login
Search: a255835 -id:a255835
     Sort: relevance | references | number | modified | created      Format: long | short | data
A simple grammar: power set of pairs of sequences.
+10
10
1, 0, 1, 2, 3, 6, 9, 16, 24, 42, 63, 102, 157, 244, 373, 570, 858, 1290, 1930, 2858, 4228, 6208, 9084, 13216, 19175, 27666, 39804, 57020, 81412, 115820, 164264, 232178, 327220, 459796, 644232, 900214, 1254554, 1743896, 2418071, 3344896, 4616026
OFFSET
0,4
COMMENTS
Number of partitions of n objects of two colors into distinct parts, where each part must contain at least one of each color. - Franklin T. Adams-Watters, Dec 28 2006
LINKS
FORMULA
G.f.: exp(Sum((-1)^(j[1]+1)*(x^j[1])^2/(x^j[1]-1)^2/j[1], j[1]=1 .. infinity))
G.f.: Product_{k>=1} (1+x^k)^(k-1). - Vladeta Jovovic, Sep 17 2002
Weigh transform of b(n) = n-1. - Franklin T. Adams-Watters, Dec 28 2006
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(1296*Zeta(3)) - Pi^2 * n^(1/3) / (3^(4/3) * 2^(5/3) * Zeta(3)^(1/3)) + (3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/4) * 3^(1/3) * n^(2/3) * sqrt(Pi)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 07 2015
MAPLE
spec := [S, {B=Sequence(Z, 1 <= card), C=Prod(B, B), S= PowerSet(C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k-1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Vladeta Jovovic, Sep 17 2002
STATUS
approved
G.f.: Product_{k>=1} 1/(1-x^k)^(2*k-1).
+10
10
1, 1, 4, 9, 22, 46, 103, 208, 431, 849, 1671, 3195, 6079, 11321, 20937, 38146, 68931, 123121, 218212, 383019, 667425, 1153544, 1980268, 3375394, 5717773, 9624541, 16108496, 26807662, 44379189, 73089219, 119789926, 195401275, 317309532, 513025167, 826000651
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of n where there are 2*k-1 sorts of parts k. - Joerg Arndt, Aug 15 2020
LINKS
FORMULA
a(n) ~ 2^(1/9) * Zeta(3)^(1/18) * exp(1/6 - Pi^4/(864*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 3^(1/2) * n^(5/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Jun 07 2018
Euler transform of A005408 (the odd numbers). - Georg Fischer, Aug 15 2020
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n-1): seq(a(n), n=0..50); # after Alois P. Heinz
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
(* Using EulerTransforms from 'Transforms'. *)
Prepend[EulerTransform[Table[2k + 1, {k, 0, 20}]], 1] (* Peter Luschny, Aug 15 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(2*k+1).
+10
8
1, 3, 8, 23, 55, 129, 291, 627, 1317, 2697, 5398, 10589, 20421, 38743, 72452, 133724, 243792, 439496, 784070, 1385195, 2424971, 4209094, 7247141, 12383496, 21008559, 35398548, 59259781, 98595110, 163077878, 268221706, 438791204, 714142139, 1156552537
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (2592*Zeta(3)) + Pi^2 * n^(1/3) / (12*(3*Zeta(3))^(1/3)) + 3^(4/3)/2*Zeta(3)^(1/3) * n^(2/3)) / (2^(7/6)* 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(2*k+1), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k-1).
+10
6
1, 2, 8, 24, 66, 176, 448, 1096, 2608, 6042, 13664, 30280, 65856, 140800, 296432, 615264, 1260306, 2550368, 5102616, 10101000, 19797344, 38439088, 73976160, 141179480, 267300752, 502283714, 937077808, 1736296304, 3196144032, 5846632656, 10631038400
OFFSET
0,2
COMMENTS
Convolution of A253289 and A255835.
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 26.
FORMULA
a(n) ~ 2^(1/3) * (7*Zeta(3))^(1/18) * exp(1/6 - Pi^4/(672*Zeta(3)) - Pi^2 * n^(1/3)/(4*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * sqrt(3) * n^(5/9)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 19 2015
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(3*k+1).
+10
5
1, 4, 13, 42, 117, 310, 785, 1896, 4433, 10062, 22248, 48080, 101821, 211682, 432795, 871520, 1730491, 3391894, 6568996, 12580316, 23841774, 44742634, 83193865, 153347110, 280336704, 508499474, 915540681, 1636805438, 2906642396, 5128530946, 8993376689
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (3888*Zeta(3)) + Pi^2 * n^(1/3) / (6^(5/3) * Zeta(3)^(1/3)) + 3^(5/3)/2^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(17/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(3*k+1), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(3*k+2).
+10
3
1, 5, 18, 61, 182, 506, 1338, 3369, 8172, 19197, 43833, 97636, 212748, 454461, 953505, 1968095, 4001627, 8024295, 15885484, 31074351, 60111277, 115071431, 218126868, 409662895, 762679151, 1408172844, 2579599582, 4690277001, 8467363674, 15182486586
OFFSET
0,2
COMMENTS
In general, if g.f. = Product_{k>=1} (1+x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(1/6) * exp(-c^2 * Pi^4 / (1296*m*Zeta(3)) + (c * Pi^2 * n^(1/3)) / (2^(5/3) * 3^(4/3) * (m*Zeta(3))^(1/3)) + 3^(4/3) * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(4/3)) / (2^(m/12 + c/2 + 2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Mar 08 2015
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(972*Zeta(3)) + Pi^2 * n^(1/3) / (2^(2/3) * 3^(5/3) * Zeta(3)^(1/3)) + 3^(5/3)/2^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(23/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(3*k+2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A026007 (k), A219555 (k+1), A052812 (k-1), A255834 (2*k+1), A255835 (2*k-1), A255836 (3*k+1).
Cf. A255803.
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
Expansion of Product_{k>=1} (1+x^k)^(2*k-1) / (1-x^k)^(2*k).
+10
3
1, 3, 12, 39, 117, 331, 893, 2307, 5766, 13986, 33046, 76302, 172567, 383013, 835731, 1795236, 3801105, 7941439, 16386777, 33423342, 67435311, 134675784, 266385932, 522135379, 1014643823, 1955656848, 3740191268, 7100290646, 13383997996, 25058666367
OFFSET
0,2
COMMENTS
Convolution of A161870 and A255835.
LINKS
FORMULA
a(n) ~ (7*Zeta(3))^(2/9) * exp(1/6 - Pi^4/(6048*Zeta(3)) - Pi^2 * n^(1/3) / (12*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * 2^(1/6) * sqrt(3*Pi) * n^(13/18)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k-1)/(1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 17 2015
STATUS
approved
a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^n)).
+10
1
1, 1, 3, 13, 54, 290, 1674, 10857, 76398, 580230, 4706734, 40598349, 370694845, 3569027696, 36100349833, 382360758863, 4228730647420, 48716663849192, 583403253712747, 7248883337962522, 93291181556742684, 1241632098163126324, 17064777292709034968, 241874821482784132204
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{k>=1} (1 + x^k)^(2*binomial(n+k-2,n-1)-binomial(n+k-3,n-2)).
MATHEMATICA
Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
Table[SeriesCoefficient[Product[(1 + x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 07 2018
STATUS
approved
Number of partitions of n into distinct parts where there are k^2-1 kinds of part k.
+10
1
1, 0, 3, 8, 18, 48, 109, 264, 594, 1360, 2988, 6552, 14115, 30048, 63288, 131800, 271953, 555792, 1126583, 2264472, 4518051, 8948544, 17603781, 34405272, 66828247, 129040704, 247765665, 473160696, 898924929, 1699331808, 3197083220, 5987288352, 11162934948
OFFSET
0,3
FORMULA
G.f.: Product_{k>=1} (1+x^k)^(k^2-1).
a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d) * d * (d^2-1) ) * a(n-k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(prod(k=1, N, (1+x^k)^(k^2-1)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 10 2023
EXTENSIONS
Name suggested by Joerg Arndt, Jun 11 2023
STATUS
approved
Expansion of Product_{k>=1} (1 - x^k)^(2*k-1).
+10
0
1, -1, -3, -2, 1, 10, 13, 15, -1, -30, -63, -89, -80, -14, 131, 304, 493, 561, 434, -32, -836, -1895, -2960, -3583, -3240, -1338, 2401, 8004, 14499, 20494, 23369, 20401, 8567, -13741, -46408, -85717, -124027, -149612, -147167, -101002, 2520, 168026, 388077, 634914
OFFSET
0,3
FORMULA
G.f.: exp(Sum_{k>=1} (sigma_1(k) - 2*sigma_2(k))*x^k/k).
MAPLE
a:=series(mul((1-x^k)^(2*k-1), k=1..100), x=0, 44): seq(coeff(a, x, n), n=0..43); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 43; CoefficientList[Series[Product[(1 - x^k)^(2 k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 43; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - 2 DivisorSigma[2, k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (1 - 2 d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 43}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 25 2018
STATUS
approved

Search completed in 0.007 seconds