login
Search: a364906 -id:a364906
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of integer partitions of 2n whose distinct parts sum to n.
+10
18
1, 1, 1, 3, 3, 4, 12, 11, 19, 23, 54, 55, 103, 115, 178, 289, 389, 507, 757, 970, 1343, 2033, 2579, 3481, 4840, 6312, 8317, 10998, 15459, 19334, 26368, 33480, 44709, 56838, 74878, 93369, 128109, 157024, 206471, 258357, 338085, 417530, 544263, 669388, 859570, 1082758, 1367068
OFFSET
0,4
COMMENTS
Also the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500 (first 91 terms from David A. Corneth)
FORMULA
a(n) = A116861(2n,n).
a(n) = A364916(n,n).
EXAMPLE
The a(0) = 1 through a(7) = 11 partitions:
() (11) (22) (33) (44) (55) (66) (77)
(2211) (3311) (3322) (4422) (4433)
(21111) (311111) (4411) (5511) (5522)
(4111111) (33321) (6611)
(42222) (442211)
(322221) (4222211)
(332211) (4421111)
(3222111) (42221111)
(3321111) (422111111)
(32211111) (611111111)
(51111111) (4211111111)
(321111111)
The a(0) = 1 through a(7) = 11 linear combinations:
0 1*1 1*2 1*3 1*4 1*5 1*6 1*7
0*2+3*1 0*3+4*1 0*4+5*1 0*4+3*2 0*6+7*1
1*2+1*1 1*3+1*1 1*3+1*2 0*5+6*1 1*4+1*3
1*4+1*1 1*4+1*2 1*5+1*2
1*5+1*1 1*6+1*1
0*3+0*2+6*1 0*4+0*2+7*1
0*3+1*2+4*1 0*4+1*2+5*1
0*3+2*2+2*1 0*4+2*2+3*1
0*3+3*2+0*1 0*4+3*2+1*1
1*3+0*2+3*1 1*4+0*2+3*1
1*3+1*2+1*1 1*4+1*2+1*1
2*3+0*2+0*1
MATHEMATICA
Table[Length[Select[IntegerPartitions[2n], Total[Union[#]]==n&]], {n, 0, 15}]
PROG
(PARI) a(n) = {my(res = 0); forpart(p = 2*n, s = Set(p); if(vecsum(s) == n, res++)); res} \\ David A. Corneth, Aug 20 2023
(Python)
from sympy.utilities.iterables import partitions
def A364910(n): return sum(1 for d in partitions(n<<1, k=n) if sum(set(d))==n) # Chai Wah Wu, Sep 13 2023
CROSSREFS
The case with no zero coefficients is A000009.
Central diagonal of A116861.
A version based on Heinz numbers is A364906.
Using all partitions (not just strict) we get A364907.
The version for compositions is A364908, strict A364909.
Main diagonal of A364916.
Using strict partitions of any number from 1 to n gives A365002.
These partitions have ranks A365003.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 16 2023
EXTENSIONS
More terms from David A. Corneth, Aug 20 2023
STATUS
approved
Number of ways to write n as a nonnegative linear combination of an integer partition of n.
+10
11
1, 1, 4, 13, 50, 179, 696, 2619, 10119, 38867, 150407, 582065, 2260367, 8786919, 34225256, 133471650, 521216494, 2037608462, 7974105052, 31235316275, 122457794193, 480473181271, 1886555402750, 7412471695859, 29142658077266, 114643347181003, 451237737215201
OFFSET
0,3
COMMENTS
A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
LINKS
FORMULA
a(n) = Sum_{m:A056239(m)=n} A364906(m).
a(n) = A364912(2n,n).
a(n) = A365004(n,n).
EXAMPLE
The a(0) = 1 through a(3) = 13 ways:
0 1*1 1*2 1*3
0*1+2*1 0*2+3*1
1*1+1*1 1*2+1*1
2*1+0*1 0*1+0*1+3*1
0*1+1*1+2*1
0*1+2*1+1*1
0*1+3*1+0*1
1*1+0*1+2*1
1*1+1*1+1*1
1*1+2*1+0*1
2*1+0*1+1*1
2*1+1*1+0*1
3*1+0*1+0*1
MAPLE
b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
`if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..27); # Alois P. Heinz, Jan 28 2024
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Join@@Table[combs[n, ptn], {ptn, IntegerPartitions[n]}]], {n, 0, 5}]
CROSSREFS
The case with no zero coefficients is A000041.
A finer version is A364906.
The version for compositions is A364908, strict A364909.
Using just strict partitions we get A364910, main diagonal of A364916.
Main diagonal of A365004.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2023
EXTENSIONS
a(9)-a(26) from Alois P. Heinz, Jan 28 2024
STATUS
approved
Number of ways to write n as a nonnegative linear combination of an integer composition of n.
+10
4
1, 1, 4, 15, 70, 314, 1542, 7428, 36860, 182911, 917188, 4612480, 23323662, 118273428, 601762636, 3069070533, 15689123386, 80356953555, 412300910566, 2118715503962, 10902791722490, 56175374185014, 289766946825180, 1496239506613985, 7733302967423382
OFFSET
0,3
COMMENTS
A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
LINKS
EXAMPLE
The a(3) = 15 ways to write 3 as a nonnegative linear combination of an integer composition of 3:
1*3 0*2+3*1 1*1+1*2 0*1+0*1+3*1
1*2+1*1 3*1+0*2 0*1+1*1+2*1
0*1+2*1+1*1
0*1+3*1+0*1
1*1+0*1+2*1
1*1+1*1+1*1
1*1+2*1+0*1
2*1+0*1+1*1
2*1+1*1+0*1
3*1+0*1+0*1
MAPLE
b:= proc(n, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
add(add(b(n-i, m-i*j), j=0..m/i), i=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 28 2024
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Join@@Table[combs[n, ptn], {ptn, Join@@Permutations /@ IntegerPartitions[n]}]], {n, 0, 5}]
CROSSREFS
The case with no zero coefficients is A011782.
The version for partitions is A364907, strict A364910.
The strict case is A364909.
A000041 counts integer partitions, strict A000009.
A011782 counts compositions, strict A032020.
A097805 counts compositions by length, strict A072574.
A116861 = positive linear combinations of strict ptns of k, reverse A364916.
A365067 = nonnegative linear combinations of strict partitions of k.
A364912 = positive linear combinations of partitions of k.
A364916 = positive linear combinations of strict partitions of k.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 22 2023
EXTENSIONS
a(8)-a(24) from Alois P. Heinz, Jan 28 2024
STATUS
approved
Number of ways to write n as a nonnegative linear combination of a strict integer composition of n.
+10
4
1, 1, 1, 5, 5, 7, 51, 45, 89, 109, 709, 733, 1495, 1935, 3119, 13785, 16611, 29035, 44611, 68733, 95193, 372897, 435007, 781345, 1177181, 1866659, 2600537, 3906561, 12052631, 14610799, 25407653, 37652265, 59943351, 84060993, 128112805, 172172117, 480353257, 578740011
OFFSET
0,4
COMMENTS
A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
EXAMPLE
The a(0) = 1 through a(5) = 7 ways:
. 1*1 1*2 1*3 1*4 1*5
0*2+3*1 0*3+4*1 0*4+5*1
1*1+1*2 1*1+1*3 1*1+1*4
1*2+1*1 1*3+1*1 1*2+1*3
3*1+0*2 4*1+0*3 1*3+1*2
1*4+1*1
5*1+0*4
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Join@@Table[combs[n, ptn], {ptn, Join@@Permutations/@Select[IntegerPartitions[n], UnsameQ@@#&]}]], {n, 0, 5}]
PROG
(Python)
from math import factorial
from sympy.utilities.iterables import partitions
def A364909(n):
if n == 0: return 1
aset = tuple(set(p) for p in partitions(n) if max(p.values(), default=0)==1)
return sum(factorial(len(t)) for p in partitions(n) for t in aset if set(p).issubset(t)) # Chai Wah Wu, Sep 21 2023
CROSSREFS
The case with no zero coefficients is A032020.
The version for partitions is A364907, strict A364910(n) = A364916(n,n).
The non-strict version is A364908.
A000041 counts integer partitions, strict A000009.
A011782 counts compositions, strict A032020.
A008284 counts partitions by length, strict A008289.
A097805 counts compositions by length, strict A072574.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2023
EXTENSIONS
a(18)-a(37) from Chai Wah Wu, Sep 21 2023
STATUS
approved
Heinz numbers of integer partitions where the sum of all parts is twice the sum of distinct parts.
+10
3
1, 4, 9, 25, 36, 48, 49, 100, 121, 160, 169, 196, 225, 289, 361, 441, 448, 484, 529, 567, 676, 750, 810, 841, 900, 961, 1080, 1089, 1156, 1200, 1225, 1369, 1408, 1440, 1444, 1521, 1681, 1764, 1849, 1920, 2116, 2209, 2268, 2352, 2601, 2809, 3024, 3025, 3159
OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
FORMULA
A056239(a(n)) = 2*A066328(a(n)).
EXAMPLE
The prime indices of 750 are {1,2,3,3,3}, with sum 12, while the distinct prime indices {1,2,3} have sum 6, so 750 is in the sequence.
The terms together with their prime indices begin:
1: {}
4: {1,1}
9: {2,2}
25: {3,3}
36: {1,1,2,2}
48: {1,1,1,1,2}
49: {4,4}
100: {1,1,3,3}
121: {5,5}
160: {1,1,1,1,1,3}
169: {6,6}
196: {1,1,4,4}
225: {2,2,3,3}
289: {7,7}
361: {8,8}
441: {2,2,4,4}
448: {1,1,1,1,1,1,4}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], Total[prix[#]]==2*Total[Union[prix[#]]]&]
CROSSREFS
The LHS is A056239 (sum of prime indices).
The RHS is twice A066328.
Partitions of this type are counted by A364910.
A000041 counts integer partitions, strict A000009.
A001222 counts prime indices, distinct A001221.
A112798 lists prime indices, distinct A304038.
A116861 counts partitions by sum and sum of distinct parts.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 23 2023
STATUS
approved

Search completed in 0.007 seconds