login
Search: a222412 -id:a222412
     Sort: relevance | references | number | modified | created      Format: long | short | data
Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives f(n).
+10
10
1, -1, 1, 1, -3, -19, 79, 275, -2339, -11813, 14217, 95265, -4634445, -193814931, 131301607, 1315505395, -3890947599, -136146236611, 46949081169401, 124889801445461, -10635113572583999, -158812278992229461, 56918172351554857, 8484151253958927197
OFFSET
0,5
COMMENTS
For g(n) see A242225(n).
The old definition was "Numerator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024
FORMULA
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k > 1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0) = f(0)^(1/m);
g(1) = f(1)/(m*g(0)^(m-1));
g(k) = 1/(m*g(0)^(m-1))*(f(k) - Sum_{k_1+...+k_m=k,k_i<k} k!/( k_1!...k_m!)g(k_1)... g(k_m)), for k >= 2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
E.g.f: sqrt(x/(exp(x)-1)); take numerators. - Peter Luschny, May 08 2014
EXAMPLE
For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=-1.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=79.
1/1, -1/4, 1/48, 1/64, -3/1280, -19/3072, 79/86016, 275/49152, -2339/2949120, -11813/1310720, 14217/11534336 = A241885 / A242225.
MAPLE
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
a := n -> numer(g(bernoulli, n));
seq(a(n), n = 0..23); # Peter Luschny, May 07 2014
MATHEMATICA
a := 1
g[0] := Sqrt[f[0]]
f[k_] := BernoulliB[k]
g[1] := f[1]/(2 g[0]^1);
g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
Table[Factor[g[k]], {k, 0, 15}] // TableForm
(* Alternative: *)
Table[Numerator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Jitender Singh, May 01 2014
EXTENSIONS
Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst
STATUS
approved
Numerators in Taylor series expansion of (x/(exp(x) - 1))^(3/2)*exp(x/2).
+10
7
1, -1, -1, 5, 7, -19, -869, 715, 2339, -200821, -12863, 2117, 7106149, -64604977, -131301607, 7629931291, 174053933, -19449462373, -46949081169401, 355455588729389, 10635113572583999, -6511303438681407901, -349640201588122693, 9112944418860287
OFFSET
0,4
LINKS
F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
FORMULA
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
EXAMPLE
The first few fractions are 1, -1/4, -1/32, 5/384, 7/10240, -19/40960, -869/61931520, 715/49545216, ... = A222411/A222412. - Petros Hadjicostas, May 14 2020
MAPLE
gf:= (x/(exp(x)-1))^(3/2)*exp(x/2):
a:= n-> numer(coeff(series(gf, x, n+3), x, n)):
seq(a(n), n=0..25); # Alois P. Heinz, Mar 02 2013
MATHEMATICA
Series[(x/(Exp[x]-1))^(3/2)*Exp[x/2], {x, 0, 25}] // CoefficientList[#, x]& // Numerator (* Jean-François Alcover, Mar 18 2014 *)
CROSSREFS
Cf. A222412 (denominators).
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Feb 28 2013
STATUS
approved
Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives g(n).
+10
7
1, 4, 48, 64, 1280, 3072, 86016, 49152, 2949120, 1310720, 11534336, 4194304, 1526726656, 2348810240, 12079595520, 3221225472, 73014444032, 51539607552, 137095356088320, 5772436045824, 3809807790243840, 725677674332160, 2023101395107840, 3166593487994880
OFFSET
0,2
COMMENTS
For f(n) see A241885(n).
The old definition was "Denominator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024
FORMULA
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k>1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0)= f(0)^{1/m};
g(1)= f(1)/(mg(0)^(m-1));
g(k)= 1/(m g(0)^{m-1})*(f(k)-sum_{k_1+...+k_m=k,k_i<k} k!/( k_1!...k_m!)g(k_1)... g(k_m)), for k>=2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
EXAMPLE
For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=4.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=86016.
MAPLE
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
a := n -> denom(g(bernoulli, n));
seq(a(n), n=0..23);
MATHEMATICA
a := 1
g[0] := Sqrt[f[0]]
f[k_] := BernoulliB[k]
g[1] := f[1]/(2 g[0]^1);
g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
Table[Denominator[Factor[g[k]]], {k, 0, 15}] // TableForm
(* Alternative: *)
Table[Denominator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jitender Singh, May 08 2014
EXTENSIONS
Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst.
STATUS
approved
a(n) = denominator(k^n * [x^(2*n+1)] sqrt(k)*arccos(exp(-x^2/(2*k)))) for n >= 0 and fixed k > 0.
+10
6
1, 12, 480, 2688, 92160, 4055040, 805109760, 148635648, 2021444812800, 9037047398400, 41855798476800, 85571854663680, 1218840851644416000, 131634811977596928000, 30539276378802487296000, 26116346696355230515200, 72745993870031978496000, 8332722934203662991360000
OFFSET
0,2
COMMENTS
Denominators of a power series characterizing how powers of the cosine function converge to the Gaussian function.
As the cosine function is raised to increasing powers k, it converges to the Gaussian normal function. Let x be the standard deviation argument of the Gaussian function, and define a suitably scaled cosine function.
G(x) = exp(-x^2/2), Gaussian function.
C(x,k) = (cos(x/sqrt(k)))^k, k-th power of cosine function
C(x,k) - G(x) = -x^4/(12k) + x^6/(24k) - x^6/(45x^2) + ...
The usefulness of this approximation lies within the "principal half-period" of C(x,k), defined as h_k = {x : abs(x) < sqrt(k)*Pi/2}. Within h_k, k can be any real number and C(x,k) is a good approximation to G(x) even for small k, although convergence to G(x) is only reciprocal in k. Outside h_k, negative cosine values occur and the approximation deteriorates.
If we define x(k) such that G(x) = C(x(k),k) then
x = lim_{k->infinity} x(k).
The value of x(k) can be expressed as a polynomial in integer powers of x and k and coefficients A350194(n)/a(n), and characterizes how closely cosine powers approximate and converge to the Gaussian function.
FORMULA
The definitions of G(x) and C(x,k) lead directly to the equation
x(k) = sqrt(k)*arccos(exp(-x^2/(2k))),
which can be expanded into the power series
x(k) = Sum_{n>=0} (x^(2n+1)/k^n) * (A350194(n)/a(n)).
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
EXAMPLE
x(k) = x - (1/12)*(x^3/k) + (1/480)*(x^5/k^2) + (1/2688)*(x^7/k^3) - (1/92160)*(x^9/k^4) - (19/4055040)*(x^11/k^5) + (79/805109760)*(x^13/k^6) ...
MAPLE
gf := sqrt(k)*arccos(exp(-x^2/(2*k))): assume(k > 0): assume(x > 0):
ser := series(gf, x, 80): seq(denom(k^n*coeff(ser, x, 2*n+1)), n=0..17); # Peter Luschny, Dec 19 2021
KEYWORD
frac,nonn
AUTHOR
Robert B Fowler, Dec 16 2021
STATUS
approved
Numerators of a power series characterizing how powers of the cosine function converge to the Gaussian function.
+10
6
1, -1, 1, 1, -1, -19, 79, 11, -2339, -11813, 677, 2117, -308963, -64604977, 131301607, 263101079, -5614643, -1768132943, 46949081169401, 9606907803497, -10635113572583999, -158812278992229461, 8131167478793551, 9112944418860287, -40395223967437706149
OFFSET
0,6
COMMENTS
See A350154 for the denominators of this sequence of rational coefficients, as well as relevant comments, formulae, and examples.
FORMULA
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
CROSSREFS
Cf. A350154.
KEYWORD
frac,sign
AUTHOR
Robert B Fowler, Dec 19 2021.
STATUS
approved
Numerators in the asymptotic expansion of Gamma(x+1/2)/Gamma(x).
+10
2
1, -1, 1, 5, -21, -399, 869, 39325, -334477, -28717403, 59697183, 8400372435, -34429291905, -7199255611995, 14631594576045, 4251206967062925, -68787420596367165, -26475975382085110035, 53392138323683746235, 26275374869163335461975, -105772979046693606062363
OFFSET
1,4
LINKS
F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011. [Except for the signs, see the unnumbered table on p. 7.]
F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130. [Except for the signs, see Table 4.]
D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
Eric Weisstein's World of Mathematics, Gamma Function.
EXAMPLE
1/sqrt(x^(-1)) - sqrt(x^(-1))/8 + (x^(-1))^(3/2)/128 + (5*(x^(-1))^(5/2))/1024 - (21*(x^(-1))^(7/2))/32768 + ...
MAPLE
H := proc(n) local S, i; S := (x/(exp(x)-1))^(3/2)*exp(x/2);
-pochhammer(1/2, n-1)*coeff(series(S, x, n+2), x, n)*2^(4*n-1-add(i, i= convert(n, base, 2))) end:
A143503 := n -> (-1)^irem(n-1, 6)*H(n-1);
seq(A143503(n), n=1..16); # Peter Luschny, Apr 05 2014
MATHEMATICA
Numerator[CoefficientList[Series[Gamma[x + 1/2]/Gamma[x]/Sqrt[x], {x, Infinity, 20}], 1/x]] (* Vaclav Kotesovec, Oct 09 2023 *)
CROSSREFS
Cf. A061549, A088802 (denominators), A222411, A222412.
KEYWORD
sign,frac
AUTHOR
Eric W. Weisstein, Aug 20 2008
EXTENSIONS
More terms from Vaclav Kotesovec, Oct 09 2023
STATUS
approved

Search completed in 0.007 seconds