login
Search: a292804 -id:a292804
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of finite languages over a binary alphabet (set of nonempty binary words of total length n).
+10
19
1, 2, 5, 16, 42, 116, 310, 816, 2121, 5466, 13937, 35248, 88494, 220644, 546778, 1347344, 3302780, 8057344, 19568892, 47329264, 114025786, 273709732, 654765342, 1561257968, 3711373005, 8797021714, 20794198581, 49024480880, 115292809910, 270495295636
OFFSET
0,2
COMMENTS
Analogous to A034899 (which also enumerates multisets of words)
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 64
Stefan Gerhold, Counting finite languages by total word length, INTEGERS 11 (2011), #A44.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
FORMULA
G.f.: exp(Sum((-1)^(j-1)/j*(2*z^j)/(1-2*z^j), j=1..infinity)).
Asymptotics (Gerhold, 2011): a(n) ~ c * 2^(n-1)*exp(2*sqrt(n)-1/2) / (sqrt(Pi) * n^(3/4)), where c = exp( Sum_{k>=2} (-1)^(k-1)/(k*(2^(k-1)-1)) ) = 0.6602994483152065685... . - Vaclav Kotesovec, Sep 13 2014
Weigh transform of A000079. - Alois P. Heinz, Jun 25 2018
EXAMPLE
a(2) = 5 because the sets are {a,b}, {aa}, {ab}, {ba}, {bb}.
a(3) = 16 because the sets are {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb}.
MAPLE
series(exp(add((-1)^(j-1)/j*(2*z^j)/(1-2*z^j), j=1..40)), z, 40);
MATHEMATICA
nn = 20; p = Product[(1 + x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
CoefficientList[Series[E^Sum[(-1)^(k-1)/k*(2*x^k)/(1-2*x^k), {k, 1, 30}], {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 13 2014 *)
CROSSREFS
Column k=2 of A292804.
Row sums of A208741 and of A360634.
KEYWORD
nonn
AUTHOR
Philippe Flajolet, Mar 01 2005
STATUS
approved
Number T(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the set; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
+10
16
1, 0, 1, 0, 1, 3, 0, 2, 12, 13, 0, 2, 38, 105, 73, 0, 3, 110, 588, 976, 501, 0, 4, 302, 2811, 8416, 9945, 4051, 0, 5, 806, 12354, 59488, 121710, 111396, 37633, 0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353, 0, 8, 5450, 207846, 2209276, 10096795, 23420022, 28969248, 18235680, 4596553
OFFSET
0,6
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A292804(n,k-i).
EXAMPLE
T(2,2) = 3: {ab}, {ba}, {a,b}.
T(3,2) = 12: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}.
T(4,2) = 38: {aaab}, {aaba}, {aabb}, {abaa}, {abab}, {abba}, {abbb}, {baaa}, {baab}, {baba}, {babb}, {bbaa}, {bbab}, {bbba}, {a,aab}, {a,aba}, {a,abb}, {a,baa}, {a,bab}, {a,bba}, {a,bbb}, {aa,ab}, {aa,ba}, {aa,bb}, {aaa,b}, {aab,b}, {ab,ba}, {ab,bb}, {aba,b}, {abb,b}, {b,baa}, {b,bab}, {b,bba}, {ba,bb}, {a,aa,b}, {a,ab,b}, {a,b,ba}, {a,b,bb}.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 3;
0, 2, 12, 13;
0, 2, 38, 105, 73;
0, 3, 110, 588, 976, 501;
0, 4, 302, 2811, 8416, 9945, 4051;
0, 5, 806, 12354, 59488, 121710, 111396, 37633;
0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353;
MAPLE
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
end:
T:= (n, k)-> add((-1)^i*binomial(k, i)*h(n$2, k-i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];
T[n_, k_] := Sum[(-1)^i Binomial[k, i] h[n, n, k-i], {i, 0, k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 05 2020, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A000009 (for n>0), A320203, A320204, A320205, A320206, A320207, A320208, A320209, A320210, A320211.
Main diagonal gives A000262.
Row sums give A319518.
T(2n,n) gives A319519.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 20 2018
STATUS
approved
Number A(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
15
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 20, 5, 0, 1, 5, 26, 64, 59, 7, 0, 1, 6, 40, 148, 276, 162, 11, 0, 1, 7, 57, 285, 843, 1137, 449, 15, 0, 1, 8, 77, 488, 2020, 4632, 4648, 1200, 22, 0, 1, 9, 100, 770, 4140, 13876, 25124, 18585, 3194, 30, 0, 1, 10, 126
OFFSET
0,8
COMMENTS
Column k > 1 is asymptotic to k^n * exp(2*sqrt(n) - 1/2 + c(k)) / (2 * sqrt(Pi) * n^(3/4)), where c(k) = Sum_{m>=2} 1/(m*(k^(m-1)-1)). - Vaclav Kotesovec, Mar 14 2015
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
N. J. A. Sloane, Transforms
FORMULA
G.f. of column k: Product_{j>=1} 1/(1-x^j)^(k^j).
Column k is Euler transform of the powers of k.
T(n,k) = Sum_{i=0..k} C(k,i) * A257740(n,k-i). - Alois P. Heinz, May 08 2015
EXAMPLE
A(4,1) = 5: {aaaa}, {aaa,a}, {aa,aa}, {aa,a,a}, {a,a,a,a}.
A(2,2) = 7: {aa}, {a,a}, {bb}, {b,b}, {ab}, {ba}, {a,b}.
A(2,3) = 15: {aa}, {a,a}, {bb}, {b,b}, {cc}, {c,c}, {ab}, {ba}, {a,b}, {ac}, {ca}, {a,c}, {bc}, {cb}, {b,c}.
A(3,2) = 20: {aaa}, {a,aa}, {a,a,a}, {bbb}, {b,bb}, {b,b,b}, {aab}, {aba}, {baa}, {a,ab}, {a,ba}, {aa,b}, {a,a,b}, {bba}, {bab}, {abb}, {b,ba}, {b,ab}, {bb,a}, {b,b,a}.
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 7, 15, 26, 40, ...
0, 3, 20, 64, 148, 285, ...
0, 5, 59, 276, 843, 2020, ...
0, 7, 162, 1137, 4632, 13876, ...
MAPLE
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n, k)-> etr(j->k^j)(n); seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
a[n_, k_] := SeriesCoefficient[ Product[1/(1-x^j)^(k^j), {j, 1, n}], {x, 0, n}]; a[0, _] = 1; a[_?Positive, 0] = 0;
Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 15 2014 *)
etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d p[d], {d, Divisors[j]}] b[n-j], {j, 1, n}]/n]; b];
A[n_, k_] := etr[k^#&][n];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)
CROSSREFS
Rows n=0-2 give: A000012, A001477, A005449.
Main diagonal gives A252654.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 09 2008
EXTENSIONS
Name changed by Alois P. Heinz, Sep 21 2018
STATUS
approved
Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
14
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 7, 2, 0, 1, 1, 3, 13, 18, 3, 0, 1, 1, 3, 13, 36, 42, 4, 0, 1, 1, 3, 13, 60, 122, 110, 5, 0, 1, 1, 3, 13, 60, 206, 433, 250, 6, 0, 1, 1, 3, 13, 60, 326, 865, 1356, 627, 8, 0, 1, 1, 3, 13, 60, 326, 1345, 3408, 4449, 1439, 10, 0
OFFSET
0,13
LINKS
FORMULA
G.f. of column k: Product_{j>=1} (1+x^j)^A226873(j,k).
A(n,k) = Sum_{j=0..n} A319498(n,j).
EXAMPLE
A(2,3) = 3: {aa}, {ab}, {ba}.
A(3,2) = 7: {aaa}, {aab}, {aba}, {baa}, {aa,a}, {ab,a}, {ba,a}.
A(3,3) = 13: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, 3, ...
0, 2, 7, 13, 13, 13, 13, 13, 13, ...
0, 2, 18, 36, 60, 60, 60, 60, 60, ...
0, 3, 42, 122, 206, 326, 326, 326, 326, ...
0, 4, 110, 433, 865, 1345, 2065, 2065, 2065, ...
0, 5, 250, 1356, 3408, 6228, 9468, 14508, 14508, ...
0, 6, 627, 4449, 15025, 29845, 51325, 76525, 116845, ...
MAPLE
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i)))
end:
A:= (n, k)-> h(n$2, min(n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]];
h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[g[i, k], j], {j, 0, n/i}]]];
A[n_, k_] := h[n, n, Min[n, k]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten(* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
CROSSREFS
Rows n=0-1 give: A000012, A057427.
Main diagonal gives A292796.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 23 2017
STATUS
approved
G.f.: Product_{j>=1} (1+x^j)^(3^j).
+10
12
1, 3, 12, 55, 225, 927, 3729, 14787, 57888, 224220, 860022, 3270744, 12343899, 46264257, 172305837, 638039136, 2350109736, 8613851832, 31428857611, 114187160631, 413222547846, 1489829356657, 5352683946903, 19167988920930, 68427472477338, 243559693397025
OFFSET
0,2
COMMENTS
In general, if g.f. = Product_{j>=1} (1+x^j)^(k^j), then a(n) ~ k^n * exp(2*sqrt(n) - 1/2 - c(k)) / (2 * sqrt(Pi) * n^(3/4)), where c(k) = Sum_{m>=2} (-1)^m/(m*(k^(m-1)-1)).
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
FORMULA
a(n) ~ 3^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(3^(m-1)-1)) = 0.215985336303958581708278160877115129... .
MATHEMATICA
nmax=30; CoefficientList[Series[Product[(1+x^k)^(3^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Column k=3 of A292804.
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 16 2015
STATUS
approved
Number of sets of nonempty words with a total of n letters over n-ary alphabet.
+10
8
1, 1, 5, 55, 729, 12376, 250735, 5904746, 158210353, 4747112731, 157545928646, 5726207734545, 226093266070501, 9632339536696943, 440262935648935344, 21482974431740480311, 1114363790702406540897, 61219233429920494716931, 3550130647865299090804375
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{j=1..n} (1+x^j)^(n^j).
a(n) ~ n^(n - 3/4) * exp(2*sqrt(n) - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Aug 26 2019
EXAMPLE
a(0) = 1: {}.
a(1) = 1: {a}.
a(2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
MAPLE
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
end:
a:= n-> h(n$3):
seq(a(n), n=0..20);
MATHEMATICA
h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[k^i, j], {j, 0, n/i}]]];
a[n_] := h[n, n, n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 04 2018, from Maple *)
CROSSREFS
Main diagonal of A292804.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 23 2017
STATUS
approved
Number of sets of nonempty words with a total of n letters over quaternary alphabet.
+10
3
1, 4, 22, 132, 729, 4000, 21488, 113760, 594548, 3073392, 15732936, 79846448, 402104884, 2010879968, 9992425872, 49366096352, 242584319710, 1186177166680, 5773569726884, 27982357252632, 135079969593838, 649640609539360, 3113354757088720, 14871179093155424
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^(4^j).
a(n) ~ 4^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(4^(m-1)-1)) = 0.147762663788961720137665013823002812172... - Vaclav Kotesovec, Sep 28 2017
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(4^i, j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..30);
MATHEMATICA
h[n_, i_] := h[n, i] = If[n == 0, 1, If[i < 1, 0,
Sum[h[n - i j, i - 1] Binomial[4^i, j], {j, 0, n/i}]]];
a[n_] := h[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A292804.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2017
STATUS
approved
Number of sets of nonempty words with a total of n letters over 5-ary alphabet.
+10
3
1, 5, 35, 260, 1805, 12376, 83175, 550775, 3600400, 23276175, 149012380, 945726575, 5955676150, 37243117575, 231412658225, 1429522303905, 8783382129825, 53700395135475, 326809026132350, 1980383108328950, 11952682268739660, 71870696616619250, 430632502970026125
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^(5^j).
a(n) ~ 5^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(5^(m-1)-1)) = 0.112852293193143374268678097722831649456... - Vaclav Kotesovec, Sep 28 2017
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(5^i, j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..30);
MATHEMATICA
h[n_, i_] := h[n, i] = If[n == 0, 1, If[i < 1, 0,
Sum[h[n - i j, i - 1] Binomial[5^i, j], {j, 0, n/i}]]];
a[n_] := h[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A292804.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2017
STATUS
approved
Number of sets of nonempty words with a total of n letters over 6-ary alphabet.
+10
3
1, 6, 51, 452, 3777, 31074, 250735, 1993176, 15640983, 121378650, 932738805, 7105552308, 53709133137, 403124780178, 3006420386499, 22290321581448, 164378277308862, 1206180958964508, 8810022165617086, 64073173243207632, 464122836576398454, 3349321050668452460
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^(6^j).
a(n) ~ 6^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(6^(m-1)-1)) = 0.091503304254691843343610606469481430508... - Vaclav Kotesovec, Sep 28 2017
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(6^i, j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..30);
CROSSREFS
Column k=6 of A292804.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2017
STATUS
approved
Number of sets of nonempty words with a total of n letters over 7-ary alphabet.
+10
3
1, 7, 70, 721, 7042, 67592, 636517, 5904746, 54072137, 489655873, 4390760297, 39030158111, 344244293260, 3014869505704, 26235190722937, 226961433002801, 1952889252127030, 16720135949099562, 142493658202081151, 1209158776638832488, 10219419639669800154
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^(7^j).
a(n) ~ 7^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(7^(m-1)-1)) = 0.07704538722753681799661640414751144459... - Vaclav Kotesovec, Sep 28 2017
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(7^i, j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..30);
CROSSREFS
Column k=7 of A292804.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2017
STATUS
approved

Search completed in 0.008 seconds