login
Search: a208157 -id:a208157
     Sort: relevance | references | number | modified | created      Format: long | short | data
3-Knödel numbers or D-numbers: numbers m > 3 such that m | k^(m-2)-k for all k with gcd(k, m) = 1.
+10
21
9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 753, 771, 789, 807, 813, 819
OFFSET
1,1
COMMENTS
From Max Alekseyev, Oct 03 2016: (Start)
Also, composite numbers m such that A000010(p^k)=(p-1)*p^(k-1) divides m-3 for every prime power p^k dividing m (cf. A002997).
Properties: (i) All terms are odd. (ii) A prime power p^k with k>1 may divide a term only if p=3 and k=2. (iii) Many terms are divisible by 3. The first term not divisible by 3 is a(2000) = 50963 (cf. A277344). (End)
All terms satisfy the congruence 2^m == 8 (mod m) and thus belong to A015922. Sequence a(n)/3 is nearly identical to A106317, which does not contain the terms 399/3 = 133 and 195/3 = 65. - Gary Detlefs, May 28 2014; corrected by Max Alekseyev, Oct 03 2016
Numbers m > 3 such that A002322(m) divides m-3. - Thomas Ordowski, Jul 15 2017
Called "D numbers" by Morrow (1951), in analogy to Carmichael numbers (A002997) that were also known then as "F numbers". Called "C_3 numbers" (and in general "C_k numbers") by Knödel (1953). Makowski (1962/63) proved that there are infinitely many k-Knödel numbers for all k >= 2. The 1-Knödel numbers are the Carmichael numbers (A002997). - Amiram Eldar, Mar 25 2024, Apr 21 2024
REFERENCES
A. Makowski, Generalization of Morrow's D-Numbers, Bull. Belg. Math. Soc. Simon Stevin, Vol. 36 (1962/63), p. 71.
Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer, 2004, pp. 102-103.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000 (First 489 terms from R. J. Mathar).
John H. Castillo and Jhony Fernando Caranguay Mainguez, The set of k-units modulo n, Involve, a Journal of Mathematics, Vol. 15, No. 3 (2022), pp. 367-378; arXiv preprint, arXiv:1708.06812 [math.NT], 2017.
Walter Knödel, Carmichaelsche Zahlen, Math. Nachr., Vol. 9 (1953), pp. 343-350.
D. C. Morrow, Some Properties of D Numbers, The American Mathematical Monthly, Vol. 58, No. 5 (1951), pp. 329-330.
Eric Weisstein's World of Mathematics, D-Number.
Eric Weisstein's World of Mathematics, Knödel Numbers.
Wikipedia, Knödel number.
MAPLE
isKnodel := proc(n, k)
local a;
for a from 1 to n do
if igcd(a, n) = 1 then
if modp(a&^(n-k), n) <> 1 then
return false;
end if;
end if;
end do:
return true;
end proc:
isA033553 := proc(n)
isKnodel(n, 3) ;
end proc:
A033553 := proc(n)
option remember;
if n = 1 then
return 9;
else
for a from procname(n-1)+1 do
if isprime(a) then
next;
end if;
if isA033553(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A033553(n), n=1..100) ; # R. J. Mathar, Aug 14 2024
MATHEMATICA
Select[Range[4, 10^3], Divisible[# - 3, CarmichaelLambda[#]] &] (* Michael De Vlieger, Jul 15 2017 *)
PROG
(PARI) { isA033553(n) = my(p=factor(n)); for(i=1, matsize(p)[1], if( (n-3)%eulerphi(p[i, 1]^p[i, 2]), return(0)); ); 1; } \\ Max Alekseyev, Oct 04 2016
KEYWORD
nonn
EXTENSIONS
Edited by N. J. A. Sloane, May 07 2007
STATUS
approved
2-Knödel numbers.
+10
17
4, 6, 8, 10, 12, 14, 22, 24, 26, 30, 34, 38, 46, 56, 58, 62, 74, 82, 86, 94, 106, 118, 122, 132, 134, 142, 146, 158, 166, 178, 182, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458
OFFSET
1,1
COMMENTS
Numbers k > 2 such that A002322(k) divides k-2. Contains all doubled primes and all doubled Carmichael numbers. - Thomas Ordowski, Apr 23 2017
Problem: are there infinitely many 2-Knodel numbers divisible by 4? - Thomas Ordowski, Jun 21 2017
Named after the Austrian mathematician and computer scientist Walter Knödel (1926-2018). - Amiram Eldar, Jun 08 2021
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (first 690 terms from R. J. Mathar)
John H. Castillo and Jhony Fernando Caranguay Mainguez, The set of k-units modulo n, arXiv:1708.06812 [math.NT], 2017.
Eric Weisstein's World of Mathematics, Knödel Numbers.
Wikipedia, Knödel number.
MATHEMATICA
Select[Range[4, 460, 2], Divisible[# - 2, CarmichaelLambda@ #] &] (* Michael De Vlieger, Apr 24 2017 *)
PROG
(PARI) a002322(n) = lcm(znstar(n)[2]);
forstep(n=4, 500, 2, if((n - 2)%a002322(n)==0, print1(n, ", "))) \\ Indranil Ghosh, Jun 22 2017
KEYWORD
nonn
STATUS
approved
10-Knödel numbers.
+10
12
12, 24, 28, 30, 50, 70, 110, 130, 150, 170, 190, 230, 290, 310, 330, 370, 410, 430, 442, 470, 530, 532, 550, 590, 610, 670, 710, 730, 790, 830, 890, 910, 970, 1010, 1030, 1070, 1090, 1130, 1270, 1310, 1370, 1390, 1490, 1510, 1570, 1630, 1650, 1670, 1730, 1790
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Knödel Numbers
MAPLE
with(numtheory);
knodel:=proc(i, k)
local a, n, ok;
for n from k+1 to i do
ok:=1;
for a from 1 to n do
if gcd(a, n)=1 then if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
od;
if ok=1 then print(n); fi;
od;
end:
knodel(10000, 10)
MATHEMATICA
Select[Range[12, 1790, 2], Divisible[# - 10, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Feb 24 2012
STATUS
approved
Positive integers n such that 2^n (mod n) == 2^9 (mod n).
+10
10
1, 2, 3, 4, 5, 8, 9, 16, 17, 21, 27, 32, 45, 63, 64, 99, 105, 117, 124, 128, 153, 171, 189, 207, 254, 256, 261, 273, 279, 333, 369, 387, 423, 429, 477, 512, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1472, 1503, 1504, 1557, 1611, 1629, 1665, 1719, 1737, 1773, 1785, 1791, 1899, 1971
OFFSET
1,2
COMMENTS
For all m, 2^A128123(m)-1 belongs to this sequence.
LINKS
OEIS Wiki, 2^n mod n
MATHEMATICA
Select[Range[2000], PowerMod[2, 9, #]==PowerMod[2, #, #]&] (* Harvey P. Dale, Apr 01 2017 *)
PROG
(PARI) isok(n) = Mod(2, n)^n == 2^9; \\ Michel Marcus, Sep 23 2016
CROSSREFS
Contains A208157 as a subsequence.
The odd terms form A276970.
KEYWORD
nonn
EXTENSIONS
Edited by Max Alekseyev, Jul 30 2011
Definition clarified by Harvey P. Dale, Apr 01 2017
STATUS
approved
8-Knödel numbers.
+10
7
12, 14, 16, 20, 24, 32, 40, 48, 56, 60, 80, 88, 96, 104, 120, 136, 140, 152, 160, 184, 224, 232, 240, 248, 260, 296, 308, 328, 344, 376, 408, 416, 424, 472, 480, 488, 528, 536, 560, 568, 584, 632, 664, 680, 712, 728, 776, 808, 824, 856, 872, 904, 1016, 1040
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Knödel Numbers
MAPLE
with(numtheory);
knodel:=proc(i, k)
local a, n, ok;
for n from k+1 to i do
ok:=1;
for a from 1 to n do
if gcd(a, n)=1 then if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
od;
if ok=1 then print(n); fi;
od;
end:
knodel(10000, 8)
MATHEMATICA
Select[Range[10, 2000, 2], Divisible[# - 8, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Feb 24 2012
STATUS
approved
Odd integers n such that 2^n == 2^9 (mod n).
+10
7
1, 3, 5, 9, 17, 21, 27, 45, 63, 99, 105, 117, 153, 171, 189, 207, 261, 273, 279, 333, 369, 387, 423, 429, 477, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1503, 1557, 1611, 1629, 1665, 1719, 1737
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n-9) == 1 (mod n).
Contains A208157 as a subsequence.
For all m, 2^A128123(m)-1 belongs to this sequence.
LINKS
MATHEMATICA
m = 2^9; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)
CROSSREFS
The odd terms of A015931.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), this sequence (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved
Smallest n-Knödel number, i.e., smallest composite c > n such that each b < c coprime to c satisfies b^(c-n) == 1 (mod c).
+10
1
561, 4, 9, 6, 25, 8, 15, 12, 21, 12, 15, 16, 33, 24, 21, 20, 65, 24, 51, 24, 45, 24, 33, 32, 69, 30, 39, 40, 65, 36, 87, 40, 45, 44, 51, 40, 85, 56, 57, 48, 65, 72, 91, 48, 63, 66, 69, 60, 141, 56, 63, 60, 65, 72, 75, 60, 63, 70, 87, 72, 133, 122, 93, 80, 165
OFFSET
1,1
LINKS
Wikipedia, Knödel number.
MATHEMATICA
Table[SelectFirst[Range[n + 1, 10^3], Function[c, CompositeQ@ c && AllTrue[Range[1, c - 1] /. x_ /; ! CoprimeQ[x, c] -> Nothing, Mod[#^(c - n), c] == 1 &]]], {n, 65}] (* Michael De Vlieger, Apr 06 2016, Version 10 *)
PROG
(PARI) a(n) = forcomposite(c=n+1, , my(i=0, j=0); for(b=1, c-1, if(gcd(b, c)==1, i++; if(Mod(b, c)^(c-n)==1, j++))); if(i==j, return(c)))
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Apr 06 2016
STATUS
approved

Search completed in 0.010 seconds