login
Search: a317132 -id:a317132
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of permutations of [n] whose lengths of increasing runs are triangular numbers.
+10
8
1, 1, 1, 2, 7, 24, 93, 483, 2832, 17515, 123226, 978405, 8312802, 75966887, 756376739, 8070649675, 91320842018, 1099612368110, 14054043139523, 189320856378432, 2682416347625463, 39945105092501742, 623240458310527252, 10160826473676346731, 172871969109661492526
OFFSET
0,4
LINKS
EXAMPLE
a(2) = 1: 21.
a(3) = 2: 123, 321.
a(4) = 7: 1243, 1342, 2134, 2341, 3124, 4123, 4321.
a(5) = 24: 12543, 13542, 14532, 21354, 21453, 23541, 24531, 31254, 31452, 32145, 32451, 34521, 41253, 41352, 42135, 42351, 43125, 51243, 51342, 52134, 52341, 53124, 54123, 54321.
MAPLE
g:= n-> `if`(issqr(8*n+1), 1, 0):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
MATHEMATICA
g[n_] := If[IntegerQ @ Sqrt[8n+1], 1, 0];
b[u_, o_, t_] := b[u, o, t] = If[u+o==0, g[t], If[g[t]==1, Sum[b[u-j, o+j-1, 1], {j, 1, u}], 0] + Sum[b[u+j-1, o-j, t+1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2018
STATUS
approved
Number of permutations of [n] whose lengths of increasing runs are Fibonacci numbers.
+10
7
1, 1, 2, 6, 23, 112, 652, 4425, 34358, 299971, 2910304, 31059715, 361603228, 4560742758, 61947243329, 901511878198, 13994262184718, 230811430415207, 4030772161073249, 74301962970014978, 1441745847111969415, 29374226224980834077, 626971133730275593916
OFFSET
0,3
LINKS
MAPLE
g:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
MATHEMATICA
g[n_] := With[{t = 5n^2}, If[IntegerQ@Sqrt[t+4] || IntegerQ@Sqrt[t-4], 1, 0]];
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2018
STATUS
approved
Number of permutations of [n] whose lengths of increasing runs are squares.
+10
7
1, 1, 1, 1, 2, 9, 40, 151, 571, 2897, 19730, 140190, 953064, 6708323, 54631552, 510143776, 4987278692, 49168919669, 505209884549, 5638095015594, 67921924172174, 852861260421398, 10992380368532792, 147296144926635359, 2082906807168675698, 30973237281668975230
OFFSET
0,5
LINKS
EXAMPLE
a(3) = 1: 321.
a(4) = 2: 1234, 4321.
a(5) = 9: 12354, 12453, 13452, 21345, 23451, 31245, 41235, 51234, 54321.
MAPLE
g:= n-> `if`(issqr(n), 1, 0):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
MATHEMATICA
g[n_] := If[IntegerQ@Sqrt[n], 1, 0];
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2018
STATUS
approved
Number of permutations of [n] whose lengths of increasing runs are prime numbers.
+10
7
1, 0, 1, 1, 5, 19, 80, 520, 2898, 22486, 171460, 1509534, 14446457, 147241144, 1650934446, 19494460567, 248182635904, 3340565727176, 47659710452780, 718389090777485, 11381176852445592, 189580213656445309, 3305258537062221020, 60273557241570401742
OFFSET
0,5
LINKS
EXAMPLE
a(2) = 1: 12.
a(3) = 1: 123.
a(4) = 5: 1324, 1423, 2314, 2413, 3412.
a(5) = 19: 12345, 12435, 12534, 13245, 13425, 13524, 14235, 14523, 15234, 23145, 23415, 23514, 24135, 24513, 25134, 34125, 34512, 35124, 45123.
MAPLE
g:= n-> `if`(n=0 or isprime(n), 1, 0):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
MATHEMATICA
g[n_] := If[n == 0 || PrimeQ[n], 1, 0];
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)
PROG
(Python)
from functools import lru_cache
from sympy import isprime
def g(n): return int(n == 0 or isprime(n))
@lru_cache(maxsize=None)
def b(u, o, t):
if u + o == 0: return g(t)
return (sum(b(u-j, o+j-1, 1) for j in range(1, u+1)) if g(t) else 0) +\
sum(b(u+j-1, o-j, t+1) for j in range(1, o+1))
def a(n): return b(n, 0, 0)
print([a(n) for n in range(28)]) # Michael S. Branicky, Mar 29 2021 after Alois P. Heinz
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2018
STATUS
approved
Number of permutations of [n] whose lengths of increasing runs are distinct factorial numbers.
+10
6
1, 1, 1, 4, 0, 0, 1, 12, 54, 1002, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 48, 648, 39444, 0, 0, 1187548, 96978608, 1721374454, 169149221140, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,4
LINKS
FORMULA
a(n) = 0 <=> n in { A115945 }.
a(n) > 0 <=> n in { A059590 }.
MAPLE
h:= proc(n) local i; 1; for i from 2 do
if n=% then 1; break elif n<% then 0; break fi;
%*i od; h(n):=%
end:
g:= (n, s)-> `if`(n in s or not (n=0 or h(n)=1), 0, 1):
b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
`if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t})
, j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
end:
a:= n-> b(n, 0$2, {}):
seq(a(n), n=0..34);
MATHEMATICA
h[n_] := Module[{i, pc = 1}, For[i = 2, True, i++, Which[n == pc, pc = 1; Break[], n < pc, pc = 0; Break[]]; pc = pc*i]; h[n] = pc];
g[n_, s_] := If[MemberQ[s, n] || !(n == 0 || h[n] == 1), 0, 1];
b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}],
{j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, 1, o}]];
a[n_] := b[n, 0, 0, {}];
Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jul 14 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 28 2018
STATUS
approved
Number of permutations of [n] whose cycle lengths are factorials.
+10
5
1, 1, 2, 4, 10, 26, 196, 1072, 7484, 42940, 261496, 1477136, 15219832, 134828344, 1488515120, 13692017536, 130252442896, 1123580329232, 14639510308384, 173489066401600, 2528654220104096, 31472160333513376, 402634734214583872, 4645625988351336704, 25925035549644280991680
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp( sum(n>=1, x^(n!) / n! ) ).
MAPLE
a:= proc(n) option remember; local r, f, i;
if n=0 then 1 else r, f, i:= $0..2;
while f<=n do r:= r +a(n-f)*(f-1)!*
binomial(n-1, f-1); f, i:= f*i, i+1
od; r
fi
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 04 2016
MATHEMATICA
nmax = 4; egf = Exp[Sum[x^n!/n!, {n, 1, nmax}]] + O[x]^(nmax! + 1); CoefficientList[egf, x]*Range[0, nmax!]! (* Jean-François Alcover, Feb 19 2017 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(n=1, 10, x^(n!)/n!))))
CROSSREFS
Cf. A000142, A273001 (cycle lengths are Fibonacci numbers), A272602 (e.g.f.: exp( sum(n>=1, x^(n!) / n ) ) ), A273996, A317132.
KEYWORD
nonn
AUTHOR
Joerg Arndt, May 29 2016
STATUS
approved

Search completed in 0.004 seconds