login
Search: a238395 -id:a238395
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of n-stacks with strictly receding walls, or the number of Type A partitions of n in the sense of Auluck (1951).
(Formerly M0644 N0238)
+10
60
1, 1, 1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 47, 62, 82, 107, 139, 179, 230, 293, 372, 470, 591, 740, 924, 1148, 1422, 1756, 2161, 2651, 3244, 3957, 4815, 5844, 7075, 8545, 10299, 12383, 14859, 17794, 21267, 25368, 30207, 35902, 42600, 50462, 59678, 70465, 83079, 97800, 114967, 134956, 158205, 185209, 216546, 252859
OFFSET
0,5
COMMENTS
Also number of partitions of n with positive crank (n>=2), cf. A064391. - Vladeta Jovovic, Sep 30 2001
Number of smooth weakly unimodal compositions of n into positive parts such that the first and last part are 1 (smooth means that successive parts differ by at most one), see example. Dropping the requirement for unimodality gives A186085. - Joerg Arndt, Dec 09 2012
Number of weakly unimodal compositions of n where the maximal part m appears at least m times, see example. - Joerg Arndt, Jun 11 2013
Also weakly unimodal compositions of n with first part 1, maximal up-step 1, and no consecutive up-steps; see example. The smooth weakly unimodal compositions are recovered by shifting all rows above the bottom row to the left by one position with respect to the next lower row. - Joerg Arndt, Mar 30 2014
It would seem from Stanley that he regards a(0)=0 for this sequence and A001523. - Michael Somos, Feb 22 2015
From Gus Wiseman, Mar 30 2021: (Start)
Also the number of odd-length compositions of n with alternating parts strictly decreasing. These are finite odd-length sequences q of positive integers summing to n such that q(i) > q(i+2) for all possible i. The even-length version is A064428. For example, the a(1) = 1 through a(9) = 14 compositions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(211) (221) (231) (241) (251) (261)
(311) (312) (322) (332) (342)
(321) (331) (341) (351)
(411) (412) (413) (423)
(421) (422) (432)
(511) (431) (441)
(512) (513)
(521) (522)
(611) (531)
(612)
(621)
(711)
(32211)
(End)
In the Ferrers diagram of a partition x of n, count the dots in each diagonal parallel to the main diagonal (starting at the top-right, say). The result diag(x) is a smooth weakly unimodal composition of n into positive parts such that the first and last part are 1. For example, diag(5541) = 11233221. The function diag is many-to-one; the size of its codomain as a set is a(n). If diag(x) = diag(y), each hook of x can be slid by the same amount past the main diagonal to get y. For example, diag(5541) = diag(44331). - George Beck, Sep 26 2021
From Gus Wiseman, May 23 2022: (Start)
Conjecture: Also the number of integer partitions y of n with a fixed point y(i) = i. These partitions are ranked by A352827. The conjecture is stated at A238395, but Resta tells me he may not have had a proof. The a(1) = 1 through a(8) = 10 partitions are:
(1) (11) (111) (22) (32) (42) (52) (62)
(1111) (221) (222) (322) (422)
(11111) (321) (421) (521)
(2211) (2221) (2222)
(111111) (3211) (3221)
(22111) (4211)
(1111111) (22211)
(32111)
(221111)
(11111111)
Note that these are not the same partitions (compare A352827 to A352874), only the same count (apparently).
(End)
The above conjecture is true. See Section 4 of the Blecher-Knopfmacher paper in the Links section. - Jeremy Lovejoy, Sep 26 2022
REFERENCES
G. E. Andrews, The reasonable and unreasonable effectiveness of number theory in statistical mechanics, pp. 21-34 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
A. Blecher and A. Knopfmacher, Fixed points and matching points in partitions, Ramanujan J. 58 (2022), 23-41.
Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
A. D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003 [math.CO], 2011.
E. M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.
FORMULA
a(n) = (A000041(n) - A064410(n)) / 2 for n>=2.
G.f.: 1 + ( Sum_{k>=1} -(-1)^k * x^(k*(k+1)/2) ) / ( Product_{k>=1} 1-x^k ).
G.f.: 1 + ( Sum_{n>=1} q^(n^2) / ( Product_{k=1..n-1} 1-q^k )^2 * (1-q^n) ) ). - Joerg Arndt, Dec 09 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) [Auluck, 1951]. - Vaclav Kotesovec, Sep 26 2016
a(n) = A000041(n) - A064428(n). - Gus Wiseman, Mar 30 2021
a(n) = A064428(n) - A064410(n). - Gus Wiseman, May 23 2022
EXAMPLE
For a(6)=5 we have the following stacks:
.x... ..x.. ...x. .xx.
xxxxx xxxxx xxxxx xxxx xxxxxx
.
From Joerg Arndt, Dec 09 2012: (Start)
There are a(9) = 14 smooth weakly unimodal compositions of 9:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 2 1 ]
03: [ 1 1 1 1 1 2 1 1 ]
04: [ 1 1 1 1 2 1 1 1 ]
05: [ 1 1 1 1 2 2 1 ]
06: [ 1 1 1 2 1 1 1 1 ]
07: [ 1 1 1 2 2 1 1 ]
08: [ 1 1 2 1 1 1 1 1 ]
09: [ 1 1 2 2 1 1 1 ]
10: [ 1 1 2 2 2 1 ]
11: [ 1 2 1 1 1 1 1 1 ]
12: [ 1 2 2 1 1 1 1 ]
13: [ 1 2 2 2 1 1 ]
14: [ 1 2 3 2 1 ]
(End)
From Joerg Arndt, Jun 11 2013: (Start)
There are a(9) = 14 weakly unimodal compositions of 9 where the maximal part m appears at least m times:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 2 2 ]
03: [ 1 1 1 1 2 2 1 ]
04: [ 1 1 1 2 2 1 1 ]
05: [ 1 1 1 2 2 2 ]
06: [ 1 1 2 2 1 1 1 ]
07: [ 1 1 2 2 2 1 ]
08: [ 1 2 2 1 1 1 1 ]
09: [ 1 2 2 2 1 1 ]
10: [ 1 2 2 2 2 ]
11: [ 2 2 1 1 1 1 1 ]
12: [ 2 2 2 1 1 1 ]
13: [ 2 2 2 2 1 ]
14: [ 3 3 3 ]
(End)
From Joerg Arndt, Mar 30 2014: (Start)
There are a(9) = 14 compositions of 9 with first part 1, maximal up-step 1, and no consecutive up-steps:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 1 2 1 ]
04: [ 1 1 1 1 1 2 1 1 ]
05: [ 1 1 1 1 1 2 2 ]
06: [ 1 1 1 1 2 1 1 1 ]
07: [ 1 1 1 1 2 2 1 ]
08: [ 1 1 1 2 1 1 1 1 ]
09: [ 1 1 1 2 2 1 1 ]
10: [ 1 1 1 2 2 2 ]
11: [ 1 1 2 1 1 1 1 1 ]
12: [ 1 1 2 2 1 1 1 ]
13: [ 1 1 2 2 2 1 ]
14: [ 1 1 2 2 3 ]
(End)
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
MAPLE
b:= proc(n, i, t) option remember; `if`(n<=0, `if`(i=1, 1, 0),
`if`(n<0 or i<1, 0, b(n-i, i, t)+b(n-(i-1), i-1, false)+
`if`(t, b(n-(i+1), i+1, t), 0)))
end:
a:= n-> b(n-1, 1, true):
seq(a(n), n=0..70); # Alois P. Heinz, Feb 26 2014
# second Maple program:
A001522 := proc(n)
local r, a;
a := 0 ;
if n = 0 then
return 1 ;
end if;
for r from 1 do
if r*(r+1) > 2*n then
return a;
else
a := a-(-1)^r*combinat[numbpart](n-r*(r+1)/2) ;
end if;
end do:
end proc: # R. J. Mathar, Mar 07 2015
MATHEMATICA
max = 50; f[x_] := 1 + Sum[-(-1)^k*x^(k*(k+1)/2), {k, 1, max}] / Product[(1-x^k), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
b[n_, i_, t_] := b[n, i, t] = If[n <= 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, b[n-i, i, t] + b[n - (i-1), i-1, False] + If[t, b[n - (i+1), i+1, t], 0]]]; a[n_] := b[n-1, 1, True]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 01 2015, after Alois P. Heinz *)
Flatten[{1, Table[Sum[(-1)^(j-1)*PartitionsP[n-j*((j+1)/2)], {j, 1, Floor[(Sqrt[8*n + 1] - 1)/2]}], {n, 1, 60}]}] (* Vaclav Kotesovec, Sep 26 2016 *)
ici[q_]:=And@@Table[q[[i]]>q[[i+2]], {i, Length[q]-2}];
Table[If[n==0, 1, Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], OddQ@*Length], ici]]], {n, 0, 15}] (* Gus Wiseman, Mar 30 2021 *)
PROG
(PARI) {a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1+8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Jul 22 2003 */
(PARI) N=66; q='q+O('q^N);
Vec( 1 + sum(n=1, N, q^(n^2)/(prod(k=1, n-1, 1-q^k)^2*(1-q^n)) ) ) \\ Joerg Arndt, Dec 09 2012
(Sage)
def A001522(n):
if n < 4: return 1
return (number_of_partitions(n) - [p.crank() for p in Partitions(n)].count(0))/2
[A001522(n) for n in range(30)] # Peter Luschny, Sep 15 2014
CROSSREFS
A version for permutations is A002467, complement A000166.
The case of zero crank is A064410, ranked by A342192.
The case of nonnegative crank is A064428, ranked by A352873.
A strict version is A352829, complement A352828.
Conjectured to be column k = 1 of A352833.
These partitions (positive crank) are ranked by A352874.
A000700 counts self-conjugate partitions, ranked by A088902.
A064391 counts partitions by crank.
A115720 and A115994 count partitions by their Durfee square.
A257989 gives the crank of the partition with Heinz number n.
Counting compositions: A003242, A114921, A238351, A342527, A342528, A342532.
Fixed points of reversed partitions: A238352, A238394, A238395, A352822, A352830, A352872.
KEYWORD
nonn,easy,nice
EXTENSIONS
a(0) changed from 0 to 1 by Joerg Arndt, Mar 30 2014
Edited definition. - N. J. A. Sloane, Mar 31 2021
STATUS
approved
Irregular triangle T(n,k) read by rows: T(n,k) is the number of partitions p(1), p(2), ..., p(m) of n (as weakly ascending list of parts) with k parts p at position p (fixed points), n>=0, 0<=k<= (column index of last nonzero term in row n).
+10
46
1, 0, 1, 1, 1, 1, 1, 1, 1, 4, 2, 3, 2, 3, 7, 0, 1, 3, 7, 5, 4, 14, 4, 5, 19, 3, 3, 8, 24, 9, 0, 1, 9, 32, 11, 4, 12, 46, 15, 4, 13, 60, 21, 7, 17, 85, 28, 1, 4, 22, 109, 28, 16, 0, 1, 28, 140, 51, 7, 5, 34, 179, 57, 26, 1, 42, 239, 74, 25, 5, 48, 300, 107, 24
OFFSET
0,10
COMMENTS
Row sums are A000041.
Column k=0 is A238394, row sums over columns k>=1 give A238395.
T(A000217(k),k) = 1,
T(A000217(k),k-1) = 0 for k in {1, 3, 4, 5, ... },
T(A000217(k)-1,k-1) = k-1 for k>1.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..500, flattened
EXAMPLE
Triangle starts:
00: 1;
01: 0, 1;
02: 1, 1;
03: 1, 1, 1;
04: 1, 4;
05: 2, 3, 2;
06: 3, 7, 0, 1;
07: 3, 7, 5;
08: 4, 14, 4;
09: 5, 19, 3, 3;
10: 8, 24, 9, 0, 1;
11: 9, 32, 11, 4;
12: 12, 46, 15, 4;
13: 13, 60, 21, 7;
14: 17, 85, 28, 1, 4;
15: 22, 109, 28, 16, 0, 1;
16: 28, 140, 51, 7, 5;
17: 34, 179, 57, 26, 1;
18: 42, 239, 74, 25, 5;
19: 48, 300, 107, 24, 11;
20: 59, 397, 122, 43, 1, 5;
21: 71, 495, 167, 37, 21, 0, 1;
...
The 11 partitions of 6 together with their number of fixed points are:
01: [ 1 1 1 1 1 1 ] 1
02: [ 1 1 1 1 2 ] 1
03: [ 1 1 1 3 ] 1
04: [ 1 1 2 2 ] 1
05: [ 1 1 4 ] 1
06: [ 1 2 3 ] 3
07: [ 1 5 ] 1
08: [ 2 2 2 ] 1
09: [ 2 4 ] 0
10: [ 3 3 ] 0
11: [ 6 ] 0
There are 3 partitions with no fixed points, 7 with one, none with 2, and one with 3, giving row 6.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1) +`if`(i>n, 0, (p-> add((c->c*x^j*
`if`(j=i, z, 1))(coeff(p, x, j)), j=0..degree(p, x)))
(x*b(n-i, i))))))
end:
T:= n-> (p->seq((q->add(coeff(q, x, j), j=0..degree(q, x)))
(coeff(p, z, i)), i=0..degree(p, z)))(b(n$2)):
seq(T(n), n=0..25);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + If[i>n, 0, Function[{p}, Sum[Function[{c}, c*x^j* If[j == i, z, 1]][Coefficient[p, x, j]], {j, 0, Exponent[p, x]}]] [x*b[n-i, i]]]]]]; T[n_] := Function[{p}, Table[ Function[{q}, Sum[Coefficient[q, x, j], {j, 0, Exponent[q, x]}]][Coefficient[p, z, i]], {i, 0, Exponent[p, z]}]][b[n, n]]; Table[T[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *)
CROSSREFS
Cf. A238349 (and A238350) for the same statistics for compositions.
KEYWORD
nonn,tabf,look
AUTHOR
Joerg Arndt and Alois P. Heinz, Feb 26 2014
STATUS
approved
Number of partitions of n with nonnegative crank.
+10
44
1, 0, 1, 2, 3, 4, 6, 8, 12, 16, 23, 30, 42, 54, 73, 94, 124, 158, 206, 260, 334, 420, 532, 664, 835, 1034, 1288, 1588, 1962, 2404, 2953, 3598, 4392, 5328, 6466, 7808, 9432, 11338, 13632, 16326, 19544, 23316, 27806, 33054, 39273, 46534, 55096, 65076, 76808
OFFSET
0,4
COMMENTS
For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).
From Gus Wiseman, Mar 30 2021 and May 21 2022: (Start)
Also the number of even-length compositions of n with alternating parts strictly decreasing, or properly 2-colored partitions (proper = no equal parts of the same color) with the same number of parts of each color, or ordered pairs of strict partitions of the same length with total n. The odd-length case is A001522, and there are a total of A000041 compositions with alternating parts strictly decreasing (see A342528 for a bijective proof). The a(2) = 1 through a(7) = 8 ordered pairs of strict partitions of the same length are:
(1)(1) (1)(2) (1)(3) (1)(4) (1)(5) (1)(6)
(2)(1) (2)(2) (2)(3) (2)(4) (2)(5)
(3)(1) (3)(2) (3)(3) (3)(4)
(4)(1) (4)(2) (4)(3)
(5)(1) (5)(2)
(21)(21) (6)(1)
(21)(31)
(31)(21)
Conjecture: Also the number of integer partitions y of n without a fixed point y(i) = i, ranked by A352826. This is stated at A238394, but Resta tells me he may not have had a proof. The a(2) = 1 through a(7) = 8 partitions without a fixed point are:
(2) (3) (4) (5) (6) (7)
(21) (31) (41) (33) (43)
(211) (311) (51) (61)
(2111) (411) (331)
(3111) (511)
(21111) (4111)
(31111)
(211111)
The version for permutations is A000166, complement A002467.
The version for compositions is A238351.
This is column k = 0 of A352833.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872. (End)
The above conjecture is true. See Section 4 of the Blecher-Knopfmacher paper in the Links section. - Jeremy Lovejoy, Sep 26 2022
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 18 Entry 9 Corollary (i).
G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook Part I, Springer, see p. 169 Entry 6.7.1.
LINKS
George E. Andrews and David Newman, The Minimal Excludant in Integer Partitions, J. Int. Seq., Vol. 23 (2020), Article 20.2.3.
Cody Armond and Oliver T. Dasbach, Rogers-Ramanujan type identities and the head and tail of the colored Jones polynomial, arXiv:1106.3948 [math.GT], 2011.
Cristina Ballantine and Mircea Merca, Bisected theta series, least r-gaps in partitions, and polygonal numbers, arXiv:1710.05960 [math.CO], 2017.
Rupam Barman and Ajit Singh, On Mex-related partition functions of Andrews and Newman, arXiv:2009.11602 [math.NT], 2020.
Aubrey Blecher and Arnold Knopfmacher, Fixed points and matching points in partitions, Ramanujan J. 58 (2022), 23-41.
Brian Hopkins, James A. Sellers, and Ae Ja Yee, Combinatorial Perspectives on the Crank and Mex Partition Statistics, arXiv:2108.09414 [math.CO], 2021.
Mbavhalelo Mulokwe and Konstantinos Zoubos, Free fermions, neutrality and modular transformations, arXiv:2403.08531 [hep-th], 2024.
FORMULA
a(n) = (A000041(n) + A064410(n)) / 2, n>1. - Michael Somos, Jul 28 2003
G.f.: (Sum_{k>=0} (-1)^k * x^(k(k+1)/2)) / (Product_{k>0} 1-x^k). - Michael Somos, Jul 28 2003
G.f.: Sum_{i>=0} x^(i*(i+1)) / (Product_{j=1..i} 1-x^j )^2. - Jon Perry, Jul 18 2004
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Sep 26 2016
G.f.: (Sum_{i>=0} x^i / (Product_{j=1..i} 1-x^j)^2 ) * (Product_{k>0} 1-x^k). - Li Han, May 23 2020
a(n) = A000041(n) - A001522(n). - Gus Wiseman, Mar 30 2021
a(n) = A064410(n) + A001522(n). - Gus Wiseman, May 21 2022
EXAMPLE
G.f. = 1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + 23*x^10 + ... - Michael Somos, Jan 15 2018
From Gus Wiseman, May 21 2022: (Start)
The a(0) = 1 through a(8) = 12 partitions with nonnegative crank:
() . (2) (3) (4) (5) (6) (7) (8)
(21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(221) (51) (61) (62)
(222) (322) (71)
(321) (331) (332)
(421) (422)
(2221) (431)
(521)
(2222)
(3221)
(3311)
(End)
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2) , {k, 0, (Sqrt[1 + 8 n] - 1)/2}] / QPochhammer[ x], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k (k + 1)) / QPochhammer[ x, x, k]^2 , {k, 0, (Sqrt[1 + 4 n] - 1)/2}], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
ck[y_]:=With[{w=Count[y, 1]}, If[w==0, If[y=={}, 0, Max@@y], Count[y, _?(#>w&)]-w]]; Table[Length[Select[IntegerPartitions[n], ck[#]>=0&]], {n, 0, 30}] (* Gus Wiseman, Mar 30 2021 *)
ici[q_]:=And@@Table[q[[i]]>q[[i+2]], {i, Length[q]-2}];
Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], EvenQ@*Length], ici]], {n, 0, 15}] (* Gus Wiseman, Mar 30 2021 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) -1)\2, (-1)^k * x^((k+k^2)/2)) / eta( x + x * O(x^n)), n))}; /* Michael Somos, Jul 28 2003 */
CROSSREFS
These are the row-sums of the right (or left) half of A064391, inclusive.
The case of crank 0 is A064410, ranked by A342192.
The strict case is A352828.
These partitions are ranked by A352873.
A000700 = self-conjugate partitions, ranked by A088902, complement A330644.
A001522 counts partitions with positive crank, ranked by A352874.
A034008 counts even-length compositions.
A115720 and A115994 count partitions by their Durfee square.
A224958 counts compositions w/ alternating parts unequal (even: A342532).
A257989 gives the crank of the partition with Heinz number n.
A342527 counts compositions w/ alternating parts equal (even: A065608).
A342528 = compositions w/ alternating parts weakly decr. (even: A114921).
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 30 2001
STATUS
approved
Number of partitions of n that sorted in increasing order do not contain a part k in position k.
+10
33
1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 9, 12, 13, 17, 22, 28, 34, 42, 48, 59, 71, 88, 106, 130, 151, 181, 210, 250, 295, 354, 417, 494, 577, 675, 780, 909, 1053, 1231, 1431, 1668, 1930, 2240, 2573, 2963, 3392, 3896, 4461, 5129, 5873, 6742, 7710, 8816, 10043, 11439
OFFSET
0,6
COMMENTS
The definition forbids partitions with a part equal to 1, so the smallest possible part is 2, which however can appear at most once.
Note that considering partitions in standard decreasing order, we obtain A064428.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from Giovanni Resta)
FORMULA
a(n) + A238395(n) = p(n) = A000041(n).
a(n) = Sum_{k>=0} A238406(n,k). - Alois P. Heinz, Feb 26 2014
a(n) = A238352(n,0). - Alois P. Heinz, Jun 08 2014
EXAMPLE
a(6) = 3, because of the 11 partitions of 6 only 3 do not contain a 1 in position 1, a 2 in position 2, or a 3 in position 3, namely (3,3), (2,4) and (6).
From Joerg Arndt, Mar 23 2014: (Start)
There are a(15) = 22 such partitions of 15:
01: [ 2 3 4 6 ]
02: [ 2 3 5 5 ]
03: [ 2 3 10 ]
04: [ 2 4 4 5 ]
05: [ 2 4 9 ]
06: [ 2 5 8 ]
07: [ 2 6 7 ]
08: [ 2 13 ]
09: [ 3 3 4 5 ]
10: [ 3 3 9 ]
11: [ 3 4 8 ]
12: [ 3 5 7 ]
13: [ 3 6 6 ]
14: [ 3 12 ]
15: [ 4 4 7 ]
16: [ 4 5 6 ]
17: [ 4 11 ]
18: [ 5 5 5 ]
19: [ 5 10 ]
20: [ 6 9 ]
21: [ 7 8 ]
22: [ 15 ]
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, (p-> expand(
x*(p-coeff(p, x, i-1)*x^(i-1))))(b(n-i, i)))))
end:
a:= n-> (p-> add(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(a(n), n=0..70); # Alois P. Heinz, Feb 26 2014
MATHEMATICA
a[n_] := Length@ Select[ IntegerPartitions@n, 0 < Min@ Abs[ Reverse@# - Range@ Length@#] &]; Array[a, 30]
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p-Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]]]; a[n_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Exponent[p, x]} ] ][b[n, n]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 26 2014
STATUS
approved
Number of fixed points y(i) = i, where y is the weakly increasing sequence of prime indices of n.
+10
28
0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 0
OFFSET
1,6
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
a(n) = A001222(n) - A352823(n). - Antti Karttunen, Apr 11 2022
EXAMPLE
The prime indices of 6500 are {1,1,3,3,3,6} with fixed points at positions {1,3,6}, so a(6500) = 3.
MAPLE
f:= proc(n) local F, J, t;
F:= sort(ifactors(n)[2], (s, t) -> s[1]<t[1]);
J:= map(t -> numtheory:-pi(t[1])$t[2], F);
nops(select(t -> J[t]=t, [$1..nops(J)]));
end proc:
map(f, [$1..200]); # Robert Israel, Apr 11 2023
MATHEMATICA
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
Table[pq[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]], {n, 100}]
PROG
(PARI) A352822(n) = { my(f=factor(n), i=0, c=0); for(k=1, #f~, while(f[k, 2], f[k, 2]--; i++; c += (i==primepi(f[k, 1])))); (c); }; \\ Antti Karttunen, Apr 11 2022
CROSSREFS
* = unproved
Positions of first appearances are A002110.
The triangle version is A238352.
Positions of 0's are A352830, counted by A238394.
Positions of 1's are A352831, counted by A352832.
A version for compositions is A352512, complement A352513, triangle A238349.
The complement is A352823.
The reverse version is A352824, complement A352825.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point, ranked by A352827.
A056239 adds up prime indices, row sums of A112798 and A296150.
*A064428 counts partitions without a fixed point, ranked by A352826.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A115720 and A115994 count partitions by their Durfee square.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 05 2022
EXTENSIONS
Data section extended up to 105 terms by Antti Karttunen, Apr 11 2022
STATUS
approved
Heinz numbers of integer partitions y with a fixed point y(i) = i. Such a fixed point is unique if it exists.
+10
28
2, 4, 8, 9, 15, 16, 18, 21, 27, 30, 32, 33, 36, 39, 42, 45, 51, 54, 57, 60, 63, 64, 66, 69, 72, 78, 81, 84, 87, 90, 93, 99, 102, 108, 111, 114, 117, 120, 123, 125, 126, 128, 129, 132, 135, 138, 141, 144, 153, 156, 159, 162, 168, 171, 174, 175, 177, 180, 183
OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The terms together with their prime indices begin:
2: (1)
4: (1,1)
8: (1,1,1)
9: (2,2)
15: (3,2)
16: (1,1,1,1)
18: (2,2,1)
21: (4,2)
27: (2,2,2)
30: (3,2,1)
32: (1,1,1,1,1)
33: (5,2)
36: (2,2,1,1)
39: (6,2)
42: (4,2,1)
45: (3,2,2)
51: (7,2)
54: (2,2,2,1)
For example, the partition (3,2,2) with Heinz number 45 has a fixed point at position 2, so 45 is in the sequence.
MATHEMATICA
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
Select[Range[100], pq[Reverse[Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]]==1&]
CROSSREFS
* = unproved
*These partitions are counted by A001522, strict A352829.
*The complement is A352826, counted by A064428.
The complement reverse version is A352830, counted by A238394.
The reverse version is A352872, counted by A238395
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, unfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352828 counts strict partitions without a fixed point.
A352833 counts partitions by fixed points.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 06 2022
STATUS
approved
Stack polyominoes with square core.
+10
22
1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
OFFSET
0,6
COMMENTS
a(n) is the number of stack polyominoes of area n with square core.
The core of stack is the set of all maximal columns.
The core is a square when the number of columns is equal to their height.
Equivalently, a(n) is the number of unimodal compositions of n, where the number of the parts of maximum value equal the maximum value itself. For instance, for n = 10, we have the following stacks:
(1,3,3,3), (3,3,3,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,2,1), (1,1,1,1,2,2,1,1), (1,1,1,2,2,1,1,1), (1,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1).
From Gus Wiseman, Apr 06 2019 and May 21 2022: (Start)
Also the number of integer partitions of n with final part in their inner lining partition equal to 1, where the k-th part of the inner lining partition of a partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the a(4) = 1 through a(10) = 9 partitions are:
(22) (32) (42) (52) (62) (72) (82)
(221) (321) (421) (521) (333) (433)
(2211) (3211) (4211) (621) (721)
(22111) (32111) (5211) (3331)
(221111) (42111) (6211)
(321111) (52111)
(2211111) (421111)
(3211111)
(22111111)
Also partitions that have a fixed point and a conjugate fixed point, ranked by A353317. The strict case is A352829. For example, the a(0) = 0 through a(9) = 7 partitions are:
() . . (21) (31) (41) (51) (61) (71)
(211) (311) (411) (511) (332)
(2111) (3111) (4111) (611)
(21111) (31111) (5111)
(211111) (41111)
(311111)
(2111111)
Also partitions of n + 1 without a fixed point or conjugate fixed point.
(End)
LINKS
Brian Hopkins, James A. Sellers, and Dennis Stanton, Dyson's Crank and the Mex of Integer Partitions, arXiv:2009.10873 [math.CO], 2020. Mentions this sequence.
FORMULA
G.f.: 1 + sum(k>=0, x^((k+1)^2)/((1-x)^2*(1-x^2)^2*...*(1-x^k)^2)).
MATHEMATICA
a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2, {i, 1, k}], {k, 0, n}], {x, 0, n}], x]
(* second program *)
pml[ptn_]:=If[ptn=={}, {}, FixedPointList[If[#=={}, {}, DeleteCases[Rest[#]-1, 0]]&, ptn][[-3]]];
Table[Length[Select[IntegerPartitions[n], pml[#]=={1}&]], {n, 0, 30}] (* Gus Wiseman, Apr 06 2019 *)
CROSSREFS
Cf. A001523 (stacks).
Positive crank: A001522, ranked by A352874.
Zero crank: A064410, ranked by A342192.
Nonnegative crank: A064428, ranked by A352873.
Fixed point but no conjugate fixed point: A118199, ranked by A353316.
A000041 counts partitions, strict A000009.
A002467 counts permutations with a fixed point, complement A000166.
A115720/A115994 count partitions by Durfee square, rank statistic A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved
Heinz numbers of integer partitions y without a fixed point y(i) = i. Such a fixed point is unique if it exists.
+10
21
1, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 96, 97
OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The terms together with their prime indices begin:
1: () 24: (2,1,1,1) 47: (15)
3: (2) 25: (3,3) 48: (2,1,1,1,1)
5: (3) 26: (6,1) 49: (4,4)
6: (2,1) 28: (4,1,1) 50: (3,3,1)
7: (4) 29: (10) 52: (6,1,1)
10: (3,1) 31: (11) 53: (16)
11: (5) 34: (7,1) 55: (5,3)
12: (2,1,1) 35: (4,3) 56: (4,1,1,1)
13: (6) 37: (12) 58: (10,1)
14: (4,1) 38: (8,1) 59: (17)
17: (7) 40: (3,1,1,1) 61: (18)
19: (8) 41: (13) 62: (11,1)
20: (3,1,1) 43: (14) 65: (6,3)
22: (5,1) 44: (5,1,1) 67: (19)
23: (9) 46: (9,1) 68: (7,1,1)
MATHEMATICA
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
Select[Range[100], pq[Reverse[Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]]==0&]
CROSSREFS
* = unproved
*These partitions are counted by A064428, strict A352828.
The complement is A352827.
The reverse version is A352830, counted by A238394.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 06 2022
STATUS
approved
Numbers whose weakly increasing prime indices y have no fixed points y(i) = i.
+10
19
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141
OFFSET
1,2
COMMENTS
First differs from A325128 in lacking 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.
EXAMPLE
The terms together with their prime indices begin:
1: {} 35: {3,4} 69: {2,9} 105: {2,3,4}
3: {2} 37: {12} 71: {20} 107: {28}
5: {3} 39: {2,6} 73: {21} 109: {29}
7: {4} 41: {13} 77: {4,5} 111: {2,12}
11: {5} 43: {14} 79: {22} 113: {30}
13: {6} 47: {15} 83: {23} 115: {3,9}
15: {2,3} 49: {4,4} 85: {3,7} 119: {4,7}
17: {7} 51: {2,7} 87: {2,10} 121: {5,5}
19: {8} 53: {16} 89: {24} 123: {2,13}
21: {2,4} 55: {3,5} 91: {4,6} 127: {31}
23: {9} 57: {2,8} 93: {2,11} 129: {2,14}
25: {3,3} 59: {17} 95: {3,8} 131: {32}
29: {10} 61: {18} 97: {25} 133: {4,8}
31: {11} 65: {3,6} 101: {26} 137: {33}
33: {2,5} 67: {19} 103: {27} 139: {34}
MATHEMATICA
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
Select[Range[100], pq[Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]==0&]
CROSSREFS
* = unproved
These partitions are counted by A238394, strict A025147.
These are the zeros of A352822.
*The reverse version is A352826, counted by A064428 (strict A352828).
*The complement reverse version is A352827, counted by A001522.
The complement is A352872, counted by A238395.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 06 2022
STATUS
approved
Numbers whose weakly increasing prime indices y have a fixed point y(i) = i.
+10
19
2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114
OFFSET
1,1
COMMENTS
First differs from A118672 in having 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The terms together with their prime indices begin:
2: {1} 28: {1,1,4} 56: {1,1,1,4}
4: {1,1} 30: {1,2,3} 58: {1,10}
6: {1,2} 32: {1,1,1,1,1} 60: {1,1,2,3}
8: {1,1,1} 34: {1,7} 62: {1,11}
9: {2,2} 36: {1,1,2,2} 63: {2,2,4}
10: {1,3} 38: {1,8} 64: {1,1,1,1,1,1}
12: {1,1,2} 40: {1,1,1,3} 66: {1,2,5}
14: {1,4} 42: {1,2,4} 68: {1,1,7}
16: {1,1,1,1} 44: {1,1,5} 70: {1,3,4}
18: {1,2,2} 45: {2,2,3} 72: {1,1,1,2,2}
20: {1,1,3} 46: {1,9} 74: {1,12}
22: {1,5} 48: {1,1,1,1,2} 75: {2,3,3}
24: {1,1,1,2} 50: {1,3,3} 76: {1,1,8}
26: {1,6} 52: {1,1,6} 78: {1,2,6}
27: {2,2,2} 54: {1,2,2,2} 80: {1,1,1,1,3}
For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
MATHEMATICA
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
Select[Range[100], pq[Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]>0&]
CROSSREFS
* = unproved
These partitions are counted by A238395, strict A096765.
These are the nonzero positions in A352822.
*The complement reverse version is A352826, counted by A064428.
*The reverse version is A352827, counted by A001522 (strict A352829).
The complement is A352830, counted by A238394 (strict A025147).
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 06 2022
STATUS
approved

Search completed in 0.019 seconds