login
Search: a318949 -id:a318949
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of representations of n as a sum of products of positive integers. 1 is not allowed as a factor, unless it is the only factor. Representations which differ only in the order of terms or factors are considered equivalent.
+10
48
1, 1, 2, 3, 6, 8, 14, 19, 32, 44, 67, 91, 139, 186, 269, 362, 518, 687, 960, 1267, 1747, 2294, 3106, 4052, 5449, 7063, 9365, 12092, 15914, 20422, 26639, 34029, 44091, 56076, 72110, 91306, 116808, 147272, 187224, 235201, 297594, 372390, 468844, 584644, 732942
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{pi} Product_{m=1..n} binomial(k(m)+A001055(m)-1, k(m)), where pi runs through all partitions k(1) + 2 * k( 2) + ... + n * k(n) = n. a(n)=1/n*Sum_{m=1..n} a(n-m)*b(m), n > 0, a(0)=1, b(m)=Sum_{d|m} d*A001055(d). Euler transform of A001055(n): Product_{m=1..infinity} (1-x^m)^(-A001055(m)). - Vladeta Jovovic, Jan 21 2002
EXAMPLE
For n=5, 5 = 4+1 = 2*2+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1, so a(5) = 8.
For n=8, 8 = 4*2 = 2*2*2 = ... = 4+4 = 2*2+4 = 2*2+2*2 = ...; note that there are 3 ways to factor the terms of 4+4. In general, if a partition contains a number k exactly r times, then the number of ways to factor the k's is the binomial coefficient C(A001055(k)+r-1,r).
MAPLE
with(numtheory):
b:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
end:
a:= proc(n) option remember;
`if`(n=0, 1, add(add(d*b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Apr 22 2012
MATHEMATICA
p[ n_, 1 ] := If[ n==1, 1, 0 ]; p[ 1, k_ ] := 1; p[ n_, k_ ] := p[ n, k ]=p[ n, k-1 ]+If[ Mod[ n, k ]==0, p[ n/k, k ], 0 ]; A001055[ n_ ] := p[ n, n ]; a[ n_, 1 ] := 1; a[ 0, k_ ] := 1; a[ n_, k_ ] := If[ k>n, a[ n, n ], a[ n, k ]=a[ n, k-1 ]+Sum[ Binomial[ A001055[ k ]+r-1, r ]a[ n-k*r, k-1 ], {r, 1, Floor[ n/k ]} ] ]; a[ n_ ] := a[ n, n ]; (* p[ n, k ]=number of factorizations of n with factors <= k. a[ n, k ]=number of representations of n as a sum of products of positive integers, with summands <= k *)
b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; a[0] = 1; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSum[j, #*b[#, #]&]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *)
facs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#1, d]&)/@Select[facs[n/d], Min@@#1>=d&], {d, Rest[Divisors[n]]}]];
Table[Length[Union[Sort/@Join@@Table[Tuples[facs/@ptn], {ptn, IntegerPartitions[n]}]]], {n, 50}] (* Gus Wiseman, Sep 05 2018 *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import divisors, isprime
@cacheit
def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum([0 if d>k else b(n//d, d) for d in divisors(n)[1:-1]]))
@cacheit
def a(n): return 1 if n==0 else sum(sum(d*b(d, d) for d in divisors(j))*a(n - j) for j in range(1, n + 1))//n
print([a(n) for n in range(61)]) # Indranil Ghosh, Aug 19 2017, after Maple code
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Jan 16 2002
EXTENSIONS
Edited by Dean Hickerson, Jan 19 2002
STATUS
approved
Number of distinct values produced from sums and products of n unity arguments.
+10
20
1, 2, 3, 4, 6, 9, 11, 17, 23, 30, 44, 60, 80, 114, 156, 212, 296, 404, 556, 770, 1065, 1463, 2032, 2795, 3889, 5364, 7422, 10300, 14229, 19722, 27391, 37892, 52599, 73075, 101301, 140588, 195405, 271024, 376608, 523518, 726812, 1010576, 1405013, 1952498
OFFSET
1,2
COMMENTS
Values listed calculated by exhaustive search algorithm.
For n+1 operands (n operations) there are (2n)!/((n!)((n+1)!)) possible postfix forms over a single operator. For each such form, there are 2^n ways to assign 2 operators (here, sum and product). Calculate results and eliminate duplicates.
Number of distinct positive integers that can be obtained by iteratively adding or multiplying together parts of an integer partition until only one part remains, starting with 1^n. - Gus Wiseman, Sep 29 2018
FORMULA
Equals partial sum of "number of numbers of complexity n" (A005421). - Jonathan Vos Post, Apr 07 2006
EXAMPLE
a(3)=3 since (in postfix): 111** = 11*1* = 1, 111*+ = 11*1+ = 111+* = 11+1* = 2 and 111++ = 11+1+ = 3. Note that at n=7, the 11 possible values produced are the set {1,2,3,4,5,6,7,8,9,10,12}. This is the first n for which there are "skipped" values in the set.
MAPLE
b:= proc(n) option remember; `if`(n=1, {1}, {seq(seq(seq(
[f+g, f*g][], g=b(n-i)), f=b(i)), i=1..iquo(n, 2))})
end:
a:= n-> nops(b(n)):
seq(a(n), n=1..35); # Alois P. Heinz, May 05 2019
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
Table[Length[Select[ReplaceListRepeated[{Array[1&, n]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]], {n, 10}] (* Gus Wiseman, Sep 29 2018 *)
PROG
(Python)
from functools import cache
@cache
def f(m):
if m == 1: return {1}
out = set()
for j in range(1, m//2+1):
for x in f(j):
for y in f(m-j):
out.update([x + y, x * y])
return out
def a(n): return len(f(n))
print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Aug 03 2022
KEYWORD
nonn,nice
EXTENSIONS
More terms from David W. Wilson, Oct 10 2001
a(43)-a(44) from Alois P. Heinz, May 05 2019
STATUS
approved
Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.
+10
16
1, 3, 6, 11, 23, 48, 85, 178, 331, 619, 1176, 2183, 3876, 7013, 12447, 21719, 37628, 64570, 109723, 185055
OFFSET
1,2
EXAMPLE
The a(4) = 11 pairs:
4 <= (4)
3 <= (3,1)
4 <= (3,1)
4 <= (2,2)
2 <= (2,1,1)
3 <= (2,1,1)
4 <= (2,1,1)
1 <= (1,1,1,1)
2 <= (1,1,1,1)
3 <= (1,1,1,1)
4 <= (1,1,1,1)
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
nexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];
Table[Total[Length/@nexos/@IntegerPartitions[n]], {n, 20}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 01 2018
STATUS
approved
Number of distinct integer partitions whose parts can be combined together using additions and multiplications to obtain n, with the exception that 1's can only be added and not multiplied with other parts.
+10
16
1, 2, 3, 5, 7, 16, 20, 37, 53, 81, 107, 177, 227, 332, 449, 647, 830, 1162, 1480, 2032, 2597, 3447, 4348, 5775, 7251, 9374, 11758, 15026, 18640, 23688, 29220, 36771, 45128, 56168, 68674, 85015, 103394, 126923, 153871, 187911, 226653
OFFSET
1,2
COMMENTS
All parts of the integer partition must be used in such a combination.
LINKS
FORMULA
a(n) >= A000041(n).
a(n) >= A001055(n).
EXAMPLE
The a(7) = 20 partitions (which are not all partitions of 7):
(7),
(61), (52), (43),
(511), (321), (421), (331), (322),
(3111), (4111), (2211), (3211), (2221),
(21111), (31111), (22111),
(111111), (211111),
(1111111).
This list contains (2211) because we can write 7 = (2+1)*2+1. It contains (321) because we can write 7 = 3*2+1, even though the sum of parts is only 6.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 01 2018
EXTENSIONS
a(13)-a(41) from Charlie Neder, Jun 02 2019
STATUS
approved
Number of partitions of n into sums of products.
+10
15
1, 1, 2, 3, 6, 8, 14, 19, 33, 45, 69, 94, 148, 197, 289, 390, 575, 762, 1086, 1439, 2040, 2687, 3712, 4874, 6749, 8792, 11918, 15526, 20998, 27164, 36277, 46820, 62367, 80146, 105569, 135326, 177979, 227139, 296027, 377142, 490554, 622526, 804158
OFFSET
0,3
COMMENTS
Number of ways to choose a factorization of each part of an integer partition of n. - Gus Wiseman, Sep 05 2018
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1, g(n) = A001055(n). - Seiichi Manyama, Nov 14 2018
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1-A001055(k)*x^k).
a(n) = 1/n*Sum_{k=1..n} a(n-k)*b(k), n > 0, a(0)=1, b(k)=Sum_{d|k} d*(A001055(d))^(k/d).
EXAMPLE
From Gus Wiseman, Sep 05 2018: (Start)
The a(6) = 14 partitions of 6 into sums of products:
6, 2*3,
5+1, 4+2, 2*2+2, 3+3,
4+1+1, 2*2+1+1, 3+2+1, 2+2+2,
3+1+1+1, 2+2+1+1,
2+1+1+1+1,
1+1+1+1+1+1.
(End)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#1, d]&)/@Select[facs[n/d], Min@@#1>=d&], {d, Rest[Divisors[n]]}]];
Table[Length[Join@@Table[Tuples[facs/@ptn], {ptn, IntegerPartitions[n]}]], {n, 20}] (* Gus Wiseman, Sep 05 2018 *)
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jan 20 2002
EXTENSIONS
Renamed by T. D. Noe, May 24 2011
STATUS
approved
Number of distinct positive integers that can be obtained, starting with the initial interval partition (1, ..., n), by iteratively adding or multiplying together parts until only one part remains.
+10
11
1, 2, 5, 21, 94, 446, 2287, 12568, 78509
OFFSET
1,2
EXAMPLE
The n-th row lists all integers that can be obtained starting with (1, ..., n):
1
2 3
5 6 7 8 9
9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 27 28 30 32 36
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
Table[Length[Select[ReplaceListRepeated[{Range[n]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]], {n, 6}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 29 2018
STATUS
approved
Number of ways to choose an integer partition of each factor in a factorization of n.
+10
9
1, 2, 3, 9, 7, 17, 15, 40, 39, 56, 56, 126, 101, 165, 197, 336, 297, 496, 490, 774, 837, 1114, 1255, 1948, 2007, 2638, 3127, 4123, 4565, 6201, 6842, 9131, 10311, 12904, 14988, 19516, 21637, 26995, 31488, 39250, 44583, 55418, 63261, 77683, 89935, 108068, 124754
OFFSET
1,2
FORMULA
Dirichlet g.f.: Product_{n > 1} 1 / (1 - P(n) / n^s) where P = A000041. [clarified by Ilya Gutkovskiy, Oct 26 2019]
EXAMPLE
The a(4) = 9 ways: (1+1)*(1+1), (1+1+1+1), (1+1)*(2), (2)*(1+1), (2+1+1), (2)*(2), (2+2), (3+1), (4).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#1, d]&)/@Select[facs[n/d], Min@@#1>=d&], {d, Rest[Divisors[n]]}]];
Table[Sum[Times@@PartitionsP/@fac, {fac, facs[n]}], {n, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 05 2018
STATUS
approved
Number of sum-product knapsack partitions of n. Number of integer partitions y of n such that every sum of products of the parts of a multiset partition of any submultiset of y is distinct.
+10
8
1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 6, 7, 8, 12, 12, 14, 18, 23, 23, 32, 30, 35, 50, 48, 47, 56, 80, 77, 87, 105, 100, 134, 139, 145, 194, 170, 192, 250
OFFSET
0,6
LINKS
Sean A. Irvine, Java program (github)
EXAMPLE
The sequence of product-sum knapsack partitions begins:
0: ()
1: (1)
2: (2)
3: (3)
4: (4)
5: (5) (3,2)
6: (6) (4,2) (3,3)
7: (7) (5,2) (4,3)
8: (8) (6,2) (5,3) (4,4)
9: (9) (7,2) (6,3) (5,4)
10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3)
11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3)
The partition (4,4,3) is not a sum-product knapsack partition of 11 because (4*4) = (4)+(4*3).
A complete list of all sums of products of multiset partitions of submultisets of (5,4,2) is:
0 = 0
(2) = 2
(4) = 4
(5) = 5
(2*4) = 8
(2*5) = 10
(4*5) = 20
(2*4*5) = 40
(2)+(4) = 6
(2)+(5) = 7
(2)+(4*5) = 22
(4)+(5) = 9
(4)+(2*5) = 14
(5)+(2*4) = 13
(2)+(4)+(5) = 11
These are all distinct, so (5,4,2) is a sum-product knapsack partition of 11.
MATHEMATICA
sps[{}]:={{}};
sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
rrtuks[n_]:=Select[IntegerPartitions[n], Function[q, UnsameQ@@Apply[Plus, Apply[Times, Union@@mps/@Union[Subsets[q]], {2}], {1}]]];
Table[Length[rrtuks[n]], {n, 12}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 04 2018
EXTENSIONS
a(13)-a(37) from Sean A. Irvine, Jul 13 2022
STATUS
approved
Number of distinct positive integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with 1^n.
+10
8
0, 1, 1, 1, 1, 2, 4, 5, 10, 15, 21, 34, 49, 68, 101, 142, 197, 280, 387, 538, 751, 1045, 1442, 2010, 2772, 3865, 5339, 7396, 10273, 14201, 19693
OFFSET
0,6
EXAMPLE
We have
7 = 1+1+1+1+1+1+1,
8 = (1+1)*(1+1+1)+1+1,
9 = (1+1)*(1+1)*(1+1)+1,
10 = (1+1+1+1+1)*(1+1),
12 = (1+1+1)*(1+1+1+1),
so a(7) = 5.
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
mexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_?(#>1&), mie___, y_?(#>1&), afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];
Table[Length[mexos[Table[1, {n}]]], {n, 30}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 01 2018
STATUS
approved
Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^(2^(k - 1)).
+10
8
1, 2, 4, 11, 16, 40, 64, 148, 266, 544, 1024, 2156, 4096, 8320, 16448, 33089, 65536, 131732, 262144, 525488, 1048832, 2099200, 4194304, 8393648, 16777352, 33562624, 67109908, 134234816, 268435456, 536906368, 1073741824, 2147550702, 4294971392, 8590065664, 17179870208
OFFSET
1,2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 21 2019
STATUS
approved

Search completed in 0.013 seconds