login
Search: a180563 -id:a180563
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f.: exp( Sum_{n>=1} A180563(n) * x^n / n ).
+20
2
1, 1, -1, 5, -45, 609, -11141, 257281, -7170355, 233936995, -8744103079, 368479396171, -17288353555771, 894005702731735, -50527305282004435, 3099060459670425655, -205028564671300495120, 14554510561318327509610, -1103542106915790217739110, 89009707681627448130203830, -7610129271299704960998906454, 687495658528174987634449288846, -65438091790081511530153327883206, 6545685493719560524729653911676430
OFFSET
0,4
LINKS
EXAMPLE
G.f.: A(x) = 1 + x - x^2 + 5*x^3 - 45*x^4 + 609*x^5 - 11141*x^6 + 257281*x^7 - 7170355*x^8 + 233936995*x^9 - 8744103079*x^10 +...
such that
log(A(x)) = x - 3*x^2/2 + 19*x^3/3 - 207*x^4/4 + 3331*x^5/5 - 71223*x^6/6 + 1890379*x^7/7 - 59652687*x^8/8 + 2175761971*x^9/9 +...+ A180563(n)*x^n/n +...
where the e.g.f. G(x) of A180563 begins
G(x) = x - 3*x^2/2! + 19*x^3/3! - 207*x^4/4! + 3331*x^5/5! - 71223*x^6/6! + 1890379*x^7/7! +...+ A180563(n)*x^n/n! +...
and satisfies: Product_{n>=1} (1 - G(x)^n) = exp(-x).
PROG
(PARI) {A180563(n) = my( L = sum(m=1, n, sigma(m) * x^m/m ) +x*O(x^n) ); n!*polcoeff( serreverse(L), n)}
{a(n) = my(A); A = exp( sum(m=1, n+1, A180563(m)*x^m/m +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A180653, A294331 (variant).
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 28 2017
STATUS
approved
Triangle of D'Arcais numbers.
+10
12
1, 3, 1, 8, 9, 1, 42, 59, 18, 1, 144, 450, 215, 30, 1, 1440, 3394, 2475, 565, 45, 1, 5760, 30912, 28294, 9345, 1225, 63, 1, 75600, 293292, 340116, 147889, 27720, 2338, 84, 1, 524160, 3032208, 4335596, 2341332, 579369, 69552, 4074, 108, 1, 6531840, 36290736, 57773700, 38049920, 11744775, 1857513, 154350, 6630, 135, 1
OFFSET
1,2
COMMENTS
Also the Bell transform of A038048(n+1) and the inverse Bell transform of A180563(n+1) (adding 1,0,0,.. as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Named after the Italian mathematician Francesco Flores D'Arcais (1849-1927). - Amiram Eldar, Jun 13 2021
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.
F. D'Arcais, Développement en série, Intermédiaire Math., Vol. 20 (1913), pp. 233-234.
LINKS
Seiichi Manyama, Rows n = 1..100, flattened (rows n = 1..20 from Vincenzo Librandi)
Peter Luschny, The Bell transform.
FORMULA
G.f.: Sum_{1<=k<=n} T(n, k)*u^k*t^n/n! = ((1-t)*(1-t^2)*(1-t^3)...)^(-u).
Recurrence for degree n D'Arcais polynomials T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = Sum_{k=1..n} (n-1)!/(n-k)!*sigma(k)*u*T(n-k; u), T(0; u) = 1. - Vladeta Jovovic, Oct 11 2002
T(n; u) = n!*Sum_{pi} Product_{i=1..n} binomial(u+k(i)-1, k(i)) where pi runs through all nonnegative solutions of k(1)+2*k(2)+..+n*k(n)=n. - Vladeta Jovovic, Oct 11 2002
E.g.f.: exp(Sum_{n>0} sigma(n)*u*x^n/n), where sigma(n)=A000203(n). - Vladeta Jovovic, Jan 10 2003
T(n, k) = coeff(n!*P(n), x^k), n >= 1 and 1 <= k <= n, with P(n) = (1/n)*Sum_{k=0..n-1} sigma(n-k)*P(k)*x for n >= 1 and P(n=0) = 1. See A036039. - Johannes W. Meijer, Jul 08 2016
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} sigma(i_j)/i_j. - Seiichi Manyama, Nov 09 2020.
EXAMPLE
exp(Sum_{n>0} sigma(n)*u*x^n/n) = 1+u*x/1!+(3*u+u^2)*x^2/2!+(8*u+9*u^2+u^3)*x^3/3!+(42*u+59*u^2+18*u^3+u^4)*x^4/4!+...
Triangle starts:
1:
3, 1;
8, 9, 1;
42, 59, 18, 1;
144, 450, 215, 30, 1;
1440, 3394, 2475, 565, 45, 1;
5760, 30912, 28294, 9345, 1225, 63, 1;
75600, 293292, 340116, 147889, 27720, 2338, 84, 1;
...
T(4; u) = 4!*(binomial(u+3,4) + binomial(u+1,2)*binomial(u,1) + binomial(u+1,2) + binomial(u,1)^2 + binomial(u,1)) = 42*u+59*u^2+18*u^3+u^4.
MAPLE
P := proc(n): if n=0 then 1 else P(n):= (1/n)*(add(x(n-k) * P(k), k=0..n-1)) fi; end: with(numtheory): x := proc(n): sigma(n) * x end: Q := proc(n): n!*P(n) end: T := proc(n, k): coeff(Q(n), x, k) end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, Jul 08 2016
MATHEMATICA
t[0][u_] = 1; t[n_][u_] := t[n][u] = Sum[(n-1)!/(n-k)!*DivisorSigma[1, k]*u*t[n-k][u], {k, 1, n}]; row[n_] := CoefficientList[ t[n][u], u] // Rest; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 03 2012, after Vladeta Jovovic *)
PROG
(Sage) # uses[bell_matrix from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
print(bell_matrix(lambda n: A038048(n+1), 9)) # Peter Luschny, Jan 19 2016
(PARI) row(n)={local(P(n)=if(n, sum(k=0, n-1, sigma(n-k)*x*P(k))/n, 1)); Vecrev(P(n)*n!/x)} \\ T(n, k)=row(n)[k]. - M. F. Hasler, Jul 13 2016
(PARI) a(n) = if(n<1, 0, (n-1)!*sigma(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1))) \\ Seiichi Manyama, Nov 08 2020 after Peter Luschny
CROSSREFS
Column k=1..3 give A038048, A059356, A059357.
Row sums give A053529.
KEYWORD
nonn,tabl,nice,easy
EXTENSIONS
More terms from Vladeta Jovovic, Dec 28 2001
STATUS
approved
E.g.f. A(x) satisfies: Product_{n>=1} (1 - (-A(x))^n) = exp(x).
+10
3
1, 3, 19, 207, 3331, 71223, 1890379, 59652687, 2175761971, 89953773543, 4155502117339, 212122704251967, 11857607972675011, 720435277883199063, 47273215180877201899, 3331797538738820992047, 251025685429022007354451, 20133640365773761748643783, 1712740622904757368673592059
OFFSET
1,2
COMMENTS
Unsigned version of A180563.
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) Sum_{n>=1} (-1)^(n-1) * sigma(n) * A(x)^n / n = x.
(2) Sum_{n>=0} (-1)^[n/2] * (2*n+1) * A(x)^(n*(n+1)/2) = exp(3*x).
(3) A(x) = Series_Reversion( log(Q(x)) ) where Q(x) = Product_{n>=1} (1 - (-x)^n).
a(n) ~ c * d^n * n^(n-1), where d = 1.788680223969315995... and c = 0.254472375755339325... - Vaclav Kotesovec, Oct 29 2017
EXAMPLE
E.g.f.: A(x) = x + 3*x^2/2! + 19*x^3/3! + 207*x^4/4! + 3331*x^5/5! + 71223*x^6/6! + 1890379*x^7/7! + 59652687*x^8/8! + 2175761971*x^9/9! + 89953773543*x^10/10! +...
such that A( log(Q(x)) ) = x, where:
Q(x) = Product_{n>=1} (1 - (-x)^n);
log(Q(x)) = x - 3*x^2/2 + 4*x^3/3 - 7*x^4/4 + 6*x^5/5 - 12*x^6/6 + 8*x^7/7 - 15*x^8/8 + 13*x^9/9 - 18*x^10/10 +...+ (-1)^(n-1)*sigma(n)*x^n/n +...
and Q(x) = 1 + x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 + x^35 - x^40 - x^51 - x^57 - x^70 + x^77 + x^92 + x^100 +...+ A121373(n)*x^n +...
Also,
exp(3*x) = 1 + 3*A(x) - 5*A(x)^3 - 7*A(x)^6 + 9*A(x)^10 + 11*A(x)^15 - 13*A(x)^21 - 15*A(x)^28 + 17*A(x)^36 +...+ (-1)^[n/2] * (2*n+1) * A(x)^(n*(n+1)/2) +...
ALTERNATE GENERATING FUNCTION.
L.g.f.: L(x) = x + 3*x^2/2 + 19*x^3/3 + 207*x^4/4 + 3331*x^5/5 + 71223*x^6/6 + 1890379*x^7/7 + 59652687*x^8/8 + 2175761971*x^9/9 + 89953773543*x^10/10 +...
such that
exp(L(x)) = 1 + x + 2*x^2 + 8*x^3 + 60*x^4 + 732*x^5 + 12672*x^6 + 283704*x^7 + 7757526*x^8 + 249885110*x^9 + 9255184676*x^10 +...+ A294331(n)*x^n +...
MATHEMATICA
(* Calculation of constants {d, c}: *) eq = FindRoot[{E^r == QPochhammer[-s], (E^r*(Log[1 + s] + QPolyGamma[0, 1, -s]))/(s*Log[-s]) + Derivative[0, 1][QPochhammer][-s, -s] == 0}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 400]; {N[1/r/E /. eq, 120], val = s*E^r*Sqrt[-r*(1 + s) * (Log[-s]^2/(E^(2*r)*(1 + s)*QPolyGamma[1, 1, -s] + s*Log[-s]*(-s*(1 + s) * Log[-s] * Derivative[0, 1][QPochhammer][-s, -s]^2 + E^r*(1 + s)*((-2 - Log[-s]) * Derivative[0, 1][QPochhammer][-s, -s] + s*Log[-s] * Derivative[0, 2][QPochhammer][-s, -s]) + 2*E^(2*r)*(-1 + (1 + s) * Derivative[0, 0, 1][QPolyGamma][0, 1, -s]))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Sep 28 2023 *)
PROG
(PARI) {a(n) = local( L = sum(m=1, n, (-1)^(m-1) * sigma(m) * x^m/m ) +x*O(x^n) ); n!*polcoeff( serreverse(L), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Cf. A294331, A010815, A180563 (variant).
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 28 2017
STATUS
approved

Search completed in 0.086 seconds