login
Search: a219555 -id:a219555
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of 1 / Product_{k>=1} (1-x^k)^(k+1).
(Formerly M1601)
+10
34
1, 2, 6, 14, 33, 70, 149, 298, 591, 1132, 2139, 3948, 7199, 12894, 22836, 39894, 68982, 117948, 199852, 335426, 558429, 922112, 1511610, 2460208, 3977963, 6390942, 10206862, 16207444, 25596941, 40214896, 62868772, 97814358
OFFSET
0,2
COMMENTS
Also, a(n) = number of partitions of the integer n where there are k+1 different kinds of part k for k = 1, 2, 3, ....
Also, a(n) = number of partitions of n objects of 2 colors. These are set partitions, the n objects are not labeled but colored, using two colors. For each subset of size k there are k+1 different possibilities, i=0..k white and k-i black objects.
Also, a(n) = number of simple unlabeled graphs with n nodes of 2 colors whose components are complete graphs. - Geoffrey Critzer, Sep 27 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 7.99, p. 484 and pp. 548-549.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
Carlos A. A. Florentino, Plethystic exponential calculus and permutation polynomials, arXiv:2105.13049 [math.CO], 2021. Mentions this sequence.
P. A. MacMahon, Memoir on symmetric functions of the roots of systems of equations, Phil. Trans. Royal Soc. London, 181 (1890), 481-536; Coll. Papers II, 32-87.
N. J. A. Sloane, Transforms
R. P. Stanley, Theory and Applications of Plane Partitions: Part 2, Studies in Appl. Math., 1 (1971), 259-279.
R. P. Stanley, The conjugate trace and trace of a plane partition, J. Combin. Theory, vol. A14 53-65 1973, esp. p. 64.
FORMULA
EULER transform of b(n) = n+1.
a(n) ~ Zeta(3)^(13/36) * exp(1/12 - Pi^4/(432*Zeta(3)) + Pi^2 * n^(1/3) / (3*2^(4/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 2^(23/36) * 3^(1/2) * Pi * n^(31/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 07 2015
a(n) = A089353(n+m, m), n >= 1, for each m >= n. a(0) =1. See the Stanley reference, Exercise 7.99. - Wolfdieter Lang, Mar 09 2015
G.f.: exp(Sum_{k>=1} (sigma_1(k) + sigma_2(k))*x^k/k). - Ilya Gutkovskiy, Aug 11 2018
EXAMPLE
We represent each summand, k, in a partition of n as k identical objects. Then we color each object. We have no regard for the order of the colored objects.
a(3) = 14 because we have: www; wwb; wbb; bbb; ww + w; ww + b; wb + w; wb + b; bb + w; bb + b; w + w + w; w + w + b; w + b + b; b + b + b, where the 2 colors are black b and white w. - Geoffrey Critzer, Sep 27 2012
a(3) = 14 because we have: 3; 3'; 3''; 3'''; 2 + 1; 2 + 1'; 2' + 1; 2' + 1'; 2'' + 1; 2'' + 1'; 1 + 1 + 1; 1 + 1 + 1'; 1 + 1' + 1'; 1' + 1' + 1', where a part k of different sorts is given as k, k', k'', etc. - Joerg Arndt, Mar 09 2015
From Alois P. Heinz, Mar 09 2015: (Start)
The a(4) = 33 = 5 + 9 + 6 + 8 + 5 partitions of 4 objects of 2 colors are:
5 partitions for the integer partition of 4 = 1 + 1 + 1 + 1:
01: {{b}, {b}, {b}, {b}}
02: {{b}, {b}, {b}, {w}}
03: {{b}, {b}, {w}, {w}}
04: {{b}, {w}, {w}, {w}}
05: {{w}, {w}, {w}, {w}}
9 partitions for the integer partition of 4 = 1 + 1 + 2:
06: {{b}, {b}, {b,b}}
07: {{b}, {w}, {b,b}}
08: {{w}, {w}, {b,b}}
09: {{b}, {b}, {w,b}}
10: {{b}, {w}, {w,b}}
11: {{w}, {w}, {w,b}}
12: {{b}, {b}, {w,w}}
13: {{b}, {w}, {w,w}}
14: {{w}, {w}, {w,w}}
6 partitions for the integer partition of 4 = 2 + 2:
15: {{b,b}, {b,b}}
16: {{b,b}, {w,b}}
17: {{b,b}, {w,w}}
18: {{w,b}, {w,b}}
19: {{w,b}, {w,w}}
20: {{w,w}, {w,w}}
8 partitions for the integer partition of 4 = 1 + 3:
21: {{b}, {b,b,b}}
22: {{w}, {b,b,b}}
23: {{b}, {w,b,b}}
24: {{w}, {w,b,b}}
25: {{b}, {w,w,b}}
26: {{w}, {w,w,b}}
27: {{b}, {w,w,w}}
28: {{w}, {w,w,w}}
5 partitions for the integer partition of 4 = 4:
29: {{b,b,b,b}}
30: {{w,b,b,b}}
31: {{w,w,b,b}}
32: {{w,w,w,b}}
33: {{w,w,w,w}}
Some see number partitions, others see set partitions, ...
(End)
It is obvious from the example of Alois P. Heinz that a(n) enumerates multi-set partitions of a multi-set of n elements of two kinds. In the case that there is only one kind, this reduces to the usual case of numerical partitions. In the case that all the n elements are distinct, then this reduces to the case of set partitions. - Michael Somos, Mar 09 2015
There are a(3) = 14 plane partitions of 6 with trace 3; of 7 with trace 4; of 8 with trace 5; etc. See a formula above with the Stanley Exercise 7.99. - Wolfdieter Lang, Mar 09 2015
From Daniel Forgues, Mar 09 2015: (Start)
The a(3) = 14 = 4 + 6 + 4 partitions of 3 objects of 2 colors are:
4 partitions for the integer partition of 3 = 1 + 1 + 1:
01: {{b}, {b}, {b}}
02: {{b}, {b}, {w}}
03: {{b}, {w}, {w}}
04: {{w}, {w}, {w}}
6 partitions for the integer partition of 3 = 1 + 2:
05: {{b}, {b,b}}
06: {{w}, {b,b}}
07: {{b}, {w,b}}
08: {{w}, {w,b}}
09: {{b}, {w,w}}
10: {{w}, {w,w}}
4 partitions for the integer partition of 3 = 3:
11: {{b,b,b}}
12: {{w,b,b}}
13: {{w,w,b}}
14: {{w,w,w}}
The a(2) = 6 = 3 + 3 partitions of 2 objects of 2 colors are:
3 partitions for the integer partition of 2 = 1 + 1:
01: {{b}, {b}}
02: {{b}, {w}}
03: {{w}, {w}}
3 partitions for the integer partition of 2 = 2:
04: {{b,b}}
05: {{w,b}}
06: {{w,w}}
The a(1) = 2 partitions of 1 object of 2 colors are:
2 partitions for the integer partition of 1 = 1:
01: {{b}}
02: {{w}}
a(0) = 1: the empty partition, since empty sum is 0.
Triangle(sort of, since n_th row has p(n) = A000041 terms):
1: 2
2: 3, 3
3: 4, 6, 4
4: 5, 9, 6, 8, 5
5: 6, ?, ?, ?, ?, ?, 6
6: 7, ?, ?, ?, ?, ?, ?, ?, ?, ?, 7
Can we find a recurrence relation? (End)
MAPLE
mul( (1-x^i)^(-i-1), i=1..80); series(%, x, 80); seriestolist(%);
# second Maple program:
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> n+1): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
max = 31; f[x_] = Product[ 1/(1-x^k)^(k+1), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 08 2011, after g.f. *)
etr[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n==0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; a = etr[#+1&]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)
PROG
(PARI) a(n)=polcoeff(prod(i=1, n, (1-x^i+x*O(x^n))^-(i+1)), n)
CROSSREFS
Row sums of A054225.
Column k=2 of A075196.
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited by Christian G. Bower, Sep 07 2002
New name from Joerg Arndt, Mar 09 2015
Restored 1995 name. - N. J. A. Sloane, Mar 09 2015
STATUS
approved
Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of distinct pairs.
+10
13
1, 1, 1, 1, 2, 1, 2, 3, 3, 2, 2, 5, 5, 5, 2, 3, 7, 9, 9, 7, 3, 4, 10, 14, 17, 14, 10, 4, 5, 14, 21, 27, 27, 21, 14, 5, 6, 19, 31, 42, 46, 42, 31, 19, 6, 8, 25, 44, 64, 74, 74, 64, 44, 25, 8, 10, 33, 61, 93, 116, 123, 116, 93, 61, 33, 10
OFFSET
0,5
COMMENTS
By analogy with ordinary partitions into distinct parts (A000009). The empty partition gives T(0,0)=1 by definition. A054225 and A201376 give pair partitions with repeats allowed.
Also number of partitions into pairs which are not both even.
In the paper by S. M. Luthra: "Partitions of bipartite numbers when the summands are unequal", the square table on page 370 contains an errors. In the formula (6, p. 372) for fixed m there should be factor 1/m!. The correct asymptotic formula is q(m, n) ~ (sqrt(12*n)/Pi)^m * exp(Pi*sqrt(n/3)) / (4*3^(1/4)*m!*n^(3/4)). The same error is also in article by F. C. Auluck (see A054225). - Vaclav Kotesovec, Feb 02 2016
LINKS
S. M. Luthra, Partitions of bipartite numbers when the summands are unequal, Proceedings of the Indian National Science Academy, vol.23, 1957, issue 5A, p. 370-376. [broken link]
FORMULA
G.f.: (1/2)*Product(1+x^i*y^j), i, j>=0.
EXAMPLE
The second row (n=1) is 1,1 since (1,0) and (0,1) each have a single partition.
The third row (n=2) is 1, 2, 1 from (2,0), (1,1) or (1,0)+(0,1), (0,2).
In the fourth row, T(1,3)=5 from (1,3), (0,3)+(1,0), (0,2)+(1,1), (0,2)+(0,1)+(1,0), (0,1)+(1,2).
The triangle begins:
1;
1, 1;
1, 2, 1;
2, 3, 3, 2;
2, 5, 5, 5, 2;
3, 7, 9, 9, 7, 3;
4, 10, 14, 17, 14, 10, 4;
5, 14, 21, 27, 27, 21, 14, 5;
6, 19, 31, 42, 46, 42, 31, 19, 6;
8, 25, 44, 64, 74, 74, 64, 44, 25, 8;
...
MATHEMATICA
max = 10; f[x_, y_] := Product[1 + x^n*y^k, {n, 0, max}, {k, 0, max}]/2; se = Series[f[x, y], {x, 0, max}, {y, 0, max}] ; coes = CoefficientList[ se, {x, y}]; t[n_, k_] := coes[[n-k+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, Dec 06 2011 *)
PROG
(Haskell) see Zumkeller link.
CROSSREFS
See A201377 for the same triangle formatted in a different way.
The outer diagonals are T(n,0) = T(n,n) = A000009(n).
Cf. A054225.
T(2*n,n) = A219554(n). Row sums give A219555. - Alois P. Heinz, Nov 22 2012
KEYWORD
easy,nonn,tabl,nice
AUTHOR
Marc LeBrun, Feb 08 2000 and Jul 01 2003
EXTENSIONS
Entry revised by N. J. A. Sloane, Nov 30 2011, to incorporate corrections provided by Reinhard Zumkeller, who also contributed the alternative version A201377.
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(2*k-1).
+10
11
1, 1, 3, 8, 15, 34, 67, 133, 255, 486, 901, 1649, 2984, 5312, 9373, 16342, 28221, 48283, 81928, 137858, 230278, 381919, 629156, 1029933, 1675856, 2711288, 4362575, 6983196, 11122327, 17630798, 27820283, 43706461, 68375137, 106534093, 165340844, 255643289
OFFSET
0,3
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (2592*Zeta(3)) - Pi^2 * n^(1/3) / (12*(3*Zeta(3))^(1/3)) + 3^(4/3)/2 * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/6) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Jun 07 2018
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
A simple grammar: power set of pairs of sequences.
+10
10
1, 0, 1, 2, 3, 6, 9, 16, 24, 42, 63, 102, 157, 244, 373, 570, 858, 1290, 1930, 2858, 4228, 6208, 9084, 13216, 19175, 27666, 39804, 57020, 81412, 115820, 164264, 232178, 327220, 459796, 644232, 900214, 1254554, 1743896, 2418071, 3344896, 4616026
OFFSET
0,4
COMMENTS
Number of partitions of n objects of two colors into distinct parts, where each part must contain at least one of each color. - Franklin T. Adams-Watters, Dec 28 2006
LINKS
FORMULA
G.f.: exp(Sum((-1)^(j[1]+1)*(x^j[1])^2/(x^j[1]-1)^2/j[1], j[1]=1 .. infinity))
G.f.: Product_{k>=1} (1+x^k)^(k-1). - Vladeta Jovovic, Sep 17 2002
Weigh transform of b(n) = n-1. - Franklin T. Adams-Watters, Dec 28 2006
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(1296*Zeta(3)) - Pi^2 * n^(1/3) / (3^(4/3) * 2^(5/3) * Zeta(3)^(1/3)) + (3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/4) * 3^(1/3) * n^(2/3) * sqrt(Pi)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 07 2015
MAPLE
spec := [S, {B=Sequence(Z, 1 <= card), C=Prod(B, B), S= PowerSet(C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k-1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Vladeta Jovovic, Sep 17 2002
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(2*k+1).
+10
8
1, 3, 8, 23, 55, 129, 291, 627, 1317, 2697, 5398, 10589, 20421, 38743, 72452, 133724, 243792, 439496, 784070, 1385195, 2424971, 4209094, 7247141, 12383496, 21008559, 35398548, 59259781, 98595110, 163077878, 268221706, 438791204, 714142139, 1156552537
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (2592*Zeta(3)) + Pi^2 * n^(1/3) / (12*(3*Zeta(3))^(1/3)) + 3^(4/3)/2*Zeta(3)^(1/3) * n^(2/3)) / (2^(7/6)* 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(2*k+1), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(3*k+1).
+10
5
1, 4, 13, 42, 117, 310, 785, 1896, 4433, 10062, 22248, 48080, 101821, 211682, 432795, 871520, 1730491, 3391894, 6568996, 12580316, 23841774, 44742634, 83193865, 153347110, 280336704, 508499474, 915540681, 1636805438, 2906642396, 5128530946, 8993376689
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (3888*Zeta(3)) + Pi^2 * n^(1/3) / (6^(5/3) * Zeta(3)^(1/3)) + 3^(5/3)/2^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(17/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(3*k+1), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(k+1).
+10
4
1, 4, 14, 44, 124, 328, 824, 1980, 4590, 10320, 22584, 48268, 101016, 207432, 418704, 832032, 1629764, 3150280, 6014998, 11354084, 21204488, 39206168, 71811256, 130369900, 234704360, 419195412, 743085912, 1307823672, 2286094704, 3970174648, 6852048368
OFFSET
0,2
COMMENTS
Convolution of A005380 and A219555.
LINKS
FORMULA
a(n) ~ (7*Zeta(3))^(13/36) * exp(1/12 - Pi^4/(336*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * (7*Zeta(3))^(1/3)) + 3/2 * ((7*Zeta(3))/2)^(1/3) * n^(2/3)) / (A * 2^(35/18) * 3^(1/2) * Pi * n^(31/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k+1), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 19 2015
STATUS
approved
Expansion of Product_{k>=1} (1 + x^k)^binomial(k+2,2).
+10
4
1, 3, 9, 29, 78, 207, 526, 1284, 3054, 7084, 16071, 35748, 78167, 168195, 356754, 746772, 1544145, 3157056, 6387114, 12795366, 25397760, 49977262, 97542936, 188912466, 363196750, 693424803, 1315161528, 2478648920, 4643337213, 8648452782, 16019345259, 29515269060, 54104712129
OFFSET
0,2
LINKS
FORMULA
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * A027480(d) ) * a(n-k).
a(n) ~ (7/15)^(1/8) * 2^(-21/8) * n^(-5/8) * exp((2/3)*(7/15)^(1/4)*Pi * n^(3/4) + 9*sqrt(15/7)*zeta(3) * sqrt(n) / (2*Pi^2) + ((5/7)^(1/4)*Pi / (2*3^(3/4)) - 1215*(15/7)^(1/4)*zeta(3)^2 / (28*Pi^5)) * n^(1/4) + 54675*zeta(3)^3 / (98*Pi^8) - 45*zeta(3) / (28*Pi^2)). - Vaclav Kotesovec, May 12 2021
MATHEMATICA
nmax = 32; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 2, 2], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 2, 2], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 32}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 09 2021
STATUS
approved
Expansion of Product_{k>=1} (1 + x^k)^binomial(k+3,3).
+10
4
1, 4, 16, 64, 221, 736, 2338, 7132, 21093, 60652, 170172, 467140, 1257571, 3325824, 8654576, 22189340, 56116043, 140122760, 345769094, 843827436, 2038017983, 4874329024, 11550814704, 27134195608, 63215468883, 146120097736, 335227455982, 763592477104, 1727482413548
OFFSET
0,2
LINKS
FORMULA
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * A033488(d) ) * a(n-k).
a(n) ~ (3*zeta(5))^(1/10) / (2^(7/10) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-469*log(2)/720 - 2401*Pi^16 / (656100000000*zeta(5)^3) + 539*Pi^8*zeta(3) / (8100000*zeta(5)^2) - 7*Pi^6 / (27000*zeta(5)) - 121*zeta(3)^2 / (600*zeta(5)) + (343*Pi^12 / (303750000 * 2^(3/5) * 15^(1/5) * zeta(5)^(11/5)) - 77*Pi^4*zeta(3) / (4500 * 2^(3/5) * 15^(1/5) * zeta(5)^(6/5)) + Pi^2 / (6*2^(3/5) * (15*zeta(5))^(1/5))) * n^(1/5) + (-49*Pi^8 / (270000 * 2^(1/5) * 15^(2/5) * zeta(5)^(7/5)) + 11*zeta(3) / (4*2^(1/5) * (15*zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (90*2^(4/5) * (15*zeta(5))^(3/5))) * n^(3/5) + (5*(15*zeta(5))^(1/5) / (4*2^(2/5))) * n^(4/5)). - Vaclav Kotesovec, May 12 2021
MATHEMATICA
nmax = 28; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 3, 3], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 3, 3], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 28}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 09 2021
STATUS
approved
G.f.: Product_{k>=1} (1+x^k)^(3*k+2).
+10
3
1, 5, 18, 61, 182, 506, 1338, 3369, 8172, 19197, 43833, 97636, 212748, 454461, 953505, 1968095, 4001627, 8024295, 15885484, 31074351, 60111277, 115071431, 218126868, 409662895, 762679151, 1408172844, 2579599582, 4690277001, 8467363674, 15182486586
OFFSET
0,2
COMMENTS
In general, if g.f. = Product_{k>=1} (1+x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(1/6) * exp(-c^2 * Pi^4 / (1296*m*Zeta(3)) + (c * Pi^2 * n^(1/3)) / (2^(5/3) * 3^(4/3) * (m*Zeta(3))^(1/3)) + 3^(4/3) * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(4/3)) / (2^(m/12 + c/2 + 2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Mar 08 2015
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(972*Zeta(3)) + Pi^2 * n^(1/3) / (2^(2/3) * 3^(5/3) * Zeta(3)^(1/3)) + 3^(5/3)/2^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(23/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(3*k+2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A026007 (k), A219555 (k+1), A052812 (k-1), A255834 (2*k+1), A255835 (2*k-1), A255836 (3*k+1).
Cf. A255803.
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved

Search completed in 0.008 seconds