login
Search: a255836 -id:a255836
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of bipartite partitions of (i,j) with i+j = n into distinct pairs.
+10
15
1, 2, 4, 10, 19, 38, 73, 134, 242, 430, 749, 1282, 2171, 3622, 5979, 9770, 15802, 25334, 40288, 63560, 99554, 154884, 239397, 367800, 561846, 853584, 1290107, 1940304, 2904447, 4328184, 6422164, 9489940, 13967783, 20480534, 29920277, 43557272, 63194864
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..8000 (terms n=101..1000 from Vaclav Kotesovec)
FORMULA
a(n) = Sum_{i+j=n} [x^i*y^j] 1/2 * Product_{k,m>=0} (1+x^k*y^m).
G.f.: Product_{k>=1} (1+x^k)^(k+1). - Vaclav Kotesovec, Mar 07 2015
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (1296*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * 3^(4/3) * Zeta(3)^(1/3)) + (3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(5/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 07 2015
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(2 - x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Aug 11 2018
EXAMPLE
a(2) = 4: [(2,0)], [(1,1)], [(1,0),(0,1)], [(0,2)].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1))*binomial(i+1, j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..42); # Alois P. Heinz, Sep 19 2019
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k+1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2015 *)
CROSSREFS
Row sums of A054242.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 22 2012
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(2*k+1).
+10
8
1, 3, 8, 23, 55, 129, 291, 627, 1317, 2697, 5398, 10589, 20421, 38743, 72452, 133724, 243792, 439496, 784070, 1385195, 2424971, 4209094, 7247141, 12383496, 21008559, 35398548, 59259781, 98595110, 163077878, 268221706, 438791204, 714142139, 1156552537
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (2592*Zeta(3)) + Pi^2 * n^(1/3) / (12*(3*Zeta(3))^(1/3)) + 3^(4/3)/2*Zeta(3)^(1/3) * n^(2/3)) / (2^(7/6)* 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(2*k+1), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
G.f.: Product_{k>=1} 1/(1-x^k)^(3*k+1).
+10
4
1, 4, 17, 58, 186, 546, 1532, 4082, 10502, 26096, 63075, 148536, 342096, 771744, 1709299, 3721792, 7978972, 16860328, 35155475, 72393580, 147351112, 296657196, 591141762, 1166570452, 2281101159, 4421781894, 8500806341, 16214549920, 30696683828
OFFSET
0,2
COMMENTS
In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(m/36 + c/6 + 1/6) * exp(m/12 - c^2 * Pi^4 / (432*m*Zeta(3)) + c * Pi^2 * n^(1/3) / (3 * 2^(4/3) * (m*Zeta(3))^(1/3)) + 3 * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(2/3)) / (A^m * 2^(c/3 + 1/3 - m/36) * 3^(1/2) * Pi^((c+1)/2) * n^(m/36 + c/6 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 08 2015
LINKS
FORMULA
a(n) ~ Zeta(3)^(5/12) * exp(1/4 - Pi^4/(1296*Zeta(3)) + Pi^2 * n^(1/3) / (6^(4/3) * Zeta(3)^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A^3 * 2^(7/12) * 3^(1/12) * Pi * n^(11/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 3*n+1): seq(a(n), n=0..50); # after Alois P. Heinz
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k+1), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(3*k+2).
+10
3
1, 5, 18, 61, 182, 506, 1338, 3369, 8172, 19197, 43833, 97636, 212748, 454461, 953505, 1968095, 4001627, 8024295, 15885484, 31074351, 60111277, 115071431, 218126868, 409662895, 762679151, 1408172844, 2579599582, 4690277001, 8467363674, 15182486586
OFFSET
0,2
COMMENTS
In general, if g.f. = Product_{k>=1} (1+x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(1/6) * exp(-c^2 * Pi^4 / (1296*m*Zeta(3)) + (c * Pi^2 * n^(1/3)) / (2^(5/3) * 3^(4/3) * (m*Zeta(3))^(1/3)) + 3^(4/3) * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(4/3)) / (2^(m/12 + c/2 + 2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Mar 08 2015
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(972*Zeta(3)) + Pi^2 * n^(1/3) / (2^(2/3) * 3^(5/3) * Zeta(3)^(1/3)) + 3^(5/3)/2^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(23/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(3*k+2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A026007 (k), A219555 (k+1), A052812 (k-1), A255834 (2*k+1), A255835 (2*k-1), A255836 (3*k+1).
Cf. A255803.
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved

Search completed in 0.005 seconds