login
Search: a321751 -id:a321751
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of distinct chromatic symmetric functions realizable by a graph on n vertices.
+10
17
1, 2, 4, 11, 33, 146, 939, 10932
OFFSET
1,2
COMMENTS
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895). - Gus Wiseman, Nov 21 2018
LINKS
Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111 (1995), 166-194.
Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998), 267-286.
EXAMPLE
For n = 3, under the p basis, the CSF's are: p_{1, 1, 1}, p_{1, 1, 1} - p_{2, 1}, p_{1, 1, 1} - 2p_{2, 1} + p_{3}, p_{1, 1, 1} - 3p_{2, 1} + 2p_{3}.
From Gus Wiseman, Nov 21 2018: (Start)
The a(4) = 11 chromatic symmetric functions (m is the augmented monomial symmetric function basis):
m(1111)
m(211) + m(1111)
2m(211) + m(1111)
m(22) + 2m(211) + m(1111)
3m(211) + m(1111)
m(22) + 3m(211) + m(1111)
m(31) + 3m(211) + m(1111)
2m(22) + 4m(211) + m(1111)
m(22) + m(31) + 4m(211) + m(1111)
2m(22) + 2m(31) + 5m(211) + m(1111)
m(4) + 3m(22) + 4m(31) + 6m(211) + m(1111)
(End)
MATHEMATICA
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
chromSF[g_]:=Sum[m[Sort[Length/@stn, Greater]], {stn, spsu[Select[Subsets[Union@@g], Select[DeleteCases[g, {_}], Function[ed, Complement[ed, #]=={}]]=={}&], Union@@g]}];
simpleSpans[n_]:=simpleSpans[n]=If[n==0, {{}}, Union@@Table[If[#=={}, Union[ine, {{n}}], Union[Complement[ine, List/@#], {#, n}&/@#]]&/@Subsets[Range[n-1]], {ine, simpleSpans[n-1]}]];
Table[Length[Union[chromSF/@simpleSpans[n]]], {n, 6}] (* Gus Wiseman, Nov 21 2018 *)
KEYWORD
nonn,more
AUTHOR
Sam Heil and Caleb Ji, Oct 04 2016
STATUS
approved
Number of distinct chromatic symmetric functions of simple connected graphs with n vertices.
+10
11
1, 1, 2, 6, 20, 103, 759
OFFSET
1,3
COMMENTS
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions p of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
LINKS
Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111 (1995), 166-194.
Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998), 267-286.
Gus Wiseman, A partition of connected graphs, Electronic J. Combinatorics 12, N1 (2005), 8pp. arXiv:math/0505155 [math.CO].
EXAMPLE
The a(4) = 6 connected chromatic symmetric functions (m is the augmented monomial symmetric function basis):
m(1111)
m(211) + m(1111)
2m(211) + m(1111)
m(22) + 2m(211) + m(1111)
m(22) + 3m(211) + m(1111)
m(31) + 3m(211) + m(1111)
MATHEMATICA
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
chromSF[g_]:=Sum[m[Sort[Length/@stn, Greater]], {stn, spsu[Select[Subsets[Union@@g], Select[DeleteCases[g, {_}], Function[ed, Complement[ed, #]=={}]]=={}&], Union@@g]}];
simpleSpans[n_]:=simpleSpans[n]=If[n==0, {{}}, Union@@Table[If[#=={}, Union[ine, {{n}}], Union[Complement[ine, List/@#], {#, n}&/@#]]&/@Subsets[Range[n-1]], {ine, simpleSpans[n-1]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Union[chromSF/@Select[simpleSpans[n], Length[csm[#]]==1&]]], {n, 6}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 21 2018
STATUS
approved
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in p(u), where H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions.
+10
9
1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 3, 6, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 6, 4, 12, 24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,6
COMMENTS
Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Triangle begins:
1
1
1 0
1 2
1 0 0
1 1 0
1 0 0 0 0
1 3 6
1 2 0 0 0
1 0 1 0 0
1 0 0 0 0 0 0
1 2 2 2 0
1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 6 4 12 24
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 2 0 0 0
For example, row 18 gives: p(221) = m(5) + 2m(32) + m(41) + 2m(221).
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved
Sum of coefficients of forgotten symmetric functions in the power sum symmetric function of the integer partition with Heinz number n.
+10
1
1, 1, -1, 3, 1, -2, -1, 10, 3, 2, 1, -7, -1, -2, -2, 47, 1, 6
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sum of coefficients of p(211) = -f(4) - 2f(22) - 2f(31) - 2f(211) is a(12) = -7.
CROSSREFS
Row sums of A321888. An unsigned version is A321751.
KEYWORD
sign,more
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved

Search completed in 0.004 seconds