login
Search: a240181 -id:a240181
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions p of n such that exactly one number is in both p and its conjugate.
+10
3
1, 0, 0, 3, 4, 6, 8, 8, 9, 22, 22, 34, 50, 60, 74, 105, 120, 144, 186, 234, 280, 358, 440, 524, 665, 782, 954, 1150, 1354, 1630, 1944, 2258, 2666, 3170, 3728, 4365, 5128, 5976, 6978, 8144, 9488, 10952, 12700, 14716, 16932, 19558, 22434, 25764, 29505, 33782
OFFSET
1,4
COMMENTS
Second column of the array at A240181. Multiplicities greater than 1 are not counted; e.g. there is exactly one number that is in both {4,1,1} and {3,1,1,1}.
LINKS
Manfred Scheucher, Sage Script
EXAMPLE
a(6) counts these 6 partitions: 51, 42, 411, 3111, 2211, 21111, of which the respective conjugates are 21111, 2211, 3111, 411, 42, 51.
MATHEMATICA
z = 30; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; c[p_] := c[p] = Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; b[n_] := b[n] = Table[Intersection[p[n, k], c[p[n, k]]], {k, 1, PartitionsP[n]}]; Table[Count[Map[Length, b[n]], 0], {n, 1, z}] (* A240674 *)
Table[Count[Map[Length, b[n]], 1], {n, 1, z}] (* A240675 *)
PROG
(PARI) conjug(v) = {my(m = matrix(#v, vecmax(v))); for (i=1, #v, for (j=1, v[i], m[i, j] = 1; ); ); vector(vecmax(v), i, sum(j=1, #v, m[j, i])); }
a(n) = {my(v = partitions(n)); my(nb = 0); for (k=1, #v, if (#setintersect(Set(v[k]), Set(conjug(v[k]))) == 1, nb++); ); nb; } \\ Michel Marcus, Jun 02 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 12 2014
EXTENSIONS
More terms from Manfred Scheucher, Jun 01 2015
STATUS
approved
Greatest number of distinct numbers in the intersection of p and its conjugate, as p ranges through the partitions of n.
+10
2
2, 1, 3, 2, 3, 4, 3, 4, 3, 5, 4, 5, 4, 5, 6, 5, 6, 5, 6, 5, 7, 6, 7, 6, 7, 6, 7, 8, 7, 8, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9
OFFSET
1,1
COMMENTS
Number of terms in row n of the array at A240181.
To match the definition, all terms need to be decreased by 1 (because the rows in A240181 start with k=0). So this appears to be an incorrect duplicate of A067731. - Joerg Arndt, Jul 30 2017
MATHEMATICA
z = 30; conjugatePartition[part_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[part]; c = Map[BinCounts[#, {0, 1 + Max[#]}] &[Map[Length, Map[Intersection[#, conjugatePartition[#]] &, IntegerPartitions[#]]]] &, Range[z]]; Flatten[c] (* A240181 *)
Table[Length[c[[n]]], {n, 1, z}] (* A240450 *) (* Peter J. C. Moses, Apr 10 2014 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Clark Kimberling, Apr 12 2014
STATUS
approved
Number of partitions p of n that are disjoint from their conjugate.
+10
2
1, 0, 2, 2, 2, 2, 4, 4, 8, 10, 10, 14, 18, 18, 26, 30, 36, 44, 60, 64, 82, 96, 114, 130, 164, 176, 222, 248, 296, 338, 406, 450, 550, 620, 726, 816, 968, 1074, 1270, 1418, 1648, 1836, 2150, 2382, 2758, 3080, 3534, 3942, 4538, 5034, 5778, 6416, 7312, 8136, 9258
OFFSET
0,3
COMMENTS
First column of the array at A240181.
FORMULA
a(n) = 2*A114701(n), for n >= 1.
EXAMPLE
a(6) counts these 4 partitions: 6, 33, 222, 111111, of which the respective conjugates are 111111, 222, 33, 6.
MATHEMATICA
z = 30; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; c[p_] := c[p] = Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; b[n_] := b[n] = Table[Intersection[p[n, k], c[p[n, k]]], {k, 1, PartitionsP[n]}]; Table[Count[Map[Length, b[n]], 0], {n, 1, z}] (* this sequence *)
Table[Count[Map[Length, b[n]], 1], {n, 1, z}] (* A240675 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 12 2014
EXTENSIONS
Name corrected by Clark Kimberling, Sep 28 2023
a(0)=1 prepended by Alois P. Heinz, Jul 19 2024
STATUS
approved

Search completed in 0.005 seconds