login
Search: a369134 -id:a369134
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A369134(n, n).
+20
2
-1, 1, -1, 3, -1, 5, -15, 105, -21, 105, -315, 2475, -99, 1001, -1001, 15015, -105105, 23205, -663, 1322685, -101745, 5595975, -2611455, 60063465, -1225785, 15935205, -51555075, 4686825, -5368545, 40970475, -40970475, 302703526125
OFFSET
0,4
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jan 14 2024
STATUS
approved
a(n) = A369134(n, 2).
+20
2
0, 0, -1, 7, -14, 693, -30030, 4150146, -21441420, 3508377873, -425496301230, 163608770318994, -381271515244620, 263655717130655850, -20916990073196036820, 28579221265797444862620, -20735968190374168899967800, 535753174085515196009964765, -2008476391973175078407803350
OFFSET
0,4
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jan 14 2024
STATUS
approved
a(n) = Sum_{k=0..n} A369134(n, k).
+20
1
-1, 1, -1, 10, -21, 1050, -45606, 6306300, -32585553, 5332033850, -646674981498, 248655336029100, -579463114572870, 400708622091878100, -31790012531476579380, 43435207772044760997000, -31514892593265599765292045, 814247185935070977732893250
OFFSET
0,4
COMMENTS
See A369134 for comments.
FORMULA
a(n) / A369135(n) = Bernoulli(2*n).
MATHEMATICA
A368846[n_, k_] := If[k == 0, Boole[n == 0], (-1)^(n + k) 2 Binomial[2 k - 1, n] Binomial[2 n + 1, 2 k]];
Map[Total[# LCM @@ Denominator[#]]&, MapIndexed[(-1)^First[#2] Take[#, First[#2]]&, Inverse[PadRight[Table[A368846[n, k], {n, 0, 20}, {k, 0, n}]]]]] (* Paolo Xausa, Jan 16 2024 *)
CROSSREFS
Cf. A369134, A000367/A002445 (Bernoulli(2n)).
KEYWORD
sign
AUTHOR
Peter Luschny, Jan 14 2024
STATUS
approved
Triangle read by rows: T(n, k) = (-1)^(n + k)*2*binomial(2*k - 1, n)* binomial(2*n + 1, 2*k) for k > 0, and k^n for k = 0.
+10
6
1, 0, 6, 0, 0, 30, 0, 0, -70, 140, 0, 0, 0, -840, 630, 0, 0, 0, 924, -6930, 2772, 0, 0, 0, 0, 18018, -48048, 12012, 0, 0, 0, 0, -12870, 216216, -300300, 51480, 0, 0, 0, 0, 0, -350064, 2042040, -1750320, 218790, 0, 0, 0, 0, 0, 184756, -5542680, 16628040, -9699690, 923780
OFFSET
0,3
COMMENTS
The row sums of the inverse triangle (A368847/A368848) are the unsigned Bernoulli numbers |B(2n)|. To get the signed Bernoulli numbers B(2n), one only needs to change the sign factor in the definition from (-1)^(n + k) to (-1)^(n + 1).
Conjecture: |Sum_{j=0..k} T(k + j, k)| = A229580(k + 1) for k >= 0.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
Thomas Curtright, Scale Invariant Scattering and the Bernoulli Numbers, arXiv:2401.00586 [math-ph], Jan 2024.
EXAMPLE
[0] [1]
[1] [0, 6]
[2] [0, 0, 30]
[3] [0, 0, -70, 140]
[4] [0, 0, 0, -840, 630]
[5] [0, 0, 0, 924, -6930, 2772]
[6] [0, 0, 0, 0, 18018, -48048, 12012]
[7] [0, 0, 0, 0, -12870, 216216, -300300, 51480]
[8] [0, 0, 0, 0, 0, -350064, 2042040, -1750320, 218790]
MATHEMATICA
A368846[n_, k_] := If[k==0, Boole[n==0], (-1)^(n+k) 2 Binomial[2k-1, n] Binomial[2n+1, 2k]];
Table[A368846[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 08 2024 *)
PROG
(SageMath)
def A368846(n, k):
if k == 0: return k^n
if k > n: return 0
return (-1)^(n + k)*2*binomial(2*k - 1, n)*binomial(2*n + 1, 2*k)
for n in range(10): print([A368846(n, k) for k in range(n+1)])
CROSSREFS
Cf. A368847/A368848 (inverse), A369134, A369135, A002457 (main diagonal), A000367/A002445 (Bernoulli(2n)), A229580.
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 07 2024
STATUS
approved
a(n) is the lcm of the denominators of the terms in the n-th row of M where M is the inverse of the matrix generated by the triangle A368846.
+10
6
1, 6, 30, 420, 630, 13860, 180180, 5405400, 4594590, 96996900, 1222160940, 40156716600, 6692786100, 281097016200, 1164544781400, 72201776446800, 2084826294901350, 1895296631728500, 222622144044300, 1823275359722817000, 575032998066426900, 129519337183533297000
OFFSET
0,2
COMMENTS
See A369134 for comments and formulas.
MATHEMATICA
A368846[n_, k_] := If[k == 0, Boole[n == 0], (-1)^(n + k) 2 Binomial[2 k - 1, n] Binomial[2 n + 1, 2 k]];
LCM @@@ Denominator[MapIndexed[Take[#, First[#2]]&, Inverse[PadRight[Table[ A368846[n, k], {n, 0, 25}, {k, 0, n}]]]]] (* Paolo Xausa, Jan 14 2024 *)
PROG
(SageMath)
M = matrix(ZZ, 32, 32, A368846).inverse()
def A369135(n): return lcm(M[n][k].denominator() for k in range(n + 1))
print([A369135(n) for n in range(21)])
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jan 14 2024
STATUS
approved
Triangle read by rows: T(n, k) = denominator(M(n, k)) where M is the inverse matrix of A368846.
+10
4
1, 1, 6, 1, 1, 30, 1, 1, 60, 140, 1, 1, 45, 105, 630, 1, 1, 20, 140, 252, 2772, 1, 1, 6, 14, 1260, 693, 12012, 1, 1, 900, 2100, 945, 5940, 10296, 51480, 1, 1, 3, 1, 945, 189, 1287, 6435, 218790, 1, 1, 100, 700, 420, 660, 12012, 780, 145860, 923780
OFFSET
0,3
COMMENTS
The row sums of the triangle, seen in its rational form A368847(n)/ A368848(n), are the unsigned Bernoulli numbers |B(2n)|. To get the signed Bernoulli numbers B(2n), one only needs to change the sign factor in the definition of A368846 from (-1)^(n + k) to (-1)^(n + 1).
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
Thomas Curtright, Scale Invariant Scattering and the Bernoulli Numbers, arXiv:2401.00586 [math-ph], Jan 2024.
EXAMPLE
Triangle starts:
[0] [1]
[1] [1, 6]
[2] [1, 1, 30]
[3] [1, 1, 60, 140]
[4] [1, 1, 45, 105, 630]
[5] [1, 1, 20, 140, 252, 2772]
[6] [1, 1, 6, 14, 1260, 693, 12012]
[7] [1, 1, 900, 2100, 945, 5940, 10296, 51480]
[8] [1, 1, 3, 1, 945, 189, 1287, 6435, 218790]
MATHEMATICA
A368846[n_, k_] := If[k==0, Boole[n==0], (-1)^(n+k) 2 Binomial[2k-1, n] Binomial[2n+1, 2k]];
Denominator[MapIndexed[Take[#, First[#2]]&, Inverse[PadRight[Table[ A368846[n, k], {n, 0, 10}, {k, 0, n}]]]]] (* Paolo Xausa, Jan 08 2024 *)
PROG
(SageMath)
M = matrix(ZZ, 10, 10, lambda n, k: A368846(n, k) if k <= n else 0)
I = M.inverse()
for n in range(9): print([I[n][k].denominator() for k in range(n+1)])
CROSSREFS
Cf. A368846 (inverse), A368847 (numerator), A002457 (main diagonal), A369134, A369135, A000367/A002445 (Bernoulli(2n)).
KEYWORD
nonn,tabl,frac
AUTHOR
Peter Luschny, Jan 07 2024
STATUS
approved
Triangle read by rows: T(n, k) = numerator(M(n, k)) where M is the inverse matrix of A368846.
+10
3
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 1, 17, 1, 1, 0, 0, 691, 691, 59, 41, 5, 1, 0, 0, 14, 2, 359, 8, 4, 1, 1, 0, 0, 3617, 10851, 1237, 217, 293, 1, 7, 1, 0, 0, 43867, 43867, 750167, 6583, 943, 1129, 217, 2, 1, 0, 0, 1222277, 174611, 627073, 1540967, 28399, 53, 47, 23, 1, 1
OFFSET
0,19
COMMENTS
The row sums of the triangle, seen in its rational form A368847(n)/ A368848(n), are the unsigned Bernoulli numbers |B(2n)|. To get the signed Bernoulli numbers B(2n), one only needs to change the sign factor in the definition of A368846 from (-1)^(n + k) to (-1)^(n + 1).
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
Thomas Curtright, Scale Invariant Scattering and the Bernoulli Numbers, arXiv:2401.00586 [math-ph], Jan 2024.
EXAMPLE
[0] [1]
[1] [0, 1]
[2] [0, 0, 1]
[3] [0, 0, 1, 1]
[4] [0, 0, 1, 1, 1]
[5] [0, 0, 1, 3, 1, 1]
[6] [0, 0, 1, 1, 17, 1, 1]
[7] [0, 0, 691, 691, 59, 41, 5, 1]
[8] [0, 0, 14, 2, 359, 8, 4, 1, 1]
[9] [0, 0, 3617, 10851, 1237, 217, 293, 1, 7, 1]
MATHEMATICA
A368846[n_, k_]:=If[k==0, Boole[n==0], (-1)^(n+k)2Binomial[2k-1, n]Binomial[2n+1, 2k]];
Numerator[MapIndexed[Take[#, First[#2]]&, Inverse[PadRight[Table[A368846[n, k], {n, 0, 10}, {k, 0, n}]]]]] (* Paolo Xausa, Jan 08 2024 *)
PROG
(SageMath)
M = matrix(ZZ, 10, 10, lambda n, k: A368846(n, k) if k <= n else 0)
I = M.inverse()
for n in range(9): print([I[n][k].numerator() for k in range(n+1)])
CROSSREFS
Cf. A368846 (inverse), A368848 (denominator), A369134, A369135, A000367/A002445 (Bernoulli(2n)).
KEYWORD
nonn,frac,tabl
AUTHOR
Peter Luschny, Jan 07 2024
STATUS
approved

Search completed in 0.006 seconds