform storage has been exceeded. 

If multiple shaders are linked together, then they will share a single global uniform name space, including 
within a language as well as across languages.  Hence, the types and initializers of all declared uniform 
variables with the same name must match across all shaders that are linked into a single program.  While 
this single uniform name space is cross stage, a uniform variable name's scope is per stage: If a uniform 
variable name is declared in one stage (e.g., a vertex shader) but not in another (e.g., a fragment shader), 
then that name is still available in the other stage for a different use.

It is legal for some shaders to provide an initializer for a particular uniform variable, while another shader 
does not, but all provided initializers must be equal.  Similarly, when a layout location is used, it is not 
required that all declarations of that name include the location; only that those that include a location use 
the same location.

4.3.6 Output Variables

Shader output variables are declared with a storage qualifier using the storage qualifier out.  They form 
the output interface between the declaring shader and the subsequent stages of the OpenGL pipeline.  
Output variables must be declared at global scope.  During shader execution they will behave as normal 
unqualified global variables.  Their values are copied out to the subsequent pipeline stage on shader exit.  
Only output variables that are read by the subsequent pipeline stage need to be written; it is allowed to 
have superfluous declarations of output variables.

There is not an inout storage qualifier at global scope for declaring a single variable name as both input 
and output to a shader.  Also, a variable cannot be declared with both the in and the out qualifiers, this 
will result in a compile-time or link-time error.  Output variables must be declared with different names 
than input variables.  However, nesting an input or output inside an interface block with an instance name 
allows the same names with one referenced through a block instance name.

Vertex, tessellation evaluation, and geometry output variables output per-vertex data and are declared 
using the out storage qualifier. Applying patch to an output can only be done in a tessellation control 
shader.  It is a compile-time error to use patch on outputs in any other stage.

It is a compile-time error to declare a vertex, tessellation evaluation, tessellation control, or geometry 
shader output that contains any of the following:

• A Boolean type (bool, bvec2, bvec3, bvec4)

• An opaque type
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Individual vertex, tessellation evaluation, and geometry outputs are declared as in the following examples:

out vec3 normal;
centroid out vec2 TexCoord;
invariant centroid out vec4 Color;
noperspective out float temperature;
flat out vec3 myColor;
noperspective centroid out vec2 myTexCoord;
sample out vec4 perSampleColor;

These can also appear in interface blocks, as described in section 4.3.9 “Interface Blocks”.  Interface 
blocks allow simpler addition of arrays to the interface from vertex to geometry shader.  They also allow a
fragment shader to have the same input interface as a geometry shader for a given vertex shader.

Tessellation control shader output variables may be used to output per-vertex and per-patch data.  Per-
vertex output variables are arrayed (see arrayed under 4.3.4 Inputs)  and declared using the out qualifier 
without the patch qualifier.  Per-patch output variables are declared using the patch and out qualifiers. 
Since tessellation control shaders produce an arrayed primitive comprising multiple vertices, each per-
vertex output variable (or output block, see interface blocks below) needs to be declared as an array. For 
example,

out float foo[];  // feeds next stage input “in float foo[]”

Each element of such an array corresponds to one vertex of the primitive being produced.  Each array can 
optionally have a size declared.  The array size will be set by (or if provided must be consistent with) the 
output layout declaration(s) establishing the number of vertices in the output patch, as described later in  
section 4.4.2.1 “Tessellation Control Outputs”.

Each tessellation control shader invocation has a corresponding output patch vertex, and may assign 
values to per-vertex outputs only if they belong to that corresponding vertex.  If a per-vertex output 
variable is used as an l-value, it is a compile-time or link-time error if the expression indicating the vertex 
index is not the identifier gl_InvocationID.

The order of execution of a tessellation control shader invocation relative to the other invocations for the 
same input patch is undefined unless the built-in function barrier() is used.  This provides some control 
over relative execution order.  When a shader invocation calls barrier(), its execution pauses until all 
other invocations have reached the same point of execution.  Output variable assignments performed by 
any invocation executed prior to calling barrier() will be visible to any other invocation after the call to 
barrier() returns.

Because tessellation control shader invocations execute in undefined order between barriers, the values of 
per-vertex or per-patch output variables will sometimes be undefined.  Consider the beginning and end of 
shader execution and each call to barrier() as synchronization points.  The value of an output variable 
will be undefined in any of the three following cases:

1.  At the beginning of execution.

2.  At each synchronization point, unless

• the value was well-defined after the previous synchronization point and was not written by any
invocation since, or

• the value was written by exactly one shader invocation since the previous synchronization 
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point, or
• the value was written by multiple shader invocations since the previous synchronization point, 

and the last write performed by all such invocations wrote the same value.
3.  When read by a shader invocation, if

• the value was undefined at the previous synchronization point and has not been writen by the 
same shader invocation since, or

• the output variable is written to by any other shader invocation between the previous and next 
synchronization points, even if that assignment occurs in code following the read.

Fragment outputs output per-fragment data and are declared using the out storage qualifier.  It is a 
compile-time error to use auxiliary storage qualifiers or interpolation qualifiers on an output in a fragment 
shader.  It is a compile-time error to declare a fragment shader output that contains any of the following:

• A Boolean type (bool, bvec2, bvec3, bvec4)

• A double-precision scalar or vector (double, dvec2, dvec3, dvec4)

• An opaque type

• Any matrix type

• A structure

Fragment outputs are declared as in the following examples:

out vec4 FragmentColor;
out uint Luminosity;

Compute shaders have no built-in output variables, do not support user-defined output variables and do 
not form a formal interface with any other shader stage.  All outputs from a compute shader take the form 
of the side effects such as image stores and operations on atomic counters.

4.3.7 Buffer Variables

The buffer qualifier is used to declare global variables whose values are stored in the data store of a 
buffer object bound through the OpenGL API.  Buffer variables can be read and written with the 
underlying storage shared among all active shader invocations.  Buffer variable memory reads and writes 
within a single shader invocation are processed in order.  However, the order of reads and writes 
performed in one invocation relative to those performed by another invocation is largely undefined.  
Buffer variables may be qualified with memory qualifiers affecting how the underlying memory is 
accessed, as described in section 4.10 “Memory Qualifiers”.

The buffer qualifier can be used  to declare interface blocks (section 4.3.9 “Interface Blocks”), which are 
then referred to as shader storage blocks.  It is a compile-time error to declare buffer variables at global 
scope (outside a block).
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// use buffer to create a buffer block (shader storage block)
buffer BufferName {   // externally visible name of buffer
    int count;        // typed, shared memory...
    ...               // ...
    vec4 v[];         // last member may be an array that is not sized
                      //      until after link time (dynamically sized)
} Name;               // name of block within the shader

There are implementation-dependent limits on the number of shader storage blocks used for each type of 
shader, the combined number of shader storage blocks used for a program, and the amount of storage 
required by each individual shader storage block.  If any of these limits are exceeded, it will cause a 
compile-time or link-time error.

If multiple shaders are linked together, then they will share a single global buffer variable name space, 
including within a language as well as across languages.  Hence, the types of all declared buffer variables 
with the same name must match across all shaders that are linked into a single program.

4.3.8 Shared Variables

The shared qualifier is used to declare variables that have storage shared between all work items  
compute shader local work group.  Variables declared as shared may only be used in compute shaders 
(see section 2.6 “Compute Processor”).  Shared variables are implicitly coherent.  That is, writes to shared
variables from one shader invocation will eventually be seen by other invocations within the same local 
work group.

Variables declared as shared may not have initializers and their contents are undefined at the beginning of
shader execution.  Any data written to shared variables will be visible to other shader processors executing
the same shader within the same local work group.  Order of execution with respect to reads and writes to 
the same shared variable by different invocations of a shader is not defined.  In order to achieve ordering 
with respect to reads and writes to shared variables, memory barriers must be employed using the 
barrier() function (see section 8.16 “Shader Invocation Control Functions”).

There is a limit to the total size of all variables declared as shared in a single program. This limit, 
expressed in units of basic machine units may be determined by using the OpenGL API to query the value 
of MAX_COMPUTE_SHARED_MEMORY_SIZE.

4.3.9 Interface Blocks

Input, output, uniform, and buffer variable declarations can be grouped into named interface blocks to 
provide coarser granularity backing than is achievable with individual declarations.  They can have an 
optional instance name, used in the shader to reference their members.  An output block of one 
programmable stage is backed by a corresponding input block in the subsequent programmable stage.  A 
uniform block is backed by the application with a buffer object.  A block of buffer variables, called a 
shader storage block, is also backed by the application with a buffer object.  It is a compile-time error to 
have an input block in a vertex shader or an output block in a fragment shader; these uses are reserved for 
future use.
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An interface block is started by an in, out, uniform, or buffer keyword, followed by a block name, 
followed by an open curly brace ( { ) as follows:

interface-block :
layout-qualifieropt  interface-qualifier  block-name { member-list } instance-nameopt ;
// Note:  Order of qualifiers is not actually fixed; qualifiers can be in any order.

interface-qualifier :
in
out
patch in          // Note:  Qualifiers can be in any order.
patch out
uniform
buffer
// Note: Not shown for simplicity, but memory qualifiers may also be used

member-list :
member-declaration
member-declaration member-list

member-declaration :
layout-qualifieropt  qualifiersopt  type declarators ;  // Note:  Qualifiers can be in any order.

instance-name :
identifier
identifier [ ]
identifier [ integral-constant-expression ]  // Note: Arrays of arrays are also allowed

Each of the above elements is discussed below, with the exception of layout qualifiers (layout-qualifier), 
which are defined in the next section.

First, an example,

uniform Transform {
    mat4 ModelViewMatrix;
    mat4 ModelViewProjectionMatrix;
    uniform mat3 NormalMatrix;       // allowed restatement of qualifier
    float Deformation;
};

The above establishes a uniform block named “Transform” with four uniforms grouped inside it.

Types and declarators are the same as for other input, output, uniform, and buffer variable declarations 
outside blocks, with these exceptions:

• initializers are not allowed

• opaque types are not allowed

• structure definitions cannot be nested inside a block

Any of these would result in a compile-time error.  Otherwise, built-in types, previously declared 
structures, and arrays of these are allowed as the type of a declarator in the same manner they are allowed 
outside a block.
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If no optional qualifier is used in a member-declaration, the qualification of the member includes all in, 
out, patch, uniform, or buffer as determined by interface-qualifier.  If optional qualifiers are used, they 
can include interpolation qualifiers, auxiliary storage qualifiers, and storage qualifiers and they must 
declare an input, output, or uniform member consistent with the interface qualifier of the block:  Input 
variables, output variables, uniform variables, and buffer members can only be in in blocks, out blocks, 
uniform blocks, and shader storage blocks, respectively.  Repeating an in, out, patch, uniform, or buffer
interface qualifier for a member's storage qualifier is optional.  For example,

in Material {
    smooth in vec4 Color1; // legal, input inside in block
    smooth vec4 Color2;    // legal, 'in' inherited from 'in Material'
    vec2 TexCoord;         // legal, TexCoord is an input
    uniform float Atten;   // illegal, mismatched  storage qualifier

};

For this section, define a shader interface to be one of these

• All the uniform variables and uniform blocks declared in a program.  This spans all compilation units 
linked together within one program.

• All the buffer blocks declared in a program.

• The boundary between adjacent programmable pipeline stages:  This spans all the outputs declared in
all compilation units of the first stage and all the inputs declared in all compilation units of the second
stage.

The block name (block-name) is used to match within shader interfaces:  an output block of one pipeline 
stage will be matched to an input block with the same name in the subsequent pipeline stage.  For uniform
blocks, the application uses the block name to identify the block.  Block names have no other use within a 
shader beyond interface matching; it is a compile-time error to use a block name at global scope for 
anything other than as a block name (e.g., use of a block name for a global variable name or function 
name is currently reserved).  It is a compile-time error to use the same block name for more than one 
block declaration in the same shader interface (as defined above) within one shader, even if the block 
contents are identical.

Matched block names within a shader interface (as defined above) must match in terms of having the same
number of declarations with the same sequence of types and the same sequence of member names, as well 
as having the same member-wise layout qualification (see next section).  Matched uniform block names 
(but not input or output block names) must also either all be lacking an instance name or all having an 
instance name, putting their members at the same scoping level.  When instance names are present on 
matched block names, it is allowed for the instance names to differ; they need not match for the blocks to 
match.  Furthermore, if a matching block is declared as an array, then the array sizes must also match (or 
follow array matching rules for the shader interface between a vertex and a geometry shader).  Any 
mismatch will generate a link-time error.  A block name is allowed to have different definitions in different
shader interfaces within the same shader, allowing, for example, an input block and output block to have 
the same name.
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If an instance name (instance-name) is not used, the names declared inside the block are scoped at the 
global level and accessed as if they were declared outside the block.  If an instance name (instance-name) 
is used, then it puts all the members inside a scope within its own name space, accessed with the field 
selector ( . ) operator (analogously to structures).  For example,

in Light {
    vec4 LightPos;
    vec3 LightColor;
};
in ColoredTexture {
    vec4 Color;
    vec2 TexCoord;        
} Material;            // instance name
vec3 Color;            // different Color than Material.Color
vec4 LightPos;         // illegal, already defined
...
... = LightPos;        // accessing LightPos
... = Material.Color;  // accessing Color in ColoredTexture block

Outside the shading language (i.e., in the API), members are similarly identified except the block name is 
always used in place of the instance name (API accesses are to shader interfaces, not to shaders).  If there 
is no instance name, then the API does not use the block name to access a member, just the member name.

Within a shader interface, all declarations of the same global name must be for the same object and must 
match in type and in whether they declare a variable or member of a block with no instance name.  The 
API also needs this name to uniquely identify an object in the shader interface.  It is a link-time error if 
any particular shader interface contains

• two different blocks, each having no instance name, and each having a member of the same 
name, or

• a variable outside a block, and a block with no instance name, where the variable has the same 
name as a member in the block.
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out Vertex {
    vec4 Position;  // API transform/feedback will use “Vertex.Position”
    vec2 Texture;
} Coords;           // shader will use “Coords.Position”

out Vertex2 {
    vec4 Color;     // API will use “Color”
    float Color2;
};

// in same program as Vertex2 above:
out Vertex3 {
    float Intensity;
    vec4 Color;     // ERROR, name collision with Color in Vertex2
};
float Color2;       // ERROR, collides with Color2 in Vertex2

For blocks declared as arrays, the array index must also be included when accessing members, as in this 
example

uniform Transform {  // API uses “Transform[2]” to refer to instance 2
    mat4           ModelViewMatrix;
    mat4           ModelViewProjectionMatrix;
    vec4           a[];  // array will get implicitly sized
    float          Deformation;
} transforms[4];
...
... = transforms[2].ModelViewMatrix;  // shader access of instance 2
// API uses “Transform.ModelViewMatrix” to query an offset or other query
transforms[x].a.length(); // same length for 'a' for all x
Transform[x];             // illegal, must use 'transforms'
Transform.a.length();     // illegal, must use 'transforms'
...transforms[2].a[3]...  // if these are the only two dereferences of 'a', 
...transforms[3].a[7]...  // then 'a' must be size 8, for all transforms[x]

For uniform or shader storage blocks declared as an array, each individual array element corresponds to a 
separate buffer-object bind range, backing one instance of the block.  As the array size indicates the 
number of buffer objects needed, uniform and shader storage block array declarations must specify an 
array size.  A uniform or shader storage block array can only be indexed with a dynamically uniform 
integral expression, otherwise results are undefined.

When using OpenGL API entry points to identify the name of an individual block in an array of blocks, 
the name string may include an array index (e.g., Transform[2]).  When using OpenGL API entry points 
to refer to offsets or other characteristics of a block member, an array index must  not be specified (e.g., 
Transform.ModelViewMatrix).

Geometry shader input blocks must be declared as arrays and follow the array declaration and linking 
rules for all geometry shader inputs.  All other input and output block arrays must specify an array size.
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There are implementation dependent limits on the number of uniform blocks and the number of shader 
storage blocks that can be used per stage.  If either limit is exceeded, it will cause a link-time error.

4.4 Layout Qualifiers
Layout qualifiers can appear in several forms of declaration.  They can appear as part of an interface-
block definition or block member, as shown in the grammar in the previous section.  They can also appear
with just an interface qualifier (a storage qualifier that is in, out, or uniform) to establish layouts of other 
declarations made with that interface qualifier:

layout-qualifier interface-qualifier  ;

Or, they can appear with an individual variable declared with an interface qualifier:

layout-qualifier interface-qualifier declaration ;

Declarations of layouts can only be made at global scope, and only where indicated in the following 
subsections; their details are specific to what the interface qualifier is, and are discussed individually.

The layout-qualifier expands to 

layout-qualifier :
layout ( layout-qualifier-id-list ) 

layout-qualifier-id-list :
layout-qualifier-id
layout-qualifier-id , layout-qualifier-id-list

layout-qualifier-id
layout-qualifier-name
layout-qualifier-name = layout-qualifier-value
shared

The tokens used for layout-qualifier-name are identifiers, not keywords, however, the shared keyword is 
allowed as a layout-qualifier-id.  Generally, they can be listed in any order.  Order-dependent meanings 
exist only if explicitly called out below.  Similarly, these identifiers are not case sensitive, unless explicitly
noted otherwise.

More than one layout qualifier may appear in a single declaration.  Additionally, the same layout-
qualifier-name can occur multiple times within a layout qualifier or across multiple layout qualifiers in the
same declaration. When the same layout-qualifier-name occurs multiple times, in a single declaration, the 
last occurrence overrides the former occurrence(s).  Further, if such a layout-qualifier-name will affect 
subsequent declarations or other observable behavior, it is only the last occurrence that will have any 
effect, behaving as if the earlier occurrence(s) within the declaration are not present.  This is also true for 
overriding layout-qualifier-name, where one overrides the other (e.g., row_major vs. column_major); 
only the last occurrence has any effect.

The following table summarizes the use of layout qualifiers applied to non-opaque types.  It shows for 
each one what kinds of declarations it may be applied to.  These are all discussed in detail in the following
sections.  Layout qualifiers applied to opaque types are not show in this table, but are discussed 
subsequently in section 4.4.6 “Opaque-Uniform Layout Qualifiers”.
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Layout Qualifier Qualifier
Only

Individual
Variable Block

Block
Member Allowed Interfaces

shared
packed
std140
std430

X X

uniform/buffer
row_major
column_major

X X X

binding = opaque types
only

X

offset = X

align = X X

location = 
X

uniform/buffer and
subroutine variables

location = X X X all in/out, except for
computecomponent = X X

index = X
fragment out 

and subroutine functions

triangles
quads
isolines

X tessellation evaluation in

equal_spacing
fractional_even_spacing
fractional_odd_spacing

X tessellation evaluation in

cw
ccw

X tessellation evaluation in

point_mode X tessellation evaluation in

points X geometry in/out

[ points ]
lines
lines_adjacency
triangles
triangles_adjacency

X geometry in

invocations = X geometry in

origin_upper_left
pixel_center_integer

gl_FragCoord
only fragment in

early_fragment_tests X

58



4 Variables and Types

Layout Qualifier Qualifier
Only

Individual
Variable Block

Block
Member Allowed Interfaces

local_size_x =
local_size_y =
local_size_z =

X
compute in

xfb_buffer =
xfb_stride =

X X X X vertex, tessellation, and
geometry out

xfb_offset = X X X

vertices = X tessellation control out

[ points ]
line_strip
triangle_strip

X
geometry out

max_vertices = X

stream = X X X X

depth_any
depth_greater
depth_less
depth_unchanged

gl_FragDepth
only

fragment out

4.4.1 Input Layout Qualifiers

Some input layout qualifiers apply to all shader languages and some apply only to specific languages.  
The latter are discussed in separate sections below.  

All shaders, except compute shaders, allow location layout qualifiers on input variable declarations, input 
block declarations, and input block member declarations.  Of these, variables and block members (but not 
blocks) additionally allow the component layout qualifier.

The layout qualifier identifiers for inputs are:

layout-qualifier-id :
location = integer-constant-expression
component = integer-constant-expression

Where integer-constant-expression is defined in section 4.3.3 “Constant Expressions” as “integral 
constant expression”.

For example,

layout(location = 3) in vec4 normal;
const int start = 6;
layout(location = start + 2) int vec4 v;

will establish that the shader input normal is assigned to vector location number 3 and v is assigned 
location number 8.  For vertex shader inputs, the location specifies the number of the generic vertex 
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attribute from which input values are taken.  For inputs of all other shader types, the location specifies a 
vector number that can be used to match against outputs from a previous shader stage, even if that shader 
is in a different program object.

The following language describes how many locations are consumed by a given type.  However, geometry
shader inputs, tessellation control shader inputs and outputs, and tessellation evaluation inputs all have an 
additional level of arrayness relative to other shader inputs and outputs.  This outer array level is removed 
from the type before considering how many locations the type consumes.

If a vertex shader input is any scalar or vector type, it will consume a single location.  If a non-vertex 
shader input is a scalar or vector type other than dvec3 or dvec4, it will consume a single location, while 
types dvec3 or dvec4 will consume two consecutive locations.  Inputs of type double and dvec2  will 
consume only a single location, in all stages.

If the declared input (after potentially removing an outer array level as just described above) is an array of
size n and each element takes m locations, it will be assigned m * n consecutive locations starting with the 
location specified.  For example,

layout(location = 6) in vec4 colors[3];

will establish that the shader input colors is assigned to vector location numbers 6, 7, and 8.

If the declared input is an n x m single- or double-precision matrix, it will be assigned multiple locations 
starting with the location specified.  The number of locations assigned for each matrix will be the same as 
for an n-element array of m-component vectors.  For example,

layout(location = 9) in mat4 transforms[2];

will establish that shader input transforms is assigned to vector locations 9-16, with transforms[0] being 
assigned to locations 9-12 and transforms[1] being assigned to locations 13-16.

If the declared input is a structure or block, its members will be assigned consecutive locations in their 
order of declaration, with the first member assigned the location provided in the layout qualifier.  For a 
structure, this process applies to the entire structure.  It is a compile-time error to use a location qualifier 
on a member of a structure.  For a block, this process applies to the entire block, or until the first member 
is reached that has a location layout qualifier.  When a block member is declared with a location  qualifier,
its location comes from that qualifier:  The member's location qualifier overrides the block-level 
declaration.  Subsequent members are again assigned consecutive locations, based on the newest location, 
until the next member declared with a location qualifier.  The values used for locations do not have to be 
declared in increasing order.

If a block has no block-level location layout qualifier, it is required that either all or none of its members 
have a location layout qualifier, or a compile-time error results.

The locations consumed by block and structure members are determined by applying the rules above 
recursively as though the structure member were declared as an input variable of the same type.  For 
example:
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layout(location = 3) in struct S {
    vec3 a;                       // gets location 3
    mat2 b;                       // gets locations 4 and 5
    vec4 c[2];                    // gets locations 6 and 7
    layout(location = 8) vec2 A;  // ERROR, can't use on struct member
} s;

layout(location = 4) in block {
    vec4 d;                       // gets location 4
    vec4 e;                       // gets location 5
    layout(location = 7) vec4 f;  // gets location 7
    vec4 g;                       // gets location 8
    layout(location = 1) vec4 h;  // gets location 1
    vec4 i;                       // gets location 2
    vec4 j;                       // gets location 3
    vec4 k;                       // ERROR, location 4 already used
};

The number of input locations available to a shader is limited.  For vertex shaders, the limit is the 
advertised number of vertex attributes.  For all other shaders, the limit is implementation-dependent and 
must be no less than one fourth of the advertised maximum input component count.  A program will fail to
link if any attached shader uses a location greater than or equal to the number of supported locations, 
unless device-dependent optimizations are able to make the program fit within available hardware 
resources.

A program will fail to link if explicit location assignments leave the linker unable to find space for other 
variables without explicit assignments.

For the purposes of determining if a non-vertex input matches an output from a previous shader stage, the 
location layout qualifier (if any) must match.

If a vertex shader input variable with no location assigned in the shader text has a location specified 
through the OpenGL API, the API-assigned location will be used.  Otherwise, such variables will be 
assigned a location by the linker.  See section 11.1.1 “Vertex Attributes” of the OpenGL Graphics System 
Specification for more details.  A link-time error will occur if an input variable is declared in multiple 
shaders of the same language with conflicting locations.

The component qualifier allows the location to be more finely specified for scalars and vectors, down to 
the individual components within a location that are consumed.  It is a compile-time error to use 
component without also specifying the location qualifier (order does not matter).  The components within
a location are 0, 1, 2, and 3. A variable or block member starting at component N will consume 
components N, N+1, N+2, ... up through its size. It is a compile-time error if this sequence of components
gets larger than 3. A scalar double will consume two of these components, and a dvec2 will consume all 
four components available within a location.  A dvec3 or dvec4 can only be declared without specifying a 
component.  A dvec3 will consume all four components of the first location and components 0 and 1 of 
the second location.  This leaves components 2 and 3 available for other component-qualified 
declarations.

For example:
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// a consumes components 2 and 3 of location 4
layout(location = 4, component = 2) in vec2 a;  

// b consumes component 1 of location 4
layout(location = 4, component = 1) in float b; 

// ERROR: c overflows component 3
layout(location = 3, component = 2) in vec3 c;

// d consumes components 2 and 3 of location 5
layout(location = 5, component = 2) in double d; 

// ERROR: e overflows component 3 of location 6
layout(location = 6, component = 2) in dvec2 e; 

// ERROR: f overlaps with g
layout(location = 7, component = 0) double f;
layout(location = 7, component = 1) float g;

layout(location = 8) in dvec3 h;  // components 0,1,2 and 3 of location 8
                                  // and components 0 and 1 of location 9
layout(location = 9, component = 2) in float i;  // okay, compts 2 and 3
            

If the variable is an array, each element of the array, in order, is assigned to consecutive locations, but all 
at the same specified component within each location.  For example:

// component 3 in 6 locations are consumed
layout(location = 2, component = 3) in float d[6]; 

That is, location 2 component 3 will hold d[0], location 3 component 3 will hold d[1], …, up through 
location 7 component 3 holding d[5].

This allows packing of two arrays into the same set of locations:

// e consumes beginning (components 0, 1 and 2) of each of 6 slots
layout(location = 0, component = 0) in vec3 e[6];  

// f consumes last component of the same 6 slots            
layout(location = 0, component = 3) in float f[6]; 

If applying this to an array of arrays, all levels of arrayness are removed to get to the elements that are 
assigned per location to the specified component.  These non-arrayed elements will fill the locations in the
order specified for arrays of arrays in section 4.1.9 "Arrays".

It is a compile-time error to apply the component qualifier to a matrix, a structure, a block, or an array 
containing any of these.  It is a compile-time error to use component 1 or 3 as the beginning of a double 
or dvec2.  It is a link-time error to specify different components for the same variable within a program.

Location aliasing is causing two variables or block members to have the same location number.  
Component aliasing is assigning the same (or overlapping) component numbers for two location aliases.  
(Recall if component is not used, components are assigned starting with 0.)  With one exception, location 
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aliasing is allowed only if it does not cause component aliasing; it is a compile-time or link-time error to 
cause component aliasing.  Further, when location aliasing, the aliases sharing the location must have the 
same underlying numerical type (floating-point or integer) and the same auxiliary storage and 
interpolation qualification.  The one exception where component aliasing is permitted is for two input 
variables (not block members) to a vertex shader, which are allowed to have component aliasing.  This 
vertex-variable component aliasing is intended only to support vertex shaders where each execution path 
accesses at most one input per each aliased component.  Implementations are permitted, but not required, 
to generate link-time errors if they detect that every path through the vertex shader executable accesses 
multiple inputs aliased to any single component.

4.4.1.1 Tessellation Evaluation Inputs

Additional input layout qualifier identifiers allowed for tessellation evaluation shaders are:

layout-qualifier-id :
triangles
quads
isolines
equal_spacing
fractional_even_spacing
fractional_odd_spacing
cw
ccw
point_mode

One subset of these identifiers, primitive mode, is used to specify a tessellation primitive mode to be used 
by the tessellation primitive generator.  To specify a primitive mode, the identifier must be one of 
triangles, quads, or isolines, which specify that the tessellation primitive generator should subdivide a 
triangle into smaller triangles, a quad into triangles, or a quad into a collection of lines, respectively.

A second subset of these identifiers, vertex spacing, is used to specify the spacing used by the tessellation 
primitive generator when subdividing an edge.  To specify vertex spacing, the identifier must be one of the
following.

equal_spacing signifying that edges should be divided into a collection of equal-sized segments.

fractional_even_spacing signifying that edges should be divided into an even number of equal-
length segments plus two additional shorter "fractional" segments.

fractional_odd_spacing signifying that edges should be divided into an odd number of equal-
length segments plus two additional shorter "fractional" segments.

A third subset of these identifiers, ordering, specifies whether the tessellation primitive generator 
produces triangles in clockwise or counter-clockwise order, according to the coordinate system depicted 
in the OpenGL specification.  The ordering identifiers cw and ccw indicate clockwise and counter-
clockwise triangles, respectively.  If the tessellation primitive generator does not produce triangles, 
ordering is ignored.
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Finally, point mode, is specified with the identifier point_mode indicating the tessellation primitive 
generator should produce a point for each distinct vertex in the subdivided primitive, rather than 
generating lines or triangles.

Any or all of these identifiers may be specified one or more times in a single input layout declaration.  If 
primitive mode, vertex spacing, or ordering is declared more than once in the tessellation evaluation 
shaders of a program, all such declarations must use the same identifier.

At least one tessellation evaluation shader (compilation unit) in a program must declare a primitive mode 
in its input layout.  Declaring vertex spacing, ordering, or point mode identifiers is optional.  It is not 
required that all tessellation evaluation shaders in a program declare a primitive mode.  If spacing or 
vertex ordering declarations are omitted, the tessellation primitive generator will use equal spacing or 
counter-clockwise vertex ordering, respectively.  If a point mode declaration is omitted, the tessellation 
primitive generator will produce lines or triangles according to the primitive mode.

4.4.1.2 Geometry Shader Inputs

Additional layout qualifier identifiers for geometry shader inputs include primitive identifiers and an 
invocation count identifier:

layout-qualifier-id :
points
lines
lines_adjacency
triangles
triangles_adjacency
invocations = integer-constant-expression

The identifiers points, lines, lines_adjacency, triangles, and triangles_adjacency are used to specify the
type of input primitive accepted by the geometry shader, and only one of these is accepted.  At least one 
geometry shader (compilation unit) in a program must declare this input primitive layout, and all geometry
shader input layout declarations in a program must declare the same layout.  It is not required that all 
geometry shaders in a program declare an input primitive layout.

The identifier invocations is used to specify the number of times the geometry shader executable is 
invoked for each input primitive received.  Invocation count declarations are optional.  If no invocation 
count is declared in any geometry shader in a program, the geometry shader will be run once for each 
input primitive.  If an invocation count is declared, all such declarations must specify the same count.  If a
shader specifies an invocation count greater than the implementation-dependent maximum, or less than or 
equal to zero, a compile-time error results.

For example,

layout(triangles, invocations = 6) in;

will establish that all inputs to the geometry shader are triangles and that the geometry shader executable 
is run six times for each triangle processed.

All geometry shader input unsized array declarations will be sized by an earlier input primitive layout 
qualifier, when present, as per the following table.
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Layout Size of Input Arrays

points 1

lines 2

lines_adjacency 4

triangles 3

triangles_adjacency 6

The intrinsically declared input array gl_in[] will also be sized by any input primitive-layout declaration.  
Hence, the expression

gl_in.length()

will return the value from the table above.

For inputs declared without an array size, including intrinsically declared inputs (i.e., gl_in), a layout must
be declared before any use of the method length or other any array use that requires the array size to be 
known.

It is a compile-time error if a layout declaration's array size (from table above) does not match all the 
explicit array sizes specified in declarations of an input variables in the same shader.  The following 
includes examples of compile-time errors:

// code sequence within one shader...
in vec4 Color1[];    // legal, size still unknown
in vec4 Color2[2];   // legal, size is 2
in vec4 Color3[3];   // illegal, input sizes are inconsistent
layout(lines) in;    // legal for Color2, input size is 2, matching Color2
in vec4 Color4[3];   // illegal, contradicts layout of lines
layout(lines) in;    // legal, matches other layout() declaration
layout(triangles) in;// illegal, does not match earlier layout() declaration

It is a link-time error if not all provided sizes (sized input arrays and layout size) match across all 
geometry shaders in a program.

4.4.1.3 Fragment Shader Inputs

Additional fragment layout qualifier identifiers include the following for gl_FragCoord :

layout-qualifier-id :
origin_upper_left
pixel_center_integer

By default, gl_FragCoord assumes a lower-left origin for window coordinates and assumes pixel centers 
are located at half-pixel coordinates.  For example, the (x, y) location (0.5, 0.5) is returned for the lower-
left-most pixel in a window.  The origin can be changed by redeclaring gl_FragCoord with the 
origin_upper_left identifier, moving the origin of gl_FragCoord to the upper left of the window, with y 
increasing in value toward the bottom of the window.  The values returned can also be shifted by half a 
pixel in both x and y by pixel_center_integer so it appears the pixels are centered at whole number pixel 
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offsets.  This moves the (x, y) value returned by gl_FragCoord of (0.5, 0.5) by default, to (0.0, 0.0) with 
pixel_center_integer.  

Redeclarations are done as follows

in vec4 gl_FragCoord;     // redeclaration that changes nothing is allowed

// All the following are allowed redeclaration that change behavior
layout(origin_upper_left) in vec4 gl_FragCoord;
layout(pixel_center_integer) in vec4 gl_FragCoord;
layout(origin_upper_left, pixel_center_integer) in vec4 gl_FragCoord;

If gl_FragCoord is redeclared in any fragment shader in a program, it must be redeclared in all the 
fragment shaders in that program that have a static use gl_FragCoord.  All redeclarations of 
gl_FragCoord in all fragment shaders in a single program must have the same set of qualifiers.  Within 
any shader, the first redeclarations of gl_FragCoord must appear before any use of gl_FragCoord.  The 
built-in gl_FragCoord is only predeclared in fragment shaders, so redeclaring it in any other shader 
language results in a compile-time error.

Redeclaring gl_FragCoord with origin_upper_left and/or pixel_center_integer qualifiers only affects  
gl_FragCoord.x and  gl_FragCoord.y.  It has no effect on rasterization, transformation, or any other part 
of the OpenGL pipeline or language features.

Fragment shaders also allow the following layout qualifier on in only (not with variable declarations)

layout-qualifier-id :
early_fragment_tests

to request that fragment tests be performed before fragment shader execution, as described in section 
15.2.4 “Early Fragment Tests” of the OpenGL Specification.

For example,

layout(early_fragment_tests) in;

Specifying this will make per-fragment tests be performed before fragment shader execution.  If this is not
declared, per-fragment tests will be performed after fragment shader execution.  Only one fragment shader
(compilation unit) need declare this, though more than one can.  If at least one declares this, then it is 
enabled.

4.4.1.4 Compute Shader Inputs

There are no layout location qualifiers for compute shader inputs.

Layout qualifier identifiers for compute shader inputs are the work-group size qualifiers:

layout-qualifier-id :
local_size_x = integer-constant-expression
local_size_y = integer-constant-expression
local_size_z = integer-constant-expression

The local_size_x, local_size_y, and local_size_z qualifiers are used to declare a fixed local group size by 
the compute shader in the first, second, and third dimension, respectively.  The default size in each 
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dimension is 1.  If a shader does not specify a size for one of the dimensions, that dimension will have a 
size of 1.

For example, the following declaration in a compute shader

layout(local_size_x = 32, local_size_y = 32) in;

is used to declare a two-dimensional compute shader with a local size of  32 X 32 elements, which is 
equivalent to a three-dimensional compute shader where the third dimension has size one.

As another example, the declaration

layout(local_size_x = 8) in;

effectively specifies that a one-dimensional compute shader is being compiled, and its size is 8 elements. 

If the fixed local group size of the shader in any dimension is greater than the maximum size supported by
the implementation for that dimension, a compile-time error results.  Also, if such a layout qualifier is 
declared more than once in the same shader, all those declarations must set the same set  of local work-
group sizes and set them to the same values; otherwise a compile-time error results.  If multiple compute 
shaders attached to a single program object declare a fixed local group size, the declarations must be 
identical; otherwise a link-time error results.

Furthermore, if a program object contains any compute shaders, at least one must contain an input layout 
qualifier specifying a fixed local group size for the program, or a link-time error will occur.

4.4.2 Output Layout Qualifiers

Some output layout qualifiers apply to all shader languages and some apply only to specific languages.  
The latter are discussed in separate sections below.

As with input layout qualifiers, all shaders except compute shaders allow location layout qualifiers         
on output variable declarations, output block declarations, and output block member declarations.  Of 
these, variables and block members (but not blocks) additionally allow the component layout qualifier.

The layout qualifier identifiers for outputs are:

layout-qualifier-id :
location = integer-constant-expression
component = integer-constant-expression

The usage and rules for using the component qualifier, and applying location qualifier to blocks and 
structures, are exactly as described in section 4.4.1 "Input Layout Qualifiers".  Additionally, for fragment 
shader outputs, if two variables are placed within the same location, they must have the same underlying 
type (floating-point or integer).  No component aliasing of output variables or members is allowed.

Fragment shaders allow an additional index output layout qualifier:

layout-qualifier-id :
index = integer-constant-expression

Each of these qualifiers may appear at most once.  If index is specified, location must also be specified.  
If index is not specified, the value 0 is used.  For example, in a fragment shader,
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layout(location = 3) out vec4 color;

will establish that the fragment shader output color is assigned to fragment color 3 as the first (index zero)
input to the blend equation.  And,

layout(location = 3, index = 1) out vec4 factor;

will establish that the fragment shader output factor is assigned to fragment color 3 as the second (index 
one) input to the blend equation.

For fragment-shader outputs, the location and index specify the color output number and index receiving 
the values of the output.  For outputs of all other shader stages, the location specifies a vector number that 
can be used to match against inputs in a subsequent shader stage, even if that shader is in a different 
program object.

If a declared output is a scalar or vector type other than dvec3 or dvec4, it will consume a single location. 
Outputs of type dvec3 or dvec4 will consume two consecutive locations.  Outputs of type double and 
dvec2 will consume only a single location, in all stages.

If the declared output is an array, it will be assigned consecutive locations starting with the location 
specified.  For example,

layout(location = 2) out vec4 colors[3];

will establish that colors is assigned to vector location numbers 2, 3, and 4.

If the declared output is an n x m single- or double-precision matrix, it will be assigned multiple locations 
starting with the location specified.  The number of locations assigned will be the same as for an n-
element array of m-component vectors.

If the declared output is a structure, its members will be assigned consecutive locations in the order of 
declaration, with the first member assigned the location specified for the structure.  The number of 
locations consumed by a structure member is determined by applying the rules above recursively as 
though the structure member were declared as an output variable of the same type.

Location layout qualifiers may be used on output variables declared as structures.  However, it is a 
compile-time error to use a location qualifier on a structure member.

The number of output locations available to a shader is limited.  For fragment shaders, the limit is the 
advertised number of draw buffers.  For all other shaders, the limit is implementation-dependent and must 
be no less than one fourth of the advertised maximum output component count.  (Compute shaders have 
no outputs.)  A program will fail to link if any attached shader uses a location greater than or equal to the 
number of supported locations, unless device-dependent optimizations are able to make the program fit 
within available hardware resources.  Compile-time errors may also be given if at compile time it is 
known the link will fail.  A negative output location will result in a compile-time error.  It is also a 
compile-time error if a fragment shader sets a layout index to less than 0 or greater than 1.

A program will fail to link if any of the following occur:

• any two fragment shader output variables are assigned to the same location and index, or

• any two geometry shader output variables are assigned the same location and stream, or
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• if any two output variables from the same vertex or tessellation shader stage are assigned to the 
same location.  

For fragment shader outputs, locations can be assigned using either a layout qualifier or via the OpenGL 
API.  For all shader types, a program will fail to link if explicit location assignments leave the linker 
unable to find space for other variables without explicit assignments.

If an output variable with no location or index assigned in the shader text has a location specified through 
the OpenGL API, the API-assigned location will be used.  Otherwise, such variables will be assigned a 
location by the linker.  All such assignments will have a color index of zero.  See section 15.2 “Shader 
Execution” of the OpenGL Graphics System Specification for more details.  A link-time error will occur if
an output variable is declared in multiple shaders of the same language with conflicting location or index 
values.

For the purposes of determining if a non-fragment output matches an input from a subsequent shader 
stage, the location layout qualifier (if any) must match.

4.4.2.1 Transform Feedback Layout Qualifiers

The vertex, tessellation, and geometry stages allow shaders to control transform feedback.  When doing 
this, shaders will dictate which transform feedback buffers are in use, which output variables will be 
written to which buffers, and how each buffer is laid out.  To accomplish this, shaders allow the following 
layout qualifier identifiers on output declarations:

layout-qualifier-id :
xfb_buffer = integer-constant-expression
xfb_offset = integer-constant-expression
xfb_stride = integer-constant-expression

Any shader making any static use (after preprocessing) of any of these xfb_ qualifiers will cause the 
shader to be in a transform feedback capturing mode and hence responsible for describing the transform 
feedback setup.  This mode will capture any output selected by xfb_offset, directly or indirectly, to a 
transform feedback buffer.

The xfb_buffer qualifier specifies which transform feedback buffer will capture outputs selected with 
xfb_offset.  The xfb_buffer qualifier can be applied to the qualifier out, to output variables, to output 
blocks, and to output block members.  Shaders in the transform feedback capturing mode have an initial 
global default of

layout(xfb_buffer = 0) out;
  

This default can be changed by declaring a different buffer with xfb_buffer on the interface qualifier out. 
This is the only way the global default can be changed.  When a variable or output block is declared 
without an xfb_buffer qualifier, it inherits the global default buffer.  When a variable or output block is 
declared with an xfb_buffer qualifier, it has that declared buffer.  All members of a block inherit the 
block's buffer.  A member is allowed to declare an xfb_buffer, but it must match the buffer inherited from 
its block, or a compile-time error results.
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layout(xfb_buffer=2, xfb_offset=0) out block {  // block's buffer is 2
    layout(xfb_buffer = 2) vec4 v; // okay, matches the inherited 2
    layout(xfb_buffer = 3) vec4 u; // ERROR, mismatched buffer
    vec4 w;                        // inherited
};
layout(xfb_offset=16) out vec4 t;  // initial default is buffer 0
layout(xfb_buffer=1) out;          // new global default of 1
out block {                        // block has buffer 1
    vec4 x;                        // x has buffer 1 (not captured)
    layout(xfb_buffer = 1) vec4 y; // okay (not captured)
    layout(xfb_buffer = 0) vec4 z; // ERROR, mismatched buffer
};
layout(xfb_offset=0) out vec4 g;   // g has buffer 1
layout(xfb_buffer=2) out vec4 h;   // does not change global default
layout(xfb_offset=16) out vec4 j;  // j has buffer 1

Note this means all members of a block that go to a transform feedback buffer will go to the same buffer.

It is a compile-time error to specify an xfb_buffer that is greater than the implementation-dependent 
constant gl_MaxTransformFeedbackBuffers.

The xfb_offset qualifier assigns a byte offset within a transform feedback buffer.  Only variables, block 
members, or blocks can be qualified with xfb_offset.  If a block is qualified with xfb_offset, all its 
members are assigned transform feedback buffer offsets.  If a block is not qualified with xfb_offset, any 
members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer 
offsets.  Only variables and block members that are assigned offsets will be captured (thus, a proper 
subset of a block can be captured).  Each time such a variable or block member is written in a shader, the 
written value is captured at the assigned offset.  If such a block member or variable is not written during a 
shader invocation, the buffer contents at the assigned offset will be undefined.  Even if there are no static 
writes to a variable or member that is assigned a transform feedback offset, the space is still allocated in 
the buffer and still affects the stride.

Variables and block members qualified with xfb_offset can be scalars, vectors, matrices, structures, and 
(sized) arrays of these.  The offset must be a multiple of the size of the first component of the first 
qualified variable or block member, or a compile-time error results.  Further, if applied to an aggregate 
containing a double, the offset must also be a multiple of 8, and the space taken in the buffer will be a 
multiple of 8.  The given offset applies to the first component of the first member of the qualified entity.  
Then, within the qualified entity, subsequent components are each assigned, in order, to the next available 
offset aligned to a multiple of that component's size.  Aggregate types are flattened down to the 
component level to get this sequence of components.  It is a compile-time error to apply xfb_offset to the 
declaration of an unsized array.

No aliasing in output buffers is allowed:  It is a compile-time or link-time error to specify variables with 
overlapping transform feedback offsets.

The xfb_stride qualifier specifies how many bytes are consumed by each captured vertex.  It applies to 
the transform feedback buffer for that declaration, whether it is inherited or explicitly declared.  It can be 
applied to variables, blocks, block members, or just the qualifier out.  If the buffer is capturing any 
outputs with double-precision components, the stride must be a multiple of 8, otherwise it must be a 
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multiple of 4, or a compile-time or link-time error results.  It is a compile-time or link-time error to have 
any xfb_offset that overflows xfb_stride, whether stated on declarations before or after the xfb_stride, or
in different compilation units.  While xfb_stride can be declared multiple times for the same buffer, it is a 
compile-time or link-time error to have different values specified for the stride for the same buffer.

For example:

// buffer 1 has 32-byte stride
layout(xfb_buffer = 1, xfb_stride = 32) out;  

// same as previous example; order within layout does not matter
layout(xfb_stride = 32, xfb_buffer = 1) out;  
            
// everything in this block goes to buffer 0
layout(xfb_buffer = 0, xfb_stride = 32) out block1 {
    layout(xfb_offset = 0)  vec4 a; // a goes to byte offset 0 of buffer 0
    layout(xfb_offset = 16) vec4 b; // b goes to offset 16 of buffer 0
};
        
layout(xfb_buffer = 3, xfb_offset = 12) out block2 {
    vec4 v;  // v will be written to byte offsets 12 through 27 of buffer
    float u; // u will be written to offset 28
    layout(xfb_offset = 40) vec4 w;
    vec4 x;  // x will be written to offset 56, the next available offset
};            

layout(xfb_buffer = 2, xfb_stride = 32) out block3 {
    layout(xfb_offset = 12) vec3 c;
    layout(xfb_offset = 24) vec3 d; // ERROR, requires stride of 36
    layout(xfb_offset = 0)  vec3 g; // okay, increasing order not required
};

When no xfb_stride is specified for a buffer, the stride of the buffer will be the smallest needed to hold 
the variable placed at the highest offset, including any required padding.  For example:           

// if there no other declarations for buffer 3, it has stride 32
layout(xfb_buffer = 3) out block4 {
    layout(xfb_offset = 0)  vec4 e;
    layout(xfb_offset = 16) vec4 f;
};

The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the 
implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents.

4.4.2.2 Tessellation Control Outputs

Other than for the transform feedback layout qualifiers, tessellation control shaders allow output layout 
qualifiers only on the interface qualifier out, not on an output block, block member, or variable 
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declaration.  The output layout qualifier identifiers allowed for tessellation control shaders include the 
vertex-count layout qualifier:

layout-qualifier-id :
vertices = integer-constant-expression

The identifier vertices specifies the number of vertices in the output patch produced by the tessellation 
control shader, which also specifies the number of times the tessellation control shader is invoked.  It is a 
compile- or link-time error for the output vertex count to be less than or equal to zero, or greater than the 
implementation-dependent maximum patch size.

The intrinsically declared tessellation control output array gl_out[] will also be sized by any output layout
declaration.  Hence, the expression

gl_out.length()

will return the output patch vertex count specified in a previous output layout qualifier.  For outputs 
declared without an array size, including intrinsically declared outputs (i.e., gl_out), a layout must be must
be declared before any use of the method length() or other array use requires its size to be known.

It is a compile-time error if the output patch vertex count specified in an output layout qualifier does not 
match the array size specified in any output variable declaration in the same shader.

All tessellation control shader layout declarations in a program must specify the same output patch vertex 
count.  There must be at least one layout qualifier specifying an output patch vertex count in any program 
containing tessellation control shaders; however, such a declaration is not required in all tessellation 
control shaders.

4.4.2.3 Geometry Outputs

Geometry shaders can have three additional types of output layout identifiers:  an output primitive type, a 
maximum output vertex count, and per-output stream numbers.  The primitive type and vertex count 
identifiers are allowed only on the interface qualifier out, not on an output block, block member, or 
variable declaration.  The stream identifier is allowed on the interface qualifier out, on output blocks, and 
on variable declarations.

The layout qualifier identifiers for geometry shader outputs are

layout-qualifier-id :
points
line_strip
triangle_strip
max_vertices = integer-constant-expression
stream = integer-constant-expression

The primitive type identifiers points, line_strip, and triangle_strip are used to specify the type of output 
primitive produced by the geometry shader, and only one of these is accepted.  At least one geometry 
shader (compilation unit) in a program must declare an output primitive type, and all geometry shader 
output primitive type declarations in a program must declare the same primitive type.  It is not required 
that all geometry shaders in a program declare an output primitive type.
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The vertex count identifier max_vertices is used to specify the maximum number of vertices the shader 
will ever emit in a single invocation.  At least one geometry shader (compilation unit) in a program must 
declare a maximum output vertex count, and all geometry shader output vertex count declarations in a 
program must declare the same count.  It is not required that all geometry shaders in a program declare a 
count.

In this example,

layout(triangle_strip, max_vertices = 60) out;  // order does not matter
layout(max_vertices = 60) out;      // redeclaration okay
layout(triangle_strip) out;         // redeclaration okay
layout(points) out;                 // error, contradicts triangle_strip
layout(max_vertices = 30) out;      // error, contradicts 60

all outputs from the geometry shader are triangles and at most 60 vertices will be emitted by the shader.  It
is an error for the maximum number of vertices to be greater than gl_MaxGeometryOutputVertices.

The identifier stream is used to specify that a geometry shader output variable or block is associated with 
a particular vertex stream (numbered beginning with zero).  A default stream number may be declared at 
global scope by qualifying interface qualifier out as in this example:

layout(stream = 1) out;

The stream number specified in such a declaration replaces any previous default and applies to all 
subsequent block and variable declarations until a new default is established.  The initial default stream 
number is zero.

Each output block or non-block output variable is associated with a vertex stream.  If the block or variable
is declared with the stream identifier, it is associated with the specified stream; otherwise, it is associated 
with the current default stream.  A block member may be declared with a stream identifier, but the 
specified stream must match the stream associated with the containing block.  One example:

layout(stream=1) out;             // default is now stream 1
out vec4 var1;                    // var1 gets default stream (1)
layout(stream=2) out Block1 {     // "Block1" belongs to stream 2
    layout(stream=2) vec4 var2;   // redundant block member stream decl
    layout(stream=3) vec2 var3;   // ILLEGAL (must match block stream)
    vec3 var4;                    // belongs to stream 2
};
layout(stream=0) out;             // default is now stream 0
out vec4 var5;                    // var5 gets default stream (0)
out Block2 {                      // "Block2" gets default stream (0)
    vec4 var6;
};
layout(stream=3) out vec4 var7;   // var7 belongs to stream 3

Each vertex emitted by the geometry shader is assigned to a specific stream, and the attributes of the 
emitted vertex are taken from the set of output blocks and variables assigned to the targeted stream.  After 
each vertex is emitted, the values of all output variables become undefined.  Additionally, the output 
variables associated with each vertex stream may share storage.  Writing to an output variable associated 
with one stream may overwrite output variables associated with any other stream.  When emitting each 
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vertex, a geometry shader should write to all outputs associated with the stream to which the vertex will 
be emitted and to no outputs associated with any other stream.

If a geometry shader output block or variable is declared more than once, all such declarations must 
associate the variable with the same vertex stream.  If any stream declaration specifies a non-existent 
stream number, the shader will fail to compile.

Built-in geometry shader outputs are always associated with vertex stream zero.

All geometry shader output layout declarations in a program must declare the same layout and same value 
for max_vertices.  If geometry shaders are in a program, there must be at least one geometry output 
layout declaration somewhere in that program, but not all geometry shaders (compilation units) are 
required to declare it.

4.4.2.4 Fragment Outputs

The built-in fragment shader variable gl_FragDepth may be redeclared using one of the following layout 
qualifiers.

layout-qualifier-id :
depth_any
depth_greater
depth_less
depth_unchanged

For example:

layout(depth_greater) out float gl_FragDepth;

The layout qualifier for gl_FragDepth constrains intentions of the final value of gl_FragDepth written by 
any shader invocation.  GL implementations are allowed to perform optimizations assuming that the depth
test fails (or passes) for a given fragment if all values of gl_FragDepth consistent with the layout qualifier
would fail (or pass).  This potentially includes skipping shader execution if the fragment is discarded 
because it is occluded and the shader has no side effects.  If the final value of gl_FragDepth is 
inconsistent with its layout qualifier, the result of the depth test for the corresponding fragment is 
undefined.  However, no error will be generated in this case.  If the depth test passes and depth writes are 
enabled, the value written to the depth buffer is always the value of gl_FragDepth, whether or not it is 
consistent with the layout qualifier.

By default, gl_FragDepth is qualified as depth_any. When the layout qualifier for gl_FragDepth is 
depth_any, the shader compiler will note any assignment to gl_FragDepth modifying it in an unknown 
way, and depth testing will always be performed after the shader has executed.  When the layout qualifier 
is depth_greater, the GL can assume that the final value of gl_FragDepth is greater than or equal to the 
fragment's interpolated depth value, as given by the z component of gl_FragCoord.  When the layout 
qualifier is depth_less, the GL can assume that any modification of gl_FragDepth will only decrease its 
value. When the layout qualifier is depth_unchanged, the shader compiler will honor any modification to 
gl_FragDepth, but the rest of the GL can assume that gl_FragDepth is not assigned a new value.
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Redeclarations of gl_FragDepth are performed as follows:

// redeclaration that changes nothing is allowed
out float gl_FragDepth;

// assume it may be modified in any way
layout(depth_any) out float gl_FragDepth;

// assume it may be modified such that its value will only increase
layout(depth_greater) out float gl_FragDepth;

// assume it may be modified such that its value will only decrease
layout(depth_less) out float gl_FragDepth;

// assume it will not be modified
layout(depth_unchanged) out float gl_FragDepth;

If gl_FragDepth is redeclared in any fragment shader in a program, it must be redeclared in all fragment 
shaders in that program that have static assignments to gl_FragDepth. All redeclarations of gl_FragDepth
in all fragment shaders in a single program must have the same set of qualifiers.  Within any shader, the 
first redeclarations of gl_FragDepth must appear before any use of gl_FragDepth. The built-in 
gl_FragDepth is only predeclared in fragment shaders, so redeclaring it in any other shader language 
results in a compile-time error.

4.4.3 Uniform Variable Layout Qualifiers

Layout qualifiers can be used for uniform variables and subroutine uniforms. The layout qualifier 
identifiers for uniform variables and subroutine uniforms are:

layout-qualifier-id :
location = integer-constant-expression

The location identifier can be used with default-block uniform variables and subroutine uniforms. The 
location specifies the location by which the OpenGL API can reference the uniform and update its value.  
Individual elements of a uniform array are assigned consecutive locations with the first element taking 
location location.  No two default-block uniform variables in the program can have the same location, 
even if they are unused, otherwise a compile-time or link-time error will be generated.  No two subroutine 
uniform variables can have the same location in the same shader stage, otherwise a compile-time or link-
time error will be generated. Valid locations for default-block uniform variable locations are in the range 
of 0 to the implementation-defined maximum number of uniform locations minus one. Valid locations for 
subroutine uniforms are in the range of 0 to the implementation-defined per-stage maximum number of 
subroutine uniform locations minus one.

Locations can be assigned to default-block uniform arrays and structures.  The first inner-most scalar, 
vector or matrix member or element takes the specified location and the compiler assigns the next inner-
most member or element the next incremental location value.  Each subsequent inner-most member or 
element gets incremental locations for the entire structure or array.  This rule applies to nested structures 
and arrays and gives each inner-most scalar, vector, or matrix type a unique location. For arrays without 
an explicit size, the size is calculated based on its static usage.  When the linker generates locations for 
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uniforms without an explicit location, it assumes for all uniforms with an explicit location all their array 
elements and structure members are used and the linker will not generate a conflicting location, even if 
that element of member is deemed unused.

4.4.4 Subroutine Function Layout Qualifiers

Layout qualifiers can be used for subroutine functions. The layout qualifier identifiers for subroutine 
functions are:

layout-qualifier-id :
index = integer-constant-expression

Each subroutine with an index qualifier in the shader must be given a unique index, otherwise a compile- 
or link-time error will be generated.  The indices must be in the range of 0 to the implementation defined 
maximum number of subroutines minus one.  It is recommended, but not required, that the shader assigns 
a range of tightly packed index values starting from zero so that the OpenGL subroutine function 
enumeration API returns a non-empty name for all active indices.

4.4.5 Uniform and Shader Storage Block Layout Qualifiers

Layout qualifiers can be used for uniform and shader storage blocks, but not for non-block uniform 
declarations.  The layout qualifier identifiers (and shared keyword) for uniform and shader storage blocks
are

layout-qualifier-id :
shared
packed
std140
std430
row_major
column_major
binding = integer-constant-expression
offset = integer-constant-expression
align = integer-constant-expression

None of these have any semantic effect at all on the usage of the variables being declared; they only 
describe how data is laid out in memory.  For example, matrix semantics are always column-based, as 
described in the rest of this specification, no matter what layout qualifiers are being used.

Uniform and shader storage block layout qualifiers can be declared for global scope, on a single uniform 
or shader storage block, or on a single block member declaration.  

Default layouts for shared, packed, std140, std430, row_major, and column_major are established at 
global scope for uniform blocks as

layout(layout-qualifier-id-list) uniform;

and for shader storage blocks as
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layout(layout-qualifier-id-list) buffer;

When this is done, the previous default qualification is first inherited and then overridden as per the 
override rules listed below for each qualifier listed in the declaration.  The result becomes the new default 
qualification scoped to subsequent uniform or shader storage block definitions.

The initial state of compilation is as if the following were declared:

layout(shared, column_major) uniform;
layout(shared, column_major) buffer;

Uniform and shader storage blocks can be declared with optional layout qualifiers, and so can their 
individual member declarations.  Such block layout qualification is scoped only to the content of the 
block.  As with global layout declarations, block layout qualification first inherits from the current default 
qualification and then overrides it.  Similarly, individual member layout qualification is scoped just to the 
member declaration, and inherits from and overrides the block's qualification.

The shared qualifier overrides only the std140, std430, and packed qualifiers; other qualifiers are 
inherited.  The compiler/linker will ensure that multiple programs and programmable stages containing 
this definition will share the same memory layout for this block, as long as all arrays are declared with 
explicit sizes and all matrices have matching row_major and/or column_major qualifications (which may 
come from a declaration outside the block definition). This allows use of the same buffer to back the same
block definition across different programs.

The packed qualifier overrides only std140, std430, and shared; other qualifiers are inherited.  When 
packed is used, no shareable layout is guaranteed.  The compiler and linker can optimize memory use 
based on what variables actively get used and on other criteria.  Offsets must be queried, as there is no 
other way of guaranteeing where (and which) variables reside within the block.  It is a link-time error to 
access the same packed uniform or shader storage block in multiple stages within a program.  Attempts to 
access the same packed uniform or shader storage block across programs can result in conflicting member
offsets and in undefined values being read.  However, implementations may aid application management 
of packed blocks by using canonical layouts for packed blocks.

The std140 and std430 qualifiers override only the packed, shared, std140, and std430 qualifiers; other 
qualifiers are inherited.  The std430 qualifier is supported only for shader storage blocks; using std430 on 
a uniform block will result in a compile-time error.  The layout is explicitly determined by this, as 
described in section 7.6.2 “Uniform Blocks" under Standard Uniform Block Layout of the OpenGL 
Graphics System Specification.  Hence, as in shared above, the resulting layout is shareable across 
programs.

Layout qualifiers on member declarations cannot use the shared, packed, std140, or std430 qualifiers.  
These can only be used at global scope or on a block declaration, or a compile-time error results.

The row_major and column_major qualifiers affect the layout of matrices, including all matrices 
contained in structures and arrays they are applied to, to all depths of nesting.  These qualifiers can be 
applied to other types, but will have no effect.

The row_major qualifier overrides only the column_major qualifier; other qualifiers are inherited.  
Elements within a matrix row will be contiguous in memory.
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The column_major qualifier overrides only the row_major qualifier; other qualifiers are inherited.  
Elements within a matrix column will be contiguous in memory.

The binding identifier specifies the uniform buffer binding point corresponding to the uniform or shader 
storage block, which will be used to obtain the values of the member variables of the block.  It is a 
compile-time error to specify the binding identifier for the global scope or for block member declarations.
Any uniform or shader storage block declared without a binding identifier is initially assigned to block 
binding point zero.  After a program is linked, the binding points used for uniform and shader storage 
blocks declared with or without a binding identifier can be updated by the OpenGL API.

If the binding identifier is used with a uniform or shader storage block instanced as an array, the first 
element of the array takes the specified block binding and each subsequent element takes the next 
consecutive uniform block binding point. For an array of arrays, each element (e.g., 6 elements for a[2]
[3]) gets a binding point, and they are ordered per the array of array ordering described in section 4.1.9 
“Arrays.”

If the binding point for any uniform or shader storage block instance is less than zero, or greater than or 
equal to the implementation-dependent maximum number of uniform buffer bindings, a compile-time 
error will occur. When the binding identifier is used with a uniform or shader storage block instanced as 
an array of size N, all elements of the array from binding through binding + N – 1 must be within this 
range.

When multiple arguments are listed in a layout declaration, the effect will be the same as if they were 
declared one at a time, in order from left to right, each in turn inheriting from and overriding the result 
from the previous qualification.

For example

layout(row_major, column_major)

results in the qualification being column_major.  Other examples:

layout(shared, row_major) uniform; // default is now shared and row_major

layout(std140) uniform Transform { // layout of this block is std140
    mat4 M1;                       // row_major
    layout(column_major) mat4 M2;  // column major
    mat3 N1;                       // row_major
};

uniform T2 {  // layout of this block is shared
    ...
};

layout(column_major) uniform T3 {  // shared and column_major
    mat4 M3;                       // column_major
    layout(row_major) mat4 m4;     // row major
    mat3 N2;                       // column_major
};
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The offset qualifier can only be used on block members of blocks declared with std140 or std430 layouts.
The offset qualifier forces the qualified member to start at or after the specified integral-constant-
expression, which will be its byte offset from the beginning of the buffer.  It is a compile-time error to 
specify an offset that is smaller than the offset of the previous member in the block or that lies within the 
previous member of the block.  Two blocks linked together in the same program with the same block 
name must have the exact same set of members qualified with offset and their integral-constant-
expression values must be the same, or a link-time error results.  The specified offset must be a multiple of
the base alignment of the type of the block member it qualifies, or a compile-time error results.

The align qualifier can only be used on blocks or block members, and only for blocks declared with 
std140 or std430 layouts.  The align qualifier makes the start of each block member have a minimum byte
alignment.  It does not affect the internal layout within each member, which will still follow the std140 or 
std430 rules.  The specified alignment must be greater than 0 and a power of 2, or a compile-time error 
results.  

The actual alignment of a member will be the greater of the specified align alignment and the standard 
(e.g., std140) base alignment for the member's type.  The actual offset of a member is computed as 
follows:  If offset was declared, start with that offset, otherwise start with the next available offset.  If the 
resulting offset is not a multiple of the actual alignment, increase it to the first offset that is a multiple of 
the actual alignment.  This results in the actual offset the member will have.

When align is applied to an array, it affects only the start of the array, not the array's internal stride.  Both 
an offset and an align qualifier can be specified on a declaration.  

The align qualifier, when used on a block, has the same effect as qualifying each member with the same 
align value as declared on the block, and gets the same compile-time results and errors as if this had been 
done.  As described in general earlier, an individual member can specify its own align, which overrides 
the block-level align, but just for that member.

Examples:

layout(std140) uniform block {
                        vec4   a;     // a takes offsets 0-15
    layout(offset = 32) vec3   b;     // b takes offsets 32-43
    layout(offset = 40) vec2   c;     // ERROR, lies within previous member
    layout(offset = 48) vec2   d;     // d takes offsets 48-55
    layout(align = 16)  float  e;     // e takes offsets 64-67
    layout(align = 2)   double f;     // f takes offsets 72-79
    layout(align = 6)   double g;     // ERROR, 6 is not a power of 2
    layout(offset = 80) float  h;     // h takes offsets 80-83
    layout(align = 64)  dvec3  i;     // i takes offsets 128-151
    layout(offset = 164, align = 8)
                        float  j;     // j takes offsets 168-171
};

4.4.6 Opaque-Uniform Layout Qualifiers

Uniform layout qualifiers can be used to bind opaque uniform variables to specific buffers or units.  
Texture image units can be bound to samplers, image units can be bound to images, and atomic counters 
can be bound to buffers.
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Details for specific to image formats and atomic counter bindings are given in the subsections below.

Image and sampler types both take the uniform layout qualifier identifier for binding:

layout-qualifier-id :
binding = integer-constant-expression

The identifier binding specifies which unit will be bound.  Any uniform sampler or image variable 
declared without a binding qualifier is initially bound to unit zero.  After a program is linked, the unit 
referenced by a sampler or image uniform variable declared with or without a binding identifier can be    
updated by the OpenGL API.

If the binding identifier is used with an array, the first element of the array takes the specified unit and 
each subsequent element takes the next consecutive unit.

If the binding is less than zero, or greater than or equal to the implementation-dependent maximum 
supported number of units, a compile-time error will occur.  When the binding identifier is used with an 
array of size N, all elements of the array from binding through binding + N - 1 must be within this range.

A link-time error will result if two compilation units in a program specify different integer-constant-
expression bindings for the same opaque-uniform name.  However, it is not an error to specify a binding 
on some but not all declarations for the same name, as shown in the examples below.

// in one compilation unit...
layout(binding=3) uniform sampler2D s; // s bound to unit 3

// in another compilation unit...
uniform sampler2D s;                   // okay, s still bound at 3

// in another compilation unit...
layout(binding=4) uniform sampler2D s; // ERROR: contradictory bindings

4.4.6.1 Atomic Counter Layout Qualifiers

The atomic counter qualifiers are

layout-qualifier-id :
binding = integer-constant-expression
offset = integer-constant-expression

For example,

layout(binding = 2, offset = 4) uniform atomic_uint a;

will establish that the opaque handle to the atomic counter a will be bound to atomic counter buffer 
binding point 2 at an offset of 4 basic machine units into that buffer.  The default offset for binding point 2
will be post incremented by 4 (the size of an atomic counter).

A subsequent atomic counter declaration will inherit the previous (post incremented) offset.  For example,
a subsequent declaration of
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layout(binding = 2) uniform atomic_uint bar;

will establish that the atomic counter bar has a binding to buffer binding point 2 at an offset of 8 basic 
machine units into that buffer.  The offset for binding point 2 will again be post-incremented by 4 (the size
of an atomic counter).

When multiple variables are listed in a layout declaration, the effect will be the same as if they were 
declared one at a time, in order from left to right.

Binding points are not inherited, only offsets.  Each binding point tracks its own current default offset for 
inheritance of subsequent variables using the same binding.  The initial state of compilation is that all 
binding points have an offset of 0.  The offset can be set per binding point at global scope (without 
declaring a variable).  For example,

layout(binding = 2, offset = 4) uniform atomic_uint;

Establishes that the next atomic_uint declaration for binding point 2 will inherit offset 4 (but does not 
establish a default binding):

layout(binding = 2) uniform atomic_uint bar; // offset is 4
layout(offset = 8) uniform atomic_uint bar;  // error, no default binding

Atomic counters may share the same binding point, but if a binding is shared, their offsets must be either 
explicitly or implicitly (from inheritance) unique and non overlapping.

Example valid uniform declarations, assuming top of shader:

layout(binding=3, offset=4) uniform atomic_uint a; // offset = 4
layout(binding=2) uniform atomic_uint b;           // offset = 0
layout(binding=3) uniform atomic_uint c;           // offset = 8
layout(binding=2) uniform atomic_uint d;           // offset = 4

Example of an invalid uniform declaration:

layout(offset=4) …               // error, must include binding
layout(binding=1, offset=0) … a; // okay
layout(binding=2, offset=0) … b; // okay
layout(binding=1, offset=0) … c; // error, offsets must not be shared
                                  //        between a and c
layout(binding=1, offset=2) … d; // error, overlaps offset 0 of a

It is a compile-time error to bind an atomic counter with a binding value greater than or equal to 
gl_MaxAtomicCounterBindings.

4.4.6.2 Format Layout Qualifiers

Format layout qualifiers can be used on image variable declarations (those declared with a basic type 
having “image” in its keyword).  The format layout qualifier identifiers for image variable declarations 
are

layout-qualifier-id :
float-image-format-qualifier
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int-image-format-qualifier
uint-image-format-qualifier
binding = integer-constant-expression

float-image-format-qualifier
rgba32f
rgba16f
rg32f
rg16f
r11f_g11f_b10f
r32f
r16f
rgba16
rgb10_a2
rgba8
rg16
rg8
r16
r8
rgba16_snorm
rgba8_snorm
rg16_snorm
rg8_snorm
r16_snorm
r8_snorm

int-image-format-qualifier
rgba32i
rgba16i
rgba8i
rg32i
rg16i
rg8i
r32i
r16i
r8i

uint-image-format-qualifier
rgba32ui
rgba16ui
rgb10_a2ui
rgba8ui
rg32ui
rg16ui
rg8ui
r32ui
r16ui
r8ui
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A format layout qualifier specifies the image format associated with a declared image variable.  Only one 
format qualifier may be specified for any image variable declaration.  For image variables with floating-
point component types (keywords starting with “image”), signed integer component types (keywords 
starting with “iimage”), or unsigned integer component types (keywords starting with “uimage”), the 
format qualifier used must match the float-image-format-qualifier, int-image-format-qualifier, or uint-
image-format-qualifier grammar rules, respectively.  It is a compile-time error to declare an image 
variable where the format qualifier does not match the image variable type.

Any image variable used for image loads or atomic operations must specify a format layout qualifier; it is 
a compile-time error to pass an image uniform variable or function parameter declared without a format 
layout qualifier to an image load or atomic function.

The binding identifier was described in section 4.4.5 “Uniform and Shader Storage Block Layout 
Qualifiers”.

Uniforms not qualified with writeonly must have a format layout qualifier.  Note that an image variable 
passed to a function for read access cannot be declared as writeonly and hence must have been declared 
with a format layout qualifier.

4.5 Interpolation Qualifiers
Inputs and outputs that could be interpolated can be further qualified by at most one of the following 
interpolation qualifiers:

Qualifier Meaning

smooth perspective correct interpolation

flat no interpolation

noperspective linear interpolation

The presence of and type of interpolation is controlled by the above interpolation qualifiers as well as the 
auxiliary storage qualifiers centroid and sample.  The auxiliary storage qualifier patch is not used for 
interpolation; it is a compile-time error to use interpolation qualifiers with patch.

A variable qualified as flat will not be interpolated.  Instead, it will have the same value for every 
fragment within a triangle.  This value will come from a single provoking vertex, as described by the 
OpenGL Graphics System Specification.  A variable may be qualified as flat can also be qualified as 
centroid or sample, which will mean the same thing as qualifying it only as flat.

A variable qualified as smooth will be interpolated in a perspective-correct manner over the primitive 
being rendered.  Interpolation in a perspective correct manner is specified in equation 14.7 in the OpenGL
Graphics System Specification, section 14.5 “Line Segments”.

A variable qualified as noperspective must be interpolated linearly in screen space, as described in  
equation 3.7 in the OpenGL Graphics System Specification, section 3.5 “Line Segments”.

When multi-sample rasterization is disabled, or for fragment shader input variables qualified with neither 
centroid nor sample, the value of the assigned variable may be interpolated anywhere within the pixel 
and a single value may be assigned to each sample within the pixel, to the extent permitted by the  
OpenGL Graphics System Specification.
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When multisample rasterization is enabled, centroid and sample may be used to control the location and 
frequency of the sampling of the qualified fragment shader input.  If a fragment shader input is qualified 
with centroid, a single value may be assigned to that variable for all samples in the pixel, but that value 
must be interpolated to a location that lies in both the pixel and in the primitive being rendered, including 
any of the pixel's samples covered by the primitive.  Because the location at which the variable is 
interpolated may be different in neighboring pixels, and derivatives may be computed by computing 
differences between neighboring pixels, derivatives of centroid-sampled inputs may be less accurate than 
those for non-centroid interpolated variables.  If a fragment shader input is qualified with sample, a 
separate value must be assigned to that variable for each covered sample in the pixel, and that value must 
be sampled at the location of the individual sample.

It is a link-time error if, within the same stage, the interpolation qualifiers of variables of the same name 
do not match.

4.5.1 Redeclaring Built-in Interpolation Variables in the Compatibility Profile

The following predeclared variables can be redeclared with an interpolation qualifier when using the 
compatibility profile:

Vertex, tessellation control, tessellation evaluation, and geometry languages:

gl_FrontColor
gl_BackColor
gl_FrontSecondaryColor
gl_BackSecondaryColor

Fragment language:

gl_Color
gl_SecondaryColor

For example,

in vec4 gl_Color;             // predeclared by the fragment language
flat  in vec4 gl_Color;       // redeclared by user to be flat
flat  in vec4 gl_FrontColor;  // input to geometry shader, no “gl_in[]”
flat out vec4 gl_FrontColor;  // output from geometry shader

Ideally, these are redeclared as part of the redeclaration of an interface block, as described in section 7.1.1
“Compatibility Profile Built-In Language Variables”.  However, for the above purpose, they can be 
redeclared as individual variables at global scope, outside an interface block.  Such redeclarations also 
allow adding the transform-feedback qualifiers xfb_buffer, xfb_stride, and xfb_offset to output 
variables.  (Using xfb_buffer on a variable does not change the global default buffer.) A compile-time 
error will result if a shader has both an interface-block redeclaration and a separate redeclaration of a 
member of that interface block outside the interface-block redeclaration.  

If gl_Color is redeclared with an interpolation qualifier, then gl_FrontColor and gl_BackColor (if they are
written to) must also be redeclared with the same interpolation qualifier, and vice versa.  If 
gl_SecondaryColor is redeclared with an interpolation qualifier, then gl_FrontSecondaryColor and 
gl_BackSecondaryColor (if they are written to) must also be redeclared with the same interpolation 
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qualifier, and vice versa.  This qualifier matching on predeclared variables is only required for variables 
that are statically used within the shaders in a program.

4.6 Parameter Qualifiers
In addition to precision qualifiers and memory qualifiers, parameters can have these parameter qualifiers.

Qualifier Meaning

< none: default > same is in

const for function parameters that cannot be written to

in for function parameters passed into a function

out for function parameters passed back out of a function, but not initialized 
for use when passed in

inout for function parameters passed both into and out of a function

Parameter qualifiers are discussed in more detail in section 6.1.1 “Function Calling Conventions”.

4.7 Precision and Precision Qualifiers
Precision qualifiers are added for code portability with OpenGL ES, not for functionality.  They have the 
same syntax as in OpenGL ES, as described below, but they have no semantic meaning, which includes no
effect on the precision used to store or operate on variables.

If an extension adds in the same semantics and functionality in the OpenGL ES 2.0 specification for 
precision qualifiers, then the extension is allowed to reuse the keywords below for that purpose.

For the purposes of determining if an output from one shader stage matches an input of the next stage, the 
precision qualifier need not match.

4.7.1 Range and Precision

The precision of stored single- and double-precision floating-point variables is defined by the IEEE 754 
standard for 32-bit and 64-bit floating-point numbers.  This includes support for NaNs (Not a Number) 
and Infs (positive or negative infinities) and positive and negative zeros.

The following rules apply to both single and double-precision operations:  Positive and negative Infs and 
positive and negative zeros are generated as dictated by IEEE, but subject to the precisions allowed in the 
following table.  Dividing a non-zero by a zero results in the appropriately signed IEEE Inf.  Any 
denormalized value input into a shader or potentially generated by any operation in a shader can be 
flushed to 0.  The rounding mode cannot be set and is undefined.  NaNs are not required to be generated.  
Support for signaling NaNs is not required and exceptions are never raised.  Operations and built-in 
functions that operate on a NaN are not required to return a NaN as the result.

Precisions are expressed in terms of maximum relative error in units of ULP (units in the last place), 
unless otherwise noted.
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For single precision operations, precisions are required as follows:

Operation Precision

a + b,   a – b,   a * b Correctly rounded.

<,  <=,  ==,  >,  >= Correct result.

a / b,    1.0 / b 2.5 ULP for b in the range [2-126, 2126].

a * b + c Correctly rounded single operation or sequence of
two correctly rounded operations.

fma() Inherited from a * b + c.

pow(x, y) Inherited from exp2 (y *  log2 (x)).

exp (x), exp2 (x) (3 + 2 * |x|)  ULP.

log (), log2 () 3 ULP outside the range [0.5, 2.0].

Absolute error < 2-21 inside the range [0.5, 2.0].

sqrt () Inherited from 1.0 / inversesqrt().

inversesqrt () 2 ULP.

implicit and explicit
conversions between types

Correctly rounded.

Built-in functions defined in the specification with an equation built from the above operations inherit the 
above errors.  These include, for example, the geometric functions, the common functions, and many of 
the matrix functions.  Built-in functions not listed above and not defined as equations of the above have 
undefined precision.  These include, for example, the trigonometric functions and determinant.

The precision of double-precision operations is at least that of single precision.

4.7.2 Precision Qualifiers

Any single-precision floating-point declaration, integer declaration, or opaque-type declaration can have 
the type preceded by one of these precision qualifiers:

Qualifier Meaning

highp None.

mediump None.

lowp None.
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For example:

lowp float color;
out mediump vec2 P;
lowp ivec2 foo(lowp mat3);
highp mat4 m;

Literal constants do not have precision qualifiers. Neither do Boolean variables. Neither do floating-point 
constructors nor integer constructors when none of the constructor arguments have precision qualifiers.

Precision qualifiers, as with other qualifiers, do not affect the basic type of the variable. In particular, 
there are no constructors for precision conversions; constructors only convert types. Similarly, precision 
qualifiers, as with other qualifiers, do not contribute to function overloading based on parameter types. As 
discussed in the next chapter, function input and output is done through copies, and therefore qualifiers do
not have to match.

4.7.3 Default Precision Qualifiers

The precision statement

precision precision-qualifier type;

can be used to establish a default precision qualifier. The type field can be either int, or float, or any of 
the opaque types, and the precision-qualifier can be lowp, mediump, or highp. Any other types or 
qualifiers will result in a compile-time error. If type is float, the directive applies to non-precision-
qualified single-precision floating-point type (scalar, vector, and matrix) declarations. If type is int, the 
directive applies to all non-precision-qualified integer type (scalar, vector, signed, and unsigned) 
declarations. This includes global variable declarations, function return declarations, function parameter 
declarations, and local variable declarations.

Non-precision qualified declarations will use the precision qualifier specified in the most recent precision
statement that is still in scope. The precision statement has the same scoping rules as variable 
declarations. If it is declared inside a compound statement, its effect stops at the end of the innermost 
statement it was declared in. Precision statements in nested scopes override precision statements in outer 
scopes. Multiple precision statements for the same basic type can appear inside the same scope, with later 
statements overriding earlier statements within that scope.

The vertex, tessellation, and geometry languages have the following predeclared globally scoped default 
precision statements:

precision highp float;
precision highp int;

The fragment language has the following predeclared globally scoped default precision statements:

precision mediump int;
precision highp float;

There are no errors for omission of a precision qualifier; so the above is just for reference of what may 
happen in OpenGL ES versions of the shading languages.

87



4 Variables and Types

4.7.4 Available Precision Qualifiers

The built-in macro GL_FRAGMENT_PRECISION_HIGH is defined to 1:

#define GL_FRAGMENT_PRECISION_HIGH 1

This macro is available in the vertex, tessellation, geometry, and fragment languages.

4.8 Variance and the Invariant Qualifier
In this section, variance refers to the possibility of getting different values from the same expression in 
different programs.  For example, say two vertex shaders, in different programs, each set gl_Position with 
the same expression in both shaders, and the input values into that expression are the same when both 
shaders run.  It is possible, due to independent compilation of the two shaders, that the values assigned to 
gl_Position are not exactly the same when the two shaders run.  In this example, this can cause problems 
with alignment of geometry in a multi-pass algorithm.

In general, such variance between shaders is allowed.  When such variance does not exist for a particular 
output variable, that variable is said to be invariant.

4.8.1 The Invariant Qualifier

To ensure that a particular output variable is invariant, it is necessary to use the invariant qualifier.  It can
either be used to qualify a previously declared variable as being invariant

invariant gl_Position;   // make existing gl_Position be invariant

out vec3 Color;
invariant Color;         // make existing Color be invariant

or as part of a declaration when a variable is declared

invariant centroid out vec3 Color;

Only variables output from a shader (including those that are then input to a subsequent shader) can be 
candidates for invariance.  This includes user-defined output variables and the built-in output variables.   
As only outputs need be declared with invariant, an output from one shader stage will still match an input
of a subsequent stage without the input being declared as invariant.

Input or output instance names on blocks are not used when redeclaring built-in variables.

The invariant keyword can be followed by a comma separated list of  previously declared identifiers.  All
uses of invariant must be at the global scope, and before any use of the variables being declared as 
invariant.

To guarantee invariance of a particular output variable across two programs, the following must also be 
true:

• The output variable is declared as invariant in both programs.

• The same values must be input to all shader input variables consumed by expressions and flow control 
contributing to the value assigned to the output variable.
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• The texture formats, texel values, and texture filtering are set the same way for any texture function 
calls contributing to the value of the output variable.

• All input values are all operated on in the same way.  All operations in the consuming expressions and 
any intermediate expressions must be the same, with the same order of operands and same 
associativity, to give the same order of evaluation.  Intermediate variables and functions must be 
declared as the same type with the same explicit or implicit precision qualifiers.  Any control flow 
affecting the output value must be the same, and any expressions consumed to determine this control 
flow must also follow these invariance rules.

• All the data flow and control flow leading to setting the invariant output variable reside in a single 
compilation unit.

Essentially, all the data flow and control flow leading to an invariant output must match.

Initially, by default, all output variables are allowed to be variant.  To force all output variables to be 
invariant, use the pragma

#pragma STDGL invariant(all)

before all declarations in a shader.  If this pragma is used after the declaration of any variables or 
functions, then the set of outputs that behave as invariant is undefined.  It is a compile-time error to use 
this pragma in a fragment shader.

Generally, invariance is ensured at the cost of flexibility in optimization, so performance can be degraded 
by use of invariance.  Hence, use of this pragma is intended as a debug aid, to avoid individually declaring
all output variables as invariant.

4.8.2 Invariance of Constant Expressions

Invariance must be guaranteed for constant expressions. A particular constant expression must evaluate to 
the same result if it appears again in the same shader or a different shader. This includes the same 
expression appearing two shaders of the same language or shaders of two different languages.

Constant expressions must evaluate to the same result when operated on as already described above for 
invariant variables, whether or not the invariant qualifier is used.

4.9 The Precise Qualifier
Some algorithms require floating-point computations to exactly follow the order of operations specified in
the source code and to treat all operations consistently, even if the implementation supports optimizations 
that could produce nearly equivalent results with higher performance.  For example, many GL 
implementations support a "multiply-add" instruction that can compute a floating-point expression such as

result = (a * b) + (c * d);

in two operations instead of three operations; one multiply and one multiply-add instead of two multiplies 
and one add.  The result of a floating-point multiply-add might not always be identical to first doing a 
multiply yielding a floating-point result and then doing a floating-point add.  Hence, in this example, the 
two multiply operations would not be treated consistently; the two multiplies could effectively appear to 
have differing precisions.  
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The key computation that needs to be made consistent appears when tessellating, where intermediate 
points for subdivision are synthesized in different directions, yet need to yield the same result, as shown in
the diagram below.

Without any qualifiers, implementations are permitted to perform such optimizations that effectively 
modify the order or number of operations used to evaluate an expression, even if those optimizations may 
produce slightly different results relative to unoptimized code.  

The qualifier precise will ensure that operations contributing to a variable's value are done in their stated 
order and are done with operator consistency.  Order is determined by operator precedence and 
parenthesis, as described in section 5.1 “Operators”.  Operator consistency means for each particular 
operator, for example the multiply operator ( * ), its operation is always computed with the same 
precision.  Specifically, values computed by compiler-generated code must adhere to the following 
identities:

1. a + b = b + a

2. a * b = b * a

3. a * b + c * d = b * a + c* d = d * c + b * a = <any other mathematically valid combination>

While the following are prevented:

4. a + (b + c) is not allowed to become (a + b) + c

5. a * (b * c) is not allowed to become (a * b) * c

6. a * b + c is not allowed to become a single operation fma(a, b, c)

Where a, b, c, and d, are scalars or vectors, not matrices.  (Matrix multiplication generally does not 
commute.)  It is the shader writer's responsibility to express the computation in terms of these rules and 
the compiler's responsibility to follow these rules.  See the description of gl_TessCoord for the rules the 
tessellation stages are responsible for following, which in conjunction with the above allow avoiding 
cracking when subdividing.
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For example,

precise out vec4 position;

declares that operations used to produce the value of position must be performed in exactly the order 
specified in the source code and with all operators being treated consistently.  As with the invariant 
qualifier (section 4.8.1 “The Invariant Qualifier”), the precise qualifier may be used to qualify a built-in or
previously declared user-defined variable as being precise:

out vec3 Color;
precise Color;            // make existing Color be precise

This qualifier will affect the evaluation of an r-value in a particular function if and only if the result is 
eventually consumed in the same function by an l-value qualified as precise.  Any other expressions 
within a function are not affected, including return values and output parameters not declared as precise 
but that are eventually consumed outside the function by a variable qualified as precise.
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Some examples of the use of precise:

in vec4 a, b, c, d;
precise out vec4 v;

float func(float e, float f, float g, float h)
{
    return (e*f) + (g*h);            // no constraint on order or 
                                     // operator consistency
}

float func2(float e, float f, float g, float h)
{
    precise float result = (e*f) + (g*h);  // ensures same precision for
                                           // the two multiplies
    return result;
}

float func3(float i, float j, precise out float k)
{
    k = i * i + j;                   // precise, due to <k> declaration
}

void main()
{
    vec3 r = vec3(a * b);           // precise, used to compute v.xyz
    vec3 s = vec3(c * d);           // precise, used to compute v.xyz
    v.xyz = r + s;                          // precise                      
    v.w = (a.w * b.w) + (c.w * d.w);        // precise
    v.x = func(a.x, b.x, c.x, d.x);         // values computed in func()
                                            // are NOT precise
    v.x = func2(a.x, b.x, c.x, d.x);        // precise!
    func3(a.x * b.x, c.x * d.x, v.x);       // precise!
}

For the purposes of determining if an output from one shader stage matches an input of the next stage, the 
precise qualifier need not match between the input and the output.

All constant expressions are evaluated as if precise was present, whether or not it is present.  However, as 
described in section 4.3.3 “Constant Expressions”, there is no requirement that a compile-time constant 
expression evaluates to the same value as a corresponding non-constant expression.

4.10 Memory Qualifiers
Variables declared as image types (the basic opaque types with “image” in their keyword) can be further 
qualified with one or more of the following memory qualifiers:
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Qualifier Meaning

coherent memory variable where reads and writes are coherent with reads and 
writes from other shader invocations

volatile memory variable whose underlying value may be changed at any point
during shader execution by some source other than the current shader 
invocation

restrict memory variable where use of that variable is the only way to read 
and write the underlying memory in the relevant shader stage

readonly memory variable that can be used to read the underlying memory, but 
cannot be used to write the underlying memory

writeonly memory variable that can be used to write the underlying memory, but 
cannot be used to read the underlying memory

Memory accesses to image variables declared using the coherent qualifier are performed coherently with 
similar accesses from other shader invocations.  In particular, when reading a variable declared as 
coherent, the values returned will reflect the results of previously completed writes performed by other 
shader invocations.  When writing a variable declared as coherent, the values written will be reflected in 
subsequent coherent reads performed by other shader invocations.  As described in section 7.11 “Shader 
Memory Access” of the OpenGL Specification, shader memory reads and writes complete in a largely 
undefined order.  The built-in function memoryBarrier() can be used if needed to guarantee the 
completion and relative ordering of memory accesses performed by a single shader invocation.

When accessing memory using variables not declared as coherent, the memory accessed by a shader may 
be cached by the implementation to service future accesses to the same address.  Memory stores may be 
cached in such a way that the values written might not be visible to other shader invocations accessing the 
same memory.  The implementation may cache the values fetched by memory reads and return the same 
values to any shader invocation accessing the same memory, even if the underlying memory has been 
modified since the first memory read.  While variables not declared as coherent might not be useful for 
communicating between shader invocations, using non-coherent accesses may result in higher 
performance.

Memory accesses to image variables declared using the volatile qualifier must treat the underlying 
memory as though it could be read or written at any point during shader execution by some source other 
than the executing shader invocation.  When a volatile variable is read, its value must be re-fetched from 
the underlying memory, even if the shader invocation performing the read had previously fetched its value
from the same memory.  When a volatile variable is written, its value must be written to the underlying 
memory, even if the compiler can conclusively determine that its value will be overwritten by a 
subsequent write.  Since the external source reading or writing a volatile variable may be another shader 
invocation, variables declared as volatile are automatically treated as coherent.

Memory accesses to image variables declared using the restrict qualifier may be compiled assuming that 
the variable used to perform the memory access is the only way to access the underlying memory using 
the shader stage in question.  This allows the compiler to coalesce or reorder loads and stores using 
restrict-qualified image variables in ways that wouldn't be permitted for image variables not so qualified, 
because the compiler can assume that the underlying image won't be read or written by other code.  
Applications are responsible for ensuring that image memory referenced by variables qualified with 
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restrict will not be referenced using other variables in the same scope; otherwise, accesses to restrict-
qualified variables will have returned undefined values.

Memory accesses to image variables declared using the readonly qualifier may only read the underlying 
memory, which is treated as read-only memory and cannot be written to.  It is a compile-time error to pass
an image variable qualified with readonly to imageStore() or other built-in functions that modify image 
memory.

Memory accesses to image variables declared using the writeonly qualifier may only write the underlying
memory; the underlying memory cannot be read.  It is a compile-time error to pass an image variable 
qualified with writeonly to imageLoad() or other built-in functions that read image memory.  A variable 
could be qualified as both readonly and writeonly, disallowing both read and write, but still be passed to 
imageSize() to have the size queried.

The memory qualifiers coherent, volatile, restrict, readonly, and writeonly may be used in the 
declaration of buffer variables (i.e., members of shader storage blocks).  When a buffer variable is 
declared with a memory qualifier, the behavior specified for memory accesses involving image variables 
described above applies identically to memory accesses involving that buffer variable.  It is a compile-
time error to assign to a buffer variable qualified with readonly or to read from a buffer variable qualified
with writeonly.

Additionally, memory qualifiers may also be used in the declaration of shader storage blocks.  When a 
block declaration is qualified with a memory qualifier, it is as if all of its members were declared with the 
same memory qualifier.  For example, the block declaration

coherent buffer Block {
    readonly vec4 member1;
    vec4 member2;
};

is equivalent to

buffer Block {
    coherent readonly vec4 member1;
    coherent vec4 member2;
};

Memory qualifiers are only supported in the declarations of image variables, buffer variables, and shader 
storage blocks; it is an error to use such qualifiers in any other declarations.

Variables qualified with coherent, volatile, readonly, or writeonly may not be passed to functions whose
formal parameters lack such qualifiers.  (See section 6.1 “Function Definitions” for more detail on 
function calling.)  It is legal to have any additional memory qualifiers on a formal parameter, but only 
restrict can be taken away from a calling argument, by a formal parameter that lacks the restrict qualifier.
When a built-in function is called, the code generated is to be based on the actual qualification of the 
calling argument, not on the list of memory qualifiers specified on the formal parameter in the prototype.
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vec4 funcA(restrict image2D a)   { ... }
vec4 funcB(image2D a)            { ... }
layout(rgba32f) uniform image2D img1;
layout(rgba32f) coherent uniform image2D img2;

funcA(img1);              // OK, adding "restrict" is allowed
funcB(img2);              // illegal, stripping "coherent" is not

Layout qualifiers cannot be used on formal function parameters, but they are not included in parameter 
matching.

Note that the use of const in an image variable declaration is qualifying the const-ness of the variable 
being declared, not the image it refers to:  The qualifier readonly qualifies the image memory (as 
accessed through that variable) while const qualifies the variable itself.

4.11 Order and Repetition of Qualification
When multiple qualifiers are present in a variable or parameter declaration, they may appear in any order, 
but they must all appear before the type.  The layout qualifier is the only qualifier that can appear more 
than once.  Further, a declaration can have at most one storage qualifier, at most one auxiliary storage 
qualifier, and at most one interpolation qualifier.  If inout is used, neither in nor out may be used. 
Multiple memory qualifiers can be used.  Any violation of these rules will cause a compile-time error.

4.12 Empty Declarations
Empty declarations are declarations without a variable name, meaning no object is instantiated by the 
declaration.  Generally, empty declarations are allowed.  Some are useful when declaring structures, while
many others have no effect.

The combinations of types and qualifiers that cause compile-time or link-time errors are the same whether 
or not the declaration is empty.
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5.1 Operators
The OpenGL Shading Language has the following operators.

Precedence Operator Class Operators Associativity

  1 (highest) parenthetical grouping ( )       NA

2

array subscript
function call and constructor structure 
field or method selector, swizzle
post fix increment and decrement

[ ]
( )
.
++  --

Left to Right

3
prefix increment and decrement
unary

++  --
+  -  ~  !

Right to Left

4 multiplicative *   /    % Left to Right

5 additive +  - Left to Right

6 bit-wise shift <<    >> Left to Right

7 relational <    >    <=   >= Left to Right

8 equality ==   != Left to Right

9 bit-wise and & Left to Right

10 bit-wise exclusive or ^ Left to Right

11 bit-wise inclusive or | Left to Right

12 logical and && Left to Right

13 logical exclusive or ^^ Left to Right

14 logical inclusive or | | Left to Right

15 selection ? : Right to Left

16

Assignment
arithmetic assignments

=
+=  -=
*=  /=
%=    <<=   >>=
&=  ^=  |=

Right to Left

17 (lowest) sequence , Left to Right

There is no address-of operator nor a dereference operator.  There is no typecast operator; constructors are
used instead.
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5.2 Array  Operations
These are now described in section 5.7 “Structure and Array Operations”.

5.3 Function Calls
If a function returns a value, then a call to that function may be used as an expression, whose type will be 
the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in section 6.1 “Function Definitions” .

5.4 Constructors
Constructors use the function call syntax, where the function name is a type, and the call makes an object 
of that type.  Constructors are used the same way in both initializers and expressions.  (See section 9 
“Shading Language Grammar”  for details.)  The parameters are used to initialize the constructed value.  
Constructors can be used to request a data type conversion to change from one scalar type to another 
scalar type, or to build larger types out of smaller types, or to reduce a larger type to a smaller type.

In general, constructors are not built-in functions with predetermined prototypes.  For arrays and 
structures, there must be exactly one argument in the constructor for each element or member.  For the 
other types, the arguments must provide a sufficient number of components to perform the initialization, 
and it is a compile-time error to include so many arguments that they cannot all be used.  Detailed rules 
follow.  The prototypes actually listed below are merely a subset of examples.

5.4.1 Conversion and Scalar Constructors

Converting between scalar types is done as the following prototypes indicate:

int(uint)    // converts an unsigned integer to a signed integer
int(bool) // converts a Boolean value to an int
int(float) // converts a float value to an int
int(double)  // converts a double value to a signed integer
uint(int)    // converts a signed integer value to an unsigned integer
uint(bool)   // converts a Boolean value to an unsigned integer
uint(float)  // converts a float value to an unsigned integer
uint(double) // converts a double value to an unsigned integer
bool(int) // converts a signed integer value to a Boolean
bool(uint)   // converts an unsigned integer value to a Boolean value
bool(float) // converts a float value to a Boolean
bool(double) // converts a double value to a Boolean
float(int) // converts a signed integer value to a float
float(uint)  // converts an unsigned integer value to a float value
float(bool) // converts a Boolean value to a float
float(double)// converts a double value to a float
double(int)  // converts a signed integer value to a double
double(uint) // converts an unsigned integer value to a double
double(bool) // converts a Boolean value to a double
double(float)// converts a float value to a double
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When constructors are used to convert any floating-point type to an integer type, the fractional part of the 
floating-point value is dropped.  It is undefined to convert a negative floating-point value to an uint.

When a constructor is used to convert any integer or floating-point type to a bool, 0 and 0.0 are converted 
to false, and non-zero values are converted to true.  When a constructor is used to convert a bool to any 
integer or floating-point type, false is converted to 0 or 0.0, and true is converted to 1 or 1.0. 

The constructor int(uint) preserves the bit pattern in the argument, which will change the argument's 
value if its sign bit is set.  The constructor uint(int) preserves the bit pattern in the argument, which will 
change its value if it is negative.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-scalar.  
For example, the constructor float(vec3) will select the first component of the vec3 parameter.

5.4.2 Vector and Matrix Constructors

Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices.  This 
includes the ability to shorten vectors.

If there is a single scalar parameter to a vector constructor, it is used to initialize all components of the 
constructed vector to that scalar’s value. If there is a single scalar parameter to a matrix constructor, it is 
used to initialize all the components on the matrix’s diagonal, with the remaining components initialized 
to 0.0.  

If a vector is constructed from multiple scalars, one or more vectors, or one or more matrices, or a mixture
of these, the vector's components will be constructed in order from the components of the arguments.  The
arguments will be consumed left to right, and each argument will have all its components consumed, in 
order, before any components from the next argument are consumed.  Similarly for constructing a matrix 
from multiple scalars or vectors, or a mixture of these.  Matrix components will be constructed and 
consumed in column major order.  In these cases, there must be enough components provided in the 
arguments to provide an initializer for every component in the constructed value.  It is a compile-time 
error to provide extra arguments beyond this last used argument.  

If a matrix is constructed from a matrix, then each component (column i, row j) in the result that has a 
corresponding component (column i, row j) in the argument will be initialized from there.  All other 
components will be initialized to the identity matrix.  If a matrix argument is given to a matrix constructor,
it is a compile-time error to have any other arguments.

If the basic type (bool, int, float, or double) of a parameter to a constructor does not match the basic type 
of the object being constructed, the scalar construction rules (above) are used to convert the parameters.
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Some useful vector constructors are as follows:

vec3(float) // initializes each component of the vec3 with the float
vec4(ivec4) // makes a vec4 with component-wise conversion
vec4(mat2)   // the vec4 is column 0 followed by column 1

vec2(float, float) // initializes a vec2 with 2 floats
ivec3(int, int, int) // initializes an ivec3 with 3 ints
bvec4(int, int, float, float) // uses 4 Boolean conversions

vec2(vec3) // drops the third component of a vec3
vec3(vec4) // drops the fourth component of a vec4

vec3(vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3(float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4(vec3, float)
vec4(float, vec3)
vec4(vec2, vec2)

Some examples of these are:

vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgba  = vec4(1.0); // sets each component to 1.0
vec3 rgb   = vec3(color); // drop the 4th component

To initialize the diagonal of a matrix with all other elements set to zero:

mat2(float)
mat3(float)
mat4(float)

That is,  result[i][j] is set to the float argument for all i = j and set to 0 for all i≠ j.
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To initialize a matrix by specifying vectors or scalars, the components are assigned to the matrix elements 
in column-major order.

mat2(vec2, vec2);             // one column per argument
mat3(vec3, vec3, vec3);       // one column per argument
mat4(vec4, vec4, vec4, vec4); // one column per argument
mat3x2(vec2, vec2, vec2);     // one column per argument

dmat2(dvec2, dvec2);
dmat3(dvec3, dvec3, dvec3);
dmat4(dvec4, dvec4, dvec4, dvec4);

mat2(float, float,      // first column
     float, float);     // second column

mat3(float, float, float,     // first column
     float, float, float,     // second column
     float, float, float);    // third column

mat4(float, float, float, float,  // first column
     float, float, float, float,  // second column
     float, float, float, float,  // third column
     float, float, float, float); // fourth column

mat2x3(vec2, float,      // first column
       vec2, float);     // second column

dmat2x4(dvec3, double,   // first column
        double, dvec3);  // second column

A wide range of other possibilities exist, to construct a matrix from vectors and scalars, as long as enough 
components are present to initialize the matrix.  To construct a matrix from a matrix:

mat3x3(mat4x4);  // takes the upper-left 3x3 of the mat4x4
mat2x3(mat4x2);  // takes the upper-left 2x2 of the mat4x4, last row is 0,0
mat4x4(mat3x3);  // puts the mat3x3 in the upper-left, sets the lower right
                 //    component to 1, and the rest to 0  

5.4.3 Structure Constructors

Once a structure is defined, and its type is given a name, a constructor is available with the same name to 
construct instances of that structure.  For example:

struct light {
    float intensity;
    vec3 position;
};

light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));
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The arguments to the constructor will be used to set the structure's members, in order, using one argument 
per member.  Each argument must be the same type as the member it sets, or be a type that can be 
converted to the member's type according to section 4.1.10 “Implicit Conversions.”

Structure constructors can be used as initializers or in expressions.

5.4.4 Array Constructors

Array types can also be used as constructor names, which can then be used in expressions or initializers.  
For example,

const float c[3] = float[3](5.0, 7.2, 1.1);
const float d[3] = float[](5.0, 7.2, 1.1);

float g;
...
float a[5] = float[5](g, 1, g, 2.3, g);
float b[3];

b = float[3](g, g + 1.0, g + 2.0);

There must be exactly the same number of arguments as the size of the array being constructed.  If no size 
is present in the constructor, then the array is explicitly sized to the number of arguments provided.  The 
arguments are assigned in order, starting at element 0, to the elements of the constructed array.  Each 
argument must be the same type as the element type of the array, or be a type that can be converted to the 
element type of the array according to section 4.1.10 “Implicit Conversions.”

Arrays of arrays are similarly constructed, and the size for any dimension is optional:

vec4 b[2] = ...;
vec4[3][2](b, b, b);        // constructor
vec4[][2](b, b, b);         // constructor, valid, size deduced
vec4[3][](b, b, b);         // constructor, valid, size deduced
vec4[][](b, b, b);          // constructor, valid, both sizes deduced

5.5 Vector and Scalar Components and Length

The names of the components of a vector or scalar are denoted by a single letter.  As a notational 
convenience, several letters are associated with each component based on common usage of position, 
color or texture coordinate vectors.  The individual components can be selected by following the variable 
name with period ( . ) and then the component name.

The component names supported are:

{x, y, z, w} Useful when accessing vectors that represent points or normals

{r, g, b, a} Useful when accessing vectors that represent colors

{s, t, p, q} Useful when accessing vectors that represent texture coordinates
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The component names x, r, and s are, for example, synonyms for the same (first) component in a vector.  
They are also the names of the only component in a scalar.

Note that the third component of the texture coordinate set, r in OpenGL, has been renamed p so as to 
avoid the confusion with r (for red) in a color.

Accessing components beyond those declared for the type is a compile-time error so, for example:

vec2 pos;
float height;
pos.x      // is legal
pos.z      // is illegal
height.x   // is legal
height.y   // is illegal

The component selection syntax allows multiple components to be selected by appending their names 
(from the same name set) after the period ( . ).

vec4 v4;
v4.rgba;  // is a vec4 and the same as just using v4,
v4.rgb;   // is a vec3,
v4.b;     // is a float,
v4.xy;    // is a vec2,
v4.xgba;  // is illegal - the component names do not come from 
          //              the same set.

The order of the components can be different to swizzle them, or replicated:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz= pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)
float f = 1.2;
vec4 dup = f.xxxx;   // dup = (1.2, 1.2, 1.2, 1.2)

This notation is more concise than the constructor syntax.  To form an r-value, it can be applied to any 
expression that results in a vector or scalar r-value.  Any resulting vector of any operation must be a valid 
vector in the language; hence the following results in a compile-time error:

vec4 f;
vec4 g = pos.xyzwxy.xyzw;  // illegal; pos.xyzwxy is non-existent “vec6” 

The component group notation can occur on the left hand side of an expression.

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0); // illegal - mismatch between vec2 and 
vec3

To form an l-value, swizzling must be applied to an l-value of vector or scalar type, contain no duplicate 
components, and it results in an l-value of scalar or vector type, depending on number of components 
specified.

102



5 Operators and Expressions

Array subscripting syntax can also be applied to vectors (but not to scalars) to provide numeric indexing.  
So in

vec4  pos;

pos[2] refers to the third element of pos and is equivalent to pos.z.  This allows variable indexing into a 
vector, as well as a generic way of accessing components.  Any integer expression can be used as the 
subscript.  The first component is at index zero.  Reading from or writing to a vector using a constant 
integral expression with a value that is negative or greater than or equal to the size of the vector results in 
a compile-time error. When indexing with non-constant expressions, behavior is undefined if the index is 
negative, or greater than or equal to the size of the vector.

The length method may be applied to vectors (but not scalars).  The result is the number of components in
the vector.  For example,

vec3 v;
const int L = v.length();

sets the constant L to 3.  The type returned by .length() on a vector is int, and the value returned is a 
constant expression.

5.6 Matrix Components
The components of a matrix can be accessed using array subscripting syntax.  Applying a single subscript 
to a matrix treats the matrix as an array of column vectors, and selects a single column, whose type is a 
vector of the same size as the matrix.  The leftmost column is column 0.  A second subscript would then 
operate on the resulting vector, as defined earlier for vectors.  Hence, two subscripts select a column and 
then a row.

mat4 m;
m[1] = vec4(2.0);        // sets the second column to all 2.0
m[0][0] = 1.0;           // sets the upper left element to 1.0
m[2][3] = 2.0;           // sets the 4th element of the third column to 2.0

Behavior is undefined when accessing a component outside the bounds of a matrix with a non-constant 
expression.  It is a compile-time error to access a matrix with a constant expression that is outside the 
bounds of the matrix.

The length method may be applied to matrices.  The result is the number of columns of the matrix.  For 
example,

mat3x4 v;
const int L = v.length();

sets the constant L to 3.  The type returned by .length() on a matrix is int, and the value returned is a 
constant expression.

5.7 Structure and Array Operations
The members of a structure and the length method of an array are selected using the period ( . ).
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In total, only the following operators are allowed to operate on arrays and structures as whole entities:

 field selector .

equality ==   !=

assignment = 

indexing (arrays only) [ ]

The equality operators and assignment operator are only allowed if the two operands are same size and 
type.  The operands cannot contain any opaque types.  Structure types must be of the same declared 
structure.  Both array operands must be explicitly sized.  When using the equality operators, two 
structures are equal if and only if all the members are component-wise equal, and two arrays are equal if 
and only if all the elements are element-wise equal.

Array elements are accessed using the array subscript operator ( [ ] ).  An example of accessing an array 
element is

diffuseColor += lightIntensity[3] * NdotL;

Array indices start at zero.  Array elements are accessed using an expression whose type is int or uint.

Behavior is undefined if a shader subscripts an array with an index less than 0 or greater than or equal to 
the size the array was declared with.

Arrays can also be accessed with the method operator ( . ) and the length method to query the size of the 
array:

lightIntensity.length()    // return the size of the array

5.8 Assignments
Assignments of values to variable names are done with the assignment operator ( = ):

lvalue-expression = rvalue-expression

The lvalue-expression evaluates to an l-value.  The assignment operator stores the value of rvalue-
expression into the l-value and returns that r-value with the type and precision of lvalue-expression.  The 
lvalue-expression and rvalue-expression must have the same type, or the expression must have a type in 
the table in section 4.1.10 “Implicit Conversions” that converts to the type of lvalue-expression, in which 
case an implicit conversion will be done on the rvalue-expression before the assignment is done.  Any 
other desired type-conversions must be specified explicitly via a constructor. L-values must be writable.  
Variables that are built-in types, entire structures or arrays, structure members, l-values with the field 
selector ( . ) applied to select components or swizzles without repeated fields, l-values within parentheses, 
and l-values dereferenced with the array subscript operator ( [ ] ) are all l-values.  Other binary or unary 
expressions, function names, swizzles with repeated fields, and constants cannot be l-values.  The ternary 
operator (?:) is also not allowed as an l-value.  Using an incorrect expression as an l-value results in a 
compile-time error.

Expressions on the left of an assignment are evaluated before expressions on the right of the assignment.
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The other assignment operators are 

• add into (+=)

• subtract from (-=)

• multiply into (*=)

• divide into (/=)

• modulus into (%=)

• left shift by (<<=)

• right shift by (>>=)

• and into (&=)

• inclusive-or into (|=)

• exclusive-or into (^=)

where the general expression 

    lvalue op= expression

is equivalent to

    lvalue = lvalue op expression

where op is as described below, and the l-value and expression must satisfy the semantic requirements of 
both op and equals (=).

Reading a variable before writing (or initializing) it is legal, however the value is undefined.

5.9 Expressions
Expressions in the shading language are built from the following:

• Constants of type bool, all integer types, all floating-point types,  all vector types, and all matrix types.

• Constructors of all types.

• Variable names of all types.

• An array, vector, or matrix expression with the length method applied.

• Subscripted array names.

• Function calls that return values.

• Component field selectors and array subscript results.

• Parenthesized expression.  Any expression can be parenthesized.  Parentheses can be used to group 
operations.  Operations within parentheses are done before operations across parentheses.
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• The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/) operate on integer and
floating-point scalars, vectors, and matrices.  If the fundamental types in the operands do not match, 
then the conversions from section 4.1.10 “Implicit Conversions” are applied to create matching types.  
All arithmetic binary operators result in the same fundamental type (signed integer, unsigned integer, 
single-precision floating point, or double-precision floating point) as the operands they operate on, 
after operand type conversion.  After conversion, the following cases are valid

• The two operands are scalars.  In this case the operation is applied, resulting in a scalar.

• One operand is a scalar, and the other is a vector or matrix.  In this case, the scalar operation is 
applied independently to each component of the vector or matrix, resulting in the same size vector 
or matrix.

• The two operands are vectors of the same size.  In this case, the operation is done component-wise 
resulting in the same size vector.

• The operator is add (+), subtract (-), or divide (/), and the operands are matrices with the same 
number of rows and the same number of columns.  In this case, the operation is done component-
wise resulting in the same size matrix.

• The operator is multiply (*), where both operands are matrices or one operand is a vector and the 
other a matrix.  A right vector operand is treated as a column vector and a left vector operand as a 
row vector.  In all these cases, it is required that the number of columns of the left operand is equal 
to the number of rows of the right operand.  Then, the multiply (*) operation does a linear 
algebraic multiply, yielding an object that has the same number of rows as the left operand and the 
same number of columns as the right operand.  Section 5.10 “Vector and Matrix Operations” 
explains in more detail how vectors and matrices are operated on.

All other cases result in a compile-time error.

Dividing by zero does not cause an exception but does result in an unspecified value.  Use the built-in 
functions dot, cross, matrixCompMult, and outerProduct, to get, respectively, vector dot product, 
vector cross product, matrix component-wise multiplication, and the matrix product of a column 
vector times a row vector.

• The operator modulus (%)  operates on signed or unsigned integer scalars or integer vectors.  If the 
fundamental types in the operands do not match, then the conversions from section 4.1.10 “Implicit 
Conversions” are applied to create matching types.  The operands cannot be vectors of differing size; 
this is a compile time error.  If one operand is a scalar and the other vector, then the scalar is applied 
component-wise to the vector, resulting in the same type as the vector.  If both are vectors of the same 
size, the result is computed component-wise.  The resulting value is undefined for any component 
computed with a second operand that is zero, while results for other components with non-zero second
operands remain defined. If both operands are non-negative, then the remainder is non-negative. 
Results are undefined if one or both operands are negative.  The operator modulus (%) is not defined 
for any other data types (non-integer types).

• The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and ++) operate 
on integer or floating-point values (including vectors and matrices).  All unary operators work 
component-wise on their operands.  These result with the same type they operated on.  For post- and 
pre-increment and decrement, the expression must be one that could be assigned to (an l-value).  Pre-
increment and pre-decrement add or subtract 1 or 1.0 to the contents of the expression they operate on,
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and the value of the pre-increment or pre-decrement expression is the resulting value of that 
modification.  Post-increment and post-decrement expressions add or subtract 1 or 1.0 to the contents 
of the expression they operate on, but the resulting expression has the expression’s value before the 
post-increment or post-decrement was executed.

• The relational operators greater than (>), less than (<), greater than or equal (>=), and less than or 
equal (<=) operate only on scalar integer and scalar floating-point expressions.  The result is scalar 
Boolean.  Either the operands’ types must match, or the conversions from section 4.1.10 “Implicit 
Conversions” will be applied to obtain matching types. To do component-wise relational comparisons 
on vectors, use the built-in functions lessThan, lessThanEqual, greaterThan, and 
greaterThanEqual.

• The equality operators equal (==), and not equal (!=) operate on all types (except aggregates that 
contain opaque types).  They result in a scalar Boolean.  If the operand types do not match, then there 
must be a conversion from section 4.1.10 “Implicit Conversions” applied to one operand that can 
make them match, in which case this conversion is done. For vectors, matrices, structures, and arrays, 
all components, members, or elements of one operand must equal the corresponding components, 
members, or elements in the other operand for the operands to be considered equal.  To get a vector of 
component-wise equality results for vectors, use the built-in functions equal and notEqual.

• The logical binary operators and (&&), or ( | | ), and exclusive or (^^) operate only on two Boolean 
expressions and result in a Boolean expression.  And (&&) will only evaluate the right hand operand if
the left hand operand evaluated to true.  Or ( | | ) will only evaluate the right hand operand if the left 
hand operand evaluated to false.  Exclusive or (^^) will always evaluate both operands.

• The logical unary operator not (!).  It operates only on a Boolean expression and results in a Boolean 
expression.  To operate on a vector, use the built-in function not.

• The sequence ( , ) operator that operates on expressions by returning the type and value of the right-
most expression in a comma separated list of expressions.  All expressions are evaluated, in order, 
from left to right.

• The ternary selection operator (?:).  It operates on three expressions (exp1 ? exp2 : exp3).  This 
operator evaluates the first expression, which must result in a scalar Boolean.  If the result is true, it 
selects to evaluate the second expression, otherwise it selects to evaluate the third expression.  Only 
one of the second and third expressions is evaluated.  The second and third expressions can be any 
type, as long their types match, or  there is a conversion in section 4.1.10 “Implicit Conversions” that 
can be applied to one of the expressions to make their types match.  This resulting matching type is the
type of the entire expression.

• The one's complement operator (~). The operand must be of type signed or unsigned integer or integer 
vector, and the result is the one's complement of its operand; each bit of each component is 
complemented, including any sign bits.

• The shift operators (<<) and (>>). For both operators, the operands must be signed or unsigned 
integers or integer vectors.  One operand can be signed while the other is unsigned.  In all cases, the 
resulting type will be the same type as the left operand.  If the first operand is a scalar, the second 
operand has to be a scalar as well.  If the first operand is a vector, the second operand must be a scalar 
or a vector, and the result is computed component-wise. The result is undefined if the right operand is 
negative, or greater than or equal to the number of bits in the left expression's base type. The value of 
E1 << E2 is E1 (interpreted as a bit pattern) left-shifted by E2 bits. The value of E1 >> E2 is E1 right-
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shifted by E2 bit positions.  If E1 is a signed integer, the right-shift will extend the sign bit. If E1 is an 
unsigned integer, the right-shift will zero-extend.

• The bitwise operators and (&), exclusive-or (^), and inclusive-or (|). The operands must be of type 
signed or unsigned integers or integer vectors. The operands cannot be vectors of differing size; this is 
a compile-time error.  If one operand is a scalar and the other a vector, the scalar is applied 
component-wise to the vector, resulting in the same type as the vector.   If the fundamental types in the
operands do not match, then the conversions from section 4.1.10 “Implicit Conversions” are applied to
create matching types, and this will be the resulting fundamental type.  For and (&), the result is the 
bitwise-and function of the operands.  For exclusive-or (^), the result is the bitwise exclusive-or 
function of the operands.  For inclusive-or (|), the result is the bitwise inclusive-or function of the 
operands.

For a complete specification of the syntax of expressions, see section 9 “Shading Language Grammar.”

5.10 Vector and Matrix Operations

With a few exceptions, operations are component-wise.  Usually, when an operator operates on a vector or
matrix, it is operating independently on each component of the vector or matrix, in a component-wise 
fashion.  For example,

vec3 v, u;
float f;

v = u + f;

will be equivalent to 

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;

And

vec3 v, u, w;
w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;

and likewise for most operators and all integer and floating-point vector and matrix types.  The exceptions
are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix.  These do 
not operate component-wise, but rather perform the correct linear algebraic multiply.

vec3 v, u;
mat3 m;

u = v * m;
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is equivalent to

u.x = dot(v, m[0]); // m[0] is the left column of m
u.y = dot(v, m[1]); // dot(a,b) is the inner (dot) product of a and b
u.z = dot(v, m[2]);

And

u = m * v;

is equivalent to

u.x = m[0].x * v.x  +  m[1].x * v.y  +  m[2].x * v.z;
u.y = m[0].y * v.x  +  m[1].y * v.y  +  m[2].y * v.z;
u.z = m[0].z * v.x  +  m[1].z * v.y  +  m[2].z * v.z;

And

mat3 m, n, r;

r = m * n;

is equivalent to

r[0].x = m[0].x * n[0].x  +  m[1].x * n[0].y  +  m[2].x * n[0].z;
r[1].x = m[0].x * n[1].x  +  m[1].x * n[1].y  +  m[2].x * n[1].z;
r[2].x = m[0].x * n[2].x  +  m[1].x * n[2].y  +  m[2].x * n[2].z;

r[0].y = m[0].y * n[0].x  +  m[1].y * n[0].y  +  m[2].y * n[0].z;
r[1].y = m[0].y * n[1].x  +  m[1].y * n[1].y  +  m[2].y * n[1].z;
r[2].y = m[0].y * n[2].x  +  m[1].y * n[2].y  +  m[2].y * n[2].z;

r[0].z = m[0].z * n[0].x  +  m[1].z * n[0].y  +  m[2].z * n[0].z;
r[1].z = m[0].z * n[1].x  +  m[1].z * n[1].y  +  m[2].z * n[1].z;
r[2].z = m[0].z * n[2].x  +  m[1].z * n[2].y  +  m[2].z * n[2].z;

and similarly for other sizes of vectors and matrices.

5.11 Out-of-Bounds Accesses
In the subsections described above for array, vector, matrix and structure accesses, any out-of-bounds 
access produced undefined behavior.  However, if robust buffer access is enabled via the OpenGL API, 
such accesses will be bound within the memory extent of the active program.  It will not be possible to 
access memory from other programs, and accesses will not result in abnormal program termination.  Out-
of-bounds reads return undefined values, which include values from other variables of the active program 
or zero.  Out-of-bounds writes may be discarded or overwrite other variables of the active program, 
depending on the value of the computed index and how this relates to the extent of the active program's 
memory. Applications that require defined behavior for out-of-bounds accesses should range check all 
computed indices before dereferencing an array.
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The fundamental building blocks of the OpenGL Shading Language are:

• statements and declarations

• function definitions

• selection (if-else and switch-case-default)

• iteration (for, while, and do-while)

• jumps (discard, return, break, and continue)

The overall structure of a shader is as follows

translation-unit: 

global-declaration

translation-unit global-declaration

global-declaration:

function-definition

declaration

That is, a shader is a sequence of declarations and function bodies.  Function bodies are defined as

function-definition:

function-prototype  {  statement-list }

statement-list:

statement

statement-list statement

statement:

compound-statement

simple-statement
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Curly braces are used to group sequences of statements into compound statements.

compound-statement:

{ statement-list }

simple-statement:

declaration-statement

expression-statement

selection-statement

iteration-statement

jump-statement

Simple declaration, expression, and jump statements end in a semi-colon.

This above is slightly simplified, and the complete grammar specified in section 9 “Shading Language 
Grammar”  should be used as the definitive specification.

Declarations and expressions have already been discussed.

6.1 Function Definitions
As indicated by the grammar above, a valid shader is a sequence of global declarations and function 
definitions.  A function is declared as the following example shows:

// prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

and a function is defined like

// definition
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{
    // do some computation
    return returnValue;
}

where returnType must be present and include a type.  If the type of returnValue does not match 
returnType, there must be an implicit conversion in section 4.1.10 “Implicit Conversions” that converts 
the type of returnValue to returnType, or a compile-time error will result.  

Each of the typeN must include a type and can optionally include parameter qualifiers.  The formal 
argument names (args above) in the declarations are optional for both the declaration and definition 
forms.

A function is called by using its name followed by a list of arguments in parentheses.

Arrays are allowed as arguments and as the return type.  In both cases, the array must be explicitly sized.  
An array is passed or returned by using just its name, without brackets, and the size of the array must 
match the size specified in the function's declaration.

Structures are also allowed as argument types.  The return type can also be structure.
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See section 9 “Shading Language Grammar”  for the definitive reference on the syntax to declare and 
define functions.

All functions must be either declared with a prototype or defined with a body before they are called.  For 
example:

float myfunc (float f,        // f is an input parameter
              out float g);   // g is an output parameter

Functions that return no value must be declared as void.  A void function can only use return without a 
return argument, even if the return argument has void type.  Return statements only accept values:

void func1() { }
void func2() { return func1(); } // illegal return statement

Only a precision qualifier is allowed on the return type of a function.  Formal parameters can have 
parameter, precision, and memory qualifiers, but no other qualifiers. 

Functions that accept no input arguments need not use void in the argument list because prototypes (or 
definitions) are required and therefore there is no ambiguity when an empty argument list "( )" is declared.
The idiom “(void)” as a parameter list is provided for convenience.

Function names can be overloaded.  The same function name can be used for multiple functions, as long 
as the parameter types differ.  If a function name is declared twice with the same parameter types, then the
return types and all qualifiers must also match, and it is the same function being declared.  For example,

vec4 f(in  vec4 x, out  vec4 y);     // (A)
vec4 f(in  vec4 x, out uvec4 y);     // (B) okay, different argument type
vec4 f(in ivec4 x, out dvec4 y);     // (C) okay, different argument type

int  f(in  vec4 x, out  vec4 y);     // error, only return type differs
vec4 f(in  vec4 x,  in  vec4 y);     // error, only qualifier differs
vec4 f(const in vec4 x, out vec4 y); // error, only qualifier differs

When function calls are resolved, an exact type match for all the arguments is sought.  If an exact match is
found, all other functions are ignored, and the exact match is used.  If no exact match is found, then the 
implicit conversions in section 4.1.10 “Implicit Conversions” will be applied to find a match.  
Mismatched types on input parameters (in or inout or default) must have a conversion from the calling 
argument type to the formal parameter type.  Mismatched types on output parameters (out or inout) must 
have a conversion from the formal parameter type to the calling argument type.  

If implicit conversions can be used to find more than one matching function, a single best-matching 
function is sought.  To determine a best match, the conversions between calling argument and formal 
parameter types are compared for each function argument and pair of matching functions.  After these 
comparisons are performed, each pair of matching functions are compared.  A function declaration A is 
considered a better match than function declaration B if

• for at least one function argument, the conversion for that argument in A is better than the 
corresponding conversion in B; and
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• there is no function argument for which the conversion in B is better than the corresponding 
conversion in A.

If a single function declaration is considered a better match than every other matching function 
declaration, it will be used.  Otherwise, a compile-time semantic error for an ambiguous overloaded 
function call occurs.

To determine whether the conversion for a single argument in one match is better than that for another 
match, the following rules are applied, in order:

1. An exact match is better than a match involving any implicit conversion.

2. A match involving an implicit conversion from float to double is better than a match involving 
any other implicit conversion.

3. A match involving an implicit conversion from either int or uint to float is better than a match 
involving an implicit conversion from either int or uint to double.

If none of the rules above apply to a particular pair of conversions, neither conversion is considered better
than the other.

For the example function prototypes (A), (B), and (C) above, the following examples show how the rules 
apply to different sets of calling argument types:

f(vec4, vec4);        // exact match of vec4 f(in vec4 x, out vec4 y)
f(vec4, uvec4);       // exact match of vec4 f(in vec4 x, out uvec4 y)
f(vec4, ivec4);       // matched to vec4 f(in vec4 x, out vec4 y)
                      //   (C) not relevant, can't convert vec4 to 
                      //   ivec4.  (A) better than (B) for 2nd
                      //   argument (rule 3), same on first argument.
f(ivec4, vec4);       // NOT matched.  All three match by implicit
                      //   conversion.  (C) is better than (A) and (B)
                      //   on the first argument.  (A) is better than
                      //   (B) and (C).

User-defined functions can have multiple declarations, but only one definition.  A shader can redefine 
built-in functions.  If a built-in function is redeclared in a shader (i.e., a prototype is visible) before a call 
to it, then the linker will only attempt to resolve that call within the set of shaders that are linked with it.

The function main is used as the entry point to a shader executable.  A shader need not contain a function 
named main, but one shader in a set of shaders linked together to form a single shader executable must, or
a link-time error results.  This function takes no arguments, returns no value, and must be declared as type
void:

void main()
{
    ...
}

The function main can contain uses of return.  See section 6.4 “Jumps”  for more details.

It is a compile-time or link-time error to declare or define a function main with any other parameters or 
return type.
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6.1.1 Function Calling Conventions

Functions are called by value-return.  This means input arguments are copied into the function at call time,
and output arguments are copied back to the caller before function exit.  Because the function works with 
local copies of parameters, there are no issues regarding aliasing of variables within a function.  To 
control what parameters are copied in and/or out through a function definition or declaration:

• The keyword in is used as a qualifier to denote a parameter is to be copied in, but not copied out.

• The keyword out is used as a qualifier to denote a parameter is to be copied out, but not copied in.  
This should be used whenever possible to avoid unnecessarily copying parameters in.

• The keyword inout is used as a qualifier to denote the parameter is to be both copied in and copied 
out.  It means the same thing as specifying both in and out.

• A function parameter declared with no such qualifier means the same thing as specifying in.

All arguments are evaluated at call time, exactly once, in order, from left to right. Evaluation of an in 
parameter results in a value that is copied to the formal parameter. Evaluation of an out parameter results 
in an l-value that is used to copy out a value when the function returns.  Evaluation of an inout parameter 
results in both a value and an l-value; the value is copied to the formal parameter at call time and the l-
value is used to copy out a value when the function returns.

The order in which output parameters are copied back to the caller is undefined.

If the function matching described in the previous section required argument type conversions, these 
conversions are applied at copy-in and copy-out times.  

In a function, writing to an input-only parameter is allowed.  Only the function’s copy is modified.  This 
can be prevented by declaring a parameter with the const qualifier.

When calling a function, expressions that do not evaluate to l-values cannot be passed to parameters 
declared as out or inout, or a compile-time error results
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function-prototype :

precision-qualifier type function-name(parameter-qualifiers precision-qualifier type name 

array-specifier, ... )

type :

any basic type, array type, structure name, or structure definition

parameter-qualifiers :

empty

list of parameter-qualifier

parameter-qualifier :

const

in

out

inout

precise
memory qualifier

precision qualifier

name :

empty

identifier

array-specifier :

empty

[ integral-constant-expression ]

The const qualifier cannot be used with out or inout, or a compile-time error results.  The above is used 
both for function declarations (i.e., prototypes) and for function definitions.  Hence, function definitions 
can have unnamed arguments.

Recursion is not allowed, not even statically.  Static recursion is present if the static function-call graph of 
a program contains cycles.  This includes all potential function calls through variables declared as 
subroutine uniform (described below).  It is a compile-time or link-time error if a single compilation unit
(shader) contains either static recursion or the potential for recursion through subroutine variables.

6.1.2 Subroutines

Subroutines provide a mechanism allowing shaders to be compiled in a manner where the target of one or 
more function calls can be changed at run-time without requiring any shader recompilation.  For example, 
a single shader may be compiled with support for multiple illumination algorithms to handle different 
kinds of lights or surface materials.  An application using such a shader may switch illumination 
algorithms by changing the value of its subroutine uniforms.  To use subroutines, a subroutine type is 
declared, one or more functions are associated with that subroutine type, and a subroutine variable of that 
type is declared.  The function currently assigned to the variable function is then called by using function 
calling syntax replacing a function name with the name of the subroutine variable.  Subroutine variables 
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are uniforms, and are assigned to specific functions only through commands (UniformSubroutinesuiv) in
the OpenGL API.

Subroutine types are declared using a statement similar to a function declaration, with the subroutine 
keyword, as follows:

subroutine returnType subroutineTypeName(type0 arg0, type1 arg1, 
                                         ..., typen argn);

As with function declarations, the formal argument names (args above) are optional.  Functions are 
associated with subroutine types of matching declarations by defining the function with the subroutine 
keyword and a list of subroutine types the function matches:

subroutine(subroutineTypeName0, ..., subroutineTypeNameN)
returnType functionName(type0 arg0, type1 arg1, ..., typen argn)
{ ... } // function body

It is a compile-time error if arguments and return type don't match between the function and each 
associated subroutine type.

Functions declared with subroutine must include a body.  An overloaded function cannot be declared 
with subroutine; a program will fail to compile or link if any shader or stage contains two or more 
functions with the same name if the name is associated with a subroutine type.

A function declared with subroutine can also be called directly with a static use of functionName, as is 
done with non-subroutine function declarations and calls.

Subroutine type variables are required to be subroutine uniforms, and are declared with a specific 
subroutine type in a subroutine uniform variable declaration:

subroutine uniform subroutineTypeName subroutineVarName;

Subroutine uniform variables are called the same way functions are called.  When a subroutine variable 
(or an element of a subroutine variable array) is associated with a particular function, all function calls 
through that variable will call that particular function.

Unlike other uniform variables, subroutine uniform variables are scoped to the shader execution stage the 
variable is declared in.

Subroutine variables may be declared as explicitly-sized arrays, which can be indexed only with 
dynamically uniform expressions.

It is a compile-time error to use the subroutine keyword in any places other than (as shown above) to

• declare a subroutine type at global scope,

• declare a function as a subroutine, or

• declare a subroutine variable at global scope.
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6.2 Selection
Conditional control flow in the shading language is done by either if, if-else, or switch statements:

selection-statement :
if ( bool-expression ) statement
if ( bool-expression ) statement else statement
switch ( init-expression ) { switch-statement-listopt 

 }

Where switch-statement-list is a nested scope containing a list of zero or more switch-statement and other 
statements defined by the language, where switch-statement adds some forms of labels.  That is

switch-statement-list :
switch-statement
switch-statement-list switch-statement

switch-statement :
case constant-expression :
default :
statement

If an if-expression evaluates to true, then the first statement is executed.  If it evaluates to false and there 
is an else part then the second statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression.  Vector types are not accepted as the expression to if.

Conditionals can be nested.

The type of the init-expression value in a switch statement must be a scalar int or uint.  The type of the 
constant-expression value in a case label also must be a scalar int or uint.  When any pair of these values 
is tested for "equal value" and the types do not match, an implicit conversion will be done to convert the 
int to a uint (see section 4.1.10 “Implicit Conversions”) before the compare is done.  If a case label has a 
constant-expression of equal value to init-expression, execution will continue after that label.  It is a 
compile-time error to have two case label constant-expression of equal value.  Otherwise, if there is a 
default label, execution will continue after that label.  Otherwise, execution skips the rest of the switch 
statement.  It is a compile-time error to have more than one default.  A break statement not nested in a 
loop or other switch statement (either not nested or nested only in if or if-else statements) will also skip 
the rest of the switch statement.  Fall through labels are allowed.  No statements are allowed in a switch 
statement before the first case statement.

No case or default labels can be nested inside other statement or compound statement within their 
corresponding switch.
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6.3 Iteration
For, while, and do loops are allowed as follows:

for (init-expression; condition-expression; loop-expression)
    sub-statement

while (condition-expression)
    sub-statement

do
    statement
while (condition-expression)

See section 9 “Shading Language Grammar”  for the definitive specification of loops.

The for loop first evaluates the init-expression, then the condition-expression.  If the condition-expression
evaluates to true, then the body of the loop is executed.  After the body is executed, a for loop will then 
evaluate the loop-expression, and then loop back to evaluate the condition-expression, repeating until the 
condition-expression evaluates to false.  The loop is then exited, skipping its body and skipping its loop-
expression.  Variables modified by the loop-expression maintain their value after the loop is exited, 
provided they are still in scope.  Variables declared in init-expression or condition-expression are only in 
scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression.  If true, then the body is executed.  This is then 
repeated, until the condition-expression evaluates to false, exiting the loop and skipping its body.  
Variables declared in the condition-expression are only in scope until the end of the sub-statement of the 
while loop.

The do-while loop first executes the body, then executes the condition-expression.  This is repeated until 
condition-expression evaluates to false, and then the loop is exited.

Expressions for condition-expression must evaluate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize a variable, except in the 
do-while loop, which cannot declare a variable in its condition-expression.  The variable’s scope lasts 
only until the end of the sub-statement that forms the body of the loop.

Loops can be nested.

Non-terminating loops are allowed.  The consequences of very long or non-terminating loops are platform
dependent.

118



6 Statements and Structure

6.4 Jumps
These are the jumps:

jump_statement:

continue;

break;

return;
return expression;

discard;      // in the fragment shader language only

There is no “goto” nor other non-structured flow of control.

The continue jump is used only in loops.  It skips the remainder of the body of the inner most loop of 
which it is inside.  For while and do-while loops, this jump is to the next evaluation of the loop 
condition-expression from which the loop continues as previously defined.  For for loops, the jump is to 
the loop-expression, followed by the condition-expression.

The break jump can also be used only in loops and switch statements.  It is simply an immediate exit of 
the inner-most loop or switch statements containing the break.  No further execution of condition-
expression, loop-expression, or switch-statement is done.

The discard keyword is only allowed within fragment shaders. It can be used within a fragment shader to 
abandon the operation on the current fragment.  This keyword causes the fragment to be discarded and no 
updates to any buffers will occur.  Control flow exits the shader, and subsequent implicit or explicit 
derivatives are undefined when this exit is non-uniform.  It would typically be used within a conditional 
statement, for example:

if (intensity < 0.0)
    discard;

A fragment shader may test a fragment’s alpha value and discard the fragment based on that test.  
However, it should be noted that coverage testing occurs after the fragment shader runs, and the coverage 
test can change the alpha value.

The return jump causes immediate exit of the current function.  If it has expression then that is the return 
value for the function.

The function main can use return.  This simply causes main to exit in the same way as when the end of 
the function had been reached.  It does not imply a use of discard in a fragment shader.  Using return in 
main before defining outputs will have the same behavior as reaching the end of main before defining 
outputs.
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7.1 Built-In Language Variables
Some OpenGL operations occur in fixed functionality and need to provide values to or receive values 
from shader executables.  Shaders communicate with fixed-function OpenGL pipeline stages, and 
optionally with other shader executables, through the use of built-in input and output variables.

In the compute language, the built-in variables are declared as follows:

// work group dimensions
in    uvec3 gl_NumWorkGroups;
const uvec3 gl_WorkGroupSize;

// work group and invocation IDs
in    uvec3 gl_WorkGroupID;
in    uvec3 gl_LocalInvocationID;

// derived variables
in    uvec3 gl_GlobalInvocationID;
in    uint  gl_LocalInvocationIndex;

In the vertex language, the built-ins are intrinsically declared as:

in  int   gl_VertexID;
in  int   gl_InstanceID;

out gl_PerVertex {
    vec4  gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
    float gl_CullDistance[];
};
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In the geometry language, the built-in variables are intrinsically declared as:

in gl_PerVertex {
    vec4  gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
    float gl_CullDistance[];
} gl_in[];

in int gl_PrimitiveIDIn;
in int gl_InvocationID;

out gl_PerVertex {
    vec4  gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
    float gl_CullDistance[];
};

out int gl_PrimitiveID;
out int gl_Layer;
out int gl_ViewportIndex;

In the tessellation control language, built-in variables are intrinsically declared as:

in gl_PerVertex {
    vec4 gl_Position;
    float gl_PointSize;
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    float gl_ClipDistance[];
    float gl_CullDistance[];
} gl_in[gl_MaxPatchVertices];

in int gl_PatchVerticesIn;
in int gl_PrimitiveID;
in int gl_InvocationID;

out gl_PerVertex {
    vec4 gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
    float gl_CullDistance[];
} gl_out[];

patch out float gl_TessLevelOuter[4];
patch out float gl_TessLevelInner[2];

In the tessellation evaluation language, built-in variables are intrinsically declared as:

in gl_PerVertex {
    vec4 gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
    float gl_CullDistance[];
} gl_in[gl_MaxPatchVertices];

in int gl_PatchVerticesIn;
in int gl_PrimitiveID;
in vec3 gl_TessCoord;
patch in float gl_TessLevelOuter[4];
patch in float gl_TessLevelInner[2];

out gl_PerVertex {
    vec4 gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
    float gl_CullDistance[];
};
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In the fragment language, built-in variables are intrinsically declared as:

in  vec4  gl_FragCoord;
in  bool  gl_FrontFacing;
in  float gl_ClipDistance[];
in  float gl_CullDistance[];
in  vec2  gl_PointCoord;
in  int   gl_PrimitiveID;
in  int   gl_SampleID;
in  vec2  gl_SamplePosition;
in  int   gl_SampleMaskIn[];
in  int   gl_Layer;
in  int   gl_ViewportIndex;
in  bool  gl_HelperInvocation;

out float gl_FragDepth;
out int   gl_SampleMask[];

Each of the above variables is discussed below.

The built-in variable gl_NumWorkGroups is a compute-shader input variable containing the total number 
of global work items in each dimension of the work group that will execute the compute shader.  Its 
content is equal to the values specified in the num_groups_x, num_groups_y, and num_groups_z 
parameters passed to the DispatchCompute API entry point.

The built-in constant gl_WorkGroupSize is a compute-shader constant containing the local work-group 
size of the shader. The size of the work  group in the X, Y, and Z dimensions is stored in the x, y, and z 
components.  The constants values in gl_WorkGroupSize will match those specified in the required 
local_size_x, local_size_y, and local_size_z layout qualifiers for the current shader. This is a constant so 
that it can be used to size arrays of memory that can be shared within the local work group.  It is a 
compile-time error to use gl_WorkGroupSize in a shader that does not declare a fixed local group size, or 
before that shader has declared a fixed local group size, using local_size_x, local_size_y, and 
local_size_z.  When a size is given for some of these identifiers, but not all, the corresponding 
gl_WorkGroupSize will have a size of 1.

The built-in variable gl_WorkGroupID is a compute-shader input variable containing the three-
dimensional index of the global work group that the current invocation is executing in. The possible 
values range across the parameters passed into DispatchCompute, i.e., from (0, 0, 0) to 
(gl_NumWorkGroups.x - 1, gl_NumWorkGroups.y - 1, gl_NumWorkGroups.z -1).

The built-in variable gl_LocalInvocationID is a compute-shader input variable containing the t-
dimensional index of the local work group within the global work group that the current invocation is 
executing in.  The possible values for this variable range across the local work group size, i.e., (0,0,0) to 
(gl_WorkGroupSize.x - 1, gl_WorkGroupSize.y - 1, gl_WorkGroupSize.z - 1).

The built-in variable gl_GlobalInvocationID is a compute shader input variable containing the global 
index of the current work item.  This value uniquely identifies this invocation from all other invocations  
across all local and global work groups initiated by the current DispatchCompute call.  This is computed 
as:
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gl_GlobalInvocationID = 
         gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID;

The built-in variable gl_LocalInvocationIndex is a compute shader input variable that contains the one-
dimensional representation of the gl_LocalInvocationID.  This is useful for uniquely identifying a unique 
region of shared memory within the local work group for this invocation to use. This is computed as:

gl_LocalInvocationIndex = 
         gl_LocalInvocationID.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y +
         gl_LocalInvocationID.y * gl_WorkGroupSize.x + 
         gl_LocalInvocationID.x;

The variable gl_VertexID is a vertex language input variable that holds an integer index for the vertex, as 
defined under “Shader Inputs” in section 11.1.3.9 “Shader Inputs” in the OpenGL Graphics System 
Specification.  While the variable gl_VertexID is always present, its value is not always defined.

The variable gl_InstanceID is a vertex language input variable that holds the instance number of the 
current primitive in an instanced draw call (see “Shader Inputs” in section 11.1.3.9 “Shader Inputs” in the 
OpenGL Graphics System Specification).  If the current primitive does not come from an instanced draw 
call, the value of gl_InstanceID is zero.

As an output variable,  gl_Position is intended for writing the homogeneous vertex position.  It can be 
written at any time during shader execution.  This value will be used by primitive assembly, clipping, 
culling, and other fixed functionality operations, if present, that operate on primitives after vertex 
processing has occurred.  Its value is undefined after the vertex processing stage if the vertex shader 
executable does not write gl_Position, and it is undefined after geometry processing if the geometry 
executable calls EmitVertex() without having written gl_Position since the last EmitVertex() (or hasn't 
written it at all).  As an input variable, gl_Position reads the output written in the previous shader stage to 
gl_Position.

As an output variable, gl_PointSize  is intended for a shader to write the size of the point to be rasterized. 
It is measured in pixels.  If gl_PointSize is not written to, its value is undefined in subsequent pipe stages. 
As an input variable, gl_PointSize reads the output written in the previous shader stage to gl_PointSize .

The variable gl_ClipDistance provides the forward compatible mechanism for controlling user clipping.  
The element gl_ClipDistance[i] specifies a clip distance for each plane i.  A distance of 0 means the 
vertex is on the plane, a positive distance means the vertex is inside the clip plane, and a negative distance
means the point is outside the clip plane.  The clip distances will be linearly interpolated across the 
primitive and the portion of the primitive with interpolated distances less than 0 will be clipped.

The gl_ClipDistance array is predeclared as unsized and must be explicitly sized by the shader either 
redeclaring it with a size or implicitly sized by indexing it only with integral constant expressions.  This 
needs to size the array to include all the clip planes that are enabled via the OpenGL API; if the size does 
not include all enabled planes, results are undefined.  The size can be at most gl_MaxClipDistances.  The 
number of varying components (see gl_MaxVaryingComponents) consumed by gl_ClipDistance will 
match the size of the array, no matter how many planes are enabled.  The shader must also set all values in
gl_ClipDistance that have been enabled via the OpenGL API, or results are undefined.  Values written into
gl_ClipDistance for planes that are not enabled have no effect.

As an output variable, gl_ClipDistance provides the place for the shader to write these distances.  As an 
input in all but the fragment language, it reads the values written in the previous shader stage.  In the 
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fragment language, gl_ClipDistance array contains linearly interpolated values for the vertex values 
written by a shader to the gl_ClipDistance vertex output variable.  Only elements in this array that have 
clipping enabled will have defined values.

The variable gl_CullDistance provides a mechanism for controlling user culling. The element 
gl_CullDistance[i] specifies a cull distance for plane i.  A distance of 0 means the vertex is on the plane, a
positive distance means the vertex is inside the cull volume, and a negative distance means the point is 
outside the cull volume.  Primitives whose vertices all have a negative clip distance for plane i will be 
discarded.

The gl_CullDistance array is predeclared as unsized and must be sized by the shader either redeclaring it 
with a size or indexing it only with integral constant expressions.  The size determines the number and set 
of enabled cull distances and can be at most gl_MaxCullDistances.  The number of varying components 
(see gl_MaxVaryingComponents) consumed by gl_CullDistance will match the size of the array.  Shaders 
writing gl_CullDistance must write all enabled distances, or culling results are undefined.

As an output variable, gl_CullDistance provides the place for the shader to write these distances.  As an 
input in all but the fragment language, it reads the values written in the previous shader stage.  In the 
fragment language, gl_CullDistance array contains linearly interpolated values for the vertex values 
written by a shader to the gl_CullDistance vertex output variable.

It is a compile-time or link-time error for the set of shaders forming a program to have the sum of the sizes
of the gl_ClipDistance and gl_CullDistance arrays to be larger than 
gl_MaxCombinedClipAndCullDistances.

The output variable gl_PrimitiveID is available only in the geometry language and provides a single 
integer that serves as a primitive identifier.  This is then available to fragment shaders as the fragment 
input gl_PrimitiveID, which will select the written primitive ID from the provoking vertex in the primitive
being shaded.  If a fragment shader using gl_PrimitiveID is active and a geometry shader is also active, 
the geometry shader must write to gl_PrimitiveID or the fragment shader input gl_PrimitiveID is 
undefined.  See section 11.3.4.5 "Geometry Shader Outputs" of the OpenGL Graphics System 
Specification for more information.

For tessellation control and evaluation languages the input variable gl_PrimitiveID is filled with the 
number of primitives processed by the shader since the current set of rendering primitives was started.  
For the fragment language, it is filled with the value written to the gl_PrimitiveID geometry shader output 
if a geometry shader is present.  Otherwise, it is assigned in the same manner as with tessellation control 
and evaluation shaders.

The geometry language input variable gl_PrimitiveIDIn behaves identically to the tessellation control and 
evaluation language input variable gl_PrimitiveID.

The input variable gl_InvocationID is available only in the tessellation control and geometry languages.  
In the tessellation control shader, it identifies the number of the output patch vertex assigned to the 
tessellation control shader invocation.  In the geometry shader, it identifies the invocation number 
assigned to the geometry shader invocation.  In both cases, gl_InvocationID is assigned integer values in 
the range [0, N-1], where N is the number of output patch vertices or geometry shader invocations per 
primitive.

The variable gl_Layer is available as an output variable in the geometry language and an input variable in 
the fragment language.  In the geometry language, it is used to select a specific layer (or face and layer of 
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a cube map) of a multi-layer framebuffer attachment.  The actual layer used will come from one of the 
vertices in the primitive being shaded.  Which vertex the layer comes from is discussed in section 11.3.4.6
“Layer and Viewport Selection” of the OpenGL Specification.  It might be undefined, so it is best to write 
the same layer value for all vertices of a primitive.  If a shader statically assigns a value to gl_Layer, 
layered rendering mode is enabled. See section 11.3.4.5 “Geometry Shader Outputs”and section 9.4.9 
“Layered Framebuffers” of the OpenGL Graphics System Specification for more information. If a shader 
statically assigns a value to gl_Layer, and there is an execution path through the shader that does not set 
gl_Layer, then the value of gl_Layer is undefined for executions of the shader that take that path.

The output variable gl_Layer takes on a special value when used with an array of cube map textures. 
Instead of only referring to the layer, it is used to select a cube map face and a layer. Setting gl_Layer to 
the value layer*6+face will render to face face of the cube defined in layer layer. The face values are 
defined in Table 9.3 of section 9.4.9 “Layered Framebuffers” of the OpenGL Graphics System 
Specification, but repeated below for clarity.

Face Value Resulting Target

0 TEXTURE_CUBE_MAP_POSITIVE_X

1 TEXTURE_CUBE_MAP_NEGATIVE_X

2 TEXTURE_CUBE_MAP_POSITIVE_Y

3 TEXTURE_CUBE_MAP_NEGATIVE_Y

4 TEXTURE_CUBE_MAP_POSITIVE_Z

5 TEXTURE_CUBE_MAP_NEGATIVE_Z

For example, to render to the positive y cube map face located in the 5th layer of the cube map array, 
gl_Layer should be set to 5*6+2.

The input variable gl_Layer in the fragment language will have the same value that was written to the 
output variable gl_Layer in the geometry language. If the geometry stage does not dynamically assign a 
value to gl_Layer, the value of gl_Layer in the fragment stage will be undefined.  If the geometry stage 
makes no static assignment to gl_Layer, the input value in the fragment stage will be zero.  Otherwise, the 
fragment stage will read the same value written by the geometry stage, even if that value is out of range.  
If a fragment shader contains a static access to gl_Layer, it will count against the implementation defined 
limit for the maximum number of inputs to the fragment stage.

The variable gl_ViewportIndex is available as an output variable in the geometry language and an input 
variable in the fragment language.  In the geometry language, it provides the index of the viewport to 
which the next primitive emitted from the geometry shader should be drawn.  Primitives    generated by 
the geometry shader will undergo viewport transformation and scissor testing using the viewport 
transformation and scissor rectangle selected by the value of gl_ViewportIndex.  The viewport index used 
will come from one of the vertices in the primitive being shaded.  However, which vertex the viewport 
index comes from is implementation-dependent, so it is best to use the same viewport index for all 
vertices of the primitive.  If a geometry shader does not assign a value to gl_ViewportIndex, viewport 
transform and scissor rectangle zero will be used.  If a geometry shader statically assigns a value to 
gl_ViewportIndex and there is a path through the shader that does not assign a value to gl_ViewportIndex, 
the value of gl_ViewportIndex is undefined for executions of the shader that take that path.  See section 
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11.3.4.6 “Layer and Viewport Selection” of the OpenGL Graphics System Specification (Core Profile) for
more information.

The input variable gl_ViewportIndex in the fragment stage will have the same value that was written to the
output variable gl_ViewportIndex in the geometry stage.  If the geometry stage does not dynamically 
assign to gl_ViewportIndex, the value of gl_ViewportIndex in the fragment shader will be undefined. If the
geometry stage makes no static assignment to gl_ViewportIndex, the fragment stage will read zero. 
Otherwise, the fragment stage will read the same value written by the geometry stage, even if that value is 
out of range. If a fragment shader contains a static access to gl_ViewportIndex, it will count against the 
implementation defined limit for the maximum number of inputs to the fragment stage.

The variable gl_PatchVerticesIn is available only in the tessellation control and evaluation languages.  It 
is an integer specifying the number of vertices in the input patch being processed by the shader.  A single 
tessellation control or evaluation shader can read patches of differing sizes, so the value of 
gl_PatchVerticesIn may differ between patches.

The output variables gl_TessLevelOuter[] and gl_TessLevelInner[] are available only in the tessellation 
control language.  The values written to these variables are assigned to the corresponding outer and inner 
tessellation levels of the output patch.  They are used by the tessellation primitive generator to control 
primitive tessellation and may be read by tessellation evaluation shaders.

The variable gl_TessCoord is available only in the tessellation evaluation language.  It specifies a three-
component (u,v,w) vector identifying the position of the vertex being processed by the shader relative to 
the primitive being tessellated.  Its values will obey the properties

gl_TessCoord.x == 1.0 – (1.0 – gl_TessCoord.x) // two operations performed
gl_TessCoord.y == 1.0 – (1.0 – gl_TessCoord.y) // two operations performed
gl_TessCoord.z == 1.0 – (1.0 – gl_TessCoord.z) // two operations performed

to aid in replicating subdivision computations.

The input variables gl_TessLevelOuter[] and gl_TessLevelInner[] are available only in the tessellation 
evaluation shader.  If a tessellation control shader is active, these variables are filled with corresponding 
outputs written by the tessellation control shader.  Otherwise, they are assigned with default tessellation 
levels specified in section 11.2.3.3 “Tessellation Evaluation Shader Inputs” in the OpenGL Graphics 
System Specification.

Fragment shaders output values to the OpenGL pipeline using declared out variables, the built-in 
variables gl_FragDepth and gl_SampleMask, unless the discard statement is executed.

The fixed functionality computed depth for a fragment may be obtained by reading gl_FragCoord.z, 
described below.

Writing to gl_FragDepth will establish the depth value for the fragment being processed.  If depth 
buffering is enabled, and no shader writes gl_FragDepth, then the fixed function value for depth will be 
used as the fragment’s depth value.  If a shader statically assigns a value to gl_FragDepth, and there is an 
execution path through the shader that does not set gl_FragDepth, then the value of the fragment’s depth 
may be undefined for executions of the shader that take that path.  That is, if the set of linked fragment 
shaders statically contain a write to gl_FragDepth, then it is responsible for always writing it.

If a shader executes the discard keyword, the fragment is discarded, and the values of any user-defined 
fragment outputs, gl_FragDepth,   and gl_SampleMask become irrelevant.
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The variable gl_FragCoord is available as an input variable from within fragment shaders and it holds the
window relative coordinates (x, y, z, 1/w) values for the fragment.  If multi-sampling, this value can be for 
any location within the pixel, or one of the fragment samples.  The use of centroid does not further 
restrict this value to be inside the current primitive.  This value is the result of the fixed functionality that 
interpolates primitives after vertex processing to generate fragments.  The z component is the depth value 
that would be used for the fragment’s depth if no shader contained any writes to gl_FragDepth.  This is 
useful for invariance if a shader conditionally computes gl_FragDepth but otherwise wants the fixed 
functionality fragment depth.

Fragment shaders have access to the input built-in variable gl_FrontFacing, whose value is true if the 
fragment belongs to a front-facing primitive.  One use of this is to emulate two-sided lighting by selecting 
one of two colors calculated by a vertex or geometry shader. 

The values in gl_PointCoord are two-dimensional coordinates indicating where within a point primitive 
the current fragment is located, when point sprites are enabled. They range from 0.0 to 1.0 across the 
point.  If the current primitive is not a point, or if point sprites are not enabled, then the values read from  
gl_PointCoord are undefined.

For both the input array gl_SampleMaskIn[] and the output array gl_SampleMask[], bit B of mask M 
(gl_SampleMaskIn[M] or gl_SampleMask[M]) corresponds to sample 32*M+B.  These arrays have 
ceil(s/32) elements, where s is the maximum number of color samples supported by the implementation.

The input variable gl_SampleMaskIn indicates the set of samples covered by the primitive generating the 
fragment during multisample rasterization.  It has a sample bit set if and only if the sample is considered 
covered for this fragment shader invocation.

The output array gl_SampleMask[] sets the sample mask for the fragment being processed. Coverage for 
the current fragment will become the logical AND of the coverage mask and the output gl_SampleMask.  
This array must be sized in the fragment shader either implicitly or explicitly, to be no larger than the 
implementation-dependent maximum sample-mask (as an array of 32bit elements), determined by the 
maximum number of samples..  If the fragment shader statically assigns a value to gl_SampleMask, the 
sample mask will be undefined for any array elements of any fragment shader invocations that fail to 
assign a value.  If a shader does not statically assign a value to gl_SampleMask, the sample mask has no 
effect on the processing of a fragment.

The input variable gl_SampleID is filled with the sample number of the sample currently being processed.
This variable is in the range 0 to gl_NumSamples-1, where gl_NumSamples is the total number of samples
in the framebuffer, or 1 if rendering to a non-multisample framebuffer.  Any static use of this variable in a 
fragment shader causes the entire shader to be evaluated per-sample.

The input variable gl_SamplePosition contains the position of the current sample within the multi-sample 
draw buffer. The x and y components of gl_SamplePosition contain the sub-pixel coordinate of the current
sample and will have values in the range 0.0 to 1.0.  Any static use of this variable in a fragment shader 
causes the entire shader to be evaluated per sample.

The value gl_HelperInvocation is true if the fragment shader invocation is considered a helper 
invocation and is false otherwise.  A helper invocation is a fragment-shader invocation that is created 
solely for the purposes of evaluating derivatives for use in non-helper fragment-shader invocations.  Such 
derivatives are computed implicitly in the built-in function texture() (see section 8.9 “Texture 
Functions”), and explicitly in the derivative functions in section 8.13.1 “Derivative Functions”, for 
example dFdx() and dFdy().
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Fragment shader helper invocations execute the same shader code as non-helper invocations, but will not 
have side effects that modify the framebuffer or other shader-accessible memory.  In particular:

• Fragments corresponding to helper invocations are discarded when shader execution is complete,
without updating the framebuffer.

• Stores to image and buffer variables performed by helper invocations have no effect on the 
underlying image or buffer memory.

• Atomic operations to image, buffer, or atomic counter variables performed by helper invocations 
have no effect on the underlying image or buffer memory.  The values returned by such atomic 
operations are undefined.

Helper invocations may be generated for pixels not covered by a primitive being rendered.  While 
fragment shader inputs qualified with centroid are normally required to be sampled in the intersection of 
the pixel and the primitive, the requirement is ignored for such pixels since there is no intersection 
between the pixel and primitive.

Helper invocations may also be generated for fragments that are covered by a primitive being rendered 
when the fragment is killed by early fragment tests (using the early_fragment_tests qualifier) or where the 
implementation is able to determine that executing the fragment shader would have no effect other than 
assisting in computing derivatives for other fragment shader invocations.

The set of helper invocations generated when processing any set of primitives is implementation 
dependent.

The gl_PerVertex block can be redeclared in a shader to explicitly indicate what subset of the fixed 
pipeline interface will be used.  This is necessary to establish the interface between multiple programs.  
For example:

out gl_PerVertex {
    vec4 gl_Position;    // will use gl_Position
    float gl_PointSize;  // will use gl_PointSize
    vec4 t;              // error, only gl_PerVertex members allowed
};  // no other members of gl_PerVertex will be used

This establishes the output interface the shader will use with the subsequent pipeline stage.  It must be a 
subset of the built-in members of gl_PerVertex.  Such a redeclaration can also add the invariant qualifier,
interpolation qualifiers, and the layout qualifiers xfb_offset, xfb_buffer, and xfb_stride.  It can also add 
an array size for unsized arrays. For example:

out layout(xfb_buffer = 1, xfb_stride = 16) gl_PerVertex {
    vec4 gl_Position;
    layout(xfb_offset = 0) float gl_ClipDistance[4];
};

Other layout qualifiers, like location, cannot be added to such a redeclaration, unless specifically stated.

If a built-in interface block is redeclared, it must appear in the shader before any use of any member 
included in the built-in declaration, or a compile-time error will result.  It is also a compile-time error to 
redeclare the block more than once or to redeclare a built-in block and then use a member from that built-
in block that was not included in the redeclaration.  Also, if a built-in interface block is redeclared, no 
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member of the built-in declaration can be redeclared outside the block redeclaration.  If multiple shaders 
using members of a built-in block belonging to the same interface are linked together in the same 
program, they must all redeclare the built-in block in the same way, as described in section 4.3.9 
“Interface Blocks” for interface-block matching, or a link-time error will result.  It will also be a link-time 
error if some shaders in a program redeclare a specific built-in interface block while another shader in that
program does not redeclare that interface block yet still uses a member of that interface block.  If a built-
in block interface is formed across shaders in different programs, the shaders must all redeclare the built-
in block in the same way (as described for a single program), or the values passed along the interface are 
undefined.

7.1.1 Compatibility Profile Built-In Language Variables

When using the compatibility profile, the GL can provide fixed functionality behavior for the vertex and 
fragment programmable pipeline stages. For example, mixing a fixed functionality vertex stage with a 
programmable fragment stage.

The following built-in vertex, tessellation control, tessellation evaluation, and geometry output variables 
are available to specify inputs for the subsequent programmable shader stage or the fixed functionality 
fragment stage.  A particular one should be written to if any functionality in a corresponding fragment 
shader or fixed pipeline uses it or state derived from it.  Otherwise, behavior is undefined.  The following 
members are added to the output gl_PerVertex block in these languages:

out gl_PerVertex {       // part of the gl_PerVertex block described in 7.1
    // in addition to other gl_PerVertex members...
    vec4  gl_ClipVertex;
    vec4  gl_FrontColor;
    vec4  gl_BackColor;
    vec4  gl_FrontSecondaryColor;
    vec4  gl_BackSecondaryColor;
    vec4  gl_TexCoord[];
    float gl_FogFragCoord;
};

The output variable gl_ClipVertex provides a place for vertex and geometry shaders to write the 
coordinate to be used with the user clipping planes.  Writing to gl_ClipDistance is the preferred method 
for user clipping.  It is a compile-time or link-time error for the set of shaders forming a program to 
statically read or write both gl_ClipVertex and either gl_ClipDistance or gl_CullDistance.  If neither 
gl_ClipVertex nor gl_ClipDistance is written, their values are undefined and any clipping against user clip
planes is also undefined.

Similarly to what was previously described for the core profile, the gl_PerVertex block can be redeclared 
in a shader to explicitly include these additional members.  For example:
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out gl_PerVertex {
    vec4 gl_Position;    // will use gl_Position
    vec4 gl_FrontColor;  // will consume gl_color in the fragment shader
    vec4 gl_BackColor;
    vec4 gl_TexCoord[3]; // 3 elements of gl_TexCoord will be used
};  // no other aspects of the fixed interface will be used

The user must ensure the clip vertex and user clipping planes are defined in the same coordinate space.  
User clip planes work properly only under linear transform.  It is undefined what happens under non-
linear transform.

The output variables gl_FrontColor, glFrontSecondaryColor, gl_BackColor, and glBackSecondaryColor 
assign primary and secondary colors for front and back faces of primitives containing the vertex being 
processed.  The output variable gl_TexCoord assigns texture coordinates for the vertex being processed.

For gl_FogFragCoord, the value written will be used as the “c” value in section 16.4 “Fog” of the 
compatibility profile of the OpenGL Graphics System Specification, by the fixed functionality pipeline.  
For example, if the z-coordinate of the fragment in eye space is desired as “c”, then that's what the vertex 
shader executable should write into gl_FogFragCoord.

As with all arrays, indices used to subscript gl_TexCoord  must either be an integral constant expressions, 
or this array must be redeclared by the shader with a size.  The size can be at most gl_MaxTextureCoords. 
Using indexes close to 0 may aid the implementation in preserving varying resources.  The redeclaration 
of gl_TexCoord can also be done at global scope as, for example:

in vec4 gl_TexCoord[3];
out vec4 gl_TexCoord[4];

(This treatment is a special case for gl_TexCoord[], not a general method  for redeclaring members of 
blocks.)  It is a compile-time error to redeclare gl_TexCoord[] at global scope if there is a redeclaration of
the corresponding built-in block; only one form of redeclaration is allowed within a shader (and hence 
within a stage, as block redeclarations must match across all shaders using it).

In the tessellation control, evaluation, and geometry shaders, the outputs of the previous stage described 
above are also available in the input gl_PerVertex block in these languages.

in gl_PerVertex {        // part of the gl_PerVertex block described in 7.1
    // in addition to other gl_PerVertex members...
    vec4  gl_ClipVertex;
    vec4  gl_FrontColor;
    vec4  gl_BackColor;
    vec4  gl_FrontSecondaryColor;
    vec4  gl_BackSecondaryColor;
    vec4  gl_TexCoord[];
    float gl_FogFragCoord;
} gl_in[];

These can be redeclared to establish an explicit pipeline interface, the same way as described above for 
the output block gl_PerVertex, and the input redeclaration must match the output redeclaration of the 
previous stage.  However, when a built-in interface block with an instance name is redeclared (e.g., gl_in),
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the instance name must be included in the redeclaration.  It is a compile-time error to not include the built-
in instance name or to change its name.  For example,

in gl_PerVertex {
    vec4  gl_ClipVertex;
    vec4  gl_FrontColor;
} gl_in[];  // must be present and must be “gl_in[]”

Treatment of gl_TexCoord[] redeclaration is also identical to that described for the output block 
gl_TexCoord[] redeclaration.

The following fragment input block is also available in a fragment shader when using the compatibility 
profile:

in gl_PerFragment {
    in float gl_FogFragCoord; 
    in vec4  gl_TexCoord[]; 
    in vec4  gl_Color; 
    in vec4  gl_SecondaryColor; 
};

The values in gl_Color and gl_SecondaryColor will be derived automatically by the system from 
gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and gl_BackSecondaryColor based on which 
face is visible in the primitive producing the fragment.  If fixed functionality is used for vertex processing,
then gl_FogFragCoord will either be the z-coordinate of the fragment in eye space, or the interpolation of
the fog coordinate, as described in section 16.4 “Fog” of the compatibility profile of the OpenGL 
Graphics System Specification.  The gl_TexCoord[] values are the interpolated gl_TexCoord[] values 
from a vertex shader or the texture coordinates of any fixed pipeline based vertex functionality.

Indices to the fragment shader gl_TexCoord array are as described above in the vertex shader text.

As described above for the input and output gl_PerVertex blocks, the gl_PerFragment block can be 
redeclared to create an explicit interface to another program.  When matching these interfaces between 
separate programs, members in the gl_PerVertex output block must be declared if and only if the 
corresponding fragment-shader members generated from them are present in the gl_PerFragment input 
block.  These matches are described in detail in section 7.4.1 “Shader Interface Matching” of the OpenGL
Graphics System Specification.  If they don't match within a program, a link-time error will result.  If the 
mismatch is between two programs, values passed between programs are undefined.  Unlike with all other
block matching, the order of declaration within gl_PerFragment does not have to match across shaders 
and does not have to correspond with order of declaration in a matching gl_PerVertex redeclaration.

The following fragment output variables are available in a fragment shader when using the compatibility 
profile:

out vec4 gl_FragColor;
out vec4 gl_FragData[gl_MaxDrawBuffers];

Writing to gl_FragColor specifies the fragment color that will be used by the subsequent fixed 
functionality pipeline. If subsequent fixed functionality consumes fragment color and an execution of the 
fragment shader executable does not write a value to gl_FragColor then the fragment color consumed is 
undefined.
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The variable gl_FragData is an array. Writing to gl_FragData[n] specifies the fragment data that will be 
used by the subsequent fixed functionality pipeline for data n.  If subsequent fixed functionality consumes 
fragment data and an execution of a fragment shader executable does not write a value to it, then the 
fragment data consumed is undefined.

If a shader statically assigns a value to gl_FragColor, it may not assign a value to any element of 
gl_FragData.  If a shader statically writes a value to any element of gl_FragData, it may not assign a 
value to gl_FragColor.  That is, a shader may assign values to either gl_FragColor or gl_FragData, but 
not both. Multiple shaders linked together must also consistently write just one of these variables.  
Similarly, if user-declared output variables are in use (statically assigned to), then the built-in variables 
gl_FragColor and gl_FragData may not be assigned to. These incorrect usages all generate compile-time 
or link-time errors.

If a shader executes the discard keyword, the fragment is discarded, and the values of gl_FragDepth and 
gl_FragColor become irrelevant.

7.2 Compatibility Profile Vertex Shader Built-In Inputs
The following predeclared input names can be used from within a vertex shader to access the current 
values of OpenGL state when using the compatibility profile.

in vec4  gl_Color;
in vec4  gl_SecondaryColor;
in vec3  gl_Normal;
in vec4  gl_Vertex;
in vec4  gl_MultiTexCoord0;
in vec4  gl_MultiTexCoord1;
in vec4  gl_MultiTexCoord2;
in vec4  gl_MultiTexCoord3;
in vec4  gl_MultiTexCoord4;
in vec4  gl_MultiTexCoord5;
in vec4  gl_MultiTexCoord6;
in vec4  gl_MultiTexCoord7;
in float gl_FogCoord;
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7.3 Built-In Constants
The following built-in constants are provided to all shaders.  The actual values used are implementation 
dependent, but must be at least the value shown.

//
// Implementation-dependent constants.  The example values below
// are the minimum values allowed for these maximums.
//

const ivec3 gl_MaxComputeWorkGroupCount = { 65535, 65535, 65535 };
const ivec3 gl_MaxComputeWorkGroupSize = { 1024, 1024, 64 };
const int gl_MaxComputeUniformComponents = 512;
const int gl_MaxComputeTextureImageUnits = 16;
const int gl_MaxComputeImageUniforms = 8;
const int gl_MaxComputeAtomicCounters = 8;
const int gl_MaxComputeAtomicCounterBuffers = 8;

const int  gl_MaxVertexAttribs = 16;
const int  gl_MaxVertexUniformComponents = 1024;

const int  gl_MaxVaryingComponents = 60;        
const int  gl_MaxVertexOutputComponents = 64;
const int  gl_MaxGeometryInputComponents = 64;
const int  gl_MaxGeometryOutputComponents = 128;
const int  gl_MaxFragmentInputComponents = 128;
const int  gl_MaxVertexTextureImageUnits = 16;
const int  gl_MaxCombinedTextureImageUnits = 96;
const int  gl_MaxTextureImageUnits = 16;
const int  gl_MaxImageUnits = 8;
const int  gl_MaxCombinedImageUnitsAndFragmentOutputs = 8;  // deprecated
const int  gl_MaxCombinedShaderOutputResources = 8;
const int  gl_MaxImageSamples = 0;
const int  gl_MaxVertexImageUniforms = 0;
const int  gl_MaxTessControlImageUniforms = 0;
const int  gl_MaxTessEvaluationImageUniforms = 0;
const int  gl_MaxGeometryImageUniforms = 0;
const int  gl_MaxFragmentImageUniforms = 8;
const int  gl_MaxCombinedImageUniforms = 8;
const int  gl_MaxFragmentUniformComponents = 1024;
const int  gl_MaxDrawBuffers = 8;
const int  gl_MaxClipDistances = 8;
const int  gl_MaxGeometryTextureImageUnits = 16;

const int  gl_MaxGeometryOutputVertices = 256;
const int  gl_MaxGeometryTotalOutputComponents = 1024;
const int  gl_MaxGeometryUniformComponents = 1024;
const int  gl_MaxGeometryVaryingComponents = 64;            // deprecated
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const int gl_MaxTessControlInputComponents = 128;
const int gl_MaxTessControlOutputComponents = 128;
const int gl_MaxTessControlTextureImageUnits = 16;
const int gl_MaxTessControlUniformComponents = 1024;
const int gl_MaxTessControlTotalOutputComponents = 4096;

const int gl_MaxTessEvaluationInputComponents = 128;
const int gl_MaxTessEvaluationOutputComponents = 128;
const int gl_MaxTessEvaluationTextureImageUnits = 16;
const int gl_MaxTessEvaluationUniformComponents = 1024;

const int gl_MaxTessPatchComponents = 120;
const int gl_MaxPatchVertices = 32;
const int gl_MaxTessGenLevel = 64;

const int gl_MaxViewports = 16;

const int gl_MaxVertexUniformVectors = 256;
const int gl_MaxFragmentUniformVectors = 256;
const int gl_MaxVaryingVectors = 15;

const int gl_MaxVertexAtomicCounters = 0;
const int gl_MaxTessControlAtomicCounters = 0;
const int gl_MaxTessEvaluationAtomicCounters = 0;
const int gl_MaxGeometryAtomicCounters = 0;
const int gl_MaxFragmentAtomicCounters = 8;
const int gl_MaxCombinedAtomicCounters = 8;
const int gl_MaxAtomicCounterBindings = 1;
const int gl_MaxVertexAtomicCounterBuffers = 0;
const int gl_MaxTessControlAtomicCounterBuffers = 0;
const int gl_MaxTessEvaluationAtomicCounterBuffers = 0;
const int gl_MaxGeometryAtomicCounterBuffers = 0;
const int gl_MaxFragmentAtomicCounterBuffers = 1;
const int gl_MaxCombinedAtomicCounterBuffers = 1;
const int gl_MaxAtomicCounterBufferSize = 32;

const int gl_MinProgramTexelOffset = -8;
const int gl_MaxProgramTexelOffset = 7;

const int gl_MaxTransformFeedbackBuffers = 4;
const int gl_MaxTransformFeedbackInterleavedComponents = 64;

const int gl_MaxCullDistances = 8;
const int gl_MaxCombinedClipAndCullDistances = 8;
const int gl_MaxSamples = 4;

135



7 Built-in Variables

const int gl_MaxVertexImageUniforms = 0;
const int gl_MaxFragmentImageUniforms = 8;
const int gl_MaxComputeImageUniforms = 8;
const int gl_MaxCombinedImageUniforms = 48;
const int gl_MaxCombinedShaderOutputResources = 16;

The constant gl_MaxVaryingFloats is removed in the core profile, use gl_MaxVaryingComponents 
instead.

7.3.1 Compatibility Profile Built-In Constants

const   int  gl_MaxTextureUnits = 2;
const   int  gl_MaxTextureCoords = 8;
const   int  gl_MaxClipPlanes = 8;
const   int  gl_MaxVaryingFloats = 60;

7.4 Built-In Uniform State
As an aid to accessing OpenGL processing state, the following uniform variables are built into the 
OpenGL Shading Language.  

//
// Depth range in window coordinates, 
// section 13.6.1 “Controlling the Viewport” in the 
// OpenGL Graphics System Specification.
//
// Note:  Depth-range state is only for viewport 0.
//
struct gl_DepthRangeParameters {
    float near;        // n
    float far;         // f
    float diff;        // f - n
};
uniform gl_DepthRangeParameters gl_DepthRange;

uniform int gl_NumSamples;

7.4.1 Compatibility Profile State

These variables are present only in the compatibility profile.  They are not available to compute shaders, 
but are available to all other shaders.

//
// compatibility profile only
//
uniform mat4  gl_ModelViewMatrix;
uniform mat4  gl_ProjectionMatrix;
uniform mat4  gl_ModelViewProjectionMatrix;
uniform mat4  gl_TextureMatrix[gl_MaxTextureCoords];
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//
// compatibility profile only
//
uniform mat3  gl_NormalMatrix; // transpose of the inverse of the 
                               // upper leftmost 3x3 of gl_ModelViewMatrix

uniform mat4  gl_ModelViewMatrixInverse;
uniform mat4  gl_ProjectionMatrixInverse;
uniform mat4  gl_ModelViewProjectionMatrixInverse;
uniform mat4  gl_TextureMatrixInverse[gl_MaxTextureCoords];

uniform mat4  gl_ModelViewMatrixTranspose;
uniform mat4  gl_ProjectionMatrixTranspose;
uniform mat4  gl_ModelViewProjectionMatrixTranspose;
uniform mat4  gl_TextureMatrixTranspose[gl_MaxTextureCoords];

uniform mat4  gl_ModelViewMatrixInverseTranspose;
uniform mat4  gl_ProjectionMatrixInverseTranspose;
uniform mat4  gl_ModelViewProjectionMatrixInverseTranspose;
uniform mat4  gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords];

//
// compatibility profile only
//
uniform float gl_NormalScale;

//
// compatibility profile only
//
uniform vec4  gl_ClipPlane[gl_MaxClipPlanes];

//
// compatibility profile only
//
struct gl_PointParameters {
    float size;
    float sizeMin;
    float sizeMax;
    float fadeThresholdSize;
    float distanceConstantAttenuation;
    float distanceLinearAttenuation;
    float distanceQuadraticAttenuation;
};
 
uniform gl_PointParameters gl_Point;
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//
// compatibility profile only
//
struct gl_MaterialParameters {
    vec4  emission;    // Ecm
    vec4  ambient;     // Acm
    vec4  diffuse;     // Dcm
    vec4  specular;    // Scm
    float shininess;   // Srm
};
uniform gl_MaterialParameters  gl_FrontMaterial;
uniform gl_MaterialParameters  gl_BackMaterial;

//
// compatibility profile only
//

struct gl_LightSourceParameters {
    vec4  ambient;             // Acli
    vec4  diffuse;             // Dcli
    vec4  specular;            // Scli
    vec4  position;            // Ppli
    vec4  halfVector;          // Derived: Hi
    vec3  spotDirection;       // Sdli
    float spotExponent;        // Srli
    float spotCutoff;          // Crli
                               // (range: [0.0,90.0], 180.0)
    float spotCosCutoff;       // Derived: cos(Crli)
                               // (range: [1.0,0.0],-1.0)
    float constantAttenuation; // K0
    float linearAttenuation;   // K1
    float quadraticAttenuation;// K2
};

uniform gl_LightSourceParameters  gl_LightSource[gl_MaxLights];

struct gl_LightModelParameters {
    vec4  ambient;       // Acs
};

uniform gl_LightModelParameters  gl_LightModel;

//
// compatibility profile only
//
// Derived state from products of light and material.
//

struct gl_LightModelProducts {
    vec4  sceneColor;     // Derived. Ecm + Acm * Acs
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};

uniform gl_LightModelProducts gl_FrontLightModelProduct;
uniform gl_LightModelProducts gl_BackLightModelProduct; 

struct gl_LightProducts {
    vec4  ambient;        // Acm * Acli
    vec4  diffuse;        // Dcm * Dcli
    vec4  specular;       // Scm * Scli
};

uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights];
uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];

//
// compatibility profile only
//
uniform vec4  gl_TextureEnvColor[gl_MaxTextureUnits];
uniform vec4  gl_EyePlaneS[gl_MaxTextureCoords];
uniform vec4  gl_EyePlaneT[gl_MaxTextureCoords];
uniform vec4  gl_EyePlaneR[gl_MaxTextureCoords];
uniform vec4  gl_EyePlaneQ[gl_MaxTextureCoords];
uniform vec4  gl_ObjectPlaneS[gl_MaxTextureCoords];
uniform vec4  gl_ObjectPlaneT[gl_MaxTextureCoords];
uniform vec4  gl_ObjectPlaneR[gl_MaxTextureCoords];
uniform vec4  gl_ObjectPlaneQ[gl_MaxTextureCoords];

//
// compatibility profile only
//
struct gl_FogParameters {
    vec4 color;
    float density;
    float start;
    float end;
    float scale;   // Derived:   1.0 / (end - start)
};
 
uniform gl_FogParameters gl_Fog;
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The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar and 
vector operations. Many of these built-in functions can be used in more than one type of shader, but some 
are intended to provide a direct mapping to hardware and so are available only for a specific type of 
shader.

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing a texture 
map.  There is no way in the language for these functions to be emulated by a shader.

• They represent a trivial operation (clamp, mix, etc.) that is very simple for the user to write, but they 
are very common and may have direct hardware support.  It is a very hard problem for the compiler to 
map expressions to complex assembler instructions.

• They represent an operation graphics hardware is likely to accelerate at some point.  The trigonometry 
functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support vector 
input as well as the more traditional scalar input. 

Applications should be encouraged to use the built-in functions rather than do the equivalent computations
in their own shader code since the built-in functions are assumed to be optimal (e.g., perhaps supported 
directly in hardware).

User code can replace built-in functions with their own if they choose, by simply redeclaring and defining 
the same name and argument list.  Because built-in functions are in a more outer scope than user built-in 
functions, doing this will hide all built-in functions with the same name as the redeclared function.

When the built-in functions are specified below, where the input arguments (and corresponding output) 
can be float, vec2, vec3, or vec4, genType is used as the argument.  Where the input arguments (and 
corresponding output) can be int, ivec2, ivec3, or ivec4, genIType is used as the argument. Where the 
input arguments (and corresponding output) can be uint, uvec2, uvec3, or uvec4, genUType is used as the
argument.  Where the input arguments (or corresponding output) can be bool, bvec2, bvec3, or bvec4, 
genBType is used as the argument.  Where the input arguments (and corresponding output) can be double,
dvec2, dvec3, dvec4, genDType is used as the argument.  For any specific use of a function, the actual 
types substituted for genType, genIType, genUType, or genBType  have to have the same number of 
components for all arguments and for the return type.  Similarly, mat is used for any matrix basic type 
with single-precision components and dmat is used for any matrix basic type with double-precision 
components.
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8.1 Angle and Trigonometry Functions
Function parameters specified as angle are assumed to be in units of radians. In no case will any of these 
functions result in a divide by zero error.  If the divisor of a ratio is 0, then results will be undefined.

These all operate component-wise.  The description is per component.

Syntax Description

genType radians (genType degrees)
Converts degrees to radians, i.e.,



180
⋅degrees

genType degrees (genType radians)
Converts radians to degrees, i.e.,

180


⋅radians

genType sin (genType angle) The standard trigonometric sine function.

genType cos (genType angle) The standard trigonometric cosine function.

genType tan (genType angle) The standard trigonometric tangent.

genType asin (genType x) Arc sine.  Returns an angle whose sine is x.  The range 

of values returned by this function is [− 

2
,


2 ]
Results are undefined if ∣x∣1.

genType acos (genType x) Arc cosine.  Returns an angle whose cosine is x. The 
range of values returned by this function is [0, p].  
Results are undefined if ∣x∣1.

genType atan (genType y, genType x) Arc tangent.  Returns an angle whose tangent is y/x.  The
signs of x and y are used to determine what quadrant the 
angle is in.  The range of values returned by this 
function is [− ,] .  Results are undefined if x and 
y are both 0.

genType atan (genType y_over_x) Arc tangent.  Returns an angle whose tangent is 
y_over_x.  The range of values returned by this function 

is [− 

2
,


2 ] .
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Syntax Description

genType sinh (genType x) Returns the hyperbolic sine function
e x− e−x

2

genType cosh (genType x) Returns the hyperbolic cosine function
e x

e−x

2

genType tanh (genType x) Returns the hyperbolic tangent function
sinh x

cosh  x

genType asinh (genType x) Arc hyperbolic sine; returns the inverse of sinh.

genType acosh (genType x) Arc hyperbolic cosine; returns the non-negative inverse 
of cosh.  Results are undefined if x < 1.

genType atanh (genType x) Arc hyperbolic tangent; returns the inverse of tanh.  
Results are undefined if ∣x∣≥1.
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8.2 Exponential Functions
These all operate component-wise.  The description is per component.

Syntax Description

genType pow (genType x, genType y) Returns x raised to the y power, i.e., x y

Results are undefined if x < 0.  

Results are undefined if x = 0 and y <= 0.

genType exp (genType x) Returns the natural exponentiation of x, i.e., ex.

genType log (genType x) Returns the natural logarithm of x, i.e., returns the value 
y which satisfies the equation x = ey.

Results are undefined if x <= 0.

genType exp2 (genType x) Returns 2 raised to the x power, i.e., 2 x

genType log2 (genType x) Returns the base 2 logarithm of x, i.e., returns the value 
y which satisfies the equation x=2y

Results are undefined if x <= 0.

genType sqrt (genType x)
genDType sqrt (genDType x)

Returns √x .

Results are undefined if x < 0.

genType inversesqrt (genType x)
genDType inversesqrt (genDType x) Returns 

1

√x
.

Results are undefined if x <= 0.
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8.3 Common Functions
These all operate component-wise.  The description is per component.

Syntax Description

genType abs (genType x)
genIType abs (genIType x)
genDType abs (genDType x)

Returns x if x >= 0; otherwise it returns –x.

genType sign (genType x)
genIType sign (genIType x)
genDType sign (genDType x)

Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0.

genType floor (genType x)
genDType floor (genDType x)

Returns a value equal to the nearest integer that is less 
than or equal to x.

genType trunc (genType x)
genDType trunc (genDType x)

Returns a value equal to the nearest integer to x whose 
absolute value is not larger than the absolute value of x.

genType round (genType x)
genDType round (genDType x)

Returns a value equal to the nearest integer to x.  The 
fraction 0.5 will round in a direction chosen by the 
implementation, presumably the direction that is fastest.  
This includes the possibility that round(x) returns the 
same value as roundEven(x) for all values of x.

genType roundEven (genType x)
genDType roundEven (genDType x)

Returns a value equal to the nearest integer to x.  A 
fractional part of 0.5 will round toward the nearest even 
integer.  (Both 3.5 and 4.5 for x will return 4.0.)

genType ceil (genType x)
genDType ceil (genDType x)

Returns a value equal to the nearest integer that is 
greater than or equal to x.

genType fract (genType x)
genDType fract (genDType x)

Returns x – floor (x).

genType mod (genType x, float y)
genType mod (genType x, genType y)
genDType mod (genDType x, double y)
genDType mod (genDType x, genDType y)

Modulus.  Returns x – y * floor (x/y).
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Syntax Description

genType modf (genType x, out genType i)
genDType modf (genDType x, 
                             out genDType i)

Returns the fractional part of x and sets i to the integer 
part (as a whole number floating-point value).  Both the 
return value and the output parameter will have the same
sign as x.

genType min (genType x, genType y)
genType min (genType x, float y)
genDType min (genDType x, genDType y)
genDType min (genDType x, double y)
genIType min (genIType x, genIType y)
genIType min (genIType x, int y)
genUType min (genUType x, genUType y)
genUType min (genUType x, uint y)

Returns y if y < x; otherwise it returns x.

genType max (genType x, genType y)
genType max (genType x, float y)
genDType max (genDType x, genDType y)
genDType max (genDType x, double y)
genIType max (genIType x, genIType y)
genIType max (genIType x, int y)
genUType max (genUType x, genUType y)
genUType max (genUType x, uint y)

Returns y if x < y; otherwise it returns x.
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Syntax Description

genType clamp (genType x,
                           genType minVal,
                           genType maxVal)
genType clamp (genType x, 
                           float minVal, 
                           float maxVal)
genDType clamp (genDType x,
                              genDType minVal,
                              genDType maxVal)
genDType clamp (genDType x, 
                              double minVal, 
                              double maxVal)
genIType clamp (genIType x,
                             genIType minVal,
                             genIType maxVal)
genIType clamp (genIType x,
                             int minVal,
                             int maxVal)
genUType clamp (genUType x,
                              genUType minVal,
                              genUType maxVal)
genUType clamp (genUType x,
                              uint minVal,
                              uint maxVal)

Returns min (max (x, minVal), maxVal).

Results are undefined if minVal > maxVal.

genType mix (genType x,
                        genType y,
                        genType a)
genType mix (genType x,
                        genType y,
                        float a)
genDType mix (genDType x,
                          genDType y,
                          genDType a)
genDType mix (genDType x,
                          genDType y,
                          double a)

Returns the linear blend of x and y, i.e.,
x⋅(1−a )+ y⋅a
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Syntax Description

genType mix (genType x,
                        genType y,
                        genBType a)

genDType mix (genDType x,
                           genDType y,
                           genBType a)

genIType mix (genIType x,
                         genIType y,
                         genBType a)

genUType mix (genUType x,
                          genUType y,
                          genBType a)

genBType mix (genBType x,
                          genBType y,
                          genBType a)

Selects which vector each returned component comes 
from.  For a component of a that is false, the 
corresponding component of x is returned.  For a 
component of a that is true, the corresponding 
component of y is returned.  Components of x and y that 
are not selected are allowed to be invalid floating-point 
values and will have no effect on the results.  Thus, this 
provides different functionality than, for example, 

    genType mix(genType x, genType y, genType(a)) 

where a is a Boolean vector.

genType step (genType edge, genType x)
genType step (float edge, genType x)
genDType step (genDType edge, 
                           genDType x)
genDType step (double edge, genDType x)

Returns 0.0 if x < edge; otherwise it returns 1.0.

genType smoothstep (genType edge0, 
                                    genType edge1, 
                                    genType x)
genType smoothstep (float edge0, 
                                    float edge1, 
                                    genType x)
genDType smoothstep (genDType edge0, 
                                       genDType edge1, 
                                       genDType x)
genDType smoothstep (double edge0, 
                                       double edge1, 
                                       genDType x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and 
performs smooth Hermite interpolation between 0 and 1 
when edge0 < x < edge1.  This is useful in cases where 
you would want a threshold function with a smooth 
transition.  This is equivalent to:

    genType t;
    t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);
    return t * t * (3 – 2 * t);

(And similarly for doubles.)

Results are undefined if edge0 >= edge1.

genBType isnan (genType x)
genBType isnan (genDType x)

Returns true if x holds a NaN.  Returns false otherwise.  
Always returns false if NaNs are not implemented.

genBType isinf (genType x)
genBType isinf (genDType x)

Returns true if x holds a positive infinity or negative 
infinity.  Returns false otherwise.
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Syntax Description

genIType  floatBitsToInt (genType value)
genUType floatBitsToUint (genType value)

Returns a signed or unsigned integer value representing 
the encoding of a float.  The float value's bit-level 
representation is preserved.

genType intBitsToFloat  (genIType value)
genType uintBitsToFloat (genUType value)

Returns a float value corresponding to a signed or 
unsigned integer encoding of a float.  If a NaN is passed 
in, it will not signal, and the resulting value is 
unspecified.  If an Inf is passed in, the resulting value is 
the corresponding Inf.

genType fma (genType a, genType b,
                        genType c)
genDType fma (genDType a, genDType b,
                           genDType c)

Computes and returns a*b + c.

In uses where the return value is eventually consumed by
a variable declared as precise:

• fma() is considered a single operation, whereas the 
expression “a*b + c” consumed by a variable 
declared precise is considered two operations.

• The precision of fma() can differ from the precision 
of the expression “a*b + c”.

• fma() will be computed with the same precision as 
any other fma() consumed by a precise variable, 
giving invariant results for the same input values of 
a, b, and c.

Otherwise, in the absence of precise consumption, there 
are no special constraints on the number of operations or
difference in precision between fma() and the expression
“a*b + c”.

genType frexp (genType x, 
                          out genIType exp)
genDType frexp (genDType x, 
                             out genIType exp)

Splits x into a floating-point significand in the range 
[0.5, 1.0) and an integral exponent of two, such that:

x=significand⋅2exponent

The significand is returned by the function and the 
exponent is returned in the parameter exp.  For a 
floating-point value of zero, the significand and 
exponent are both zero.  For a floating-point value that is
an infinity or is not a number, the results are undefined.

If an implementation supports negative 0, frexp(-0) 
should return -0; otherwise it will return 0.
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Syntax Description

genType ldexp (genType x, 
                          genIType exp)
genDType ldexp (genDType x, 
                             genIType exp)

Builds a floating-point number from x and the 
corresponding integral exponent of two in exp, returning:

significand⋅2exponent

If this product is too large to be represented in the 
floating-point type, the result is undefined.

If exp is greater than +128 (single-precision) or +1024 
(double-precision), the value returned is undefined.  If 
exp is less than -126 (single-precision) or -1022 (double-
precision), the value returned may be flushed to zero.  
Additionally, splitting the value into a significand and 
exponent using frexp() and then reconstructing a 
floating-point value using ldexp() should yield the 
original input for zero and all finite non-denormized 
values.

8.4 Floating-Point Pack and Unpack Functions
These functions do not operate component-wise, rather, as described in each case.

Syntax Description

uint packUnorm2x16 (vec2 v)
uint packSnorm2x16 (vec2 v)
uint packUnorm4x8 (vec4 v)
uint packSnorm4x8 (vec4 v)

First, converts each component of the normalized 
floating-point value v into 8- or 16-bit integer values.  
Then, the results are packed into the returned 32-bit 
unsigned integer.

The conversion for component c of v to fixed point is 
done as follows:

packUnorm2x16:  round(clamp(c,  0, +1) * 65535.0)
packSnorm2x16:  round(clamp(c, -1, +1) * 32767.0)
packUnorm4x8:    round(clamp(c,  0, +1) * 255.0)
packSnorm4x8:     round(clamp(c, -1, +1) * 127.0)

The first component of the vector will be written to the 
least significant bits of the output; the last component 
will be written to the most significant bits.
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Syntax Description

vec2 unpackUnorm2x16 (uint p)
vec2 unpackSnorm2x16 (uint p)
vec4 unpackUnorm4x8 (uint p)
vec4 unpackSnorm4x8 (uint p)

First, unpacks a single 32-bit unsigned integer p into a 
pair of 16-bit unsigned integers, a pair of 16-bit signed 
integers, four 8-bit unsigned integers, or four 8-bit 
signed integers.  Then, each component is converted to a
normalized floating-point value to generate the returned 
two- or four-component vector.

The conversion for unpacked fixed-point value f  to 
floating point is done as follows:

unpackUnorm2x16:   f / 65535.0
unpackSnorm2x16:  clamp(f / 32767.0, -1, +1)
unpackUnorm4x8:     f / 255.0
unpackSnorm4x8:     clamp(f / 127.0, -1, +1)

The first component of the returned vector will be 
extracted from the least significant bits of the input; the 
last component will be extracted from the most 
significant bits.

double packDouble2x32 (uvec2 v) Returns a double-precision value obtained by packing 
the components of v into a 64-bit value.  If an IEEE 754 
Inf or NaN is created, it will not signal, and the resulting 
floating-point value is unspecified.  Otherwise, the bit-
level representation of v is preserved.  The first vector 
component specifies the 32 least significant bits; the 
second component specifies the 32 most significant bits.

uvec2 unpackDouble2x32 (double v) Returns a two-component unsigned integer vector 
representation of v.  The bit-level representation of v is 
preserved.  The first component of the vector contains 
the 32 least significant bits of the double; the second 
component consists of the 32 most significant bits.

uint packHalf2x16 (vec2 v) Returns an unsigned integer obtained by converting the 
components of a two-component floating-point vector to 
the 16-bit floating-point representation found in the 
OpenGL Specification, and then packing these two 16-
bit integers into a 32-bit unsigned integer.

The first vector component specifies the 16 least-
significant bits of the result; the second component 
specifies the 16 most-significant bits.
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Syntax Description

vec2 unpackHalf2x16 (uint v) Returns a two-component floating-point vector with 
components obtained by unpacking a 32-bit unsigned 
integer into a pair of 16-bit values, interpreting those 
values as 16-bit floating-point numbers according to the 
OpenGL Specification, and converting them to 32-bit 
floating-point values.

The first component of the vector is obtained from the 
16 least-significant bits of v; the second component is 
obtained from the 16 most-significant bits of v.
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8.5 Geometric Functions
These operate on vectors as vectors, not component-wise.

Syntax Description

float length (genType x)

double length (genDType x)

Returns the length of vector x, i.e.,

√x[0]
2
+ x[1 ]

2
+ ...

float distance (genType p0, genType p1)
double distance (genDType p0,

genDType p1)

Returns the distance between p0 and p1, i.e.,
length (p0 – p1)

float dot (genType x, genType y)
double dot (genDType x, genDType y)

Returns the dot product of x and y, i.e.,
x [0]⋅y [0 ]+ x [1]⋅y [1 ]+ ...

vec3 cross (vec3 x, vec3 y)

dvec3 cross (dvec3 x, dvec3 y)

Returns the cross product of x and y, i.e.,

[
x[1]⋅y [2 ]− y[1]⋅x[2]
x[2]⋅y[0 ]− y[2 ]⋅x [0 ]
x [0 ]⋅y[1 ]− y[0]⋅x[1]]

genType normalize (genType x)

genDType normalize (genDType x)

Returns a vector in the same direction as x but with a 
length of 1.

compatibility profile only
vec4 ftransform ()

Available only when using the compatibility profile.  For
core OpenGL, use invariant.

For vertex shaders only.  This function will ensure that 
the incoming vertex value will be transformed in a way 
that produces exactly the same result as would be 
produced by OpenGL’s fixed functionality transform. It 
is intended to be used to compute gl_Position, e.g.,

    gl_Position = ftransform()

This function should be used, for example, when an 
application is rendering the same geometry in separate 
passes, and one pass uses the fixed functionality path to 
render and another pass uses programmable shaders.

152



8 Built-in Functions

Syntax Description

genType faceforward (genType N,
genType I,
genType Nref)

genDType faceforward (genDType N,
genDType I,
genDType Nref)

If dot(Nref, I) < 0 return N, otherwise return –N.

genType reflect (genType I, genType N)

genDType reflect (genDType I, 
genDType N)

For the incident vector I and surface orientation N, 
returns the reflection direction:

I – 2 * dot(N, I) * N
N must already be normalized in order to achieve the 
desired result.

genType refract (genType I, genType N,
float eta)

genDType refract (genDType I, 
genDType N,
float eta)

For the incident vector I and surface normal N, and the 
ratio of indices of refraction eta, return the refraction 
vector.  The result is computed by

k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
if (k < 0.0) 
    return genType(0.0)    // or genDType(0.0)
else 
    return eta * I - (eta * dot(N, I) + sqrt(k)) * N

The input parameters for the incident vector I and the 
surface normal N must already be normalized to get the 
desired results.
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8.6 Matrix Functions
For each of the following built-in matrix functions, there is both a single-precision floating-point version, 
where all arguments and return values are single precision, and a double-precision floating-point version, 
where all arguments and return values are double precision.  Only the single-precision floating-point 
version is shown.

Syntax Description

mat matrixCompMult (mat x, mat y) Multiply matrix x by matrix y component-wise, i.e., 
result[i][j] is the scalar product of x[i][j] and  y[i][j].

Note: to get linear algebraic matrix multiplication, use 
the multiply operator (*).

mat2 outerProduct (vec2 c, vec2 r)
mat3 outerProduct (vec3 c, vec3 r)
mat4 outerProduct (vec4 c, vec4 r)

mat2x3 outerProduct (vec3 c, vec2 r)
mat3x2 outerProduct (vec2 c, vec3 r)

mat2x4 outerProduct (vec4 c, vec2 r)
mat4x2 outerProduct (vec2 c, vec4 r)

mat3x4 outerProduct (vec4 c, vec3 r)
mat4x3 outerProduct (vec3 c, vec4 r)

Treats the first parameter c as a column vector (matrix 
with one column) and the second parameter r as a row 
vector (matrix with one row) and does a linear algebraic 
matrix multiply c * r, yielding a matrix whose number of 
rows is the number of components in c and whose 
number of columns is the number of components in r.

mat2 transpose (mat2 m)
mat3 transpose (mat3 m)
mat4 transpose (mat4 m)

mat2x3 transpose (mat3x2 m)
mat3x2 transpose (mat2x3 m)

mat2x4 transpose (mat4x2 m)
mat4x2 transpose (mat2x4 m)

mat3x4 transpose (mat4x3 m)
mat4x3 transpose (mat3x4 m)

Returns a matrix that is the transpose of m.  The input 
matrix m is not modified.

float determinant (mat2 m)
float determinant (mat3 m)
float determinant (mat4 m)

Returns the determinant of m.
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Syntax Description

mat2 inverse (mat2 m)
mat3 inverse (mat3 m)
mat4 inverse (mat4 m)

Returns a matrix that is the inverse of m. The input 
matrix m is not modified. The values in the returned 
matrix are undefined if m is singular or poorly-
conditioned (nearly singular).
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8.7 Vector Relational Functions
Relational and equality operators (<, <=, >, >=, ==, !=) are defined to operate on scalars and produce 
scalar Boolean results.  For vector results, use the following built-in functions.  Below, the following 
placeholders are used for the listed specific types:

Placeholder Specific Types Allowed

bvec bvec2, bvec3, bvec4

ivec ivec2, ivec3, ivec4

uvec uvec2, uvec3, uvec4

vec vec2, vec3, vec4, dvec2, dvec3, dvec4

In all cases, the sizes of all the input and return vectors for any particular call must match.

Syntax Description

bvec lessThan (vec x, vec y)
bvec lessThan (ivec x, ivec y)
bvec lessThan (uvec x, uvec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual (vec x, vec y)
bvec lessThanEqual (ivec x, ivec y)
bvec lessThanEqual (uvec x, uvec y)

Returns the component-wise compare of x <= y.

bvec greaterThan (vec x, vec y)
bvec greaterThan (ivec x, ivec y)
bvec greaterThan (uvec x, uvec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual (vec x, vec y)
bvec greaterThanEqual (ivec x, ivec y)
bvec greaterThanEqual (uvec x, uvec y)

Returns the component-wise compare of x >= y.

bvec equal (vec x, vec y)
bvec equal (ivec x, ivec y)
bvec equal (uvec x, uvec y)
bvec equal (bvec x, bvec y)

Returns the component-wise compare of x == y.

bvec notEqual (vec x, vec y)
bvec notEqual (ivec x, ivec y)
bvec notEqual (uvec x, uvec y)
bvec notEqual (bvec x, bvec y)

Returns the component-wise compare of x != y.
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Syntax Description

bool any (bvec x) Returns true if any component of x is true.

bool all (bvec x) Returns true only if all components of x are true.

bvec not (bvec x) Returns the component-wise logical complement of x.
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8.8 Integer Functions
These all operate component-wise.  The description is per component.  The notation [a, b] means the set 
of bits from bit-number a through bit-number b, inclusive.  The lowest-order bit is bit 0.  “Bit number” 
will always refer to counting up from the lowest-order bit as bit 0.

Syntax Description

genUType uaddCarry (genUType x,
genUType y, 
out genUType carry)

Adds 32-bit unsigned integer x and y, returning the sum 
modulo 232.  The value carry is set to 0 if the sum was 
less than 232, or to 1 otherwise.

genUType usubBorrow (genUType x,
genUType y,
out genUType 
borrow)

Subtracts the 32-bit unsigned integer y from x, returning
the difference if non-negative, or 232 plus the difference
otherwise.  The value borrow is set to 0 if x >= y, or to 
1 otherwise.

void umulExtended (genUType x,
genUType y,
out genUType msb,
out genUType lsb)

void imulExtended (genIType x,
genIType y,
out genIType msb,
out genIType lsb)

Multiplies 32-bit integers x and y, producing a 64-bit 
result.  The 32 least-significant bits are returned in lsb. 
The 32 most-significant bits are returned in msb.

genIType bitfieldExtract (genIType value,
int offset, int bits)

genUType bitfieldExtract (genUType value,
int offset, int bits)

Extracts bits [offset, offset + bits - 1] from value, 
returning them in the least significant bits of the result.

For unsigned data types, the most significant bits of the 
result will be set to zero.  For signed data types, the 
most significant bits will be set to the value of bit offset 
+ bits – 1.

If bits is zero, the result will be zero.  The result will be 
undefined if offset or bits is negative, or if the sum of 
offset and bits is greater than the number of bits used
to store the operand.
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Syntax Description

genIType bitfieldInsert (genIType base,
genIType insert,
int offset, int bits)

genUType bitfieldInsert (genUType base,
genUType insert,
int offset, int bits)

Returns the insertion of the bits least-significant bits of 
insert into base.

The result will have bits [offset, offset + bits - 1] taken 
from bits [0,  bits – 1] of insert, and all other bits taken 
directly from the corresponding bits of base.  If bits is 
zero, the result will simply be base.  The result will be 
undefined if offset or bits is negative, or if the sum of 
offset and bits is greater than the number of bits used to 
store the operand.

genIType bitfieldReverse (genIType value)
genUType bitfieldReverse (genUType value)

Returns the reversal of the bits of value.  The bit 
numbered n of the result will be taken from bit (bits - 1)
- n of value, where bits is the total number of bits used 
to represent value.

genIType bitCount (genIType value)
genIType bitCount (genUType value)

Returns the number of bits set to 1 in the binary 
representation of value.

genIType findLSB (genIType value)
genIType findLSB (genUType value)

Returns the bit number of the least significant bit set to 
1 in the binary representation of value.  If value is zero, 
-1will be returned.

genIType findMSB (genIType value)
genIType findMSB (genUType value)

Returns the bit number of the most significant bit in the 
binary representation of value.  

For positive integers, the result will be the bit number of
the most significant  bit set to 1.  For negative integers, 
the result will be the bit number of the most significant 
bit set to 0.  For a value of zero or negative one, -1 will 
be returned.
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8.9 Texture Functions
Texture lookup functions are available in all shading stages.  However, automatic level of detail is 
computed only for fragment shaders.  Other shaders operate as though the base level of detail were 
computed as zero.  The functions in the table below provide access to textures through samplers, as set up 
through the OpenGL API.  Texture properties such as size, pixel format, number of dimensions, filtering 
method, number of mipmap levels, depth comparison, and so on are also defined by OpenGL API calls.  
Such properties are taken into account as the texture is accessed via the built-in functions defined below.

Texture data can be stored by the GL as single-precision floating point, unsigned normalized integer, 
unsigned integer or signed integer data. This is determined by the type of the internal format of the 
texture.  Texture lookups on unsigned normalized integer and floating-point data return floating-point 
values in the range [0, 1].

Texture lookup functions are provided that can return their result as floating point, unsigned integer or 
signed integer, depending on the sampler type passed to the lookup function. Care must be taken to use 
the right sampler type for texture access. The following table lists the supported combinations of sampler 
types and texture internal formats.  Blank entries are unsupported.  Doing a texture lookup will return 
undefined values for unsupported combinations.

Internal Texture Format
Floating-Point 
Sampler Types

Signed Integer 
Sampler Types

Unsigned Integer 
Sampler Types

Floating point Supported

Normalized Integer Supported

Signed Integer Supported

Unsigned Integer Supported

If an integer sampler type is used, the result of a texture lookup is an ivec4. If an unsigned integer sampler
type is used, the result of a texture lookup is a uvec4. If a floating-point sampler type is used, the result of 
a texture lookup is a vec4, where each component is in the range [0, 1].

In the prototypes below, the “g” in the return type “gvec4” is used as a placeholder for nothing, “i”, or “u”
making a return type of vec4, ivec4, or uvec4.  In these cases, the sampler argument type also starts with 
“g”, indicating the same substitution done on the return type; it is either a single-precision floating point, 
signed integer, or unsigned integer sampler, matching the basic type of the return type, as described above.

For shadow forms (the sampler parameter is a shadow-type), a depth comparison lookup on the depth 
texture bound to sampler is done as described in section 8.22 “Texture Comparison Modes” of the 
OpenGL Graphics System Specification.  See the table below for which component specifies Dref.  The 
texture bound to sampler must be a depth texture, or results are undefined.  If a non-shadow texture call is
made to a sampler that represents a depth texture with depth comparisons turned on, then results are 
undefined.  If a shadow texture call is made to a sampler that represents a depth texture with depth 
comparisons turned off, then results are undefined.  If a shadow texture call is made to a sampler that does
not represent a depth texture, then results are undefined.
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In all functions below, the bias parameter is optional for fragment shaders.  The bias parameter is not 
accepted in any other shader stage.  For a fragment shader, if bias is present, it is added to the implicit 
level of detail prior to performing the texture access operation.  No bias or lod parameters for rectangle 
textures, multi-sample textures, or texture buffers are supported because mipmaps are not allowed for 
these types of textures.

The implicit level of detail is selected as follows:  For a texture that is not mipmapped, the texture is used 
directly.  If it is mipmapped and running in a fragment shader, the LOD computed by the implementation 
is used to do the texture lookup.  If it is mipmapped and running on the vertex shader, then the base 
texture is used.

Some texture functions (non-“Lod” and non-“Grad” versions) may require implicit derivatives.  Implicit 
derivatives are undefined within non-uniform control flow and for non-fragment-shader texture fetches.

For Cube forms, the direction of P is used to select which face to do a 2-dimensional texture lookup in, as
described in section 8.13 “Cube Map Texture Selection” in the OpenGL Graphics System Specification.

For Array forms, the array layer used will be

max (0,min(d−1, floor(layer+ 0.5)))

where d is the depth of the texture array and layer comes from the component indicated in the tables 
below.

For depth/stencil textures, the sampler type should match the component being accessed as set through the
OpenGL API. When the depth/stencil texture mode is set to DEPTH_COMPONENT, a floating-point 
sampler type should be used.  When the depth/stencil texture mode is set to STENCIL_INDEX, an 
unsigned integer sampler type should be used. Doing a texture lookup with an unsupported combination 
will return undefined values.

8.9.1 Texture Query Functions

The textureSize functions query the dimensions of a specific texture level for a sampler.

The textureQueryLod functions are available only in a fragment shader.  They take the components of P 
and compute the level of detail information that the texture pipe would use to access that texture through a
normal texture lookup.  The level of detail λ' (equation 3.18 in the OpenGL Graphics System 
Specification) is obtained after any LOD bias, but prior to clamping to [TEXTURE_MIN_LOD, 
TEXTURE_MAX_LOD]. The mipmap array(s) that would be accessed are also computed.  If a single 
level of detail would be accessed, the level-of-detail number relative to the base level is returned.  If 
multiple levels of detail would be accessed, a floating-point number between the two levels is returned, 
with the fractional part equal to the fractional part of the computed and clamped level of detail.  
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The algorithm used is given by the following pseudo-code:

float ComputeAccessedLod(float computedLod)
{
    // Clamp the computed LOD according to the texture LOD clamps.
    if (computedLod < TEXTURE_MIN_LOD) computedLod = TEXTURE_MIN_LOD;
    if (computedLod > TEXTURE_MAX_LOD) computedLod = TEXTURE_MAX_LOD;

    // Clamp the computed LOD to the range of accessible levels.
    if (computedLod < 0.0)
        computedLod = 0.0;
    if (computedLod > (float)
        maxAccessibleLevel) computedLod = (float) maxAccessibleLevel;

    // Return a value according to the min filter.
    if (TEXTURE_MIN_FILTER is LINEAR or NEAREST) {
        return 0.0;
    } else if (TEXTURE_MIN_FILTER is NEAREST_MIPMAP_NEAREST
               or LINEAR_MIPMAP_NEAREST) {
        return ceil(computedLod + 0.5) - 1.0;
    } else {
        return computedLod;
    }
}

The value maxAccessibleLevel is the level number of the smallest accessible level of the mipmap array 
(the value q in section 8.14.3 “Mipmapping” of the OpenGL Graphics System Specification) minus the 
base level.

Syntax Description

     int textureSize (gsampler1D sampler, int lod)
ivec2 textureSize (gsampler2D sampler, int lod)
ivec3 textureSize (gsampler3D sampler, int lod)
ivec2 textureSize (gsamplerCube sampler, int lod)
     int textureSize (sampler1DShadow sampler, int lod)
ivec2 textureSize (sampler2DShadow sampler, int lod)
ivec2 textureSize (samplerCubeShadow sampler, int lod)
ivec3 textureSize (gsamplerCubeArray sampler, int lod)
ivec3 textureSize (samplerCubeArrayShadow sampler, int lod)
ivec2 textureSize (gsampler2DRect sampler)
ivec2 textureSize (sampler2DRectShadow sampler)
ivec2 textureSize (gsampler1DArray sampler, int lod)
ivec3 textureSize (gsampler2DArray sampler, int lod)
ivec2 textureSize (sampler1DArrayShadow sampler, int lod)
ivec3 textureSize (sampler2DArrayShadow sampler, int lod)
     int textureSize (gsamplerBuffer sampler)
ivec2 textureSize (gsampler2DMS sampler)
ivec3 textureSize (gsampler2DMSArray sampler)

Returns the dimensions of level 
lod  (if present) for the texture 
bound to sampler, as described 
in section 11.1.3.4 “Texture 
Queries” of the OpenGL 
Graphics System Specification.

The components in the return 
value are filled in, in order, with
the width, height, and depth of 
the texture.

For the array forms, the last 
component of the return value is
the number of layers in the 
texture array, or the number of 
cubes in the texture cube map 
array.
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Syntax Description

vec2 textureQueryLod(gsampler1D sampler, float P)
vec2 textureQueryLod(gsampler2D sampler, vec2 P)
vec2 textureQueryLod(gsampler3D sampler, vec3 P)
vec2 textureQueryLod(gsamplerCube sampler, vec3 P)
vec2 textureQueryLod(gsampler1DArray sampler, float P)
vec2 textureQueryLod(gsampler2DArray sampler, vec2 P)
vec2 textureQueryLod(gsamplerCubeArray sampler, vec3 P)
vec2 textureQueryLod(sampler1DShadow sampler, float P)
vec2 textureQueryLod(sampler2DShadow sampler, vec2 P)
vec2 textureQueryLod(samplerCubeShadow sampler, vec3 P)
vec2 textureQueryLod(sampler1DArrayShadow sampler, float P)
vec2 textureQueryLod(sampler2DArrayShadow sampler, vec2 P)
vec2 textureQueryLod(samplerCubeArrayShadow sampler, vec3 P)

Returns the mipmap array(s) 
that would be accessed in the x 
component of the return value.

Returns the computed level of 
detail relative to the base level 
in the y component of the return 
value.

If called on an incomplete 
texture, the results are 
undefined.

int textureQueryLevels(gsampler1D sampler)
int textureQueryLevels(gsampler2D sampler)
int textureQueryLevels(gsampler3D sampler)
int textureQueryLevels(gsamplerCube sampler)
int textureQueryLevels(gsampler1DArray sampler)
int textureQueryLevels(gsampler2DArray sampler)
int textureQueryLevels(gsamplerCubeArray sampler)
int textureQueryLevels(sampler1DShadow sampler)
int textureQueryLevels(sampler2DShadow sampler)
int textureQueryLevels(samplerCubeShadow sampler)
int textureQueryLevels(sampler1DArrayShadow sampler)
int textureQueryLevels(sampler2DArrayShadow sampler)
int textureQueryLevels(samplerCubeArrayShadow sampler)

Returns the number of mipmap 
levels accessible in the texture 
associated with sampler, as 
defined in the OpenGL 
Specification.  

The value zero will be returned 
if no texture or an incomplete 
texture is associated with 
sampler.  

Available in all shader stages.

int textureSamples(gsampler2DMS sampler)
int textureSamples(gsampler2DMSArray sampler)

Returns the number of samples 
of the texture or textures bound 
to sampler. 
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8.9.2 Texel Lookup Functions

Syntax Description

gvec4 texture (gsampler1D sampler, float P [, float bias] )
gvec4 texture (gsampler2D sampler, vec2 P [, float bias] )
gvec4 texture (gsampler3D sampler, vec3 P [, float bias] )
gvec4 texture (gsamplerCube sampler, vec3 P [, float bias] )
  float texture (sampler1DShadow sampler, vec3 P [, float bias] )
  float texture (sampler2DShadow sampler, vec3 P [, float bias] )
  float texture (samplerCubeShadow sampler, vec4 P [, float bias] )
gvec4 texture (gsampler1DArray sampler, vec2 P [, float bias] )
gvec4 texture (gsampler2DArray sampler, vec3 P [, float bias] )
gvec4 texture (gsamplerCubeArray sampler, vec4 P [, float bias] )
  float texture (sampler1DArrayShadow sampler, vec3 P

[, float bias] )
  float texture (sampler2DArrayShadow sampler, vec4 P)
gvec4 texture (gsampler2DRect sampler, vec2 P)
  float texture (sampler2DRectShadow sampler, vec3 P)
  float texture (gsamplerCubeArrayShadow sampler, vec4 P, 

float compare)

Use the texture coordinate P to 
do a texture lookup in the 
texture currently bound to 
sampler.  

For shadow forms: When 
compare is present, it is used as 
Dref  and the array layer comes 
from P.w.  When compare is not 
present, the last component of  
P is used as Dref and the array 
layer comes from the second to 
last component of P.  (The 
second component of P is 
unused for 1D shadow lookups.)

For non-shadow forms: the array
layer comes from the last 
component of P.

gvec4 textureProj (gsampler1D sampler, vec2 P [, float bias] )
gvec4 textureProj (gsampler1D sampler, vec4 P [, float bias] )
gvec4 textureProj (gsampler2D sampler, vec3 P [, float bias] )
gvec4 textureProj (gsampler2D sampler, vec4 P [, float bias] )
gvec4 textureProj (gsampler3D sampler, vec4 P [, float bias] )
  float textureProj (sampler1DShadow sampler, vec4 P 

[, float bias] )
  float textureProj (sampler2DShadow sampler, vec4 P 

[, float bias] )
gvec4 textureProj (gsampler2DRect sampler, vec3 P)
gvec4 textureProj (gsampler2DRect sampler, vec4 P)
  float textureProj (sampler2DRectShadow sampler, vec4 P)

Do a texture lookup with 
projection.  The texture 
coordinates consumed from P, 
not including the last component
of P, are divided by the last 
component of P.  The resulting 
3rd component of P in the 
shadow forms is used as Dref.  
After these values are computed,
texture lookup proceeds as in 
texture.

gvec4 textureLod (gsampler1D sampler, float P, float lod)
gvec4 textureLod (gsampler2D sampler, vec2 P, float lod)
gvec4 textureLod (gsampler3D sampler, vec3 P, float lod)
gvec4 textureLod (gsamplerCube sampler, vec3 P, float lod)
  float textureLod (sampler1DShadow sampler, vec3 P, float lod)
  float textureLod (sampler2DShadow sampler, vec3 P, float lod)
gvec4 textureLod (gsampler1DArray sampler, vec2 P, float lod)
gvec4 textureLod (gsampler2DArray sampler, vec3 P, float lod)
  float textureLod (sampler1DArrayShadow sampler, vec3 P, 

float lod)
gvec4 textureLod (gsamplerCubeArray sampler, vec4 P, float lod)

Do a texture lookup as in 
texture but with explicit LOD;  
lod specifies λbase  and sets the 
partial derivatives as follows. 
(See section 8.14“Texture 
Minification” and equations 8.4-
8.6 in the OpenGL Graphics 
System Specification.)

∂u
∂x

= 0
∂v
∂x

= 0
∂w
∂x

= 0

∂u
∂ y

= 0
∂v
∂y

= 0
∂w
∂ y

= 0
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Syntax Description

gvec4 textureOffset (gsampler1D sampler, float P, 
int offset [, float bias] )

gvec4 textureOffset (gsampler2D sampler, vec2 P, 
ivec2 offset [, float bias] )

gvec4 textureOffset (gsampler3D sampler, vec3 P, 
ivec3 offset [, float bias] )

gvec4 textureOffset (gsampler2DRect sampler,  vec2 P, 
ivec2 offset )

  float textureOffset (sampler2DRectShadow sampler,  vec3 P, 
ivec2 offset )

  float textureOffset (sampler1DShadow sampler, vec3 P, 
int offset  [, float bias] )

  float textureOffset (sampler2DShadow sampler, vec3 P, 
ivec2 offset [, float bias] )

gvec4 textureOffset (gsampler1DArray sampler, vec2 P, 
int offset [, float bias] )

gvec4 textureOffset (gsampler2DArray sampler, vec3 P, 
ivec2 offset [, float bias] )

  float textureOffset (sampler1DArrayShadow sampler, vec3 P, 
int offset [, float bias] )

  float textureOffset (sampler2DArrayShadow sampler, vec4 P, 
ivec2 offset )

Do a texture lookup as in 
texture but with offset added to 
the (u,v,w) texel coordinates 
before looking up each texel. 
The offset value must be a 
constant expression.  A limited 
range of offset values are 
supported; the minimum and 
maximum offset values are 
implementation-dependent and 
given by  
gl_MinProgramTexelOffset and 
gl_MaxProgramTexelOffset, 
respectively.

Note that offset does not apply 
to the layer coordinate for 
texture arrays. This is explained 
in detail in section 8.14.2 
“Coordinate Wrapping and 
Texel Selection” of the OpenGL
Graphics System Specification, 
where offset is (δu ,δv ,δw).
Note that texel offsets are also 
not supported for cube maps.

gvec4 texelFetch (gsampler1D sampler, int P, int lod)
gvec4 texelFetch (gsampler2D sampler, ivec2 P, int lod)
gvec4 texelFetch (gsampler3D sampler, ivec3 P, int lod)
gvec4 texelFetch (gsampler2DRect sampler, ivec2 P)
gvec4 texelFetch (gsampler1DArray sampler, ivec2 P, int lod)
gvec4 texelFetch (gsampler2DArray sampler, ivec3 P, int lod)
gvec4 texelFetch (gsamplerBuffer sampler, int P)
gvec4 texelFetch (gsampler2DMS sampler, ivec2 P, int sample)
gvec4 texelFetch (gsampler2DMSArray sampler, ivec3 P, 

int sample)

Use integer texture coordinate P
to lookup a single texel from 
sampler.  The array layer comes 
from the last component of P for
the array forms. The level-of-
detail lod (if present) is as 
described in sections 11.1.3.2 
“Texel Fetches”  and 8.14.1 
“Scale Factor and Level of 
Detail” of the OpenGL Graphics
System Specification.
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Syntax Description

gvec4 texelFetchOffset (gsampler1D sampler, int P, int lod, 
int offset)

gvec4 texelFetchOffset (gsampler2D sampler, ivec2 P, int lod, 
ivec2 offset)

gvec4 texelFetchOffset (gsampler3D sampler, ivec3 P, int lod, 
ivec3 offset)

gvec4 texelFetchOffset (gsampler2DRect sampler, ivec2 P,
ivec2 offset)

gvec4 texelFetchOffset (gsampler1DArray sampler, ivec2 P, int lod,
int offset)

gvec4 texelFetchOffset (gsampler2DArray sampler, ivec3 P, int lod,
ivec2 offset)

Fetch a single texel as in 
texelFetch offset by offset as 
described in textureOffset.

gvec4 textureProjOffset (gsampler1D sampler, vec2 P,
int offset [, float bias] )

gvec4 textureProjOffset (gsampler1D sampler, vec4 P,
int offset [, float bias] )

gvec4 textureProjOffset (gsampler2D sampler, vec3 P,
ivec2 offset [, float bias] )

gvec4 textureProjOffset (gsampler2D sampler, vec4 P,
ivec2 offset [, float bias] )

gvec4 textureProjOffset (gsampler3D sampler, vec4 P,
ivec3 offset [, float bias] )

gvec4 textureProjOffset (gsampler2DRect sampler,  vec3 P,
ivec2 offset )

gvec4 textureProjOffset (gsampler2DRect sampler,  vec4 P,
ivec2 offset )

  float textureProjOffset (sampler2DRectShadow sampler,  vec4 P,
ivec2 offset )

  float textureProjOffset (sampler1DShadow sampler, vec4 P,
int offset [, float bias] )

  float textureProjOffset (sampler2DShadow sampler, vec4 P,
ivec2 offset [, float bias] )

Do a projective texture lookup 
as described in textureProj 
offset by offset as described in 
textureOffset.
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Syntax Description

gvec4 textureLodOffset (gsampler1D sampler, float P,
float lod, int offset)

gvec4 textureLodOffset (gsampler2D sampler, vec2 P,
float lod, ivec2 offset)

gvec4 textureLodOffset (gsampler3D sampler, vec3 P,
float lod, ivec3 offset)

  float textureLodOffset (sampler1DShadow sampler, vec3 P,
float lod, int offset)

  float textureLodOffset (sampler2DShadow sampler, vec3 P,
float lod, ivec2 offset)

gvec4 textureLodOffset (gsampler1DArray sampler, vec2 P,
float lod, int offset)

gvec4 textureLodOffset (gsampler2DArray sampler, vec3 P,
float lod, ivec2 offset)

  float textureLodOffset (sampler1DArrayShadow sampler, vec3 P,
float lod, int offset)

Do an offset texture lookup with
explicit LOD.  See textureLod 
and textureOffset.

gvec4 textureProjLod (gsampler1D sampler, vec2 P, float lod)
gvec4 textureProjLod (gsampler1D sampler, vec4 P, float lod)
gvec4 textureProjLod (gsampler2D sampler, vec3 P, float lod)
gvec4 textureProjLod (gsampler2D sampler, vec4 P, float lod)
gvec4 textureProjLod (gsampler3D sampler, vec4 P, float lod)
float textureProjLod (sampler1DShadow sampler, vec4 P, float lod)
float textureProjLod (sampler2DShadow sampler, vec4 P, float lod)

Do a projective texture lookup 
with explicit LOD.  See 
textureProj and textureLod.

gvec4 textureProjLodOffset (gsampler1D sampler, vec2 P,
float lod, int offset)

gvec4 textureProjLodOffset (gsampler1D sampler, vec4 P,
float lod, int offset)

gvec4 textureProjLodOffset (gsampler2D sampler, vec3 P,
float lod, ivec2 offset)

gvec4 textureProjLodOffset (gsampler2D sampler, vec4 P,
float lod, ivec2 offset)

gvec4 textureProjLodOffset (gsampler3D sampler, vec4 P,
float lod, ivec3 offset)

  float textureProjLodOffset (sampler1DShadow sampler, vec4 P,
float lod, int offset)

  float textureProjLodOffset (sampler2DShadow sampler, vec4 P,
float lod, ivec2 offset)

Do an offset projective texture 
lookup with explicit LOD.  See 
textureProj, textureLod, and 
textureOffset.
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Syntax Description

gvec4 textureGrad (gsampler1D sampler, float P,
float dPdx, float dPdy)

gvec4 textureGrad (gsampler2D sampler, vec2 P, 
vec2 dPdx, vec2 dPdy)

gvec4 textureGrad (gsampler3D sampler, vec3 P, 
vec3 dPdx, vec3 dPdy)

gvec4 textureGrad (gsamplerCube sampler, vec3 P,
vec3 dPdx, vec3 dPdy)

gvec4 textureGrad (gsampler2DRect sampler, vec2 P,
vec2 dPdx, vec2 dPdy)

  float textureGrad (sampler2DRectShadow sampler, vec3 P,
vec2 dPdx, vec2 dPdy)

  float textureGrad (sampler1DShadow sampler, vec3 P,
float dPdx, float dPdy)

  float textureGrad (sampler2DShadow sampler, vec3 P,
vec2 dPdx, vec2 dPdy)

  float textureGrad (samplerCubeShadow sampler, vec4 P,
vec3 dPdx, vec3 dPdy)

gvec4 textureGrad (gsampler1DArray sampler, vec2 P,
float dPdx, float dPdy)

gvec4 textureGrad (gsampler2DArray sampler, vec3 P,
vec2 dPdx, vec2 dPdy)

  float textureGrad (sampler1DArrayShadow sampler, vec3 P,
float dPdx, float dPdy)

  float textureGrad (sampler2DArrayShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy)

gvec4 textureGrad (gsamplerCubeArray sampler, vec4 P,
vec3 dPdx, vec3 dPdy)

Do a texture lookup as in 
texture but with explicit 
gradients.  The partial 
derivatives of P are with respect
to window x and window y. Set

∂s
∂x

= {∂P
∂x

for a 1D texture

∂P.s
∂x

otherwise

∂s
∂ y

= {∂P
∂y

for a 1D texture

∂P.s
∂y

otherwise

∂t
∂x

= {0.0 for a 1D texture
∂P.t
∂ x

otherwise

∂t
∂ y

= {0.0 for a 1D texture
∂P.t
∂y

otherwise

∂r
∂x

= {0.0 for 1D or 2D
∂P.p
∂ x

cube, other

∂r
∂ y

= {0.0 for 1D or 2D
∂P.p
∂y

cube, other

For the cube version, the partial 
derivatives of P are assumed to 
be in the coordinate system used
before texture coordinates are 
projected onto the appropriate 
cube face.
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Syntax Description

gvec4 textureGradOffset (gsampler1D sampler, float P, 
float dPdx, float dPdy, int offset)

gvec4 textureGradOffset (gsampler2D sampler, vec2 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureGradOffset (gsampler3D sampler, vec3 P, 
vec3 dPdx, vec3 dPdy, ivec3 offset)

gvec4 textureGradOffset (gsampler2DRect sampler, vec2 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

  float textureGradOffset (sampler2DRectShadow sampler, vec3 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)  

  float textureGradOffset (sampler1DShadow sampler, vec3 P, 
float dPdx, float dPdy, int offset )

  float textureGradOffset (sampler2DShadow sampler, vec3 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureGradOffset (gsampler1DArray sampler, vec2 P, 
float dPdx, float dPdy, int offset)

gvec4 textureGradOffset (gsampler2DArray sampler, vec3 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

 float textureGradOffset (sampler1DArrayShadow sampler, vec3 P,
float dPdx, float dPdy, int offset)

 float textureGradOffset (sampler2DArrayShadow sampler, vec4 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup with both 
explicit gradient and offset, as 
described in textureGrad and 
textureOffset.

gvec4 textureProjGrad (gsampler1D sampler, vec2 P, 
float dPdx, float dPdy)

gvec4 textureProjGrad (gsampler1D sampler, vec4 P, 
float dPdx, float dPdy)

gvec4 textureProjGrad (gsampler2D sampler, vec3 P, 
vec2 dPdx, vec2 dPdy)

gvec4 textureProjGrad (gsampler2D sampler, vec4 P,
vec2 dPdx, vec2 dPdy)

gvec4 textureProjGrad (gsampler3D sampler, vec4 P,
vec3 dPdx, vec3 dPdy)

gvec4 textureProjGrad (gsampler2DRect sampler, vec3 P, 
vec2 dPdx, vec2 dPdy)

gvec4 textureProjGrad (gsampler2DRect sampler, vec4 P, 
vec2 dPdx, vec2 dPdy)

  float textureProjGrad (sampler2DRectShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy)

  float textureProjGrad (sampler1DShadow sampler, vec4 P,
float dPdx, float dPdy)

  float textureProjGrad (sampler2DShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy)

Do a texture lookup both 
projectively, as described in 
textureProj, and with explicit 
gradient as described in 
textureGrad.  The partial 
derivatives dPdx and dPdy are 
assumed to be already projected.
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Syntax Description

gvec4 textureProjGradOffset (gsampler1D sampler, vec2 P,
float dPdx, float dPdy, int offset)

gvec4 textureProjGradOffset (gsampler1D sampler, vec4 P,
float dPdx, float dPdy, int offset)

gvec4 textureProjGradOffset (gsampler2D sampler, vec3 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (gsampler2D sampler, vec4 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (gsampler2DRect sampler, vec3 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (gsampler2DRect sampler, vec4 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)

  float textureProjGradOffset (sampler2DRectShadow sampler,
vec4 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (gsampler3D sampler, vec4 P, 
vec3 dPdx, vec3 dPdy, ivec3 offset)

  float textureProjGradOffset (sampler1DShadow sampler, vec4 P, 
float dPdx, float dPdy, int offset)

  float textureProjGradOffset (sampler2DShadow sampler, vec4 P, 
vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup projectively
and with explicit gradient as 
described in textureProjGrad, 
as well as with offset, as 
described in textureOffset.

8.9.3 Texture Gather Functions

The texture gather functions take components of a single floating-point vector operand as a texture 
coordinate, determine a set of four texels to sample from the base level of detail of the specified texture 
image, and return one component from each texel in a four-component result vector. 

When performing a texture gather operation, the minification and magnification filters are ignored, and 
the rules for LINEAR filtering in the OpenGL Specification are applied to the base level of the texture 
image to identify the four texels i0j1, i1j1, i1j0, and i0j0.  The texels are then converted to texture base colors 
(Rs, Gs, Bs, As) according to table 15.1, followed by application of the texture swizzle as described in 
section 15.2.1 “Texture Access” of the OpenGL Graphics System Specification.  A four-component vector 
is assembled by taking the selected component from each of the post-swizzled texture source colors in the 
order (i0j1, i1j1, i1j0, i0j0).

For texture gather functions using a shadow sampler type, each of the four texel lookups perform a depth 
comparison against the depth reference value passed in (refZ), and returns the result of that comparison in 
the appropriate component of the result vector.

As with other texture lookup functions, the results of a texture gather are undefined for shadow samplers if
the texture referenced is not a depth texture or has depth comparisons disabled; or for non-shadow 
samplers if the texture referenced is a depth texture with depth comparisons enabled.
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Syntax Description

gvec4 textureGather (gsampler2D sampler, vec2 P
[, int comp])

gvec4 textureGather (gsampler2DArray sampler, 
vec3 P [, int comp])

gvec4 textureGather (gsamplerCube sampler, 
vec3 P [, int comp])

gvec4 textureGather (gsamplerCubeArray sampler,
vec4 P[, int comp])

gvec4 textureGather (gsampler2DRect sampler, 
vec2 P[, int comp])

vec4 textureGather (sampler2DShadow sampler, 
vec2 P, float refZ)

vec4 textureGather (sampler2DArrayShadow sampler,
vec3 P, float refZ)

vec4 textureGather (samplerCubeShadow sampler, 
vec3 P, float refZ)

vec4 textureGather (samplerCubeArrayShadow 
sampler,
vec4 P,  float refZ)

vec4 textureGather (sampler2DRectShadow sampler,
vec2 P, float refZ)

Returns the value

vec4(Sample_i0_j1(P, base).comp,
         Sample_i1_j1(P, base).comp,
         Sample_i1_j0(P, base).comp,
         Sample_i0_j0(P, base).comp)

If specified, the value of comp must be a 
constant integer expression with a value of 0,
1, 2, or 3, identifying the x, y, z, or w post-
swizzled component of the four-component 
vector lookup result for each texel, 
respectively.  If comp is not specified, it is 
treated as 0, selecting the x component of 
each texel to generate the result.

gvec4 textureGatherOffset (
gsampler2D sampler, 
vec2 P, ivec2 offset
[, int comp])

gvec4 textureGatherOffset (
gsampler2DArray sampler,
vec3 P, ivec2 offset
[, int comp])

gvec4 textureGatherOffset (
gsampler2DRect sampler,
vec2 P,  ivec2 offset
[, int comp])

vec4 textureGatherOffset (
sampler2DShadow sampler, 
vec2 P, float refZ, ivec2 offset)

vec4 textureGatherOffset (
sampler2DArrayShadow sampler,
vec3 P, float refZ, ivec2 offset)

vec4 textureGatherOffset (
sampler2DRectShadow sampler,
vec2 P, float refZ, ivec2 offset)

Perform a texture gather operation as in 
textureGather by offset as described in 
textureOffset except that the offset can be 
variable (non constant) and the 
implementation-dependent minimum and 
maximum offset values are given by 
MIN_PROGRAM_TEXTURE_GATHER_OFFSET
and
MAX_PROGRAM_TEXTURE_GATHER_OFFSET, 
respectively.
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Syntax Description

gvec4 textureGatherOffsets (
gsampler2D sampler, 
vec2 P, ivec2 offsets[4]
[, int comp])

gvec4 textureGatherOffsets (
gsampler2DArray sampler,
vec3 P, ivec2 offsets[4] 
[, int comp])

gvec4 textureGatherOffsets (
gsampler2DRect sampler,
vec2 P,  ivec2 offsets[4]
[, int comp])

vec4 textureGatherOffsets (
sampler2DShadow sampler, 
vec2 P, float refZ, ivec2 
offsets[4])

vec4 textureGatherOffsets (
sampler2DArrayShadow sampler,
vec3 P, float refZ, ivec2 
offsets[4])

vec4 textureGatherOffsets (
sampler2DRectShadow sampler,
vec2 P, float refZ, ivec2 
offsets[4])

Operate identically to textureGatherOffset 
except that offsets is used to determine the 
location of the four texels to sample.  Each 
of the four texels is obtained by applying the 
corresponding offset in offsets as a (u, v) 
coordinate offset to P, identifying the four-
texel LINEAR footprint, and then selecting 
the texel i0j0 of that footprint.  The specified 
values in offsets must be set with constant 
integral expressions.
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8.9.4 Compatibility Profile Texture Functions

The following texture functions are only in the compatibility profile.

Syntax (deprecated) Description (deprecated)

vec4 texture1D (sampler1D sampler, 
                            float coord [, float bias] )
vec4 texture1DProj (sampler1D sampler, 
                                  vec2 coord [, float bias] )
vec4 texture1DProj (sampler1D sampler, 
                                  vec4 coord [, float bias] )
vec4 texture1DLod (sampler1D sampler, 
                                  float coord, float lod)
vec4 texture1DProjLod (sampler1D sampler, 
                                         vec2 coord, float lod)
vec4 texture1DProjLod (sampler1D sampler, 
                                         vec4 coord, float lod)

See corresponding signature above without 
“1D” in the name.

vec4 texture2D (sampler2D sampler, 
                            vec2 coord [, float bias] )
vec4 texture2DProj (sampler2D sampler, 
                                  vec3 coord [, float bias] )
vec4 texture2DProj (sampler2D sampler, 
                                  vec4 coord [, float bias] )
vec4 texture2DLod (sampler2D sampler, 
                                  vec2 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler, 
                                         vec3 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler, 
                                         vec4 coord, float lod)

See corresponding signature above without 
“2D” in the name.

vec4 texture3D (sampler3D sampler, 
                            vec3 coord [, float bias] )
vec4 texture3DProj (sampler3D sampler, 
                                  vec4 coord [, float bias] )
vec4 texture3DLod (sampler3D sampler, 
                                  vec3 coord, float lod)
vec4 texture3DProjLod (sampler3D sampler, 
                                         vec4 coord, float lod)

See corresponding signature above without 
“3D” in the name.

Use the texture coordinate coord to do a 
texture lookup in the 3D texture currently 
bound to  sampler.  For the projective 
(“Proj”) versions, the texture coordinate is 
divided by  coord.q.

vec4 textureCube (samplerCube sampler, 
                                vec3 coord [, float bias] )
vec4 textureCubeLod (samplerCube sampler, 
                                      vec3 coord, float lod)

See corresponding signature above without 
“Cube” in the name.
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Syntax (deprecated) Description (deprecated)

vec4 shadow1D (sampler1DShadow sampler,
                                        vec3 coord [, float bias] )
vec4 shadow2D (sampler2DShadow sampler,
                                        vec3 coord [, float bias] )
vec4 shadow1DProj (sampler1DShadow sampler,
                                               vec4 coord [, float bias] )
vec4 shadow2DProj (sampler2DShadow sampler,
                                               vec4 coord [, float bias] )
vec4 shadow1DLod (sampler1DShadow sampler,
                                               vec3 coord, float lod)
vec4 shadow2DLod (sampler2DShadow sampler,
                                               vec3 coord, float lod)
vec4 shadow1DProjLod(sampler1DShadow sampler,
                                                    vec4 coord, float lod)
vec4 shadow2DProjLod(sampler2DShadow sampler,
                                                     vec4 coord, float lod)

Same functionality as the “texture” based 
names above with the same signature.
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8.10 Atomic-Counter Functions
The atomic-counter operations in this section operate atomically with respect to each other.  They are 
atomic for any single counter, meaning any of these operations on a specific counter in one shader 
instantiation will be indivisible by any of these operations on the same counter from another shader 
instantiation.  There is no guarantee that these operations are atomic with respect to other forms of access 
to the counter or that they are serialized when applied to separate counters.  Such cases would require 
additional use of fences, barriers, or other forms of synchronization, if atomicity or serialization is 
desired.

The value returned by an atomic-counter function is the value of an atomic counter, which may be

• returned and incremented in an atomic operation, or

• decremented and returned in an atomic operation, or

• simply returned.

The underlying counter is a 32-bit unsigned integer.  Increments and decrements at the limit of the range 
will wrap to [0, 232-1].

Syntax Description

uint atomicCounterIncrement (atomic_uint c) Atomically
1. increments the counter for c, and
2. returns its value prior to the increment 

operation.  
These two steps are done atomically with respect to 
the atomic counter functions in this table.

uint atomicCounterDecrement (atomic_uint c) Atomically
1. decrements the counter for c, and
2. returns the value resulting from the 

decrement operation.
These two steps are done atomically with respect to 
the atomic counter functions in this table.

uint atomicCounter (atomic_uint c) Returns the counter value for c.

8.11 Atomic Memory Functions
Atomic memory functions perform atomic operations on an individual signed or unsigned integer stored in
buffer-object or shared-variable storage.  All of the atomic memory operations read a value from memory, 
compute a new value using one of the operations described below, write the new value to memory, and 
return the original value read.  The contents of the memory being updated by the atomic operation are 
guaranteed not to be modified by any other assignment or atomic memory function in any shader 
invocation between the time the original value is read and the time the new value is written.
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Atomic memory functions are supported only for a limited set of variables.  A shader will fail to compile if
the value passed to the mem argument of  an atomic memory function does not correspond to a buffer or 
shared variable.  It is acceptable to pass an element of an array or a single component of a vector to the 
mem argument of an atomic memory function, as long as the underlying array or vector is a buffer or 
shared variable.

All the built-in functions in this section accept arguments with combinations of restrict, coherent, and 
volatile memory qualification, despite not having them listed in the prototypes.  The atomic operation will
operate as required by the calling argument's memory qualification, not by the built-in function's formal-
parameter memory qualification.

Syntax Description

uint atomicAdd (inout uint mem, uint data)
int atomicAdd (inout int mem, int data)

Computes a new value by adding the value 
of data to the contents mem.

uint atomicMin (inout uint mem, uint data)
int atomicMin (inout int mem, int data)

Computes a new value by taking the 
minimum of the value of data and the 
contents of mem.

uint atomicMax (inout uint mem, uint data)
int atomicMax (inout int mem, int data)

Computes a new value by taking the 
maximum of the value of data and the 
contents of mem.

uint atomicAnd (inout uint mem, uint data)
int atomicAnd (inout int mem, int data)

Computes a new value by performing a bit-
wise AND of the value of data and the 
contents of mem.

uint atomicOr (inout uint mem, uint data)
int atomicOr (inout int mem, int data)

Computes a new value by performing a bit-
wise OR of the value of data and the 
contents of mem.

uint atomicXor (inout uint mem, uint data)
int atomicXor (inout int mem, int data)

Computes a new value by performing a bit-
wise EXCLUSIVE OR of the value of data 
and the contents of mem.

uint atomicExchange (inout uint mem, uint data)
int atomicExchange (inout int mem, int data)

Computes a new value by simply copying 
the value of data.

uint atomicCompSwap (inout uint mem, 
                                        uint compare, uint data)
int atomicCompSwap (inout int mem, 
                                         int compare, int data)

Compares the value of compare and the 
contents of mem.  If the values are equal, 
the new value is given by data; otherwise, 
it is taken from the original contents of 
mem.

8.12 Image Functions
Variables using one of the image basic types may be used by the built-in shader image memory functions 
defined in this section to read and write individual texels of a texture.  Each image variable references an 
image unit, which has a texture image attached.
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When image memory functions below access memory, an individual texel in the image is identified using 
an (i), (i, j), or (i, j, k) coordinate corresponding to the values of  P.  For image2DMS and 
image2DMSArray variables (and the corresponding int/unsigned int types) corresponding to multi-
sample textures, each texel may have multiple samples and an individual sample is identified using the 
integer sample parameter.  The coordinates and sample number are used to select an individual texel in the
manner described in section 8.25 “Texture Image Loads and Stores” of the OpenGL specification.

Loads and stores support float, integer, and unsigned integer types. The data types below starting 
“gimage” serve as placeholders meaning types starting either “image”, “iimage”, or “uimage” in the same
way as gvec or gsampler in earlier sections.

The IMAGE_PARAMS in the prototypes below is a placeholder representing 33 separate functions, each 
for a different type of image variable.  The IMAGE_PARAMS placeholder is replaced by one of the 
following parameter lists:

gimage1D image, int P

gimage2D image, ivec2 P

gimage3D image, ivec3 P

gimage2DRect image, ivec2 P

gimageCube image, ivec3 P

gimageBuffer image, int P

gimage1DArray image, ivec2 P

gimage2DArray image, ivec3 P

gimageCubeArray image, ivec3 P

gimage2DMS image, ivec2 P, int sample

gimage2DMSArray image, ivec3 P, int sample

where each of the lines represents one of three different image variable types, and image, P, and sample 
specify the individual texel to operate on.  The method for identifying the individual texel operated on 
from image, P, and sample, and the method for reading and writing the texel are specified in section 8.25 
“Texture Image Loads and Stores” of the OpenGL specification.

The atomic functions perform atomic operations on individual texels or samples of an image variable.  
Atomic memory operations read a value from the selected texel, compute a new value using one of the 
operations described below, write the new value to the selected texel, and return the original value read.  
The contents of the texel being updated by the atomic operation are guaranteed not to be modified by any 
other image store or atomic function between the time the original value is read and the time the new 
value is written.

Atomic memory operations are supported on only a subset of all image variable types; image must be 
either:

• a signed integer image variable (type starts “iimage”) and a format qualifier of r32i, used with a 
data argument of type int, or
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• an unsigned image variable (type starts “uimage”) and a format qualifier of r32ui, used with a 
data argument of type uint.

All the built-in functions in this section accept arguments with combinations of restrict, coherent, and 
volatile memory qualification, despite not having them listed in the prototypes.  The image operation will 
operate as required by the calling argument's memory qualification, not by the built-in function's formal-
parameter memory qualification.

Syntax Description

    int imageSize (readonly writeonly                    
                             gimage1D image)
ivec2 imageSize (readonly writeonly                    
                             gimage2D image)
ivec3 imageSize (readonly writeonly                    
                             gimage3D image)
ivec2 imageSize (readonly writeonly                    
                             gimageCube image)
ivec3 imageSize (readonly writeonly                    
                             gimageCubeArray image)
ivec2 imageSize (readonly writeonly                    
                             gimageRect image)
ivec2 imageSize (readonly writeonly                    
                             gimage1DArray image)
ivec3 imageSize (readonly writeonly                    
                             gimage2DArray image)
    int imageSize (readonly writeonly                    
                             gimageBuffer image)
ivec2 imageSize (readonly writeonly                    
                             gimage2DMS image)
ivec3 imageSize (readonly writeonly                    
                             gimage2DMSArray image)

Returns the dimensions of the image or images 
bound to image.  For arrayed images, the last 
component of the return value will hold the size of 
the array.  Cube images only return the dimensions of
one face, and the number of cubes in the cube map 
array, if arrayed.

Note: The qualification readonly writeonly accepts 
a variable qualified with readonly, writeonly, both, 
or neither.  It means the formal argument will be used
for neither reading nor writing to the underlying 
memory.

int imageSamples (readonly writeonly 
                                gimage2DMS image)
int imageSamples (readonly writeonly 
                                gimage2DMSArray image)

Returns the number of samples of the image or 
images bound to image.

gvec4 imageLoad (readonly IMAGE_PARAMS) Loads the texel at the coordinate P from the image 
unit image (in IMAGE_PARAMS).  For multi-sample 
loads, the sample number is given by sample.  When 
image, P, sample identify a valid texel, the bits used 
to represent the selected texel in memory are 
converted to a vec4, ivec4, or uvec4 in the manner 
described in section 8.25 “Texture Image Loads and 
Stores” of the OpenGL Specification and returned.
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Syntax Description

void imageStore (writeonly IMAGE_PARAMS,
                             gvec4 data)

Stores data into the texel at the coordinate P from 
the image specified by image.  For multi-sample 
stores, the sample number is given by sample.  When
image, P, and sample identify a valid texel, the bits 
used to represent data are converted to the format of 
the image unit in the manner described in section 
8.25 “Texture Image Loads and Stores” of the 
OpenGL Specification and stored to the specified 
texel.

uint imageAtomicAdd (IMAGE_PARAMS,
          uint data)

int imageAtomicAdd (IMAGE_PARAMS,  
        int data)

Computes a new value by adding the value of data 
to the contents of the selected texel.

uint imageAtomicMin (IMAGE_PARAMS,
          uint data)

int imageAtomicMin (IMAGE_PARAMS, 
        int data)

Computes a new value by taking the minimum of the
value of data and the contents of the selected texel.

uint imageAtomicMax (IMAGE_PARAMS,  
          uint data)

int imageAtomicMax (IMAGE_PARAMS, 
         int data)

Computes a new value by taking the maximum of the
value data and the contents of the selected texel.

uint imageAtomicAnd (IMAGE_PARAMS,
          uint data)

int imageAtomicAnd (IMAGE_PARAMS, 
        int data)

Computes a new value by performing a bit-wise 
AND of the value of data and the contents of the 
selected texel.

uint imageAtomicOr (IMAGE_PARAMS, 
       uint data)

int imageAtomicOr (IMAGE_PARAMS, 
     int data)

Computes a new value by performing a bit-wise OR 
of the value of data and the contents of the selected 
texel.

uint imageAtomicXor (IMAGE_PARAMS,
         uint data)

int imageAtomicXor (IMAGE_PARAMS, 
       int data)

Computes a new value by performing a bit-wise 
EXCLUSIVE OR of the value of data and the 
contents of the selected texel.
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Syntax Description

uint imageAtomicExchange (IMAGE_PARAMS,
                   uint data)

int imageAtomicExchange (IMAGE_PARAMS, 
                 int data)

int imageAtomicExchange (IMAGE_PARAMS, 
                float data)

Computes a new value by simply copying the value 
of data.  These functions support 32-bit signed and 
unsigned operands, and 32-bit floating-point 
operands.

uint imageAtomicCompSwap (
 IMAGE_PARAMS,
uint compare,
uint data)

int imageAtomicCompSwap (
 IMAGE_PARAMS,
int compare,
int data)

Compares the value of compare and the contents of 
the selected texel.  If the values are equal, the new 
value is given by data; otherwise, it is taken from the
original value loaded from the texel.

8.13 Fragment Processing Functions
Fragment processing functions are only available in fragment shaders.

8.13.1 Derivative Functions

Derivatives may be computationally expensive and/or numerically unstable.  Therefore, an OpenGL 
implementation may approximate the true derivatives by using a fast but not entirely accurate derivative 
computation.  Derivatives are undefined within non-uniform control flow.

The expected behavior of a derivative is specified using forward/backward differencing.

Forward differencing:

    F (x+ dx)− F (x) ∼ dFdx(x)⋅dx 1a

   dFdx (x) ∼
F (x+ dx)− F (x)

dx
1b

Backward differencing:

   F (x−dx)− F (x) ∼−dFdx(x)⋅dx 2a

   dFdx(x) ∼
F (x)−F (x−dx)

dx
2b

With single-sample rasterization, dx <= 1.0 in equations 1b and 2b.  For multi-sample rasterization, dx < 
2.0 in equations 1b and 2b.
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dFdy is approximated similarly, with y replacing x.

With multi-sample rasterization, for any given fragment or sample, either neighboring fragments or 
samples may be considered.  

It is typical to consider a 2x2 square of fragments or samples, and compute independent dFdxFine per 
row and independent dFdyFine per column, while computing only a single dFdxCoarse and a single 
dFdyCoarse for the entire 2x2 square.  Thus, all second-order coarse derivatives, e.g., 
dFdxCoarse(dFdxCoarse(x)), may be 0, even for non-linear arguments.  However, second-order fine 
derivatives, e.g., dFdxFine(dFdyFine(x)) will properly reflect the difference between the independent 
fine derivatives computed within the 2x2 square.

The method may differ per fragment, subject to the constraint that the method may vary by window 
coordinates, not screen coordinates.  The invariance requirement described in section 14.2 “Invariance” of
the OpenGL Graphics System Specification, is relaxed for derivative calculations, because the method 
may be a function of fragment location.

In some implementations, varying degrees of derivative accuracy for dFdx and dFdy may be obtained by 
providing GL hints (section 21.4 “Hints” of the OpenGL Graphics System Specification), allowing a user 
to make an image quality versus speed trade off.  These hints have no effect on dFdxCoarse, 
dFdyCoarse, dFdxFine and dFdyFine.

Syntax Description

genType dFdx (genType p) Returns either dFdxFine(p) or dFdxCoarse(p), based 
on implementation choice, presumably whichever is the 
faster, or by whichever is selected in the API through 
quality-versus-speed hints.

genType dFdy (genType p) Returns either dFdyFine(p) or dFdyCoarse(p), based 
on implementation choice, presumably whichever is the 
faster, or by whichever is selected in the API through 
quality-versus-speed hints.

genType dFdxFine (genType p) Returns the partial derivative of p with respect to the 
window x coordinate.  Will use local differencing based 
on the value of p for the current fragment and its 
immediate neighbor(s).

genType dFdyFine (genType p) Returns the partial derivative of p with respect to the 
window y coordinate.  Will use local differencing based 
on the value of p for the current fragment and its 
immediate neighbor(s).
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Syntax Description

genType dFdxCoarse (genType p) Returns the partial derivative of p with respect to the 
window x coordinate.  Will use local differencing based 
on the value of p for the current fragment's neighbors, 
and will possibly, but not necessarily, include the value 
of p for the current fragment.  That is, over a given area, 
the implementation can x compute derivatives in fewer 
unique locations than would be allowed for 
dFdxFine(p).

genType dFdyCoarse (genType p) Returns the partial derivative of p with respect to the 
window y coordinate.  Will use local differencing based 
on the value of p for the current fragment's neighbors, 
and will possibly, but not necessarily, include the value 
of p for the current fragment.  That is, over a given area, 
the implementation can compute y derivatives in fewer 
unique locations than would be allowed for 
dFdyFine(p).

genType fwidth (genType p) Returns abs (dFdx (p))  + abs (dFdy (p)).

genType fwidthFine (genType p) Returns abs(dFdxFine(p)) + abs(dFdyFine(p)).

genType fwidthCoarse (genType p) Returns abs(dFdxCoarse(p)) + abs(dFdyCoarse(p)).

8.13.2 Interpolation Functions

Built-in interpolation functions are available to compute an interpolated value of a fragment shader input 
variable at a shader-specified (x, y) location.  A separate (x, y) location may be used for each invocation of
the built-in function, and those locations may differ from the default (x, y) location used to produce the 
default value of the input.

For all of the interpolation functions, interpolant must be an input variable or an element of an input 
variable declared as an array.  Component selection operators (e.g., .xy) may be used when specifying 
interpolant.  Arrayed inputs can be indexed with general (nonuniform) integer expressions.  If interpolant 
is declared with the flat qualifier, the interpolated value will have the same value everywhere for a single 
primitive, so the location used for interpolation has no effect and the functions just return that same value. 
If interpolant is declared with the centroid qualifier, the value returned by interpolateAtSample() and 
interpolateAtOffset() will be evaluated at the specified location, ignoring the location normally used 
with the centroid qualifier.  If interpolant is declared with the noperspective qualifier, the interpolated 
value will be computed without perspective correction.
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Syntax Description

float interpolateAtCentroid (float interpolant)
vec2 interpolateAtCentroid (vec2 interpolant)
vec3 interpolateAtCentroid (vec3 interpolant)
vec4 interpolateAtCentroid (vec4 interpolant)

Returns the value of the input interpolant sampled at 
a location inside both the pixel and the primitive 
being processed.  The value obtained would be the 
same value assigned to the input variable if declared 
with the centroid qualifier.

float interpolateAtSample (float interpolant, 
                                              int sample)
vec2 interpolateAtSample (vec2 interpolant, 
                                              int sample)
vec3 interpolateAtSample (vec3 interpolant, 
                                              int sample)
vec4 interpolateAtSample (vec4 interpolant, 
                                              int sample)

Returns the value of the input interpolant variable at 
the location of sample number sample.  If 
multisample buffers are not available, the input 
variable will be evaluated at the center of the pixel.  
If sample sample does not exist, the position used to 
interpolate the input variable is undefined.

float interpolateAtOffset (float interpolant,
                                            vec2 offset)
vec2 interpolateAtOffset (vec2 interpolant, 
                                            vec2 offset)
vec3 interpolateAtOffset (vec3 interpolant,
                                            vec2 offset)
vec4 interpolateAtOffset (vec4 interpolant,
                                            vec2 offset)

Returns the value of the input interpolant variable 
sampled at an offset from the center of the pixel 
specified by offset.  The two floating-point 
components of offset, give the offset in pixels in the x
and y directions, respectively.  An offset of (0, 0) 
identifies the center of the pixel.  The range and 
granularity of offsets supported by this function is 
implementation-dependent.

8.14 Noise Functions
The noise functions noise1, noise2, noise3, and noise4 have been deprecated starting with version 4.4 of 
GLSL.  They are defined to return the value 0.0 or a vector whose components are all 0.0.  However, as in
previous releases, they are not semantically considered to be compile-time constant expressions.

Syntax (deprecated) Description (deprecated)

float noise1 (genType x) Returns a 1D noise value based on the input value x. 

vec2  noise2 (genType x) Returns a 2D noise value based on the input value x.  

vec3  noise3 (genType x) Returns a 3D noise value based on the input value x. 

vec4  noise4 (genType x) Returns a 4D noise value based on the input value x. 
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8.15 Geometry Shader Functions
These functions are only available in geometry shaders.  They are described in more depth following the 
table.

Syntax Description

void EmitStreamVertex (int stream) Emits the current values of output variables to the current 
output primitive on stream stream.  The argument to stream 
must be a constant integral expression.  On return from this 
call, the values of all output variables are undefined. 

Can only be used if multiple output streams are supported.

void EndStreamPrimitive (int stream) Completes the current output primitive on stream stream and
starts a new one.  The argument to stream must be a constant
integral expression.  No vertex is emitted.  

Can only be used if multiple output streams are supported.

void EmitVertex () Emits the current values of output variables to the current 
output primitive.  On return from this call, the values of 
output variables are undefined.

When multiple output streams are supported, this is 
equivalent to calling EmitStreamVertex(0).

void EndPrimitive () Completes the current output primitive and starts a new one. 
No vertex is emitted.

When multiple output streams are supported, this is 
equivalent to calling EndStreamPrimitive(0).

The function EmitStreamVertex() specifies that a vertex is completed. A vertex is added to the current 
output primitive in vertex stream stream using the current values of all built-in and user-defined output 
variables associated with stream.  The values of all output variables for all output streams are undefined 
after a call to EmitStreamVertex().  If a geometry shader invocation has emitted more vertices than 
permitted by the output layout qualifier max_vertices, the results of calling EmitStreamVertex() are 
undefined.

The function EndStreamPrimitive() specifies that the current output primitive for vertex stream stream is
completed and a new output primitive (of the same type) will be started by any subsequent 
EmitStreamVertex().  This function does not emit a vertex.  If the output layout is declared to be points, 
calling EndStreamPrimitive() is optional.

A geometry shader starts with an output primitive containing no vertices for each stream. When a 
geometry shader terminates, the current output primitive for each stream is automatically completed. It is 
not necessary to call EndStreamPrimitive() if the geometry shader writes only a single primitive.
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Multiple output streams are supported only if the output primitive type is declared to be points.  A 
program will fail to link if it contains a geometry shader calling EmitStreamVertex() or 
EndStreamPrimitive() if its output primitive type is not points.
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8.16 Shader Invocation Control Functions
The shader invocation control function is available only in tessellation control shaders and compute 
shaders.  It is used to control the relative execution order of multiple shader invocations used to process a 
patch (in the case of tessellation control shaders) or a local work group (in the case of compute shaders), 
which are otherwise executed with an undefined relative order.

Syntax Description

void barrier () For any given static instance of barrier(), all tessellation control shader 
invocations for a single input patch must enter it before any will be  
allowed to continue beyond it, or all invocations for a single work group 
must enter it before any will continue beyond it.

The function barrier() provides a partially defined order of execution between shader invocations.  This 
ensures that values written by one invocation prior to a given static instance of barrier() can be safely 
read by other invocations after their call to the same static instance barrier().  Because invocations may 
execute in undefined order between these barrier calls, the values of a per-vertex or per-patch output 
variable or shared variables for compute shaders will be undefined in a number of cases enumerated in 
section 4.3.6 “Output Variables” (for tessellation control shaders) and section 4.3.8 "Shared Variables" 
(for compute shaders).

For tessellation control shaders, the barrier() function may only be placed inside the function main() of 
the tessellation control shader and may not be called within any control flow.  Barriers are also disallowed
after a return statement in the function main().  Any such misplaced barriers result in a compile-time error.

For compute shaders, the barrier() function may be placed within flow control, but that flow control must
be uniform flow control.  That is, all the controlling expressions that lead to execution of the barrier must 
be dynamically uniform expressions.  This ensures that if any shader invocation enters a conditional 
statement, then all invocations will enter it.  While compilers are encouraged to give warnings if they can 
detect this might not happen, compilers cannot completely determine this.  Hence, it is the author's 
responsibility to ensure barrier() only exists inside uniform flow control.  Otherwise, some shader 
invocations will stall indefinitely, waiting for a barrier that is never reached by other invocations.
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8.17 Shader Memory Control Functions
Shaders of all types may read and write the contents of textures and buffer objects using image variables.  
While the order of reads and writes within a single shader invocation is well-defined, the relative order of 
reads and writes to a single shared memory address from multiple separate shader invocations is largely 
undefined.  The order of memory accesses performed by one shader invocation, as observed by other 
shader invocations, is also largely undefined but can be controlled through memory control functions.

Syntax Description

void memoryBarrier () Control the ordering of memory transactions issued by a 
single shader invocation.

void memoryBarrierAtomicCounter () Control the ordering of accesses to atomic-counter variables 
issued by a single shader invocation.

void memoryBarrierBuffer () Control the ordering of memory transactions to buffer 
variables issued within a single shader invocation.

void memoryBarrierShared () Control the ordering of memory transactions to shared 
variables issued within a single shader invocation.

Only available in compute shaders.

void memoryBarrierImage () Control the ordering of memory transactions to images 
issued within a single shader invocation.

void groupMemoryBarrier () Control the ordering of all memory transactions issued within
a single shader invocation, as viewed by other invocations in 
the same work group.

Only available in compute shaders.

The memory barrier built-in functions can be used to order reads and writes to variables stored in memory
accessible to other shader invocations.  When called, these functions will wait for the completion of all 
reads and writes previously performed by the caller that access selected variable types, and then return 
with no other effect.  The built-in functions memoryBarrierAtomicCounter(), memoryBarrierBuffer(),
memoryBarrierImage(), and memoryBarrierShared() wait for the completion of accesses to atomic 
counter, buffer, image, and shared variables, respectively.  The built-in functions memoryBarrier() and 
groupMemoryBarrier() wait for the completion of accesses to all of the above variable types.  The 
functions memoryBarrierShared() and groupMemoryBarrier() are available only in compute shaders; 
the other functions are available in all shader types.
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When these functions return, the results of any memory stores performed using coherent variables 
performed prior to the call will be visible to any future coherent access to the same memory performed by 
any other shader invocation.  In particular, the values written this way in one shader stage are guaranteed 
to be visible to coherent memory accesses performed by shader invocations in subsequent stages when 
those invocations were triggered by the execution of the original shader invocation (e.g., fragment shader 
invocations for a primitive resulting from a particular geometry shader invocation).

Additionally, memory barrier functions order stores performed by the calling invocation, as observed by 
other shader invocations.  Without memory barriers, if one shader invocation performs two stores to 
coherent variables, a second shader invocation might see the values written by the second store prior to 
seeing those written by the first.  However, if the first shader invocation calls a memory barrier function 
between the two stores, selected other shader invocations will never see the results of the second store 
before seeing those of the first.  When using the function groupMemoryBarrier(), this ordering 
guarantee applies only to other shader invocations in the same compute shader work group; all other 
memory barrier functions provide the guarantee to all other shader invocations.  No memory barrier is 
required to guarantee the order of memory stores as observed by the invocation performing the stores; an 
invocation reading from a variable that it previously wrote will always see the most recently written value 
unless another shader invocation also wrote to the same memory.
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9 Shading Language Grammar for Core 
Profile

The grammar is fed from the output of lexical analysis.  The tokens returned from lexical analysis are

CONST BOOL FLOAT DOUBLE INT UINT
BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN SWITCH CASE DEFAULT SUBROUTINE
BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 UVEC2 UVEC3 UVEC4 VEC2 VEC3 VEC4
MAT2 MAT3 MAT4 CENTROID IN OUT INOUT 
UNIFORM PATCH SAMPLE BUFFER SHARED
COHERENT VOLATILE RESTRICT READONLY WRITEONLY
DVEC2 DVEC3 DVEC4 DMAT2 DMAT3 DMAT4

NOPERSPECTIVE FLAT SMOOTH LAYOUT 
MAT2X2 MAT2X3 MAT2X4
MAT3X2 MAT3X3 MAT3X4
MAT4X2 MAT4X3 MAT4X4
DMAT2X2 DMAT2X3 DMAT2X4
DMAT3X2 DMAT3X3 DMAT3X4
DMAT4X2 DMAT4X3 DMAT4X4
ATOMIC_UINT
SAMPLER1D SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER1DSHADOW SAMPLER2DSHADOW
SAMPLERCUBESHADOW SAMPLER1DARRAY SAMPLER2DARRAY SAMPLER1DARRAYSHADOW
SAMPLER2DARRAYSHADOW ISAMPLER1D ISAMPLER2D ISAMPLER3D ISAMPLERCUBE
ISAMPLER1DARRAY ISAMPLER2DARRAY USAMPLER1D USAMPLER2D USAMPLER3D
USAMPLERCUBE USAMPLER1DARRAY USAMPLER2DARRAY
SAMPLER2DRECT SAMPLER2DRECTSHADOW ISAMPLER2DRECT USAMPLER2DRECT
SAMPLERBUFFER ISAMPLERBUFFER USAMPLERBUFFER
SAMPLERCUBEARRAY SAMPLERCUBEARRAYSHADOW 
ISAMPLERCUBEARRAY USAMPLERCUBEARRAY
SAMPLER2DMS ISAMPLER2DMS USAMPLER2DMS
SAMPLER2DMSARRAY ISAMPLER2DMSARRAY USAMPLER2DMSARRAY
IMAGE1D IIMAGE1D UIMAGE1D IMAGE2D IIMAGE2D
UIMAGE2D IMAGE3D IIMAGE3D UIMAGE3D
IMAGE2DRECT IIMAGE2DRECT UIMAGE2DRECT 
IMAGECUBE IIMAGECUBE UIMAGECUBE
IMAGEBUFFER IIMAGEBUFFER UIMAGEBUFFER
IMAGE1DARRAY IIMAGE1DARRAY UIMAGE1DARRAY

  IMAGE2DARRAY IIMAGE2DARRAY UIMAGE2DARRAY

  IMAGECUBEARRAY IIMAGECUBEARRAY UIMAGECUBEARRAY

  IMAGE2DMS IIMAGE2DMS UIMAGE2DMS 

  IMAGE2DMSARRAY IIMAGE2DMSARRAY UIMAGE2DMSARRAY
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STRUCT VOID WHILE

IDENTIFIER TYPE_NAME 
FLOATCONSTANT DOUBLECONSTANT INTCONSTANT UINTCONSTANT BOOLCONSTANT
FIELD_SELECTION
LEFT_OP RIGHT_OP
INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP
AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN
MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN
SUB_ASSIGN

LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT
COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT
LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION

INVARIANT PRECISE
HIGH_PRECISION MEDIUM_PRECISION LOW_PRECISION PRECISION

The following describes the grammar for the OpenGL Shading Language in terms of the above tokens.  
The starting rule is translation_unit.  An empty shader (one having no tokens to parse, after pre-
processing) is valid, resulting in no compile-time errors, even though the grammar below does not have a 
rule to accept an empty token stream.

variable_identifier:
        IDENTIFIER 

primary_expression:

        variable_identifier 

        INTCONSTANT

        UINTCONSTANT 

        FLOATCONSTANT 

        BOOLCONSTANT 

        DOUBLECONSTANT

        LEFT_PAREN expression RIGHT_PAREN 

postfix_expression:

        primary_expression 

        postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET 

        function_call 

        postfix_expression DOT FIELD_SELECTION 

        postfix_expression INC_OP 

        postfix_expression DEC_OP 
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integer_expression:

        expression 

function_call:

        function_call_or_method

function_call_or_method:

        function_call_generic 

        

function_call_generic:

        function_call_header_with_parameters RIGHT_PAREN 

        function_call_header_no_parameters RIGHT_PAREN 

function_call_header_no_parameters:

        function_call_header VOID 

        function_call_header 

function_call_header_with_parameters:

        function_call_header assignment_expression 

        function_call_header_with_parameters COMMA assignment_expression 

function_call_header:

        function_identifier LEFT_PAREN 

// Grammar Note: Constructors look like functions, but lexical analysis recognized most of them as
// keywords.  They are now recognized through “type_specifier”.
// Methods (.length), subroutine array calls, and identifiers are recognized through postfix_expression.

function_identifier:

        type_specifier

        postfix_expression

unary_expression:

        postfix_expression 

        INC_OP unary_expression 

        DEC_OP unary_expression 

        unary_operator unary_expression 

// Grammar Note:  No traditional style type casts.
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unary_operator:

        PLUS 

        DASH 

        BANG 

        TILDE

// Grammar Note:  No '*' or '&' unary ops.  Pointers are not supported.

multiplicative_expression:

        unary_expression 

        multiplicative_expression STAR unary_expression

        multiplicative_expression SLASH unary_expression

        multiplicative_expression PERCENT unary_expression

additive_expression:

        multiplicative_expression 

        additive_expression PLUS multiplicative_expression 

        additive_expression DASH multiplicative_expression 

shift_expression:

        additive_expression 

        shift_expression LEFT_OP additive_expression

        shift_expression RIGHT_OP additive_expression

relational_expression:

        shift_expression 

        relational_expression LEFT_ANGLE shift_expression 

        relational_expression RIGHT_ANGLE shift_expression 

        relational_expression LE_OP shift_expression 

        relational_expression GE_OP shift_expression 

equality_expression:

        relational_expression 

        equality_expression EQ_OP relational_expression 

        equality_expression NE_OP relational_expression 

and_expression:

        equality_expression 

        and_expression AMPERSAND equality_expression
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exclusive_or_expression:

        and_expression 

        exclusive_or_expression CARET and_expression

inclusive_or_expression:

        exclusive_or_expression 

        inclusive_or_expression VERTICAL_BAR exclusive_or_expression

logical_and_expression:

        inclusive_or_expression 

        logical_and_expression AND_OP inclusive_or_expression 

logical_xor_expression:

        logical_and_expression 

        logical_xor_expression XOR_OP logical_and_expression 

logical_or_expression:

        logical_xor_expression 

        logical_or_expression OR_OP logical_xor_expression 

conditional_expression:

        logical_or_expression 

        logical_or_expression QUESTION expression COLON assignment_expression 

assignment_expression:

        conditional_expression 

        unary_expression assignment_operator assignment_expression 

assignment_operator:

        EQUAL 

        MUL_ASSIGN

        DIV_ASSIGN

        MOD_ASSIGN

        ADD_ASSIGN 

        SUB_ASSIGN 

        LEFT_ASSIGN

        RIGHT_ASSIGN

        AND_ASSIGN

        XOR_ASSIGN
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        OR_ASSIGN

expression:

        assignment_expression 

        expression COMMA assignment_expression 

constant_expression:

        conditional_expression 

declaration:

        function_prototype SEMICOLON 

        init_declarator_list SEMICOLON 

        PRECISION precision_qualifier type_specifier SEMICOLON 

        type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE SEMICOLON 

        type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE 
                                                                                                                       IDENTIFIER SEMICOLON

        type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE 
                                                                                               IDENTIFIER array_specifier SEMICOLON

        type_qualifier SEMICOLON

        type_qualifier IDENTIFIER SEMICOLON

        type_qualifier IDENTIFIER identifier_list SEMICOLON

identifier_list:

        COMMA IDENTIFIER

        identifier_list COMMA IDENTIFIER

function_prototype:

        function_declarator RIGHT_PAREN 

function_declarator:

        function_header 

        function_header_with_parameters 

function_header_with_parameters:

        function_header parameter_declaration 

        function_header_with_parameters COMMA parameter_declaration 

function_header:

        fully_specified_type IDENTIFIER LEFT_PAREN 
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parameter_declarator:

        type_specifier IDENTIFIER 

        type_specifier IDENTIFIER array_specifier

parameter_declaration:

         type_qualifier parameter_declarator 

         parameter_declarator 

         type_qualifier parameter_type_specifier 

         parameter_type_specifier 

parameter_type_specifier:

        type_specifier 

init_declarator_list:

        single_declaration 

        init_declarator_list COMMA IDENTIFIER 

        init_declarator_list COMMA IDENTIFIER array_specifier

        init_declarator_list COMMA IDENTIFIER array_specifier EQUAL initializer 

        init_declarator_list COMMA IDENTIFIER EQUAL initializer 

single_declaration:

        fully_specified_type 

        fully_specified_type IDENTIFIER 

        fully_specified_type IDENTIFIER array_specifier

        fully_specified_type IDENTIFIER array_specifier EQUAL initializer

        fully_specified_type IDENTIFIER EQUAL initializer 

// Grammar Note:  No 'enum', or 'typedef'.

fully_specified_type:

        type_specifier 

        type_qualifier type_specifier 

invariant_qualifier:

        INVARIANT

interpolation_qualifier:
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        SMOOTH

        FLAT

        NOPERSPECTIVE

layout_qualifier:

        LAYOUT LEFT_PAREN layout_qualifier_id_list RIGHT_PAREN

layout_qualifier_id_list:
        layout_qualifier_id
        layout_qualifier_id_list COMMA layout_qualifier_id

layout_qualifier_id:
        IDENTIFIER
        IDENTIFIER EQUAL constant_expression
        SHARED

precise_qualifier:

        PRECISE

type_qualifier:

        single_type_qualifier

        type_qualifier single_type_qualifier

single_type_qualifier:

        storage_qualifier

        layout_qualifier

        precision_qualifier

        interpolation_qualifier

        invariant_qualifier

        precise_qualifier

storage_qualifier:

        CONST 

        INOUT

        IN

        OUT

        CENTROID

        PATCH

        SAMPLE
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        UNIFORM 

        BUFFER

        SHARED

        COHERENT

        VOLATILE

        RESTRICT

        READONLY

        WRITEONLY

        SUBROUTINE 

        SUBROUTINE LEFT_PAREN type_name_list RIGHT_PAREN

type_name_list:

        TYPE_NAME 

        type_name_list COMMA TYPE_NAME

type_specifier:

        type_specifier_nonarray 

        type_specifier_nonarray array_specifier

array_specifier:

     LEFT_BRACKET RIGHT_BRACKET

     LEFT_BRACKET constant_expression RIGHT_BRACKET

     array_specifier LEFT_BRACKET RIGHT_BRACKET

     array_specifier LEFT_BRACKET constant_expression RIGHT_BRACKET

type_specifier_nonarray:

        VOID 

        FLOAT 

        DOUBLE

        INT

        UINT

        BOOL 

        VEC2 

        VEC3 

        VEC4 

        DVEC2 

        DVEC3 
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        DVEC4 

        BVEC2 

        BVEC3 

        BVEC4 

        IVEC2 

        IVEC3 

        IVEC4 

        UVEC2

        UVEC3

        UVEC4

        MAT2

        MAT3

        MAT4

        MAT2X2 

        MAT2X3 

        MAT2X4

        MAT3X2 

        MAT3X3 

        MAT3X4

        MAT4X2 

        MAT4X3 

        MAT4X4

        DMAT2

        DMAT3

        DMAT4

        DMAT2X2 

        DMAT2X3 

        DMAT2X4

        DMAT3X2 

        DMAT3X3 

        DMAT3X4

        DMAT4X2 

        DMAT4X3 

        DMAT4X4

        ATOMIC_UINT

        SAMPLER1D

        SAMPLER2D
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        SAMPLER3D

        SAMPLERCUBE

        SAMPLER1DSHADOW

        SAMPLER2DSHADOW

        SAMPLERCUBESHADOW 

        SAMPLER1DARRAY 

        SAMPLER2DARRAY 

        SAMPLER1DARRAYSHADOW

        SAMPLER2DARRAYSHADOW 

        SAMPLERCUBEARRAY

        SAMPLERCUBEARRAYSHADOW

        ISAMPLER1D 

        ISAMPLER2D 

        ISAMPLER3D 

        ISAMPLERCUBE

        ISAMPLER1DARRAY 

        ISAMPLER2DARRAY 

        ISAMPLERCUBEARRAY

        USAMPLER1D 

        USAMPLER2D 

        USAMPLER3D

        USAMPLERCUBE 

        USAMPLER1DARRAY 

        USAMPLER2DARRAY

        USAMPLERCUBEARRAY

        SAMPLER2DRECT 

        SAMPLER2DRECTSHADOW 

        ISAMPLER2DRECT 

        USAMPLER2DRECT

        SAMPLERBUFFER 

        ISAMPLERBUFFER 

        USAMPLERBUFFER

        SAMPLER2DMS 

        ISAMPLER2DMS 

        USAMPLER2DMS

        SAMPLER2DMSARRAY

        ISAMPLER2DMSARRAY
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        USAMPLER2DMSARRAY

        IMAGE1D

        IIMAGE1D 

        UIMAGE1D 

        IMAGE2D 

        IIMAGE2D 

        UIMAGE2D 

        IMAGE3D 

        IIMAGE3D 

        UIMAGE3D

        IMAGE2DRECT 

        IIMAGE2DRECT 

        UIMAGE2DRECT 

        IMAGECUBE 

        IIMAGECUBE 

        UIMAGECUBE

        IMAGEBUFFER 

        IIMAGEBUFFER 

        UIMAGEBUFFER

        IMAGE1DARRAY 

        IIMAGE1DARRAY 

        UIMAGE1DARRAY 

        IMAGE2DARRAY 

        IIMAGE2DARRAY 

        UIMAGE2DARRAY

        IMAGECUBEARRAY 

        IIMAGECUBEARRAY 

        UIMAGECUBEARRAY

        IMAGE2DMS 

        IIMAGE2DMS 

        UIMAGE2DMS 

        IMAGE2DMSARRAY 

        IIMAGE2DMSARRAY 

        UIMAGE2DMSARRAY

        struct_specifier

        TYPE_NAME 

precision_qualifier:
        HIGH_PRECISION
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        MEDIUM_PRECISION
        LOW_PRECISION

struct_specifier:

        STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE 

        STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE 

struct_declaration_list:

        struct_declaration 

        struct_declaration_list struct_declaration 

struct_declaration:

        type_specifier struct_declarator_list SEMICOLON 

        type_qualifier type_specifier struct_declarator_list SEMICOLON

struct_declarator_list:

        struct_declarator 

        struct_declarator_list COMMA struct_declarator 

struct_declarator:

        IDENTIFIER 

        IDENTIFIER array_specifier

initializer:

        assignment_expression 

        LEFT_BRACE initializer_list RIGHT_BRACE

        LEFT_BRACE initializer_list COMMA RIGHT_BRACE

initializer_list:

        initializer

        initializer_list COMMA initializer

declaration_statement:

        declaration 

statement:

        compound_statement 

        simple_statement 

// Grammar Note:  labeled statements for SWITCH only; 'goto' is not supported.
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simple_statement:

        declaration_statement 

        expression_statement 

        selection_statement

        switch_statement 

        case_label

        iteration_statement 

        jump_statement 

compound_statement:

        LEFT_BRACE RIGHT_BRACE 

        LEFT_BRACE statement_list RIGHT_BRACE 

statement_no_new_scope:

        compound_statement_no_new_scope 

        simple_statement 

compound_statement_no_new_scope:

        LEFT_BRACE RIGHT_BRACE 

        LEFT_BRACE statement_list RIGHT_BRACE 

statement_list:

        statement 

        statement_list statement 

expression_statement:

        SEMICOLON 

        expression SEMICOLON 

selection_statement:

        IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement 

selection_rest_statement:

        statement ELSE statement 

        statement 

condition:

        expression 

        fully_specified_type IDENTIFIER EQUAL initializer 
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switch_statement:
        SWITCH LEFT_PAREN expression RIGHT_PAREN LEFT_BRACE switch_statement_list 
                                                                                                                                          RIGHT_BRACE

switch_statement_list:
        /* nothing */
        statement_list

case_label:
        CASE expression COLON
        DEFAULT COLON

iteration_statement:

        WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope 

        DO statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON 

        FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN 
                                                                                                                              statement_no_new_scope

for_init_statement:

        expression_statement 

        declaration_statement 

conditionopt:

        condition 

        /* empty */

for_rest_statement:

        conditionopt SEMICOLON 

        conditionopt SEMICOLON expression 

jump_statement:

        CONTINUE SEMICOLON 

        BREAK SEMICOLON 

        RETURN SEMICOLON 

        RETURN expression SEMICOLON 

        DISCARD SEMICOLON   // Fragment shader only.

// Grammar Note:  No 'goto'.  Gotos are not supported.

translation_unit:

        external_declaration 

        translation_unit external_declaration 

203



9 Shading Language Grammar for Core Profile

external_declaration:

        function_definition 

        declaration 

function_definition:

        function_prototype compound_statement_no_new_scope 
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10 Normative References

1. International Standard ISO/IEC 14882:1998(E). Programming Languages – C++. 
Referenced for preprocessor only.
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